Linux Audio

Check our new training course

Loading...
  1/*
  2 *  linux/mm/page_io.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 *
  6 *  Swap reorganised 29.12.95, 
  7 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  8 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  9 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 10 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/gfp.h>
 16#include <linux/pagemap.h>
 17#include <linux/swap.h>
 18#include <linux/bio.h>
 19#include <linux/swapops.h>
 20#include <linux/writeback.h>
 21#include <asm/pgtable.h>
 22
 23static struct bio *get_swap_bio(gfp_t gfp_flags,
 24				struct page *page, bio_end_io_t end_io)
 25{
 26	struct bio *bio;
 27
 28	bio = bio_alloc(gfp_flags, 1);
 29	if (bio) {
 30		bio->bi_sector = map_swap_page(page, &bio->bi_bdev);
 31		bio->bi_sector <<= PAGE_SHIFT - 9;
 32		bio->bi_io_vec[0].bv_page = page;
 33		bio->bi_io_vec[0].bv_len = PAGE_SIZE;
 34		bio->bi_io_vec[0].bv_offset = 0;
 35		bio->bi_vcnt = 1;
 36		bio->bi_idx = 0;
 37		bio->bi_size = PAGE_SIZE;
 38		bio->bi_end_io = end_io;
 39	}
 40	return bio;
 41}
 42
 43static void end_swap_bio_write(struct bio *bio, int err)
 44{
 45	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 46	struct page *page = bio->bi_io_vec[0].bv_page;
 47
 48	if (!uptodate) {
 49		SetPageError(page);
 50		/*
 51		 * We failed to write the page out to swap-space.
 52		 * Re-dirty the page in order to avoid it being reclaimed.
 53		 * Also print a dire warning that things will go BAD (tm)
 54		 * very quickly.
 55		 *
 56		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 57		 */
 58		set_page_dirty(page);
 59		printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
 60				imajor(bio->bi_bdev->bd_inode),
 61				iminor(bio->bi_bdev->bd_inode),
 62				(unsigned long long)bio->bi_sector);
 63		ClearPageReclaim(page);
 64	}
 65	end_page_writeback(page);
 66	bio_put(bio);
 67}
 68
 69void end_swap_bio_read(struct bio *bio, int err)
 70{
 71	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 72	struct page *page = bio->bi_io_vec[0].bv_page;
 73
 74	if (!uptodate) {
 75		SetPageError(page);
 76		ClearPageUptodate(page);
 77		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
 78				imajor(bio->bi_bdev->bd_inode),
 79				iminor(bio->bi_bdev->bd_inode),
 80				(unsigned long long)bio->bi_sector);
 81	} else {
 82		SetPageUptodate(page);
 83	}
 84	unlock_page(page);
 85	bio_put(bio);
 86}
 87
 88/*
 89 * We may have stale swap cache pages in memory: notice
 90 * them here and get rid of the unnecessary final write.
 91 */
 92int swap_writepage(struct page *page, struct writeback_control *wbc)
 93{
 94	struct bio *bio;
 95	int ret = 0, rw = WRITE;
 96
 97	if (try_to_free_swap(page)) {
 98		unlock_page(page);
 99		goto out;
100	}
101	bio = get_swap_bio(GFP_NOIO, page, end_swap_bio_write);
102	if (bio == NULL) {
103		set_page_dirty(page);
104		unlock_page(page);
105		ret = -ENOMEM;
106		goto out;
107	}
108	if (wbc->sync_mode == WB_SYNC_ALL)
109		rw |= REQ_SYNC;
110	count_vm_event(PSWPOUT);
111	set_page_writeback(page);
112	unlock_page(page);
113	submit_bio(rw, bio);
114out:
115	return ret;
116}
117
118int swap_readpage(struct page *page)
119{
120	struct bio *bio;
121	int ret = 0;
122
123	VM_BUG_ON(!PageLocked(page));
124	VM_BUG_ON(PageUptodate(page));
125	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
126	if (bio == NULL) {
127		unlock_page(page);
128		ret = -ENOMEM;
129		goto out;
130	}
131	count_vm_event(PSWPIN);
132	submit_bio(READ, bio);
133out:
134	return ret;
135}
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/uio.h>
 26#include <linux/sched/task.h>
 27#include <asm/pgtable.h>
 28
 29static struct bio *get_swap_bio(gfp_t gfp_flags,
 30				struct page *page, bio_end_io_t end_io)
 31{
 32	struct bio *bio;
 33
 34	bio = bio_alloc(gfp_flags, 1);
 35	if (bio) {
 36		struct block_device *bdev;
 37
 38		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
 39		bio_set_dev(bio, bdev);
 40		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
 41		bio->bi_end_io = end_io;
 42
 43		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
 44	}
 45	return bio;
 46}
 47
 48void end_swap_bio_write(struct bio *bio)
 49{
 50	struct page *page = bio_first_page_all(bio);
 51
 52	if (bio->bi_status) {
 53		SetPageError(page);
 54		/*
 55		 * We failed to write the page out to swap-space.
