Loading...
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/module.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59
60#include <asm/tlbflush.h>
61
62#include "internal.h"
63
64static struct kmem_cache *anon_vma_cachep;
65static struct kmem_cache *anon_vma_chain_cachep;
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
82}
83
84static inline void anon_vma_free(struct anon_vma *anon_vma)
85{
86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
112
113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114{
115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116}
117
118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
123/**
124 * anon_vma_prepare - attach an anon_vma to a memory region
125 * @vma: the memory region in question
126 *
127 * This makes sure the memory mapping described by 'vma' has
128 * an 'anon_vma' attached to it, so that we can associate the
129 * anonymous pages mapped into it with that anon_vma.
130 *
131 * The common case will be that we already have one, but if
132 * not we either need to find an adjacent mapping that we
133 * can re-use the anon_vma from (very common when the only
134 * reason for splitting a vma has been mprotect()), or we
135 * allocate a new one.
136 *
137 * Anon-vma allocations are very subtle, because we may have
138 * optimistically looked up an anon_vma in page_lock_anon_vma()
139 * and that may actually touch the spinlock even in the newly
140 * allocated vma (it depends on RCU to make sure that the
141 * anon_vma isn't actually destroyed).
142 *
143 * As a result, we need to do proper anon_vma locking even
144 * for the new allocation. At the same time, we do not want
145 * to do any locking for the common case of already having
146 * an anon_vma.
147 *
148 * This must be called with the mmap_sem held for reading.
149 */
150int anon_vma_prepare(struct vm_area_struct *vma)
151{
152 struct anon_vma *anon_vma = vma->anon_vma;
153 struct anon_vma_chain *avc;
154
155 might_sleep();
156 if (unlikely(!anon_vma)) {
157 struct mm_struct *mm = vma->vm_mm;
158 struct anon_vma *allocated;
159
160 avc = anon_vma_chain_alloc(GFP_KERNEL);
161 if (!avc)
162 goto out_enomem;
163
164 anon_vma = find_mergeable_anon_vma(vma);
165 allocated = NULL;
166 if (!anon_vma) {
167 anon_vma = anon_vma_alloc();
168 if (unlikely(!anon_vma))
169 goto out_enomem_free_avc;
170 allocated = anon_vma;
171 }
172
173 anon_vma_lock(anon_vma);
174 /* page_table_lock to protect against threads */
175 spin_lock(&mm->page_table_lock);
176 if (likely(!vma->anon_vma)) {
177 vma->anon_vma = anon_vma;
178 avc->anon_vma = anon_vma;
179 avc->vma = vma;
180 list_add(&avc->same_vma, &vma->anon_vma_chain);
181 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
182 allocated = NULL;
183 avc = NULL;
184 }
185 spin_unlock(&mm->page_table_lock);
186 anon_vma_unlock(anon_vma);
187
188 if (unlikely(allocated))
189 put_anon_vma(allocated);
190 if (unlikely(avc))
191 anon_vma_chain_free(avc);
192 }
193 return 0;
194
195 out_enomem_free_avc:
196 anon_vma_chain_free(avc);
197 out_enomem:
198 return -ENOMEM;
199}
200
201/*
202 * This is a useful helper function for locking the anon_vma root as
203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204 * have the same vma.
205 *
206 * Such anon_vma's should have the same root, so you'd expect to see
207 * just a single mutex_lock for the whole traversal.
208 */
209static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210{
211 struct anon_vma *new_root = anon_vma->root;
212 if (new_root != root) {
213 if (WARN_ON_ONCE(root))
214 mutex_unlock(&root->mutex);
215 root = new_root;
216 mutex_lock(&root->mutex);
217 }
218 return root;
219}
220
221static inline void unlock_anon_vma_root(struct anon_vma *root)
222{
223 if (root)
224 mutex_unlock(&root->mutex);
225}
226
227static void anon_vma_chain_link(struct vm_area_struct *vma,
228 struct anon_vma_chain *avc,
229 struct anon_vma *anon_vma)
230{
231 avc->vma = vma;
232 avc->anon_vma = anon_vma;
233 list_add(&avc->same_vma, &vma->anon_vma_chain);
234
235 /*
236 * It's critical to add new vmas to the tail of the anon_vma,
237 * see comment in huge_memory.c:__split_huge_page().
238 */
239 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
240}
241
242/*
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
245 */
246int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
247{
248 struct anon_vma_chain *avc, *pavc;
249 struct anon_vma *root = NULL;
250
251 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
252 struct anon_vma *anon_vma;
253
254 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255 if (unlikely(!avc)) {
256 unlock_anon_vma_root(root);
257 root = NULL;
258 avc = anon_vma_chain_alloc(GFP_KERNEL);
259 if (!avc)
260 goto enomem_failure;
261 }
262 anon_vma = pavc->anon_vma;
263 root = lock_anon_vma_root(root, anon_vma);
264 anon_vma_chain_link(dst, avc, anon_vma);
265 }
266 unlock_anon_vma_root(root);
267 return 0;
268
269 enomem_failure:
270 unlink_anon_vmas(dst);
271 return -ENOMEM;
272}
273
274/*
275 * Attach vma to its own anon_vma, as well as to the anon_vmas that
276 * the corresponding VMA in the parent process is attached to.
277 * Returns 0 on success, non-zero on failure.
278 */
279int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
280{
281 struct anon_vma_chain *avc;
282 struct anon_vma *anon_vma;
283
284 /* Don't bother if the parent process has no anon_vma here. */
285 if (!pvma->anon_vma)
286 return 0;
287
288 /*
289 * First, attach the new VMA to the parent VMA's anon_vmas,
290 * so rmap can find non-COWed pages in child processes.
291 */
292 if (anon_vma_clone(vma, pvma))
293 return -ENOMEM;
294
295 /* Then add our own anon_vma. */
296 anon_vma = anon_vma_alloc();
297 if (!anon_vma)
298 goto out_error;
299 avc = anon_vma_chain_alloc(GFP_KERNEL);
300 if (!avc)
301 goto out_error_free_anon_vma;
302
303 /*
304 * The root anon_vma's spinlock is the lock actually used when we
305 * lock any of the anon_vmas in this anon_vma tree.
306 */
307 anon_vma->root = pvma->anon_vma->root;
308 /*
309 * With refcounts, an anon_vma can stay around longer than the
310 * process it belongs to. The root anon_vma needs to be pinned until
311 * this anon_vma is freed, because the lock lives in the root.
312 */
313 get_anon_vma(anon_vma->root);
314 /* Mark this anon_vma as the one where our new (COWed) pages go. */
315 vma->anon_vma = anon_vma;
316 anon_vma_lock(anon_vma);
317 anon_vma_chain_link(vma, avc, anon_vma);
318 anon_vma_unlock(anon_vma);
319
320 return 0;
321
322 out_error_free_anon_vma:
323 put_anon_vma(anon_vma);
324 out_error:
325 unlink_anon_vmas(vma);
326 return -ENOMEM;
327}
328
329void unlink_anon_vmas(struct vm_area_struct *vma)
330{
331 struct anon_vma_chain *avc, *next;
332 struct anon_vma *root = NULL;
333
334 /*
335 * Unlink each anon_vma chained to the VMA. This list is ordered
336 * from newest to oldest, ensuring the root anon_vma gets freed last.
337 */
338 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
339 struct anon_vma *anon_vma = avc->anon_vma;
340
341 root = lock_anon_vma_root(root, anon_vma);
342 list_del(&avc->same_anon_vma);
343
344 /*
345 * Leave empty anon_vmas on the list - we'll need
346 * to free them outside the lock.
347 */
348 if (list_empty(&anon_vma->head))
349 continue;
350
351 list_del(&avc->same_vma);
352 anon_vma_chain_free(avc);
353 }
354 unlock_anon_vma_root(root);
355
356 /*
357 * Iterate the list once more, it now only contains empty and unlinked
358 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
359 * needing to acquire the anon_vma->root->mutex.
360 */
361 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
362 struct anon_vma *anon_vma = avc->anon_vma;
363
364 put_anon_vma(anon_vma);
365
366 list_del(&avc->same_vma);
367 anon_vma_chain_free(avc);
368 }
369}
370
371static void anon_vma_ctor(void *data)
372{
373 struct anon_vma *anon_vma = data;
374
375 mutex_init(&anon_vma->mutex);
376 atomic_set(&anon_vma->refcount, 0);
377 INIT_LIST_HEAD(&anon_vma->head);
378}
379
380void __init anon_vma_init(void)
381{
382 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
383 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
384 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
385}
386
387/*
388 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
389 *
390 * Since there is no serialization what so ever against page_remove_rmap()
391 * the best this function can do is return a locked anon_vma that might
392 * have been relevant to this page.
393 *
394 * The page might have been remapped to a different anon_vma or the anon_vma
395 * returned may already be freed (and even reused).
396 *
397 * In case it was remapped to a different anon_vma, the new anon_vma will be a
398 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
399 * ensure that any anon_vma obtained from the page will still be valid for as
400 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
401 *
402 * All users of this function must be very careful when walking the anon_vma
403 * chain and verify that the page in question is indeed mapped in it
404 * [ something equivalent to page_mapped_in_vma() ].
405 *
406 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
407 * that the anon_vma pointer from page->mapping is valid if there is a
408 * mapcount, we can dereference the anon_vma after observing those.
409 */
410struct anon_vma *page_get_anon_vma(struct page *page)
411{
412 struct anon_vma *anon_vma = NULL;
413 unsigned long anon_mapping;
414
415 rcu_read_lock();
416 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
417 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
418 goto out;
419 if (!page_mapped(page))
420 goto out;
421
422 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
423 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
424 anon_vma = NULL;
425 goto out;
426 }
427
428 /*
429 * If this page is still mapped, then its anon_vma cannot have been
430 * freed. But if it has been unmapped, we have no security against the
431 * anon_vma structure being freed and reused (for another anon_vma:
432 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
433 * above cannot corrupt).
434 */
435 if (!page_mapped(page)) {
436 put_anon_vma(anon_vma);
437 anon_vma = NULL;
438 }
439out:
440 rcu_read_unlock();
441
442 return anon_vma;
443}
444
445/*
446 * Similar to page_get_anon_vma() except it locks the anon_vma.
447 *
448 * Its a little more complex as it tries to keep the fast path to a single
449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450 * reference like with page_get_anon_vma() and then block on the mutex.
451 */
452struct anon_vma *page_lock_anon_vma(struct page *page)
453{
454 struct anon_vma *anon_vma = NULL;
455 struct anon_vma *root_anon_vma;
456 unsigned long anon_mapping;
457
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 root_anon_vma = ACCESS_ONCE(anon_vma->root);
467 if (mutex_trylock(&root_anon_vma->mutex)) {
468 /*
469 * If the page is still mapped, then this anon_vma is still
470 * its anon_vma, and holding the mutex ensures that it will
471 * not go away, see anon_vma_free().
472 */
473 if (!page_mapped(page)) {
474 mutex_unlock(&root_anon_vma->mutex);
475 anon_vma = NULL;
476 }
477 goto out;
478 }
479
480 /* trylock failed, we got to sleep */
481 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482 anon_vma = NULL;
483 goto out;
484 }
485
486 if (!page_mapped(page)) {
487 put_anon_vma(anon_vma);
488 anon_vma = NULL;
489 goto out;
490 }
491
492 /* we pinned the anon_vma, its safe to sleep */
493 rcu_read_unlock();
494 anon_vma_lock(anon_vma);
495
496 if (atomic_dec_and_test(&anon_vma->refcount)) {
497 /*
498 * Oops, we held the last refcount, release the lock
499 * and bail -- can't simply use put_anon_vma() because
500 * we'll deadlock on the anon_vma_lock() recursion.
