Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_quota.h"
  19#include "xfs_trace.h"
  20#include "xfs_icache.h"
  21#include "xfs_bmap_util.h"
  22#include "xfs_dquot_item.h"
  23#include "xfs_dquot.h"
  24#include "xfs_reflink.h"
  25
  26#include <linux/iversion.h>
  27
  28/*
  29 * Allocate and initialise an xfs_inode.
  30 */
  31struct xfs_inode *
  32xfs_inode_alloc(
  33	struct xfs_mount	*mp,
  34	xfs_ino_t		ino)
  35{
  36	struct xfs_inode	*ip;
  37
  38	/*
  39	 * if this didn't occur in transactions, we could use
  40	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  41	 * code up to do this anyway.
  42	 */
  43	ip = kmem_zone_alloc(xfs_inode_zone, 0);
  44	if (!ip)
  45		return NULL;
  46	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  47		kmem_zone_free(xfs_inode_zone, ip);
  48		return NULL;
  49	}
  50
  51	/* VFS doesn't initialise i_mode! */
  52	VFS_I(ip)->i_mode = 0;
  53
  54	XFS_STATS_INC(mp, vn_active);
  55	ASSERT(atomic_read(&ip->i_pincount) == 0);
  56	ASSERT(!xfs_isiflocked(ip));
  57	ASSERT(ip->i_ino == 0);
  58
  59	/* initialise the xfs inode */
  60	ip->i_ino = ino;
  61	ip->i_mount = mp;
  62	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  63	ip->i_afp = NULL;
  64	ip->i_cowfp = NULL;
  65	ip->i_cnextents = 0;
  66	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
  67	memset(&ip->i_df, 0, sizeof(ip->i_df));
  68	ip->i_flags = 0;
  69	ip->i_delayed_blks = 0;
  70	memset(&ip->i_d, 0, sizeof(ip->i_d));
  71	ip->i_sick = 0;
  72	ip->i_checked = 0;
  73	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
  74	INIT_LIST_HEAD(&ip->i_ioend_list);
  75	spin_lock_init(&ip->i_ioend_lock);
  76
  77	return ip;
  78}
  79
  80STATIC void
  81xfs_inode_free_callback(
  82	struct rcu_head		*head)
  83{
  84	struct inode		*inode = container_of(head, struct inode, i_rcu);
  85	struct xfs_inode	*ip = XFS_I(inode);
  86
  87	switch (VFS_I(ip)->i_mode & S_IFMT) {
  88	case S_IFREG:
  89	case S_IFDIR:
  90	case S_IFLNK:
  91		xfs_idestroy_fork(ip, XFS_DATA_FORK);
  92		break;
  93	}
  94
  95	if (ip->i_afp)
  96		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  97	if (ip->i_cowfp)
  98		xfs_idestroy_fork(ip, XFS_COW_FORK);
  99
 100	if (ip->i_itemp) {
 101		ASSERT(!test_bit(XFS_LI_IN_AIL,
 102				 &ip->i_itemp->ili_item.li_flags));
 103		xfs_inode_item_destroy(ip);
 104		ip->i_itemp = NULL;
 105	}
 106
 107	kmem_zone_free(xfs_inode_zone, ip);
 108}
 109
 110static void
 111__xfs_inode_free(
 112	struct xfs_inode	*ip)
 113{
 114	/* asserts to verify all state is correct here */
 115	ASSERT(atomic_read(&ip->i_pincount) == 0);
 116	XFS_STATS_DEC(ip->i_mount, vn_active);
 117
 118	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 119}
 120
 121void
 122xfs_inode_free(
 123	struct xfs_inode	*ip)
 124{
 125	ASSERT(!xfs_isiflocked(ip));
 126
 127	/*
 128	 * Because we use RCU freeing we need to ensure the inode always
 129	 * appears to be reclaimed with an invalid inode number when in the
 130	 * free state. The ip->i_flags_lock provides the barrier against lookup
 131	 * races.
 132	 */
 133	spin_lock(&ip->i_flags_lock);
 134	ip->i_flags = XFS_IRECLAIM;
 135	ip->i_ino = 0;
 136	spin_unlock(&ip->i_flags_lock);
 137
 138	__xfs_inode_free(ip);
 139}
 140
 141/*
 142 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 143 * isn't a reclaim pass already in progress. By default it runs every 5s based
 144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 145 * tunable, but that can be done if this method proves to be ineffective or too
 146 * aggressive.
 147 */
 148static void
 149xfs_reclaim_work_queue(
 150	struct xfs_mount        *mp)
 151{
 152
 153	rcu_read_lock();
 154	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 155		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 156			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 157	}
 158	rcu_read_unlock();
 159}
 160
 161/*
 162 * This is a fast pass over the inode cache to try to get reclaim moving on as
 163 * many inodes as possible in a short period of time. It kicks itself every few
 164 * seconds, as well as being kicked by the inode cache shrinker when memory
 165 * goes low. It scans as quickly as possible avoiding locked inodes or those
 166 * already being flushed, and once done schedules a future pass.
 167 */
 168void
 169xfs_reclaim_worker(
 170	struct work_struct *work)
 171{
 172	struct xfs_mount *mp = container_of(to_delayed_work(work),
 173					struct xfs_mount, m_reclaim_work);
 174
 175	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 176	xfs_reclaim_work_queue(mp);
 177}
 178
 179static void
 180xfs_perag_set_reclaim_tag(
 181	struct xfs_perag	*pag)
 182{
 183	struct xfs_mount	*mp = pag->pag_mount;
 184
 185	lockdep_assert_held(&pag->pag_ici_lock);
 186	if (pag->pag_ici_reclaimable++)
 187		return;
 188
 189	/* propagate the reclaim tag up into the perag radix tree */
 190	spin_lock(&mp->m_perag_lock);
 191	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
 192			   XFS_ICI_RECLAIM_TAG);
 193	spin_unlock(&mp->m_perag_lock);
 194
 195	/* schedule periodic background inode reclaim */
 196	xfs_reclaim_work_queue(mp);
 197
 198	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 199}
 200
 201static void
 202xfs_perag_clear_reclaim_tag(
 203	struct xfs_perag	*pag)
 204{
 205	struct xfs_mount	*mp = pag->pag_mount;
 206
 207	lockdep_assert_held(&pag->pag_ici_lock);
 208	if (--pag->pag_ici_reclaimable)
 209		return;
 210
 211	/* clear the reclaim tag from the perag radix tree */
 212	spin_lock(&mp->m_perag_lock);
 213	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
 214			     XFS_ICI_RECLAIM_TAG);
 215	spin_unlock(&mp->m_perag_lock);
 216	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 217}
 218
 219
 220/*
 221 * We set the inode flag atomically with the radix tree tag.
 222 * Once we get tag lookups on the radix tree, this inode flag
 223 * can go away.
