Loading...
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/module.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59
60#include <asm/tlbflush.h>
61
62#include "internal.h"
63
64static struct kmem_cache *anon_vma_cachep;
65static struct kmem_cache *anon_vma_chain_cachep;
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
82}
83
84static inline void anon_vma_free(struct anon_vma *anon_vma)
85{
86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
112
113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114{
115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116}
117
118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
123/**
124 * anon_vma_prepare - attach an anon_vma to a memory region
125 * @vma: the memory region in question
126 *
127 * This makes sure the memory mapping described by 'vma' has
128 * an 'anon_vma' attached to it, so that we can associate the
129 * anonymous pages mapped into it with that anon_vma.
130 *
131 * The common case will be that we already have one, but if
132 * not we either need to find an adjacent mapping that we
133 * can re-use the anon_vma from (very common when the only
134 * reason for splitting a vma has been mprotect()), or we
135 * allocate a new one.
136 *
137 * Anon-vma allocations are very subtle, because we may have
138 * optimistically looked up an anon_vma in page_lock_anon_vma()
139 * and that may actually touch the spinlock even in the newly
140 * allocated vma (it depends on RCU to make sure that the
141 * anon_vma isn't actually destroyed).
142 *
143 * As a result, we need to do proper anon_vma locking even
144 * for the new allocation. At the same time, we do not want
145 * to do any locking for the common case of already having
146 * an anon_vma.
147 *
148 * This must be called with the mmap_sem held for reading.
149 */
150int anon_vma_prepare(struct vm_area_struct *vma)
151{
152 struct anon_vma *anon_vma = vma->anon_vma;
153 struct anon_vma_chain *avc;
154
155 might_sleep();
156 if (unlikely(!anon_vma)) {
157 struct mm_struct *mm = vma->vm_mm;
158 struct anon_vma *allocated;
159
160 avc = anon_vma_chain_alloc(GFP_KERNEL);
161 if (!avc)
162 goto out_enomem;
163
164 anon_vma = find_mergeable_anon_vma(vma);
165 allocated = NULL;
166 if (!anon_vma) {
167 anon_vma = anon_vma_alloc();
168 if (unlikely(!anon_vma))
169 goto out_enomem_free_avc;
170 allocated = anon_vma;
171 }
172
173 anon_vma_lock(anon_vma);
174 /* page_table_lock to protect against threads */
175 spin_lock(&mm->page_table_lock);
176 if (likely(!vma->anon_vma)) {
177 vma->anon_vma = anon_vma;
178 avc->anon_vma = anon_vma;
179 avc->vma = vma;
180 list_add(&avc->same_vma, &vma->anon_vma_chain);
181 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
182 allocated = NULL;
183 avc = NULL;
184 }
185 spin_unlock(&mm->page_table_lock);
186 anon_vma_unlock(anon_vma);
187
188 if (unlikely(allocated))
189 put_anon_vma(allocated);
190 if (unlikely(avc))
191 anon_vma_chain_free(avc);
192 }
193 return 0;
194
195 out_enomem_free_avc:
196 anon_vma_chain_free(avc);
197 out_enomem:
198 return -ENOMEM;
199}
200
201/*
202 * This is a useful helper function for locking the anon_vma root as
203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204 * have the same vma.
205 *
206 * Such anon_vma's should have the same root, so you'd expect to see
207 * just a single mutex_lock for the whole traversal.
208 */
209static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210{
211 struct anon_vma *new_root = anon_vma->root;
212 if (new_root != root) {
213 if (WARN_ON_ONCE(root))
214 mutex_unlock(&root->mutex);
215 root = new_root;
216 mutex_lock(&root->mutex);
217 }
218 return root;
219}
220
221static inline void unlock_anon_vma_root(struct anon_vma *root)
222{
223 if (root)
224 mutex_unlock(&root->mutex);
225}
226
227static void anon_vma_chain_link(struct vm_area_struct *vma,
228 struct anon_vma_chain *avc,
229 struct anon_vma *anon_vma)
230{
231 avc->vma = vma;
232 avc->anon_vma = anon_vma;
233 list_add(&avc->same_vma, &vma->anon_vma_chain);
234
235 /*
236 * It's critical to add new vmas to the tail of the anon_vma,
237 * see comment in huge_memory.c:__split_huge_page().
238 */
239 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
240}
241
242/*
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
245 */
246int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
247{
248 struct anon_vma_chain *avc, *pavc;
249 struct anon_vma *root = NULL;
250
251 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
252 struct anon_vma *anon_vma;
253
254 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255 if (unlikely(!avc)) {
256 unlock_anon_vma_root(root);
257 root = NULL;
258 avc = anon_vma_chain_alloc(GFP_KERNEL);
259 if (!avc)
260 goto enomem_failure;
261 }
262 anon_vma = pavc->anon_vma;
263 root = lock_anon_vma_root(root, anon_vma);
264 anon_vma_chain_link(dst, avc, anon_vma);
265 }
266 unlock_anon_vma_root(root);
267 return 0;
268
269 enomem_failure:
270 unlink_anon_vmas(dst);
271 return -ENOMEM;
272}
273
274/*
275 * Attach vma to its own anon_vma, as well as to the anon_vmas that
276 * the corresponding VMA in the parent process is attached to.
277 * Returns 0 on success, non-zero on failure.
278 */
279int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
280{
281 struct anon_vma_chain *avc;
282 struct anon_vma *anon_vma;
283
284 /* Don't bother if the parent process has no anon_vma here. */
285 if (!pvma->anon_vma)
286 return 0;
287
288 /*
289 * First, attach the new VMA to the parent VMA's anon_vmas,
290 * so rmap can find non-COWed pages in child processes.
291 */
292 if (anon_vma_clone(vma, pvma))
293 return -ENOMEM;
294
295 /* Then add our own anon_vma. */
296 anon_vma = anon_vma_alloc();
297 if (!anon_vma)
298 goto out_error;
299 avc = anon_vma_chain_alloc(GFP_KERNEL);
300 if (!avc)
301 goto out_error_free_anon_vma;
302
303 /*
304 * The root anon_vma's spinlock is the lock actually used when we
305 * lock any of the anon_vmas in this anon_vma tree.
306 */
307 anon_vma->root = pvma->anon_vma->root;
308 /*
309 * With refcounts, an anon_vma can stay around longer than the
310 * process it belongs to. The root anon_vma needs to be pinned until
311 * this anon_vma is freed, because the lock lives in the root.
312 */
313 get_anon_vma(anon_vma->root);
314 /* Mark this anon_vma as the one where our new (COWed) pages go. */
315 vma->anon_vma = anon_vma;
316 anon_vma_lock(anon_vma);
317 anon_vma_chain_link(vma, avc, anon_vma);
318 anon_vma_unlock(anon_vma);
319
320 return 0;
321
322 out_error_free_anon_vma:
323 put_anon_vma(anon_vma);
324 out_error:
325 unlink_anon_vmas(vma);
326 return -ENOMEM;
327}
328
329void unlink_anon_vmas(struct vm_area_struct *vma)
330{
331 struct anon_vma_chain *avc, *next;
332 struct anon_vma *root = NULL;
333
334 /*
335 * Unlink each anon_vma chained to the VMA. This list is ordered
336 * from newest to oldest, ensuring the root anon_vma gets freed last.
337 */
338 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
339 struct anon_vma *anon_vma = avc->anon_vma;
340
341 root = lock_anon_vma_root(root, anon_vma);
342 list_del(&avc->same_anon_vma);
343
344 /*
345 * Leave empty anon_vmas on the list - we'll need
346 * to free them outside the lock.
347 */
348 if (list_empty(&anon_vma->head))
349 continue;
350
351 list_del(&avc->same_vma);
352 anon_vma_chain_free(avc);
353 }
354 unlock_anon_vma_root(root);
355
356 /*
357 * Iterate the list once more, it now only contains empty and unlinked
358 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
359 * needing to acquire the anon_vma->root->mutex.
360 */
361 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
362 struct anon_vma *anon_vma = avc->anon_vma;
363
364 put_anon_vma(anon_vma);
365
366 list_del(&avc->same_vma);
367 anon_vma_chain_free(avc);
368 }
369}
370
371static void anon_vma_ctor(void *data)
372{
373 struct anon_vma *anon_vma = data;
374
375 mutex_init(&anon_vma->mutex);
376 atomic_set(&anon_vma->refcount, 0);
377 INIT_LIST_HEAD(&anon_vma->head);
378}
379
380void __init anon_vma_init(void)
381{
382 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
383 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
384 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
385}
386
387/*
388 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
389 *
390 * Since there is no serialization what so ever against page_remove_rmap()
391 * the best this function can do is return a locked anon_vma that might
392 * have been relevant to this page.
393 *
394 * The page might have been remapped to a different anon_vma or the anon_vma
395 * returned may already be freed (and even reused).
396 *
397 * In case it was remapped to a different anon_vma, the new anon_vma will be a
398 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
399 * ensure that any anon_vma obtained from the page will still be valid for as
400 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
401 *
402 * All users of this function must be very careful when walking the anon_vma
403 * chain and verify that the page in question is indeed mapped in it
404 * [ something equivalent to page_mapped_in_vma() ].
405 *
406 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
407 * that the anon_vma pointer from page->mapping is valid if there is a
408 * mapcount, we can dereference the anon_vma after observing those.
409 */
410struct anon_vma *page_get_anon_vma(struct page *page)
411{
412 struct anon_vma *anon_vma = NULL;
413 unsigned long anon_mapping;
414
415 rcu_read_lock();
416 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
417 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
418 goto out;
419 if (!page_mapped(page))
420 goto out;
421
422 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
423 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
424 anon_vma = NULL;
425 goto out;
426 }
427
428 /*
429 * If this page is still mapped, then its anon_vma cannot have been
430 * freed. But if it has been unmapped, we have no security against the
431 * anon_vma structure being freed and reused (for another anon_vma:
432 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
433 * above cannot corrupt).
434 */
435 if (!page_mapped(page)) {
436 put_anon_vma(anon_vma);
437 anon_vma = NULL;
438 }
439out:
440 rcu_read_unlock();
441
442 return anon_vma;
443}
444
445/*
446 * Similar to page_get_anon_vma() except it locks the anon_vma.
447 *
448 * Its a little more complex as it tries to keep the fast path to a single
449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450 * reference like with page_get_anon_vma() and then block on the mutex.
451 */
452struct anon_vma *page_lock_anon_vma(struct page *page)
453{
454 struct anon_vma *anon_vma = NULL;
455 struct anon_vma *root_anon_vma;
456 unsigned long anon_mapping;
457
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 root_anon_vma = ACCESS_ONCE(anon_vma->root);
467 if (mutex_trylock(&root_anon_vma->mutex)) {
468 /*
469 * If the page is still mapped, then this anon_vma is still
470 * its anon_vma, and holding the mutex ensures that it will
471 * not go away, see anon_vma_free().
472 */
473 if (!page_mapped(page)) {
474 mutex_unlock(&root_anon_vma->mutex);
475 anon_vma = NULL;
476 }
477 goto out;
478 }
479
480 /* trylock failed, we got to sleep */
481 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482 anon_vma = NULL;
483 goto out;
484 }
485
486 if (!page_mapped(page)) {
487 put_anon_vma(anon_vma);
488 anon_vma = NULL;
489 goto out;
490 }
491
492 /* we pinned the anon_vma, its safe to sleep */
493 rcu_read_unlock();
494 anon_vma_lock(anon_vma);
495
496 if (atomic_dec_and_test(&anon_vma->refcount)) {
497 /*
498 * Oops, we held the last refcount, release the lock
499 * and bail -- can't simply use put_anon_vma() because
500 * we'll deadlock on the anon_vma_lock() recursion.
501 */
502 anon_vma_unlock(anon_vma);
503 __put_anon_vma(anon_vma);
504 anon_vma = NULL;
505 }
506
507 return anon_vma;
508
509out:
510 rcu_read_unlock();
511 return anon_vma;
512}
513
514void page_unlock_anon_vma(struct anon_vma *anon_vma)
515{
516 anon_vma_unlock(anon_vma);
517}
518
519/*
520 * At what user virtual address is page expected in @vma?
521 * Returns virtual address or -EFAULT if page's index/offset is not
522 * within the range mapped the @vma.
523 */
524inline unsigned long
525vma_address(struct page *page, struct vm_area_struct *vma)
526{
527 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
528 unsigned long address;
529
530 if (unlikely(is_vm_hugetlb_page(vma)))
531 pgoff = page->index << huge_page_order(page_hstate(page));
532 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
533 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
534 /* page should be within @vma mapping range */
535 return -EFAULT;
536 }
537 return address;
538}
539
540/*
541 * At what user virtual address is page expected in vma?
542 * Caller should check the page is actually part of the vma.
543 */
544unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
545{
546 if (PageAnon(page)) {
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
558 return -EFAULT;
559 } else
560 return -EFAULT;
561 return vma_address(page, vma);
562}
563
564/*
565 * Check that @page is mapped at @address into @mm.