501 */
502 anon_vma_unlock(anon_vma);
503 __put_anon_vma(anon_vma);
504 anon_vma = NULL;
505 }
506
507 return anon_vma;
508
509out:
510 rcu_read_unlock();
511 return anon_vma;
512}
513
514void page_unlock_anon_vma(struct anon_vma *anon_vma)
515{
516 anon_vma_unlock(anon_vma);
517}
518
519/*
520 * At what user virtual address is page expected in @vma?
521 * Returns virtual address or -EFAULT if page's index/offset is not
522 * within the range mapped the @vma.
523 */
524inline unsigned long
525vma_address(struct page *page, struct vm_area_struct *vma)
526{
527 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
528 unsigned long address;
529
530 if (unlikely(is_vm_hugetlb_page(vma)))
531 pgoff = page->index << huge_page_order(page_hstate(page));
532 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
533 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
534 /* page should be within @vma mapping range */
535 return -EFAULT;
536 }
537 return address;
538}
539
540/*
541 * At what user virtual address is page expected in vma?
542 * Caller should check the page is actually part of the vma.
543 */
544unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
545{
546 if (PageAnon(page)) {
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
558 return -EFAULT;
559 } else
560 return -EFAULT;
561 return vma_address(page, vma);
562}
563
564/*
565 * Check that @page is mapped at @address into @mm.
566 *
567 * If @sync is false, page_check_address may perform a racy check to avoid
568 * the page table lock when the pte is not present (helpful when reclaiming
569 * highly shared pages).
570 *
571 * On success returns with pte mapped and locked.
572 */
573pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574 unsigned long address, spinlock_t **ptlp, int sync)
575{
576 pgd_t *pgd;
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 spinlock_t *ptl;
581
582 if (unlikely(PageHuge(page))) {
583 pte = huge_pte_offset(mm, address);
584 ptl = &mm->page_table_lock;
585 goto check;
586 }
587
588 pgd = pgd_offset(mm, address);
589 if (!pgd_present(*pgd))
590 return NULL;
591
592 pud = pud_offset(pgd, address);
593 if (!pud_present(*pud))
594 return NULL;
595
596 pmd = pmd_offset(pud, address);
597 if (!pmd_present(*pmd))
598 return NULL;
599 if (pmd_trans_huge(*pmd))
600 return NULL;
601
602 pte = pte_offset_map(pmd, address);
603 /* Make a quick check before getting the lock */
604 if (!sync && !pte_present(*pte)) {
605 pte_unmap(pte);
606 return NULL;
607 }
608
609 ptl = pte_lockptr(mm, pmd);
610check:
611 spin_lock(ptl);
612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 *ptlp = ptl;
614 return pte;
615 }
616 pte_unmap_unlock(pte, ptl);
617 return NULL;
618}
619
620/**
621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
622 * @page: the page to test
623 * @vma: the VMA to test
624 *
625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
626 * if the page is not mapped into the page tables of this VMA. Only
627 * valid for normal file or anonymous VMAs.
628 */
629int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
630{
631 unsigned long address;
632 pte_t *pte;
633 spinlock_t *ptl;
634
635 address = vma_address(page, vma);
636 if (address == -EFAULT) /* out of vma range */
637 return 0;
638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 if (!pte) /* the page is not in this mm */
640 return 0;
641 pte_unmap_unlock(pte, ptl);
642
643 return 1;
644}
645
646/*
647 * Subfunctions of page_referenced: page_referenced_one called
648 * repeatedly from either page_referenced_anon or page_referenced_file.
649 */
650int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 unsigned long address, unsigned int *mapcount,
652 unsigned long *vm_flags)
653{
654 struct mm_struct *mm = vma->vm_mm;
655 int referenced = 0;
656
657 if (unlikely(PageTransHuge(page))) {
658 pmd_t *pmd;
659
660 spin_lock(&mm->page_table_lock);
661 /*
662 * rmap might return false positives; we must filter
663 * these out using page_check_address_pmd().
664 */
665 pmd = page_check_address_pmd(page, mm, address,
666 PAGE_CHECK_ADDRESS_PMD_FLAG);
667 if (!pmd) {
668 spin_unlock(&mm->page_table_lock);
669 goto out;
670 }
671
672 if (vma->vm_flags & VM_LOCKED) {
673 spin_unlock(&mm->page_table_lock);
674 *mapcount = 0; /* break early from loop */
675 *vm_flags |= VM_LOCKED;
676 goto out;
677 }
678
679 /* go ahead even if the pmd is pmd_trans_splitting() */
680 if (pmdp_clear_flush_young_notify(vma, address, pmd))
681 referenced++;
682 spin_unlock(&mm->page_table_lock);
683 } else {
684 pte_t *pte;
685 spinlock_t *ptl;
686
687 /*
688 * rmap might return false positives; we must filter
689 * these out using page_check_address().
690 */
691 pte = page_check_address(page, mm, address, &ptl, 0);
692 if (!pte)
693 goto out;
694
695 if (vma->vm_flags & VM_LOCKED) {
696 pte_unmap_unlock(pte, ptl);
697 *mapcount = 0; /* break early from loop */
698 *vm_flags |= VM_LOCKED;
699 goto out;
700 }
701
702 if (ptep_clear_flush_young_notify(vma, address, pte)) {
703 /*
704 * Don't treat a reference through a sequentially read
705 * mapping as such. If the page has been used in
706 * another mapping, we will catch it; if this other
707 * mapping is already gone, the unmap path will have
708 * set PG_referenced or activated the page.
709 */
710 if (likely(!VM_SequentialReadHint(vma)))
711 referenced++;
712 }
713 pte_unmap_unlock(pte, ptl);
714 }
715
716 /* Pretend the page is referenced if the task has the
717 swap token and is in the middle of a page fault. */
718 if (mm != current->mm && has_swap_token(mm) &&
719 rwsem_is_locked(&mm->mmap_sem))
720 referenced++;
721
722 (*mapcount)--;
723
724 if (referenced)
725 *vm_flags |= vma->vm_flags;
726out:
727 return referenced;
728}
729
730static int page_referenced_anon(struct page *page,
731 struct mem_cgroup *mem_cont,
732 unsigned long *vm_flags)
733{
734 unsigned int mapcount;
735 struct anon_vma *anon_vma;
736 struct anon_vma_chain *avc;
737 int referenced = 0;
738
739 anon_vma = page_lock_anon_vma(page);
740 if (!anon_vma)
741 return referenced;
742
743 mapcount = page_mapcount(page);
744 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
745 struct vm_area_struct *vma = avc->vma;
746 unsigned long address = vma_address(page, vma);
747 if (address == -EFAULT)
748 continue;
749 /*
750 * If we are reclaiming on behalf of a cgroup, skip
751 * counting on behalf of references from different
752 * cgroups
753 */
754 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
755 continue;
756 referenced += page_referenced_one(page, vma, address,
757 &mapcount, vm_flags);
758 if (!mapcount)
759 break;
760 }
761
762 page_unlock_anon_vma(anon_vma);
763 return referenced;
764}
765
766/**
767 * page_referenced_file - referenced check for object-based rmap
768 * @page: the page we're checking references on.
769 * @mem_cont: target memory controller
770 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
771 *
772 * For an object-based mapped page, find all the places it is mapped and
773 * check/clear the referenced flag. This is done by following the page->mapping
774 * pointer, then walking the chain of vmas it holds. It returns the number
775 * of references it found.
776 *
777 * This function is only called from page_referenced for object-based pages.
778 */
779static int page_referenced_file(struct page *page,
780 struct mem_cgroup *mem_cont,
781 unsigned long *vm_flags)
782{
783 unsigned int mapcount;
784 struct address_space *mapping = page->mapping;
785 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
786 struct vm_area_struct *vma;
787 struct prio_tree_iter iter;
788 int referenced = 0;
789
790 /*
791 * The caller's checks on page->mapping and !PageAnon have made
792 * sure that this is a file page: the check for page->mapping
793 * excludes the case just before it gets set on an anon page.
794 */
795 BUG_ON(PageAnon(page));
796
797 /*
798 * The page lock not only makes sure that page->mapping cannot
799 * suddenly be NULLified by truncation, it makes sure that the
800 * structure at mapping cannot be freed and reused yet,
801 * so we can safely take mapping->i_mmap_mutex.
802 */
803 BUG_ON(!PageLocked(page));
804
805 mutex_lock(&mapping->i_mmap_mutex);
806
807 /*
808 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
809 * is more likely to be accurate if we note it after spinning.
810 */
811 mapcount = page_mapcount(page);
812
813 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
814 unsigned long address = vma_address(page, vma);
815 if (address == -EFAULT)
816 continue;
817 /*
818 * If we are reclaiming on behalf of a cgroup, skip
819 * counting on behalf of references from different
820 * cgroups
821 */
822 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
823 continue;
824 referenced += page_referenced_one(page, vma, address,
825 &mapcount, vm_flags);
826 if (!mapcount)
827 break;
828 }
829
830 mutex_unlock(&mapping->i_mmap_mutex);
831 return referenced;
832}
833
834/**
835 * page_referenced - test if the page was referenced
836 * @page: the page to test
837 * @is_locked: caller holds lock on the page
838 * @mem_cont: target memory controller
839 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
840 *
841 * Quick test_and_clear_referenced for all mappings to a page,
842 * returns the number of ptes which referenced the page.
843 */
844int page_referenced(struct page *page,
845 int is_locked,
846 struct mem_cgroup *mem_cont,
847 unsigned long *vm_flags)
848{
849 int referenced = 0;
850 int we_locked = 0;
851
852 *vm_flags = 0;
853 if (page_mapped(page) && page_rmapping(page)) {
854 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
855 we_locked = trylock_page(page);
856 if (!we_locked) {
857 referenced++;
858 goto out;
859 }
860 }
861 if (unlikely(PageKsm(page)))
862 referenced += page_referenced_ksm(page, mem_cont,
863 vm_flags);
864 else if (PageAnon(page))
865 referenced += page_referenced_anon(page, mem_cont,
866 vm_flags);
867 else if (page->mapping)
868 referenced += page_referenced_file(page, mem_cont,
869 vm_flags);
870 if (we_locked)
871 unlock_page(page);
872
873 if (page_test_and_clear_young(page_to_pfn(page)))
874 referenced++;
875 }
876out:
877 return referenced;
878}
879
880static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
881 unsigned long address)
882{
883 struct mm_struct *mm = vma->vm_mm;
884 pte_t *pte;
885 spinlock_t *ptl;
886 int ret = 0;
887
888 pte = page_check_address(page, mm, address, &ptl, 1);
889 if (!pte)
890 goto out;
891
892 if (pte_dirty(*pte) || pte_write(*pte)) {
893 pte_t entry;
894
895 flush_cache_page(vma, address, pte_pfn(*pte));
896 entry = ptep_clear_flush_notify(vma, address, pte);
897 entry = pte_wrprotect(entry);
898 entry = pte_mkclean(entry);
899 set_pte_at(mm, address, pte, entry);
900 ret = 1;
901 }
902
903 pte_unmap_unlock(pte, ptl);
904out:
905 return ret;
906}
907
908static int page_mkclean_file(struct address_space *mapping, struct page *page)
909{
910 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
911 struct vm_area_struct *vma;
912 struct prio_tree_iter iter;
913 int ret = 0;
914
915 BUG_ON(PageAnon(page));
916
917 mutex_lock(&mapping->i_mmap_mutex);
918 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919 if (vma->vm_flags & VM_SHARED) {
920 unsigned long address = vma_address(page, vma);
921 if (address == -EFAULT)
922 continue;
923 ret += page_mkclean_one(page, vma, address);
924 }
925 }
926 mutex_unlock(&mapping->i_mmap_mutex);
927 return ret;
928}
929
930int page_mkclean(struct page *page)
931{
932 int ret = 0;
933
934 BUG_ON(!PageLocked(page));
935
936 if (page_mapped(page)) {
937 struct address_space *mapping = page_mapping(page);
938 if (mapping) {
939 ret = page_mkclean_file(mapping, page);
940 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
941 ret = 1;
942 }
943 }
944
945 return ret;
946}
947EXPORT_SYMBOL_GPL(page_mkclean);
948
949/**
950 * page_move_anon_rmap - move a page to our anon_vma
951 * @page: the page to move to our anon_vma
952 * @vma: the vma the page belongs to
953 * @address: the user virtual address mapped
954 *
955 * When a page belongs exclusively to one process after a COW event,
956 * that page can be moved into the anon_vma that belongs to just that
957 * process, so the rmap code will not search the parent or sibling
958 * processes.
