Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/delay.h>
 20#include <linux/kthread.h>
 21#include <linux/pagemap.h>
 22
 23#include "ctree.h"
 24#include "disk-io.h"
 25#include "free-space-cache.h"
 26#include "inode-map.h"
 27#include "transaction.h"
 28
 29static int caching_kthread(void *data)
 30{
 31	struct btrfs_root *root = data;
 32	struct btrfs_fs_info *fs_info = root->fs_info;
 33	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 34	struct btrfs_key key;
 35	struct btrfs_path *path;
 36	struct extent_buffer *leaf;
 37	u64 last = (u64)-1;
 38	int slot;
 39	int ret;
 40
 41	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
 42		return 0;
 43
 44	path = btrfs_alloc_path();
 45	if (!path)
 46		return -ENOMEM;
 47
 48	/* Since the commit root is read-only, we can safely skip locking. */
 49	path->skip_locking = 1;
 50	path->search_commit_root = 1;
 51	path->reada = 2;
 52
 53	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 54	key.offset = 0;
 55	key.type = BTRFS_INODE_ITEM_KEY;
 56again:
 57	/* need to make sure the commit_root doesn't disappear */
 58	mutex_lock(&root->fs_commit_mutex);
 59
 60	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 61	if (ret < 0)
 62		goto out;
 63
 64	while (1) {
 65		if (btrfs_fs_closing(fs_info))
 66			goto out;
 67
 68		leaf = path->nodes[0];
 69		slot = path->slots[0];
 70		if (slot >= btrfs_header_nritems(leaf)) {
 71			ret = btrfs_next_leaf(root, path);
 72			if (ret < 0)
 73				goto out;
 74			else if (ret > 0)
 75				break;
 76
 77			if (need_resched() ||
 78			    btrfs_transaction_in_commit(fs_info)) {
 79				leaf = path->nodes[0];
 80
 81				if (btrfs_header_nritems(leaf) == 0) {
 82					WARN_ON(1);
 83					break;
 84				}
 85
 86				/*
 87				 * Save the key so we can advances forward
 88				 * in the next search.
 89				 */
 90				btrfs_item_key_to_cpu(leaf, &key, 0);
 91				btrfs_release_path(path);
 92				root->cache_progress = last;
 93				mutex_unlock(&root->fs_commit_mutex);
 94				schedule_timeout(1);
 95				goto again;
 96			} else
 97				continue;
 98		}
 99
100		btrfs_item_key_to_cpu(leaf, &key, slot);
101
102		if (key.type != BTRFS_INODE_ITEM_KEY)
103			goto next;
104
105		if (key.objectid >= root->highest_objectid)
106			break;
107
108		if (last != (u64)-1 && last + 1 != key.objectid) {
109			__btrfs_add_free_space(ctl, last + 1,
110					       key.objectid - last - 1);
111			wake_up(&root->cache_wait);
112		}
113
114		last = key.objectid;
115next:
116		path->slots[0]++;
117	}
118
119	if (last < root->highest_objectid - 1) {
120		__btrfs_add_free_space(ctl, last + 1,
121				       root->highest_objectid - last - 1);
122	}
123
124	spin_lock(&root->cache_lock);
125	root->cached = BTRFS_CACHE_FINISHED;
126	spin_unlock(&root->cache_lock);
127
128	root->cache_progress = (u64)-1;
129	btrfs_unpin_free_ino(root);
130out:
131	wake_up(&root->cache_wait);
132	mutex_unlock(&root->fs_commit_mutex);
133
134	btrfs_free_path(path);
135
136	return ret;
137}
138
139static void start_caching(struct btrfs_root *root)
140{
 