 224 */
 225void
 226xfs_inode_set_reclaim_tag(
 227	struct xfs_inode	*ip)
 228{
 229	struct xfs_mount	*mp = ip->i_mount;
 230	struct xfs_perag	*pag;
 231
 232	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 233	spin_lock(&pag->pag_ici_lock);
 234	spin_lock(&ip->i_flags_lock);
 235
 236	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
 237			   XFS_ICI_RECLAIM_TAG);
 238	xfs_perag_set_reclaim_tag(pag);
 239	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 240
 241	spin_unlock(&ip->i_flags_lock);
 242	spin_unlock(&pag->pag_ici_lock);
 243	xfs_perag_put(pag);
 244}
 245
 246STATIC void
 247xfs_inode_clear_reclaim_tag(
 248	struct xfs_perag	*pag,
 249	xfs_ino_t		ino)
 250{
 251	radix_tree_tag_clear(&pag->pag_ici_root,
 252			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
 253			     XFS_ICI_RECLAIM_TAG);
 254	xfs_perag_clear_reclaim_tag(pag);
 255}
 256
 257static void
 258xfs_inew_wait(
 259	struct xfs_inode	*ip)
 260{
 261	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
 262	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
 263
 264	do {
 265		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 266		if (!xfs_iflags_test(ip, XFS_INEW))
 267			break;
 268		schedule();
 269	} while (true);
 270	finish_wait(wq, &wait.wq_entry);
 271}
 272
 273/*
 274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 275 * part of the structure. This is made more complex by the fact we store
 276 * information about the on-disk values in the VFS inode and so we can't just
 277 * overwrite the values unconditionally. Hence we save the parameters we
 278 * need to retain across reinitialisation, and rewrite them into the VFS inode
 279 * after reinitialisation even if it fails.
 280 */
 281static int
 282xfs_reinit_inode(
 283	struct xfs_mount	*mp,
 284	struct inode		*inode)
 285{
 286	int		error;
 287	uint32_t	nlink = inode->i_nlink;
 288	uint32_t	generation = inode->i_generation;
 289	uint64_t	version = inode_peek_iversion(inode);
 290	umode_t		mode = inode->i_mode;
 291	dev_t		dev = inode->i_rdev;
 292
 293	error = inode_init_always(mp->m_super, inode);
 294
 295	set_nlink(inode, nlink);
 296	inode->i_generation = generation;
 297	inode_set_iversion_queried(inode, version);
 298	inode->i_mode = mode;
 299	inode->i_rdev = dev;
 300	return error;
 301}
 302
 303/*
 304 * If we are allocating a new inode, then check what was returned is
 305 * actually a free, empty inode. If we are not allocating an inode,
 306 * then check we didn't find a free inode.
 307 *
 308 * Returns:
 309 *	0		if the inode free state matches the lookup context
 310 *	-ENOENT		if the inode is free and we are not allocating
 311 *	-EFSCORRUPTED	if there is any state mismatch at all
 312 */
 313static int
 314xfs_iget_check_free_state(
 315	struct xfs_inode	*ip,
 316	int			flags)
 317{
 318	if (flags & XFS_IGET_CREATE) {
 319		/* should be a free inode */
 320		if (VFS_I(ip)->i_mode != 0) {
 321			xfs_warn(ip->i_mount,
 322"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 323				ip->i_ino, VFS_I(ip)->i_mode);
 324			return -EFSCORRUPTED;
 325		}
 326
 327		if (ip->i_d.di_nblocks != 0) {
 328			xfs_warn(ip->i_mount,
 329"Corruption detected! Free inode 0x%llx has blocks allocated!",
 330				ip->i_ino);
 331			return -EFSCORRUPTED;
 332		}
 333		return 0;
 334	}
 335
 336	/* should be an allocated inode */
 337	if (VFS_I(ip)->i_mode == 0)
 338		return -ENOENT;
 339
 340	return 0;
 341}
 342
 343/*
 344 * Check the validity of the inode we just found it the cache
 345 */
 346static int
 347xfs_iget_cache_hit(
 348	struct xfs_perag	*pag,
 349	struct xfs_inode	*ip,
 350	xfs_ino_t		ino,
 351	int			flags,
 352	int			lock_flags) __releases(RCU)
 353{
 354	struct inode		*inode = VFS_I(ip);
 355	struct xfs_mount	*mp = ip->i_mount;
 356	int			error;
 357
 358	/*
 359	 * check for re-use of an inode within an RCU grace period due to the
 360	 * radix tree nodes not being updated yet. We monitor for this by
 361	 * setting the inode number to zero before freeing the inode structure.
 362	 * If the inode has been reallocated and set up, then the inode number
 363	 * will not match, so check for that, too.
 364	 */
 365	spin_lock(&ip->i_flags_lock);
 366	if (ip->i_ino != ino) {
 367		trace_xfs_iget_skip(ip);
 368		XFS_STATS_INC(mp, xs_ig_frecycle);
 369		error = -EAGAIN;
 370		goto out_error;
 371	}
 372
 373
 374	/*
 375	 * If we are racing with another cache hit that is currently
 376	 * instantiating this inode or currently recycling it out of
 377	 * reclaimabe state, wait for the initialisation to complete
 378	 * before continuing.
 379	 *
 380	 * XXX(hch): eventually we should do something equivalent to
 381	 *	     wait_on_inode to wait for these flags to be cleared
 382	 *	     instead of polling for it.
 383	 */
 384	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 385		trace_xfs_iget_skip(ip);
 386		XFS_STATS_INC(mp, xs_ig_frecycle);
 387		error = -EAGAIN;
 388		goto out_error;
 389	}
 390
 391	/*
 392	 * Check the inode free state is valid. This also detects lookup
 393	 * racing with unlinks.
 394	 */
 395	error = xfs_iget_check_free_state(ip, flags);
 396	if (error)
 397		goto out_error;
 398
 399	/*
 400	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 401	 * Need to carefully get it back into useable state.
 402	 */
 403	if (ip->i_flags & XFS_IRECLAIMABLE) {
 404		trace_xfs_iget_reclaim(ip);
 405
 406		if (flags & XFS_IGET_INCORE) {
 407			error = -EAGAIN;
 408			goto out_error;
 409		}
 410
 411		/*
 412		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 413		 * from stomping over us while we recycle the inode.  We can't
 414		 * clear the radix tree reclaimable tag yet as it requires
 415		 * pag_ici_lock to be held exclusive.
 416		 */
 417		ip->i_flags |= XFS_IRECLAIM;
 418
 419		spin_unlock(&ip->i_flags_lock);
 420		rcu_read_unlock();
 421
 422		error = xfs_reinit_inode(mp, inode);
 423		if (error) {
 424			bool wake;
 425			/*
 426			 * Re-initializing the inode failed, and we are in deep
 427			 * trouble.  Try to re-add it to the reclaim list.
 428			 */
 429			rcu_read_lock();
 430			spin_lock(&ip->i_flags_lock);
 431			wake = !!__xfs_iflags_test(ip, XFS_INEW);
 432			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 433			if (wake)
 434				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
 435			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 436			trace_xfs_iget_reclaim_fail(ip);
 437			goto out_error;
 438		}
 439
 440		spin_lock(&pag->pag_ici_lock);
 441		spin_lock(&ip->i_flags_lock);
 442
 443		/*
 444		 * Clear the per-lifetime state in the inode as we are now
 445		 * effectively a new inode and need to return to the initial
 446		 * state before reuse occurs.
