Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->mutex
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
  39 *
  40 * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
  43 */
  44
  45#include <linux/mm.h>
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/module.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
 
  59
  60#include <asm/tlbflush.h>
  61
  62#include "internal.h"
  63
  64static struct kmem_cache *anon_vma_cachep;
  65static struct kmem_cache *anon_vma_chain_cachep;
  66
  67static inline struct anon_vma *anon_vma_alloc(void)
  68{
  69	struct anon_vma *anon_vma;
  70
  71	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  72	if (anon_vma) {
  73		atomic_set(&anon_vma->refcount, 1);
  74		/*
  75		 * Initialise the anon_vma root to point to itself. If called
  76		 * from fork, the root will be reset to the parents anon_vma.
  77		 */
  78		anon_vma->root = anon_vma;
  79	}
  80
  81	return anon_vma;
  82}
  83
  84static inline void anon_vma_free(struct anon_vma *anon_vma)
  85{
  86	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  87
  88	/*
  89	 * Synchronize against page_lock_anon_vma() such that
  90	 * we can safely hold the lock without the anon_vma getting
  91	 * freed.
  92	 *
  93	 * Relies on the full mb implied by the atomic_dec_and_test() from
  94	 * put_anon_vma() against the acquire barrier implied by
  95	 * mutex_trylock() from page_lock_anon_vma(). This orders:
  96	 *
  97	 * page_lock_anon_vma()		VS	put_anon_vma()
  98	 *   mutex_trylock()			  atomic_dec_and_test()
  99	 *   LOCK				  MB
 100	 *   atomic_read()			  mutex_is_locked()
 101	 *
 102	 * LOCK should suffice since the actual taking of the lock must
 103	 * happen _before_ what follows.
 104	 */
 105	if (mutex_is_locked(&anon_vma->root->mutex)) {
 106		anon_vma_lock(anon_vma);
 107		anon_vma_unlock(anon_vma);
 108	}
 109
 110	kmem_cache_free(anon_vma_cachep, anon_vma);
 111}
 112
 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 114{
 115	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 116}
 117
 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 119{
 120	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 121}
 122
 
 
 
 
 
 
 
 
 
 
 123/**
 124 * anon_vma_prepare - attach an anon_vma to a memory region
 125 * @vma: the memory region in question
 126 *
 127 * This makes sure the memory mapping described by 'vma' has
 128 * an 'anon_vma' attached to it, so that we can associate the
 129 * anonymous pages mapped into it with that anon_vma.
 130 *
 131 * The common case will be that we already have one, but if
 132 * not we either need to find an adjacent mapping that we
 133 * can re-use the anon_vma from (very common when the only
 134 * reason for splitting a vma has been mprotect()), or we
 135 * allocate a new one.
 136 *
 137 * Anon-vma allocations are very subtle, because we may have
 138 * optimistically looked up an anon_vma in page_lock_anon_vma()
 139 * and that may actually touch the spinlock even in the newly
 140 * allocated vma (it depends on RCU to make sure that the
 141 * anon_vma isn't actually destroyed).
 142 *
 143 * As a result, we need to do proper anon_vma locking even
 144 * for the new allocation. At the same time, we do not want
 145 * to do any locking for the common case of already having
 146 * an anon_vma.
 147 *
 148 * This must be called with the mmap_sem held for reading.
 149 */
 150int anon_vma_prepare(struct vm_area_struct *vma)
 151{
 152	struct anon_vma *anon_vma = vma->anon_vma;
 153	struct anon_vma_chain *avc;
 154
 155	might_sleep();
 156	if (unlikely(!anon_vma)) {
 157		struct mm_struct *mm = vma->vm_mm;
 158		struct anon_vma *allocated;
 159
 160		avc = anon_vma_chain_alloc(GFP_KERNEL);
 161		if (!avc)
 162			goto out_enomem;
 163
 164		anon_vma = find_mergeable_anon_vma(vma);
 165		allocated = NULL;
 166		if (!anon_vma) {
 167			anon_vma = anon_vma_alloc();
 168			if (unlikely(!anon_vma))
 169				goto out_enomem_free_avc;
 170			allocated = anon_vma;
 171		}
 172
 173		anon_vma_lock(anon_vma);
 174		/* page_table_lock to protect against threads */
 175		spin_lock(&mm->page_table_lock);
 176		if (likely(!vma->anon_vma)) {
 177			vma->anon_vma = anon_vma;
 178			avc->anon_vma = anon_vma;
 179			avc->vma = vma;
 180			list_add(&avc->same_vma, &vma->anon_vma_chain);
 181			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
 182			allocated = NULL;
 183			avc = NULL;
 184		}
 185		spin_unlock(&mm->page_table_lock);
 186		anon_vma_unlock(anon_vma);
 187
 188		if (unlikely(allocated))
 189			put_anon_vma(allocated);
 190		if (unlikely(avc))
 191			anon_vma_chain_free(avc);
 192	}
 193	return 0;
 194
 195 out_enomem_free_avc:
 196	anon_vma_chain_free(avc);
 197 out_enomem:
 198	return -ENOMEM;
 199}
 200
 201/*
 202 * This is a useful helper function for locking the anon_vma root as
 203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 204 * have the same vma.
 205 *
 206 * Such anon_vma's should have the same root, so you'd expect to see
 207 * just a single mutex_lock for the whole traversal.
 208 */
 209static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 210{
 211	struct anon_vma *new_root = anon_vma->root;
 212	if (new_root != root) {
 213		if (WARN_ON_ONCE(root))
 214			mutex_unlock(&root->mutex);
 215		root = new_root;
 216		mutex_lock(&root->mutex);
 217	}
 218	return root;
 219}
 220
 221static inline void unlock_anon_vma_root(struct anon_vma *root)
 222{
 223	if (root)
 224		mutex_unlock(&root->mutex);
 225}
 226
 227static void anon_vma_chain_link(struct vm_area_struct *vma,
 228				struct anon_vma_chain *avc,
 229				struct anon_vma *anon_vma)
 230{
 231	avc->vma = vma;
 232	avc->anon_vma = anon_vma;
 233	list_add(&avc->same_vma, &vma->anon_vma_chain);
 234
 235	/*
 236	 * It's critical to add new vmas to the tail of the anon_vma,
 237	 * see comment in huge_memory.c:__split_huge_page().
 238	 */
 239	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
 240}
 241
 242/*
 243 * Attach the anon_vmas from src to dst.
 244 * Returns 0 on success, -ENOMEM on failure.
 245 */
 246int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 247{
 248	struct anon_vma_chain *avc, *pavc;
 249	struct anon_vma *root = NULL;
 250
 251	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 252		struct anon_vma *anon_vma;
 253
 254		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 255		if (unlikely(!avc)) {
 256			unlock_anon_vma_root(root);
 257			root = NULL;
 258			avc = anon_vma_chain_alloc(GFP_KERNEL);
 259			if (!avc)
 260				goto enomem_failure;
 261		}
 262		anon_vma = pavc->anon_vma;
 263		root = lock_anon_vma_root(root, anon_vma);
 264		anon_vma_chain_link(dst, avc, anon_vma);
 265	}
 266	unlock_anon_vma_root(root);
 267	return 0;
 268
 269 enomem_failure:
 270	unlink_anon_vmas(dst);
 271	return -ENOMEM;
 272}
 273
 274/*
 275 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 276 * the corresponding VMA in the parent process is attached to.
 277 * Returns 0 on success, non-zero on failure.
 278 */
 279int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 280{
 281	struct anon_vma_chain *avc;
 282	struct anon_vma *anon_vma;
 283
 284	/* Don't bother if the parent process has no anon_vma here. */
 285	if (!pvma->anon_vma)
 286		return 0;
 287
 288	/*
 289	 * First, attach the new VMA to the parent VMA's anon_vmas,
 290	 * so rmap can find non-COWed pages in child processes.
 291	 */
 292	if (anon_vma_clone(vma, pvma))
 293		return -ENOMEM;
 294
 295	/* Then add our own anon_vma. */
 296	anon_vma = anon_vma_alloc();
 297	if (!anon_vma)
 298		goto out_error;
 299	avc = anon_vma_chain_alloc(GFP_KERNEL);
 300	if (!avc)
 301		goto out_error_free_anon_vma;
 302
 303	/*
 304	 * The root anon_vma's spinlock is the lock actually used when we
 305	 * lock any of the anon_vmas in this anon_vma tree.
 306	 */
 307	anon_vma->root = pvma->anon_vma->root;
 308	/*
 309	 * With refcounts, an anon_vma can stay around longer than the
 310	 * process it belongs to. The root anon_vma needs to be pinned until
 311	 * this anon_vma is freed, because the lock lives in the root.
 312	 */
 313	get_anon_vma(anon_vma->root);
 314	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 315	vma->anon_vma = anon_vma;
 316	anon_vma_lock(anon_vma);
 317	anon_vma_chain_link(vma, avc, anon_vma);
 318	anon_vma_unlock(anon_vma);
 319
 320	return 0;
 321
 322 out_error_free_anon_vma:
 323	put_anon_vma(anon_vma);
 324 out_error:
 325	unlink_anon_vmas(vma);
 326	return -ENOMEM;
 327}
 328
 329void unlink_anon_vmas(struct vm_area_struct *vma)
 330{
 331	struct anon_vma_chain *avc, *next;
 332	struct anon_vma *root = NULL;
 333
 334	/*
 335	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 336	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 337	 */
 338	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 339		struct anon_vma *anon_vma = avc->anon_vma;
 340
 341		root = lock_anon_vma_root(root, anon_vma);
 342		list_del(&avc->same_anon_vma);
 343
 344		/*
 345		 * Leave empty anon_vmas on the list - we'll need
 346		 * to free them outside the lock.
 347		 */
 348		if (list_empty(&anon_vma->head))
 349			continue;
 350
 351		list_del(&avc->same_vma);
 352		anon_vma_chain_free(avc);
 353	}
 354	unlock_anon_vma_root(root);
 355
 356	/*
 357	 * Iterate the list once more, it now only contains empty and unlinked
 358	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 359	 * needing to acquire the anon_vma->root->mutex.
 360	 */
 361	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 362		struct anon_vma *anon_vma = avc->anon_vma;
 363
 364		put_anon_vma(anon_vma);
 365
 366		list_del(&avc->same_vma);
 367		anon_vma_chain_free(avc);
 368	}
 369}
 370
 371static void anon_vma_ctor(void *data)
 372{
 373	struct anon_vma *anon_vma = data;
 374
 375	mutex_init(&anon_vma->mutex);
 376	atomic_set(&anon_vma->refcount, 0);
 377	INIT_LIST_HEAD(&anon_vma->head);
 378}
 379
 380void __init anon_vma_init(void)
 381{
 382	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 383			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 384	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 385}
 386
 387/*
 388 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 389 *
 390 * Since there is no serialization what so ever against page_remove_rmap()
 391 * the best this function can do is return a locked anon_vma that might
 392 * have been relevant to this page.
 393 *
 394 * The page might have been remapped to a different anon_vma or the anon_vma
 395 * returned may already be freed (and even reused).
 396 *
 397 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 398 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 399 * ensure that any anon_vma obtained from the page will still be valid for as
 400 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 401 *
 402 * All users of this function must be very careful when walking the anon_vma
 403 * chain and verify that the page in question is indeed mapped in it
 404 * [ something equivalent to page_mapped_in_vma() ].
 405 *
 406 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 407 * that the anon_vma pointer from page->mapping is valid if there is a
 408 * mapcount, we can dereference the anon_vma after observing those.
 409 */
 410struct anon_vma *page_get_anon_vma(struct page *page)
 411{
 412	struct anon_vma *anon_vma = NULL;
 413	unsigned long anon_mapping;
 414
 415	rcu_read_lock();
 416	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 417	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 418		goto out;
 419	if (!page_mapped(page))
 420		goto out;
 421
 422	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 423	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 424		anon_vma = NULL;
 425		goto out;
 426	}
 427
 428	/*
 429	 * If this page is still mapped, then its anon_vma cannot have been
 430	 * freed.  But if it has been unmapped, we have no security against the
 431	 * anon_vma structure being freed and reused (for another anon_vma:
 432	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 433	 * above cannot corrupt).
 434	 */
 435	if (!page_mapped(page)) {
 436		put_anon_vma(anon_vma);
 437		anon_vma = NULL;
 438	}
 439out:
 440	rcu_read_unlock();
 441
 442	return anon_vma;
 443}
 444
 445/*
 446 * Similar to page_get_anon_vma() except it locks the anon_vma.
 447 *
 448 * Its a little more complex as it tries to keep the fast path to a single
 449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 450 * reference like with page_get_anon_vma() and then block on the mutex.
 451 */
 452struct anon_vma *page_lock_anon_vma(struct page *page)
 453{
 454	struct anon_vma *anon_vma = NULL;
 455	struct anon_vma *root_anon_vma;
 456	unsigned long anon_mapping;
 457
 458	rcu_read_lock();
 459	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 460	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 461		goto out;
 462	if (!page_mapped(page))
 463		goto out;
 464
 465	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 466	root_anon_vma = ACCESS_ONCE(anon_vma->root);
 467	if (mutex_trylock(&root_anon_vma->mutex)) {
 468		/*
 469		 * If the page is still mapped, then this anon_vma is still
 470		 * its anon_vma, and holding the mutex ensures that it will
 471		 * not go away, see anon_vma_free().
 472		 */
 473		if (!page_mapped(page)) {
 474			mutex_unlock(&root_anon_vma->mutex);
 475			anon_vma = NULL;
 476		}
 477		goto out;
 478	}
 479
 480	/* trylock failed, we got to sleep */
 481	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 482		anon_vma = NULL;
 483		goto out;
 484	}
 485
 486	if (!page_mapped(page)) {
 487		put_anon_vma(anon_vma);
 488		anon_vma = NULL;
 489		goto out;
 490	}
 491
 492	/* we pinned the anon_vma, its safe to sleep */
 493	rcu_read_unlock();
 494	anon_vma_lock(anon_vma);
 495
 496	if (atomic_dec_and_test(&anon_vma->refcount)) {
 497		/*
 498		 * Oops, we held the last refcount, release the lock
 499		 * and bail -- can't simply use put_anon_vma() because
 500		 * we'll deadlock on the anon_vma_lock() recursion.
 501		 */
 502		anon_vma_unlock(anon_vma);
 503		__put_anon_vma(anon_vma);
 504		anon_vma = NULL;
 505	}
 506
 507	return anon_vma;
 508
 509out:
 510	rcu_read_unlock();
 511	return anon_vma;
 512}
 513
 514void page_unlock_anon_vma(struct anon_vma *anon_vma)
 515{
 516	anon_vma_unlock(anon_vma);
 517}
 518
 519/*
 520 * At what user virtual address is page expected in @vma?
 521 * Returns virtual address or -EFAULT if page's index/offset is not
 522 * within the range mapped the @vma.
 523 */
 524inline unsigned long
 525vma_address(struct page *page, struct vm_area_struct *vma)
 526{
 527	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 528	unsigned long address;
 529
 530	if (unlikely(is_vm_hugetlb_page(vma)))
 531		pgoff = page->index << huge_page_order(page_hstate(page));
 532	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 533	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
 534		/* page should be within @vma mapping range */
 535		return -EFAULT;
 536	}
 