959 */
960void page_move_anon_rmap(struct page *page,
961 struct vm_area_struct *vma, unsigned long address)
962{
963 struct anon_vma *anon_vma = vma->anon_vma;
964
965 VM_BUG_ON(!PageLocked(page));
966 VM_BUG_ON(!anon_vma);
967 VM_BUG_ON(page->index != linear_page_index(vma, address));
968
969 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
970 page->mapping = (struct address_space *) anon_vma;
971}
972
973/**
974 * __page_set_anon_rmap - set up new anonymous rmap
975 * @page: Page to add to rmap
976 * @vma: VM area to add page to.
977 * @address: User virtual address of the mapping
978 * @exclusive: the page is exclusively owned by the current process
979 */
980static void __page_set_anon_rmap(struct page *page,
981 struct vm_area_struct *vma, unsigned long address, int exclusive)
982{
983 struct anon_vma *anon_vma = vma->anon_vma;
984
985 BUG_ON(!anon_vma);
986
987 if (PageAnon(page))
988 return;
989
990 /*
991 * If the page isn't exclusively mapped into this vma,
992 * we must use the _oldest_ possible anon_vma for the
993 * page mapping!
994 */
995 if (!exclusive)
996 anon_vma = anon_vma->root;
997
998 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
999 page->mapping = (struct address_space *) anon_vma;
1000 page->index = linear_page_index(vma, address);
1001}
1002
1003/**
1004 * __page_check_anon_rmap - sanity check anonymous rmap addition
1005 * @page: the page to add the mapping to
1006 * @vma: the vm area in which the mapping is added
1007 * @address: the user virtual address mapped
1008 */
1009static void __page_check_anon_rmap(struct page *page,
1010 struct vm_area_struct *vma, unsigned long address)
1011{
1012#ifdef CONFIG_DEBUG_VM
1013 /*
1014 * The page's anon-rmap details (mapping and index) are guaranteed to
1015 * be set up correctly at this point.
1016 *
1017 * We have exclusion against page_add_anon_rmap because the caller
1018 * always holds the page locked, except if called from page_dup_rmap,
1019 * in which case the page is already known to be setup.
1020 *
1021 * We have exclusion against page_add_new_anon_rmap because those pages
1022 * are initially only visible via the pagetables, and the pte is locked
1023 * over the call to page_add_new_anon_rmap.
1024 */
1025 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1026 BUG_ON(page->index != linear_page_index(vma, address));
1027#endif
1028}
1029
1030/**
1031 * page_add_anon_rmap - add pte mapping to an anonymous page
1032 * @page: the page to add the mapping to
1033 * @vma: the vm area in which the mapping is added
1034 * @address: the user virtual address mapped
1035 *
1036 * The caller needs to hold the pte lock, and the page must be locked in
1037 * the anon_vma case: to serialize mapping,index checking after setting,
1038 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1039 * (but PageKsm is never downgraded to PageAnon).
1040 */
1041void page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address)
1043{
1044 do_page_add_anon_rmap(page, vma, address, 0);
1045}
1046
1047/*
1048 * Special version of the above for do_swap_page, which often runs
1049 * into pages that are exclusively owned by the current process.
1050 * Everybody else should continue to use page_add_anon_rmap above.
1051 */
1052void do_page_add_anon_rmap(struct page *page,
1053 struct vm_area_struct *vma, unsigned long address, int exclusive)
1054{
1055 int first = atomic_inc_and_test(&page->_mapcount);
1056 if (first) {
1057 if (!PageTransHuge(page))
1058 __inc_zone_page_state(page, NR_ANON_PAGES);
1059 else
1060 __inc_zone_page_state(page,
1061 NR_ANON_TRANSPARENT_HUGEPAGES);
1062 }
1063 if (unlikely(PageKsm(page)))
1064 return;
1065
1066 VM_BUG_ON(!PageLocked(page));
1067 /* address might be in next vma when migration races vma_adjust */
1068 if (first)
1069 __page_set_anon_rmap(page, vma, address, exclusive);
1070 else
1071 __page_check_anon_rmap(page, vma, address);
1072}
1073
1074/**
1075 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1076 * @page: the page to add the mapping to
1077 * @vma: the vm area in which the mapping is added
1078 * @address: the user virtual address mapped
1079 *
1080 * Same as page_add_anon_rmap but must only be called on *new* pages.
1081 * This means the inc-and-test can be bypassed.
1082 * Page does not have to be locked.
1083 */
1084void page_add_new_anon_rmap(struct page *page,
1085 struct vm_area_struct *vma, unsigned long address)
1086{
1087 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1088 SetPageSwapBacked(page);
1089 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1090 if (!PageTransHuge(page))
1091 __inc_zone_page_state(page, NR_ANON_PAGES);
1092 else
1093 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1094 __page_set_anon_rmap(page, vma, address, 1);
1095 if (page_evictable(page, vma))
1096 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1097 else
1098 add_page_to_unevictable_list(page);
1099}
1100
1101/**
1102 * page_add_file_rmap - add pte mapping to a file page
1103 * @page: the page to add the mapping to
1104 *
1105 * The caller needs to hold the pte lock.
1106 */
1107void page_add_file_rmap(struct page *page)
1108{
1109 if (atomic_inc_and_test(&page->_mapcount)) {
1110 __inc_zone_page_state(page, NR_FILE_MAPPED);
1111 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1112 }
1113}
1114
1115/**
1116 * page_remove_rmap - take down pte mapping from a page
1117 * @page: page to remove mapping from
1118 *
1119 * The caller needs to hold the pte lock.
1120 */
1121void page_remove_rmap(struct page *page)
1122{
1123 /* page still mapped by someone else? */
1124 if (!atomic_add_negative(-1, &page->_mapcount))
1125 return;
1126
1127 /*
1128 * Now that the last pte has gone, s390 must transfer dirty
1129 * flag from storage key to struct page. We can usually skip
1130 * this if the page is anon, so about to be freed; but perhaps
1131 * not if it's in swapcache - there might be another pte slot
1132 * containing the swap entry, but page not yet written to swap.
1133 */
1134 if ((!PageAnon(page) || PageSwapCache(page)) &&
1135 page_test_and_clear_dirty(page_to_pfn(page), 1))
1136 set_page_dirty(page);
1137 /*
1138 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1139 * and not charged by memcg for now.
1140 */
1141 if (unlikely(PageHuge(page)))
1142 return;
1143 if (PageAnon(page)) {
1144 mem_cgroup_uncharge_page(page);
1145 if (!PageTransHuge(page))
1146 __dec_zone_page_state(page, NR_ANON_PAGES);
1147 else
1148 __dec_zone_page_state(page,
1149 NR_ANON_TRANSPARENT_HUGEPAGES);
1150 } else {
1151 __dec_zone_page_state(page, NR_FILE_MAPPED);
1152 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1153 }
1154 /*
1155 * It would be tidy to reset the PageAnon mapping here,
1156 * but that might overwrite a racing page_add_anon_rmap
1157 * which increments mapcount after us but sets mapping
1158 * before us: so leave the reset to free_hot_cold_page,
1159 * and remember that it's only reliable while mapped.
1160 * Leaving it set also helps swapoff to reinstate ptes
1161 * faster for those pages still in swapcache.
1162 */
1163}
1164
1165/*
1166 * Subfunctions of try_to_unmap: try_to_unmap_one called
1167 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1168 */
1169int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1170 unsigned long address, enum ttu_flags flags)
1171{
1172 struct mm_struct *mm = vma->vm_mm;
1173 pte_t *pte;
1174 pte_t pteval;
1175 spinlock_t *ptl;
1176 int ret = SWAP_AGAIN;
1177
1178 pte = page_check_address(page, mm, address, &ptl, 0);
1179 if (!pte)
1180 goto out;
1181
1182 /*
1183 * If the page is mlock()d, we cannot swap it out.
1184 * If it's recently referenced (perhaps page_referenced
1185 * skipped over this mm) then we should reactivate it.
1186 */
1187 if (!(flags & TTU_IGNORE_MLOCK)) {
1188 if (vma->vm_flags & VM_LOCKED)
1189 goto out_mlock;
1190
1191 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1192 goto out_unmap;
1193 }
1194 if (!(flags & TTU_IGNORE_ACCESS)) {
1195 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1196 ret = SWAP_FAIL;
1197 goto out_unmap;
1198 }
1199 }
1200
1201 /* Nuke the page table entry. */
1202 flush_cache_page(vma, address, page_to_pfn(page));
1203 pteval = ptep_clear_flush_notify(vma, address, pte);
1204
1205 /* Move the dirty bit to the physical page now the pte is gone. */
1206 if (pte_dirty(pteval))
1207 set_page_dirty(page);
1208
1209 /* Update high watermark before we lower rss */
1210 update_hiwater_rss(mm);
1211
1212 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1213 if (PageAnon(page))
1214 dec_mm_counter(mm, MM_ANONPAGES);
1215 else
1216 dec_mm_counter(mm, MM_FILEPAGES);
1217 set_pte_at(mm, address, pte,
1218 swp_entry_to_pte(make_hwpoison_entry(page)));
1219 } else if (PageAnon(page)) {
1220 swp_entry_t entry = { .val = page_private(page) };
1221
1222 if (PageSwapCache(page)) {
1223 /*
1224 * Store the swap location in the pte.
1225 * See handle_pte_fault() ...
1226 */
1227 if (swap_duplicate(entry) < 0) {
1228 set_pte_at(mm, address, pte, pteval);
1229 ret = SWAP_FAIL;
1230 goto out_unmap;
1231 }
1232 if (list_empty(&mm->mmlist)) {
1233 spin_lock(&mmlist_lock);
1234 if (list_empty(&mm->mmlist))
1235 list_add(&mm->mmlist, &init_mm.mmlist);
1236 spin_unlock(&mmlist_lock);
1237 }
1238 dec_mm_counter(mm, MM_ANONPAGES);
1239 inc_mm_counter(mm, MM_SWAPENTS);
1240 } else if (PAGE_MIGRATION) {
1241 /*
1242 * Store the pfn of the page in a special migration
1243 * pte. do_swap_page() will wait until the migration
1244 * pte is removed and then restart fault handling.
