Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/delay.h>
 20#include <linux/kthread.h>
 21#include <linux/pagemap.h>
 22
 23#include "ctree.h"
 24#include "disk-io.h"
 25#include "free-space-cache.h"
 26#include "inode-map.h"
 27#include "transaction.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29static int caching_kthread(void *data)
 30{
 31	struct btrfs_root *root = data;
 32	struct btrfs_fs_info *fs_info = root->fs_info;
 33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 34	struct btrfs_key key;
 35	struct btrfs_path *path;
 36	struct extent_buffer *leaf;
 37	u64 last = (u64)-1;
 38	int slot;
 39	int ret;
 40
 41	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
 42		return 0;
 43
 44	path = btrfs_alloc_path();
 45	if (!path)
 
 46		return -ENOMEM;
 
 47
 48	/* Since the commit root is read-only, we can safely skip locking. */
 49	path->skip_locking = 1;
 50	path->search_commit_root = 1;
 51	path->reada = 2;
 52
 53	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 54	key.offset = 0;
 55	key.type = BTRFS_INODE_ITEM_KEY;
 56again:
 57	/* need to make sure the commit_root doesn't disappear */
 58	mutex_lock(&root->fs_commit_mutex);
 59
 60	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 61	if (ret < 0)
 62		goto out;
 63
 64	while (1) {
 65		if (btrfs_fs_closing(fs_info))
 66			goto out;
 67
 68		leaf = path->nodes[0];
 69		slot = path->slots[0];
 70		if (slot >= btrfs_header_nritems(leaf)) {
 71			ret = btrfs_next_leaf(root, path);
 72			if (ret < 0)
 73				goto out;
 74			else if (ret > 0)
 75				break;
 76
 77			if (need_resched() ||
 78			    btrfs_transaction_in_commit(fs_info)) {
 79				leaf = path->nodes[0];
 80
 81				if (btrfs_header_nritems(leaf) == 0) {
 82					WARN_ON(1);
 83					break;
 84				}
 85
 86				/*
 87				 * Save the key so we can advances forward
 88				 * in the next search.
 89				 */
 90				btrfs_item_key_to_cpu(leaf, &key, 0);
 91				btrfs_release_path(path);
 92				root->cache_progress = last;
 93				mutex_unlock(&root->fs_commit_mutex);
 94				schedule_timeout(1);
 95				goto again;
 96			} else
 97				continue;
 98		}
 99
100		btrfs_item_key_to_cpu(leaf, &key, slot);
101
102		if (key.type != BTRFS_INODE_ITEM_KEY)
103			goto next;
104
105		if (key.objectid >= root->highest_objectid)
106			break;
107
108		if (last != (u64)-1 && last + 1 != key.objectid) {
109			__btrfs_add_free_space(ctl, last + 1,
110					       key.objectid - last - 1);
111			wake_up(&root->cache_wait);
112		}
113
114		last = key.objectid;
115next:
116		path->slots[0]++;
117	}
118
119	if (last < root->highest_objectid - 1) {
120		__btrfs_add_free_space(ctl, last + 1,
121				       root->highest_objectid - last - 1);
122	}
123
124	spin_lock(&root->cache_lock);
125	root->cached = BTRFS_CACHE_FINISHED;
126	spin_unlock(&root->cache_lock);
127
128	root->cache_progress = (u64)-1;
129	btrfs_unpin_free_ino(root);
130out:
131	wake_up(&root->cache_wait);
132	mutex_unlock(&root->fs_commit_mutex);
133
134	btrfs_free_path(path);
135
136	return ret;
137}
138
139static void start_caching(struct btrfs_root *root)
140{
 
141	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
142	struct task_struct *tsk;
143	int ret;
144	u64 objectid;
145
146	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
147		return;
148
149	spin_lock(&root->cache_lock);
150	if (root->cached != BTRFS_CACHE_NO) {
151		spin_unlock(&root->cache_lock);
152		return;
153	}
154
155	root->cached = BTRFS_CACHE_STARTED;
156	spin_unlock(&root->cache_lock);
157
158	ret = load_free_ino_cache(root->fs_info, root);
159	if (ret == 1) {
160		spin_lock(&root->cache_lock);
161		root->cached = BTRFS_CACHE_FINISHED;
162		spin_unlock(&root->cache_lock);
 
