Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_inum.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_inode.h"
  28#include "xfs_error.h"
  29#include "xfs_trans.h"
  30#include "xfs_trans_priv.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_quota.h"
  33#include "xfs_trace.h"
  34#include "xfs_icache.h"
  35#include "xfs_bmap_util.h"
  36
  37#include <linux/kthread.h>
  38#include <linux/freezer.h>
  39
  40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
  41				struct xfs_perag *pag, struct xfs_inode *ip);
  42
  43/*
  44 * Allocate and initialise an xfs_inode.
  45 */
  46struct xfs_inode *
  47xfs_inode_alloc(
  48	struct xfs_mount	*mp,
  49	xfs_ino_t		ino)
  50{
  51	struct xfs_inode	*ip;
  52
  53	/*
  54	 * if this didn't occur in transactions, we could use
  55	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  56	 * code up to do this anyway.
  57	 */
  58	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  59	if (!ip)
  60		return NULL;
  61	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  62		kmem_zone_free(xfs_inode_zone, ip);
  63		return NULL;
  64	}
  65
  66	ASSERT(atomic_read(&ip->i_pincount) == 0);
  67	ASSERT(!spin_is_locked(&ip->i_flags_lock));
  68	ASSERT(!xfs_isiflocked(ip));
  69	ASSERT(ip->i_ino == 0);
  70
  71	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
  72
  73	/* initialise the xfs inode */
  74	ip->i_ino = ino;
  75	ip->i_mount = mp;
  76	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  77	ip->i_afp = NULL;
  78	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
  79	ip->i_flags = 0;
  80	ip->i_delayed_blks = 0;
  81	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
  82
  83	return ip;
  84}
  85
  86STATIC void
  87xfs_inode_free_callback(
  88	struct rcu_head		*head)
  89{
  90	struct inode		*inode = container_of(head, struct inode, i_rcu);
  91	struct xfs_inode	*ip = XFS_I(inode);
  92
  93	kmem_zone_free(xfs_inode_zone, ip);
  94}
  95
  96void
  97xfs_inode_free(
  98	struct xfs_inode	*ip)
  99{
 100	switch (ip->i_d.di_mode & S_IFMT) {
 101	case S_IFREG:
 102	case S_IFDIR:
 103	case S_IFLNK:
 104		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 105		break;
 106	}
 107
 108	if (ip->i_afp)
 109		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 110
 111	if (ip->i_itemp) {
 112		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
 113		xfs_inode_item_destroy(ip);
 114		ip->i_itemp = NULL;
 115	}
 116
 117	/*
 118	 * Because we use RCU freeing we need to ensure the inode always
 119	 * appears to be reclaimed with an invalid inode number when in the
 120	 * free state. The ip->i_flags_lock provides the barrier against lookup
 121	 * races.
 122	 */
 123	spin_lock(&ip->i_flags_lock);
 124	ip->i_flags = XFS_IRECLAIM;
 125	ip->i_ino = 0;
 126	spin_unlock(&ip->i_flags_lock);
 127
 128	/* asserts to verify all state is correct here */
 129	ASSERT(atomic_read(&ip->i_pincount) == 0);
 130	ASSERT(!xfs_isiflocked(ip));
 131
 132	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 133}
 134
 135/*
 136 * Check the validity of the inode we just found it the cache
 137 */
 138static int
 139xfs_iget_cache_hit(
 140	struct xfs_perag	*pag,
 141	struct xfs_inode	*ip,
 142	xfs_ino_t		ino,
 143	int			flags,
 144	int			lock_flags) __releases(RCU)
 145{
 146	struct inode		*inode = VFS_I(ip);
 147	struct xfs_mount	*mp = ip->i_mount;
 148	int			error;
 149
 150	/*
 151	 * check for re-use of an inode within an RCU grace period due to the
 152	 * radix tree nodes not being updated yet. We monitor for this by
 153	 * setting the inode number to zero before freeing the inode structure.
 154	 * If the inode has been reallocated and set up, then the inode number
 155	 * will not match, so check for that, too.
 156	 */
 157	spin_lock(&ip->i_flags_lock);
 158	if (ip->i_ino != ino) {
 159		trace_xfs_iget_skip(ip);
 160		XFS_STATS_INC(xs_ig_frecycle);
 161		error = EAGAIN;
 162		goto out_error;
 163	}
 164
 165
 166	/*
 167	 * If we are racing with another cache hit that is currently
 168	 * instantiating this inode or currently recycling it out of
 169	 * reclaimabe state, wait for the initialisation to complete
 170	 * before continuing.
 171	 *
 172	 * XXX(hch): eventually we should do something equivalent to
 173	 *	     wait_on_inode to wait for these flags to be cleared
 174	 *	     instead of polling for it.
 175	 */
 176	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 177		trace_xfs_iget_skip(ip);
 178		XFS_STATS_INC(xs_ig_frecycle);
 179		error = EAGAIN;
 180		goto out_error;
 181	}
 182
 183	/*
 184	 * If lookup is racing with unlink return an error immediately.
 185	 */
 186	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 187		error = ENOENT;
 188		goto out_error;
 189	}
 190
 191	/*
 192	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 193	 * Need to carefully get it back into useable state.