566 *
567 * If @sync is false, page_check_address may perform a racy check to avoid
568 * the page table lock when the pte is not present (helpful when reclaiming
569 * highly shared pages).
570 *
571 * On success returns with pte mapped and locked.
572 */
573pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574 unsigned long address, spinlock_t **ptlp, int sync)
575{
576 pgd_t *pgd;
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 spinlock_t *ptl;
581
582 if (unlikely(PageHuge(page))) {
583 pte = huge_pte_offset(mm, address);
584 ptl = &mm->page_table_lock;
585 goto check;
586 }
587
588 pgd = pgd_offset(mm, address);
589 if (!pgd_present(*pgd))
590 return NULL;
591
592 pud = pud_offset(pgd, address);
593 if (!pud_present(*pud))
594 return NULL;
595
596 pmd = pmd_offset(pud, address);
597 if (!pmd_present(*pmd))
598 return NULL;
599 if (pmd_trans_huge(*pmd))
600 return NULL;
601
602 pte = pte_offset_map(pmd, address);
603 /* Make a quick check before getting the lock */
604 if (!sync && !pte_present(*pte)) {
605 pte_unmap(pte);
606 return NULL;
607 }
608
609 ptl = pte_lockptr(mm, pmd);
610check:
611 spin_lock(ptl);
612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 *ptlp = ptl;
614 return pte;
615 }
616 pte_unmap_unlock(pte, ptl);
617 return NULL;
618}
619
620/**
621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
622 * @page: the page to test
623 * @vma: the VMA to test
624 *
625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
626 * if the page is not mapped into the page tables of this VMA. Only
627 * valid for normal file or anonymous VMAs.
628 */
629int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
630{
631 unsigned long address;
632 pte_t *pte;
633 spinlock_t *ptl;
634
635 address = vma_address(page, vma);
636 if (address == -EFAULT) /* out of vma range */
637 return 0;
638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 if (!pte) /* the page is not in this mm */
640 return 0;
641 pte_unmap_unlock(pte, ptl);
642
643 return 1;
644}
645
646/*
647 * Subfunctions of page_referenced: page_referenced_one called
648 * repeatedly from either page_referenced_anon or page_referenced_file.
649 */
650int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 unsigned long address, unsigned int *mapcount,
652 unsigned long *vm_flags)
653{
654 struct mm_struct *mm = vma->vm_mm;
655 int referenced = 0;
656
657 if (unlikely(PageTransHuge(page))) {
658 pmd_t *pmd;
659
660 spin_lock(&mm->page_table_lock);
661 /*
662 * rmap might return false positives; we must filter
663 * these out using page_check_address_pmd().
664 */
665 pmd = page_check_address_pmd(page, mm, address,
666 PAGE_CHECK_ADDRESS_PMD_FLAG);
667 if (!pmd) {
668 spin_unlock(&mm->page_table_lock);
669 goto out;
670 }
671
672 if (vma->vm_flags & VM_LOCKED) {
673 spin_unlock(&mm->page_table_lock);
674 *mapcount = 0; /* break early from loop */
675 *vm_flags |= VM_LOCKED;
676 goto out;
677 }
678
679 /* go ahead even if the pmd is pmd_trans_splitting() */
680 if (pmdp_clear_flush_young_notify(vma, address, pmd))
681 referenced++;
682 spin_unlock(&mm->page_table_lock);
683 } else {
684 pte_t *pte;
685 spinlock_t *ptl;
686
687 /*
688 * rmap might return false positives; we must filter
689 * these out using page_check_address().
690 */
691 pte = page_check_address(page, mm, address, &ptl, 0);
692 if (!pte)
693 goto out;
694
695 if (vma->vm_flags & VM_LOCKED) {
696 pte_unmap_unlock(pte, ptl);
697 *mapcount = 0; /* break early from loop */
698 *vm_flags |= VM_LOCKED;
699 goto out;
700 }
701
702 if (ptep_clear_flush_young_notify(vma, address, pte)) {
703 /*
704 * Don't treat a reference through a sequentially read
705 * mapping as such. If the page has been used in
706 * another mapping, we will catch it; if this other
707 * mapping is already gone, the unmap path will have
708 * set PG_referenced or activated the page.
709 */
710 if (likely(!VM_SequentialReadHint(vma)))
711 referenced++;
712 }
713 pte_unmap_unlock(pte, ptl);
714 }
715
716 /* Pretend the page is referenced if the task has the
717 swap token and is in the middle of a page fault. */
718 if (mm != current->mm && has_swap_token(mm) &&
719 rwsem_is_locked(&mm->mmap_sem))
720 referenced++;
721
722 (*mapcount)--;
723
724 if (referenced)
725 *vm_flags |= vma->vm_flags;
726out:
727 return referenced;
728}
729
730static int page_referenced_anon(struct page *page,
731 struct mem_cgroup *mem_cont,
732 unsigned long *vm_flags)
733{
734 unsigned int mapcount;
735 struct anon_vma *anon_vma;
736 struct anon_vma_chain *avc;
737 int referenced = 0;
738
739 anon_vma = page_lock_anon_vma(page);
740 if (!anon_vma)
741 return referenced;
742
743 mapcount = page_mapcount(page);
744 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
745 struct vm_area_struct *vma = avc->vma;
746 unsigned long address = vma_address(page, vma);
747 if (address == -EFAULT)
748 continue;
749 /*
750 * If we are reclaiming on behalf of a cgroup, skip
751 * counting on behalf of references from different
752 * cgroups
753 */
754 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
755 continue;
756 referenced += page_referenced_one(page, vma, address,
757 &mapcount, vm_flags);
758 if (!mapcount)
759 break;
760 }
761
762 page_unlock_anon_vma(anon_vma);
763 return referenced;
764}
765
766/**
767 * page_referenced_file - referenced check for object-based rmap
768 * @page: the page we're checking references on.
769 * @mem_cont: target memory controller
770 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
771 *
772 * For an object-based mapped page, find all the places it is mapped and
773 * check/clear the referenced flag. This is done by following the page->mapping
774 * pointer, then walking the chain of vmas it holds. It returns the number
775 * of references it found.
776 *
777 * This function is only called from page_referenced for object-based pages.
778 */
779static int page_referenced_file(struct page *page,
780 struct mem_cgroup *mem_cont,
781 unsigned long *vm_flags)
782{
783 unsigned int mapcount;
784 struct address_space *mapping = page->mapping;
785 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
786 struct vm_area_struct *vma;
787 struct prio_tree_iter iter;
788 int referenced = 0;
789
790 /*
791 * The caller's checks on page->mapping and !PageAnon have made
792 * sure that this is a file page: the check for page->mapping
793 * excludes the case just before it gets set on an anon page.
794 */
795 BUG_ON(PageAnon(page));
796
797 /*
798 * The page lock not only makes sure that page->mapping cannot
799 * suddenly be NULLified by truncation, it makes sure that the
800 * structure at mapping cannot be freed and reused yet,
801 * so we can safely take mapping->i_mmap_mutex.
802 */
803 BUG_ON(!PageLocked(page));
804
805 mutex_lock(&mapping->i_mmap_mutex);
806
807 /*
808 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
809 * is more likely to be accurate if we note it after spinning.
810 */
811 mapcount = page_mapcount(page);
812
813 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
814 unsigned long address = vma_address(page, vma);
815 if (address == -EFAULT)
816 continue;
817 /*
818 * If we are reclaiming on behalf of a cgroup, skip
819 * counting on behalf of references from different
820 * cgroups
821 */
822 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
823 continue;
824 referenced += page_referenced_one(page, vma, address,
825 &mapcount, vm_flags);
826 if (!mapcount)
827 break;
828 }
829
830 mutex_unlock(&mapping->i_mmap_mutex);
831 return referenced;
832}
833
834/**
835 * page_referenced - test if the page was referenced
836 * @page: the page to test
837 * @is_locked: caller holds lock on the page
838 * @mem_cont: target memory controller
839 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
840 *
841 * Quick test_and_clear_referenced for all mappings to a page,
842 * returns the number of ptes which referenced the page.
843 */
844int page_referenced(struct page *page,
845 int is_locked,
846 struct mem_cgroup *mem_cont,
847 unsigned long *vm_flags)
848{
849 int referenced = 0;
850 int we_locked = 0;
851
852 *vm_flags = 0;
853 if (page_mapped(page) && page_rmapping(page)) {
854 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
855 we_locked = trylock_page(page);
856 if (!we_locked) {
857 referenced++;
858 goto out;
859 }
860 }
861 if (unlikely(PageKsm(page)))
862 referenced += page_referenced_ksm(page, mem_cont,
863 vm_flags);
864 else if (PageAnon(page))
865 referenced += page_referenced_anon(page, mem_cont,
866 vm_flags);
867 else if (page->mapping)
868 referenced += page_referenced_file(page, mem_cont,
869 vm_flags);
870 if (we_locked)
871 unlock_page(page);
872
873 if (page_test_and_clear_young(page_to_pfn(page)))
874 referenced++;
875 }
876out:
877 return referenced;
878}
879
880static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
881 unsigned long address)
882{
883 struct mm_struct *mm = vma->vm_mm;
884 pte_t *pte;
885 spinlock_t *ptl;
886 int ret = 0;
887
888 pte = page_check_address(page, mm, address, &ptl, 1);
889 if (!pte)
890 goto out;
891
892 if (pte_dirty(*pte) || pte_write(*pte)) {
893 pte_t entry;
894
895 flush_cache_page(vma, address, pte_pfn(*pte));
896 entry = ptep_clear_flush_notify(vma, address, pte);
897 entry = pte_wrprotect(entry);
898 entry = pte_mkclean(entry);
899 set_pte_at(mm, address, pte, entry);
900 ret = 1;
901 }
902
903 pte_unmap_unlock(pte, ptl);
904out:
905 return ret;
906}
907
908static int page_mkclean_file(struct address_space *mapping, struct page *page)
909{
910 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
911 struct vm_area_struct *vma;
912 struct prio_tree_iter iter;
913 int ret = 0;
914
915 BUG_ON(PageAnon(page));
916
917 mutex_lock(&mapping->i_mmap_mutex);
918 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919 if (vma->vm_flags & VM_SHARED) {
920 unsigned long address = vma_address(page, vma);
921 if (address == -EFAULT)
922 continue;
923 ret += page_mkclean_one(page, vma, address);
924 }
925 }
926 mutex_unlock(&mapping->i_mmap_mutex);
927 return ret;
928}
929
930int page_mkclean(struct page *page)
931{
932 int ret = 0;
933
934 BUG_ON(!PageLocked(page));
935
936 if (page_mapped(page)) {
937 struct address_space *mapping = page_mapping(page);
938 if (mapping) {
939 ret = page_mkclean_file(mapping, page);
940 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
941 ret = 1;
942 }
943 }
944
945 return ret;
946}
947EXPORT_SYMBOL_GPL(page_mkclean);
948
949/**
950 * page_move_anon_rmap - move a page to our anon_vma
951 * @page: the page to move to our anon_vma
952 * @vma: the vma the page belongs to
953 * @address: the user virtual address mapped
954 *
955 * When a page belongs exclusively to one process after a COW event,
956 * that page can be moved into the anon_vma that belongs to just that
957 * process, so the rmap code will not search the parent or sibling
958 * processes.
959 */
960void page_move_anon_rmap(struct page *page,
961 struct vm_area_struct *vma, unsigned long address)
962{
963 struct anon_vma *anon_vma = vma->anon_vma;
964
965 VM_BUG_ON(!PageLocked(page));
966 VM_BUG_ON(!anon_vma);
967 VM_BUG_ON(page->index != linear_page_index(vma, address));
968
969 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
970 page->mapping = (struct address_space *) anon_vma;
971}
972
973/**
974 * __page_set_anon_rmap - set up new anonymous rmap
975 * @page: Page to add to rmap
976 * @vma: VM area to add page to.
977 * @address: User virtual address of the mapping
978 * @exclusive: the page is exclusively owned by the current process
979 */
980static void __page_set_anon_rmap(struct page *page,
981 struct vm_area_struct *vma, unsigned long address, int exclusive)
982{
983 struct anon_vma *anon_vma = vma->anon_vma;
984
985 BUG_ON(!anon_vma);
986
987 if (PageAnon(page))
988 return;
989
990 /*
991 * If the page isn't exclusively mapped into this vma,
992 * we must use the _oldest_ possible anon_vma for the
993 * page mapping!
994 */
995 if (!exclusive)
996 anon_vma = anon_vma->root;
997
998 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
999 page->mapping = (struct address_space *) anon_vma;
1000 page->index = linear_page_index(vma, address);
1001}
1002
1003/**
1004 * __page_check_anon_rmap - sanity check anonymous rmap addition
1005 * @page: the page to add the mapping to
1006 * @vma: the vm area in which the mapping is added
1007 * @address: the user virtual address mapped
1008 */
1009static void __page_check_anon_rmap(struct page *page,
1010 struct vm_area_struct *vma, unsigned long address)
1011{
1012#ifdef CONFIG_DEBUG_VM
1013 /*
1014 * The page's anon-rmap details (mapping and index) are guaranteed to
1015 * be set up correctly at this point.