163		return;
164	}
165
166	/*
167	 * It can be quite time-consuming to fill the cache by searching
168	 * through the extent tree, and this can keep ino allocation path
169	 * waiting. Therefore at start we quickly find out the highest
170	 * inode number and we know we can use inode numbers which fall in
171	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
172	 */
173	ret = btrfs_find_free_objectid(root, &objectid);
174	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
175		__btrfs_add_free_space(ctl, objectid,
176				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
 
177	}
178
179	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu\n",
180			  root->root_key.objectid);
181	BUG_ON(IS_ERR(tsk));
 
182}
183
184int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
185{
186	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
187		return btrfs_find_free_objectid(root, objectid);
188
189again:
190	*objectid = btrfs_find_ino_for_alloc(root);
191
192	if (*objectid != 0)
193		return 0;
194
195	start_caching(root);
196
197	wait_event(root->cache_wait,
198		   root->cached == BTRFS_CACHE_FINISHED ||
 
199		   root->free_ino_ctl->free_space > 0);
200
201	if (root->cached == BTRFS_CACHE_FINISHED &&
202	    root->free_ino_ctl->free_space == 0)
203		return -ENOSPC;
 
 
204	else
205		goto again;
206}
207
208void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
209{
210	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
211	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
212
213	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
214		return;
215
216again:
217	if (root->cached == BTRFS_CACHE_FINISHED) {
218		__btrfs_add_free_space(ctl, objectid, 1);
219	} else {
220		/*
221		 * If we are in the process of caching free ino chunks,
222		 * to avoid adding the same inode number to the free_ino
223		 * tree twice due to cross transaction, we'll leave it
224		 * in the pinned tree until a transaction is committed
225		 * or the caching work is done.
226		 */
227
228		mutex_lock(&root->fs_commit_mutex);
229		spin_lock(&root->cache_lock);
230		if (root->cached == BTRFS_CACHE_FINISHED) {
231			spin_unlock(&root->cache_lock);
232			mutex_unlock(&root->fs_commit_mutex);
233			goto again;
234		}
235		spin_unlock(&root->cache_lock);
236
237		start_caching(root);
238
239		if (objectid <= root->cache_progress ||
240		    objectid > root->highest_objectid)
241			__btrfs_add_free_space(ctl, objectid, 1);
242		else
243			__btrfs_add_free_space(pinned, objectid, 1);
244
245		mutex_unlock(&root->fs_commit_mutex);
246	}
247}
248
249/*
250 * When a transaction is committed, we'll move those inode numbers which
251 * are smaller than root->cache_progress from pinned tree to free_ino tree,
252 * and others will just be dropped, because the commit root we were
253 * searching has changed.
254 *
255 * Must be called with root->fs_commit_mutex held
256 */
257void btrfs_unpin_free_ino(struct btrfs_root *root)
258{
259	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
260	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
 
261	struct btrfs_free_space *info;
262	struct rb_node *n;
263	u64 count;
264
265	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
266		return;
267
268	while (1) {
 
269		n = rb_first(rbroot);
270		if (!n)
 
271			break;
 
272
273		info = rb_entry(n, struct btrfs_free_space, offset_index);
274		BUG_ON(info->bitmap);
275
276		if (info->offset > root->cache_progress)
277			goto free;
278		else if (info->offset + info->bytes > root->cache_progress)
279			count = root->cache_progress - info->offset + 1;
280		else
281			count = info->bytes;
 
282
283		__btrfs_add_free_space(ctl, info->offset, count);
284free:
285		rb_erase(&info->offset_index, rbroot);
286		kfree(info);
 
 
 