 194	 */
 195	if (ip->i_flags & XFS_IRECLAIMABLE) {
 196		trace_xfs_iget_reclaim(ip);
 197
 198		/*
 199		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 200		 * from stomping over us while we recycle the inode.  We can't
 201		 * clear the radix tree reclaimable tag yet as it requires
 202		 * pag_ici_lock to be held exclusive.
 203		 */
 204		ip->i_flags |= XFS_IRECLAIM;
 205
 206		spin_unlock(&ip->i_flags_lock);
 207		rcu_read_unlock();
 208
 209		error = -inode_init_always(mp->m_super, inode);
 210		if (error) {
 211			/*
 212			 * Re-initializing the inode failed, and we are in deep
 213			 * trouble.  Try to re-add it to the reclaim list.
 214			 */
 215			rcu_read_lock();
 216			spin_lock(&ip->i_flags_lock);
 217
 218			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 219			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 220			trace_xfs_iget_reclaim_fail(ip);
 221			goto out_error;
 222		}
 223
 224		spin_lock(&pag->pag_ici_lock);
 225		spin_lock(&ip->i_flags_lock);
 226
 227		/*
 228		 * Clear the per-lifetime state in the inode as we are now
 229		 * effectively a new inode and need to return to the initial
 230		 * state before reuse occurs.
 231		 */
 232		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 233		ip->i_flags |= XFS_INEW;
 234		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
 235		inode->i_state = I_NEW;
 236
 237		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 238		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 239
 240		spin_unlock(&ip->i_flags_lock);
 241		spin_unlock(&pag->pag_ici_lock);
 242	} else {
 243		/* If the VFS inode is being torn down, pause and try again. */
 244		if (!igrab(inode)) {
 245			trace_xfs_iget_skip(ip);
 246			error = EAGAIN;
 247			goto out_error;
 248		}
 249
 250		/* We've got a live one. */
 251		spin_unlock(&ip->i_flags_lock);
 252		rcu_read_unlock();
 253		trace_xfs_iget_hit(ip);
 254	}
 255
 256	if (lock_flags != 0)
 257		xfs_ilock(ip, lock_flags);
 258
 259	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 260	XFS_STATS_INC(xs_ig_found);
 261
 262	return 0;
 263
 264out_error:
 265	spin_unlock(&ip->i_flags_lock);
 266	rcu_read_unlock();
 267	return error;
 268}
 269
 270
 271static int
 272xfs_iget_cache_miss(
 273	struct xfs_mount	*mp,
 274	struct xfs_perag	*pag,
 275	xfs_trans_t		*tp,
 276	xfs_ino_t		ino,
 277	struct xfs_inode	**ipp,
 278	int			flags,
 279	int			lock_flags)
 280{
 281	struct xfs_inode	*ip;
 282	int			error;
 283	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 284	int			iflags;
 285
 286	ip = xfs_inode_alloc(mp, ino);
 287	if (!ip)
 288		return ENOMEM;
 289
 290	error = xfs_iread(mp, tp, ip, flags);
 291	if (error)
 292		goto out_destroy;
 293
 294	trace_xfs_iget_miss(ip);
 295
 296	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 297		error = ENOENT;
 298		goto out_destroy;
 299	}
 300
 301	/*
 302	 * Preload the radix tree so we can insert safely under the
 303	 * write spinlock. Note that we cannot sleep inside the preload
 304	 * region. Since we can be called from transaction context, don't
 305	 * recurse into the file system.
 306	 */
 307	if (radix_tree_preload(GFP_NOFS)) {
 308		error = EAGAIN;
 309		goto out_destroy;
 310	}
 311
 312	/*
 313	 * Because the inode hasn't been added to the radix-tree yet it can't
 314	 * be found by another thread, so we can do the non-sleeping lock here.
 315	 */
 316	if (lock_flags) {
 317		if (!xfs_ilock_nowait(ip, lock_flags))
 318			BUG();
 319	}
 320
 321	/*
 322	 * These values must be set before inserting the inode into the radix
 323	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 324	 * RCU locking mechanism) can find it and that lookup must see that this
 325	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 326	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 327	 * memory barrier that ensures this detection works correctly at lookup
 328	 * time.
 329	 */
 330	iflags = XFS_INEW;
 331	if (flags & XFS_IGET_DONTCACHE)
 332		iflags |= XFS_IDONTCACHE;
 333	ip->i_udquot = NULL;
 334	ip->i_gdquot = NULL;
 335	ip->i_pdquot = NULL;
 336	xfs_iflags_set(ip, iflags);
 337
 338	/* insert the new inode */
 339	spin_lock(&pag->pag_ici_lock);
 340	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 341	if (unlikely(error)) {
 342		WARN_ON(error != -EEXIST);
 343		XFS_STATS_INC(xs_ig_dup);
 344		error = EAGAIN;
 345		goto out_preload_end;
 346	}
 347	spin_unlock(&pag->pag_ici_lock);
 348	radix_tree_preload_end();
 349
 350	*ipp = ip;
 351	return 0;
 352
 353out_preload_end:
 354	spin_unlock(&pag->pag_ici_lock);
 355	radix_tree_preload_end();
 356	if (lock_flags)
 357		xfs_iunlock(ip, lock_flags);
 358out_destroy:
 359	__destroy_inode(VFS_I(ip));
 360	xfs_inode_free(ip);
 361	return error;
 362}
 363
 364/*
 365 * Look up an inode by number in the given file system.