1016 *
1017 * We have exclusion against page_add_anon_rmap because the caller
1018 * always holds the page locked, except if called from page_dup_rmap,
1019 * in which case the page is already known to be setup.
1020 *
1021 * We have exclusion against page_add_new_anon_rmap because those pages
1022 * are initially only visible via the pagetables, and the pte is locked
1023 * over the call to page_add_new_anon_rmap.
1024 */
1025 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1026 BUG_ON(page->index != linear_page_index(vma, address));
1027#endif
1028}
1029
1030/**
1031 * page_add_anon_rmap - add pte mapping to an anonymous page
1032 * @page: the page to add the mapping to
1033 * @vma: the vm area in which the mapping is added
1034 * @address: the user virtual address mapped
1035 *
1036 * The caller needs to hold the pte lock, and the page must be locked in
1037 * the anon_vma case: to serialize mapping,index checking after setting,
1038 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1039 * (but PageKsm is never downgraded to PageAnon).
1040 */
1041void page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address)
1043{
1044 do_page_add_anon_rmap(page, vma, address, 0);
1045}
1046
1047/*
1048 * Special version of the above for do_swap_page, which often runs
1049 * into pages that are exclusively owned by the current process.
1050 * Everybody else should continue to use page_add_anon_rmap above.
1051 */
1052void do_page_add_anon_rmap(struct page *page,
1053 struct vm_area_struct *vma, unsigned long address, int exclusive)
1054{
1055 int first = atomic_inc_and_test(&page->_mapcount);
1056 if (first) {
1057 if (!PageTransHuge(page))
1058 __inc_zone_page_state(page, NR_ANON_PAGES);
1059 else
1060 __inc_zone_page_state(page,
1061 NR_ANON_TRANSPARENT_HUGEPAGES);
1062 }
1063 if (unlikely(PageKsm(page)))
1064 return;
1065
1066 VM_BUG_ON(!PageLocked(page));
1067 /* address might be in next vma when migration races vma_adjust */
1068 if (first)
1069 __page_set_anon_rmap(page, vma, address, exclusive);
1070 else
1071 __page_check_anon_rmap(page, vma, address);
1072}
1073
1074/**
1075 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1076 * @page: the page to add the mapping to
1077 * @vma: the vm area in which the mapping is added
1078 * @address: the user virtual address mapped
1079 *
1080 * Same as page_add_anon_rmap but must only be called on *new* pages.
1081 * This means the inc-and-test can be bypassed.
1082 * Page does not have to be locked.
1083 */
1084void page_add_new_anon_rmap(struct page *page,
1085 struct vm_area_struct *vma, unsigned long address)
1086{
1087 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1088 SetPageSwapBacked(page);
1089 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1090 if (!PageTransHuge(page))
1091 __inc_zone_page_state(page, NR_ANON_PAGES);
1092 else
1093 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1094 __page_set_anon_rmap(page, vma, address, 1);
1095 if (page_evictable(page, vma))
1096 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1097 else
1098 add_page_to_unevictable_list(page);
1099}
1100
1101/**
1102 * page_add_file_rmap - add pte mapping to a file page
1103 * @page: the page to add the mapping to
1104 *
1105 * The caller needs to hold the pte lock.
1106 */
1107void page_add_file_rmap(struct page *page)
1108{
1109 if (atomic_inc_and_test(&page->_mapcount)) {
1110 __inc_zone_page_state(page, NR_FILE_MAPPED);
1111 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1112 }
1113}
1114
1115/**
1116 * page_remove_rmap - take down pte mapping from a page
1117 * @page: page to remove mapping from
1118 *
1119 * The caller needs to hold the pte lock.
1120 */
1121void page_remove_rmap(struct page *page)
1122{
1123 /* page still mapped by someone else? */
1124 if (!atomic_add_negative(-1, &page->_mapcount))
1125 return;
1126
1127 /*
1128 * Now that the last pte has gone, s390 must transfer dirty
1129 * flag from storage key to struct page. We can usually skip
1130 * this if the page is anon, so about to be freed; but perhaps
1131 * not if it's in swapcache - there might be another pte slot
1132 * containing the swap entry, but page not yet written to swap.
1133 */
1134 if ((!PageAnon(page) || PageSwapCache(page)) &&
1135 page_test_and_clear_dirty(page_to_pfn(page), 1))
1136 set_page_dirty(page);
1137 /*
1138 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1139 * and not charged by memcg for now.
1140 */
1141 if (unlikely(PageHuge(page)))
1142 return;
1143 if (PageAnon(page)) {
1144 mem_cgroup_uncharge_page(page);
1145 if (!PageTransHuge(page))
1146 __dec_zone_page_state(page, NR_ANON_PAGES);
1147 else
1148 __dec_zone_page_state(page,
1149 NR_ANON_TRANSPARENT_HUGEPAGES);
1150 } else {
1151 __dec_zone_page_state(page, NR_FILE_MAPPED);
1152 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1153 }
1154 /*
1155 * It would be tidy to reset the PageAnon mapping here,
1156 * but that might overwrite a racing page_add_anon_rmap
1157 * which increments mapcount after us but sets mapping
1158 * before us: so leave the reset to free_hot_cold_page,
1159 * and remember that it's only reliable while mapped.
1160 * Leaving it set also helps swapoff to reinstate ptes
1161 * faster for those pages still in swapcache.
1162 */
1163}
1164
1165/*
1166 * Subfunctions of try_to_unmap: try_to_unmap_one called
1167 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1168 */
1169int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1170 unsigned long address, enum ttu_flags flags)
1171{
1172 struct mm_struct *mm = vma->vm_mm;
1173 pte_t *pte;
1174 pte_t pteval;
1175 spinlock_t *ptl;
1176 int ret = SWAP_AGAIN;
1177
1178 pte = page_check_address(page, mm, address, &ptl, 0);
1179 if (!pte)
1180 goto out;
1181
1182 /*
1183 * If the page is mlock()d, we cannot swap it out.
1184 * If it's recently referenced (perhaps page_referenced
1185 * skipped over this mm) then we should reactivate it.
1186 */
1187 if (!(flags & TTU_IGNORE_MLOCK)) {
1188 if (vma->vm_flags & VM_LOCKED)
1189 goto out_mlock;
1190
1191 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1192 goto out_unmap;
1193 }
1194 if (!(flags & TTU_IGNORE_ACCESS)) {
1195 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1196 ret = SWAP_FAIL;
1197 goto out_unmap;
1198 }
1199 }
1200
1201 /* Nuke the page table entry. */
1202 flush_cache_page(vma, address, page_to_pfn(page));
1203 pteval = ptep_clear_flush_notify(vma, address, pte);
1204
1205 /* Move the dirty bit to the physical page now the pte is gone. */
1206 if (pte_dirty(pteval))
1207 set_page_dirty(page);
1208
1209 /* Update high watermark before we lower rss */
1210 update_hiwater_rss(mm);
1211
1212 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1213 if (PageAnon(page))
1214 dec_mm_counter(mm, MM_ANONPAGES);
1215 else
1216 dec_mm_counter(mm, MM_FILEPAGES);
1217 set_pte_at(mm, address, pte,
1218 swp_entry_to_pte(make_hwpoison_entry(page)));
1219 } else if (PageAnon(page)) {
1220 swp_entry_t entry = { .val = page_private(page) };
1221
1222 if (PageSwapCache(page)) {
1223 /*
1224 * Store the swap location in the pte.
1225 * See handle_pte_fault() ...
1226 */
1227 if (swap_duplicate(entry) < 0) {
1228 set_pte_at(mm, address, pte, pteval);
1229 ret = SWAP_FAIL;
1230 goto out_unmap;
1231 }
1232 if (list_empty(&mm->mmlist)) {
1233 spin_lock(&mmlist_lock);
1234 if (list_empty(&mm->mmlist))
1235 list_add(&mm->mmlist, &init_mm.mmlist);
1236 spin_unlock(&mmlist_lock);
1237 }
1238 dec_mm_counter(mm, MM_ANONPAGES);
1239 inc_mm_counter(mm, MM_SWAPENTS);
1240 } else if (PAGE_MIGRATION) {
1241 /*
1242 * Store the pfn of the page in a special migration
1243 * pte. do_swap_page() will wait until the migration
1244 * pte is removed and then restart fault handling.
1245 */
1246 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1247 entry = make_migration_entry(page, pte_write(pteval));
1248 }
1249 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1250 BUG_ON(pte_file(*pte));
1251 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1252 /* Establish migration entry for a file page */
1253 swp_entry_t entry;
1254 entry = make_migration_entry(page, pte_write(pteval));
1255 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256 } else
1257 dec_mm_counter(mm, MM_FILEPAGES);
1258
1259 page_remove_rmap(page);
1260 page_cache_release(page);
1261
1262out_unmap:
1263 pte_unmap_unlock(pte, ptl);
1264out:
1265 return ret;
1266
1267out_mlock:
1268 pte_unmap_unlock(pte, ptl);
1269
1270
1271 /*
1272 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1273 * unstable result and race. Plus, We can't wait here because
1274 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1275 * if trylock failed, the page remain in evictable lru and later
1276 * vmscan could retry to move the page to unevictable lru if the
1277 * page is actually mlocked.
1278 */
1279 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1280 if (vma->vm_flags & VM_LOCKED) {
1281 mlock_vma_page(page);
1282 ret = SWAP_MLOCK;
1283 }
1284 up_read(&vma->vm_mm->mmap_sem);
1285 }
1286 return ret;
1287}
1288
1289/*
1290 * objrmap doesn't work for nonlinear VMAs because the assumption that
1291 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1292 * Consequently, given a particular page and its ->index, we cannot locate the
1293 * ptes which are mapping that page without an exhaustive linear search.
1294 *
1295 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1296 * maps the file to which the target page belongs. The ->vm_private_data field
1297 * holds the current cursor into that scan. Successive searches will circulate
1298 * around the vma's virtual address space.
1299 *
1300 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1301 * more scanning pressure is placed against them as well. Eventually pages
1302 * will become fully unmapped and are eligible for eviction.
1303 *
1304 * For very sparsely populated VMAs this is a little inefficient - chances are
1305 * there there won't be many ptes located within the scan cluster. In this case
1306 * maybe we could scan further - to the end of the pte page, perhaps.
1307 *
1308 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1309 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1310 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1311 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1312 */
1313#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1314#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1315
1316static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1317 struct vm_area_struct *vma, struct page *check_page)
1318{
1319 struct mm_struct *mm = vma->vm_mm;
1320 pgd_t *pgd;
1321 pud_t *pud;
1322 pmd_t *pmd;
1323 pte_t *pte;
1324 pte_t pteval;
1325 spinlock_t *ptl;
1326 struct page *page;
1327 unsigned long address;
1328 unsigned long end;
1329 int ret = SWAP_AGAIN;
1330 int locked_vma = 0;
1331
1332 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1333 end = address + CLUSTER_SIZE;
1334 if (address < vma->vm_start)
1335 address = vma->vm_start;
1336 if (end > vma->vm_end)
1337 end = vma->vm_end;
1338
1339 pgd = pgd_offset(mm, address);
1340 if (!pgd_present(*pgd))
1341 return ret;
1342
1343 pud = pud_offset(pgd, address);
1344 if (!pud_present(*pud))
1345 return ret;
1346
1347 pmd = pmd_offset(pud, address);
1348 if (!pmd_present(*pmd))
1349 return ret;
1350
1351 /*
1352 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1353 * keep the sem while scanning the cluster for mlocking pages.
1354 */
1355 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1356 locked_vma = (vma->vm_flags & VM_LOCKED);
1357 if (!locked_vma)
1358 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1359 }
1360
1361 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1362
1363 /* Update high watermark before we lower rss */
1364 update_hiwater_rss(mm);
1365
1366 for (; address < end; pte++, address += PAGE_SIZE) {
1367 if (!pte_present(*pte))
1368 continue;
1369 page = vm_normal_page(vma, address, *pte);
1370 BUG_ON(!page || PageAnon(page));
1371
1372 if (locked_vma) {
1373 mlock_vma_page(page); /* no-op if already mlocked */
1374 if (page == check_page)
1375 ret = SWAP_MLOCK;
1376 continue; /* don't unmap */
1377 }
1378
1379 if (ptep_clear_flush_young_notify(vma, address, pte))
1380 continue;
1381
1382 /* Nuke the page table entry. */
1383 flush_cache_page(vma, address, pte_pfn(*pte));
1384 pteval = ptep_clear_flush_notify(vma, address, pte);
1385
1386 /* If nonlinear, store the file page offset in the pte. */
1387 if (page->index != linear_page_index(vma, address))
1388 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1389
1390 /* Move the dirty bit to the physical page now the pte is gone. */
1391 if (pte_dirty(pteval))
1392 set_page_dirty(page);
1393
1394 page_remove_rmap(page);
1395 page_cache_release(page);
1396 dec_mm_counter(mm, MM_FILEPAGES);
1397 (*mapcount)--;
1398 }
1399 pte_unmap_unlock(pte - 1, ptl);
1400 if (locked_vma)
1401 up_read(&vma->vm_mm->mmap_sem);
1402 return ret;
1403}
1404
1405bool is_vma_temporary_stack(struct vm_area_struct *vma)
1406{
1407 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1408
1409 if (!maybe_stack)
1410 return false;
1411
1412 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1413 VM_STACK_INCOMPLETE_SETUP)
1414 return true;
1415
1416 return false;
1417}
1418
1419/**
1420 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1421 * rmap method
1422 * @page: the page to unmap/unlock
1423 * @flags: action and flags
1424 *
1425 * Find all the mappings of a page using the mapping pointer and the vma chains
1426 * contained in the anon_vma struct it points to.