 
 
 
 
 
 
 537	return address;
 538}
 539
 540/*
 541 * At what user virtual address is page expected in vma?
 542 * Caller should check the page is actually part of the vma.
 543 */
 544unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 545{
 
 546	if (PageAnon(page)) {
 547		struct anon_vma *page__anon_vma = page_anon_vma(page);
 548		/*
 549		 * Note: swapoff's unuse_vma() is more efficient with this
 550		 * check, and needs it to match anon_vma when KSM is active.
 551		 */
 552		if (!vma->anon_vma || !page__anon_vma ||
 553		    vma->anon_vma->root != page__anon_vma->root)
 554			return -EFAULT;
 555	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 556		if (!vma->vm_file ||
 557		    vma->vm_file->f_mapping != page->mapping)
 558			return -EFAULT;
 559	} else
 560		return -EFAULT;
 561	return vma_address(page, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562}
 563
 564/*
 565 * Check that @page is mapped at @address into @mm.
 566 *
 567 * If @sync is false, page_check_address may perform a racy check to avoid
 568 * the page table lock when the pte is not present (helpful when reclaiming
 569 * highly shared pages).
 570 *
 571 * On success returns with pte mapped and locked.
 572 */
 573pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 574			  unsigned long address, spinlock_t **ptlp, int sync)
 575{
 576	pgd_t *pgd;
 577	pud_t *pud;
 578	pmd_t *pmd;
 579	pte_t *pte;
 580	spinlock_t *ptl;
 581
 582	if (unlikely(PageHuge(page))) {
 
 583		pte = huge_pte_offset(mm, address);
 584		ptl = &mm->page_table_lock;
 
 
 
 585		goto check;
 586	}
 587
 588	pgd = pgd_offset(mm, address);
 589	if (!pgd_present(*pgd))
 590		return NULL;
 591
 592	pud = pud_offset(pgd, address);
 593	if (!pud_present(*pud))
 594		return NULL;
 595
 596	pmd = pmd_offset(pud, address);
 597	if (!pmd_present(*pmd))
 598		return NULL;
 599	if (pmd_trans_huge(*pmd))
 600		return NULL;
 601
 602	pte = pte_offset_map(pmd, address);
 603	/* Make a quick check before getting the lock */
 604	if (!sync && !pte_present(*pte)) {
 605		pte_unmap(pte);
 606		return NULL;
 607	}
 608
 609	ptl = pte_lockptr(mm, pmd);
 610check:
 611	spin_lock(ptl);
 612	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 613		*ptlp = ptl;
 614		return pte;
 615	}
 616	pte_unmap_unlock(pte, ptl);
 617	return NULL;
 618}
 619
 620/**
 621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 622 * @page: the page to test
 623 * @vma: the VMA to test
 624 *
 625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 626 * if the page is not mapped into the page tables of this VMA.  Only
 627 * valid for normal file or anonymous VMAs.
 628 */
 629int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 630{
 631	unsigned long address;
 632	pte_t *pte;
 633	spinlock_t *ptl;
 634
 635	address = vma_address(page, vma);
 636	if (address == -EFAULT)		/* out of vma range */
 637		return 0;
 638	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 639	if (!pte)			/* the page is not in this mm */
 640		return 0;
 641	pte_unmap_unlock(pte, ptl);
 642
 643	return 1;
 644}
 645
 
 
 
 
 
 
 646/*
 647 * Subfunctions of page_referenced: page_referenced_one called
 648 * repeatedly from either page_referenced_anon or page_referenced_file.
 649 */
 650int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 651			unsigned long address, unsigned int *mapcount,
 652			unsigned long *vm_flags)
 653{
 654	struct mm_struct *mm = vma->vm_mm;
 
 655	int referenced = 0;
 
 656
 657	if (unlikely(PageTransHuge(page))) {
 658		pmd_t *pmd;
 659
 660		spin_lock(&mm->page_table_lock);
 661		/*
 662		 * rmap might return false positives; we must filter
 663		 * these out using page_check_address_pmd().
 664		 */
 665		pmd = page_check_address_pmd(page, mm, address,
 666					     PAGE_CHECK_ADDRESS_PMD_FLAG);
 667		if (!pmd) {
 668			spin_unlock(&mm->page_table_lock);
 669			goto out;
 670		}
 671
 672		if (vma->vm_flags & VM_LOCKED) {
 673			spin_unlock(&mm->page_table_lock);
 674			*mapcount = 0;	/* break early from loop */
 675			*vm_flags |= VM_LOCKED;
 676			goto out;
 677		}
 678
 679		/* go ahead even if the pmd is pmd_trans_splitting() */
 680		if (pmdp_clear_flush_young_notify(vma, address, pmd))
 681			referenced++;
 682		spin_unlock(&mm->page_table_lock);
 683	} else {
 684		pte_t *pte;
 685		spinlock_t *ptl;
 686
 687		/*
 688		 * rmap might return false positives; we must filter
 689		 * these out using page_check_address().
 690		 */
 691		pte = page_check_address(page, mm, address, &ptl, 0);
 692		if (!pte)
 693			goto out;
 694
 695		if (vma->vm_flags & VM_LOCKED) {
 696			pte_unmap_unlock(pte, ptl);
 697			*mapcount = 0;	/* break early from loop */
 698			*vm_flags |= VM_LOCKED;
 699			goto out;
 700		}
 701
 702		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 703			/*
 704			 * Don't treat a reference through a sequentially read
 705			 * mapping as such.  If the page has been used in
 706			 * another mapping, we will catch it; if this other
 707			 * mapping is already gone, the unmap path will have
 708			 * set PG_referenced or activated the page.
 709			 */
 710			if (likely(!VM_SequentialReadHint(vma)))
 711				referenced++;
 712		}
 713		pte_unmap_unlock(pte, ptl);
 714	}
 715
 716	/* Pretend the page is referenced if the task has the
 717	   swap token and is in the middle of a page fault. */
 718	if (mm != current->mm && has_swap_token(mm) &&
 719			rwsem_is_locked(&mm->mmap_sem))
 720		referenced++;
 721
 722	(*mapcount)--;
 723
 724	if (referenced)
 725		*vm_flags |= vma->vm_flags;
 726out:
 727	return referenced;
 728}
 729
 730static int page_referenced_anon(struct page *page,
 731				struct mem_cgroup *mem_cont,
 732				unsigned long *vm_flags)
 733{
 734	unsigned int mapcount;
 735	struct anon_vma *anon_vma;
 736	struct anon_vma_chain *avc;
 737	int referenced = 0;
 738
 739	anon_vma = page_lock_anon_vma(page);
 740	if (!anon_vma)
 741		return referenced;
 742
 743	mapcount = page_mapcount(page);
 744	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
 745		struct vm_area_struct *vma = avc->vma;
 746		unsigned long address = vma_address(page, vma);
 747		if (address == -EFAULT)
 748			continue;
 749		/*
 750		 * If we are reclaiming on behalf of a cgroup, skip
 751		 * counting on behalf of references from different
 752		 * cgroups
 753		 */
 754		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 755			continue;
 756		referenced += page_referenced_one(page, vma, address,
 757						  &mapcount, vm_flags);
 758		if (!mapcount)
 759			break;
 760	}
 761
 762	page_unlock_anon_vma(anon_vma);
 763	return referenced;
 
 
 
 764}
 765
 766/**
 767 * page_referenced_file - referenced check for object-based rmap
 768 * @page: the page we're checking references on.
 769 * @mem_cont: target memory controller
 770 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 771 *
 772 * For an object-based mapped page, find all the places it is mapped and
 773 * check/clear the referenced flag.  This is done by following the page->mapping
 774 * pointer, then walking the chain of vmas it holds.  It returns the number
 775 * of references it found.
 776 *
 777 * This function is only called from page_referenced for object-based pages.
 778 */
 779static int page_referenced_file(struct page *page,
 780				struct mem_cgroup *mem_cont,
 781				unsigned long *vm_flags)
 782{
 783	unsigned int mapcount;
 784	struct address_space *mapping = page->mapping;
 785	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 786	struct vm_area_struct *vma;
 787	struct prio_tree_iter iter;
 788	int referenced = 0;
 789
 790	/*
 791	 * The caller's checks on page->mapping and !PageAnon have made
 792	 * sure that this is a file page: the check for page->mapping
 793	 * excludes the case just before it gets set on an anon page.
 794	 */
 795	BUG_ON(PageAnon(page));
 796
 797	/*
 798	 * The page lock not only makes sure that page->mapping cannot
 799	 * suddenly be NULLified by truncation, it makes sure that the
 800	 * structure at mapping cannot be freed and reused yet,
 801	 * so we can safely take mapping->i_mmap_mutex.
 802	 */
 803	BUG_ON(!PageLocked(page));
 804
 805	mutex_lock(&mapping->i_mmap_mutex);
 806
 807	/*
 808	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
 809	 * is more likely to be accurate if we note it after spinning.
 810	 */
 811	mapcount = page_mapcount(page);
 812
 813	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 814		unsigned long address = vma_address(page, vma);
 815		if (address == -EFAULT)
 816			continue;
 817		/*
 818		 * If we are reclaiming on behalf of a cgroup, skip
 819		 * counting on behalf of references from different
 820		 * cgroups
 821		 */
 822		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
 823			continue;
 824		referenced += page_referenced_one(page, vma, address,
 825						  &mapcount, vm_flags);
 826		if (!mapcount)
 827			break;
 828	}
 829
 830	mutex_unlock(&mapping->i_mmap_mutex);
 831	return referenced;
 832}
 833
 834/**
 835 * page_referenced - test if the page was referenced
 836 * @page: the page to test
 837 * @is_locked: caller holds lock on the page
 838 * @mem_cont: target memory controller
 839 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 840 *
 841 * Quick test_and_clear_referenced for all mappings to a page,
 842 * returns the number of ptes which referenced the page.
 843 */
 844int page_referenced(struct page *page,
 845		    int is_locked,
 846		    struct mem_cgroup *mem_cont,
 847		    unsigned long *vm_flags)
 848{
 849	int referenced = 0;
 850	int we_locked = 0;
 
 
 
 
 
 
 
 
 
 851
 852	*vm_flags = 0;
 853	if (page_mapped(page) && page_rmapping(page)) {
 854		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 855			we_locked = trylock_page(page);
 856			if (!we_locked) {
 857				referenced++;
 858				goto out;
 859			}
 860		}
 861		if (unlikely(PageKsm(page)))
 862			referenced += page_referenced_ksm(page, mem_cont,
 863								vm_flags);
 864		else if (PageAnon(page))
 865			referenced += page_referenced_anon(page, mem_cont,
 866								vm_flags);
 867		else if (page->mapping)
 868			referenced += page_referenced_file(page, mem_cont,
 869								vm_flags);
 870		if (we_locked)
 871			unlock_page(page);
 872
 873		if (page_test_and_clear_young(page_to_pfn(page)))
 874			referenced++;
 
 
 
 
 
 875	}
 876out:
 877	return referenced;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878}
 879
 880static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 881			    unsigned long address)
 882{
 883	struct mm_struct *mm = vma->vm_mm;
 884	pte_t *pte;
 885	spinlock_t *ptl;
 886	int ret = 0;
 
 887
 888	pte = page_check_address(page, mm, address, &ptl, 1);
 889	if (!pte)
 890		goto out;
 891
 892	if (pte_dirty(*pte) || pte_write(*pte)) {
 893		pte_t entry;
 894
 895		flush_cache_page(vma, address, pte_pfn(*pte));
 896		entry = ptep_clear_flush_notify(vma, address, pte);
 897		entry = pte_wrprotect(entry);
 898		entry = pte_mkclean(entry);
 899		set_pte_at(mm, address, pte, entry);
 900		ret = 1;
 901	}
 902
 903	pte_unmap_unlock(pte, ptl);
 
 
 
 
 
 904out:
 905	return ret;
 906}
 907
 908static int page_mkclean_file(struct address_space *mapping, struct page *page)
 909{
 910	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 911	struct vm_area_struct *vma;
 912	struct prio_tree_iter iter;
 913	int ret = 0;
 914
 915	BUG_ON(PageAnon(page));
 916
 917	mutex_lock(&mapping->i_mmap_mutex);
 918	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
 919		if (vma->vm_flags & VM_SHARED) {
 920			unsigned long address = vma_address(page, vma);
 921			if (address == -EFAULT)
 922				continue;
 923			ret += page_mkclean_one(page, vma, address);
 924		}
 925	}
 926	mutex_unlock(&mapping->i_mmap_mutex);
 927	return ret;
 928}
 929
 930int page_mkclean(struct page *page)
 931{
 932	int ret = 0;
 