 366 * The inode is looked up in the cache held in each AG.
 367 * If the inode is found in the cache, initialise the vfs inode
 368 * if necessary.
 369 *
 370 * If it is not in core, read it in from the file system's device,
 371 * add it to the cache and initialise the vfs inode.
 372 *
 373 * The inode is locked according to the value of the lock_flags parameter.
 374 * This flag parameter indicates how and if the inode's IO lock and inode lock
 375 * should be taken.
 376 *
 377 * mp -- the mount point structure for the current file system.  It points
 378 *       to the inode hash table.
 379 * tp -- a pointer to the current transaction if there is one.  This is
 380 *       simply passed through to the xfs_iread() call.
 381 * ino -- the number of the inode desired.  This is the unique identifier
 382 *        within the file system for the inode being requested.
 383 * lock_flags -- flags indicating how to lock the inode.  See the comment
 384 *		 for xfs_ilock() for a list of valid values.
 385 */
 386int
 387xfs_iget(
 388	xfs_mount_t	*mp,
 389	xfs_trans_t	*tp,
 390	xfs_ino_t	ino,
 391	uint		flags,
 392	uint		lock_flags,
 393	xfs_inode_t	**ipp)
 394{
 395	xfs_inode_t	*ip;
 396	int		error;
 397	xfs_perag_t	*pag;
 398	xfs_agino_t	agino;
 399
 400	/*
 401	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 402	 * doesn't get freed while it's being referenced during a
 403	 * radix tree traversal here.  It assumes this function
 404	 * aqcuires only the ILOCK (and therefore it has no need to
 405	 * involve the IOLOCK in this synchronization).
 406	 */
 407	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 408
 409	/* reject inode numbers outside existing AGs */
 410	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 411		return EINVAL;
 412
 413	/* get the perag structure and ensure that it's inode capable */
 414	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 415	agino = XFS_INO_TO_AGINO(mp, ino);
 416
 417again:
 418	error = 0;
 419	rcu_read_lock();
 420	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 421
 422	if (ip) {
 423		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 424		if (error)
 425			goto out_error_or_again;
 426	} else {
 427		rcu_read_unlock();
 428		XFS_STATS_INC(xs_ig_missed);
 429
 430		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 431							flags, lock_flags);
 432		if (error)
 433			goto out_error_or_again;
 434	}
 435	xfs_perag_put(pag);
 436
 437	*ipp = ip;
 438
 439	/*
 440	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
 441	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 442	 */
 443	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
 444		xfs_setup_inode(ip);
 445	return 0;
 446
 447out_error_or_again:
 448	if (error == EAGAIN) {
 449		delay(1);
 450		goto again;
 451	}
 452	xfs_perag_put(pag);
 453	return error;
 454}
 455
 456/*
 457 * The inode lookup is done in batches to keep the amount of lock traffic and
 458 * radix tree lookups to a minimum. The batch size is a trade off between
 459 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 460 * be too greedy.
 461 */
 462#define XFS_LOOKUP_BATCH	32
 463
 464STATIC int
 465xfs_inode_ag_walk_grab(
 466	struct xfs_inode	*ip)
 467{
 468	struct inode		*inode = VFS_I(ip);
 469
 470	ASSERT(rcu_read_lock_held());
 471
 472	/*
 473	 * check for stale RCU freed inode
 474	 *
 475	 * If the inode has been reallocated, it doesn't matter if it's not in
 476	 * the AG we are walking - we are walking for writeback, so if it
 477	 * passes all the "valid inode" checks and is dirty, then we'll write
 478	 * it back anyway.  If it has been reallocated and still being
 479	 * initialised, the XFS_INEW check below will catch it.
 480	 */
 481	spin_lock(&ip->i_flags_lock);
 482	if (!ip->i_ino)
 483		goto out_unlock_noent;
 484
 485	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 486	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 487		goto out_unlock_noent;
 488	spin_unlock(&ip->i_flags_lock);
 489
 490	/* nothing to sync during shutdown */
 491	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 492		return EFSCORRUPTED;
 493
 494	/* If we can't grab the inode, it must on it's way to reclaim. */
 495	if (!igrab(inode))
 496		return ENOENT;
 497
 498	/* inode is valid */
 499	return 0;
 500
 501out_unlock_noent:
 502	spin_unlock(&ip->i_flags_lock);
 503	return ENOENT;
 504}
 505
 506STATIC int
 507xfs_inode_ag_walk(
 508	struct xfs_mount	*mp,
 509	struct xfs_perag	*pag,
 510	int			(*execute)(struct xfs_inode *ip,
 511					   struct xfs_perag *pag, int flags,
 512					   void *args),
 513	int			flags,
 514	void			*args,
 515	int			tag)
 516{
 517	uint32_t		first_index;
 518	int			last_error = 0;
 519	int			skipped;
 520	int			done;
 521	int			nr_found;
 522
 523restart:
 524	done = 0;
 525	skipped = 0;
 526	first_index = 0;
 527	nr_found = 0;
 528	do {
 529		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 530		int		error = 0;
 531		int		i;
 532
 533		rcu_read_lock();
 534
 535		if (tag == -1)
 536			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 537					(void **)batch, first_index,
 538					XFS_LOOKUP_BATCH);
 539		else
 540			nr_found = radix_tree_gang_lookup_tag(
 541					&pag->pag_ici_root,
 542					(void **) batch, first_index,
 543					XFS_LOOKUP_BATCH, tag);
 544
 545		if (!nr_found) {
 546			rcu_read_unlock();
 547			break;
 548		}
 549
 550		/*
 551		 * Grab the inodes before we drop the lock. if we found
 552		 * nothing, nr == 0 and the loop will be skipped.