1427 *
1428 * This function is only called from try_to_unmap/try_to_munlock for
1429 * anonymous pages.
1430 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1431 * where the page was found will be held for write. So, we won't recheck
1432 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1433 * 'LOCKED.
1434 */
1435static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1436{
1437 struct anon_vma *anon_vma;
1438 struct anon_vma_chain *avc;
1439 int ret = SWAP_AGAIN;
1440
1441 anon_vma = page_lock_anon_vma(page);
1442 if (!anon_vma)
1443 return ret;
1444
1445 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1446 struct vm_area_struct *vma = avc->vma;
1447 unsigned long address;
1448
1449 /*
1450 * During exec, a temporary VMA is setup and later moved.
1451 * The VMA is moved under the anon_vma lock but not the
1452 * page tables leading to a race where migration cannot
1453 * find the migration ptes. Rather than increasing the
1454 * locking requirements of exec(), migration skips
1455 * temporary VMAs until after exec() completes.
1456 */
1457 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1458 is_vma_temporary_stack(vma))
1459 continue;
1460
1461 address = vma_address(page, vma);
1462 if (address == -EFAULT)
1463 continue;
1464 ret = try_to_unmap_one(page, vma, address, flags);
1465 if (ret != SWAP_AGAIN || !page_mapped(page))
1466 break;
1467 }
1468
1469 page_unlock_anon_vma(anon_vma);
1470 return ret;
1471}
1472
1473/**
1474 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1475 * @page: the page to unmap/unlock
1476 * @flags: action and flags
1477 *
1478 * Find all the mappings of a page using the mapping pointer and the vma chains
1479 * contained in the address_space struct it points to.
1480 *
1481 * This function is only called from try_to_unmap/try_to_munlock for
1482 * object-based pages.
1483 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1484 * where the page was found will be held for write. So, we won't recheck
1485 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1486 * 'LOCKED.
1487 */
1488static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1489{
1490 struct address_space *mapping = page->mapping;
1491 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1492 struct vm_area_struct *vma;
1493 struct prio_tree_iter iter;
1494 int ret = SWAP_AGAIN;
1495 unsigned long cursor;
1496 unsigned long max_nl_cursor = 0;
1497 unsigned long max_nl_size = 0;
1498 unsigned int mapcount;
1499
1500 mutex_lock(&mapping->i_mmap_mutex);
1501 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1502 unsigned long address = vma_address(page, vma);
1503 if (address == -EFAULT)
1504 continue;
1505 ret = try_to_unmap_one(page, vma, address, flags);
1506 if (ret != SWAP_AGAIN || !page_mapped(page))
1507 goto out;
1508 }
1509
1510 if (list_empty(&mapping->i_mmap_nonlinear))
1511 goto out;
1512
1513 /*
1514 * We don't bother to try to find the munlocked page in nonlinears.
1515 * It's costly. Instead, later, page reclaim logic may call
1516 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1517 */
1518 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1519 goto out;
1520
1521 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1522 shared.vm_set.list) {
1523 cursor = (unsigned long) vma->vm_private_data;
1524 if (cursor > max_nl_cursor)
1525 max_nl_cursor = cursor;
1526 cursor = vma->vm_end - vma->vm_start;
1527 if (cursor > max_nl_size)
1528 max_nl_size = cursor;
1529 }
1530
1531 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1532 ret = SWAP_FAIL;
1533 goto out;
1534 }
1535
1536 /*
1537 * We don't try to search for this page in the nonlinear vmas,
1538 * and page_referenced wouldn't have found it anyway. Instead
1539 * just walk the nonlinear vmas trying to age and unmap some.
1540 * The mapcount of the page we came in with is irrelevant,
1541 * but even so use it as a guide to how hard we should try?
1542 */
1543 mapcount = page_mapcount(page);
1544 if (!mapcount)
1545 goto out;
1546 cond_resched();
1547
1548 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1549 if (max_nl_cursor == 0)
1550 max_nl_cursor = CLUSTER_SIZE;
1551
1552 do {
1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554 shared.vm_set.list) {
1555 cursor = (unsigned long) vma->vm_private_data;
1556 while ( cursor < max_nl_cursor &&
1557 cursor < vma->vm_end - vma->vm_start) {
1558 if (try_to_unmap_cluster(cursor, &mapcount,
1559 vma, page) == SWAP_MLOCK)
1560 ret = SWAP_MLOCK;
1561 cursor += CLUSTER_SIZE;
1562 vma->vm_private_data = (void *) cursor;
1563 if ((int)mapcount <= 0)
1564 goto out;
1565 }
1566 vma->vm_private_data = (void *) max_nl_cursor;
1567 }
1568 cond_resched();
1569 max_nl_cursor += CLUSTER_SIZE;
1570 } while (max_nl_cursor <= max_nl_size);
1571
1572 /*
1573 * Don't loop forever (perhaps all the remaining pages are
1574 * in locked vmas). Reset cursor on all unreserved nonlinear
1575 * vmas, now forgetting on which ones it had fallen behind.
1576 */
1577 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1578 vma->vm_private_data = NULL;
1579out:
1580 mutex_unlock(&mapping->i_mmap_mutex);
1581 return ret;
1582}
1583
1584/**
1585 * try_to_unmap - try to remove all page table mappings to a page
1586 * @page: the page to get unmapped
1587 * @flags: action and flags
1588 *
1589 * Tries to remove all the page table entries which are mapping this
1590 * page, used in the pageout path. Caller must hold the page lock.
1591 * Return values are:
1592 *
1593 * SWAP_SUCCESS - we succeeded in removing all mappings
1594 * SWAP_AGAIN - we missed a mapping, try again later
1595 * SWAP_FAIL - the page is unswappable
1596 * SWAP_MLOCK - page is mlocked.
1597 */
1598int try_to_unmap(struct page *page, enum ttu_flags flags)
1599{
1600 int ret;
1601
1602 BUG_ON(!PageLocked(page));
1603 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1604
1605 if (unlikely(PageKsm(page)))
1606 ret = try_to_unmap_ksm(page, flags);
1607 else if (PageAnon(page))
1608 ret = try_to_unmap_anon(page, flags);
1609 else
1610 ret = try_to_unmap_file(page, flags);
1611 if (ret != SWAP_MLOCK && !page_mapped(page))
1612 ret = SWAP_SUCCESS;
1613 return ret;
1614}
1615
1616/**
1617 * try_to_munlock - try to munlock a page
1618 * @page: the page to be munlocked
1619 *
1620 * Called from munlock code. Checks all of the VMAs mapping the page
1621 * to make sure nobody else has this page mlocked. The page will be
1622 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623 *
1624 * Return values are:
1625 *
1626 * SWAP_AGAIN - no vma is holding page mlocked, or,
1627 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1628 * SWAP_FAIL - page cannot be located at present
1629 * SWAP_MLOCK - page is now mlocked.
1630 */
1631int try_to_munlock(struct page *page)
1632{
1633 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1634
1635 if (unlikely(PageKsm(page)))
1636 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1637 else if (PageAnon(page))
1638 return try_to_unmap_anon(page, TTU_MUNLOCK);
1639 else
1640 return try_to_unmap_file(page, TTU_MUNLOCK);
1641}
1642
1643void __put_anon_vma(struct anon_vma *anon_vma)
1644{
1645 struct anon_vma *root = anon_vma->root;
1646
1647 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1648 anon_vma_free(root);
1649
1650 anon_vma_free(anon_vma);
1651}
1652
1653#ifdef CONFIG_MIGRATION
1654/*
1655 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1656 * Called by migrate.c to remove migration ptes, but might be used more later.
1657 */
1658static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1659 struct vm_area_struct *, unsigned long, void *), void *arg)
1660{
1661 struct anon_vma *anon_vma;
1662 struct anon_vma_chain *avc;
1663 int ret = SWAP_AGAIN;
1664
1665 /*
1666 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1667 * because that depends on page_mapped(); but not all its usages
1668 * are holding mmap_sem. Users without mmap_sem are required to
1669 * take a reference count to prevent the anon_vma disappearing
1670 */
1671 anon_vma = page_anon_vma(page);
1672 if (!anon_vma)
1673 return ret;
1674 anon_vma_lock(anon_vma);
1675 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1676 struct vm_area_struct *vma = avc->vma;
1677 unsigned long address = vma_address(page, vma);
1678 if (address == -EFAULT)
1679 continue;
1680 ret = rmap_one(page, vma, address, arg);
1681 if (ret != SWAP_AGAIN)
1682 break;
1683 }
1684 anon_vma_unlock(anon_vma);
1685 return ret;
1686}
1687
1688static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1689 struct vm_area_struct *, unsigned long, void *), void *arg)
1690{
1691 struct address_space *mapping = page->mapping;
1692 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1693 struct vm_area_struct *vma;
1694 struct prio_tree_iter iter;
1695 int ret = SWAP_AGAIN;
1696
1697 if (!mapping)
1698 return ret;
1699 mutex_lock(&mapping->i_mmap_mutex);
1700 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1701 unsigned long address = vma_address(page, vma);
1702 if (address == -EFAULT)
1703 continue;
1704 ret = rmap_one(page, vma, address, arg);
1705 if (ret != SWAP_AGAIN)
1706 break;
1707 }
1708 /*
1709 * No nonlinear handling: being always shared, nonlinear vmas
1710 * never contain migration ptes. Decide what to do about this
1711 * limitation to linear when we need rmap_walk() on nonlinear.
1712 */
1713 mutex_unlock(&mapping->i_mmap_mutex);
1714 return ret;
1715}
1716
1717int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1718 struct vm_area_struct *, unsigned long, void *), void *arg)
1719{
1720 VM_BUG_ON(!PageLocked(page));
1721
1722 if (unlikely(PageKsm(page)))
1723 return rmap_walk_ksm(page, rmap_one, arg);
1724 else if (PageAnon(page))
1725 return rmap_walk_anon(page, rmap_one, arg);
1726 else
1727 return rmap_walk_file(page, rmap_one, arg);
1728}
1729#endif /* CONFIG_MIGRATION */
1730
1731#ifdef CONFIG_HUGETLB_PAGE
1732/*
1733 * The following three functions are for anonymous (private mapped) hugepages.
1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735 * and no lru code, because we handle hugepages differently from common pages.
1736 */
1737static void __hugepage_set_anon_rmap(struct page *page,
1738 struct vm_area_struct *vma, unsigned long address, int exclusive)
1739{
1740 struct anon_vma *anon_vma = vma->anon_vma;
1741
1742 BUG_ON(!anon_vma);
1743
1744 if (PageAnon(page))
1745 return;
1746 if (!exclusive)
1747 anon_vma = anon_vma->root;
1748
1749 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1750 page->mapping = (struct address_space *) anon_vma;
1751 page->index = linear_page_index(vma, address);
1752}
1753
1754void hugepage_add_anon_rmap(struct page *page,
1755 struct vm_area_struct *vma, unsigned long address)
1756{
1757 struct anon_vma *anon_vma = vma->anon_vma;
1758 int first;
1759
1760 BUG_ON(!PageLocked(page));
1761 BUG_ON(!anon_vma);
1762 /* address might be in next vma when migration races vma_adjust */
1763 first = atomic_inc_and_test(&page->_mapcount);
1764 if (first)
1765 __hugepage_set_anon_rmap(page, vma, address, 0);
1766}
1767
1768void hugepage_add_new_anon_rmap(struct page *page,
1769 struct vm_area_struct *vma, unsigned long address)
1770{
1771 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1772 atomic_set(&page->_mapcount, 0);
1773 __hugepage_set_anon_rmap(page, vma, address, 1);
1774}
1775#endif /* CONFIG_HUGETLB_PAGE */
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48#include <linux/mm.h>
49#include <linux/sched/mm.h>
50#include <linux/sched/task.h>
51#include <linux/pagemap.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/slab.h>
55#include <linux/init.h>
56#include <linux/ksm.h>
57#include <linux/rmap.h>
58#include <linux/rcupdate.h>
59#include <linux/export.h>
60#include <linux/memcontrol.h>
61#include <linux/mmu_notifier.h>
62#include <linux/migrate.h>
63#include <linux/hugetlb.h>
64#include <linux/huge_mm.h>
65#include <linux/backing-dev.h>
66#include <linux/page_idle.h>
67#include <linux/memremap.h>
68#include <linux/userfaultfd_k.h>
69
70#include <asm/tlbflush.h>
71
72#include <trace/events/tlb.h>
73
74#include "internal.h"
75
76static struct kmem_cache *anon_vma_cachep;
77static struct kmem_cache *anon_vma_chain_cachep;
78
79static inline struct anon_vma *anon_vma_alloc(void)
80{
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
88 /*
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
91 */
92 anon_vma->root = anon_vma;
93 }
94
95 return anon_vma;
96}
97
98static inline void anon_vma_free(struct anon_vma *anon_vma)
99{
100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
101
102 /*
103 * Synchronize against page_lock_anon_vma_read() such that
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
106 *
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
110 *
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
113 * LOCK MB
114 * atomic_read() rwsem_is_locked()
115 *
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
118 */
119 might_sleep();
120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
121 anon_vma_lock_write(anon_vma);
122 anon_vma_unlock_write(anon_vma);
123 }
124
125 kmem_cache_free(anon_vma_cachep, anon_vma);
126}
127
128static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
129{
130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
131}
132
133static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
134{
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136}
137
138static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
141{
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
146}
147
148/**
149 * __anon_vma_prepare - attach an anon_vma to a memory region
150 * @vma: the memory region in question
151 *
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
155 *
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
158 * not we either need to find an adjacent mapping that we
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
162 *
163 * Anon-vma allocations are very subtle, because we may have
164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
168 *
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
173 *
174 * This must be called with the mmap_sem held for reading.