141	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
142	struct task_struct *tsk;
143	int ret;
144	u64 objectid;
145
146	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
147		return;
148
149	spin_lock(&root->cache_lock);
150	if (root->cached != BTRFS_CACHE_NO) {
151		spin_unlock(&root->cache_lock);
152		return;
153	}
154
155	root->cached = BTRFS_CACHE_STARTED;
156	spin_unlock(&root->cache_lock);
157
158	ret = load_free_ino_cache(root->fs_info, root);
159	if (ret == 1) {
160		spin_lock(&root->cache_lock);
161		root->cached = BTRFS_CACHE_FINISHED;
162		spin_unlock(&root->cache_lock);
163		return;
164	}
165
166	/*
167	 * It can be quite time-consuming to fill the cache by searching
168	 * through the extent tree, and this can keep ino allocation path
169	 * waiting. Therefore at start we quickly find out the highest
170	 * inode number and we know we can use inode numbers which fall in
171	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
172	 */
173	ret = btrfs_find_free_objectid(root, &objectid);
174	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
175		__btrfs_add_free_space(ctl, objectid,
176				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
177	}
178
179	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu\n",
180			  root->root_key.objectid);
181	BUG_ON(IS_ERR(tsk));
 
 
 
 
182}
183
184int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
185{
186	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
187		return btrfs_find_free_objectid(root, objectid);
188
189again:
190	*objectid = btrfs_find_ino_for_alloc(root);
191
192	if (*objectid != 0)
193		return 0;
194
195	start_caching(root);
196
197	wait_event(root->cache_wait,
198		   root->cached == BTRFS_CACHE_FINISHED ||
199		   root->free_ino_ctl->free_space > 0);
200
201	if (root->cached == BTRFS_CACHE_FINISHED &&
202	    root->free_ino_ctl->free_space == 0)
203		return -ENOSPC;
204	else
205		goto again;
206}
207
208void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
209{
210	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
211	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
212
213	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
214		return;
215
216again:
217	if (root->cached == BTRFS_CACHE_FINISHED) {
218		__btrfs_add_free_space(ctl, objectid, 1);
219	} else {
220		/*
221		 * If we are in the process of caching free ino chunks,
222		 * to avoid adding the same inode number to the free_ino
223		 * tree twice due to cross transaction, we'll leave it
224		 * in the pinned tree until a transaction is committed
225		 * or the caching work is done.
226		 */
227
228		mutex_lock(&root->fs_commit_mutex);
229		spin_lock(&root->cache_lock);
230		if (root->cached == BTRFS_CACHE_FINISHED) {
231			spin_unlock(&root->cache_lock);
232			mutex_unlock(&root->fs_commit_mutex);
233			goto again;
234		}
235		spin_unlock(&root->cache_lock);
236
237		start_caching(root);
238
239		if (objectid <= root->cache_progress ||
240		    objectid > root->highest_objectid)
241			__btrfs_add_free_space(ctl, objectid, 1);
242		else
243			__btrfs_add_free_space(pinned, objectid, 1);
244
245		mutex_unlock(&root->fs_commit_mutex);
246	}
247}
248
249/*
250 * When a transaction is committed, we'll move those inode numbers which
251 * are smaller than root->cache_progress from pinned tree to free_ino tree,
252 * and others will just be dropped, because the commit root we were
253 * searching has changed.
254 *
255 * Must be called with root->fs_commit_mutex held
256 */
257void btrfs_unpin_free_ino(struct btrfs_root *root)
258{
259	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
260	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
 
261	struct btrfs_free_space *info;
262	struct rb_node *n;
263	u64 count;
264
265	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
266		return;
267
268	while (1) {
 
 
 
269		n = rb_first(rbroot);
270		if (!n)
 
271			break;
 
272
273		info = rb_entry(n, struct btrfs_free_space, offset_index);
274		BUG_ON(info->bitmap);
275
276		if (info->offset > root->cache_progress)
277			goto free;
278		else if (info->offset + info->bytes > root->cache_progress)
279			count = root->cache_progress - info->offset + 1;
280		else
281			count = info->bytes;
282
283		__btrfs_add_free_space(ctl, info->offset, count);
284free:
285		rb_erase(&info->offset_index, rbroot);
286		kfree(info);
 
 
 