 553		 */
 554		for (i = 0; i < nr_found; i++) {
 555			struct xfs_inode *ip = batch[i];
 556
 557			if (done || xfs_inode_ag_walk_grab(ip))
 558				batch[i] = NULL;
 559
 560			/*
 561			 * Update the index for the next lookup. Catch
 562			 * overflows into the next AG range which can occur if
 563			 * we have inodes in the last block of the AG and we
 564			 * are currently pointing to the last inode.
 565			 *
 566			 * Because we may see inodes that are from the wrong AG
 567			 * due to RCU freeing and reallocation, only update the
 568			 * index if it lies in this AG. It was a race that lead
 569			 * us to see this inode, so another lookup from the
 570			 * same index will not find it again.
 571			 */
 572			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 573				continue;
 574			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 575			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 576				done = 1;
 577		}
 578
 579		/* unlock now we've grabbed the inodes. */
 580		rcu_read_unlock();
 581
 582		for (i = 0; i < nr_found; i++) {
 583			if (!batch[i])
 584				continue;
 585			error = execute(batch[i], pag, flags, args);
 586			IRELE(batch[i]);
 587			if (error == EAGAIN) {
 588				skipped++;
 589				continue;
 590			}
 591			if (error && last_error != EFSCORRUPTED)
 592				last_error = error;
 593		}
 594
 595		/* bail out if the filesystem is corrupted.  */
 596		if (error == EFSCORRUPTED)
 597			break;
 598
 599		cond_resched();
 600
 601	} while (nr_found && !done);
 602
 603	if (skipped) {
 604		delay(1);
 605		goto restart;
 606	}
 607	return last_error;
 608}
 609
 610/*
 611 * Background scanning to trim post-EOF preallocated space. This is queued
 612 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 613 */
 614STATIC void
 615xfs_queue_eofblocks(
 616	struct xfs_mount *mp)
 617{
 618	rcu_read_lock();
 619	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 620		queue_delayed_work(mp->m_eofblocks_workqueue,
 621				   &mp->m_eofblocks_work,
 622				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 623	rcu_read_unlock();
 624}
 625
 626void
 627xfs_eofblocks_worker(
 628	struct work_struct *work)
 629{
 630	struct xfs_mount *mp = container_of(to_delayed_work(work),
 631				struct xfs_mount, m_eofblocks_work);
 632	xfs_icache_free_eofblocks(mp, NULL);
 633	xfs_queue_eofblocks(mp);
 634}
 635
 636int
 637xfs_inode_ag_iterator(
 638	struct xfs_mount	*mp,
 639	int			(*execute)(struct xfs_inode *ip,
 640					   struct xfs_perag *pag, int flags,
 641					   void *args),
 642	int			flags,
 643	void			*args)
 644{
 645	struct xfs_perag	*pag;
 646	int			error = 0;
 647	int			last_error = 0;
 648	xfs_agnumber_t		ag;
 649
 650	ag = 0;
 651	while ((pag = xfs_perag_get(mp, ag))) {
 652		ag = pag->pag_agno + 1;
 653		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
 654		xfs_perag_put(pag);
 655		if (error) {
 656			last_error = error;
 657			if (error == EFSCORRUPTED)
 658				break;
 659		}
 660	}
 661	return XFS_ERROR(last_error);
 662}
 663
 664int
 665xfs_inode_ag_iterator_tag(
 666	struct xfs_mount	*mp,
 667	int			(*execute)(struct xfs_inode *ip,
 668					   struct xfs_perag *pag, int flags,
 669					   void *args),
 670	int			flags,
 671	void			*args,
 672	int			tag)
 673{
 674	struct xfs_perag	*pag;
 675	int			error = 0;
 676	int			last_error = 0;
 677	xfs_agnumber_t		ag;
 678
 679	ag = 0;
 680	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 681		ag = pag->pag_agno + 1;
 682		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
 683		xfs_perag_put(pag);
 684		if (error) {
 685			last_error = error;
 686			if (error == EFSCORRUPTED)
 687				break;
 688		}
 689	}
 690	return XFS_ERROR(last_error);
 691}
 692
 693/*
 694 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 695 * isn't a reclaim pass already in progress. By default it runs every 5s based
 696 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 697 * tunable, but that can be done if this method proves to be ineffective or too
 698 * aggressive.