 
 
 
 
 
 933
 934	BUG_ON(!PageLocked(page));
 935
 936	if (page_mapped(page)) {
 937		struct address_space *mapping = page_mapping(page);
 938		if (mapping) {
 939			ret = page_mkclean_file(mapping, page);
 940			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
 941				ret = 1;
 942		}
 943	}
 944
 945	return ret;
 
 
 
 
 
 
 946}
 947EXPORT_SYMBOL_GPL(page_mkclean);
 948
 949/**
 950 * page_move_anon_rmap - move a page to our anon_vma
 951 * @page:	the page to move to our anon_vma
 952 * @vma:	the vma the page belongs to
 953 * @address:	the user virtual address mapped
 954 *
 955 * When a page belongs exclusively to one process after a COW event,
 956 * that page can be moved into the anon_vma that belongs to just that
 957 * process, so the rmap code will not search the parent or sibling
 958 * processes.
 959 */
 960void page_move_anon_rmap(struct page *page,
 961	struct vm_area_struct *vma, unsigned long address)
 962{
 963	struct anon_vma *anon_vma = vma->anon_vma;
 964
 965	VM_BUG_ON(!PageLocked(page));
 966	VM_BUG_ON(!anon_vma);
 967	VM_BUG_ON(page->index != linear_page_index(vma, address));
 968
 969	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 970	page->mapping = (struct address_space *) anon_vma;
 971}
 972
 973/**
 974 * __page_set_anon_rmap - set up new anonymous rmap
 975 * @page:	Page to add to rmap	
 976 * @vma:	VM area to add page to.
 977 * @address:	User virtual address of the mapping	
 978 * @exclusive:	the page is exclusively owned by the current process
 979 */
 980static void __page_set_anon_rmap(struct page *page,
 981	struct vm_area_struct *vma, unsigned long address, int exclusive)
 982{
 983	struct anon_vma *anon_vma = vma->anon_vma;
 984
 985	BUG_ON(!anon_vma);
 986
 987	if (PageAnon(page))
 988		return;
 989
 990	/*
 991	 * If the page isn't exclusively mapped into this vma,
 992	 * we must use the _oldest_ possible anon_vma for the
 993	 * page mapping!
 994	 */
 995	if (!exclusive)
 996		anon_vma = anon_vma->root;
 997
 998	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 999	page->mapping = (struct address_space *) anon_vma;
1000	page->index = linear_page_index(vma, address);
1001}
1002
1003/**
1004 * __page_check_anon_rmap - sanity check anonymous rmap addition
1005 * @page:	the page to add the mapping to
1006 * @vma:	the vm area in which the mapping is added
1007 * @address:	the user virtual address mapped
1008 */
1009static void __page_check_anon_rmap(struct page *page,
1010	struct vm_area_struct *vma, unsigned long address)
1011{
1012#ifdef CONFIG_DEBUG_VM
1013	/*
1014	 * The page's anon-rmap details (mapping and index) are guaranteed to
1015	 * be set up correctly at this point.
1016	 *
1017	 * We have exclusion against page_add_anon_rmap because the caller
1018	 * always holds the page locked, except if called from page_dup_rmap,
1019	 * in which case the page is already known to be setup.
1020	 *
1021	 * We have exclusion against page_add_new_anon_rmap because those pages
1022	 * are initially only visible via the pagetables, and the pte is locked
1023	 * over the call to page_add_new_anon_rmap.
1024	 */
1025	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1026	BUG_ON(page->index != linear_page_index(vma, address));
1027#endif
1028}
1029
1030/**
1031 * page_add_anon_rmap - add pte mapping to an anonymous page
1032 * @page:	the page to add the mapping to
1033 * @vma:	the vm area in which the mapping is added
1034 * @address:	the user virtual address mapped
1035 *
1036 * The caller needs to hold the pte lock, and the page must be locked in
1037 * the anon_vma case: to serialize mapping,index checking after setting,
1038 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1039 * (but PageKsm is never downgraded to PageAnon).
1040 */
1041void page_add_anon_rmap(struct page *page,
1042	struct vm_area_struct *vma, unsigned long address)
1043{
1044	do_page_add_anon_rmap(page, vma, address, 0);
1045}
1046
1047/*
1048 * Special version of the above for do_swap_page, which often runs
1049 * into pages that are exclusively owned by the current process.
1050 * Everybody else should continue to use page_add_anon_rmap above.
1051 */
1052void do_page_add_anon_rmap(struct page *page,
1053	struct vm_area_struct *vma, unsigned long address, int exclusive)
1054{
1055	int first = atomic_inc_and_test(&page->_mapcount);
1056	if (first) {
1057		if (!PageTransHuge(page))
1058			__inc_zone_page_state(page, NR_ANON_PAGES);
1059		else
1060			__inc_zone_page_state(page,
1061					      NR_ANON_TRANSPARENT_HUGEPAGES);
 
 
1062	}
1063	if (unlikely(PageKsm(page)))
1064		return;
1065
1066	VM_BUG_ON(!PageLocked(page));
1067	/* address might be in next vma when migration races vma_adjust */
1068	if (first)
1069		__page_set_anon_rmap(page, vma, address, exclusive);
1070	else
1071		__page_check_anon_rmap(page, vma, address);
1072}
1073
1074/**
1075 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1076 * @page:	the page to add the mapping to
1077 * @vma:	the vm area in which the mapping is added
1078 * @address:	the user virtual address mapped
1079 *
1080 * Same as page_add_anon_rmap but must only be called on *new* pages.
1081 * This means the inc-and-test can be bypassed.
1082 * Page does not have to be locked.
1083 */
1084void page_add_new_anon_rmap(struct page *page,
1085	struct vm_area_struct *vma, unsigned long address)
1086{
1087	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1088	SetPageSwapBacked(page);
1089	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1090	if (!PageTransHuge(page))
1091		__inc_zone_page_state(page, NR_ANON_PAGES);
1092	else
1093		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
 
 
1094	__page_set_anon_rmap(page, vma, address, 1);
1095	if (page_evictable(page, vma))
1096		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1097	else
 
1098		add_page_to_unevictable_list(page);
1099}
1100
1101/**
1102 * page_add_file_rmap - add pte mapping to a file page
1103 * @page: the page to add the mapping to
1104 *
1105 * The caller needs to hold the pte lock.
1106 */
1107void page_add_file_rmap(struct page *page)
1108{
 
 
 
 
1109	if (atomic_inc_and_test(&page->_mapcount)) {
1110		__inc_zone_page_state(page, NR_FILE_MAPPED);
1111		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1112	}
 
1113}
1114
1115/**
1116 * page_remove_rmap - take down pte mapping from a page
1117 * @page: page to remove mapping from
1118 *
1119 * The caller needs to hold the pte lock.
1120 */
1121void page_remove_rmap(struct page *page)
1122{
1123	/* page still mapped by someone else? */
1124	if (!atomic_add_negative(-1, &page->_mapcount))
1125		return;
1126
1127	/*
1128	 * Now that the last pte has gone, s390 must transfer dirty
1129	 * flag from storage key to struct page.  We can usually skip
1130	 * this if the page is anon, so about to be freed; but perhaps
1131	 * not if it's in swapcache - there might be another pte slot
1132	 * containing the swap entry, but page not yet written to swap.
1133	 */
1134	if ((!PageAnon(page) || PageSwapCache(page)) &&
1135	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1136		set_page_dirty(page);
 
 
 
 
1137	/*
1138	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1139	 * and not charged by memcg for now.
1140	 */
1141	if (unlikely(PageHuge(page)))
1142		return;
1143	if (PageAnon(page)) {
1144		mem_cgroup_uncharge_page(page);
1145		if (!PageTransHuge(page))
1146			__dec_zone_page_state(page, NR_ANON_PAGES);
1147		else
1148			__dec_zone_page_state(page,
1149					      NR_ANON_TRANSPARENT_HUGEPAGES);
 
 
1150	} else {
1151		__dec_zone_page_state(page, NR_FILE_MAPPED);
1152		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
 
1153	}
 
 
1154	/*
1155	 * It would be tidy to reset the PageAnon mapping here,
1156	 * but that might overwrite a racing page_add_anon_rmap
1157	 * which increments mapcount after us but sets mapping
1158	 * before us: so leave the reset to free_hot_cold_page,
1159	 * and remember that it's only reliable while mapped.
1160	 * Leaving it set also helps swapoff to reinstate ptes
1161	 * faster for those pages still in swapcache.
1162	 */
 
 
 
 
1163}
1164
1165/*
1166 * Subfunctions of try_to_unmap: try_to_unmap_one called
1167 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1168 */
1169int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1170		     unsigned long address, enum ttu_flags flags)
1171{
1172	struct mm_struct *mm = vma->vm_mm;
1173	pte_t *pte;
1174	pte_t pteval;
1175	spinlock_t *ptl;
1176	int ret = SWAP_AGAIN;
 
1177
1178	pte = page_check_address(page, mm, address, &ptl, 0);
1179	if (!pte)
1180		goto out;
1181
1182	/*
1183	 * If the page is mlock()d, we cannot swap it out.
1184	 * If it's recently referenced (perhaps page_referenced
1185	 * skipped over this mm) then we should reactivate it.
1186	 */
1187	if (!(flags & TTU_IGNORE_MLOCK)) {
1188		if (vma->vm_flags & VM_LOCKED)
1189			goto out_mlock;
1190
1191		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1192			goto out_unmap;
1193	}
1194	if (!(flags & TTU_IGNORE_ACCESS)) {
1195		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1196			ret = SWAP_FAIL;
1197			goto out_unmap;
1198		}
1199  	}
1200
1201	/* Nuke the page table entry. */
1202	flush_cache_page(vma, address, page_to_pfn(page));
1203	pteval = ptep_clear_flush_notify(vma, address, pte);
1204
1205	/* Move the dirty bit to the physical page now the pte is gone. */
1206	if (pte_dirty(pteval))
1207		set_page_dirty(page);
1208
1209	/* Update high watermark before we lower rss */
1210	update_hiwater_rss(mm);
1211
1212	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213		if (PageAnon(page))
1214			dec_mm_counter(mm, MM_ANONPAGES);
1215		else
1216			dec_mm_counter(mm, MM_FILEPAGES);
1217		set_pte_at(mm, address, pte,
1218				swp_entry_to_pte(make_hwpoison_entry(page)));
1219	} else if (PageAnon(page)) {
1220		swp_entry_t entry = { .val = page_private(page) };
 
1221
1222		if (PageSwapCache(page)) {
1223			/*
1224			 * Store the swap location in the pte.
1225			 * See handle_pte_fault() ...
1226			 */
1227			if (swap_duplicate(entry) < 0) {
1228				set_pte_at(mm, address, pte, pteval);
1229				ret = SWAP_FAIL;
1230				goto out_unmap;
1231			}
1232			if (list_empty(&mm->mmlist)) {
1233				spin_lock(&mmlist_lock);
1234				if (list_empty(&mm->mmlist))
1235					list_add(&mm->mmlist, &init_mm.mmlist);
1236				spin_unlock(&mmlist_lock);
1237			}
1238			dec_mm_counter(mm, MM_ANONPAGES);
1239			inc_mm_counter(mm, MM_SWAPENTS);
1240		} else if (PAGE_MIGRATION) {
1241			/*
1242			 * Store the pfn of the page in a special migration
1243			 * pte. do_swap_page() will wait until the migration
1244			 * pte is removed and then restart fault handling.
1245			 */
1246			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1247			entry = make_migration_entry(page, pte_write(pteval));
1248		}
1249		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
 
 
 
1250		BUG_ON(pte_file(*pte));
1251	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
 
1252		/* Establish migration entry for a file page */
1253		swp_entry_t entry;
1254		entry = make_migration_entry(page, pte_write(pteval));
1255		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256	} else
1257		dec_mm_counter(mm, MM_FILEPAGES);
1258
1259	page_remove_rmap(page);
1260	page_cache_release(page);
1261
1262out_unmap:
1263	pte_unmap_unlock(pte, ptl);
 
 
1264out:
1265	return ret;
1266
1267out_mlock:
1268	pte_unmap_unlock(pte, ptl);
1269
1270
1271	/*
1272	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1273	 * unstable result and race. Plus, We can't wait here because
1274	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1275	 * if trylock failed, the page remain in evictable lru and later
1276	 * vmscan could retry to move the page to unevictable lru if the
1277	 * page is actually mlocked.
1278	 */
1279	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1280		if (vma->vm_flags & VM_LOCKED) {
1281			mlock_vma_page(page);
1282			ret = SWAP_MLOCK;
1283		}
1284		up_read(&vma->vm_mm->mmap_sem);
1285	}
1286	return ret;
1287}
1288
1289/*
1290 * objrmap doesn't work for nonlinear VMAs because the assumption that
1291 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1292 * Consequently, given a particular page and its ->index, we cannot locate the
1293 * ptes which are mapping that page without an exhaustive linear search.
1294 *
1295 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1296 * maps the file to which the target page belongs.  The ->vm_private_data field
1297 * holds the current cursor into that scan.  Successive searches will circulate
1298 * around the vma's virtual address space.
1299 *
1300 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1301 * more scanning pressure is placed against them as well.   Eventually pages
1302 * will become fully unmapped and are eligible for eviction.
1303 *
1304 * For very sparsely populated VMAs this is a little inefficient - chances are
1305 * there there won't be many ptes located within the scan cluster.  In this case
1306 * maybe we could scan further - to the end of the pte page, perhaps.
1307 *
1308 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1309 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1310 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1311 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1312 */
1313#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1314#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1315
1316static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1317		struct vm_area_struct *vma, struct page *check_page)
1318{
1319	struct mm_struct *mm = vma->vm_mm;
1320	pgd_t *pgd;
1321	pud_t *pud;
1322	pmd_t *pmd;
1323	pte_t *pte;
1324	pte_t pteval;
1325	spinlock_t *ptl;
1326	struct page *page;
1327	unsigned long address;
 