 447		 */
 448		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 449		ip->i_flags |= XFS_INEW;
 450		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
 451		inode->i_state = I_NEW;
 452		ip->i_sick = 0;
 453		ip->i_checked = 0;
 454
 455		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 456		init_rwsem(&inode->i_rwsem);
 457
 458		spin_unlock(&ip->i_flags_lock);
 459		spin_unlock(&pag->pag_ici_lock);
 460	} else {
 461		/* If the VFS inode is being torn down, pause and try again. */
 462		if (!igrab(inode)) {
 463			trace_xfs_iget_skip(ip);
 464			error = -EAGAIN;
 465			goto out_error;
 466		}
 467
 468		/* We've got a live one. */
 469		spin_unlock(&ip->i_flags_lock);
 470		rcu_read_unlock();
 471		trace_xfs_iget_hit(ip);
 472	}
 473
 474	if (lock_flags != 0)
 475		xfs_ilock(ip, lock_flags);
 476
 477	if (!(flags & XFS_IGET_INCORE))
 478		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 479	XFS_STATS_INC(mp, xs_ig_found);
 480
 481	return 0;
 482
 483out_error:
 484	spin_unlock(&ip->i_flags_lock);
 485	rcu_read_unlock();
 486	return error;
 487}
 488
 489
 490static int
 491xfs_iget_cache_miss(
 492	struct xfs_mount	*mp,
 493	struct xfs_perag	*pag,
 494	xfs_trans_t		*tp,
 495	xfs_ino_t		ino,
 496	struct xfs_inode	**ipp,
 497	int			flags,
 498	int			lock_flags)
 499{
 500	struct xfs_inode	*ip;
 501	int			error;
 502	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 503	int			iflags;
 504
 505	ip = xfs_inode_alloc(mp, ino);
 506	if (!ip)
 507		return -ENOMEM;
 508
 509	error = xfs_iread(mp, tp, ip, flags);
 510	if (error)
 511		goto out_destroy;
 512
 513	if (!xfs_inode_verify_forks(ip)) {
 514		error = -EFSCORRUPTED;
 515		goto out_destroy;
 516	}
 517
 518	trace_xfs_iget_miss(ip);
 519
 520
 521	/*
 522	 * Check the inode free state is valid. This also detects lookup
 523	 * racing with unlinks.
 524	 */
 525	error = xfs_iget_check_free_state(ip, flags);
 526	if (error)
 527		goto out_destroy;
 528
 529	/*
 530	 * Preload the radix tree so we can insert safely under the
 531	 * write spinlock. Note that we cannot sleep inside the preload
 532	 * region. Since we can be called from transaction context, don't
 533	 * recurse into the file system.
 534	 */
 535	if (radix_tree_preload(GFP_NOFS)) {
 536		error = -EAGAIN;
 537		goto out_destroy;
 538	}
 539
 540	/*
 541	 * Because the inode hasn't been added to the radix-tree yet it can't
 542	 * be found by another thread, so we can do the non-sleeping lock here.
 543	 */
 544	if (lock_flags) {
 545		if (!xfs_ilock_nowait(ip, lock_flags))
 546			BUG();
 547	}
 548
 549	/*
 550	 * These values must be set before inserting the inode into the radix
 551	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 552	 * RCU locking mechanism) can find it and that lookup must see that this
 553	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 554	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 555	 * memory barrier that ensures this detection works correctly at lookup
 556	 * time.
 557	 */
 558	iflags = XFS_INEW;
 559	if (flags & XFS_IGET_DONTCACHE)
 560		iflags |= XFS_IDONTCACHE;
 561	ip->i_udquot = NULL;
 562	ip->i_gdquot = NULL;
 563	ip->i_pdquot = NULL;
 564	xfs_iflags_set(ip, iflags);
 565
 566	/* insert the new inode */
 567	spin_lock(&pag->pag_ici_lock);
 568	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 569	if (unlikely(error)) {
 570		WARN_ON(error != -EEXIST);
 571		XFS_STATS_INC(mp, xs_ig_dup);
 572		error = -EAGAIN;
 573		goto out_preload_end;
 574	}
 575	spin_unlock(&pag->pag_ici_lock);
 576	radix_tree_preload_end();
 577
 578	*ipp = ip;
 579	return 0;
 580
 581out_preload_end:
 582	spin_unlock(&pag->pag_ici_lock);
 583	radix_tree_preload_end();
 584	if (lock_flags)
 585		xfs_iunlock(ip, lock_flags);
 586out_destroy:
 587	__destroy_inode(VFS_I(ip));
 588	xfs_inode_free(ip);
 589	return error;
 590}
 591
 592/*
 593 * Look up an inode by number in the given file system.
 594 * The inode is looked up in the cache held in each AG.
 595 * If the inode is found in the cache, initialise the vfs inode
 596 * if necessary.
 597 *
 598 * If it is not in core, read it in from the file system's device,
 599 * add it to the cache and initialise the vfs inode.
 600 *
 601 * The inode is locked according to the value of the lock_flags parameter.
 602 * This flag parameter indicates how and if the inode's IO lock and inode lock
 603 * should be taken.
 604 *
 605 * mp -- the mount point structure for the current file system.  It points
 606 *       to the inode hash table.
 607 * tp -- a pointer to the current transaction if there is one.  This is
 608 *       simply passed through to the xfs_iread() call.
 609 * ino -- the number of the inode desired.  This is the unique identifier
 610 *        within the file system for the inode being requested.
 611 * lock_flags -- flags indicating how to lock the inode.  See the comment
 612 *		 for xfs_ilock() for a list of valid values.
 613 */
 614int
 615xfs_iget(
 616	xfs_mount_t	*mp,
 617	xfs_trans_t	*tp,
 618	xfs_ino_t	ino,
 619	uint		flags,
 620	uint		lock_flags,
 621	xfs_inode_t	**ipp)
 622{
 623	xfs_inode_t	*ip;
 624	int		error;
 625	xfs_perag_t	*pag;
 626	xfs_agino_t	agino;
 627
 628	/*
 629	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 630	 * doesn't get freed while it's being referenced during a
 631	 * radix tree traversal here.  It assumes this function
 632	 * aqcuires only the ILOCK (and therefore it has no need to
 633	 * involve the IOLOCK in this synchronization).
 634	 */
 635	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 636
 637	/* reject inode numbers outside existing AGs */
 638	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 639		return -EINVAL;
 640
 641	XFS_STATS_INC(mp, xs_ig_attempts);
 642
 643	/* get the perag structure and ensure that it's inode capable */
 644	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 645	agino = XFS_INO_TO_AGINO(mp, ino);
 646
 647again:
 648	error = 0;
 649	rcu_read_lock();
 650	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 651
 652	if (ip) {
 653		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 654		if (error)
 655			goto out_error_or_again;
 656	} else {
 657		rcu_read_unlock();
 658		if (flags & XFS_IGET_INCORE) {
 659			error = -ENODATA;
 660			goto out_error_or_again;
 661		}
 662		XFS_STATS_INC(mp, xs_ig_missed);
 663
 664		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 665							flags, lock_flags);
 666		if (error)
 667			goto out_error_or_again;
 668	}
 669	xfs_perag_put(pag);
 670
 671	*ipp = ip;
 672
 673	/*
 674	 * If we have a real type for an on-disk inode, we can setup the inode
 675	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 676	 */
 677	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 678		xfs_setup_existing_inode(ip);
 679	return 0;
 680
 681out_error_or_again:
 682	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
 683		delay(1);
 684		goto again;
 685	}
 686	xfs_perag_put(pag);
 687	return error;
 688}
 689
 690/*
 691 * "Is this a cached inode that's also allocated?"