 699 */
 700static void
 701xfs_reclaim_work_queue(
 702	struct xfs_mount        *mp)
 703{
 704
 705	rcu_read_lock();
 706	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 707		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 708			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 709	}
 710	rcu_read_unlock();
 711}
 712
 713/*
 714 * This is a fast pass over the inode cache to try to get reclaim moving on as
 715 * many inodes as possible in a short period of time. It kicks itself every few
 716 * seconds, as well as being kicked by the inode cache shrinker when memory
 717 * goes low. It scans as quickly as possible avoiding locked inodes or those
 718 * already being flushed, and once done schedules a future pass.
 719 */
 720void
 721xfs_reclaim_worker(
 722	struct work_struct *work)
 723{
 724	struct xfs_mount *mp = container_of(to_delayed_work(work),
 725					struct xfs_mount, m_reclaim_work);
 726
 727	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 728	xfs_reclaim_work_queue(mp);
 729}
 730
 731static void
 732__xfs_inode_set_reclaim_tag(
 733	struct xfs_perag	*pag,
 734	struct xfs_inode	*ip)
 735{
 736	radix_tree_tag_set(&pag->pag_ici_root,
 737			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 738			   XFS_ICI_RECLAIM_TAG);
 739
 740	if (!pag->pag_ici_reclaimable) {
 741		/* propagate the reclaim tag up into the perag radix tree */
 742		spin_lock(&ip->i_mount->m_perag_lock);
 743		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 744				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 745				XFS_ICI_RECLAIM_TAG);
 746		spin_unlock(&ip->i_mount->m_perag_lock);
 747
 748		/* schedule periodic background inode reclaim */
 749		xfs_reclaim_work_queue(ip->i_mount);
 750
 751		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
 752							-1, _RET_IP_);
 753	}
 754	pag->pag_ici_reclaimable++;
 755}
 756
 757/*
 758 * We set the inode flag atomically with the radix tree tag.
 759 * Once we get tag lookups on the radix tree, this inode flag
 760 * can go away.
 761 */
 762void
 763xfs_inode_set_reclaim_tag(
 764	xfs_inode_t	*ip)
 765{
 766	struct xfs_mount *mp = ip->i_mount;
 767	struct xfs_perag *pag;
 768
 769	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 770	spin_lock(&pag->pag_ici_lock);
 771	spin_lock(&ip->i_flags_lock);
 772	__xfs_inode_set_reclaim_tag(pag, ip);
 773	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 774	spin_unlock(&ip->i_flags_lock);
 775	spin_unlock(&pag->pag_ici_lock);
 776	xfs_perag_put(pag);
 777}
 778
 779STATIC void
 780__xfs_inode_clear_reclaim(
 781	xfs_perag_t	*pag,
 782	xfs_inode_t	*ip)
 783{
 784	pag->pag_ici_reclaimable--;
 785	if (!pag->pag_ici_reclaimable) {
 786		/* clear the reclaim tag from the perag radix tree */
 787		spin_lock(&ip->i_mount->m_perag_lock);
 788		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 789				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 790				XFS_ICI_RECLAIM_TAG);
 791		spin_unlock(&ip->i_mount->m_perag_lock);
 792		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
 793							-1, _RET_IP_);
 794	}
 795}
 796
 797STATIC void
 798__xfs_inode_clear_reclaim_tag(
 799	xfs_mount_t	*mp,
 800	xfs_perag_t	*pag,
 801	xfs_inode_t	*ip)
 802{
 803	radix_tree_tag_clear(&pag->pag_ici_root,
 804			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 805	__xfs_inode_clear_reclaim(pag, ip);
 806}
 807
 808/*
 809 * Grab the inode for reclaim exclusively.
 810 * Return 0 if we grabbed it, non-zero otherwise.
 811 */
 812STATIC int
 813xfs_reclaim_inode_grab(
 814	struct xfs_inode	*ip,
 815	int			flags)
 816{
 817	ASSERT(rcu_read_lock_held());
 818
 819	/* quick check for stale RCU freed inode */
 820	if (!ip->i_ino)
 821		return 1;
 822
 823	/*
 824	 * If we are asked for non-blocking operation, do unlocked checks to
 825	 * see if the inode already is being flushed or in reclaim to avoid
 826	 * lock traffic.
 827	 */
 828	if ((flags & SYNC_TRYLOCK) &&
 829	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
 830		return 1;
 831
 832	/*
 833	 * The radix tree lock here protects a thread in xfs_iget from racing
 834	 * with us starting reclaim on the inode.  Once we have the
 835	 * XFS_IRECLAIM flag set it will not touch us.
 836	 *
 837	 * Due to RCU lookup, we may find inodes that have been freed and only
 838	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
 839	 * aren't candidates for reclaim at all, so we must check the
 840	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
 841	 */
 842	spin_lock(&ip->i_flags_lock);
 843	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 844	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 845		/* not a reclaim candidate. */
 846		spin_unlock(&ip->i_flags_lock);
 847		return 1;
 848	}
 849	__xfs_iflags_set(ip, XFS_IRECLAIM);
 850	spin_unlock(&ip->i_flags_lock);
 851	return 0;
 852}
 853
 854/*
 855 * Inodes in different states need to be treated differently. The following
 856 * table lists the inode states and the reclaim actions necessary:
 857 *
 858 *	inode state	     iflush ret		required action
 859 *      ---------------      ----------         ---------------
 860 *	bad			-		reclaim
 861 *	shutdown		EIO		unpin and reclaim
 862 *	clean, unpinned		0		reclaim
 863 *	stale, unpinned		0		reclaim
 864 *	clean, pinned(*)	0		requeue
 865 *	stale, pinned		EAGAIN		requeue
 866 *	dirty, async		-		requeue
 867 *	dirty, sync		0		reclaim
 868 *
 869 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 870 * handled anyway given the order of checks implemented.