 
287	}
288}
289
290#define INIT_THRESHOLD	(((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
291#define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
292
293/*
294 * The goal is to keep the memory used by the free_ino tree won't
295 * exceed the memory if we use bitmaps only.
296 */
297static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298{
299	struct btrfs_free_space *info;
300	struct rb_node *n;
301	int max_ino;
302	int max_bitmaps;
303
304	n = rb_last(&ctl->free_space_offset);
305	if (!n) {
306		ctl->extents_thresh = INIT_THRESHOLD;
307		return;
308	}
309	info = rb_entry(n, struct btrfs_free_space, offset_index);
310
311	/*
312	 * Find the maximum inode number in the filesystem. Note we
313	 * ignore the fact that this can be a bitmap, because we are
314	 * not doing precise calculation.
315	 */
316	max_ino = info->bytes - 1;
317
318	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
319	if (max_bitmaps <= ctl->total_bitmaps) {
320		ctl->extents_thresh = 0;
321		return;
322	}
323
324	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
325				PAGE_CACHE_SIZE / sizeof(*info);
326}
327
328/*
329 * We don't fall back to bitmap, if we are below the extents threshold
330 * or this chunk of inode numbers is a big one.
331 */
332static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
333		       struct btrfs_free_space *info)
334{
335	if (ctl->free_extents < ctl->extents_thresh ||
336	    info->bytes > INODES_PER_BITMAP / 10)
337		return false;
338
339	return true;
340}
341
342static struct btrfs_free_space_op free_ino_op = {
343	.recalc_thresholds	= recalculate_thresholds,
344	.use_bitmap		= use_bitmap,
345};
346
347static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
348{
349}
350
351static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
352			      struct btrfs_free_space *info)
353{
354	/*
355	 * We always use extents for two reasons:
356	 *
357	 * - The pinned tree is only used during the process of caching
358	 *   work.
359	 * - Make code simpler. See btrfs_unpin_free_ino().
360	 */
361	return false;
362}
363
364static struct btrfs_free_space_op pinned_free_ino_op = {
365	.recalc_thresholds	= pinned_recalc_thresholds,
366	.use_bitmap		= pinned_use_bitmap,
367};
368
369void btrfs_init_free_ino_ctl(struct btrfs_root *root)
370{
371	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
372	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373
374	spin_lock_init(&ctl->tree_lock);
375	ctl->unit = 1;
376	ctl->start = 0;
377	ctl->private = NULL;
378	ctl->op = &free_ino_op;
 
 
379
380	/*
381	 * Initially we allow to use 16K of ram to cache chunks of
382	 * inode numbers before we resort to bitmaps. This is somewhat
383	 * arbitrary, but it will be adjusted in runtime.
384	 */
385	ctl->extents_thresh = INIT_THRESHOLD;
386
387	spin_lock_init(&pinned->tree_lock);
388	pinned->unit = 1;
389	pinned->start = 0;
390	pinned->private = NULL;
391	pinned->extents_thresh = 0;
392	pinned->op = &pinned_free_ino_op;
393}
394
395int btrfs_save_ino_cache(struct btrfs_root *root,
396			 struct btrfs_trans_handle *trans)
397{
 
398	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
399	struct btrfs_path *path;
400	struct inode *inode;
 
 
 
401	u64 alloc_hint = 0;
402	int ret;
403	int prealloc;
404	bool retry = false;
405
406	/* only fs tree and subvol/snap needs ino cache */
407	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
408	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
409	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
410		return 0;
411
412	/* Don't save inode cache if we are deleting this root */
413	if (btrfs_root_refs(&root->root_item) == 0 &&
414	    root != root->fs_info->tree_root)
415		return 0;
416
417	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
418		return 0;
419
420	path = btrfs_alloc_path();
421	if (!path)
422		return -ENOMEM;
423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424again:
425	inode = lookup_free_ino_inode(root, path);
426	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
427		ret = PTR_ERR(inode);
428		goto out;
429	}
430
431	if (IS_ERR(inode)) {
432		BUG_ON(retry);
433		retry = true;
434
435		ret = create_free_ino_inode(root, trans, path);
436		if (ret)
437			goto out;
438		goto again;
439	}
440
441	BTRFS_I(inode)->generation = 0;
442	ret = btrfs_update_inode(trans, root, inode);
443	WARN_ON(ret);
 