 56		 * Re-dirty the page in order to avoid it being reclaimed.
 57		 * Also print a dire warning that things will go BAD (tm)
 58		 * very quickly.
 59		 *
 60		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 61		 */
 62		set_page_dirty(page);
 63		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
 64			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65			 (unsigned long long)bio->bi_iter.bi_sector);
 66		ClearPageReclaim(page);
 67	}
 68	end_page_writeback(page);
 69	bio_put(bio);
 70}
 71
 72static void swap_slot_free_notify(struct page *page)
 73{
 74	struct swap_info_struct *sis;
 75	struct gendisk *disk;
 76	swp_entry_t entry;
 77
 78	/*
 79	 * There is no guarantee that the page is in swap cache - the software
 80	 * suspend code (at least) uses end_swap_bio_read() against a non-
 81	 * swapcache page.  So we must check PG_swapcache before proceeding with
 82	 * this optimization.
 83	 */
 84	if (unlikely(!PageSwapCache(page)))
 85		return;
 86
 87	sis = page_swap_info(page);
 88	if (!(sis->flags & SWP_BLKDEV))
 89		return;
 90
 91	/*
 92	 * The swap subsystem performs lazy swap slot freeing,
 93	 * expecting that the page will be swapped out again.
 94	 * So we can avoid an unnecessary write if the page
 95	 * isn't redirtied.
 96	 * This is good for real swap storage because we can
 97	 * reduce unnecessary I/O and enhance wear-leveling
 98	 * if an SSD is used as the as swap device.
 99	 * But if in-memory swap device (eg zram) is used,
100	 * this causes a duplicated copy between uncompressed
101	 * data in VM-owned memory and compressed data in
102	 * zram-owned memory.  So let's free zram-owned memory
103	 * and make the VM-owned decompressed page *dirty*,
104	 * so the page should be swapped out somewhere again if
105	 * we again wish to reclaim it.
106	 */
107	disk = sis->bdev->bd_disk;
108	entry.val = page_private(page);
109	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110		unsigned long offset;
111
112		offset = swp_offset(entry);
113
114		SetPageDirty(page);
115		disk->fops->swap_slot_free_notify(sis->bdev,
116				offset);
117	}
118}
119
120static void end_swap_bio_read(struct bio *bio)
121{
122	struct page *page = bio_first_page_all(bio);
123	struct task_struct *waiter = bio->bi_private;
124
125	if (bio->bi_status) {
126		SetPageError(page);
127		ClearPageUptodate(page);
128		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130			 (unsigned long long)bio->bi_iter.bi_sector);
131		goto out;
132	}
133
134	SetPageUptodate(page);
135	swap_slot_free_notify(page);
136out:
137	unlock_page(page);
138	WRITE_ONCE(bio->bi_private, NULL);
139	bio_put(bio);
140	if (waiter) {
141		blk_wake_io_task(waiter);
142		put_task_struct(waiter);
143	}
144}
145
146int generic_swapfile_activate(struct swap_info_struct *sis,
147				struct file *swap_file,
148				sector_t *span)
149{
150	struct address_space *mapping = swap_file->f_mapping;
151	struct inode *inode = mapping->host;
152	unsigned blocks_per_page;
153	unsigned long page_no;
154	unsigned blkbits;
155	sector_t probe_block;
156	sector_t last_block;
157	sector_t lowest_block = -1;
158	sector_t highest_block = 0;
159	int nr_extents = 0;
160	int ret;
161
162	blkbits = inode->i_blkbits;
163	blocks_per_page = PAGE_SIZE >> blkbits;
164
165	/*
166	 * Map all the blocks into the extent tree.  This code doesn't try
167	 * to be very smart.