 692 *
 693 * Look up an inode by number in the given file system.  If the inode is
 694 * in cache and isn't in purgatory, return 1 if the inode is allocated
 695 * and 0 if it is not.  For all other cases (not in cache, being torn
 696 * down, etc.), return a negative error code.
 697 *
 698 * The caller has to prevent inode allocation and freeing activity,
 699 * presumably by locking the AGI buffer.   This is to ensure that an
 700 * inode cannot transition from allocated to freed until the caller is
 701 * ready to allow that.  If the inode is in an intermediate state (new,
 702 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 703 * inode is not in the cache, -ENOENT will be returned.  The caller must
 704 * deal with these scenarios appropriately.
 705 *
 706 * This is a specialized use case for the online scrubber; if you're
 707 * reading this, you probably want xfs_iget.
 708 */
 709int
 710xfs_icache_inode_is_allocated(
 711	struct xfs_mount	*mp,
 712	struct xfs_trans	*tp,
 713	xfs_ino_t		ino,
 714	bool			*inuse)
 715{
 716	struct xfs_inode	*ip;
 717	int			error;
 718
 719	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
 720	if (error)
 721		return error;
 722
 723	*inuse = !!(VFS_I(ip)->i_mode);
 724	xfs_irele(ip);
 725	return 0;
 726}
 727
 728/*
 729 * The inode lookup is done in batches to keep the amount of lock traffic and
 730 * radix tree lookups to a minimum. The batch size is a trade off between
 731 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 732 * be too greedy.
 733 */
 734#define XFS_LOOKUP_BATCH	32
 735
 736STATIC int
 737xfs_inode_ag_walk_grab(
 738	struct xfs_inode	*ip,
 739	int			flags)
 740{
 741	struct inode		*inode = VFS_I(ip);
 742	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
 743
 744	ASSERT(rcu_read_lock_held());
 745
 746	/*
 747	 * check for stale RCU freed inode
 748	 *
 749	 * If the inode has been reallocated, it doesn't matter if it's not in
 750	 * the AG we are walking - we are walking for writeback, so if it
 751	 * passes all the "valid inode" checks and is dirty, then we'll write
 752	 * it back anyway.  If it has been reallocated and still being
 753	 * initialised, the XFS_INEW check below will catch it.
 754	 */
 755	spin_lock(&ip->i_flags_lock);
 756	if (!ip->i_ino)
 757		goto out_unlock_noent;
 758
 759	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 760	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
 761	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
 762		goto out_unlock_noent;
 763	spin_unlock(&ip->i_flags_lock);
 764
 765	/* nothing to sync during shutdown */
 766	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 767		return -EFSCORRUPTED;
 768
 769	/* If we can't grab the inode, it must on it's way to reclaim. */
 770	if (!igrab(inode))
 771		return -ENOENT;
 772
 773	/* inode is valid */
 774	return 0;
 775
 776out_unlock_noent:
 777	spin_unlock(&ip->i_flags_lock);
 778	return -ENOENT;
 779}
 780
 781STATIC int
 782xfs_inode_ag_walk(
 783	struct xfs_mount	*mp,
 784	struct xfs_perag	*pag,
 785	int			(*execute)(struct xfs_inode *ip, int flags,
 786					   void *args),
 787	int			flags,
 788	void			*args,
 789	int			tag,
 790	int			iter_flags)
 791{
 792	uint32_t		first_index;
 793	int			last_error = 0;
 794	int			skipped;
 795	int			done;
 796	int			nr_found;
 797
 798restart:
 799	done = 0;
 800	skipped = 0;
 801	first_index = 0;
 802	nr_found = 0;
 803	do {
 804		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 805		int		error = 0;
 806		int		i;
 807
 808		rcu_read_lock();
 809
 810		if (tag == -1)
 811			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 812					(void **)batch, first_index,
 813					XFS_LOOKUP_BATCH);
 814		else
 815			nr_found = radix_tree_gang_lookup_tag(
 816					&pag->pag_ici_root,
 817					(void **) batch, first_index,
 818					XFS_LOOKUP_BATCH, tag);
 819
 820		if (!nr_found) {
 821			rcu_read_unlock();
 822			break;
 823		}
 824
 825		/*
 826		 * Grab the inodes before we drop the lock. if we found
 827		 * nothing, nr == 0 and the loop will be skipped.
 828		 */
 829		for (i = 0; i < nr_found; i++) {
 830			struct xfs_inode *ip = batch[i];
 831
 832			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
 833				batch[i] = NULL;
 834
 835			/*
 836			 * Update the index for the next lookup. Catch
 837			 * overflows into the next AG range which can occur if
 838			 * we have inodes in the last block of the AG and we
 839			 * are currently pointing to the last inode.
 840			 *
 841			 * Because we may see inodes that are from the wrong AG
 842			 * due to RCU freeing and reallocation, only update the
 843			 * index if it lies in this AG. It was a race that lead
 844			 * us to see this inode, so another lookup from the
 845			 * same index will not find it again.