1245 */
1246 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1247 entry = make_migration_entry(page, pte_write(pteval));
1248 }
1249 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1250 BUG_ON(pte_file(*pte));
1251 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1252 /* Establish migration entry for a file page */
1253 swp_entry_t entry;
1254 entry = make_migration_entry(page, pte_write(pteval));
1255 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256 } else
1257 dec_mm_counter(mm, MM_FILEPAGES);
1258
1259 page_remove_rmap(page);
1260 page_cache_release(page);
1261
1262out_unmap:
1263 pte_unmap_unlock(pte, ptl);
1264out:
1265 return ret;
1266
1267out_mlock:
1268 pte_unmap_unlock(pte, ptl);
1269
1270
1271 /*
1272 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1273 * unstable result and race. Plus, We can't wait here because
1274 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1275 * if trylock failed, the page remain in evictable lru and later
1276 * vmscan could retry to move the page to unevictable lru if the
1277 * page is actually mlocked.
1278 */
1279 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1280 if (vma->vm_flags & VM_LOCKED) {
1281 mlock_vma_page(page);
1282 ret = SWAP_MLOCK;
1283 }
1284 up_read(&vma->vm_mm->mmap_sem);
1285 }
1286 return ret;
1287}
1288
1289/*
1290 * objrmap doesn't work for nonlinear VMAs because the assumption that
1291 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1292 * Consequently, given a particular page and its ->index, we cannot locate the
1293 * ptes which are mapping that page without an exhaustive linear search.
1294 *
1295 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1296 * maps the file to which the target page belongs. The ->vm_private_data field
1297 * holds the current cursor into that scan. Successive searches will circulate
1298 * around the vma's virtual address space.
1299 *
1300 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1301 * more scanning pressure is placed against them as well. Eventually pages
1302 * will become fully unmapped and are eligible for eviction.
1303 *
1304 * For very sparsely populated VMAs this is a little inefficient - chances are
1305 * there there won't be many ptes located within the scan cluster. In this case
1306 * maybe we could scan further - to the end of the pte page, perhaps.
1307 *
1308 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1309 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1310 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1311 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1312 */
1313#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1314#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1315
1316static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1317 struct vm_area_struct *vma, struct page *check_page)
1318{
1319 struct mm_struct *mm = vma->vm_mm;
1320 pgd_t *pgd;
1321 pud_t *pud;
1322 pmd_t *pmd;
1323 pte_t *pte;
1324 pte_t pteval;
1325 spinlock_t *ptl;
1326 struct page *page;
1327 unsigned long address;
1328 unsigned long end;
1329 int ret = SWAP_AGAIN;
1330 int locked_vma = 0;
1331
1332 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1333 end = address + CLUSTER_SIZE;
1334 if (address < vma->vm_start)
1335 address = vma->vm_start;
1336 if (end > vma->vm_end)
1337 end = vma->vm_end;
1338
1339 pgd = pgd_offset(mm, address);
1340 if (!pgd_present(*pgd))
1341 return ret;
1342
1343 pud = pud_offset(pgd, address);
1344 if (!pud_present(*pud))
1345 return ret;
1346
1347 pmd = pmd_offset(pud, address);
1348 if (!pmd_present(*pmd))
1349 return ret;
1350
1351 /*
1352 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1353 * keep the sem while scanning the cluster for mlocking pages.
1354 */
1355 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1356 locked_vma = (vma->vm_flags & VM_LOCKED);
1357 if (!locked_vma)
1358 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1359 }
1360
1361 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1362
1363 /* Update high watermark before we lower rss */
1364 update_hiwater_rss(mm);
1365
1366 for (; address < end; pte++, address += PAGE_SIZE) {
1367 if (!pte_present(*pte))
1368 continue;
1369 page = vm_normal_page(vma, address, *pte);
1370 BUG_ON(!page || PageAnon(page));
1371
1372 if (locked_vma) {
1373 mlock_vma_page(page); /* no-op if already mlocked */
1374 if (page == check_page)
1375 ret = SWAP_MLOCK;
1376 continue; /* don't unmap */
1377 }
1378
1379 if (ptep_clear_flush_young_notify(vma, address, pte))
1380 continue;
1381
1382 /* Nuke the page table entry. */
1383 flush_cache_page(vma, address, pte_pfn(*pte));
1384 pteval = ptep_clear_flush_notify(vma, address, pte);
1385
1386 /* If nonlinear, store the file page offset in the pte. */
1387 if (page->index != linear_page_index(vma, address))
1388 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1389
1390 /* Move the dirty bit to the physical page now the pte is gone. */
1391 if (pte_dirty(pteval))
1392 set_page_dirty(page);
1393
1394 page_remove_rmap(page);
1395 page_cache_release(page);
1396 dec_mm_counter(mm, MM_FILEPAGES);
1397 (*mapcount)--;
1398 }
1399 pte_unmap_unlock(pte - 1, ptl);
1400 if (locked_vma)
1401 up_read(&vma->vm_mm->mmap_sem);
1402 return ret;
1403}
1404
1405bool is_vma_temporary_stack(struct vm_area_struct *vma)
1406{
1407 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1408
1409 if (!maybe_stack)
1410 return false;
1411
1412 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1413 VM_STACK_INCOMPLETE_SETUP)
1414 return true;
1415
1416 return false;
1417}
1418
1419/**
1420 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1421 * rmap method
1422 * @page: the page to unmap/unlock
1423 * @flags: action and flags
1424 *
1425 * Find all the mappings of a page using the mapping pointer and the vma chains
1426 * contained in the anon_vma struct it points to.
1427 *
1428 * This function is only called from try_to_unmap/try_to_munlock for
1429 * anonymous pages.
1430 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1431 * where the page was found will be held for write. So, we won't recheck
1432 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1433 * 'LOCKED.
1434 */
1435static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1436{
1437 struct anon_vma *anon_vma;
1438 struct anon_vma_chain *avc;
1439 int ret = SWAP_AGAIN;
1440
1441 anon_vma = page_lock_anon_vma(page);
1442 if (!anon_vma)
1443 return ret;
1444
1445 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1446 struct vm_area_struct *vma = avc->vma;
1447 unsigned long address;
1448
1449 /*
1450 * During exec, a temporary VMA is setup and later moved.
1451 * The VMA is moved under the anon_vma lock but not the
1452 * page tables leading to a race where migration cannot
1453 * find the migration ptes. Rather than increasing the
1454 * locking requirements of exec(), migration skips
1455 * temporary VMAs until after exec() completes.
1456 */
1457 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1458 is_vma_temporary_stack(vma))
1459 continue;
1460
1461 address = vma_address(page, vma);
1462 if (address == -EFAULT)
1463 continue;
1464 ret = try_to_unmap_one(page, vma, address, flags);
1465 if (ret != SWAP_AGAIN || !page_mapped(page))
1466 break;
1467 }
1468
1469 page_unlock_anon_vma(anon_vma);
1470 return ret;
1471}
1472
1473/**
1474 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1475 * @page: the page to unmap/unlock
1476 * @flags: action and flags
1477 *
1478 * Find all the mappings of a page using the mapping pointer and the vma chains
1479 * contained in the address_space struct it points to.
1480 *
1481 * This function is only called from try_to_unmap/try_to_munlock for
1482 * object-based pages.
1483 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1484 * where the page was found will be held for write. So, we won't recheck
1485 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1486 * 'LOCKED.
1487 */
1488static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1489{
1490 struct address_space *mapping = page->mapping;
1491 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1492 struct vm_area_struct *vma;
1493 struct prio_tree_iter iter;
1494 int ret = SWAP_AGAIN;
1495 unsigned long cursor;
1496 unsigned long max_nl_cursor = 0;
1497 unsigned long max_nl_size = 0;
1498 unsigned int mapcount;
1499
1500 mutex_lock(&mapping->i_mmap_mutex);
1501 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1502 unsigned long address = vma_address(page, vma);
1503 if (address == -EFAULT)
1504 continue;
1505 ret = try_to_unmap_one(page, vma, address, flags);
1506 if (ret != SWAP_AGAIN || !page_mapped(page))
1507 goto out;
1508 }
1509
1510 if (list_empty(&mapping->i_mmap_nonlinear))
1511 goto out;
1512
1513 /*
1514 * We don't bother to try to find the munlocked page in nonlinears.
1515 * It's costly. Instead, later, page reclaim logic may call
1516 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1517 */
1518 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1519 goto out;
1520
1521 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1522 shared.vm_set.list) {
1523 cursor = (unsigned long) vma->vm_private_data;
1524 if (cursor > max_nl_cursor)
1525 max_nl_cursor = cursor;
1526 cursor = vma->vm_end - vma->vm_start;
1527 if (cursor > max_nl_size)
1528 max_nl_size = cursor;
1529 }
1530
1531 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1532 ret = SWAP_FAIL;
1533 goto out;
1534 }
1535
1536 /*
1537 * We don't try to search for this page in the nonlinear vmas,
1538 * and page_referenced wouldn't have found it anyway. Instead
1539 * just walk the nonlinear vmas trying to age and unmap some.
1540 * The mapcount of the page we came in with is irrelevant,
1541 * but even so use it as a guide to how hard we should try?
1542 */
1543 mapcount = page_mapcount(page);
1544 if (!mapcount)
1545 goto out;
1546 cond_resched();
1547
1548 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1549 if (max_nl_cursor == 0)
1550 max_nl_cursor = CLUSTER_SIZE;
1551
1552 do {
1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554 shared.vm_set.list) {
1555 cursor = (unsigned long) vma->vm_private_data;
1556 while ( cursor < max_nl_cursor &&
1557 cursor < vma->vm_end - vma->vm_start) {
1558 if (try_to_unmap_cluster(cursor, &mapcount,
1559 vma, page) == SWAP_MLOCK)
1560 ret = SWAP_MLOCK;
1561 cursor += CLUSTER_SIZE;
1562 vma->vm_private_data = (void *) cursor;
1563 if ((int)mapcount <= 0)
1564 goto out;
1565 }
1566 vma->vm_private_data = (void *) max_nl_cursor;
1567 }
1568 cond_resched();
1569 max_nl_cursor += CLUSTER_SIZE;
1570 } while (max_nl_cursor <= max_nl_size);
1571
1572 /*
1573 * Don't loop forever (perhaps all the remaining pages are
1574 * in locked vmas). Reset cursor on all unreserved nonlinear
1575 * vmas, now forgetting on which ones it had fallen behind.
1576 */
1577 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1578 vma->vm_private_data = NULL;
1579out:
1580 mutex_unlock(&mapping->i_mmap_mutex);
1581 return ret;
1582}
1583
1584/**
1585 * try_to_unmap - try to remove all page table mappings to a page
1586 * @page: the page to get unmapped
1587 * @flags: action and flags
1588 *
1589 * Tries to remove all the page table entries which are mapping this
1590 * page, used in the pageout path. Caller must hold the page lock.
1591 * Return values are:
1592 *
1593 * SWAP_SUCCESS - we succeeded in removing all mappings
1594 * SWAP_AGAIN - we missed a mapping, try again later
1595 * SWAP_FAIL - the page is unswappable
1596 * SWAP_MLOCK - page is mlocked.
1597 */
1598int try_to_unmap(struct page *page, enum ttu_flags flags)
1599{
1600 int ret;
1601
1602 BUG_ON(!PageLocked(page));
1603 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1604
1605 if (unlikely(PageKsm(page)))
1606 ret = try_to_unmap_ksm(page, flags);
1607 else if (PageAnon(page))
1608 ret = try_to_unmap_anon(page, flags);
1609 else
1610 ret = try_to_unmap_file(page, flags);
1611 if (ret != SWAP_MLOCK && !page_mapped(page))
1612 ret = SWAP_SUCCESS;
1613 return ret;
1614}
1615
1616/**
1617 * try_to_munlock - try to munlock a page
1618 * @page: the page to be munlocked
1619 *
1620 * Called from munlock code. Checks all of the VMAs mapping the page
1621 * to make sure nobody else has this page mlocked. The page will be
1622 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623 *
1624 * Return values are:
1625 *
1626 * SWAP_AGAIN - no vma is holding page mlocked, or,
1627 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1628 * SWAP_FAIL - page cannot be located at present
1629 * SWAP_MLOCK - page is now mlocked.