175 */
176int __anon_vma_prepare(struct vm_area_struct *vma)
177{
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
180 struct anon_vma_chain *avc;
181
182 might_sleep();
183
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
187
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
195 }
196
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
205 allocated = NULL;
206 avc = NULL;
207 }
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
210
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
215
216 return 0;
217
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
222}
223
224/*
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
228 *
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
231 */
232static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233{
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
237 up_write(&root->rwsem);
238 root = new_root;
239 down_write(&root->rwsem);
240 }
241 return root;
242}
243
244static inline void unlock_anon_vma_root(struct anon_vma *root)
245{
246 if (root)
247 up_write(&root->rwsem);
248}
249
250/*
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
253 *
254 * If dst->anon_vma is NULL this function tries to find and reuse existing
255 * anon_vma which has no vmas and only one child anon_vma. This prevents
256 * degradation of anon_vma hierarchy to endless linear chain in case of
257 * constantly forking task. On the other hand, an anon_vma with more than one
258 * child isn't reused even if there was no alive vma, thus rmap walker has a
259 * good chance of avoiding scanning the whole hierarchy when it searches where
260 * page is mapped.
261 */
262int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
263{
264 struct anon_vma_chain *avc, *pavc;
265 struct anon_vma *root = NULL;
266
267 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
268 struct anon_vma *anon_vma;
269
270 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
271 if (unlikely(!avc)) {
272 unlock_anon_vma_root(root);
273 root = NULL;
274 avc = anon_vma_chain_alloc(GFP_KERNEL);
275 if (!avc)
276 goto enomem_failure;
277 }
278 anon_vma = pavc->anon_vma;
279 root = lock_anon_vma_root(root, anon_vma);
280 anon_vma_chain_link(dst, avc, anon_vma);
281
282 /*
283 * Reuse existing anon_vma if its degree lower than two,
284 * that means it has no vma and only one anon_vma child.
285 *
286 * Do not chose parent anon_vma, otherwise first child
287 * will always reuse it. Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
289 */
290 if (!dst->anon_vma && anon_vma != src->anon_vma &&
291 anon_vma->degree < 2)
292 dst->anon_vma = anon_vma;
293 }
294 if (dst->anon_vma)
295 dst->anon_vma->degree++;
296 unlock_anon_vma_root(root);
297 return 0;
298
299 enomem_failure:
300 /*
301 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
302 * decremented in unlink_anon_vmas().
303 * We can safely do this because callers of anon_vma_clone() don't care
304 * about dst->anon_vma if anon_vma_clone() failed.
305 */
306 dst->anon_vma = NULL;
307 unlink_anon_vmas(dst);
308 return -ENOMEM;
309}
310
311/*
312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
313 * the corresponding VMA in the parent process is attached to.
314 * Returns 0 on success, non-zero on failure.
315 */
316int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
317{
318 struct anon_vma_chain *avc;
319 struct anon_vma *anon_vma;
320 int error;
321
322 /* Don't bother if the parent process has no anon_vma here. */
323 if (!pvma->anon_vma)
324 return 0;
325
326 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
327 vma->anon_vma = NULL;
328
329 /*
330 * First, attach the new VMA to the parent VMA's anon_vmas,
331 * so rmap can find non-COWed pages in child processes.
332 */
333 error = anon_vma_clone(vma, pvma);
334 if (error)
335 return error;
336
337 /* An existing anon_vma has been reused, all done then. */
338 if (vma->anon_vma)
339 return 0;
340
341 /* Then add our own anon_vma. */
342 anon_vma = anon_vma_alloc();
343 if (!anon_vma)
344 goto out_error;
345 avc = anon_vma_chain_alloc(GFP_KERNEL);
346 if (!avc)
347 goto out_error_free_anon_vma;
348
349 /*
350 * The root anon_vma's spinlock is the lock actually used when we
351 * lock any of the anon_vmas in this anon_vma tree.
352 */
353 anon_vma->root = pvma->anon_vma->root;
354 anon_vma->parent = pvma->anon_vma;
355 /*
356 * With refcounts, an anon_vma can stay around longer than the
357 * process it belongs to. The root anon_vma needs to be pinned until
358 * this anon_vma is freed, because the lock lives in the root.
359 */
360 get_anon_vma(anon_vma->root);
361 /* Mark this anon_vma as the one where our new (COWed) pages go. */
362 vma->anon_vma = anon_vma;
363 anon_vma_lock_write(anon_vma);
364 anon_vma_chain_link(vma, avc, anon_vma);
365 anon_vma->parent->degree++;
366 anon_vma_unlock_write(anon_vma);
367
368 return 0;
369
370 out_error_free_anon_vma:
371 put_anon_vma(anon_vma);
372 out_error:
373 unlink_anon_vmas(vma);
374 return -ENOMEM;
375}
376
377void unlink_anon_vmas(struct vm_area_struct *vma)
378{
379 struct anon_vma_chain *avc, *next;
380 struct anon_vma *root = NULL;
381
382 /*
383 * Unlink each anon_vma chained to the VMA. This list is ordered
384 * from newest to oldest, ensuring the root anon_vma gets freed last.
385 */
386 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
387 struct anon_vma *anon_vma = avc->anon_vma;
388
389 root = lock_anon_vma_root(root, anon_vma);
390 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
391
392 /*
393 * Leave empty anon_vmas on the list - we'll need
394 * to free them outside the lock.
395 */
396 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
397 anon_vma->parent->degree--;
398 continue;
399 }
400
401 list_del(&avc->same_vma);
402 anon_vma_chain_free(avc);
403 }
404 if (vma->anon_vma)
405 vma->anon_vma->degree--;
406 unlock_anon_vma_root(root);
407
408 /*
409 * Iterate the list once more, it now only contains empty and unlinked
410 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
411 * needing to write-acquire the anon_vma->root->rwsem.
412 */
413 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
414 struct anon_vma *anon_vma = avc->anon_vma;
415
416 VM_WARN_ON(anon_vma->degree);
417 put_anon_vma(anon_vma);
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422}
423
424static void anon_vma_ctor(void *data)
425{
426 struct anon_vma *anon_vma = data;
427
428 init_rwsem(&anon_vma->rwsem);
429 atomic_set(&anon_vma->refcount, 0);
430 anon_vma->rb_root = RB_ROOT_CACHED;
431}
432
433void __init anon_vma_init(void)
434{
435 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
436 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
437 anon_vma_ctor);
438 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
439 SLAB_PANIC|SLAB_ACCOUNT);
440}
441
442/*
443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
444 *
445 * Since there is no serialization what so ever against page_remove_rmap()
446 * the best this function can do is return a locked anon_vma that might
447 * have been relevant to this page.
448 *
449 * The page might have been remapped to a different anon_vma or the anon_vma
450 * returned may already be freed (and even reused).
451 *
452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
454 * ensure that any anon_vma obtained from the page will still be valid for as
455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
456 *
457 * All users of this function must be very careful when walking the anon_vma
458 * chain and verify that the page in question is indeed mapped in it
459 * [ something equivalent to page_mapped_in_vma() ].
460 *
461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
462 * that the anon_vma pointer from page->mapping is valid if there is a
463 * mapcount, we can dereference the anon_vma after observing those.
464 */
465struct anon_vma *page_get_anon_vma(struct page *page)
466{
467 struct anon_vma *anon_vma = NULL;
468 unsigned long anon_mapping;
469
470 rcu_read_lock();
471 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
472 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
473 goto out;
474 if (!page_mapped(page))
475 goto out;
476
477 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 /*
484 * If this page is still mapped, then its anon_vma cannot have been
485 * freed. But if it has been unmapped, we have no security against the
486 * anon_vma structure being freed and reused (for another anon_vma:
487 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
488 * above cannot corrupt).
489 */
490 if (!page_mapped(page)) {
491 rcu_read_unlock();
492 put_anon_vma(anon_vma);
493 return NULL;
494 }
495out:
496 rcu_read_unlock();
497
498 return anon_vma;
499}
500
501/*
502 * Similar to page_get_anon_vma() except it locks the anon_vma.
503 *
504 * Its a little more complex as it tries to keep the fast path to a single
505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
506 * reference like with page_get_anon_vma() and then block on the mutex.
507 */
508struct anon_vma *page_lock_anon_vma_read(struct page *page)
509{
510 struct anon_vma *anon_vma = NULL;
511 struct anon_vma *root_anon_vma;
512 unsigned long anon_mapping;
513
514 rcu_read_lock();
515 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
516 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
517 goto out;
518 if (!page_mapped(page))
519 goto out;
520
521 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
522 root_anon_vma = READ_ONCE(anon_vma->root);
523 if (down_read_trylock(&root_anon_vma->rwsem)) {
524 /*
525 * If the page is still mapped, then this anon_vma is still
526 * its anon_vma, and holding the mutex ensures that it will
527 * not go away, see anon_vma_free().
528 */
529 if (!page_mapped(page)) {
530 up_read(&root_anon_vma->rwsem);
531 anon_vma = NULL;
532 }
533 goto out;
534 }
535
536 /* trylock failed, we got to sleep */
537 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
538 anon_vma = NULL;
539 goto out;
540 }
541
542 if (!page_mapped(page)) {
543 rcu_read_unlock();
544 put_anon_vma(anon_vma);
545 return NULL;
546 }
547
548 /* we pinned the anon_vma, its safe to sleep */
549 rcu_read_unlock();
550 anon_vma_lock_read(anon_vma);
551
552 if (atomic_dec_and_test(&anon_vma->refcount)) {
553 /*
554 * Oops, we held the last refcount, release the lock
555 * and bail -- can't simply use put_anon_vma() because
556 * we'll deadlock on the anon_vma_lock_write() recursion.
557 */
558 anon_vma_unlock_read(anon_vma);
559 __put_anon_vma(anon_vma);
560 anon_vma = NULL;
561 }
562
563 return anon_vma;
564
565out:
566 rcu_read_unlock();
567 return anon_vma;
568}
569
570void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
571{
572 anon_vma_unlock_read(anon_vma);
573}
574
575#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
576/*
577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
578 * important if a PTE was dirty when it was unmapped that it's flushed
579 * before any IO is initiated on the page to prevent lost writes. Similarly,
580 * it must be flushed before freeing to prevent data leakage.
581 */
582void try_to_unmap_flush(void)
583{
584 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
585
586 if (!tlb_ubc->flush_required)
587 return;
588
589 arch_tlbbatch_flush(&tlb_ubc->arch);
590 tlb_ubc->flush_required = false;
591 tlb_ubc->writable = false;
592}
593
594/* Flush iff there are potentially writable TLB entries that can race with IO */
595void try_to_unmap_flush_dirty(void)
596{
597 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
598
599 if (tlb_ubc->writable)
600 try_to_unmap_flush();
601}
602
603static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
606
607 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
608 tlb_ubc->flush_required = true;
609
610 /*
611 * Ensure compiler does not re-order the setting of tlb_flush_batched
612 * before the PTE is cleared.
613 */
614 barrier();
615 mm->tlb_flush_batched = true;
616
617 /*
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
621 */
622 if (writable)
623 tlb_ubc->writable = true;
624}
625
626/*
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
629 */
630static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631{
632 bool should_defer = false;
633
634 if (!(flags & TTU_BATCH_FLUSH))
635 return false;
636
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 should_defer = true;
640 put_cpu();
641
642 return should_defer;
643}
644
645/*
646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
648 * operation such as mprotect or munmap to race between reclaim unmapping
649 * the page and flushing the page. If this race occurs, it potentially allows
650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
651 * batching in flight would be expensive during reclaim so instead track
652 * whether TLB batching occurred in the past and if so then do a flush here
653 * if required. This will cost one additional flush per reclaim cycle paid
654 * by the first operation at risk such as mprotect and mumap.