168	 */
169	probe_block = 0;
170	page_no = 0;
171	last_block = i_size_read(inode) >> blkbits;
172	while ((probe_block + blocks_per_page) <= last_block &&
173			page_no < sis->max) {
174		unsigned block_in_page;
175		sector_t first_block;
176
177		cond_resched();
178
179		first_block = bmap(inode, probe_block);
180		if (first_block == 0)
181			goto bad_bmap;
182
183		/*
184		 * It must be PAGE_SIZE aligned on-disk
185		 */
186		if (first_block & (blocks_per_page - 1)) {
187			probe_block++;
188			goto reprobe;
189		}
190
191		for (block_in_page = 1; block_in_page < blocks_per_page;
192					block_in_page++) {
193			sector_t block;
194
195			block = bmap(inode, probe_block + block_in_page);
196			if (block == 0)
197				goto bad_bmap;
198			if (block != first_block + block_in_page) {
199				/* Discontiguity */
200				probe_block++;
201				goto reprobe;
202			}
203		}
204
205		first_block >>= (PAGE_SHIFT - blkbits);
206		if (page_no) {	/* exclude the header page */
207			if (first_block < lowest_block)
208				lowest_block = first_block;
209			if (first_block > highest_block)
210				highest_block = first_block;
211		}
212
213		/*
214		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215		 */
216		ret = add_swap_extent(sis, page_no, 1, first_block);
217		if (ret < 0)
218			goto out;
219		nr_extents += ret;
220		page_no++;
221		probe_block += blocks_per_page;
222reprobe:
223		continue;
224	}
225	ret = nr_extents;
226	*span = 1 + highest_block - lowest_block;
227	if (page_no == 0)
228		page_no = 1;	/* force Empty message */
229	sis->max = page_no;
230	sis->pages = page_no - 1;
231	sis->highest_bit = page_no - 1;
232out:
233	return ret;
234bad_bmap:
235	pr_err("swapon: swapfile has holes\n");
236	ret = -EINVAL;
237	goto out;
238}
239
240/*
241 * We may have stale swap cache pages in memory: notice
242 * them here and get rid of the unnecessary final write.
243 */
244int swap_writepage(struct page *page, struct writeback_control *wbc)
245{
246	int ret = 0;
247
248	if (try_to_free_swap(page)) {
249		unlock_page(page);
250		goto out;
251	}
252	if (frontswap_store(page) == 0) {
253		set_page_writeback(page);
254		unlock_page(page);
255		end_page_writeback(page);
256		goto out;
257	}
258	ret = __swap_writepage(page, wbc, end_swap_bio_write);
259out:
260	return ret;
261}
262
263static sector_t swap_page_sector(struct page *page)
264{
265	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
266}
267
268static inline void count_swpout_vm_event(struct page *page)
269{
270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
271	if (unlikely(PageTransHuge(page)))
272		count_vm_event(THP_SWPOUT);
273#endif
274	count_vm_events(PSWPOUT, hpage_nr_pages(page));
275}
276
277int __swap_writepage(struct page *page, struct writeback_control *wbc,
278		bio_end_io_t end_write_func)
279{
280	struct bio *bio;
281	int ret;
282	struct swap_info_struct *sis = page_swap_info(page);
283
284	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285	if (sis->flags & SWP_FS) {
286		struct kiocb kiocb;
287		struct file *swap_file = sis->swap_file;
288		struct address_space *mapping = swap_file->f_mapping;
289		struct bio_vec bv = {
290			.bv_page = page,
291			.bv_len  = PAGE_SIZE,
292			.bv_offset = 0
293		};
294		struct iov_iter from;
295
296		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297		init_sync_kiocb(&kiocb, swap_file);
298		kiocb.ki_pos = page_file_offset(page);
299
300		set_page_writeback(page);
301		unlock_page(page);
302		ret = mapping->a_ops->direct_IO(&kiocb, &from);
303		if (ret == PAGE_SIZE) {
304			count_vm_event(PSWPOUT);
305			ret = 0;
306		} else {
307			/*
308			 * In the case of swap-over-nfs, this can be a
309			 * temporary failure if the system has limited
310			 * memory for allocating transmit buffers.