1630 */
1631int try_to_munlock(struct page *page)
1632{
1633 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1634
1635 if (unlikely(PageKsm(page)))
1636 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1637 else if (PageAnon(page))
1638 return try_to_unmap_anon(page, TTU_MUNLOCK);
1639 else
1640 return try_to_unmap_file(page, TTU_MUNLOCK);
1641}
1642
1643void __put_anon_vma(struct anon_vma *anon_vma)
1644{
1645 struct anon_vma *root = anon_vma->root;
1646
1647 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1648 anon_vma_free(root);
1649
1650 anon_vma_free(anon_vma);
1651}
1652
1653#ifdef CONFIG_MIGRATION
1654/*
1655 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1656 * Called by migrate.c to remove migration ptes, but might be used more later.
1657 */
1658static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1659 struct vm_area_struct *, unsigned long, void *), void *arg)
1660{
1661 struct anon_vma *anon_vma;
1662 struct anon_vma_chain *avc;
1663 int ret = SWAP_AGAIN;
1664
1665 /*
1666 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1667 * because that depends on page_mapped(); but not all its usages
1668 * are holding mmap_sem. Users without mmap_sem are required to
1669 * take a reference count to prevent the anon_vma disappearing
1670 */
1671 anon_vma = page_anon_vma(page);
1672 if (!anon_vma)
1673 return ret;
1674 anon_vma_lock(anon_vma);
1675 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1676 struct vm_area_struct *vma = avc->vma;
1677 unsigned long address = vma_address(page, vma);
1678 if (address == -EFAULT)
1679 continue;
1680 ret = rmap_one(page, vma, address, arg);
1681 if (ret != SWAP_AGAIN)
1682 break;
1683 }
1684 anon_vma_unlock(anon_vma);
1685 return ret;
1686}
1687
1688static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1689 struct vm_area_struct *, unsigned long, void *), void *arg)
1690{
1691 struct address_space *mapping = page->mapping;
1692 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1693 struct vm_area_struct *vma;
1694 struct prio_tree_iter iter;
1695 int ret = SWAP_AGAIN;
1696
1697 if (!mapping)
1698 return ret;
1699 mutex_lock(&mapping->i_mmap_mutex);
1700 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1701 unsigned long address = vma_address(page, vma);
1702 if (address == -EFAULT)
1703 continue;
1704 ret = rmap_one(page, vma, address, arg);
1705 if (ret != SWAP_AGAIN)
1706 break;
1707 }
1708 /*
1709 * No nonlinear handling: being always shared, nonlinear vmas
1710 * never contain migration ptes. Decide what to do about this
1711 * limitation to linear when we need rmap_walk() on nonlinear.
1712 */
1713 mutex_unlock(&mapping->i_mmap_mutex);
1714 return ret;
1715}
1716
1717int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1718 struct vm_area_struct *, unsigned long, void *), void *arg)
1719{
1720 VM_BUG_ON(!PageLocked(page));
1721
1722 if (unlikely(PageKsm(page)))
1723 return rmap_walk_ksm(page, rmap_one, arg);
1724 else if (PageAnon(page))
1725 return rmap_walk_anon(page, rmap_one, arg);
1726 else
1727 return rmap_walk_file(page, rmap_one, arg);
1728}
1729#endif /* CONFIG_MIGRATION */
1730
1731#ifdef CONFIG_HUGETLB_PAGE
1732/*
1733 * The following three functions are for anonymous (private mapped) hugepages.
1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735 * and no lru code, because we handle hugepages differently from common pages.
1736 */
1737static void __hugepage_set_anon_rmap(struct page *page,
1738 struct vm_area_struct *vma, unsigned long address, int exclusive)
1739{
1740 struct anon_vma *anon_vma = vma->anon_vma;
1741
1742 BUG_ON(!anon_vma);
1743
1744 if (PageAnon(page))
1745 return;
1746 if (!exclusive)
1747 anon_vma = anon_vma->root;
1748
1749 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1750 page->mapping = (struct address_space *) anon_vma;
1751 page->index = linear_page_index(vma, address);
1752}
1753
1754void hugepage_add_anon_rmap(struct page *page,
1755 struct vm_area_struct *vma, unsigned long address)
1756{
1757 struct anon_vma *anon_vma = vma->anon_vma;
1758 int first;
1759
1760 BUG_ON(!PageLocked(page));
1761 BUG_ON(!anon_vma);
1762 /* address might be in next vma when migration races vma_adjust */
1763 first = atomic_inc_and_test(&page->_mapcount);
1764 if (first)
1765 __hugepage_set_anon_rmap(page, vma, address, 0);
1766}
1767
1768void hugepage_add_new_anon_rmap(struct page *page,
1769 struct vm_area_struct *vma, unsigned long address)
1770{
1771 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1772 atomic_set(&page->_mapcount, 0);
1773 __hugepage_set_anon_rmap(page, vma, address, 1);
1774}
1775#endif /* CONFIG_HUGETLB_PAGE */
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83}
84
85static inline void anon_vma_free(struct anon_vma *anon_vma)
86{
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 anon_vma_lock_write(anon_vma);
108 anon_vma_unlock_write(anon_vma);
109 }
110
111 kmem_cache_free(anon_vma_cachep, anon_vma);
112}
113
114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115{
116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117}
118
119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120{
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122}
123
124static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
127{
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132}
133
134/**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
161int anon_vma_prepare(struct vm_area_struct *vma)
162{
163 struct anon_vma *anon_vma = vma->anon_vma;
164 struct anon_vma_chain *avc;
165
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
169 struct anon_vma *allocated;
170
171 avc = anon_vma_chain_alloc(GFP_KERNEL);
172 if (!avc)
173 goto out_enomem;
174
175 anon_vma = find_mergeable_anon_vma(vma);
176 allocated = NULL;
177 if (!anon_vma) {
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
180 goto out_enomem_free_avc;
181 allocated = anon_vma;
182 }
183
184 anon_vma_lock_write(anon_vma);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
189 anon_vma_chain_link(vma, avc, anon_vma);
190 allocated = NULL;
191 avc = NULL;
192 }
193 spin_unlock(&mm->page_table_lock);
194 anon_vma_unlock_write(anon_vma);
195
196 if (unlikely(allocated))
197 put_anon_vma(allocated);
198 if (unlikely(avc))
199 anon_vma_chain_free(avc);
200 }
201 return 0;
202
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
207}
208
209/*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218{
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
222 up_write(&root->rwsem);
223 root = new_root;
224 down_write(&root->rwsem);
225 }
226 return root;
227}
228
229static inline void unlock_anon_vma_root(struct anon_vma *root)
230{
231 if (root)
232 up_write(&root->rwsem);
233}
234
235/*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240{
241 struct anon_vma_chain *avc, *pavc;
242 struct anon_vma *root = NULL;
243
244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 struct anon_vma *anon_vma;
246
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
254 }
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
258 }
259 unlock_anon_vma_root(root);
260 return 0;
261
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
265}
266
267/*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273{
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
276
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
280
281 /*
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
284 */
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
287
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto out_error_free_anon_vma;
295
296 /*
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
299 */
300 anon_vma->root = pvma->anon_vma->root;
301 /*
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
305 */
306 get_anon_vma(anon_vma->root);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
309 anon_vma_lock_write(anon_vma);
310 anon_vma_chain_link(vma, avc, anon_vma);
311 anon_vma_unlock_write(anon_vma);
312
313 return 0;
314
315 out_error_free_anon_vma:
316 put_anon_vma(anon_vma);
317 out_error:
318 unlink_anon_vmas(vma);
319 return -ENOMEM;
320}
321
322void unlink_anon_vmas(struct vm_area_struct *vma)
323{
324 struct anon_vma_chain *avc, *next;
325 struct anon_vma *root = NULL;
326
327 /*
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 */
331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 struct anon_vma *anon_vma = avc->anon_vma;
333
334 root = lock_anon_vma_root(root, anon_vma);
335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336
337 /*
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
340 */
341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 continue;
343
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
346 }
347 unlock_anon_vma_root(root);
348
349 /*
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
353 */
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
356
357 put_anon_vma(anon_vma);
358
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
361 }
362}
363
364static void anon_vma_ctor(void *data)
365{
366 struct anon_vma *anon_vma = data;
367
368 init_rwsem(&anon_vma->rwsem);
369 atomic_set(&anon_vma->refcount, 0);
370 anon_vma->rb_root = RB_ROOT;
371}
372
373void __init anon_vma_init(void)
374{
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378}
379
380/*
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
402 */
403struct anon_vma *page_get_anon_vma(struct page *page)
404{
405 struct anon_vma *anon_vma = NULL;
406 unsigned long anon_mapping;
407
408 rcu_read_lock();
409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 goto out;
412 if (!page_mapped(page))
413 goto out;
414
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
419 }
420
421 /*
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
427 */
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
431 }
432out:
433 rcu_read_unlock();
434
435 return anon_vma;
436}
437
438/*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
445struct anon_vma *page_lock_anon_vma_read(struct page *page)
446{
447 struct anon_vma *anon_vma = NULL;
448 struct anon_vma *root_anon_vma;
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 if (down_read_trylock(&root_anon_vma->rwsem)) {
461 /*
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
465 */
466 if (!page_mapped(page)) {
467 up_read(&root_anon_vma->rwsem);
468 anon_vma = NULL;
469 }
470 goto out;
471 }
472
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
483 }
484
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
487 anon_vma_lock_read(anon_vma);
488
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
490 /*
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
494 */
495 anon_vma_unlock_read(anon_vma);
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
498 }
499
500 return anon_vma;
501
502out:
503 rcu_read_unlock();
504 return anon_vma;
505}
506
507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508{
509 anon_vma_unlock_read(anon_vma);
510}
511
512/*
513 * At what user virtual address is page expected in @vma?
514 */
515static inline unsigned long
516__vma_address(struct page *page, struct vm_area_struct *vma)
517{
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
522
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
534 return address;
535}
536
537/*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
563}
564
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
570
571 pgd = pgd_offset(mm, address);
572 if (!pgd_present(*pgd))
573 goto out;
574
575 pud = pud_offset(pgd, address);
576 if (!pud_present(*pud))
577 goto out;
578
579 pmd = pmd_offset(pud, address);
580 if (!pmd_present(*pmd))
581 pmd = NULL;
582out:
583 return pmd;
584}
585
586/*
587 * Check that @page is mapped at @address into @mm.
588 *
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
592 *
593 * On success returns with pte mapped and locked.
594 */
595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 unsigned long address, spinlock_t **ptlp, int sync)
597{
598 pmd_t *pmd;
599 pte_t *pte;
600 spinlock_t *ptl;
601
602 if (unlikely(PageHuge(page))) {
603 /* when pud is not present, pte will be NULL */
604 pte = huge_pte_offset(mm, address);
605 if (!pte)
606 return NULL;
607
608 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
609 goto check;
610 }
611
612 pmd = mm_find_pmd(mm, address);
613 if (!pmd)
614 return NULL;
615
616 if (pmd_trans_huge(*pmd))
617 return NULL;
618
619 pte = pte_offset_map(pmd, address);
620 /* Make a quick check before getting the lock */
621 if (!sync && !pte_present(*pte)) {
622 pte_unmap(pte);
623 return NULL;
624 }
625
626 ptl = pte_lockptr(mm, pmd);
627check:
628 spin_lock(ptl);
629 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
630 *ptlp = ptl;
631 return pte;
632 }
633 pte_unmap_unlock(pte, ptl);
634 return NULL;
635}
636
637/**
638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
639 * @page: the page to test
640 * @vma: the VMA to test
641 *
642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
643 * if the page is not mapped into the page tables of this VMA. Only
644 * valid for normal file or anonymous VMAs.