 
 
444
445	if (i_size_read(inode) > 0) {
446		ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
447		if (ret)
 
 
448			goto out_put;
 
449	}
450
451	spin_lock(&root->cache_lock);
452	if (root->cached != BTRFS_CACHE_FINISHED) {
453		ret = -1;
454		spin_unlock(&root->cache_lock);
455		goto out_put;
456	}
457	spin_unlock(&root->cache_lock);
458
459	spin_lock(&ctl->tree_lock);
460	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
461	prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
462	prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
463	spin_unlock(&ctl->tree_lock);
464
465	/* Just to make sure we have enough space */
466	prealloc += 8 * PAGE_CACHE_SIZE;
467
468	ret = btrfs_check_data_free_space(inode, prealloc);
469	if (ret)
470		goto out_put;
471
472	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
473					      prealloc, prealloc, &alloc_hint);
474	if (ret)
 
 
475		goto out_put;
476	btrfs_free_reserved_data_space(inode, prealloc);
477
 
 
478out_put:
479	iput(inode);
 
 
 
 
 
480out:
481	if (ret == 0)
482		ret = btrfs_write_out_ino_cache(root, trans, path);
483
484	btrfs_free_path(path);
 
485	return ret;
486}
487
488static int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
489{
490	struct btrfs_path *path;
491	int ret;
492	struct extent_buffer *l;
493	struct btrfs_key search_key;
494	struct btrfs_key found_key;
495	int slot;
496
497	path = btrfs_alloc_path();
498	if (!path)
499		return -ENOMEM;
500
501	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
502	search_key.type = -1;
503	search_key.offset = (u64)-1;
504	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
505	if (ret < 0)
506		goto error;
507	BUG_ON(ret == 0);
508	if (path->slots[0] > 0) {
509		slot = path->slots[0] - 1;
510		l = path->nodes[0];
511		btrfs_item_key_to_cpu(l, &found_key, slot);
512		*objectid = max_t(u64, found_key.objectid,
513				  BTRFS_FIRST_FREE_OBJECTID - 1);
514	} else {
515		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
516	}
517	ret = 0;
518error:
519	btrfs_free_path(path);
520	return ret;
521}
522
523int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
524{
525	int ret;
526	mutex_lock(&root->objectid_mutex);
527
528	if (unlikely(root->highest_objectid < BTRFS_FIRST_FREE_OBJECTID)) {
529		ret = btrfs_find_highest_objectid(root,
530						  &root->highest_objectid);
531		if (ret)
532			goto out;
533	}
534
535	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
 
 
 
536		ret = -ENOSPC;
537		goto out;
538	}
539
540	*objectid = ++root->highest_objectid;
541	ret = 0;
542out:
543	mutex_unlock(&root->objectid_mutex);
544	return ret;
545}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
 