311			 * Mark the page dirty and avoid
312			 * rotate_reclaimable_page but rate-limit the
313			 * messages but do not flag PageError like
314			 * the normal direct-to-bio case as it could
315			 * be temporary.
316			 */
317			set_page_dirty(page);
318			ClearPageReclaim(page);
319			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320					   page_file_offset(page));
321		}
322		end_page_writeback(page);
323		return ret;
324	}
325
326	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327	if (!ret) {
328		count_swpout_vm_event(page);
329		return 0;
330	}
331
332	ret = 0;
333	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334	if (bio == NULL) {
335		set_page_dirty(page);
336		unlock_page(page);
337		ret = -ENOMEM;
338		goto out;
339	}
340	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341	bio_associate_blkg_from_page(bio, page);
342	count_swpout_vm_event(page);
343	set_page_writeback(page);
344	unlock_page(page);
345	submit_bio(bio);
346out:
347	return ret;
348}
349
350int swap_readpage(struct page *page, bool synchronous)
351{
352	struct bio *bio;
353	int ret = 0;
354	struct swap_info_struct *sis = page_swap_info(page);
355	blk_qc_t qc;
356	struct gendisk *disk;
357
358	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359	VM_BUG_ON_PAGE(!PageLocked(page), page);
360	VM_BUG_ON_PAGE(PageUptodate(page), page);
361	if (frontswap_load(page) == 0) {
362		SetPageUptodate(page);
363		unlock_page(page);
364		goto out;
365	}
366
367	if (sis->flags & SWP_FS) {
368		struct file *swap_file = sis->swap_file;
369		struct address_space *mapping = swap_file->f_mapping;
370
371		ret = mapping->a_ops->readpage(swap_file, page);
372		if (!ret)
373			count_vm_event(PSWPIN);
374		return ret;
375	}
376
377	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378	if (!ret) {
379		if (trylock_page(page)) {
380			swap_slot_free_notify(page);
381			unlock_page(page);
382		}
383
384		count_vm_event(PSWPIN);
385		return 0;
386	}
387
388	ret = 0;
389	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390	if (bio == NULL) {
391		unlock_page(page);
392		ret = -ENOMEM;
393		goto out;
394	}
395	disk = bio->bi_disk;
396	/*
397	 * Keep this task valid during swap readpage because the oom killer may
398	 * attempt to access it in the page fault retry time check.
399	 */
400	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401	if (synchronous) {
402		bio->bi_opf |= REQ_HIPRI;
403		get_task_struct(current);
404		bio->bi_private = current;
405	}
406	count_vm_event(PSWPIN);
407	bio_get(bio);
408	qc = submit_bio(bio);
409	while (synchronous) {
410		set_current_state(TASK_UNINTERRUPTIBLE);
411		if (!READ_ONCE(bio->bi_private))
412			break;
413
414		if (!blk_poll(disk->queue, qc, true))
415			io_schedule();
416	}
417	__set_current_state(TASK_RUNNING);
418	bio_put(bio);
419
420out:
421	return ret;
422}
423
424int swap_set_page_dirty(struct page *page)
425{
426	struct swap_info_struct *sis = page_swap_info(page);
427
428	if (sis->flags & SWP_FS) {
429		struct address_space *mapping = sis->swap_file->f_mapping;
430
431		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432		return mapping->a_ops->set_page_dirty(page);
433	} else {
434		return __set_page_dirty_no_writeback(page);
435	}
436}