 871 *
 872 * Also, because we get the flush lock first, we know that any inode that has
 873 * been flushed delwri has had the flush completed by the time we check that
 874 * the inode is clean.
 875 *
 876 * Note that because the inode is flushed delayed write by AIL pushing, the
 877 * flush lock may already be held here and waiting on it can result in very
 878 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 879 * the caller should push the AIL first before trying to reclaim inodes to
 880 * minimise the amount of time spent waiting.  For background relaim, we only
 881 * bother to reclaim clean inodes anyway.
 882 *
 883 * Hence the order of actions after gaining the locks should be:
 884 *	bad		=> reclaim
 885 *	shutdown	=> unpin and reclaim
 886 *	pinned, async	=> requeue
 887 *	pinned, sync	=> unpin
 888 *	stale		=> reclaim
 889 *	clean		=> reclaim
 890 *	dirty, async	=> requeue
 891 *	dirty, sync	=> flush, wait and reclaim
 892 */
 893STATIC int
 894xfs_reclaim_inode(
 895	struct xfs_inode	*ip,
 896	struct xfs_perag	*pag,
 897	int			sync_mode)
 898{
 899	struct xfs_buf		*bp = NULL;
 900	int			error;
 901
 902restart:
 903	error = 0;
 904	xfs_ilock(ip, XFS_ILOCK_EXCL);
 905	if (!xfs_iflock_nowait(ip)) {
 906		if (!(sync_mode & SYNC_WAIT))
 907			goto out;
 908		xfs_iflock(ip);
 909	}
 910
 911	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 912		xfs_iunpin_wait(ip);
 913		xfs_iflush_abort(ip, false);
 914		goto reclaim;
 915	}
 916	if (xfs_ipincount(ip)) {
 917		if (!(sync_mode & SYNC_WAIT))
 918			goto out_ifunlock;
 919		xfs_iunpin_wait(ip);
 920	}
 921	if (xfs_iflags_test(ip, XFS_ISTALE))
 922		goto reclaim;
 923	if (xfs_inode_clean(ip))
 924		goto reclaim;
 925
 926	/*
 927	 * Never flush out dirty data during non-blocking reclaim, as it would
 928	 * just contend with AIL pushing trying to do the same job.
 929	 */
 930	if (!(sync_mode & SYNC_WAIT))
 931		goto out_ifunlock;
 932
 933	/*
 934	 * Now we have an inode that needs flushing.
 935	 *
 936	 * Note that xfs_iflush will never block on the inode buffer lock, as
 937	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
 938	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
 939	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
 940	 * result in an ABBA deadlock with xfs_ifree_cluster().
 941	 *
 942	 * As xfs_ifree_cluser() must gather all inodes that are active in the
 943	 * cache to mark them stale, if we hit this case we don't actually want
 944	 * to do IO here - we want the inode marked stale so we can simply
 945	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
 946	 * inode, back off and try again.  Hopefully the next pass through will
 947	 * see the stale flag set on the inode.
 948	 */
 949	error = xfs_iflush(ip, &bp);
 950	if (error == EAGAIN) {
 951		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 952		/* backoff longer than in xfs_ifree_cluster */
 953		delay(2);
 954		goto restart;
 955	}
 956
 957	if (!error) {
 958		error = xfs_bwrite(bp);
 959		xfs_buf_relse(bp);
 960	}
 961
 962	xfs_iflock(ip);
 963reclaim:
 964	xfs_ifunlock(ip);
 965	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 966
 967	XFS_STATS_INC(xs_ig_reclaims);
 968	/*
 969	 * Remove the inode from the per-AG radix tree.
 970	 *
 971	 * Because radix_tree_delete won't complain even if the item was never
 972	 * added to the tree assert that it's been there before to catch
 973	 * problems with the inode life time early on.
 974	 */
 975	spin_lock(&pag->pag_ici_lock);
 976	if (!radix_tree_delete(&pag->pag_ici_root,
 977				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
 978		ASSERT(0);
 979	__xfs_inode_clear_reclaim(pag, ip);
 980	spin_unlock(&pag->pag_ici_lock);
 981
 982	/*
 983	 * Here we do an (almost) spurious inode lock in order to coordinate
 984	 * with inode cache radix tree lookups.  This is because the lookup
 985	 * can reference the inodes in the cache without taking references.
 986	 *
 987	 * We make that OK here by ensuring that we wait until the inode is
 988	 * unlocked after the lookup before we go ahead and free it.