  6#include <linux/kthread.h>
  7#include <linux/pagemap.h>
  8
  9#include "ctree.h"
 10#include "disk-io.h"
 11#include "free-space-cache.h"
 12#include "inode-map.h"
 13#include "transaction.h"
 14#include "delalloc-space.h"
 15
 16static void fail_caching_thread(struct btrfs_root *root)
 17{
 18	struct btrfs_fs_info *fs_info = root->fs_info;
 19
 20	btrfs_warn(fs_info, "failed to start inode caching task");
 21	btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
 22				     "disabling inode map caching");
 23	spin_lock(&root->ino_cache_lock);
 24	root->ino_cache_state = BTRFS_CACHE_ERROR;
 25	spin_unlock(&root->ino_cache_lock);
 26	wake_up(&root->ino_cache_wait);
 27}
 28
 29static int caching_kthread(void *data)
 30{
 31	struct btrfs_root *root = data;
 32	struct btrfs_fs_info *fs_info = root->fs_info;
 33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 34	struct btrfs_key key;
 35	struct btrfs_path *path;
 36	struct extent_buffer *leaf;
 37	u64 last = (u64)-1;
 38	int slot;
 39	int ret;
 40
 41	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 42		return 0;
 43
 44	path = btrfs_alloc_path();
 45	if (!path) {
 46		fail_caching_thread(root);
 47		return -ENOMEM;
 48	}
 49
 50	/* Since the commit root is read-only, we can safely skip locking. */
 51	path->skip_locking = 1;
 52	path->search_commit_root = 1;
 53	path->reada = READA_FORWARD;
 54
 55	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 56	key.offset = 0;
 57	key.type = BTRFS_INODE_ITEM_KEY;
 58again:
 59	/* need to make sure the commit_root doesn't disappear */
 60	down_read(&fs_info->commit_root_sem);
 61
 62	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 63	if (ret < 0)
 64		goto out;
 65
 66	while (1) {
 67		if (btrfs_fs_closing(fs_info))
 68			goto out;
 69
 70		leaf = path->nodes[0];
 71		slot = path->slots[0];
 72		if (slot >= btrfs_header_nritems(leaf)) {
 73			ret = btrfs_next_leaf(root, path);
 74			if (ret < 0)
 75				goto out;
 76			else if (ret > 0)
 77				break;
 78
 79			if (need_resched() ||
 80			    btrfs_transaction_in_commit(fs_info)) {
 81				leaf = path->nodes[0];
 82
 83				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
 
 84					break;
 
 85
 86				/*
 87				 * Save the key so we can advances forward
 88				 * in the next search.
 89				 */
 90				btrfs_item_key_to_cpu(leaf, &key, 0);
 91				btrfs_release_path(path);
 92				root->ino_cache_progress = last;
 93				up_read(&fs_info->commit_root_sem);
 94				schedule_timeout(1);
 95				goto again;
 96			} else
 97				continue;
 98		}
 99
100		btrfs_item_key_to_cpu(leaf, &key, slot);
101
102		if (key.type != BTRFS_INODE_ITEM_KEY)
103			goto next;
104
105		if (key.objectid >= root->highest_objectid)
106			break;
107
108		if (last != (u64)-1 && last + 1 != key.objectid) {
109			__btrfs_add_free_space(fs_info, ctl, last + 1,
110					       key.objectid - last - 1);
111			wake_up(&root->ino_cache_wait);
112		}
113
114		last = key.objectid;
115next:
116		path->slots[0]++;
117	}
118
119	if (last < root->highest_objectid - 1) {
120		__btrfs_add_free_space(fs_info, ctl, last + 1,
121				       root->highest_objectid - last - 1);
122	}
123
124	spin_lock(&root->ino_cache_lock);
125	root->ino_cache_state = BTRFS_CACHE_FINISHED;
126	spin_unlock(&root->ino_cache_lock);
127
128	root->ino_cache_progress = (u64)-1;
129	btrfs_unpin_free_ino(root);
130out:
131	wake_up(&root->ino_cache_wait);
132	up_read(&fs_info->commit_root_sem);
133
134	btrfs_free_path(path);
135
136	return ret;
137}
138
139static void start_caching(struct btrfs_root *root)
140{
141	struct btrfs_fs_info *fs_info = root->fs_info;
142	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
143	struct task_struct *tsk;
144	int ret;
145	u64 objectid;
146
147	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148		return;
149
150	spin_lock(&root->ino_cache_lock);
151	if (root->ino_cache_state != BTRFS_CACHE_NO) {
152		spin_unlock(&root->ino_cache_lock);
153		return;
154	}
155
156	root->ino_cache_state = BTRFS_CACHE_STARTED;
157	spin_unlock(&root->ino_cache_lock);
158
159	ret = load_free_ino_cache(fs_info, root);
160	if (ret == 1) {
161		spin_lock(&root->ino_cache_lock);
162		root->ino_cache_state = BTRFS_CACHE_FINISHED;
163		spin_unlock(&root->ino_cache_lock);
164		wake_up(&root->ino_cache_wait);
165		return;
166	}
167
168	/*
169	 * It can be quite time-consuming to fill the cache by searching
170	 * through the extent tree, and this can keep ino allocation path
171	 * waiting. Therefore at start we quickly find out the highest
172	 * inode number and we know we can use inode numbers which fall in
173	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
174	 */
175	ret = btrfs_find_free_objectid(root, &objectid);
176	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
177		__btrfs_add_free_space(fs_info, ctl, objectid,
178				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
179		wake_up(&root->ino_cache_wait);
180	}
181
182	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
183			  root->root_key.objectid);
184	if (IS_ERR(tsk))
185		fail_caching_thread(root);
186}
187
188int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
189{
190	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
191		return btrfs_find_free_objectid(root, objectid);
192
193again:
194	*objectid = btrfs_find_ino_for_alloc(root);
195
196	if (*objectid != 0)
197		return 0;
198
199	start_caching(root);
200
201	wait_event(root->ino_cache_wait,
202		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
203		   root->ino_cache_state == BTRFS_CACHE_ERROR ||
204		   root->free_ino_ctl->free_space > 0);
205
206	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
207	    root->free_ino_ctl->free_space == 0)
208		return -ENOSPC;
209	else if (root->ino_cache_state == BTRFS_CACHE_ERROR)
210		return btrfs_find_free_objectid(root, objectid);
211	else
212		goto again;
213}
214
215void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
216{
217	struct btrfs_fs_info *fs_info = root->fs_info;
218	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
219
220	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
221		return;
 