645 */
646int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
647{
648 unsigned long address;
649 pte_t *pte;
650 spinlock_t *ptl;
651
652 address = __vma_address(page, vma);
653 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
654 return 0;
655 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
656 if (!pte) /* the page is not in this mm */
657 return 0;
658 pte_unmap_unlock(pte, ptl);
659
660 return 1;
661}
662
663struct page_referenced_arg {
664 int mapcount;
665 int referenced;
666 unsigned long vm_flags;
667 struct mem_cgroup *memcg;
668};
669/*
670 * arg: page_referenced_arg will be passed
671 */
672int page_referenced_one(struct page *page, struct vm_area_struct *vma,
673 unsigned long address, void *arg)
674{
675 struct mm_struct *mm = vma->vm_mm;
676 spinlock_t *ptl;
677 int referenced = 0;
678 struct page_referenced_arg *pra = arg;
679
680 if (unlikely(PageTransHuge(page))) {
681 pmd_t *pmd;
682
683 /*
684 * rmap might return false positives; we must filter
685 * these out using page_check_address_pmd().
686 */
687 pmd = page_check_address_pmd(page, mm, address,
688 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
689 if (!pmd)
690 return SWAP_AGAIN;
691
692 if (vma->vm_flags & VM_LOCKED) {
693 spin_unlock(ptl);
694 pra->vm_flags |= VM_LOCKED;
695 return SWAP_FAIL; /* To break the loop */
696 }
697
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
700 referenced++;
701 spin_unlock(ptl);
702 } else {
703 pte_t *pte;
704
705 /*
706 * rmap might return false positives; we must filter
707 * these out using page_check_address().
708 */
709 pte = page_check_address(page, mm, address, &ptl, 0);
710 if (!pte)
711 return SWAP_AGAIN;
712
713 if (vma->vm_flags & VM_LOCKED) {
714 pte_unmap_unlock(pte, ptl);
715 pra->vm_flags |= VM_LOCKED;
716 return SWAP_FAIL; /* To break the loop */
717 }
718
719 if (ptep_clear_flush_young_notify(vma, address, pte)) {
720 /*
721 * Don't treat a reference through a sequentially read
722 * mapping as such. If the page has been used in
723 * another mapping, we will catch it; if this other
724 * mapping is already gone, the unmap path will have
725 * set PG_referenced or activated the page.
726 */
727 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
728 referenced++;
729 }
730 pte_unmap_unlock(pte, ptl);
731 }
732
733 if (referenced) {
734 pra->referenced++;
735 pra->vm_flags |= vma->vm_flags;
736 }
737
738 pra->mapcount--;
739 if (!pra->mapcount)
740 return SWAP_SUCCESS; /* To break the loop */
741
742 return SWAP_AGAIN;
743}
744
745static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
746{
747 struct page_referenced_arg *pra = arg;
748 struct mem_cgroup *memcg = pra->memcg;
749
750 if (!mm_match_cgroup(vma->vm_mm, memcg))
751 return true;
752
753 return false;
754}
755
756/**
757 * page_referenced - test if the page was referenced
758 * @page: the page to test
759 * @is_locked: caller holds lock on the page
760 * @memcg: target memory cgroup
761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
762 *
763 * Quick test_and_clear_referenced for all mappings to a page,
764 * returns the number of ptes which referenced the page.
765 */
766int page_referenced(struct page *page,
767 int is_locked,
768 struct mem_cgroup *memcg,
769 unsigned long *vm_flags)
770{
771 int ret;
772 int we_locked = 0;
773 struct page_referenced_arg pra = {
774 .mapcount = page_mapcount(page),
775 .memcg = memcg,
776 };
777 struct rmap_walk_control rwc = {
778 .rmap_one = page_referenced_one,
779 .arg = (void *)&pra,
780 .anon_lock = page_lock_anon_vma_read,
781 };
782
783 *vm_flags = 0;
784 if (!page_mapped(page))
785 return 0;
786
787 if (!page_rmapping(page))
788 return 0;
789
790 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
791 we_locked = trylock_page(page);
792 if (!we_locked)
793 return 1;
794 }
795
796 /*
797 * If we are reclaiming on behalf of a cgroup, skip
798 * counting on behalf of references from different
799 * cgroups
800 */
801 if (memcg) {
802 rwc.invalid_vma = invalid_page_referenced_vma;
803 }
804
805 ret = rmap_walk(page, &rwc);
806 *vm_flags = pra.vm_flags;
807
808 if (we_locked)
809 unlock_page(page);
810
811 return pra.referenced;
812}
813
814static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
815 unsigned long address, void *arg)
816{
817 struct mm_struct *mm = vma->vm_mm;
818 pte_t *pte;
819 spinlock_t *ptl;
820 int ret = 0;
821 int *cleaned = arg;
822
823 pte = page_check_address(page, mm, address, &ptl, 1);
824 if (!pte)
825 goto out;
826
827 if (pte_dirty(*pte) || pte_write(*pte)) {
828 pte_t entry;
829
830 flush_cache_page(vma, address, pte_pfn(*pte));
831 entry = ptep_clear_flush(vma, address, pte);
832 entry = pte_wrprotect(entry);
833 entry = pte_mkclean(entry);
834 set_pte_at(mm, address, pte, entry);
835 ret = 1;
836 }
837
838 pte_unmap_unlock(pte, ptl);
839
840 if (ret) {
841 mmu_notifier_invalidate_page(mm, address);
842 (*cleaned)++;
843 }
844out:
845 return SWAP_AGAIN;
846}
847
848static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
849{
850 if (vma->vm_flags & VM_SHARED)
851 return false;
852
853 return true;
854}
855
856int page_mkclean(struct page *page)
857{
858 int cleaned = 0;
859 struct address_space *mapping;
860 struct rmap_walk_control rwc = {
861 .arg = (void *)&cleaned,
862 .rmap_one = page_mkclean_one,
863 .invalid_vma = invalid_mkclean_vma,
864 };
865
866 BUG_ON(!PageLocked(page));
867
868 if (!page_mapped(page))
869 return 0;
870
871 mapping = page_mapping(page);
872 if (!mapping)
873 return 0;
874
875 rmap_walk(page, &rwc);
876
877 return cleaned;
878}
879EXPORT_SYMBOL_GPL(page_mkclean);
880
881/**
882 * page_move_anon_rmap - move a page to our anon_vma
883 * @page: the page to move to our anon_vma
884 * @vma: the vma the page belongs to
885 * @address: the user virtual address mapped
886 *
887 * When a page belongs exclusively to one process after a COW event,
888 * that page can be moved into the anon_vma that belongs to just that
889 * process, so the rmap code will not search the parent or sibling
890 * processes.
891 */
892void page_move_anon_rmap(struct page *page,
893 struct vm_area_struct *vma, unsigned long address)
894{
895 struct anon_vma *anon_vma = vma->anon_vma;
896
897 VM_BUG_ON_PAGE(!PageLocked(page), page);
898 VM_BUG_ON(!anon_vma);
899 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
900
901 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
902 page->mapping = (struct address_space *) anon_vma;
903}
904
905/**
906 * __page_set_anon_rmap - set up new anonymous rmap
907 * @page: Page to add to rmap
908 * @vma: VM area to add page to.
909 * @address: User virtual address of the mapping
910 * @exclusive: the page is exclusively owned by the current process
911 */
912static void __page_set_anon_rmap(struct page *page,
913 struct vm_area_struct *vma, unsigned long address, int exclusive)
914{
915 struct anon_vma *anon_vma = vma->anon_vma;
916
917 BUG_ON(!anon_vma);
918
919 if (PageAnon(page))
920 return;
921
922 /*
923 * If the page isn't exclusively mapped into this vma,
924 * we must use the _oldest_ possible anon_vma for the
925 * page mapping!
926 */
927 if (!exclusive)
928 anon_vma = anon_vma->root;
929
930 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
931 page->mapping = (struct address_space *) anon_vma;
932 page->index = linear_page_index(vma, address);
933}
934
935/**
936 * __page_check_anon_rmap - sanity check anonymous rmap addition
937 * @page: the page to add the mapping to
938 * @vma: the vm area in which the mapping is added
939 * @address: the user virtual address mapped
940 */
941static void __page_check_anon_rmap(struct page *page,
942 struct vm_area_struct *vma, unsigned long address)
943{
944#ifdef CONFIG_DEBUG_VM
945 /*
946 * The page's anon-rmap details (mapping and index) are guaranteed to
947 * be set up correctly at this point.
948 *
949 * We have exclusion against page_add_anon_rmap because the caller
950 * always holds the page locked, except if called from page_dup_rmap,
951 * in which case the page is already known to be setup.
952 *
953 * We have exclusion against page_add_new_anon_rmap because those pages
954 * are initially only visible via the pagetables, and the pte is locked
955 * over the call to page_add_new_anon_rmap.
956 */
957 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
958 BUG_ON(page->index != linear_page_index(vma, address));
959#endif
960}
961
962/**
963 * page_add_anon_rmap - add pte mapping to an anonymous page
964 * @page: the page to add the mapping to
965 * @vma: the vm area in which the mapping is added
966 * @address: the user virtual address mapped
967 *
968 * The caller needs to hold the pte lock, and the page must be locked in
969 * the anon_vma case: to serialize mapping,index checking after setting,
970 * and to ensure that PageAnon is not being upgraded racily to PageKsm
971 * (but PageKsm is never downgraded to PageAnon).
972 */
973void page_add_anon_rmap(struct page *page,
974 struct vm_area_struct *vma, unsigned long address)
975{
976 do_page_add_anon_rmap(page, vma, address, 0);
977}
978
979/*
980 * Special version of the above for do_swap_page, which often runs
981 * into pages that are exclusively owned by the current process.
982 * Everybody else should continue to use page_add_anon_rmap above.
983 */
984void do_page_add_anon_rmap(struct page *page,
985 struct vm_area_struct *vma, unsigned long address, int exclusive)
986{
987 int first = atomic_inc_and_test(&page->_mapcount);
988 if (first) {
989 if (PageTransHuge(page))
990 __inc_zone_page_state(page,
991 NR_ANON_TRANSPARENT_HUGEPAGES);
992 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
993 hpage_nr_pages(page));
994 }
995 if (unlikely(PageKsm(page)))
996 return;
997
998 VM_BUG_ON_PAGE(!PageLocked(page), page);
999 /* address might be in next vma when migration races vma_adjust */
1000 if (first)
1001 __page_set_anon_rmap(page, vma, address, exclusive);
1002 else
1003 __page_check_anon_rmap(page, vma, address);
1004}
1005
1006/**
1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008 * @page: the page to add the mapping to
1009 * @vma: the vm area in which the mapping is added
1010 * @address: the user virtual address mapped
1011 *
1012 * Same as page_add_anon_rmap but must only be called on *new* pages.
1013 * This means the inc-and-test can be bypassed.
1014 * Page does not have to be locked.