 989	 */
 990	xfs_ilock(ip, XFS_ILOCK_EXCL);
 991	xfs_qm_dqdetach(ip);
 992	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 993
 994	xfs_inode_free(ip);
 995	return error;
 996
 997out_ifunlock:
 998	xfs_ifunlock(ip);
 999out:
1000	xfs_iflags_clear(ip, XFS_IRECLAIM);
1001	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1002	/*
1003	 * We could return EAGAIN here to make reclaim rescan the inode tree in
1004	 * a short while. However, this just burns CPU time scanning the tree
1005	 * waiting for IO to complete and the reclaim work never goes back to
1006	 * the idle state. Instead, return 0 to let the next scheduled
1007	 * background reclaim attempt to reclaim the inode again.
1008	 */
1009	return 0;
1010}
1011
1012/*
1013 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1014 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1015 * then a shut down during filesystem unmount reclaim walk leak all the
1016 * unreclaimed inodes.
1017 */
1018STATIC int
1019xfs_reclaim_inodes_ag(
1020	struct xfs_mount	*mp,
1021	int			flags,
1022	int			*nr_to_scan)
1023{
1024	struct xfs_perag	*pag;
1025	int			error = 0;
1026	int			last_error = 0;
1027	xfs_agnumber_t		ag;
1028	int			trylock = flags & SYNC_TRYLOCK;
1029	int			skipped;
1030
1031restart:
1032	ag = 0;
1033	skipped = 0;
1034	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1035		unsigned long	first_index = 0;
1036		int		done = 0;
1037		int		nr_found = 0;
1038
1039		ag = pag->pag_agno + 1;
1040
1041		if (trylock) {
1042			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1043				skipped++;
1044				xfs_perag_put(pag);
1045				continue;
1046			}
1047			first_index = pag->pag_ici_reclaim_cursor;
1048		} else
1049			mutex_lock(&pag->pag_ici_reclaim_lock);
1050
1051		do {
1052			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1053			int	i;
1054
1055			rcu_read_lock();
1056			nr_found = radix_tree_gang_lookup_tag(
1057					&pag->pag_ici_root,
1058					(void **)batch, first_index,
1059					XFS_LOOKUP_BATCH,
1060					XFS_ICI_RECLAIM_TAG);
1061			if (!nr_found) {
1062				done = 1;
1063				rcu_read_unlock();
1064				break;
1065			}
1066
1067			/*
1068			 * Grab the inodes before we drop the lock. if we found
1069			 * nothing, nr == 0 and the loop will be skipped.
1070			 */
1071			for (i = 0; i < nr_found; i++) {
1072				struct xfs_inode *ip = batch[i];
1073
1074				if (done || xfs_reclaim_inode_grab(ip, flags))
1075					batch[i] = NULL;
1076
1077				/*
1078				 * Update the index for the next lookup. Catch
1079				 * overflows into the next AG range which can
1080				 * occur if we have inodes in the last block of
1081				 * the AG and we are currently pointing to the
1082				 * last inode.
1083				 *
1084				 * Because we may see inodes that are from the
1085				 * wrong AG due to RCU freeing and
1086				 * reallocation, only update the index if it
1087				 * lies in this AG. It was a race that lead us
1088				 * to see this inode, so another lookup from
1089				 * the same index will not find it again.
1090				 */
1091				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1092								pag->pag_agno)
1093					continue;
1094				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1095				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1096					done = 1;
1097			}
1098
1099			/* unlock now we've grabbed the inodes. */
1100			rcu_read_unlock();
1101
1102			for (i = 0; i < nr_found; i++) {
1103				if (!batch[i])
1104					continue;
1105				error = xfs_reclaim_inode(batch[i], pag, flags);
1106				if (error && last_error != EFSCORRUPTED)
1107					last_error = error;
1108			}
1109
1110			*nr_to_scan -= XFS_LOOKUP_BATCH;
1111
1112			cond_resched();
1113
1114		} while (nr_found && !done && *nr_to_scan > 0);
1115
1116		if (trylock && !done)
1117			pag->pag_ici_reclaim_cursor = first_index;
1118		else
1119			pag->pag_ici_reclaim_cursor = 0;
1120		mutex_unlock(&pag->pag_ici_reclaim_lock);
1121		xfs_perag_put(pag);
1122	}
1123
1124	/*
1125	 * if we skipped any AG, and we still have scan count remaining, do
1126	 * another pass this time using blocking reclaim semantics (i.e
1127	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1128	 * ensure that when we get more reclaimers than AGs we block rather
1129	 * than spin trying to execute reclaim.
1130	 */
1131	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1132		trylock = 0;
1133		goto restart;
1134	}
1135	return XFS_ERROR(last_error);
1136}
1137
1138int
1139xfs_reclaim_inodes(
1140	xfs_mount_t	*mp,
1141	int		mode)
1142{
1143	int		nr_to_scan = INT_MAX;
1144
1145	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1146}
1147
1148/*
1149 * Scan a certain number of inodes for reclaim.
1150 *
1151 * When called we make sure that there is a background (fast) inode reclaim in
1152 * progress, while we will throttle the speed of reclaim via doing synchronous
1153 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1154 * them to be cleaned, which we hope will not be very long due to the
1155 * background walker having already kicked the IO off on those dirty inodes.