 846			 */
 847			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 848				continue;
 849			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 850			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 851				done = 1;
 852		}
 853
 854		/* unlock now we've grabbed the inodes. */
 855		rcu_read_unlock();
 856
 857		for (i = 0; i < nr_found; i++) {
 858			if (!batch[i])
 859				continue;
 860			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
 861			    xfs_iflags_test(batch[i], XFS_INEW))
 862				xfs_inew_wait(batch[i]);
 863			error = execute(batch[i], flags, args);
 864			xfs_irele(batch[i]);
 865			if (error == -EAGAIN) {
 866				skipped++;
 867				continue;
 868			}
 869			if (error && last_error != -EFSCORRUPTED)
 870				last_error = error;
 871		}
 872
 873		/* bail out if the filesystem is corrupted.  */
 874		if (error == -EFSCORRUPTED)
 875			break;
 876
 877		cond_resched();
 878
 879	} while (nr_found && !done);
 880
 881	if (skipped) {
 882		delay(1);
 883		goto restart;
 884	}
 885	return last_error;
 886}
 887
 888/*
 889 * Background scanning to trim post-EOF preallocated space. This is queued
 890 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 891 */
 892void
 893xfs_queue_eofblocks(
 894	struct xfs_mount *mp)
 895{
 896	rcu_read_lock();
 897	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 898		queue_delayed_work(mp->m_eofblocks_workqueue,
 899				   &mp->m_eofblocks_work,
 900				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 901	rcu_read_unlock();
 902}
 903
 904void
 905xfs_eofblocks_worker(
 906	struct work_struct *work)
 907{
 908	struct xfs_mount *mp = container_of(to_delayed_work(work),
 909				struct xfs_mount, m_eofblocks_work);
 910	xfs_icache_free_eofblocks(mp, NULL);
 911	xfs_queue_eofblocks(mp);
 912}
 913
 914/*
 915 * Background scanning to trim preallocated CoW space. This is queued
 916 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 917 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 918 */
 919void
 920xfs_queue_cowblocks(
 921	struct xfs_mount *mp)
 922{
 923	rcu_read_lock();
 924	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
 925		queue_delayed_work(mp->m_eofblocks_workqueue,
 926				   &mp->m_cowblocks_work,
 927				   msecs_to_jiffies(xfs_cowb_secs * 1000));
 928	rcu_read_unlock();
 929}
 930
 931void
 932xfs_cowblocks_worker(
 933	struct work_struct *work)
 934{
 935	struct xfs_mount *mp = container_of(to_delayed_work(work),
 936				struct xfs_mount, m_cowblocks_work);
 937	xfs_icache_free_cowblocks(mp, NULL);
 938	xfs_queue_cowblocks(mp);
 939}
 940
 941int
 942xfs_inode_ag_iterator_flags(
 943	struct xfs_mount	*mp,
 944	int			(*execute)(struct xfs_inode *ip, int flags,
 945					   void *args),
 946	int			flags,
 947	void			*args,
 948	int			iter_flags)
 949{
 950	struct xfs_perag	*pag;
 951	int			error = 0;
 952	int			last_error = 0;
 953	xfs_agnumber_t		ag;
 954
 955	ag = 0;
 956	while ((pag = xfs_perag_get(mp, ag))) {
 957		ag = pag->pag_agno + 1;
 958		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
 959					  iter_flags);
 960		xfs_perag_put(pag);
 961		if (error) {
 962			last_error = error;
 963			if (error == -EFSCORRUPTED)
 964				break;
 965		}
 966	}
 967	return last_error;
 968}
 969
 970int
 971xfs_inode_ag_iterator(
 972	struct xfs_mount	*mp,
 973	int			(*execute)(struct xfs_inode *ip, int flags,
 974					   void *args),
 975	int			flags,
 976	void			*args)
 977{
 978	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
 979}
 980
 981int
 982xfs_inode_ag_iterator_tag(
 983	struct xfs_mount	*mp,
 984	int			(*execute)(struct xfs_inode *ip, int flags,
 985					   void *args),
 986	int			flags,
 987	void			*args,
 988	int			tag)
 989{
 990	struct xfs_perag	*pag;
 991	int			error = 0;
 992	int			last_error = 0;
 993	xfs_agnumber_t		ag;
 994
 995	ag = 0;
 996	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 997		ag = pag->pag_agno + 1;
 998		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
 999					  0);
1000		xfs_perag_put(pag);
1001		if (error) {
1002			last_error = error;
1003			if (error == -EFSCORRUPTED)
1004				break;
1005		}
1006	}
1007	return last_error;
1008}
1009
1010/*
1011 * Grab the inode for reclaim exclusively.
1012 * Return 0 if we grabbed it, non-zero otherwise.
1013 */
1014STATIC int
1015xfs_reclaim_inode_grab(
1016	struct xfs_inode	*ip,
1017	int			flags)
1018{
1019	ASSERT(rcu_read_lock_held());
1020
1021	/* quick check for stale RCU freed inode */
1022	if (!ip->i_ino)
1023		return 1;
1024
1025	/*
1026	 * If we are asked for non-blocking operation, do unlocked checks to
1027	 * see if the inode already is being flushed or in reclaim to avoid
1028	 * lock traffic.
1029	 */
1030	if ((flags & SYNC_TRYLOCK) &&
1031	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1032		return 1;
1033
1034	/*
1035	 * The radix tree lock here protects a thread in xfs_iget from racing
1036	 * with us starting reclaim on the inode.  Once we have the
1037	 * XFS_IRECLAIM flag set it will not touch us.
1038	 *
1039	 * Due to RCU lookup, we may find inodes that have been freed and only
1040	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1041	 * aren't candidates for reclaim at all, so we must check the
1042	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1043	 */
1044	spin_lock(&ip->i_flags_lock);
1045	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1046	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1047		/* not a reclaim candidate. */
1048		spin_unlock(&ip->i_flags_lock);
1049		return 1;
1050	}
1051	__xfs_iflags_set(ip, XFS_IRECLAIM);
1052	spin_unlock(&ip->i_flags_lock);
1053	return 0;
1054}
1055
1056/*
1057 * Inodes in different states need to be treated differently. The following
1058 * table lists the inode states and the reclaim actions necessary:
1059 *
1060 *	inode state	     iflush ret		required action
1061 *      ---------------      ----------         ---------------
1062 *	bad			-		reclaim
1063 *	shutdown		EIO		unpin and reclaim
1064 *	clean, unpinned		0		reclaim
1065 *	stale, unpinned		0		reclaim
1066 *	clean, pinned(*)	0		requeue
1067 *	stale, pinned		EAGAIN		requeue
1068 *	dirty, async		-		requeue
1069 *	dirty, sync		0		reclaim
1070 *
1071 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1072 * handled anyway given the order of checks implemented.
1073 *
1074 * Also, because we get the flush lock first, we know that any inode that has
1075 * been flushed delwri has had the flush completed by the time we check that
1076 * the inode is clean.
1077 *
1078 * Note that because the inode is flushed delayed write by AIL pushing, the
1079 * flush lock may already be held here and waiting on it can result in very
1080 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1081 * the caller should push the AIL first before trying to reclaim inodes to
1082 * minimise the amount of time spent waiting.  For background relaim, we only
1083 * bother to reclaim clean inodes anyway.
1084 *
1085 * Hence the order of actions after gaining the locks should be:
1086 *	bad		=> reclaim
1087 *	shutdown	=> unpin and reclaim
1088 *	pinned, async	=> requeue
1089 *	pinned, sync	=> unpin
1090 *	stale		=> reclaim
1091 *	clean		=> reclaim
1092 *	dirty, async	=> requeue
1093 *	dirty, sync	=> flush, wait and reclaim
1094 */
1095STATIC int
1096xfs_reclaim_inode(
1097	struct xfs_inode	*ip,
1098	struct xfs_perag	*pag,
1099	int			sync_mode)
1100{
1101	struct xfs_buf		*bp = NULL;
1102	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1103	int			error;
1104
1105restart:
1106	error = 0;
1107	xfs_ilock(ip, XFS_ILOCK_EXCL);
1108	if (!xfs_iflock_nowait(ip)) {
1109		if (!(sync_mode & SYNC_WAIT))
1110			goto out;
1111		xfs_iflock(ip);
1112	}
1113
1114	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1115		xfs_iunpin_wait(ip);
1116		/* xfs_iflush_abort() drops the flush lock */
1117		xfs_iflush_abort(ip, false);
1118		goto reclaim;
1119	}
1120	if (xfs_ipincount(ip)) {
1121		if (!(sync_mode & SYNC_WAIT))
1122			goto out_ifunlock;
1123		xfs_iunpin_wait(ip);
1124	}
1125	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1126		xfs_ifunlock(ip);
1127		goto reclaim;
1128	}
1129
1130	/*
1131	 * Never flush out dirty data during non-blocking reclaim, as it would
1132	 * just contend with AIL pushing trying to do the same job.