 
1328	unsigned long end;
1329	int ret = SWAP_AGAIN;
1330	int locked_vma = 0;
1331
1332	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1333	end = address + CLUSTER_SIZE;
1334	if (address < vma->vm_start)
1335		address = vma->vm_start;
1336	if (end > vma->vm_end)
1337		end = vma->vm_end;
1338
1339	pgd = pgd_offset(mm, address);
1340	if (!pgd_present(*pgd))
1341		return ret;
1342
1343	pud = pud_offset(pgd, address);
1344	if (!pud_present(*pud))
1345		return ret;
1346
1347	pmd = pmd_offset(pud, address);
1348	if (!pmd_present(*pmd))
1349		return ret;
1350
1351	/*
1352	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1353	 * keep the sem while scanning the cluster for mlocking pages.
1354	 */
1355	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1356		locked_vma = (vma->vm_flags & VM_LOCKED);
1357		if (!locked_vma)
1358			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1359	}
1360
1361	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1362
1363	/* Update high watermark before we lower rss */
1364	update_hiwater_rss(mm);
1365
1366	for (; address < end; pte++, address += PAGE_SIZE) {
1367		if (!pte_present(*pte))
1368			continue;
1369		page = vm_normal_page(vma, address, *pte);
1370		BUG_ON(!page || PageAnon(page));
1371
1372		if (locked_vma) {
1373			mlock_vma_page(page);   /* no-op if already mlocked */
1374			if (page == check_page)
 
1375				ret = SWAP_MLOCK;
 
 
 
 
 
 
 
 
 
1376			continue;	/* don't unmap */
1377		}
1378
1379		if (ptep_clear_flush_young_notify(vma, address, pte))
1380			continue;
1381
1382		/* Nuke the page table entry. */
1383		flush_cache_page(vma, address, pte_pfn(*pte));
1384		pteval = ptep_clear_flush_notify(vma, address, pte);
1385
1386		/* If nonlinear, store the file page offset in the pte. */
1387		if (page->index != linear_page_index(vma, address))
1388			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
 
 
 
 
1389
1390		/* Move the dirty bit to the physical page now the pte is gone. */
1391		if (pte_dirty(pteval))
1392			set_page_dirty(page);
1393
1394		page_remove_rmap(page);
1395		page_cache_release(page);
1396		dec_mm_counter(mm, MM_FILEPAGES);
1397		(*mapcount)--;
1398	}
1399	pte_unmap_unlock(pte - 1, ptl);
 
1400	if (locked_vma)
1401		up_read(&vma->vm_mm->mmap_sem);
1402	return ret;
1403}
1404
1405bool is_vma_temporary_stack(struct vm_area_struct *vma)
1406{
1407	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1408
1409	if (!maybe_stack)
1410		return false;
1411
1412	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1413						VM_STACK_INCOMPLETE_SETUP)
1414		return true;
1415
1416	return false;
1417}
1418
1419/**
1420 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1421 * rmap method
1422 * @page: the page to unmap/unlock
1423 * @flags: action and flags
1424 *
1425 * Find all the mappings of a page using the mapping pointer and the vma chains
1426 * contained in the anon_vma struct it points to.
1427 *
1428 * This function is only called from try_to_unmap/try_to_munlock for
1429 * anonymous pages.
1430 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1431 * where the page was found will be held for write.  So, we won't recheck
1432 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1433 * 'LOCKED.
1434 */
1435static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1436{
1437	struct anon_vma *anon_vma;
1438	struct anon_vma_chain *avc;
1439	int ret = SWAP_AGAIN;
1440
1441	anon_vma = page_lock_anon_vma(page);
1442	if (!anon_vma)
1443		return ret;
1444
1445	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1446		struct vm_area_struct *vma = avc->vma;
1447		unsigned long address;
1448
1449		/*
1450		 * During exec, a temporary VMA is setup and later moved.
1451		 * The VMA is moved under the anon_vma lock but not the
1452		 * page tables leading to a race where migration cannot
1453		 * find the migration ptes. Rather than increasing the
1454		 * locking requirements of exec(), migration skips
1455		 * temporary VMAs until after exec() completes.
1456		 */
1457		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1458				is_vma_temporary_stack(vma))
1459			continue;
1460
1461		address = vma_address(page, vma);
1462		if (address == -EFAULT)
1463			continue;
1464		ret = try_to_unmap_one(page, vma, address, flags);
1465		if (ret != SWAP_AGAIN || !page_mapped(page))
1466			break;
1467	}
1468
1469	page_unlock_anon_vma(anon_vma);
1470	return ret;
1471}
1472
1473/**
1474 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1475 * @page: the page to unmap/unlock
1476 * @flags: action and flags
1477 *
1478 * Find all the mappings of a page using the mapping pointer and the vma chains
1479 * contained in the address_space struct it points to.
1480 *
1481 * This function is only called from try_to_unmap/try_to_munlock for
1482 * object-based pages.
1483 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1484 * where the page was found will be held for write.  So, we won't recheck
1485 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1486 * 'LOCKED.
1487 */
1488static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1489{
1490	struct address_space *mapping = page->mapping;
1491	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1492	struct vm_area_struct *vma;
1493	struct prio_tree_iter iter;
1494	int ret = SWAP_AGAIN;
1495	unsigned long cursor;
1496	unsigned long max_nl_cursor = 0;
1497	unsigned long max_nl_size = 0;
1498	unsigned int mapcount;
1499
1500	mutex_lock(&mapping->i_mmap_mutex);
1501	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1502		unsigned long address = vma_address(page, vma);
1503		if (address == -EFAULT)
1504			continue;
1505		ret = try_to_unmap_one(page, vma, address, flags);
1506		if (ret != SWAP_AGAIN || !page_mapped(page))
1507			goto out;
1508	}
1509
1510	if (list_empty(&mapping->i_mmap_nonlinear))
1511		goto out;
1512
1513	/*
1514	 * We don't bother to try to find the munlocked page in nonlinears.
1515	 * It's costly. Instead, later, page reclaim logic may call
1516	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1517	 */
1518	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1519		goto out;
1520
1521	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1522						shared.vm_set.list) {
1523		cursor = (unsigned long) vma->vm_private_data;
1524		if (cursor > max_nl_cursor)
1525			max_nl_cursor = cursor;
1526		cursor = vma->vm_end - vma->vm_start;
1527		if (cursor > max_nl_size)
1528			max_nl_size = cursor;
1529	}
1530
1531	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1532		ret = SWAP_FAIL;
1533		goto out;
1534	}
1535
1536	/*
1537	 * We don't try to search for this page in the nonlinear vmas,
1538	 * and page_referenced wouldn't have found it anyway.  Instead
1539	 * just walk the nonlinear vmas trying to age and unmap some.
1540	 * The mapcount of the page we came in with is irrelevant,
1541	 * but even so use it as a guide to how hard we should try?
1542	 */
1543	mapcount = page_mapcount(page);
1544	if (!mapcount)
1545		goto out;
 
1546	cond_resched();
1547
1548	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1549	if (max_nl_cursor == 0)
1550		max_nl_cursor = CLUSTER_SIZE;
1551
1552	do {
1553		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554						shared.vm_set.list) {
 
1555			cursor = (unsigned long) vma->vm_private_data;
1556			while ( cursor < max_nl_cursor &&
1557				cursor < vma->vm_end - vma->vm_start) {
1558				if (try_to_unmap_cluster(cursor, &mapcount,
1559						vma, page) == SWAP_MLOCK)
1560					ret = SWAP_MLOCK;
1561				cursor += CLUSTER_SIZE;
1562				vma->vm_private_data = (void *) cursor;
1563				if ((int)mapcount <= 0)
1564					goto out;
1565			}
1566			vma->vm_private_data = (void *) max_nl_cursor;
1567		}
1568		cond_resched();
1569		max_nl_cursor += CLUSTER_SIZE;
1570	} while (max_nl_cursor <= max_nl_size);
1571
1572	/*
1573	 * Don't loop forever (perhaps all the remaining pages are
1574	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1575	 * vmas, now forgetting on which ones it had fallen behind.
1576	 */
1577	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1578		vma->vm_private_data = NULL;
1579out:
1580	mutex_unlock(&mapping->i_mmap_mutex);
1581	return ret;
1582}
1583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584/**
1585 * try_to_unmap - try to remove all page table mappings to a page
1586 * @page: the page to get unmapped
1587 * @flags: action and flags
1588 *
1589 * Tries to remove all the page table entries which are mapping this
1590 * page, used in the pageout path.  Caller must hold the page lock.
1591 * Return values are:
1592 *
1593 * SWAP_SUCCESS	- we succeeded in removing all mappings
1594 * SWAP_AGAIN	- we missed a mapping, try again later
1595 * SWAP_FAIL	- the page is unswappable
1596 * SWAP_MLOCK	- page is mlocked.
1597 */
1598int try_to_unmap(struct page *page, enum ttu_flags flags)
1599{
1600	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602	BUG_ON(!PageLocked(page));
1603	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1604
1605	if (unlikely(PageKsm(page)))
1606		ret = try_to_unmap_ksm(page, flags);
1607	else if (PageAnon(page))
1608		ret = try_to_unmap_anon(page, flags);
1609	else
1610		ret = try_to_unmap_file(page, flags);
1611	if (ret != SWAP_MLOCK && !page_mapped(page))
1612		ret = SWAP_SUCCESS;
1613	return ret;
1614}
1615
1616/**
1617 * try_to_munlock - try to munlock a page
1618 * @page: the page to be munlocked
1619 *
1620 * Called from munlock code.  Checks all of the VMAs mapping the page
1621 * to make sure nobody else has this page mlocked. The page will be
1622 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623 *
1624 * Return values are:
1625 *
1626 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1627 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1628 * SWAP_FAIL	- page cannot be located at present
1629 * SWAP_MLOCK	- page is now mlocked.
1630 */
1631int try_to_munlock(struct page *page)
1632{
1633	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
 
 
 
 
 
 
 
 
 
 
 
1634
1635	if (unlikely(PageKsm(page)))
1636		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1637	else if (PageAnon(page))
1638		return try_to_unmap_anon(page, TTU_MUNLOCK);
1639	else
1640		return try_to_unmap_file(page, TTU_MUNLOCK);
1641}
1642
1643void __put_anon_vma(struct anon_vma *anon_vma)
1644{
1645	struct anon_vma *root = anon_vma->root;
1646
 
1647	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1648		anon_vma_free(root);
1649
1650	anon_vma_free(anon_vma);
1651}
1652
1653#ifdef CONFIG_MIGRATION
1654/*
1655 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1656 * Called by migrate.c to remove migration ptes, but might be used more later.
1657 */
1658static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1659		struct vm_area_struct *, unsigned long, void *), void *arg)
1660{
1661	struct anon_vma *anon_vma;
1662	struct anon_vma_chain *avc;
1663	int ret = SWAP_AGAIN;
 
1664
1665	/*
1666	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1667	 * because that depends on page_mapped(); but not all its usages
1668	 * are holding mmap_sem. Users without mmap_sem are required to
1669	 * take a reference count to prevent the anon_vma disappearing
1670	 */
1671	anon_vma = page_anon_vma(page);
1672	if (!anon_vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673		return ret;
1674	anon_vma_lock(anon_vma);
1675	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1676		struct vm_area_struct *vma = avc->vma;
1677		unsigned long address = vma_address(page, vma);
1678		if (address == -EFAULT)
 
1679			continue;
1680		ret = rmap_one(page, vma, address, arg);
 
1681		if (ret != SWAP_AGAIN)
1682			break;
 
 
1683	}
1684	anon_vma_unlock(anon_vma);
1685	return ret;
1686}
1687
1688static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1689		struct vm_area_struct *, unsigned long, void *), void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
1690{
1691	struct address_space *mapping = page->mapping;
1692	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1693	struct vm_area_struct *vma;
1694	struct prio_tree_iter iter;
1695	int ret = SWAP_AGAIN;
1696
 
 
 
 
 
 
 
 
1697	if (!mapping)
1698		return ret;
1699	mutex_lock(&mapping->i_mmap_mutex);
1700	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1701		unsigned long address = vma_address(page, vma);
1702		if (address == -EFAULT)
 
1703			continue;
1704		ret = rmap_one(page, vma, address, arg);
 
1705		if (ret != SWAP_AGAIN)
1706			break;
 
 
1707	}
1708	/*
1709	 * No nonlinear handling: being always shared, nonlinear vmas
1710	 * never contain migration ptes.  Decide what to do about this
1711	 * limitation to linear when we need rmap_walk() on nonlinear.
1712	 */
 
 
 
 
 