222again:
223	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
224		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
225	} else {
226		down_write(&fs_info->commit_root_sem);
227		spin_lock(&root->ino_cache_lock);
228		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
229			spin_unlock(&root->ino_cache_lock);
230			up_write(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
 
231			goto again;
232		}
233		spin_unlock(&root->ino_cache_lock);
234
235		start_caching(root);
236
237		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
 
 
 
 
238
239		up_write(&fs_info->commit_root_sem);
240	}
241}
242
243/*
244 * When a transaction is committed, we'll move those inode numbers which are
245 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
246 * others will just be dropped, because the commit root we were searching has
247 * changed.
248 *
249 * Must be called with root->fs_info->commit_root_sem held
250 */
251void btrfs_unpin_free_ino(struct btrfs_root *root)
252{
253	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
254	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
255	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
256	struct btrfs_free_space *info;
257	struct rb_node *n;
258	u64 count;
259
260	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
261		return;
262
263	while (1) {
264		spin_lock(rbroot_lock);
265		n = rb_first(rbroot);
266		if (!n) {
267			spin_unlock(rbroot_lock);
268			break;
269		}
270
271		info = rb_entry(n, struct btrfs_free_space, offset_index);
272		BUG_ON(info->bitmap); /* Logic error */
273
274		if (info->offset > root->ino_cache_progress)
275			count = 0;
 
 
276		else
277			count = min(root->ino_cache_progress - info->offset + 1,
278				    info->bytes);
279
 