1133	 */
1134	if (!(sync_mode & SYNC_WAIT))
1135		goto out_ifunlock;
1136
1137	/*
1138	 * Now we have an inode that needs flushing.
1139	 *
1140	 * Note that xfs_iflush will never block on the inode buffer lock, as
1141	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1142	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1143	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1144	 * result in an ABBA deadlock with xfs_ifree_cluster().
1145	 *
1146	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1147	 * cache to mark them stale, if we hit this case we don't actually want
1148	 * to do IO here - we want the inode marked stale so we can simply
1149	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1150	 * inode, back off and try again.  Hopefully the next pass through will
1151	 * see the stale flag set on the inode.
1152	 */
1153	error = xfs_iflush(ip, &bp);
1154	if (error == -EAGAIN) {
1155		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1156		/* backoff longer than in xfs_ifree_cluster */
1157		delay(2);
1158		goto restart;
1159	}
1160
1161	if (!error) {
1162		error = xfs_bwrite(bp);
1163		xfs_buf_relse(bp);
1164	}
1165
1166reclaim:
1167	ASSERT(!xfs_isiflocked(ip));
1168
1169	/*
1170	 * Because we use RCU freeing we need to ensure the inode always appears
1171	 * to be reclaimed with an invalid inode number when in the free state.
1172	 * We do this as early as possible under the ILOCK so that
1173	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1174	 * detect races with us here. By doing this, we guarantee that once
1175	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1176	 * it will see either a valid inode that will serialise correctly, or it
1177	 * will see an invalid inode that it can skip.
1178	 */
1179	spin_lock(&ip->i_flags_lock);
1180	ip->i_flags = XFS_IRECLAIM;
1181	ip->i_ino = 0;
1182	spin_unlock(&ip->i_flags_lock);
1183
1184	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185
1186	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1187	/*
1188	 * Remove the inode from the per-AG radix tree.
1189	 *
1190	 * Because radix_tree_delete won't complain even if the item was never
1191	 * added to the tree assert that it's been there before to catch
1192	 * problems with the inode life time early on.
1193	 */
1194	spin_lock(&pag->pag_ici_lock);
1195	if (!radix_tree_delete(&pag->pag_ici_root,
1196				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1197		ASSERT(0);
1198	xfs_perag_clear_reclaim_tag(pag);
1199	spin_unlock(&pag->pag_ici_lock);
1200
1201	/*
1202	 * Here we do an (almost) spurious inode lock in order to coordinate
1203	 * with inode cache radix tree lookups.  This is because the lookup
1204	 * can reference the inodes in the cache without taking references.
1205	 *
1206	 * We make that OK here by ensuring that we wait until the inode is
1207	 * unlocked after the lookup before we go ahead and free it.
1208	 */
1209	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210	xfs_qm_dqdetach(ip);
1211	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1212
1213	__xfs_inode_free(ip);
1214	return error;
1215
1216out_ifunlock:
1217	xfs_ifunlock(ip);
1218out:
1219	xfs_iflags_clear(ip, XFS_IRECLAIM);
1220	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1221	/*
1222	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1223	 * a short while. However, this just burns CPU time scanning the tree
1224	 * waiting for IO to complete and the reclaim work never goes back to
1225	 * the idle state. Instead, return 0 to let the next scheduled
1226	 * background reclaim attempt to reclaim the inode again.
1227	 */
1228	return 0;
1229}
1230
1231/*
1232 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1233 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1234 * then a shut down during filesystem unmount reclaim walk leak all the
1235 * unreclaimed inodes.
1236 */
1237STATIC int
1238xfs_reclaim_inodes_ag(
1239	struct xfs_mount	*mp,
1240	int			flags,
1241	int			*nr_to_scan)
1242{
1243	struct xfs_perag	*pag;
1244	int			error = 0;
1245	int			last_error = 0;
1246	xfs_agnumber_t		ag;
1247	int			trylock = flags & SYNC_TRYLOCK;
1248	int			skipped;
1249
1250restart:
1251	ag = 0;
1252	skipped = 0;
1253	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1254		unsigned long	first_index = 0;
1255		int		done = 0;
1256		int		nr_found = 0;
1257
1258		ag = pag->pag_agno + 1;
1259
1260		if (trylock) {
1261			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1262				skipped++;
1263				xfs_perag_put(pag);
1264				continue;
1265			}
1266			first_index = pag->pag_ici_reclaim_cursor;
1267		} else
1268			mutex_lock(&pag->pag_ici_reclaim_lock);
1269
1270		do {
1271			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1272			int	i;
1273
1274			rcu_read_lock();
1275			nr_found = radix_tree_gang_lookup_tag(
1276					&pag->pag_ici_root,
1277					(void **)batch, first_index,
1278					XFS_LOOKUP_BATCH,
1279					XFS_ICI_RECLAIM_TAG);
1280			if (!nr_found) {
1281				done = 1;
1282				rcu_read_unlock();
1283				break;
1284			}
1285
1286			/*
1287			 * Grab the inodes before we drop the lock. if we found
1288			 * nothing, nr == 0 and the loop will be skipped.
1289			 */
1290			for (i = 0; i < nr_found; i++) {
1291				struct xfs_inode *ip = batch[i];
1292
1293				if (done || xfs_reclaim_inode_grab(ip, flags))
1294					batch[i] = NULL;
1295
1296				/*
1297				 * Update the index for the next lookup. Catch
1298				 * overflows into the next AG range which can
1299				 * occur if we have inodes in the last block of
1300				 * the AG and we are currently pointing to the
1301				 * last inode.
1302				 *
1303				 * Because we may see inodes that are from the
1304				 * wrong AG due to RCU freeing and
1305				 * reallocation, only update the index if it
1306				 * lies in this AG. It was a race that lead us
1307				 * to see this inode, so another lookup from
1308				 * the same index will not find it again.
1309				 */
1310				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1311								pag->pag_agno)
1312					continue;
1313				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1314				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1315					done = 1;
1316			}
1317
1318			/* unlock now we've grabbed the inodes. */
1319			rcu_read_unlock();
1320
1321			for (i = 0; i < nr_found; i++) {
1322				if (!batch[i])
1323					continue;
1324				error = xfs_reclaim_inode(batch[i], pag, flags);
1325				if (error && last_error != -EFSCORRUPTED)
1326					last_error = error;
1327			}
1328
1329			*nr_to_scan -= XFS_LOOKUP_BATCH;
1330
1331			cond_resched();
1332
1333		} while (nr_found && !done && *nr_to_scan > 0);
1334
1335		if (trylock && !done)
1336			pag->pag_ici_reclaim_cursor = first_index;
1337		else
1338			pag->pag_ici_reclaim_cursor = 0;
1339		mutex_unlock(&pag->pag_ici_reclaim_lock);
1340		xfs_perag_put(pag);
1341	}
1342
1343	/*
1344	 * if we skipped any AG, and we still have scan count remaining, do
1345	 * another pass this time using blocking reclaim semantics (i.e
1346	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1347	 * ensure that when we get more reclaimers than AGs we block rather
1348	 * than spin trying to execute reclaim.