1713	mutex_unlock(&mapping->i_mmap_mutex);
1714	return ret;
1715}
1716
1717int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1718		struct vm_area_struct *, unsigned long, void *), void *arg)
1719{
1720	VM_BUG_ON(!PageLocked(page));
1721
1722	if (unlikely(PageKsm(page)))
1723		return rmap_walk_ksm(page, rmap_one, arg);
1724	else if (PageAnon(page))
1725		return rmap_walk_anon(page, rmap_one, arg);
1726	else
1727		return rmap_walk_file(page, rmap_one, arg);
1728}
1729#endif /* CONFIG_MIGRATION */
1730
1731#ifdef CONFIG_HUGETLB_PAGE
1732/*
1733 * The following three functions are for anonymous (private mapped) hugepages.
1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735 * and no lru code, because we handle hugepages differently from common pages.
1736 */
1737static void __hugepage_set_anon_rmap(struct page *page,
1738	struct vm_area_struct *vma, unsigned long address, int exclusive)
1739{
1740	struct anon_vma *anon_vma = vma->anon_vma;
1741
1742	BUG_ON(!anon_vma);
1743
1744	if (PageAnon(page))
1745		return;
1746	if (!exclusive)
1747		anon_vma = anon_vma->root;
1748
1749	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1750	page->mapping = (struct address_space *) anon_vma;
1751	page->index = linear_page_index(vma, address);
1752}
1753
1754void hugepage_add_anon_rmap(struct page *page,
1755			    struct vm_area_struct *vma, unsigned long address)
1756{
1757	struct anon_vma *anon_vma = vma->anon_vma;
1758	int first;
1759
1760	BUG_ON(!PageLocked(page));
1761	BUG_ON(!anon_vma);
1762	/* address might be in next vma when migration races vma_adjust */
1763	first = atomic_inc_and_test(&page->_mapcount);
1764	if (first)
1765		__hugepage_set_anon_rmap(page, vma, address, 0);
1766}
1767
1768void hugepage_add_new_anon_rmap(struct page *page,
1769			struct vm_area_struct *vma, unsigned long address)
1770{
1771	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1772	atomic_set(&page->_mapcount, 0);
1773	__hugepage_set_anon_rmap(page, vma, address, 1);
1774}
1775#endif /* CONFIG_HUGETLB_PAGE */
v3.15
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       mapping->i_mmap_mutex
  27 *         anon_vma->rwsem
  28 *           mm->page_table_lock or pte_lock
  29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30 *             swap_lock (in swap_duplicate, swap_info_get)
  31 *               mmlist_lock (in mmput, drain_mmlist and others)
  32 *               mapping->private_lock (in __set_page_dirty_buffers)
  33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
  36 *                 mapping->tree_lock (widely used, in set_page_dirty,
  37 *                           in arch-dependent flush_dcache_mmap_lock,
  38 *                           within bdi.wb->list_lock in __sync_single_inode)
  39 *
  40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  41 *   ->tasklist_lock
  42 *     pte map lock
  43 */
  44
  45#include <linux/mm.h>
  46#include <linux/pagemap.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/slab.h>
  50#include <linux/init.h>
  51#include <linux/ksm.h>
  52#include <linux/rmap.h>
  53#include <linux/rcupdate.h>
  54#include <linux/export.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/migrate.h>
  58#include <linux/hugetlb.h>
  59#include <linux/backing-dev.h>
  60
  61#include <asm/tlbflush.h>
  62
  63#include "internal.h"
  64
  65static struct kmem_cache *anon_vma_cachep;
  66static struct kmem_cache *anon_vma_chain_cachep;
  67
  68static inline struct anon_vma *anon_vma_alloc(void)
  69{
  70	struct anon_vma *anon_vma;
  71
  72	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  73	if (anon_vma) {
  74		atomic_set(&anon_vma->refcount, 1);
  75		/*
  76		 * Initialise the anon_vma root to point to itself. If called
  77		 * from fork, the root will be reset to the parents anon_vma.
  78		 */
  79		anon_vma->root = anon_vma;
  80	}
  81
  82	return anon_vma;
  83}
  84
  85static inline void anon_vma_free(struct anon_vma *anon_vma)
  86{
  87	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  88
  89	/*
  90	 * Synchronize against page_lock_anon_vma_read() such that
  91	 * we can safely hold the lock without the anon_vma getting
  92	 * freed.
  93	 *
  94	 * Relies on the full mb implied by the atomic_dec_and_test() from
  95	 * put_anon_vma() against the acquire barrier implied by
  96	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  97	 *
  98	 * page_lock_anon_vma_read()	VS	put_anon_vma()
  99	 *   down_read_trylock()		  atomic_dec_and_test()
 100	 *   LOCK				  MB
 101	 *   atomic_read()			  rwsem_is_locked()
 102	 *
 103	 * LOCK should suffice since the actual taking of the lock must
 104	 * happen _before_ what follows.
 105	 */
 106	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 107		anon_vma_lock_write(anon_vma);
 108		anon_vma_unlock_write(anon_vma);
 109	}
 110
 111	kmem_cache_free(anon_vma_cachep, anon_vma);
 112}
 113
 114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 115{
 116	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 117}
 118
 119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 120{
 121	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 122}
 123
 124static void anon_vma_chain_link(struct vm_area_struct *vma,
 125				struct anon_vma_chain *avc,
 126				struct anon_vma *anon_vma)
 127{
 128	avc->vma = vma;
 129	avc->anon_vma = anon_vma;
 130	list_add(&avc->same_vma, &vma->anon_vma_chain);
 131	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 132}
 133
 134/**
 135 * anon_vma_prepare - attach an anon_vma to a memory region
 136 * @vma: the memory region in question
 137 *
 138 * This makes sure the memory mapping described by 'vma' has
 139 * an 'anon_vma' attached to it, so that we can associate the
 140 * anonymous pages mapped into it with that anon_vma.
 141 *
 142 * The common case will be that we already have one, but if
 143 * not we either need to find an adjacent mapping that we
 144 * can re-use the anon_vma from (very common when the only
 145 * reason for splitting a vma has been mprotect()), or we
 146 * allocate a new one.
 147 *
 148 * Anon-vma allocations are very subtle, because we may have
 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 150 * and that may actually touch the spinlock even in the newly
 151 * allocated vma (it depends on RCU to make sure that the
 152 * anon_vma isn't actually destroyed).
 153 *
 154 * As a result, we need to do proper anon_vma locking even
 155 * for the new allocation. At the same time, we do not want
 156 * to do any locking for the common case of already having
 157 * an anon_vma.
 158 *
 159 * This must be called with the mmap_sem held for reading.
 160 */
 161int anon_vma_prepare(struct vm_area_struct *vma)
 162{
 163	struct anon_vma *anon_vma = vma->anon_vma;
 164	struct anon_vma_chain *avc;
 165
 166	might_sleep();
 167	if (unlikely(!anon_vma)) {
 168		struct mm_struct *mm = vma->vm_mm;
 169		struct anon_vma *allocated;
 170
 171		avc = anon_vma_chain_alloc(GFP_KERNEL);
 172		if (!avc)
 173			goto out_enomem;
 174
 175		anon_vma = find_mergeable_anon_vma(vma);
 176		allocated = NULL;
 177		if (!anon_vma) {
 178			anon_vma = anon_vma_alloc();
 179			if (unlikely(!anon_vma))
 180				goto out_enomem_free_avc;
 181			allocated = anon_vma;
 182		}
 183
 184		anon_vma_lock_write(anon_vma);
 185		/* page_table_lock to protect against threads */
 186		spin_lock(&mm->page_table_lock);
 187		if (likely(!vma->anon_vma)) {
 188			vma->anon_vma = anon_vma;
 189			anon_vma_chain_link(vma, avc, anon_vma);
 
 
 
 190			allocated = NULL;
 191			avc = NULL;
 192		}
 193		spin_unlock(&mm->page_table_lock);
 194		anon_vma_unlock_write(anon_vma);
 195
 196		if (unlikely(allocated))
 197			put_anon_vma(allocated);
 198		if (unlikely(avc))
 199			anon_vma_chain_free(avc);
 200	}
 201	return 0;
 202
 203 out_enomem_free_avc:
 204	anon_vma_chain_free(avc);
 205 out_enomem:
 206	return -ENOMEM;
 207}
 208
 209/*
 210 * This is a useful helper function for locking the anon_vma root as
 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 212 * have the same vma.
 213 *
 214 * Such anon_vma's should have the same root, so you'd expect to see
 215 * just a single mutex_lock for the whole traversal.
 216 */
 217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 218{
 219	struct anon_vma *new_root = anon_vma->root;
 220	if (new_root != root) {
 221		if (WARN_ON_ONCE(root))
 222			up_write(&root->rwsem);
 223		root = new_root;
 224		down_write(&root->rwsem);
 225	}
 226	return root;
 227}
 228
 229static inline void unlock_anon_vma_root(struct anon_vma *root)
 230{
 231	if (root)
 232		up_write(&root->rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235/*
 236 * Attach the anon_vmas from src to dst.
 237 * Returns 0 on success, -ENOMEM on failure.
 238 */
 239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 240{
 241	struct anon_vma_chain *avc, *pavc;
 242	struct anon_vma *root = NULL;
 243
 244	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 245		struct anon_vma *anon_vma;
 246
 247		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 248		if (unlikely(!avc)) {
 249			unlock_anon_vma_root(root);
 250			root = NULL;
 251			avc = anon_vma_chain_alloc(GFP_KERNEL);
 252			if (!avc)
 253				goto enomem_failure;
 254		}
 255		anon_vma = pavc->anon_vma;
 256		root = lock_anon_vma_root(root, anon_vma);
 257		anon_vma_chain_link(dst, avc, anon_vma);
 258	}
 259	unlock_anon_vma_root(root);
 260	return 0;
 261
 262 enomem_failure:
 263	unlink_anon_vmas(dst);
 264	return -ENOMEM;
 265}
 266
 267/*
 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 269 * the corresponding VMA in the parent process is attached to.
 270 * Returns 0 on success, non-zero on failure.
 271 */
 272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 273{
 274	struct anon_vma_chain *avc;
 275	struct anon_vma *anon_vma;
 276
 277	/* Don't bother if the parent process has no anon_vma here. */
 278	if (!pvma->anon_vma)
 279		return 0;
 280
 281	/*
 282	 * First, attach the new VMA to the parent VMA's anon_vmas,
 283	 * so rmap can find non-COWed pages in child processes.
 284	 */
 285	if (anon_vma_clone(vma, pvma))
 286		return -ENOMEM;
 287
 288	/* Then add our own anon_vma. */
 289	anon_vma = anon_vma_alloc();
 290	if (!anon_vma)
 291		goto out_error;
 292	avc = anon_vma_chain_alloc(GFP_KERNEL);
 293	if (!avc)
 294		goto out_error_free_anon_vma;
 295
 296	/*
 297	 * The root anon_vma's spinlock is the lock actually used when we
 298	 * lock any of the anon_vmas in this anon_vma tree.
 299	 */
 300	anon_vma->root = pvma->anon_vma->root;
 301	/*
 302	 * With refcounts, an anon_vma can stay around longer than the
 303	 * process it belongs to. The root anon_vma needs to be pinned until
 304	 * this anon_vma is freed, because the lock lives in the root.
 305	 */
 306	get_anon_vma(anon_vma->root);
 307	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 308	vma->anon_vma = anon_vma;
 309	anon_vma_lock_write(anon_vma);
 310	anon_vma_chain_link(vma, avc, anon_vma);
 311	anon_vma_unlock_write(anon_vma);
 312
 313	return 0;
 314
 315 out_error_free_anon_vma:
 316	put_anon_vma(anon_vma);
 317 out_error:
 318	unlink_anon_vmas(vma);
 319	return -ENOMEM;
 320}
 321
 322void unlink_anon_vmas(struct vm_area_struct *vma)
 323{
 324	struct anon_vma_chain *avc, *next;
 325	struct anon_vma *root = NULL;
 326
 327	/*
 328	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 329	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 330	 */
 331	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 332		struct anon_vma *anon_vma = avc->anon_vma;
 333
 334		root = lock_anon_vma_root(root, anon_vma);
 335		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 336
 337		/*
 338		 * Leave empty anon_vmas on the list - we'll need
 339		 * to free them outside the lock.
 340		 */
 341		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
 342			continue;
 343
 344		list_del(&avc->same_vma);
 345		anon_vma_chain_free(avc);
 346	}
 347	unlock_anon_vma_root(root);
 348
 349	/*
 350	 * Iterate the list once more, it now only contains empty and unlinked
 351	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 352	 * needing to write-acquire the anon_vma->root->rwsem.
 353	 */
 354	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 355		struct anon_vma *anon_vma = avc->anon_vma;
 356
 357		put_anon_vma(anon_vma);
 358
 359		list_del(&avc->same_vma);
 360		anon_vma_chain_free(avc);
 361	}
 362}
 363
 364static void anon_vma_ctor(void *data)
 365{
 366	struct anon_vma *anon_vma = data;
 367
 368	init_rwsem(&anon_vma->rwsem);
 369	atomic_set(&anon_vma->refcount, 0);
 370	anon_vma->rb_root = RB_ROOT;
 371}
 372
 373void __init anon_vma_init(void)
 374{
 375	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 376			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
 377	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
 378}
 379
 380/*
 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 382 *
 383 * Since there is no serialization what so ever against page_remove_rmap()
 384 * the best this function can do is return a locked anon_vma that might
 385 * have been relevant to this page.
 386 *
 387 * The page might have been remapped to a different anon_vma or the anon_vma
 388 * returned may already be freed (and even reused).
 389 *
 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 392 * ensure that any anon_vma obtained from the page will still be valid for as
 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 394 *
 395 * All users of this function must be very careful when walking the anon_vma
 396 * chain and verify that the page in question is indeed mapped in it
 397 * [ something equivalent to page_mapped_in_vma() ].
 398 *
 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 400 * that the anon_vma pointer from page->mapping is valid if there is a
 401 * mapcount, we can dereference the anon_vma after observing those.
 402 */
 403struct anon_vma *page_get_anon_vma(struct page *page)
 404{
 405	struct anon_vma *anon_vma = NULL;
 406	unsigned long anon_mapping;
 407
 408	rcu_read_lock();
 409	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 410	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 411		goto out;
 412	if (!page_mapped(page))
 413		goto out;
 414
 415	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 416	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 417		anon_vma = NULL;
 418		goto out;
 419	}
 420
 421	/*
 422	 * If this page is still mapped, then its anon_vma cannot have been
 423	 * freed.  But if it has been unmapped, we have no security against the
 424	 * anon_vma structure being freed and reused (for another anon_vma:
 425	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 426	 * above cannot corrupt).
 427	 */
 428	if (!page_mapped(page)) {
 429		put_anon_vma(anon_vma);
 430		anon_vma = NULL;
 431	}
 432out:
 433	rcu_read_unlock();
 434
 435	return anon_vma;
 436}
 437
 438/*
 439 * Similar to page_get_anon_vma() except it locks the anon_vma.
 440 *
 441 * Its a little more complex as it tries to keep the fast path to a single
 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 443 * reference like with page_get_anon_vma() and then block on the mutex.
 444 */
 445struct anon_vma *page_lock_anon_vma_read(struct page *page)
 446{
 447	struct anon_vma *anon_vma = NULL;
 448	struct anon_vma *root_anon_vma;
 449	unsigned long anon_mapping;
 450
 451	rcu_read_lock();
 452	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
 453	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 454		goto out;
 455	if (!page_mapped(page))
 456		goto out;
 457
 458	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 459	root_anon_vma = ACCESS_ONCE(anon_vma->root);
 460	if (down_read_trylock(&root_anon_vma->rwsem)) {
 461		/*
 462		 * If the page is still mapped, then this anon_vma is still
 463		 * its anon_vma, and holding the mutex ensures that it will
 464		 * not go away, see anon_vma_free().
 465		 */
 466		if (!page_mapped(page)) {
 467			up_read(&root_anon_vma->rwsem);
 468			anon_vma = NULL;
 469		}
 470		goto out;
 471	}
 472
 473	/* trylock failed, we got to sleep */
 474	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 475		anon_vma = NULL;
 476		goto out;
 477	}
 478
 479	if (!page_mapped(page)) {
 480		put_anon_vma(anon_vma);
 481		anon_vma = NULL;
 482		goto out;
 483	}
 484
 485	/* we pinned the anon_vma, its safe to sleep */
 486	rcu_read_unlock();
 487	anon_vma_lock_read(anon_vma);
 488
 489	if (atomic_dec_and_test(&anon_vma->refcount)) {
 490		/*
 491		 * Oops, we held the last refcount, release the lock
 492		 * and bail -- can't simply use put_anon_vma() because
 493		 * we'll deadlock on the anon_vma_lock_write() recursion.
 494		 */
 495		anon_vma_unlock_read(anon_vma);
 496		__put_anon_vma(anon_vma);
 497		anon_vma = NULL;
 498	}
 499
 500	return anon_vma;
 501
 502out:
 503	rcu_read_unlock();
 504	return anon_vma;
 505}
 506
 507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 508{
 509	anon_vma_unlock_read(anon_vma);
 510}
 511
 512/*
 513 * At what user virtual address is page expected in @vma?
 