655 *
656 * This must be called under the PTL so that an access to tlb_flush_batched
657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
658 * via the PTL.
659 */
660void flush_tlb_batched_pending(struct mm_struct *mm)
661{
662 if (mm->tlb_flush_batched) {
663 flush_tlb_mm(mm);
664
665 /*
666 * Do not allow the compiler to re-order the clearing of
667 * tlb_flush_batched before the tlb is flushed.
668 */
669 barrier();
670 mm->tlb_flush_batched = false;
671 }
672}
673#else
674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
675{
676}
677
678static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
679{
680 return false;
681}
682#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683
684/*
685 * At what user virtual address is page expected in vma?
686 * Caller should check the page is actually part of the vma.
687 */
688unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
689{
690 unsigned long address;
691 if (PageAnon(page)) {
692 struct anon_vma *page__anon_vma = page_anon_vma(page);
693 /*
694 * Note: swapoff's unuse_vma() is more efficient with this
695 * check, and needs it to match anon_vma when KSM is active.
696 */
697 if (!vma->anon_vma || !page__anon_vma ||
698 vma->anon_vma->root != page__anon_vma->root)
699 return -EFAULT;
700 } else if (page->mapping) {
701 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
702 return -EFAULT;
703 } else
704 return -EFAULT;
705 address = __vma_address(page, vma);
706 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
707 return -EFAULT;
708 return address;
709}
710
711pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
712{
713 pgd_t *pgd;
714 p4d_t *p4d;
715 pud_t *pud;
716 pmd_t *pmd = NULL;
717 pmd_t pmde;
718
719 pgd = pgd_offset(mm, address);
720 if (!pgd_present(*pgd))
721 goto out;
722
723 p4d = p4d_offset(pgd, address);
724 if (!p4d_present(*p4d))
725 goto out;
726
727 pud = pud_offset(p4d, address);
728 if (!pud_present(*pud))
729 goto out;
730
731 pmd = pmd_offset(pud, address);
732 /*
733 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
734 * without holding anon_vma lock for write. So when looking for a
735 * genuine pmde (in which to find pte), test present and !THP together.
736 */
737 pmde = *pmd;
738 barrier();
739 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
740 pmd = NULL;
741out:
742 return pmd;
743}
744
745struct page_referenced_arg {
746 int mapcount;
747 int referenced;
748 unsigned long vm_flags;
749 struct mem_cgroup *memcg;
750};
751/*
752 * arg: page_referenced_arg will be passed
753 */
754static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
755 unsigned long address, void *arg)
756{
757 struct page_referenced_arg *pra = arg;
758 struct page_vma_mapped_walk pvmw = {
759 .page = page,
760 .vma = vma,
761 .address = address,
762 };
763 int referenced = 0;
764
765 while (page_vma_mapped_walk(&pvmw)) {
766 address = pvmw.address;
767
768 if (vma->vm_flags & VM_LOCKED) {
769 page_vma_mapped_walk_done(&pvmw);
770 pra->vm_flags |= VM_LOCKED;
771 return false; /* To break the loop */
772 }
773
774 if (pvmw.pte) {
775 if (ptep_clear_flush_young_notify(vma, address,
776 pvmw.pte)) {
777 /*
778 * Don't treat a reference through
779 * a sequentially read mapping as such.
780 * If the page has been used in another mapping,
781 * we will catch it; if this other mapping is
782 * already gone, the unmap path will have set
783 * PG_referenced or activated the page.
784 */
785 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
786 referenced++;
787 }
788 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
789 if (pmdp_clear_flush_young_notify(vma, address,
790 pvmw.pmd))
791 referenced++;
792 } else {
793 /* unexpected pmd-mapped page? */
794 WARN_ON_ONCE(1);
795 }
796
797 pra->mapcount--;
798 }
799
800 if (referenced)
801 clear_page_idle(page);
802 if (test_and_clear_page_young(page))
803 referenced++;
804
805 if (referenced) {
806 pra->referenced++;
807 pra->vm_flags |= vma->vm_flags;
808 }
809
810 if (!pra->mapcount)
811 return false; /* To break the loop */
812
813 return true;
814}
815
816static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
817{
818 struct page_referenced_arg *pra = arg;
819 struct mem_cgroup *memcg = pra->memcg;
820
821 if (!mm_match_cgroup(vma->vm_mm, memcg))
822 return true;
823
824 return false;
825}
826
827/**
828 * page_referenced - test if the page was referenced
829 * @page: the page to test
830 * @is_locked: caller holds lock on the page
831 * @memcg: target memory cgroup
832 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
833 *
834 * Quick test_and_clear_referenced for all mappings to a page,
835 * returns the number of ptes which referenced the page.
836 */
837int page_referenced(struct page *page,
838 int is_locked,
839 struct mem_cgroup *memcg,
840 unsigned long *vm_flags)
841{
842 int we_locked = 0;
843 struct page_referenced_arg pra = {
844 .mapcount = total_mapcount(page),
845 .memcg = memcg,
846 };
847 struct rmap_walk_control rwc = {
848 .rmap_one = page_referenced_one,
849 .arg = (void *)&pra,
850 .anon_lock = page_lock_anon_vma_read,
851 };
852
853 *vm_flags = 0;
854 if (!pra.mapcount)
855 return 0;
856
857 if (!page_rmapping(page))
858 return 0;
859
860 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
861 we_locked = trylock_page(page);
862 if (!we_locked)
863 return 1;
864 }
865
866 /*
867 * If we are reclaiming on behalf of a cgroup, skip
868 * counting on behalf of references from different
869 * cgroups
870 */
871 if (memcg) {
872 rwc.invalid_vma = invalid_page_referenced_vma;
873 }
874
875 rmap_walk(page, &rwc);
876 *vm_flags = pra.vm_flags;
877
878 if (we_locked)
879 unlock_page(page);
880
881 return pra.referenced;
882}
883
884static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
885 unsigned long address, void *arg)
886{
887 struct page_vma_mapped_walk pvmw = {
888 .page = page,
889 .vma = vma,
890 .address = address,
891 .flags = PVMW_SYNC,
892 };
893 struct mmu_notifier_range range;
894 int *cleaned = arg;
895
896 /*
897 * We have to assume the worse case ie pmd for invalidation. Note that
898 * the page can not be free from this function.
899 */
900 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
901 0, vma, vma->vm_mm, address,
902 min(vma->vm_end, address + page_size(page)));
903 mmu_notifier_invalidate_range_start(&range);
904
905 while (page_vma_mapped_walk(&pvmw)) {
906 int ret = 0;
907
908 address = pvmw.address;
909 if (pvmw.pte) {
910 pte_t entry;
911 pte_t *pte = pvmw.pte;
912
913 if (!pte_dirty(*pte) && !pte_write(*pte))
914 continue;
915
916 flush_cache_page(vma, address, pte_pfn(*pte));
917 entry = ptep_clear_flush(vma, address, pte);
918 entry = pte_wrprotect(entry);
919 entry = pte_mkclean(entry);
920 set_pte_at(vma->vm_mm, address, pte, entry);
921 ret = 1;
922 } else {
923#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
924 pmd_t *pmd = pvmw.pmd;
925 pmd_t entry;
926
927 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
928 continue;
929
930 flush_cache_page(vma, address, page_to_pfn(page));
931 entry = pmdp_invalidate(vma, address, pmd);
932 entry = pmd_wrprotect(entry);
933 entry = pmd_mkclean(entry);
934 set_pmd_at(vma->vm_mm, address, pmd, entry);
935 ret = 1;
936#else
937 /* unexpected pmd-mapped page? */
938 WARN_ON_ONCE(1);
939#endif
940 }
941
942 /*
943 * No need to call mmu_notifier_invalidate_range() as we are
944 * downgrading page table protection not changing it to point
945 * to a new page.
946 *
947 * See Documentation/vm/mmu_notifier.rst
948 */
949 if (ret)
950 (*cleaned)++;
951 }
952
953 mmu_notifier_invalidate_range_end(&range);
954
955 return true;
956}
957
958static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
959{
960 if (vma->vm_flags & VM_SHARED)
961 return false;
962
963 return true;
964}
965
966int page_mkclean(struct page *page)
967{
968 int cleaned = 0;
969 struct address_space *mapping;
970 struct rmap_walk_control rwc = {
971 .arg = (void *)&cleaned,
972 .rmap_one = page_mkclean_one,
973 .invalid_vma = invalid_mkclean_vma,
974 };
975
976 BUG_ON(!PageLocked(page));
977
978 if (!page_mapped(page))
979 return 0;
980
981 mapping = page_mapping(page);
982 if (!mapping)
983 return 0;
984
985 rmap_walk(page, &rwc);
986
987 return cleaned;
988}
989EXPORT_SYMBOL_GPL(page_mkclean);
990
991/**
992 * page_move_anon_rmap - move a page to our anon_vma
993 * @page: the page to move to our anon_vma
994 * @vma: the vma the page belongs to
995 *
996 * When a page belongs exclusively to one process after a COW event,
997 * that page can be moved into the anon_vma that belongs to just that
998 * process, so the rmap code will not search the parent or sibling
999 * processes.
1000 */
1001void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1002{
1003 struct anon_vma *anon_vma = vma->anon_vma;
1004
1005 page = compound_head(page);
1006
1007 VM_BUG_ON_PAGE(!PageLocked(page), page);
1008 VM_BUG_ON_VMA(!anon_vma, vma);
1009
1010 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1011 /*
1012 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1013 * simultaneously, so a concurrent reader (eg page_referenced()'s
1014 * PageAnon()) will not see one without the other.
1015 */
1016 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1017}
1018
1019/**
1020 * __page_set_anon_rmap - set up new anonymous rmap
1021 * @page: Page or Hugepage to add to rmap
1022 * @vma: VM area to add page to.
1023 * @address: User virtual address of the mapping
1024 * @exclusive: the page is exclusively owned by the current process
1025 */
1026static void __page_set_anon_rmap(struct page *page,
1027 struct vm_area_struct *vma, unsigned long address, int exclusive)
1028{
1029 struct anon_vma *anon_vma = vma->anon_vma;
1030
1031 BUG_ON(!anon_vma);
1032
1033 if (PageAnon(page))
1034 return;
1035
1036 /*
1037 * If the page isn't exclusively mapped into this vma,
1038 * we must use the _oldest_ possible anon_vma for the
1039 * page mapping!
1040 */
1041 if (!exclusive)
1042 anon_vma = anon_vma->root;
1043
1044 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1045 page->mapping = (struct address_space *) anon_vma;
1046 page->index = linear_page_index(vma, address);
1047}
1048
1049/**
1050 * __page_check_anon_rmap - sanity check anonymous rmap addition
1051 * @page: the page to add the mapping to
1052 * @vma: the vm area in which the mapping is added
1053 * @address: the user virtual address mapped
1054 */
1055static void __page_check_anon_rmap(struct page *page,
1056 struct vm_area_struct *vma, unsigned long address)
1057{
1058#ifdef CONFIG_DEBUG_VM
1059 /*
1060 * The page's anon-rmap details (mapping and index) are guaranteed to
1061 * be set up correctly at this point.
1062 *
1063 * We have exclusion against page_add_anon_rmap because the caller
1064 * always holds the page locked, except if called from page_dup_rmap,
1065 * in which case the page is already known to be setup.
1066 *
1067 * We have exclusion against page_add_new_anon_rmap because those pages
1068 * are initially only visible via the pagetables, and the pte is locked
1069 * over the call to page_add_new_anon_rmap.
1070 */
1071 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1072 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1073#endif
1074}
1075
1076/**
1077 * page_add_anon_rmap - add pte mapping to an anonymous page
1078 * @page: the page to add the mapping to
1079 * @vma: the vm area in which the mapping is added
1080 * @address: the user virtual address mapped
1081 * @compound: charge the page as compound or small page
1082 *
1083 * The caller needs to hold the pte lock, and the page must be locked in
1084 * the anon_vma case: to serialize mapping,index checking after setting,
1085 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1086 * (but PageKsm is never downgraded to PageAnon).
1087 */
1088void page_add_anon_rmap(struct page *page,
1089 struct vm_area_struct *vma, unsigned long address, bool compound)
1090{
1091 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1092}
1093
1094/*
1095 * Special version of the above for do_swap_page, which often runs
1096 * into pages that are exclusively owned by the current process.
1097 * Everybody else should continue to use page_add_anon_rmap above.
1098 */
1099void do_page_add_anon_rmap(struct page *page,
1100 struct vm_area_struct *vma, unsigned long address, int flags)
1101{
1102 bool compound = flags & RMAP_COMPOUND;
1103 bool first;
1104
1105 if (compound) {
1106 atomic_t *mapcount;
1107 VM_BUG_ON_PAGE(!PageLocked(page), page);
1108 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1109 mapcount = compound_mapcount_ptr(page);
1110 first = atomic_inc_and_test(mapcount);
1111 } else {
1112 first = atomic_inc_and_test(&page->_mapcount);
1113 }
1114
1115 if (first) {
1116 int nr = compound ? hpage_nr_pages(page) : 1;
1117 /*
1118 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1119 * these counters are not modified in interrupt context, and
1120 * pte lock(a spinlock) is held, which implies preemption
1121 * disabled.