1015 */
1016void page_add_new_anon_rmap(struct page *page,
1017 struct vm_area_struct *vma, unsigned long address)
1018{
1019 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1020 SetPageSwapBacked(page);
1021 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1022 if (PageTransHuge(page))
1023 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1024 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1025 hpage_nr_pages(page));
1026 __page_set_anon_rmap(page, vma, address, 1);
1027 if (!mlocked_vma_newpage(vma, page)) {
1028 SetPageActive(page);
1029 lru_cache_add(page);
1030 } else
1031 add_page_to_unevictable_list(page);
1032}
1033
1034/**
1035 * page_add_file_rmap - add pte mapping to a file page
1036 * @page: the page to add the mapping to
1037 *
1038 * The caller needs to hold the pte lock.
1039 */
1040void page_add_file_rmap(struct page *page)
1041{
1042 bool locked;
1043 unsigned long flags;
1044
1045 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1046 if (atomic_inc_and_test(&page->_mapcount)) {
1047 __inc_zone_page_state(page, NR_FILE_MAPPED);
1048 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1049 }
1050 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1051}
1052
1053/**
1054 * page_remove_rmap - take down pte mapping from a page
1055 * @page: page to remove mapping from
1056 *
1057 * The caller needs to hold the pte lock.
1058 */
1059void page_remove_rmap(struct page *page)
1060{
1061 bool anon = PageAnon(page);
1062 bool locked;
1063 unsigned long flags;
1064
1065 /*
1066 * The anon case has no mem_cgroup page_stat to update; but may
1067 * uncharge_page() below, where the lock ordering can deadlock if
1068 * we hold the lock against page_stat move: so avoid it on anon.
1069 */
1070 if (!anon)
1071 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072
1073 /* page still mapped by someone else? */
1074 if (!atomic_add_negative(-1, &page->_mapcount))
1075 goto out;
1076
1077 /*
1078 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079 * and not charged by memcg for now.
1080 */
1081 if (unlikely(PageHuge(page)))
1082 goto out;
1083 if (anon) {
1084 mem_cgroup_uncharge_page(page);
1085 if (PageTransHuge(page))
1086 __dec_zone_page_state(page,
1087 NR_ANON_TRANSPARENT_HUGEPAGES);
1088 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089 -hpage_nr_pages(page));
1090 } else {
1091 __dec_zone_page_state(page, NR_FILE_MAPPED);
1092 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1093 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1094 }
1095 if (unlikely(PageMlocked(page)))
1096 clear_page_mlock(page);
1097 /*
1098 * It would be tidy to reset the PageAnon mapping here,
1099 * but that might overwrite a racing page_add_anon_rmap
1100 * which increments mapcount after us but sets mapping
1101 * before us: so leave the reset to free_hot_cold_page,
1102 * and remember that it's only reliable while mapped.
1103 * Leaving it set also helps swapoff to reinstate ptes
1104 * faster for those pages still in swapcache.
1105 */
1106 return;
1107out:
1108 if (!anon)
1109 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110}
1111
1112/*
1113 * @arg: enum ttu_flags will be passed to this argument
1114 */
1115int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1116 unsigned long address, void *arg)
1117{
1118 struct mm_struct *mm = vma->vm_mm;
1119 pte_t *pte;
1120 pte_t pteval;
1121 spinlock_t *ptl;
1122 int ret = SWAP_AGAIN;
1123 enum ttu_flags flags = (enum ttu_flags)arg;
1124
1125 pte = page_check_address(page, mm, address, &ptl, 0);
1126 if (!pte)
1127 goto out;
1128
1129 /*
1130 * If the page is mlock()d, we cannot swap it out.
1131 * If it's recently referenced (perhaps page_referenced
1132 * skipped over this mm) then we should reactivate it.
1133 */
1134 if (!(flags & TTU_IGNORE_MLOCK)) {
1135 if (vma->vm_flags & VM_LOCKED)
1136 goto out_mlock;
1137
1138 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1139 goto out_unmap;
1140 }
1141 if (!(flags & TTU_IGNORE_ACCESS)) {
1142 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1143 ret = SWAP_FAIL;
1144 goto out_unmap;
1145 }
1146 }
1147
1148 /* Nuke the page table entry. */
1149 flush_cache_page(vma, address, page_to_pfn(page));
1150 pteval = ptep_clear_flush(vma, address, pte);
1151
1152 /* Move the dirty bit to the physical page now the pte is gone. */
1153 if (pte_dirty(pteval))
1154 set_page_dirty(page);
1155
1156 /* Update high watermark before we lower rss */
1157 update_hiwater_rss(mm);
1158
1159 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1160 if (!PageHuge(page)) {
1161 if (PageAnon(page))
1162 dec_mm_counter(mm, MM_ANONPAGES);
1163 else
1164 dec_mm_counter(mm, MM_FILEPAGES);
1165 }
1166 set_pte_at(mm, address, pte,
1167 swp_entry_to_pte(make_hwpoison_entry(page)));
1168 } else if (pte_unused(pteval)) {
1169 /*
1170 * The guest indicated that the page content is of no
1171 * interest anymore. Simply discard the pte, vmscan
1172 * will take care of the rest.
1173 */
1174 if (PageAnon(page))
1175 dec_mm_counter(mm, MM_ANONPAGES);
1176 else
1177 dec_mm_counter(mm, MM_FILEPAGES);
1178 } else if (PageAnon(page)) {
1179 swp_entry_t entry = { .val = page_private(page) };
1180 pte_t swp_pte;
1181
1182 if (PageSwapCache(page)) {
1183 /*
1184 * Store the swap location in the pte.
1185 * See handle_pte_fault() ...
1186 */
1187 if (swap_duplicate(entry) < 0) {
1188 set_pte_at(mm, address, pte, pteval);
1189 ret = SWAP_FAIL;
1190 goto out_unmap;
1191 }
1192 if (list_empty(&mm->mmlist)) {
1193 spin_lock(&mmlist_lock);
1194 if (list_empty(&mm->mmlist))
1195 list_add(&mm->mmlist, &init_mm.mmlist);
1196 spin_unlock(&mmlist_lock);
1197 }
1198 dec_mm_counter(mm, MM_ANONPAGES);
1199 inc_mm_counter(mm, MM_SWAPENTS);
1200 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1201 /*
1202 * Store the pfn of the page in a special migration
1203 * pte. do_swap_page() will wait until the migration
1204 * pte is removed and then restart fault handling.
1205 */
1206 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1207 entry = make_migration_entry(page, pte_write(pteval));
1208 }
1209 swp_pte = swp_entry_to_pte(entry);
1210 if (pte_soft_dirty(pteval))
1211 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1212 set_pte_at(mm, address, pte, swp_pte);
1213 BUG_ON(pte_file(*pte));
1214 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1215 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1216 /* Establish migration entry for a file page */
1217 swp_entry_t entry;
1218 entry = make_migration_entry(page, pte_write(pteval));
1219 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1220 } else
1221 dec_mm_counter(mm, MM_FILEPAGES);
1222
1223 page_remove_rmap(page);
1224 page_cache_release(page);
1225
1226out_unmap:
1227 pte_unmap_unlock(pte, ptl);
1228 if (ret != SWAP_FAIL)
1229 mmu_notifier_invalidate_page(mm, address);
1230out:
1231 return ret;
1232
1233out_mlock:
1234 pte_unmap_unlock(pte, ptl);
1235
1236
1237 /*
1238 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1239 * unstable result and race. Plus, We can't wait here because
1240 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1241 * if trylock failed, the page remain in evictable lru and later
1242 * vmscan could retry to move the page to unevictable lru if the
1243 * page is actually mlocked.
1244 */
1245 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1246 if (vma->vm_flags & VM_LOCKED) {
1247 mlock_vma_page(page);
1248 ret = SWAP_MLOCK;
1249 }
1250 up_read(&vma->vm_mm->mmap_sem);
1251 }
1252 return ret;
1253}
1254
1255/*
1256 * objrmap doesn't work for nonlinear VMAs because the assumption that
1257 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1258 * Consequently, given a particular page and its ->index, we cannot locate the
1259 * ptes which are mapping that page without an exhaustive linear search.
1260 *
1261 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1262 * maps the file to which the target page belongs. The ->vm_private_data field
1263 * holds the current cursor into that scan. Successive searches will circulate
1264 * around the vma's virtual address space.
1265 *
1266 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1267 * more scanning pressure is placed against them as well. Eventually pages
1268 * will become fully unmapped and are eligible for eviction.
1269 *
1270 * For very sparsely populated VMAs this is a little inefficient - chances are
1271 * there there won't be many ptes located within the scan cluster. In this case
1272 * maybe we could scan further - to the end of the pte page, perhaps.
1273 *
1274 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1275 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1276 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1277 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1278 */
1279#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1280#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1281
1282static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1283 struct vm_area_struct *vma, struct page *check_page)
1284{
1285 struct mm_struct *mm = vma->vm_mm;
1286 pmd_t *pmd;
1287 pte_t *pte;
1288 pte_t pteval;
1289 spinlock_t *ptl;
1290 struct page *page;
1291 unsigned long address;
1292 unsigned long mmun_start; /* For mmu_notifiers */
1293 unsigned long mmun_end; /* For mmu_notifiers */
1294 unsigned long end;
1295 int ret = SWAP_AGAIN;
1296 int locked_vma = 0;
1297
1298 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1299 end = address + CLUSTER_SIZE;
1300 if (address < vma->vm_start)
1301 address = vma->vm_start;
1302 if (end > vma->vm_end)
1303 end = vma->vm_end;
1304
1305 pmd = mm_find_pmd(mm, address);
1306 if (!pmd)
1307 return ret;
1308
1309 mmun_start = address;
1310 mmun_end = end;
1311 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1312
1313 /*
1314 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1315 * keep the sem while scanning the cluster for mlocking pages.
1316 */
1317 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318 locked_vma = (vma->vm_flags & VM_LOCKED);
1319 if (!locked_vma)
1320 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1321 }
1322
1323 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1324
1325 /* Update high watermark before we lower rss */
1326 update_hiwater_rss(mm);
1327
1328 for (; address < end; pte++, address += PAGE_SIZE) {
1329 if (!pte_present(*pte))
1330 continue;
1331 page = vm_normal_page(vma, address, *pte);
1332 BUG_ON(!page || PageAnon(page));
1333
1334 if (locked_vma) {
1335 if (page == check_page) {
1336 /* we know we have check_page locked */
1337 mlock_vma_page(page);
1338 ret = SWAP_MLOCK;
1339 } else if (trylock_page(page)) {
1340 /*
1341 * If we can lock the page, perform mlock.
1342 * Otherwise leave the page alone, it will be
1343 * eventually encountered again later.
1344 */
1345 mlock_vma_page(page);
1346 unlock_page(page);
1347 }
1348 continue; /* don't unmap */
1349 }
1350
1351 if (ptep_clear_flush_young_notify(vma, address, pte))
1352 continue;
1353
1354 /* Nuke the page table entry. */
1355 flush_cache_page(vma, address, pte_pfn(*pte));
1356 pteval = ptep_clear_flush(vma, address, pte);
1357
1358 /* If nonlinear, store the file page offset in the pte. */
1359 if (page->index != linear_page_index(vma, address)) {
1360 pte_t ptfile = pgoff_to_pte(page->index);
1361 if (pte_soft_dirty(pteval))
1362 pte_file_mksoft_dirty(ptfile);
1363 set_pte_at(mm, address, pte, ptfile);
1364 }
1365
1366 /* Move the dirty bit to the physical page now the pte is gone. */
1367 if (pte_dirty(pteval))
1368 set_page_dirty(page);
1369
1370 page_remove_rmap(page);
1371 page_cache_release(page);
1372 dec_mm_counter(mm, MM_FILEPAGES);
1373 (*mapcount)--;
1374 }
1375 pte_unmap_unlock(pte - 1, ptl);
1376 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1377 if (locked_vma)
1378 up_read(&vma->vm_mm->mmap_sem);
1379 return ret;
1380}
1381
1382static int try_to_unmap_nonlinear(struct page *page,
1383 struct address_space *mapping, void *arg)
1384{
1385 struct vm_area_struct *vma;
1386 int ret = SWAP_AGAIN;
1387 unsigned long cursor;
1388 unsigned long max_nl_cursor = 0;
1389 unsigned long max_nl_size = 0;
1390 unsigned int mapcount;
1391
1392 list_for_each_entry(vma,
1393 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1394
1395 cursor = (unsigned long) vma->vm_private_data;
1396 if (cursor > max_nl_cursor)
1397 max_nl_cursor = cursor;
1398 cursor = vma->vm_end - vma->vm_start;
1399 if (cursor > max_nl_size)
1400 max_nl_size = cursor;
1401 }
1402
1403 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1404 return SWAP_FAIL;
1405 }
1406
1407 /*
1408 * We don't try to search for this page in the nonlinear vmas,
1409 * and page_referenced wouldn't have found it anyway. Instead
1410 * just walk the nonlinear vmas trying to age and unmap some.