1349	 */
1350	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1351		trylock = 0;
1352		goto restart;
1353	}
1354	return last_error;
1355}
1356
1357int
1358xfs_reclaim_inodes(
1359	xfs_mount_t	*mp,
1360	int		mode)
1361{
1362	int		nr_to_scan = INT_MAX;
1363
1364	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1365}
1366
1367/*
1368 * Scan a certain number of inodes for reclaim.
1369 *
1370 * When called we make sure that there is a background (fast) inode reclaim in
1371 * progress, while we will throttle the speed of reclaim via doing synchronous
1372 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1373 * them to be cleaned, which we hope will not be very long due to the
1374 * background walker having already kicked the IO off on those dirty inodes.
1375 */
1376long
1377xfs_reclaim_inodes_nr(
1378	struct xfs_mount	*mp,
1379	int			nr_to_scan)
1380{
1381	/* kick background reclaimer and push the AIL */
1382	xfs_reclaim_work_queue(mp);
1383	xfs_ail_push_all(mp->m_ail);
1384
1385	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1386}
1387
1388/*
1389 * Return the number of reclaimable inodes in the filesystem for
1390 * the shrinker to determine how much to reclaim.
1391 */
1392int
1393xfs_reclaim_inodes_count(
1394	struct xfs_mount	*mp)
1395{
1396	struct xfs_perag	*pag;
1397	xfs_agnumber_t		ag = 0;
1398	int			reclaimable = 0;
1399
1400	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1401		ag = pag->pag_agno + 1;
1402		reclaimable += pag->pag_ici_reclaimable;
1403		xfs_perag_put(pag);
1404	}
1405	return reclaimable;
1406}
1407
1408STATIC int
1409xfs_inode_match_id(
1410	struct xfs_inode	*ip,
1411	struct xfs_eofblocks	*eofb)
1412{
1413	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1414	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1415		return 0;
1416
1417	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1418	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1419		return 0;
1420
1421	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1422	    xfs_get_projid(ip) != eofb->eof_prid)
1423		return 0;
1424
1425	return 1;
1426}
1427
1428/*
1429 * A union-based inode filtering algorithm. Process the inode if any of the
1430 * criteria match. This is for global/internal scans only.
1431 */
1432STATIC int
1433xfs_inode_match_id_union(
1434	struct xfs_inode	*ip,
1435	struct xfs_eofblocks	*eofb)
1436{
1437	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1438	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1439		return 1;
1440
1441	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1442	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1443		return 1;
1444
1445	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1446	    xfs_get_projid(ip) == eofb->eof_prid)
1447		return 1;
1448
1449	return 0;
1450}
1451
1452STATIC int
1453xfs_inode_free_eofblocks(
1454	struct xfs_inode	*ip,
1455	int			flags,
1456	void			*args)
1457{
1458	int ret = 0;
1459	struct xfs_eofblocks *eofb = args;
1460	int match;
1461
1462	if (!xfs_can_free_eofblocks(ip, false)) {
1463		/* inode could be preallocated or append-only */
1464		trace_xfs_inode_free_eofblocks_invalid(ip);
1465		xfs_inode_clear_eofblocks_tag(ip);
1466		return 0;
1467	}
1468
1469	/*
1470	 * If the mapping is dirty the operation can block and wait for some
1471	 * time. Unless we are waiting, skip it.
1472	 */
1473	if (!(flags & SYNC_WAIT) &&
1474	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1475		return 0;
1476
1477	if (eofb) {
1478		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1479			match = xfs_inode_match_id_union(ip, eofb);
1480		else
1481			match = xfs_inode_match_id(ip, eofb);
1482		if (!match)
1483			return 0;
1484
1485		/* skip the inode if the file size is too small */
1486		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1487		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1488			return 0;
1489	}
1490
1491	/*
1492	 * If the caller is waiting, return -EAGAIN to keep the background
1493	 * scanner moving and revisit the inode in a subsequent pass.
1494	 */
1495	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1496		if (flags & SYNC_WAIT)
1497			ret = -EAGAIN;
1498		return ret;
1499	}
1500	ret = xfs_free_eofblocks(ip);
1501	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1502
1503	return ret;
1504}
1505
1506static int
1507__xfs_icache_free_eofblocks(
1508	struct xfs_mount	*mp,
1509	struct xfs_eofblocks	*eofb,
1510	int			(*execute)(struct xfs_inode *ip, int flags,
1511					   void *args),
1512	int			tag)
1513{
1514	int flags = SYNC_TRYLOCK;
1515
1516	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1517		flags = SYNC_WAIT;
1518
1519	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1520					 eofb, tag);
1521}
1522
1523int
1524xfs_icache_free_eofblocks(
1525	struct xfs_mount	*mp,
1526	struct xfs_eofblocks	*eofb)
1527{
1528	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1529			XFS_ICI_EOFBLOCKS_TAG);
1530}
1531
1532/*
1533 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1534 * multiple quotas, we don't know exactly which quota caused an allocation
1535 * failure. We make a best effort by including each quota under low free space
1536 * conditions (less than 1% free space) in the scan.
1537 */
1538static int
1539__xfs_inode_free_quota_eofblocks(
1540	struct xfs_inode	*ip,
1541	int			(*execute)(struct xfs_mount *mp,
1542					   struct xfs_eofblocks	*eofb))
1543{
1544	int scan = 0;
1545	struct xfs_eofblocks eofb = {0};
1546	struct xfs_dquot *dq;
1547
1548	/*
1549	 * Run a sync scan to increase effectiveness and use the union filter to
1550	 * cover all applicable quotas in a single scan.
1551	 */
1552	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1553
1554	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1555		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1556		if (dq && xfs_dquot_lowsp(dq)) {
1557			eofb.eof_uid = VFS_I(ip)->i_uid;
1558			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1559			scan = 1;
1560		}
1561	}
1562
1563	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1564		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1565		if (dq && xfs_dquot_lowsp(dq)) {
1566			eofb.eof_gid = VFS_I(ip)->i_gid;
1567			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1568			scan = 1;
1569		}
1570	}
1571
1572	if (scan)
1573		execute(ip->i_mount, &eofb);
1574
1575	return scan;
1576}
1577
1578int
1579xfs_inode_free_quota_eofblocks(
1580	struct xfs_inode *ip)
1581{
1582	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1583}
1584
1585static inline unsigned long
1586xfs_iflag_for_tag(
1587	int		tag)
1588{
1589	switch (tag) {
1590	case XFS_ICI_EOFBLOCKS_TAG:
1591		return XFS_IEOFBLOCKS;
1592	case XFS_ICI_COWBLOCKS_TAG:
1593		return XFS_ICOWBLOCKS;
1594	default:
1595		ASSERT(0);
1596		return 0;
1597	}
1598}
1599
1600static void
1601__xfs_inode_set_blocks_tag(
1602	xfs_inode_t	*ip,
1603	void		(*execute)(struct xfs_mount *mp),
1604	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1605				  int error, unsigned long caller_ip),
1606	int		tag)
1607{
1608	struct xfs_mount *mp = ip->i_mount;
1609	struct xfs_perag *pag;
1610	int tagged;
1611
1612	/*
1613	 * Don't bother locking the AG and looking up in the radix trees
1614	 * if we already know that we have the tag set.