 
 514 */
 515static inline unsigned long
 516__vma_address(struct page *page, struct vm_area_struct *vma)
 517{
 518	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 
 519
 520	if (unlikely(is_vm_hugetlb_page(vma)))
 521		pgoff = page->index << huge_page_order(page_hstate(page));
 522
 523	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 524}
 525
 526inline unsigned long
 527vma_address(struct page *page, struct vm_area_struct *vma)
 528{
 529	unsigned long address = __vma_address(page, vma);
 530
 531	/* page should be within @vma mapping range */
 532	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 533
 534	return address;
 535}
 536
 537/*
 538 * At what user virtual address is page expected in vma?
 539 * Caller should check the page is actually part of the vma.
 540 */
 541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 542{
 543	unsigned long address;
 544	if (PageAnon(page)) {
 545		struct anon_vma *page__anon_vma = page_anon_vma(page);
 546		/*
 547		 * Note: swapoff's unuse_vma() is more efficient with this
 548		 * check, and needs it to match anon_vma when KSM is active.
 549		 */
 550		if (!vma->anon_vma || !page__anon_vma ||
 551		    vma->anon_vma->root != page__anon_vma->root)
 552			return -EFAULT;
 553	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
 554		if (!vma->vm_file ||
 555		    vma->vm_file->f_mapping != page->mapping)
 556			return -EFAULT;
 557	} else
 558		return -EFAULT;
 559	address = __vma_address(page, vma);
 560	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 561		return -EFAULT;
 562	return address;
 563}
 564
 565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 566{
 567	pgd_t *pgd;
 568	pud_t *pud;
 569	pmd_t *pmd = NULL;
 570
 571	pgd = pgd_offset(mm, address);
 572	if (!pgd_present(*pgd))
 573		goto out;
 574
 575	pud = pud_offset(pgd, address);
 576	if (!pud_present(*pud))
 577		goto out;
 578
 579	pmd = pmd_offset(pud, address);
 580	if (!pmd_present(*pmd))
 581		pmd = NULL;
 582out:
 583	return pmd;
 584}
 585
 586/*
 587 * Check that @page is mapped at @address into @mm.
 588 *
 589 * If @sync is false, page_check_address may perform a racy check to avoid
 590 * the page table lock when the pte is not present (helpful when reclaiming
 591 * highly shared pages).
 592 *
 593 * On success returns with pte mapped and locked.
 594 */
 595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 596			  unsigned long address, spinlock_t **ptlp, int sync)
 597{
 
 
 598	pmd_t *pmd;
 599	pte_t *pte;
 600	spinlock_t *ptl;
 601
 602	if (unlikely(PageHuge(page))) {
 603		/* when pud is not present, pte will be NULL */
 604		pte = huge_pte_offset(mm, address);
 605		if (!pte)
 606			return NULL;
 607
 608		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 609		goto check;
 610	}
 611
 612	pmd = mm_find_pmd(mm, address);
 613	if (!pmd)
 
 
 
 
 614		return NULL;
 615
 
 
 
 616	if (pmd_trans_huge(*pmd))
 617		return NULL;
 618
 619	pte = pte_offset_map(pmd, address);
 620	/* Make a quick check before getting the lock */
 621	if (!sync && !pte_present(*pte)) {
 622		pte_unmap(pte);
 623		return NULL;
 624	}
 625
 626	ptl = pte_lockptr(mm, pmd);
 627check:
 628	spin_lock(ptl);
 629	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 630		*ptlp = ptl;
 631		return pte;
 632	}
 633	pte_unmap_unlock(pte, ptl);
 634	return NULL;
 635}
 636
 637/**
 638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 639 * @page: the page to test
 640 * @vma: the VMA to test
 641 *
 642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 643 * if the page is not mapped into the page tables of this VMA.  Only
 644 * valid for normal file or anonymous VMAs.
 645 */
 646int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 647{
 648	unsigned long address;
 649	pte_t *pte;
 650	spinlock_t *ptl;
 651
 652	address = __vma_address(page, vma);
 653	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 654		return 0;
 655	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 656	if (!pte)			/* the page is not in this mm */
 657		return 0;
 658	pte_unmap_unlock(pte, ptl);
 659
 660	return 1;
 661}
 662
 663struct page_referenced_arg {
 664	int mapcount;
 665	int referenced;
 666	unsigned long vm_flags;
 667	struct mem_cgroup *memcg;
 668};
 669/*
 670 * arg: page_referenced_arg will be passed
 
 671 */
 672int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 673			unsigned long address, void *arg)
 
 674{
 675	struct mm_struct *mm = vma->vm_mm;
 676	spinlock_t *ptl;
 677	int referenced = 0;
 678	struct page_referenced_arg *pra = arg;
 679
 680	if (unlikely(PageTransHuge(page))) {
 681		pmd_t *pmd;
 682
 
 683		/*
 684		 * rmap might return false positives; we must filter
 685		 * these out using page_check_address_pmd().
 686		 */
 687		pmd = page_check_address_pmd(page, mm, address,
 688					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
 689		if (!pmd)
 690			return SWAP_AGAIN;
 
 
 691
 692		if (vma->vm_flags & VM_LOCKED) {
 693			spin_unlock(ptl);
 694			pra->vm_flags |= VM_LOCKED;
 695			return SWAP_FAIL; /* To break the loop */
 
 696		}
 697
 698		/* go ahead even if the pmd is pmd_trans_splitting() */
 699		if (pmdp_clear_flush_young_notify(vma, address, pmd))
 700			referenced++;
 701		spin_unlock(ptl);
 702	} else {
 703		pte_t *pte;
 
 704
 705		/*
 706		 * rmap might return false positives; we must filter
 707		 * these out using page_check_address().
 708		 */
 709		pte = page_check_address(page, mm, address, &ptl, 0);
 710		if (!pte)
 711			return SWAP_AGAIN;
 712
 713		if (vma->vm_flags & VM_LOCKED) {
 714			pte_unmap_unlock(pte, ptl);
 715			pra->vm_flags |= VM_LOCKED;
 716			return SWAP_FAIL; /* To break the loop */
 
 717		}
 718
 719		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 720			/*
 721			 * Don't treat a reference through a sequentially read
 722			 * mapping as such.  If the page has been used in
 723			 * another mapping, we will catch it; if this other
 724			 * mapping is already gone, the unmap path will have
 725			 * set PG_referenced or activated the page.
 726			 */
 727			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 728				referenced++;
 729		}
 730		pte_unmap_unlock(pte, ptl);
 731	}
 732
 733	if (referenced) {
 734		pra->referenced++;
 735		pra->vm_flags |= vma->vm_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736	}
 737
 738	pra->mapcount--;
 739	if (!pra->mapcount)
 740		return SWAP_SUCCESS; /* To break the loop */
 741
 742	return SWAP_AGAIN;
 743}
 744
 745static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746{
 747	struct page_referenced_arg *pra = arg;
 748	struct mem_cgroup *memcg = pra->memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749
 750	if (!mm_match_cgroup(vma->vm_mm, memcg))
 751		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	return false;
 
 754}
 755
 756/**
 757 * page_referenced - test if the page was referenced
 758 * @page: the page to test
 759 * @is_locked: caller holds lock on the page
 760 * @memcg: target memory cgroup
 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 762 *
 763 * Quick test_and_clear_referenced for all mappings to a page,
 764 * returns the number of ptes which referenced the page.
 765 */
 766int page_referenced(struct page *page,
 767		    int is_locked,
 768		    struct mem_cgroup *memcg,
 769		    unsigned long *vm_flags)
 770{
 771	int ret;
 772	int we_locked = 0;
 773	struct page_referenced_arg pra = {
 774		.mapcount = page_mapcount(page),
 775		.memcg = memcg,
 776	};
 777	struct rmap_walk_control rwc = {
 778		.rmap_one = page_referenced_one,
 779		.arg = (void *)&pra,
 780		.anon_lock = page_lock_anon_vma_read,
 781	};
 782
 783	*vm_flags = 0;
 784	if (!page_mapped(page))
 785		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786
 787	if (!page_rmapping(page))
 788		return 0;
 789
 790	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 791		we_locked = trylock_page(page);
 792		if (!we_locked)
 793			return 1;
 794	}
 795
 796	/*
 797	 * If we are reclaiming on behalf of a cgroup, skip
 798	 * counting on behalf of references from different
 799	 * cgroups
 800	 */
 801	if (memcg) {
 802		rwc.invalid_vma = invalid_page_referenced_vma;
 803	}
 804
 805	ret = rmap_walk(page, &rwc);
 806	*vm_flags = pra.vm_flags;
 807
 808	if (we_locked)
 809		unlock_page(page);
 810
 811	return pra.referenced;
 812}
 813
 814static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 815			    unsigned long address, void *arg)
 816{
 817	struct mm_struct *mm = vma->vm_mm;
 818	pte_t *pte;
 819	spinlock_t *ptl;
 820	int ret = 0;
 821	int *cleaned = arg;
 822
 823	pte = page_check_address(page, mm, address, &ptl, 1);
 824	if (!pte)
 825		goto out;
 826
 827	if (pte_dirty(*pte) || pte_write(*pte)) {
 828		pte_t entry;
 829
 830		flush_cache_page(vma, address, pte_pfn(*pte));
 831		entry = ptep_clear_flush(vma, address, pte);
 832		entry = pte_wrprotect(entry);
 833		entry = pte_mkclean(entry);
 834		set_pte_at(mm, address, pte, entry);
 835		ret = 1;
 836	}
 837
 838	pte_unmap_unlock(pte, ptl);
 839
 840	if (ret) {
 841		mmu_notifier_invalidate_page(mm, address);
 842		(*cleaned)++;
 843	}
 844out:
 845	return SWAP_AGAIN;
 846}
 847
 848static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 849{
 850	if (vma->vm_flags & VM_SHARED)
 851		return false;
 
 
 
 
 852
 853	return true;
 
 
 
 
 
 
 
 
 
 
 854}
 855
 856int page_mkclean(struct page *page)
 857{
 858	int cleaned = 0;
 859	struct address_space *mapping;
 860	struct rmap_walk_control rwc = {
 861		.arg = (void *)&cleaned,
 862		.rmap_one = page_mkclean_one,
 863		.invalid_vma = invalid_mkclean_vma,
 864	};
 865
 866	BUG_ON(!PageLocked(page));
 867
 868	if (!page_mapped(page))
 869		return 0;
 
 
 
 
 