 
280		rb_erase(&info->offset_index, rbroot);
281		spin_unlock(rbroot_lock);
282		if (count)
283			__btrfs_add_free_space(root->fs_info, ctl,
284					       info->offset, count);
285		kmem_cache_free(btrfs_free_space_cachep, info);
286	}
287}
288
289#define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
290#define INODES_PER_BITMAP (PAGE_SIZE * 8)
291
292/*
293 * The goal is to keep the memory used by the free_ino tree won't
294 * exceed the memory if we use bitmaps only.
295 */
296static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
297{
298	struct btrfs_free_space *info;
299	struct rb_node *n;
300	int max_ino;
301	int max_bitmaps;
302
303	n = rb_last(&ctl->free_space_offset);
304	if (!n) {
305		ctl->extents_thresh = INIT_THRESHOLD;
306		return;
307	}
308	info = rb_entry(n, struct btrfs_free_space, offset_index);
309
310	/*
311	 * Find the maximum inode number in the filesystem. Note we
312	 * ignore the fact that this can be a bitmap, because we are
313	 * not doing precise calculation.
314	 */
315	max_ino = info->bytes - 1;
316
317	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
318	if (max_bitmaps <= ctl->total_bitmaps) {
319		ctl->extents_thresh = 0;
320		return;
321	}
322
323	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
324				PAGE_SIZE / sizeof(*info);
325}
326
327/*
328 * We don't fall back to bitmap, if we are below the extents threshold
329 * or this chunk of inode numbers is a big one.
330 */
331static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
332		       struct btrfs_free_space *info)
333{
334	if (ctl->free_extents < ctl->extents_thresh ||
335	    info->bytes > INODES_PER_BITMAP / 10)
336		return false;
337
338	return true;
339}
340
341static const struct btrfs_free_space_op free_ino_op = {
342	.recalc_thresholds	= recalculate_thresholds,
343	.use_bitmap		= use_bitmap,
344};
345
346static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
347{
348}
349
350static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
351			      struct btrfs_free_space *info)
352{
353	/*
354	 * We always use extents for two reasons:
355	 *
356	 * - The pinned tree is only used during the process of caching
357	 *   work.
358	 * - Make code simpler. See btrfs_unpin_free_ino().
359	 */
360	return false;
361}
362
363static const struct btrfs_free_space_op pinned_free_ino_op = {
364	.recalc_thresholds	= pinned_recalc_thresholds,
365	.use_bitmap		= pinned_use_bitmap,
366};
367
368void btrfs_init_free_ino_ctl(struct btrfs_root *root)
369{
370	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
371	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
372
373	spin_lock_init(&ctl->tree_lock);
374	ctl->unit = 1;
375	ctl->start = 0;
376	ctl->private = NULL;
377	ctl->op = &free_ino_op;
378	INIT_LIST_HEAD(&ctl->trimming_ranges);
379	mutex_init(&ctl->cache_writeout_mutex);
380
381	/*
382	 * Initially we allow to use 16K of ram to cache chunks of
383	 * inode numbers before we resort to bitmaps. This is somewhat
384	 * arbitrary, but it will be adjusted in runtime.
385	 */
386	ctl->extents_thresh = INIT_THRESHOLD;
387
388	spin_lock_init(&pinned->tree_lock);
389	pinned->unit = 1;
390	pinned->start = 0;
391	pinned->private = NULL;
392	pinned->extents_thresh = 0;
393	pinned->op = &pinned_free_ino_op;
394}
395
396int btrfs_save_ino_cache(struct btrfs_root *root,
397			 struct btrfs_trans_handle *trans)
398{
399	struct btrfs_fs_info *fs_info = root->fs_info;
400	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
401	struct btrfs_path *path;
402	struct inode *inode;
403	struct btrfs_block_rsv *rsv;
404	struct extent_changeset *data_reserved = NULL;
405	u64 num_bytes;
406	u64 alloc_hint = 0;
407	int ret;
408	int prealloc;
409	bool retry = false;
410
411	/* only fs tree and subvol/snap needs ino cache */
412	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
413	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
414	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
415		return 0;
416
417	/* Don't save inode cache if we are deleting this root */
418	if (btrfs_root_refs(&root->root_item) == 0)
 