1122 */
1123 if (compound)
1124 __inc_node_page_state(page, NR_ANON_THPS);
1125 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1126 }
1127 if (unlikely(PageKsm(page)))
1128 return;
1129
1130 VM_BUG_ON_PAGE(!PageLocked(page), page);
1131
1132 /* address might be in next vma when migration races vma_adjust */
1133 if (first)
1134 __page_set_anon_rmap(page, vma, address,
1135 flags & RMAP_EXCLUSIVE);
1136 else
1137 __page_check_anon_rmap(page, vma, address);
1138}
1139
1140/**
1141 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1142 * @page: the page to add the mapping to
1143 * @vma: the vm area in which the mapping is added
1144 * @address: the user virtual address mapped
1145 * @compound: charge the page as compound or small page
1146 *
1147 * Same as page_add_anon_rmap but must only be called on *new* pages.
1148 * This means the inc-and-test can be bypassed.
1149 * Page does not have to be locked.
1150 */
1151void page_add_new_anon_rmap(struct page *page,
1152 struct vm_area_struct *vma, unsigned long address, bool compound)
1153{
1154 int nr = compound ? hpage_nr_pages(page) : 1;
1155
1156 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1157 __SetPageSwapBacked(page);
1158 if (compound) {
1159 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1160 /* increment count (starts at -1) */
1161 atomic_set(compound_mapcount_ptr(page), 0);
1162 __inc_node_page_state(page, NR_ANON_THPS);
1163 } else {
1164 /* Anon THP always mapped first with PMD */
1165 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1166 /* increment count (starts at -1) */
1167 atomic_set(&page->_mapcount, 0);
1168 }
1169 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1170 __page_set_anon_rmap(page, vma, address, 1);
1171}
1172
1173/**
1174 * page_add_file_rmap - add pte mapping to a file page
1175 * @page: the page to add the mapping to
1176 * @compound: charge the page as compound or small page
1177 *
1178 * The caller needs to hold the pte lock.
1179 */
1180void page_add_file_rmap(struct page *page, bool compound)
1181{
1182 int i, nr = 1;
1183
1184 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1185 lock_page_memcg(page);
1186 if (compound && PageTransHuge(page)) {
1187 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1188 if (atomic_inc_and_test(&page[i]._mapcount))
1189 nr++;
1190 }
1191 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1192 goto out;
1193 if (PageSwapBacked(page))
1194 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1195 else
1196 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1197 } else {
1198 if (PageTransCompound(page) && page_mapping(page)) {
1199 VM_WARN_ON_ONCE(!PageLocked(page));
1200
1201 SetPageDoubleMap(compound_head(page));
1202 if (PageMlocked(page))
1203 clear_page_mlock(compound_head(page));
1204 }
1205 if (!atomic_inc_and_test(&page->_mapcount))
1206 goto out;
1207 }
1208 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1209out:
1210 unlock_page_memcg(page);
1211}
1212
1213static void page_remove_file_rmap(struct page *page, bool compound)
1214{
1215 int i, nr = 1;
1216
1217 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218 lock_page_memcg(page);
1219
1220 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221 if (unlikely(PageHuge(page))) {
1222 /* hugetlb pages are always mapped with pmds */
1223 atomic_dec(compound_mapcount_ptr(page));
1224 goto out;
1225 }
1226
1227 /* page still mapped by someone else? */
1228 if (compound && PageTransHuge(page)) {
1229 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230 if (atomic_add_negative(-1, &page[i]._mapcount))
1231 nr++;
1232 }
1233 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234 goto out;
1235 if (PageSwapBacked(page))
1236 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1237 else
1238 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1239 } else {
1240 if (!atomic_add_negative(-1, &page->_mapcount))
1241 goto out;
1242 }
1243
1244 /*
1245 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1246 * these counters are not modified in interrupt context, and
1247 * pte lock(a spinlock) is held, which implies preemption disabled.
1248 */
1249 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1250
1251 if (unlikely(PageMlocked(page)))
1252 clear_page_mlock(page);
1253out:
1254 unlock_page_memcg(page);
1255}
1256
1257static void page_remove_anon_compound_rmap(struct page *page)
1258{
1259 int i, nr;
1260
1261 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1262 return;
1263
1264 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1265 if (unlikely(PageHuge(page)))
1266 return;
1267
1268 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1269 return;
1270
1271 __dec_node_page_state(page, NR_ANON_THPS);
1272
1273 if (TestClearPageDoubleMap(page)) {
1274 /*
1275 * Subpages can be mapped with PTEs too. Check how many of
1276 * themi are still mapped.
1277 */
1278 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1279 if (atomic_add_negative(-1, &page[i]._mapcount))
1280 nr++;
1281 }
1282 } else {
1283 nr = HPAGE_PMD_NR;
1284 }
1285
1286 if (unlikely(PageMlocked(page)))
1287 clear_page_mlock(page);
1288
1289 if (nr) {
1290 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1291 deferred_split_huge_page(page);
1292 }
1293}
1294
1295/**
1296 * page_remove_rmap - take down pte mapping from a page
1297 * @page: page to remove mapping from
1298 * @compound: uncharge the page as compound or small page
1299 *
1300 * The caller needs to hold the pte lock.
1301 */
1302void page_remove_rmap(struct page *page, bool compound)
1303{
1304 if (!PageAnon(page))
1305 return page_remove_file_rmap(page, compound);
1306
1307 if (compound)
1308 return page_remove_anon_compound_rmap(page);
1309
1310 /* page still mapped by someone else? */
1311 if (!atomic_add_negative(-1, &page->_mapcount))
1312 return;
1313
1314 /*
1315 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1316 * these counters are not modified in interrupt context, and
1317 * pte lock(a spinlock) is held, which implies preemption disabled.
1318 */
1319 __dec_node_page_state(page, NR_ANON_MAPPED);
1320
1321 if (unlikely(PageMlocked(page)))
1322 clear_page_mlock(page);
1323
1324 if (PageTransCompound(page))
1325 deferred_split_huge_page(compound_head(page));
1326
1327 /*
1328 * It would be tidy to reset the PageAnon mapping here,
1329 * but that might overwrite a racing page_add_anon_rmap
1330 * which increments mapcount after us but sets mapping
1331 * before us: so leave the reset to free_unref_page,
1332 * and remember that it's only reliable while mapped.
1333 * Leaving it set also helps swapoff to reinstate ptes
1334 * faster for those pages still in swapcache.
1335 */
1336}
1337
1338/*
1339 * @arg: enum ttu_flags will be passed to this argument
1340 */
1341static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1342 unsigned long address, void *arg)
1343{
1344 struct mm_struct *mm = vma->vm_mm;
1345 struct page_vma_mapped_walk pvmw = {
1346 .page = page,
1347 .vma = vma,
1348 .address = address,
1349 };
1350 pte_t pteval;
1351 struct page *subpage;
1352 bool ret = true;
1353 struct mmu_notifier_range range;
1354 enum ttu_flags flags = (enum ttu_flags)arg;
1355
1356 /* munlock has nothing to gain from examining un-locked vmas */
1357 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1358 return true;
1359
1360 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1361 is_zone_device_page(page) && !is_device_private_page(page))
1362 return true;
1363
1364 if (flags & TTU_SPLIT_HUGE_PMD) {
1365 split_huge_pmd_address(vma, address,
1366 flags & TTU_SPLIT_FREEZE, page);
1367 }
1368
1369 /*
1370 * For THP, we have to assume the worse case ie pmd for invalidation.
1371 * For hugetlb, it could be much worse if we need to do pud
1372 * invalidation in the case of pmd sharing.
1373 *
1374 * Note that the page can not be free in this function as call of
1375 * try_to_unmap() must hold a reference on the page.
1376 */
1377 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1378 address,
1379 min(vma->vm_end, address + page_size(page)));
1380 if (PageHuge(page)) {
1381 /*
1382 * If sharing is possible, start and end will be adjusted
1383 * accordingly.
1384 */
1385 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1386 &range.end);
1387 }
1388 mmu_notifier_invalidate_range_start(&range);
1389
1390 while (page_vma_mapped_walk(&pvmw)) {
1391#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1392 /* PMD-mapped THP migration entry */
1393 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1394 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1395
1396 set_pmd_migration_entry(&pvmw, page);
1397 continue;
1398 }
1399#endif
1400
1401 /*
1402 * If the page is mlock()d, we cannot swap it out.
1403 * If it's recently referenced (perhaps page_referenced
1404 * skipped over this mm) then we should reactivate it.
1405 */
1406 if (!(flags & TTU_IGNORE_MLOCK)) {
1407 if (vma->vm_flags & VM_LOCKED) {
1408 /* PTE-mapped THP are never mlocked */
1409 if (!PageTransCompound(page)) {
1410 /*
1411 * Holding pte lock, we do *not* need
1412 * mmap_sem here
1413 */
1414 mlock_vma_page(page);
1415 }
1416 ret = false;
1417 page_vma_mapped_walk_done(&pvmw);
1418 break;
1419 }
1420 if (flags & TTU_MUNLOCK)
1421 continue;
1422 }
1423
1424 /* Unexpected PMD-mapped THP? */
1425 VM_BUG_ON_PAGE(!pvmw.pte, page);
1426
1427 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1428 address = pvmw.address;
1429
1430 if (PageHuge(page)) {
1431 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1432 /*
1433 * huge_pmd_unshare unmapped an entire PMD
1434 * page. There is no way of knowing exactly
1435 * which PMDs may be cached for this mm, so
1436 * we must flush them all. start/end were
1437 * already adjusted above to cover this range.
1438 */
1439 flush_cache_range(vma, range.start, range.end);
1440 flush_tlb_range(vma, range.start, range.end);
1441 mmu_notifier_invalidate_range(mm, range.start,
1442 range.end);
1443
1444 /*
1445 * The ref count of the PMD page was dropped
1446 * which is part of the way map counting
1447 * is done for shared PMDs. Return 'true'
1448 * here. When there is no other sharing,
1449 * huge_pmd_unshare returns false and we will
1450 * unmap the actual page and drop map count
1451 * to zero.
1452 */
1453 page_vma_mapped_walk_done(&pvmw);
1454 break;
1455 }
1456 }
1457
1458 if (IS_ENABLED(CONFIG_MIGRATION) &&
1459 (flags & TTU_MIGRATION) &&
1460 is_zone_device_page(page)) {
1461 swp_entry_t entry;
1462 pte_t swp_pte;
1463
1464 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1465
1466 /*
1467 * Store the pfn of the page in a special migration
1468 * pte. do_swap_page() will wait until the migration
1469 * pte is removed and then restart fault handling.
1470 */
1471 entry = make_migration_entry(page, 0);
1472 swp_pte = swp_entry_to_pte(entry);
1473 if (pte_soft_dirty(pteval))
1474 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1475 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1476 /*
1477 * No need to invalidate here it will synchronize on
1478 * against the special swap migration pte.
1479 *
1480 * The assignment to subpage above was computed from a
1481 * swap PTE which results in an invalid pointer.
1482 * Since only PAGE_SIZE pages can currently be
1483 * migrated, just set it to page. This will need to be
1484 * changed when hugepage migrations to device private
1485 * memory are supported.
1486 */
1487 subpage = page;
1488 goto discard;
1489 }
1490
1491 if (!(flags & TTU_IGNORE_ACCESS)) {
1492 if (ptep_clear_flush_young_notify(vma, address,
1493 pvmw.pte)) {
1494 ret = false;
1495 page_vma_mapped_walk_done(&pvmw);
1496 break;
1497 }
1498 }
1499
1500 /* Nuke the page table entry. */
1501 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1502 if (should_defer_flush(mm, flags)) {
1503 /*
1504 * We clear the PTE but do not flush so potentially
1505 * a remote CPU could still be writing to the page.
1506 * If the entry was previously clean then the
1507 * architecture must guarantee that a clear->dirty
1508 * transition on a cached TLB entry is written through
1509 * and traps if the PTE is unmapped.
1510 */
1511 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1512
1513 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1514 } else {
1515 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1516 }
1517
1518 /* Move the dirty bit to the page. Now the pte is gone. */
1519 if (pte_dirty(pteval))
1520 set_page_dirty(page);
1521
1522 /* Update high watermark before we lower rss */
1523 update_hiwater_rss(mm);
1524
1525 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1526 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1527 if (PageHuge(page)) {
1528 hugetlb_count_sub(compound_nr(page), mm);
1529 set_huge_swap_pte_at(mm, address,
1530 pvmw.pte, pteval,
1531 vma_mmu_pagesize(vma));
1532 } else {
1533 dec_mm_counter(mm, mm_counter(page));
1534 set_pte_at(mm, address, pvmw.pte, pteval);
1535 }
1536
1537 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1538 /*
1539 * The guest indicated that the page content is of no
1540 * interest anymore. Simply discard the pte, vmscan
1541 * will take care of the rest.