 
 870
 871	mapping = page_mapping(page);
 872	if (!mapping)
 873		return 0;
 874
 875	rmap_walk(page, &rwc);
 876
 877	return cleaned;
 878}
 879EXPORT_SYMBOL_GPL(page_mkclean);
 880
 881/**
 882 * page_move_anon_rmap - move a page to our anon_vma
 883 * @page:	the page to move to our anon_vma
 884 * @vma:	the vma the page belongs to
 885 * @address:	the user virtual address mapped
 886 *
 887 * When a page belongs exclusively to one process after a COW event,
 888 * that page can be moved into the anon_vma that belongs to just that
 889 * process, so the rmap code will not search the parent or sibling
 890 * processes.
 891 */
 892void page_move_anon_rmap(struct page *page,
 893	struct vm_area_struct *vma, unsigned long address)
 894{
 895	struct anon_vma *anon_vma = vma->anon_vma;
 896
 897	VM_BUG_ON_PAGE(!PageLocked(page), page);
 898	VM_BUG_ON(!anon_vma);
 899	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
 900
 901	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 902	page->mapping = (struct address_space *) anon_vma;
 903}
 904
 905/**
 906 * __page_set_anon_rmap - set up new anonymous rmap
 907 * @page:	Page to add to rmap	
 908 * @vma:	VM area to add page to.
 909 * @address:	User virtual address of the mapping	
 910 * @exclusive:	the page is exclusively owned by the current process
 911 */
 912static void __page_set_anon_rmap(struct page *page,
 913	struct vm_area_struct *vma, unsigned long address, int exclusive)
 914{
 915	struct anon_vma *anon_vma = vma->anon_vma;
 916
 917	BUG_ON(!anon_vma);
 918
 919	if (PageAnon(page))
 920		return;
 921
 922	/*
 923	 * If the page isn't exclusively mapped into this vma,
 924	 * we must use the _oldest_ possible anon_vma for the
 925	 * page mapping!
 926	 */
 927	if (!exclusive)
 928		anon_vma = anon_vma->root;
 929
 930	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 931	page->mapping = (struct address_space *) anon_vma;
 932	page->index = linear_page_index(vma, address);
 933}
 934
 935/**
 936 * __page_check_anon_rmap - sanity check anonymous rmap addition
 937 * @page:	the page to add the mapping to
 938 * @vma:	the vm area in which the mapping is added
 939 * @address:	the user virtual address mapped
 940 */
 941static void __page_check_anon_rmap(struct page *page,
 942	struct vm_area_struct *vma, unsigned long address)
 943{
 944#ifdef CONFIG_DEBUG_VM
 945	/*
 946	 * The page's anon-rmap details (mapping and index) are guaranteed to
 947	 * be set up correctly at this point.
 948	 *
 949	 * We have exclusion against page_add_anon_rmap because the caller
 950	 * always holds the page locked, except if called from page_dup_rmap,
 951	 * in which case the page is already known to be setup.
 952	 *
 953	 * We have exclusion against page_add_new_anon_rmap because those pages
 954	 * are initially only visible via the pagetables, and the pte is locked
 955	 * over the call to page_add_new_anon_rmap.
 956	 */
 957	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
 958	BUG_ON(page->index != linear_page_index(vma, address));
 959#endif
 960}
 961
 962/**
 963 * page_add_anon_rmap - add pte mapping to an anonymous page
 964 * @page:	the page to add the mapping to
 965 * @vma:	the vm area in which the mapping is added
 966 * @address:	the user virtual address mapped
 967 *
 968 * The caller needs to hold the pte lock, and the page must be locked in
 969 * the anon_vma case: to serialize mapping,index checking after setting,
 970 * and to ensure that PageAnon is not being upgraded racily to PageKsm
 971 * (but PageKsm is never downgraded to PageAnon).
 972 */
 973void page_add_anon_rmap(struct page *page,
 974	struct vm_area_struct *vma, unsigned long address)
 975{
 976	do_page_add_anon_rmap(page, vma, address, 0);
 977}
 978
 979/*
 980 * Special version of the above for do_swap_page, which often runs
 981 * into pages that are exclusively owned by the current process.
 982 * Everybody else should continue to use page_add_anon_rmap above.
 983 */
 984void do_page_add_anon_rmap(struct page *page,
 985	struct vm_area_struct *vma, unsigned long address, int exclusive)
 986{
 987	int first = atomic_inc_and_test(&page->_mapcount);
 988	if (first) {
 989		if (PageTransHuge(page))
 
 
 990			__inc_zone_page_state(page,
 991					      NR_ANON_TRANSPARENT_HUGEPAGES);
 992		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
 993				hpage_nr_pages(page));
 994	}
 995	if (unlikely(PageKsm(page)))
 996		return;
 997
 998	VM_BUG_ON_PAGE(!PageLocked(page), page);
 999	/* address might be in next vma when migration races vma_adjust */
1000	if (first)
1001		__page_set_anon_rmap(page, vma, address, exclusive);
1002	else
1003		__page_check_anon_rmap(page, vma, address);
1004}
1005
1006/**
1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008 * @page:	the page to add the mapping to
1009 * @vma:	the vm area in which the mapping is added
1010 * @address:	the user virtual address mapped
1011 *
1012 * Same as page_add_anon_rmap but must only be called on *new* pages.
1013 * This means the inc-and-test can be bypassed.
1014 * Page does not have to be locked.
1015 */
1016void page_add_new_anon_rmap(struct page *page,
1017	struct vm_area_struct *vma, unsigned long address)
1018{
1019	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1020	SetPageSwapBacked(page);
1021	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1022	if (PageTransHuge(page))
 
 
1023		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1024	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1025			hpage_nr_pages(page));
1026	__page_set_anon_rmap(page, vma, address, 1);
1027	if (!mlocked_vma_newpage(vma, page)) {
1028		SetPageActive(page);
1029		lru_cache_add(page);
1030	} else
1031		add_page_to_unevictable_list(page);
1032}
1033
1034/**
1035 * page_add_file_rmap - add pte mapping to a file page
1036 * @page: the page to add the mapping to
1037 *
1038 * The caller needs to hold the pte lock.
1039 */
1040void page_add_file_rmap(struct page *page)
1041{
1042	bool locked;
1043	unsigned long flags;
1044
1045	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1046	if (atomic_inc_and_test(&page->_mapcount)) {
1047		__inc_zone_page_state(page, NR_FILE_MAPPED);
1048		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1049	}
1050	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1051}
1052
1053/**
1054 * page_remove_rmap - take down pte mapping from a page
1055 * @page: page to remove mapping from
1056 *
1057 * The caller needs to hold the pte lock.
1058 */
1059void page_remove_rmap(struct page *page)
1060{
1061	bool anon = PageAnon(page);
1062	bool locked;
1063	unsigned long flags;
1064
1065	/*
1066	 * The anon case has no mem_cgroup page_stat to update; but may
1067	 * uncharge_page() below, where the lock ordering can deadlock if
1068	 * we hold the lock against page_stat move: so avoid it on anon.
 
 
1069	 */
1070	if (!anon)
1071		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072
1073	/* page still mapped by someone else? */
1074	if (!atomic_add_negative(-1, &page->_mapcount))
1075		goto out;
1076
1077	/*
1078	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079	 * and not charged by memcg for now.
1080	 */
1081	if (unlikely(PageHuge(page)))
1082		goto out;
1083	if (anon) {
1084		mem_cgroup_uncharge_page(page);
1085		if (PageTransHuge(page))
 
 
1086			__dec_zone_page_state(page,
1087					      NR_ANON_TRANSPARENT_HUGEPAGES);
1088		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089				-hpage_nr_pages(page));
1090	} else {
1091		__dec_zone_page_state(page, NR_FILE_MAPPED);
1092		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1093		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1094	}
1095	if (unlikely(PageMlocked(page)))
1096		clear_page_mlock(page);
1097	/*
1098	 * It would be tidy to reset the PageAnon mapping here,
1099	 * but that might overwrite a racing page_add_anon_rmap
1100	 * which increments mapcount after us but sets mapping
1101	 * before us: so leave the reset to free_hot_cold_page,
1102	 * and remember that it's only reliable while mapped.
1103	 * Leaving it set also helps swapoff to reinstate ptes
1104	 * faster for those pages still in swapcache.
1105	 */
1106	return;
1107out:
1108	if (!anon)
1109		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110}
1111
1112/*
1113 * @arg: enum ttu_flags will be passed to this argument
 
1114 */
1115int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1116		     unsigned long address, void *arg)
1117{
1118	struct mm_struct *mm = vma->vm_mm;
1119	pte_t *pte;
1120	pte_t pteval;
1121	spinlock_t *ptl;
1122	int ret = SWAP_AGAIN;
1123	enum ttu_flags flags = (enum ttu_flags)arg;
1124
1125	pte = page_check_address(page, mm, address, &ptl, 0);
1126	if (!pte)
1127		goto out;
1128
1129	/*
1130	 * If the page is mlock()d, we cannot swap it out.
1131	 * If it's recently referenced (perhaps page_referenced
1132	 * skipped over this mm) then we should reactivate it.
1133	 */
1134	if (!(flags & TTU_IGNORE_MLOCK)) {
1135		if (vma->vm_flags & VM_LOCKED)
1136			goto out_mlock;
1137
1138		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1139			goto out_unmap;
1140	}
1141	if (!(flags & TTU_IGNORE_ACCESS)) {
1142		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1143			ret = SWAP_FAIL;
1144			goto out_unmap;
1145		}
1146  	}
1147
1148	/* Nuke the page table entry. */
1149	flush_cache_page(vma, address, page_to_pfn(page));
1150	pteval = ptep_clear_flush(vma, address, pte);
1151
1152	/* Move the dirty bit to the physical page now the pte is gone. */
1153	if (pte_dirty(pteval))
1154		set_page_dirty(page);
1155
1156	/* Update high watermark before we lower rss */
1157	update_hiwater_rss(mm);
1158
1159	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1160		if (!PageHuge(page)) {
1161			if (PageAnon(page))
1162				dec_mm_counter(mm, MM_ANONPAGES);
1163			else
1164				dec_mm_counter(mm, MM_FILEPAGES);
1165		}
1166		set_pte_at(mm, address, pte,
1167			   swp_entry_to_pte(make_hwpoison_entry(page)));
1168	} else if (pte_unused(pteval)) {
1169		/*
1170		 * The guest indicated that the page content is of no
1171		 * interest anymore. Simply discard the pte, vmscan
1172		 * will take care of the rest.
1173		 */
1174		if (PageAnon(page))
1175			dec_mm_counter(mm, MM_ANONPAGES);
1176		else
1177			dec_mm_counter(mm, MM_FILEPAGES);
 
 
1178	} else if (PageAnon(page)) {
1179		swp_entry_t entry = { .val = page_private(page) };
1180		pte_t swp_pte;
1181
1182		if (PageSwapCache(page)) {
1183			/*
1184			 * Store the swap location in the pte.
1185			 * See handle_pte_fault() ...
1186			 */
1187			if (swap_duplicate(entry) < 0) {
1188				set_pte_at(mm, address, pte, pteval);
1189				ret = SWAP_FAIL;
1190				goto out_unmap;
1191			}
1192			if (list_empty(&mm->mmlist)) {
1193				spin_lock(&mmlist_lock);
1194				if (list_empty(&mm->mmlist))
1195					list_add(&mm->mmlist, &init_mm.mmlist);
1196				spin_unlock(&mmlist_lock);
1197			}
1198			dec_mm_counter(mm, MM_ANONPAGES);
1199			inc_mm_counter(mm, MM_SWAPENTS);
1200		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1201			/*
1202			 * Store the pfn of the page in a special migration
1203			 * pte. do_swap_page() will wait until the migration
1204			 * pte is removed and then restart fault handling.
1205			 */
1206			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1207			entry = make_migration_entry(page, pte_write(pteval));
1208		}
1209		swp_pte = swp_entry_to_pte(entry);
1210		if (pte_soft_dirty(pteval))
1211			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1212		set_pte_at(mm, address, pte, swp_pte);
1213		BUG_ON(pte_file(*pte));
1214	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1215		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1216		/* Establish migration entry for a file page */
1217		swp_entry_t entry;
1218		entry = make_migration_entry(page, pte_write(pteval));
1219		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1220	} else
1221		dec_mm_counter(mm, MM_FILEPAGES);
1222
1223	page_remove_rmap(page);
1224	page_cache_release(page);
1225
1226out_unmap:
1227	pte_unmap_unlock(pte, ptl);
1228	if (ret != SWAP_FAIL)
1229		mmu_notifier_invalidate_page(mm, address);
1230out:
1231	return ret;
1232
1233out_mlock:
1234	pte_unmap_unlock(pte, ptl);
1235
1236
1237	/*
1238	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1239	 * unstable result and race. Plus, We can't wait here because
1240	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1241	 * if trylock failed, the page remain in evictable lru and later
1242	 * vmscan could retry to move the page to unevictable lru if the
1243	 * page is actually mlocked.
1244	 */
1245	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1246		if (vma->vm_flags & VM_LOCKED) {
1247			mlock_vma_page(page);
1248			ret = SWAP_MLOCK;
1249		}
1250		up_read(&vma->vm_mm->mmap_sem);
1251	}
1252	return ret;
1253}
1254
1255/*
1256 * objrmap doesn't work for nonlinear VMAs because the assumption that
1257 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1258 * Consequently, given a particular page and its ->index, we cannot locate the
1259 * ptes which are mapping that page without an exhaustive linear search.
1260 *
1261 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1262 * maps the file to which the target page belongs.  The ->vm_private_data field
1263 * holds the current cursor into that scan.  Successive searches will circulate
1264 * around the vma's virtual address space.
1265 *
1266 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1267 * more scanning pressure is placed against them as well.   Eventually pages
1268 * will become fully unmapped and are eligible for eviction.
1269 *
1270 * For very sparsely populated VMAs this is a little inefficient - chances are
1271 * there there won't be many ptes located within the scan cluster.  In this case
1272 * maybe we could scan further - to the end of the pte page, perhaps.
1273 *
1274 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1275 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1276 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1277 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1278 */
1279#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1280#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1281
1282static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1283		struct vm_area_struct *vma, struct page *check_page)
1284{
1285	struct mm_struct *mm = vma->vm_mm;
 
 
1286	pmd_t *pmd;
1287	pte_t *pte;
1288	pte_t pteval;
1289	spinlock_t *ptl;
1290	struct page *page;
1291	unsigned long address;
1292	unsigned long mmun_start;	/* For mmu_notifiers */
1293	unsigned long mmun_end;		/* For mmu_notifiers */
1294	unsigned long end;
1295	int ret = SWAP_AGAIN;
1296	int locked_vma = 0;
1297
1298	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1299	end = address + CLUSTER_SIZE;
1300	if (address < vma->vm_start)
1301		address = vma->vm_start;
1302	if (end > vma->vm_end)
1303		end = vma->vm_end;
1304
1305	pmd = mm_find_pmd(mm, address);
1306	if (!pmd)
 
 
 