419		return 0;
420
421	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
422		return 0;
423
424	path = btrfs_alloc_path();
425	if (!path)
426		return -ENOMEM;
427
428	rsv = trans->block_rsv;
429	trans->block_rsv = &fs_info->trans_block_rsv;
430
431	num_bytes = trans->bytes_reserved;
432	/*
433	 * 1 item for inode item insertion if need
434	 * 4 items for inode item update (in the worst case)
435	 * 1 items for slack space if we need do truncation
436	 * 1 item for free space object
437	 * 3 items for pre-allocation
438	 */
439	trans->bytes_reserved = btrfs_calc_insert_metadata_size(fs_info, 10);
440	ret = btrfs_block_rsv_add(root, trans->block_rsv,
441				  trans->bytes_reserved,
442				  BTRFS_RESERVE_NO_FLUSH);
443	if (ret)
444		goto out;
445	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
446				      trans->bytes_reserved, 1);
447again:
448	inode = lookup_free_ino_inode(root, path);
449	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
450		ret = PTR_ERR(inode);
451		goto out_release;
452	}
453
454	if (IS_ERR(inode)) {
455		BUG_ON(retry); /* Logic error */
456		retry = true;
457
458		ret = create_free_ino_inode(root, trans, path);
459		if (ret)
460			goto out_release;
461		goto again;
462	}
463
464	BTRFS_I(inode)->generation = 0;
465	ret = btrfs_update_inode(trans, root, inode);
466	if (ret) {
467		btrfs_abort_transaction(trans, ret);
468		goto out_put;
469	}
470
471	if (i_size_read(inode) > 0) {
472		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
473		if (ret) {
474			if (ret != -ENOSPC)
475				btrfs_abort_transaction(trans, ret);
476			goto out_put;
477		}
478	}
479
480	spin_lock(&root->ino_cache_lock);
481	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
482		ret = -1;
483		spin_unlock(&root->ino_cache_lock);
484		goto out_put;
485	}
486	spin_unlock(&root->ino_cache_lock);
487
488	spin_lock(&ctl->tree_lock);
489	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
490	prealloc = ALIGN(prealloc, PAGE_SIZE);
491	prealloc += ctl->total_bitmaps * PAGE_SIZE;
492	spin_unlock(&ctl->tree_lock);
493
494	/* Just to make sure we have enough space */
495	prealloc += 8 * PAGE_SIZE;
496
497	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
498	if (ret)
499		goto out_put;
500
501	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
502					      prealloc, prealloc, &alloc_hint);
503	if (ret) {
504		btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
505		btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true);
506		goto out_put;
507	}
508
509	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
510	btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
511out_put:
512	iput(inode);
513out_release:
514	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
515				      trans->bytes_reserved, 0);
516	btrfs_block_rsv_release(fs_info, trans->block_rsv,
517				trans->bytes_reserved);
518out:
519	trans->block_rsv = rsv;
520	trans->bytes_reserved = num_bytes;
521
522	btrfs_free_path(path);
523	extent_changeset_free(data_reserved);
524	return ret;
525}
526
527int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
528{
529	struct btrfs_path *path;
530	int ret;
531	struct extent_buffer *l;
532	struct btrfs_key search_key;
533	struct btrfs_key found_key;
534	int slot;
535
536	path = btrfs_alloc_path();
537	if (!path)
538		return -ENOMEM;
539
540	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
541	search_key.type = -1;
542	search_key.offset = (u64)-1;
543	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
544	if (ret < 0)
545		goto error;
546	BUG_ON(ret == 0); /* Corruption */
547	if (path->slots[0] > 0) {
548		slot = path->slots[0] - 1;
549		l = path->nodes[0];
550		btrfs_item_key_to_cpu(l, &found_key, slot);
551		*objectid = max_t(u64, found_key.objectid,
552				  BTRFS_FIRST_FREE_OBJECTID - 1);
553	} else {
554		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
555	}
556	ret = 0;
557error:
558	btrfs_free_path(path);
559	return ret;
560}
561
562int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
563{
564	int ret;
565	mutex_lock(&root->objectid_mutex);
566
 
 
 
 
 
 
 
567	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
568		btrfs_warn(root->fs_info,
569			   "the objectid of root %llu reaches its highest value",
570			   root->root_key.objectid);
571		ret = -ENOSPC;
572		goto out;
573	}
574
575	*objectid = ++root->highest_objectid;
576	ret = 0;
577out:
578	mutex_unlock(&root->objectid_mutex);
579	return ret;
580}