1542 * A future reference will then fault in a new zero
1543 * page. When userfaultfd is active, we must not drop
1544 * this page though, as its main user (postcopy
1545 * migration) will not expect userfaults on already
1546 * copied pages.
1547 */
1548 dec_mm_counter(mm, mm_counter(page));
1549 /* We have to invalidate as we cleared the pte */
1550 mmu_notifier_invalidate_range(mm, address,
1551 address + PAGE_SIZE);
1552 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1553 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1554 swp_entry_t entry;
1555 pte_t swp_pte;
1556
1557 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1558 set_pte_at(mm, address, pvmw.pte, pteval);
1559 ret = false;
1560 page_vma_mapped_walk_done(&pvmw);
1561 break;
1562 }
1563
1564 /*
1565 * Store the pfn of the page in a special migration
1566 * pte. do_swap_page() will wait until the migration
1567 * pte is removed and then restart fault handling.
1568 */
1569 entry = make_migration_entry(subpage,
1570 pte_write(pteval));
1571 swp_pte = swp_entry_to_pte(entry);
1572 if (pte_soft_dirty(pteval))
1573 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574 set_pte_at(mm, address, pvmw.pte, swp_pte);
1575 /*
1576 * No need to invalidate here it will synchronize on
1577 * against the special swap migration pte.
1578 */
1579 } else if (PageAnon(page)) {
1580 swp_entry_t entry = { .val = page_private(subpage) };
1581 pte_t swp_pte;
1582 /*
1583 * Store the swap location in the pte.
1584 * See handle_pte_fault() ...
1585 */
1586 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1587 WARN_ON_ONCE(1);
1588 ret = false;
1589 /* We have to invalidate as we cleared the pte */
1590 mmu_notifier_invalidate_range(mm, address,
1591 address + PAGE_SIZE);
1592 page_vma_mapped_walk_done(&pvmw);
1593 break;
1594 }
1595
1596 /* MADV_FREE page check */
1597 if (!PageSwapBacked(page)) {
1598 if (!PageDirty(page)) {
1599 /* Invalidate as we cleared the pte */
1600 mmu_notifier_invalidate_range(mm,
1601 address, address + PAGE_SIZE);
1602 dec_mm_counter(mm, MM_ANONPAGES);
1603 goto discard;
1604 }
1605
1606 /*
1607 * If the page was redirtied, it cannot be
1608 * discarded. Remap the page to page table.
1609 */
1610 set_pte_at(mm, address, pvmw.pte, pteval);
1611 SetPageSwapBacked(page);
1612 ret = false;
1613 page_vma_mapped_walk_done(&pvmw);
1614 break;
1615 }
1616
1617 if (swap_duplicate(entry) < 0) {
1618 set_pte_at(mm, address, pvmw.pte, pteval);
1619 ret = false;
1620 page_vma_mapped_walk_done(&pvmw);
1621 break;
1622 }
1623 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1624 set_pte_at(mm, address, pvmw.pte, pteval);
1625 ret = false;
1626 page_vma_mapped_walk_done(&pvmw);
1627 break;
1628 }
1629 if (list_empty(&mm->mmlist)) {
1630 spin_lock(&mmlist_lock);
1631 if (list_empty(&mm->mmlist))
1632 list_add(&mm->mmlist, &init_mm.mmlist);
1633 spin_unlock(&mmlist_lock);
1634 }
1635 dec_mm_counter(mm, MM_ANONPAGES);
1636 inc_mm_counter(mm, MM_SWAPENTS);
1637 swp_pte = swp_entry_to_pte(entry);
1638 if (pte_soft_dirty(pteval))
1639 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1640 set_pte_at(mm, address, pvmw.pte, swp_pte);
1641 /* Invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1644 } else {
1645 /*
1646 * This is a locked file-backed page, thus it cannot
1647 * be removed from the page cache and replaced by a new
1648 * page before mmu_notifier_invalidate_range_end, so no
1649 * concurrent thread might update its page table to
1650 * point at new page while a device still is using this
1651 * page.
1652 *
1653 * See Documentation/vm/mmu_notifier.rst
1654 */
1655 dec_mm_counter(mm, mm_counter_file(page));
1656 }
1657discard:
1658 /*
1659 * No need to call mmu_notifier_invalidate_range() it has be
1660 * done above for all cases requiring it to happen under page
1661 * table lock before mmu_notifier_invalidate_range_end()
1662 *
1663 * See Documentation/vm/mmu_notifier.rst
1664 */
1665 page_remove_rmap(subpage, PageHuge(page));
1666 put_page(page);
1667 }
1668
1669 mmu_notifier_invalidate_range_end(&range);
1670
1671 return ret;
1672}
1673
1674bool is_vma_temporary_stack(struct vm_area_struct *vma)
1675{
1676 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1677
1678 if (!maybe_stack)
1679 return false;
1680
1681 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1682 VM_STACK_INCOMPLETE_SETUP)
1683 return true;
1684
1685 return false;
1686}
1687
1688static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1689{
1690 return is_vma_temporary_stack(vma);
1691}
1692
1693static int page_mapcount_is_zero(struct page *page)
1694{
1695 return !total_mapcount(page);
1696}
1697
1698/**
1699 * try_to_unmap - try to remove all page table mappings to a page
1700 * @page: the page to get unmapped
1701 * @flags: action and flags
1702 *
1703 * Tries to remove all the page table entries which are mapping this
1704 * page, used in the pageout path. Caller must hold the page lock.
1705 *
1706 * If unmap is successful, return true. Otherwise, false.
1707 */
1708bool try_to_unmap(struct page *page, enum ttu_flags flags)
1709{
1710 struct rmap_walk_control rwc = {
1711 .rmap_one = try_to_unmap_one,
1712 .arg = (void *)flags,
1713 .done = page_mapcount_is_zero,
1714 .anon_lock = page_lock_anon_vma_read,
1715 };
1716
1717 /*
1718 * During exec, a temporary VMA is setup and later moved.
1719 * The VMA is moved under the anon_vma lock but not the
1720 * page tables leading to a race where migration cannot
1721 * find the migration ptes. Rather than increasing the
1722 * locking requirements of exec(), migration skips
1723 * temporary VMAs until after exec() completes.
1724 */
1725 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1726 && !PageKsm(page) && PageAnon(page))
1727 rwc.invalid_vma = invalid_migration_vma;
1728
1729 if (flags & TTU_RMAP_LOCKED)
1730 rmap_walk_locked(page, &rwc);
1731 else
1732 rmap_walk(page, &rwc);
1733
1734 return !page_mapcount(page) ? true : false;
1735}
1736
1737static int page_not_mapped(struct page *page)
1738{
1739 return !page_mapped(page);
1740};
1741
1742/**
1743 * try_to_munlock - try to munlock a page
1744 * @page: the page to be munlocked
1745 *
1746 * Called from munlock code. Checks all of the VMAs mapping the page
1747 * to make sure nobody else has this page mlocked. The page will be
1748 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1749 */
1750
1751void try_to_munlock(struct page *page)
1752{
1753 struct rmap_walk_control rwc = {
1754 .rmap_one = try_to_unmap_one,
1755 .arg = (void *)TTU_MUNLOCK,
1756 .done = page_not_mapped,
1757 .anon_lock = page_lock_anon_vma_read,
1758
1759 };
1760
1761 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1762 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1763
1764 rmap_walk(page, &rwc);
1765}
1766
1767void __put_anon_vma(struct anon_vma *anon_vma)
1768{
1769 struct anon_vma *root = anon_vma->root;
1770
1771 anon_vma_free(anon_vma);
1772 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1773 anon_vma_free(root);
1774}
1775
1776static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1777 struct rmap_walk_control *rwc)
1778{
1779 struct anon_vma *anon_vma;
1780
1781 if (rwc->anon_lock)
1782 return rwc->anon_lock(page);
1783
1784 /*
1785 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1786 * because that depends on page_mapped(); but not all its usages
1787 * are holding mmap_sem. Users without mmap_sem are required to
1788 * take a reference count to prevent the anon_vma disappearing
1789 */
1790 anon_vma = page_anon_vma(page);
1791 if (!anon_vma)
1792 return NULL;
1793
1794 anon_vma_lock_read(anon_vma);
1795 return anon_vma;
1796}
1797
1798/*
1799 * rmap_walk_anon - do something to anonymous page using the object-based
1800 * rmap method
1801 * @page: the page to be handled
1802 * @rwc: control variable according to each walk type
1803 *
1804 * Find all the mappings of a page using the mapping pointer and the vma chains
1805 * contained in the anon_vma struct it points to.
1806 *
1807 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1808 * where the page was found will be held for write. So, we won't recheck
1809 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1810 * LOCKED.
1811 */
1812static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1813 bool locked)
1814{
1815 struct anon_vma *anon_vma;
1816 pgoff_t pgoff_start, pgoff_end;
1817 struct anon_vma_chain *avc;
1818
1819 if (locked) {
1820 anon_vma = page_anon_vma(page);
1821 /* anon_vma disappear under us? */
1822 VM_BUG_ON_PAGE(!anon_vma, page);
1823 } else {
1824 anon_vma = rmap_walk_anon_lock(page, rwc);
1825 }
1826 if (!anon_vma)
1827 return;
1828
1829 pgoff_start = page_to_pgoff(page);
1830 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1831 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1832 pgoff_start, pgoff_end) {
1833 struct vm_area_struct *vma = avc->vma;
1834 unsigned long address = vma_address(page, vma);
1835
1836 cond_resched();
1837
1838 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1839 continue;
1840
1841 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1842 break;
1843 if (rwc->done && rwc->done(page))
1844 break;
1845 }
1846
1847 if (!locked)
1848 anon_vma_unlock_read(anon_vma);
1849}
1850
1851/*
1852 * rmap_walk_file - do something to file page using the object-based rmap method
1853 * @page: the page to be handled
1854 * @rwc: control variable according to each walk type
1855 *
1856 * Find all the mappings of a page using the mapping pointer and the vma chains
1857 * contained in the address_space struct it points to.
1858 *
1859 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1860 * where the page was found will be held for write. So, we won't recheck
1861 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1862 * LOCKED.
1863 */
1864static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1865 bool locked)
1866{
1867 struct address_space *mapping = page_mapping(page);
1868 pgoff_t pgoff_start, pgoff_end;
1869 struct vm_area_struct *vma;
1870
1871 /*
1872 * The page lock not only makes sure that page->mapping cannot
1873 * suddenly be NULLified by truncation, it makes sure that the
1874 * structure at mapping cannot be freed and reused yet,
1875 * so we can safely take mapping->i_mmap_rwsem.
1876 */
1877 VM_BUG_ON_PAGE(!PageLocked(page), page);
1878
1879 if (!mapping)
1880 return;
1881
1882 pgoff_start = page_to_pgoff(page);
1883 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1884 if (!locked)
1885 i_mmap_lock_read(mapping);
1886 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1887 pgoff_start, pgoff_end) {
1888 unsigned long address = vma_address(page, vma);
1889
1890 cond_resched();
1891
1892 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1893 continue;
1894
1895 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1896 goto done;
1897 if (rwc->done && rwc->done(page))
1898 goto done;
1899 }
1900
1901done:
1902 if (!locked)
1903 i_mmap_unlock_read(mapping);
1904}
1905
1906void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1907{
1908 if (unlikely(PageKsm(page)))
1909 rmap_walk_ksm(page, rwc);
1910 else if (PageAnon(page))
1911 rmap_walk_anon(page, rwc, false);
1912 else
1913 rmap_walk_file(page, rwc, false);
1914}
1915
1916/* Like rmap_walk, but caller holds relevant rmap lock */
1917void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1918{
1919 /* no ksm support for now */
1920 VM_BUG_ON_PAGE(PageKsm(page), page);
1921 if (PageAnon(page))
1922 rmap_walk_anon(page, rwc, true);
1923 else
1924 rmap_walk_file(page, rwc, true);
1925}
1926
1927#ifdef CONFIG_HUGETLB_PAGE
1928/*
1929 * The following two functions are for anonymous (private mapped) hugepages.
1930 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1931 * and no lru code, because we handle hugepages differently from common pages.
1932 */
1933void hugepage_add_anon_rmap(struct page *page,
1934 struct vm_area_struct *vma, unsigned long address)
1935{
1936 struct anon_vma *anon_vma = vma->anon_vma;
1937 int first;
1938
1939 BUG_ON(!PageLocked(page));
1940 BUG_ON(!anon_vma);
1941 /* address might be in next vma when migration races vma_adjust */
1942 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1943 if (first)
1944 __page_set_anon_rmap(page, vma, address, 0);
1945}
1946
1947void hugepage_add_new_anon_rmap(struct page *page,
1948 struct vm_area_struct *vma, unsigned long address)
1949{
1950 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1951 atomic_set(compound_mapcount_ptr(page), 0);
1952 __page_set_anon_rmap(page, vma, address, 1);
1953}
1954#endif /* CONFIG_HUGETLB_PAGE */