1156 */
1157long
1158xfs_reclaim_inodes_nr(
1159	struct xfs_mount	*mp,
1160	int			nr_to_scan)
1161{
1162	/* kick background reclaimer and push the AIL */
1163	xfs_reclaim_work_queue(mp);
1164	xfs_ail_push_all(mp->m_ail);
1165
1166	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1167}
1168
1169/*
1170 * Return the number of reclaimable inodes in the filesystem for
1171 * the shrinker to determine how much to reclaim.
1172 */
1173int
1174xfs_reclaim_inodes_count(
1175	struct xfs_mount	*mp)
1176{
1177	struct xfs_perag	*pag;
1178	xfs_agnumber_t		ag = 0;
1179	int			reclaimable = 0;
1180
1181	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1182		ag = pag->pag_agno + 1;
1183		reclaimable += pag->pag_ici_reclaimable;
1184		xfs_perag_put(pag);
1185	}
1186	return reclaimable;
1187}
1188
1189STATIC int
1190xfs_inode_match_id(
1191	struct xfs_inode	*ip,
1192	struct xfs_eofblocks	*eofb)
1193{
1194	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1195	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1196		return 0;
1197
1198	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1199	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1200		return 0;
1201
1202	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1203	    xfs_get_projid(ip) != eofb->eof_prid)
1204		return 0;
1205
1206	return 1;
1207}
1208
1209STATIC int
1210xfs_inode_free_eofblocks(
1211	struct xfs_inode	*ip,
1212	struct xfs_perag	*pag,
1213	int			flags,
1214	void			*args)
1215{
1216	int ret;
1217	struct xfs_eofblocks *eofb = args;
1218
1219	if (!xfs_can_free_eofblocks(ip, false)) {
1220		/* inode could be preallocated or append-only */
1221		trace_xfs_inode_free_eofblocks_invalid(ip);
1222		xfs_inode_clear_eofblocks_tag(ip);
1223		return 0;
1224	}
1225
1226	/*
1227	 * If the mapping is dirty the operation can block and wait for some
1228	 * time. Unless we are waiting, skip it.
1229	 */
1230	if (!(flags & SYNC_WAIT) &&
1231	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1232		return 0;
1233
1234	if (eofb) {
1235		if (!xfs_inode_match_id(ip, eofb))
1236			return 0;
1237
1238		/* skip the inode if the file size is too small */
1239		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1240		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1241			return 0;
1242	}
1243
1244	ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1245
1246	/* don't revisit the inode if we're not waiting */
1247	if (ret == EAGAIN && !(flags & SYNC_WAIT))
1248		ret = 0;
1249
1250	return ret;
1251}
1252
1253int
1254xfs_icache_free_eofblocks(
1255	struct xfs_mount	*mp,
1256	struct xfs_eofblocks	*eofb)
1257{
1258	int flags = SYNC_TRYLOCK;
1259
1260	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1261		flags = SYNC_WAIT;
1262
1263	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1264					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1265}
1266
1267void
1268xfs_inode_set_eofblocks_tag(
1269	xfs_inode_t	*ip)
1270{
1271	struct xfs_mount *mp = ip->i_mount;
1272	struct xfs_perag *pag;
1273	int tagged;
1274
1275	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1276	spin_lock(&pag->pag_ici_lock);
1277	trace_xfs_inode_set_eofblocks_tag(ip);
1278
1279	tagged = radix_tree_tagged(&pag->pag_ici_root,
1280				   XFS_ICI_EOFBLOCKS_TAG);
1281	radix_tree_tag_set(&pag->pag_ici_root,
1282			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1283			   XFS_ICI_EOFBLOCKS_TAG);
1284	if (!tagged) {
1285		/* propagate the eofblocks tag up into the perag radix tree */
1286		spin_lock(&ip->i_mount->m_perag_lock);
1287		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1288				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1289				   XFS_ICI_EOFBLOCKS_TAG);
1290		spin_unlock(&ip->i_mount->m_perag_lock);
1291
1292		/* kick off background trimming */
1293		xfs_queue_eofblocks(ip->i_mount);
1294
1295		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1296					      -1, _RET_IP_);
1297	}
1298
1299	spin_unlock(&pag->pag_ici_lock);
1300	xfs_perag_put(pag);
1301}
1302
1303void
1304xfs_inode_clear_eofblocks_tag(
1305	xfs_inode_t	*ip)
1306{
1307	struct xfs_mount *mp = ip->i_mount;
1308	struct xfs_perag *pag;
1309
1310	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1311	spin_lock(&pag->pag_ici_lock);
1312	trace_xfs_inode_clear_eofblocks_tag(ip);
1313
1314	radix_tree_tag_clear(&pag->pag_ici_root,
1315			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1316			     XFS_ICI_EOFBLOCKS_TAG);
1317	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1318		/* clear the eofblocks tag from the perag radix tree */
1319		spin_lock(&ip->i_mount->m_perag_lock);
1320		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1321				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1322				     XFS_ICI_EOFBLOCKS_TAG);
1323		spin_unlock(&ip->i_mount->m_perag_lock);
1324		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1325					       -1, _RET_IP_);
1326	}
1327
1328	spin_unlock(&pag->pag_ici_lock);
1329	xfs_perag_put(pag);
1330}
1331