1411 * The mapcount of the page we came in with is irrelevant,
1412 * but even so use it as a guide to how hard we should try?
1413 */
1414 mapcount = page_mapcount(page);
1415 if (!mapcount)
1416 return ret;
1417
1418 cond_resched();
1419
1420 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1421 if (max_nl_cursor == 0)
1422 max_nl_cursor = CLUSTER_SIZE;
1423
1424 do {
1425 list_for_each_entry(vma,
1426 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1427
1428 cursor = (unsigned long) vma->vm_private_data;
1429 while (cursor < max_nl_cursor &&
1430 cursor < vma->vm_end - vma->vm_start) {
1431 if (try_to_unmap_cluster(cursor, &mapcount,
1432 vma, page) == SWAP_MLOCK)
1433 ret = SWAP_MLOCK;
1434 cursor += CLUSTER_SIZE;
1435 vma->vm_private_data = (void *) cursor;
1436 if ((int)mapcount <= 0)
1437 return ret;
1438 }
1439 vma->vm_private_data = (void *) max_nl_cursor;
1440 }
1441 cond_resched();
1442 max_nl_cursor += CLUSTER_SIZE;
1443 } while (max_nl_cursor <= max_nl_size);
1444
1445 /*
1446 * Don't loop forever (perhaps all the remaining pages are
1447 * in locked vmas). Reset cursor on all unreserved nonlinear
1448 * vmas, now forgetting on which ones it had fallen behind.
1449 */
1450 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1451 vma->vm_private_data = NULL;
1452
1453 return ret;
1454}
1455
1456bool is_vma_temporary_stack(struct vm_area_struct *vma)
1457{
1458 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459
1460 if (!maybe_stack)
1461 return false;
1462
1463 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464 VM_STACK_INCOMPLETE_SETUP)
1465 return true;
1466
1467 return false;
1468}
1469
1470static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471{
1472 return is_vma_temporary_stack(vma);
1473}
1474
1475static int page_not_mapped(struct page *page)
1476{
1477 return !page_mapped(page);
1478};
1479
1480/**
1481 * try_to_unmap - try to remove all page table mappings to a page
1482 * @page: the page to get unmapped
1483 * @flags: action and flags
1484 *
1485 * Tries to remove all the page table entries which are mapping this
1486 * page, used in the pageout path. Caller must hold the page lock.
1487 * Return values are:
1488 *
1489 * SWAP_SUCCESS - we succeeded in removing all mappings
1490 * SWAP_AGAIN - we missed a mapping, try again later
1491 * SWAP_FAIL - the page is unswappable
1492 * SWAP_MLOCK - page is mlocked.
1493 */
1494int try_to_unmap(struct page *page, enum ttu_flags flags)
1495{
1496 int ret;
1497 struct rmap_walk_control rwc = {
1498 .rmap_one = try_to_unmap_one,
1499 .arg = (void *)flags,
1500 .done = page_not_mapped,
1501 .file_nonlinear = try_to_unmap_nonlinear,
1502 .anon_lock = page_lock_anon_vma_read,
1503 };
1504
1505 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1506
1507 /*
1508 * During exec, a temporary VMA is setup and later moved.
1509 * The VMA is moved under the anon_vma lock but not the
1510 * page tables leading to a race where migration cannot
1511 * find the migration ptes. Rather than increasing the
1512 * locking requirements of exec(), migration skips
1513 * temporary VMAs until after exec() completes.
1514 */
1515 if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1516 rwc.invalid_vma = invalid_migration_vma;
1517
1518 ret = rmap_walk(page, &rwc);
1519
1520 if (ret != SWAP_MLOCK && !page_mapped(page))
1521 ret = SWAP_SUCCESS;
1522 return ret;
1523}
1524
1525/**
1526 * try_to_munlock - try to munlock a page
1527 * @page: the page to be munlocked
1528 *
1529 * Called from munlock code. Checks all of the VMAs mapping the page
1530 * to make sure nobody else has this page mlocked. The page will be
1531 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1532 *
1533 * Return values are:
1534 *
1535 * SWAP_AGAIN - no vma is holding page mlocked, or,
1536 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1537 * SWAP_FAIL - page cannot be located at present
1538 * SWAP_MLOCK - page is now mlocked.
1539 */
1540int try_to_munlock(struct page *page)
1541{
1542 int ret;
1543 struct rmap_walk_control rwc = {
1544 .rmap_one = try_to_unmap_one,
1545 .arg = (void *)TTU_MUNLOCK,
1546 .done = page_not_mapped,
1547 /*
1548 * We don't bother to try to find the munlocked page in
1549 * nonlinears. It's costly. Instead, later, page reclaim logic
1550 * may call try_to_unmap() and recover PG_mlocked lazily.
1551 */
1552 .file_nonlinear = NULL,
1553 .anon_lock = page_lock_anon_vma_read,
1554
1555 };
1556
1557 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1558
1559 ret = rmap_walk(page, &rwc);
1560 return ret;
1561}
1562
1563void __put_anon_vma(struct anon_vma *anon_vma)
1564{
1565 struct anon_vma *root = anon_vma->root;
1566
1567 anon_vma_free(anon_vma);
1568 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1569 anon_vma_free(root);
1570}
1571
1572static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1573 struct rmap_walk_control *rwc)
1574{
1575 struct anon_vma *anon_vma;
1576
1577 if (rwc->anon_lock)
1578 return rwc->anon_lock(page);
1579
1580 /*
1581 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1582 * because that depends on page_mapped(); but not all its usages
1583 * are holding mmap_sem. Users without mmap_sem are required to
1584 * take a reference count to prevent the anon_vma disappearing
1585 */
1586 anon_vma = page_anon_vma(page);
1587 if (!anon_vma)
1588 return NULL;
1589
1590 anon_vma_lock_read(anon_vma);
1591 return anon_vma;
1592}
1593
1594/*
1595 * rmap_walk_anon - do something to anonymous page using the object-based
1596 * rmap method
1597 * @page: the page to be handled
1598 * @rwc: control variable according to each walk type
1599 *
1600 * Find all the mappings of a page using the mapping pointer and the vma chains
1601 * contained in the anon_vma struct it points to.
1602 *
1603 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1604 * where the page was found will be held for write. So, we won't recheck
1605 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1606 * LOCKED.
1607 */
1608static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1609{
1610 struct anon_vma *anon_vma;
1611 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1612 struct anon_vma_chain *avc;
1613 int ret = SWAP_AGAIN;
1614
1615 anon_vma = rmap_walk_anon_lock(page, rwc);
1616 if (!anon_vma)
1617 return ret;
1618
1619 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1620 struct vm_area_struct *vma = avc->vma;
1621 unsigned long address = vma_address(page, vma);
1622
1623 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1624 continue;
1625
1626 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1627 if (ret != SWAP_AGAIN)
1628 break;
1629 if (rwc->done && rwc->done(page))
1630 break;
1631 }
1632 anon_vma_unlock_read(anon_vma);
1633 return ret;
1634}
1635
1636/*
1637 * rmap_walk_file - do something to file page using the object-based rmap method
1638 * @page: the page to be handled
1639 * @rwc: control variable according to each walk type
1640 *
1641 * Find all the mappings of a page using the mapping pointer and the vma chains
1642 * contained in the address_space struct it points to.
1643 *
1644 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1645 * where the page was found will be held for write. So, we won't recheck
1646 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1647 * LOCKED.
1648 */
1649static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1650{
1651 struct address_space *mapping = page->mapping;
1652 pgoff_t pgoff = page->index << compound_order(page);
1653 struct vm_area_struct *vma;
1654 int ret = SWAP_AGAIN;
1655
1656 /*
1657 * The page lock not only makes sure that page->mapping cannot
1658 * suddenly be NULLified by truncation, it makes sure that the
1659 * structure at mapping cannot be freed and reused yet,
1660 * so we can safely take mapping->i_mmap_mutex.
1661 */
1662 VM_BUG_ON(!PageLocked(page));
1663
1664 if (!mapping)
1665 return ret;
1666 mutex_lock(&mapping->i_mmap_mutex);
1667 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1668 unsigned long address = vma_address(page, vma);
1669
1670 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1671 continue;
1672
1673 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1674 if (ret != SWAP_AGAIN)
1675 goto done;
1676 if (rwc->done && rwc->done(page))
1677 goto done;
1678 }
1679
1680 if (!rwc->file_nonlinear)
1681 goto done;
1682
1683 if (list_empty(&mapping->i_mmap_nonlinear))
1684 goto done;
1685
1686 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1687
1688done:
1689 mutex_unlock(&mapping->i_mmap_mutex);
1690 return ret;
1691}
1692
1693int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1694{
1695 if (unlikely(PageKsm(page)))
1696 return rmap_walk_ksm(page, rwc);
1697 else if (PageAnon(page))
1698 return rmap_walk_anon(page, rwc);
1699 else
1700 return rmap_walk_file(page, rwc);
1701}
1702
1703#ifdef CONFIG_HUGETLB_PAGE
1704/*
1705 * The following three functions are for anonymous (private mapped) hugepages.
1706 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1707 * and no lru code, because we handle hugepages differently from common pages.
1708 */
1709static void __hugepage_set_anon_rmap(struct page *page,
1710 struct vm_area_struct *vma, unsigned long address, int exclusive)
1711{
1712 struct anon_vma *anon_vma = vma->anon_vma;
1713
1714 BUG_ON(!anon_vma);
1715
1716 if (PageAnon(page))
1717 return;
1718 if (!exclusive)
1719 anon_vma = anon_vma->root;
1720
1721 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1722 page->mapping = (struct address_space *) anon_vma;
1723 page->index = linear_page_index(vma, address);
1724}
1725
1726void hugepage_add_anon_rmap(struct page *page,
1727 struct vm_area_struct *vma, unsigned long address)
1728{
1729 struct anon_vma *anon_vma = vma->anon_vma;
1730 int first;
1731
1732 BUG_ON(!PageLocked(page));
1733 BUG_ON(!anon_vma);
1734 /* address might be in next vma when migration races vma_adjust */
1735 first = atomic_inc_and_test(&page->_mapcount);
1736 if (first)
1737 __hugepage_set_anon_rmap(page, vma, address, 0);
1738}
1739
1740void hugepage_add_new_anon_rmap(struct page *page,
1741 struct vm_area_struct *vma, unsigned long address)
1742{
1743 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1744 atomic_set(&page->_mapcount, 0);
1745 __hugepage_set_anon_rmap(page, vma, address, 1);
1746}
1747#endif /* CONFIG_HUGETLB_PAGE */