 
1307		return ret;
1308
1309	mmun_start = address;
1310	mmun_end   = end;
1311	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1312
1313	/*
1314	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1315	 * keep the sem while scanning the cluster for mlocking pages.
1316	 */
1317	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318		locked_vma = (vma->vm_flags & VM_LOCKED);
1319		if (!locked_vma)
1320			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1321	}
1322
1323	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1324
1325	/* Update high watermark before we lower rss */
1326	update_hiwater_rss(mm);
1327
1328	for (; address < end; pte++, address += PAGE_SIZE) {
1329		if (!pte_present(*pte))
1330			continue;
1331		page = vm_normal_page(vma, address, *pte);
1332		BUG_ON(!page || PageAnon(page));
1333
1334		if (locked_vma) {
1335			if (page == check_page) {
1336				/* we know we have check_page locked */
1337				mlock_vma_page(page);
1338				ret = SWAP_MLOCK;
1339			} else if (trylock_page(page)) {
1340				/*
1341				 * If we can lock the page, perform mlock.
1342				 * Otherwise leave the page alone, it will be
1343				 * eventually encountered again later.
1344				 */
1345				mlock_vma_page(page);
1346				unlock_page(page);
1347			}
1348			continue;	/* don't unmap */
1349		}
1350
1351		if (ptep_clear_flush_young_notify(vma, address, pte))
1352			continue;
1353
1354		/* Nuke the page table entry. */
1355		flush_cache_page(vma, address, pte_pfn(*pte));
1356		pteval = ptep_clear_flush(vma, address, pte);
1357
1358		/* If nonlinear, store the file page offset in the pte. */
1359		if (page->index != linear_page_index(vma, address)) {
1360			pte_t ptfile = pgoff_to_pte(page->index);
1361			if (pte_soft_dirty(pteval))
1362				pte_file_mksoft_dirty(ptfile);
1363			set_pte_at(mm, address, pte, ptfile);
1364		}
1365
1366		/* Move the dirty bit to the physical page now the pte is gone. */
1367		if (pte_dirty(pteval))
1368			set_page_dirty(page);
1369
1370		page_remove_rmap(page);
1371		page_cache_release(page);
1372		dec_mm_counter(mm, MM_FILEPAGES);
1373		(*mapcount)--;
1374	}
1375	pte_unmap_unlock(pte - 1, ptl);
1376	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1377	if (locked_vma)
1378		up_read(&vma->vm_mm->mmap_sem);
1379	return ret;
1380}
1381
1382static int try_to_unmap_nonlinear(struct page *page,
1383		struct address_space *mapping, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384{
 
 
1385	struct vm_area_struct *vma;
 
1386	int ret = SWAP_AGAIN;
1387	unsigned long cursor;
1388	unsigned long max_nl_cursor = 0;
1389	unsigned long max_nl_size = 0;
1390	unsigned int mapcount;
1391
1392	list_for_each_entry(vma,
1393		&mapping->i_mmap_nonlinear, shared.nonlinear) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
 
 
1395		cursor = (unsigned long) vma->vm_private_data;
1396		if (cursor > max_nl_cursor)
1397			max_nl_cursor = cursor;
1398		cursor = vma->vm_end - vma->vm_start;
1399		if (cursor > max_nl_size)
1400			max_nl_size = cursor;
1401	}
1402
1403	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1404		return SWAP_FAIL;
 
1405	}
1406
1407	/*
1408	 * We don't try to search for this page in the nonlinear vmas,
1409	 * and page_referenced wouldn't have found it anyway.  Instead
1410	 * just walk the nonlinear vmas trying to age and unmap some.
1411	 * The mapcount of the page we came in with is irrelevant,
1412	 * but even so use it as a guide to how hard we should try?
1413	 */
1414	mapcount = page_mapcount(page);
1415	if (!mapcount)
1416		return ret;
1417
1418	cond_resched();
1419
1420	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1421	if (max_nl_cursor == 0)
1422		max_nl_cursor = CLUSTER_SIZE;
1423
1424	do {
1425		list_for_each_entry(vma,
1426			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1427
1428			cursor = (unsigned long) vma->vm_private_data;
1429			while (cursor < max_nl_cursor &&
1430				cursor < vma->vm_end - vma->vm_start) {
1431				if (try_to_unmap_cluster(cursor, &mapcount,
1432						vma, page) == SWAP_MLOCK)
1433					ret = SWAP_MLOCK;
1434				cursor += CLUSTER_SIZE;
1435				vma->vm_private_data = (void *) cursor;
1436				if ((int)mapcount <= 0)
1437					return ret;
1438			}
1439			vma->vm_private_data = (void *) max_nl_cursor;
1440		}
1441		cond_resched();
1442		max_nl_cursor += CLUSTER_SIZE;
1443	} while (max_nl_cursor <= max_nl_size);
1444
1445	/*
1446	 * Don't loop forever (perhaps all the remaining pages are
1447	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1448	 * vmas, now forgetting on which ones it had fallen behind.
1449	 */
1450	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1451		vma->vm_private_data = NULL;
1452
 
1453	return ret;
1454}
1455
1456bool is_vma_temporary_stack(struct vm_area_struct *vma)
1457{
1458	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459
1460	if (!maybe_stack)
1461		return false;
1462
1463	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464						VM_STACK_INCOMPLETE_SETUP)
1465		return true;
1466
1467	return false;
1468}
1469
1470static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471{
1472	return is_vma_temporary_stack(vma);
1473}
1474
1475static int page_not_mapped(struct page *page)
1476{
1477	return !page_mapped(page);
1478};
1479
1480/**
1481 * try_to_unmap - try to remove all page table mappings to a page
1482 * @page: the page to get unmapped
1483 * @flags: action and flags
1484 *
1485 * Tries to remove all the page table entries which are mapping this
1486 * page, used in the pageout path.  Caller must hold the page lock.
1487 * Return values are:
1488 *
1489 * SWAP_SUCCESS	- we succeeded in removing all mappings
1490 * SWAP_AGAIN	- we missed a mapping, try again later
1491 * SWAP_FAIL	- the page is unswappable
1492 * SWAP_MLOCK	- page is mlocked.
1493 */
1494int try_to_unmap(struct page *page, enum ttu_flags flags)
1495{
1496	int ret;
1497	struct rmap_walk_control rwc = {
1498		.rmap_one = try_to_unmap_one,
1499		.arg = (void *)flags,
1500		.done = page_not_mapped,
1501		.file_nonlinear = try_to_unmap_nonlinear,
1502		.anon_lock = page_lock_anon_vma_read,
1503	};
1504
1505	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1506
1507	/*
1508	 * During exec, a temporary VMA is setup and later moved.
1509	 * The VMA is moved under the anon_vma lock but not the
1510	 * page tables leading to a race where migration cannot
1511	 * find the migration ptes. Rather than increasing the
1512	 * locking requirements of exec(), migration skips
1513	 * temporary VMAs until after exec() completes.
1514	 */
1515	if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1516		rwc.invalid_vma = invalid_migration_vma;
1517
1518	ret = rmap_walk(page, &rwc);
 
1519
 
 
 
 
 
 
1520	if (ret != SWAP_MLOCK && !page_mapped(page))
1521		ret = SWAP_SUCCESS;
1522	return ret;
1523}
1524
1525/**
1526 * try_to_munlock - try to munlock a page
1527 * @page: the page to be munlocked
1528 *
1529 * Called from munlock code.  Checks all of the VMAs mapping the page
1530 * to make sure nobody else has this page mlocked. The page will be
1531 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1532 *
1533 * Return values are:
1534 *
1535 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1536 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1537 * SWAP_FAIL	- page cannot be located at present
1538 * SWAP_MLOCK	- page is now mlocked.
1539 */
1540int try_to_munlock(struct page *page)
1541{
1542	int ret;
1543	struct rmap_walk_control rwc = {
1544		.rmap_one = try_to_unmap_one,
1545		.arg = (void *)TTU_MUNLOCK,
1546		.done = page_not_mapped,
1547		/*
1548		 * We don't bother to try to find the munlocked page in
1549		 * nonlinears. It's costly. Instead, later, page reclaim logic
1550		 * may call try_to_unmap() and recover PG_mlocked lazily.
1551		 */
1552		.file_nonlinear = NULL,
1553		.anon_lock = page_lock_anon_vma_read,
1554
1555	};
1556
1557	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1558
1559	ret = rmap_walk(page, &rwc);
1560	return ret;
1561}
1562
1563void __put_anon_vma(struct anon_vma *anon_vma)
1564{
1565	struct anon_vma *root = anon_vma->root;
1566
1567	anon_vma_free(anon_vma);
1568	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1569		anon_vma_free(root);
 
 
1570}
1571
1572static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1573					struct rmap_walk_control *rwc)
 
 
 
 
 
1574{
1575	struct anon_vma *anon_vma;
1576
1577	if (rwc->anon_lock)
1578		return rwc->anon_lock(page);
1579
1580	/*
1581	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1582	 * because that depends on page_mapped(); but not all its usages
1583	 * are holding mmap_sem. Users without mmap_sem are required to
1584	 * take a reference count to prevent the anon_vma disappearing
1585	 */
1586	anon_vma = page_anon_vma(page);
1587	if (!anon_vma)
1588		return NULL;
1589
1590	anon_vma_lock_read(anon_vma);
1591	return anon_vma;
1592}
1593
1594/*
1595 * rmap_walk_anon - do something to anonymous page using the object-based
1596 * rmap method
1597 * @page: the page to be handled
1598 * @rwc: control variable according to each walk type
1599 *
1600 * Find all the mappings of a page using the mapping pointer and the vma chains
1601 * contained in the anon_vma struct it points to.
1602 *
1603 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1604 * where the page was found will be held for write.  So, we won't recheck
1605 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1606 * LOCKED.
1607 */
1608static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1609{
1610	struct anon_vma *anon_vma;
1611	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1612	struct anon_vma_chain *avc;
1613	int ret = SWAP_AGAIN;
1614
1615	anon_vma = rmap_walk_anon_lock(page, rwc);
1616	if (!anon_vma)
1617		return ret;
1618
1619	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1620		struct vm_area_struct *vma = avc->vma;
1621		unsigned long address = vma_address(page, vma);
1622
1623		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1624			continue;
1625
1626		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1627		if (ret != SWAP_AGAIN)
1628			break;
1629		if (rwc->done && rwc->done(page))
1630			break;
1631	}
1632	anon_vma_unlock_read(anon_vma);
1633	return ret;
1634}
1635
1636/*
1637 * rmap_walk_file - do something to file page using the object-based rmap method
1638 * @page: the page to be handled
1639 * @rwc: control variable according to each walk type
1640 *
1641 * Find all the mappings of a page using the mapping pointer and the vma chains
1642 * contained in the address_space struct it points to.
1643 *
1644 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1645 * where the page was found will be held for write.  So, we won't recheck
1646 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1647 * LOCKED.
1648 */
1649static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1650{
1651	struct address_space *mapping = page->mapping;
1652	pgoff_t pgoff = page->index << compound_order(page);
1653	struct vm_area_struct *vma;
 
1654	int ret = SWAP_AGAIN;
1655
1656	/*
1657	 * The page lock not only makes sure that page->mapping cannot
1658	 * suddenly be NULLified by truncation, it makes sure that the
1659	 * structure at mapping cannot be freed and reused yet,
1660	 * so we can safely take mapping->i_mmap_mutex.
1661	 */
1662	VM_BUG_ON(!PageLocked(page));
1663
1664	if (!mapping)
1665		return ret;
1666	mutex_lock(&mapping->i_mmap_mutex);
1667	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1668		unsigned long address = vma_address(page, vma);
1669
1670		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1671			continue;
1672
1673		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1674		if (ret != SWAP_AGAIN)
1675			goto done;
1676		if (rwc->done && rwc->done(page))
1677			goto done;
1678	}
1679
1680	if (!rwc->file_nonlinear)
1681		goto done;
1682
1683	if (list_empty(&mapping->i_mmap_nonlinear))
1684		goto done;
1685
1686	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1687
1688done:
1689	mutex_unlock(&mapping->i_mmap_mutex);
1690	return ret;
1691}
1692
1693int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
 
1694{
 
 
1695	if (unlikely(PageKsm(page)))
1696		return rmap_walk_ksm(page, rwc);
1697	else if (PageAnon(page))
1698		return rmap_walk_anon(page, rwc);
1699	else
1700		return rmap_walk_file(page, rwc);
1701}
 
1702
1703#ifdef CONFIG_HUGETLB_PAGE
1704/*
1705 * The following three functions are for anonymous (private mapped) hugepages.
1706 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1707 * and no lru code, because we handle hugepages differently from common pages.
1708 */
1709static void __hugepage_set_anon_rmap(struct page *page,
1710	struct vm_area_struct *vma, unsigned long address, int exclusive)
1711{
1712	struct anon_vma *anon_vma = vma->anon_vma;
1713
1714	BUG_ON(!anon_vma);
1715
1716	if (PageAnon(page))
1717		return;
1718	if (!exclusive)
1719		anon_vma = anon_vma->root;
1720
1721	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1722	page->mapping = (struct address_space *) anon_vma;
1723	page->index = linear_page_index(vma, address);
1724}
1725
1726void hugepage_add_anon_rmap(struct page *page,
1727			    struct vm_area_struct *vma, unsigned long address)
1728{
1729	struct anon_vma *anon_vma = vma->anon_vma;
1730	int first;
1731
1732	BUG_ON(!PageLocked(page));
1733	BUG_ON(!anon_vma);
1734	/* address might be in next vma when migration races vma_adjust */
1735	first = atomic_inc_and_test(&page->_mapcount);
1736	if (first)
1737		__hugepage_set_anon_rmap(page, vma, address, 0);
1738}
1739
1740void hugepage_add_new_anon_rmap(struct page *page,
1741			struct vm_area_struct *vma, unsigned long address)
1742{
1743	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1744	atomic_set(&page->_mapcount, 0);
1745	__hugepage_set_anon_rmap(page, vma, address, 1);
1746}
1747#endif /* CONFIG_HUGETLB_PAGE */