1615	 */
1616	if (ip->i_flags & xfs_iflag_for_tag(tag))
1617		return;
1618	spin_lock(&ip->i_flags_lock);
1619	ip->i_flags |= xfs_iflag_for_tag(tag);
1620	spin_unlock(&ip->i_flags_lock);
1621
1622	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1623	spin_lock(&pag->pag_ici_lock);
1624
1625	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1626	radix_tree_tag_set(&pag->pag_ici_root,
1627			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1628	if (!tagged) {
1629		/* propagate the eofblocks tag up into the perag radix tree */
1630		spin_lock(&ip->i_mount->m_perag_lock);
1631		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1632				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1633				   tag);
1634		spin_unlock(&ip->i_mount->m_perag_lock);
1635
1636		/* kick off background trimming */
1637		execute(ip->i_mount);
1638
1639		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1640	}
1641
1642	spin_unlock(&pag->pag_ici_lock);
1643	xfs_perag_put(pag);
1644}
1645
1646void
1647xfs_inode_set_eofblocks_tag(
1648	xfs_inode_t	*ip)
1649{
1650	trace_xfs_inode_set_eofblocks_tag(ip);
1651	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1652			trace_xfs_perag_set_eofblocks,
1653			XFS_ICI_EOFBLOCKS_TAG);
1654}
1655
1656static void
1657__xfs_inode_clear_blocks_tag(
1658	xfs_inode_t	*ip,
1659	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1660				    int error, unsigned long caller_ip),
1661	int		tag)
1662{
1663	struct xfs_mount *mp = ip->i_mount;
1664	struct xfs_perag *pag;
1665
1666	spin_lock(&ip->i_flags_lock);
1667	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1668	spin_unlock(&ip->i_flags_lock);
1669
1670	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1671	spin_lock(&pag->pag_ici_lock);
1672
1673	radix_tree_tag_clear(&pag->pag_ici_root,
1674			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1675	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1676		/* clear the eofblocks tag from the perag radix tree */
1677		spin_lock(&ip->i_mount->m_perag_lock);
1678		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1679				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1680				     tag);
1681		spin_unlock(&ip->i_mount->m_perag_lock);
1682		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1683	}
1684
1685	spin_unlock(&pag->pag_ici_lock);
1686	xfs_perag_put(pag);
1687}
1688
1689void
1690xfs_inode_clear_eofblocks_tag(
1691	xfs_inode_t	*ip)
1692{
1693	trace_xfs_inode_clear_eofblocks_tag(ip);
1694	return __xfs_inode_clear_blocks_tag(ip,
1695			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1696}
1697
1698/*
1699 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1700 * then we can bail out quickly, but otherwise we must back off if the file
1701 * is undergoing some kind of write.
1702 */
1703static bool
1704xfs_prep_free_cowblocks(
1705	struct xfs_inode	*ip)
1706{
1707	/*
1708	 * Just clear the tag if we have an empty cow fork or none at all. It's
1709	 * possible the inode was fully unshared since it was originally tagged.
1710	 */
1711	if (!xfs_inode_has_cow_data(ip)) {
1712		trace_xfs_inode_free_cowblocks_invalid(ip);
1713		xfs_inode_clear_cowblocks_tag(ip);
1714		return false;
1715	}
1716
1717	/*
1718	 * If the mapping is dirty or under writeback we cannot touch the
1719	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1720	 */
1721	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1722	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1723	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1724	    atomic_read(&VFS_I(ip)->i_dio_count))
1725		return false;
1726
1727	return true;
1728}
1729
1730/*
1731 * Automatic CoW Reservation Freeing
1732 *
1733 * These functions automatically garbage collect leftover CoW reservations
1734 * that were made on behalf of a cowextsize hint when we start to run out
1735 * of quota or when the reservations sit around for too long.  If the file
1736 * has dirty pages or is undergoing writeback, its CoW reservations will
1737 * be retained.
1738 *
1739 * The actual garbage collection piggybacks off the same code that runs
1740 * the speculative EOF preallocation garbage collector.
1741 */
1742STATIC int
1743xfs_inode_free_cowblocks(
1744	struct xfs_inode	*ip,
1745	int			flags,
1746	void			*args)
1747{
1748	struct xfs_eofblocks	*eofb = args;
1749	int			match;
1750	int			ret = 0;
1751
1752	if (!xfs_prep_free_cowblocks(ip))
1753		return 0;
1754
1755	if (eofb) {
1756		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1757			match = xfs_inode_match_id_union(ip, eofb);
1758		else
1759			match = xfs_inode_match_id(ip, eofb);
1760		if (!match)
1761			return 0;
1762
1763		/* skip the inode if the file size is too small */
1764		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1765		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1766			return 0;
1767	}
1768
1769	/* Free the CoW blocks */
1770	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1771	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1772
1773	/*
1774	 * Check again, nobody else should be able to dirty blocks or change
1775	 * the reflink iflag now that we have the first two locks held.
1776	 */
1777	if (xfs_prep_free_cowblocks(ip))
1778		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1779
1780	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1781	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1782
1783	return ret;
1784}
1785
1786int
1787xfs_icache_free_cowblocks(
1788	struct xfs_mount	*mp,
1789	struct xfs_eofblocks	*eofb)
1790{
1791	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1792			XFS_ICI_COWBLOCKS_TAG);
1793}
1794
1795int
1796xfs_inode_free_quota_cowblocks(
1797	struct xfs_inode *ip)
1798{
1799	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1800}
1801
1802void
1803xfs_inode_set_cowblocks_tag(
1804	xfs_inode_t	*ip)
1805{
1806	trace_xfs_inode_set_cowblocks_tag(ip);
1807	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1808			trace_xfs_perag_set_cowblocks,
1809			XFS_ICI_COWBLOCKS_TAG);
1810}
1811
1812void
1813xfs_inode_clear_cowblocks_tag(
1814	xfs_inode_t	*ip)
1815{
1816	trace_xfs_inode_clear_cowblocks_tag(ip);
1817	return __xfs_inode_clear_blocks_tag(ip,
1818			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1819}
1820
1821/* Disable post-EOF and CoW block auto-reclamation. */
1822void
1823xfs_stop_block_reaping(
1824	struct xfs_mount	*mp)
1825{
1826	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1827	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1828}
1829
1830/* Enable post-EOF and CoW block auto-reclamation. */
1831void
1832xfs_start_block_reaping(
1833	struct xfs_mount	*mp)
1834{
1835	xfs_queue_eofblocks(mp);
1836	xfs_queue_cowblocks(mp);
1837}