 
287	}
288}
289
290#define INIT_THRESHOLD	(((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
291#define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
292
293/*
294 * The goal is to keep the memory used by the free_ino tree won't
295 * exceed the memory if we use bitmaps only.
296 */
297static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298{
299	struct btrfs_free_space *info;
300	struct rb_node *n;
301	int max_ino;
302	int max_bitmaps;
303
304	n = rb_last(&ctl->free_space_offset);
305	if (!n) {
306		ctl->extents_thresh = INIT_THRESHOLD;
307		return;
308	}
309	info = rb_entry(n, struct btrfs_free_space, offset_index);
310
311	/*
312	 * Find the maximum inode number in the filesystem. Note we
313	 * ignore the fact that this can be a bitmap, because we are
314	 * not doing precise calculation.
315	 */
316	max_ino = info->bytes - 1;
317
318	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
319	if (max_bitmaps <= ctl->total_bitmaps) {
320		ctl->extents_thresh = 0;
321		return;
322	}
323
324	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
325				PAGE_CACHE_SIZE / sizeof(*info);
326}
327
328/*
329 * We don't fall back to bitmap, if we are below the extents threshold
330 * or this chunk of inode numbers is a big one.
331 */
332static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
333		       struct btrfs_free_space *info)
334{
335	if (ctl->free_extents < ctl->extents_thresh ||
336	    info->bytes > INODES_PER_BITMAP / 10)
337		return false;
338
339	return true;
340}
341
342static struct btrfs_free_space_op free_ino_op = {
343	.recalc_thresholds	= recalculate_thresholds,
344	.use_bitmap		= use_bitmap,
345};
346
347static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
348{
349}
350
351static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
352			      struct btrfs_free_space *info)
353{
354	/*
355	 * We always use extents for two reasons:
356	 *
357	 * - The pinned tree is only used during the process of caching
358	 *   work.
359	 * - Make code simpler. See btrfs_unpin_free_ino().
360	 */
361	return false;
362}
363
364static struct btrfs_free_space_op pinned_free_ino_op = {
365	.recalc_thresholds	= pinned_recalc_thresholds,
366	.use_bitmap		= pinned_use_bitmap,
367};
368
369void btrfs_init_free_ino_ctl(struct btrfs_root *root)
370{
371	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
372	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373
374	spin_lock_init(&ctl->tree_lock);
375	ctl->unit = 1;
376	ctl->start = 0;
377	ctl->private = NULL;
378	ctl->op = &free_ino_op;
 
 
379
380	/*
381	 * Initially we allow to use 16K of ram to cache chunks of
382	 * inode numbers before we resort to bitmaps. This is somewhat
383	 * arbitrary, but it will be adjusted in runtime.
384	 */
385	ctl->extents_thresh = INIT_THRESHOLD;
386
387	spin_lock_init(&pinned->tree_lock);
388	pinned->unit = 1;
389	pinned->start = 0;
390	pinned->private = NULL;
391	pinned->extents_thresh = 0;
392	pinned->op = &pinned_free_ino_op;
393}
394
395int btrfs_save_ino_cache(struct btrfs_root *root,
396			 struct btrfs_trans_handle *trans)
397{
 
398	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
399	struct btrfs_path *path;
400	struct inode *inode;
 
 
 
401	u64 alloc_hint = 0;
402	int ret;
403	int prealloc;
404	bool retry = false;
405
406	/* only fs tree and subvol/snap needs ino cache */
407	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
408	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
409	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
410		return 0;
411
412	/* Don't save inode cache if we are deleting this root */
413	if (btrfs_root_refs(&root->root_item) == 0 &&
414	    root != root->fs_info->tree_root)
415		return 0;
416
417	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
418		return 0;
419
420	path = btrfs_alloc_path();
421	if (!path)
422		return -ENOMEM;
423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424again:
425	inode = lookup_free_ino_inode(root, path);
426	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
427		ret = PTR_ERR(inode);
428		goto out;
429	}
430
431	if (IS_ERR(inode)) {
432		BUG_ON(retry);
433		retry = true;
434
435		ret = create_free_ino_inode(root, trans, path);
436		if (ret)
437			goto out;
438		goto again;
439	}
440
441	BTRFS_I(inode)->generation = 0;
442	ret = btrfs_update_inode(trans, root, inode);
443	WARN_ON(ret);
 
 
 
444
445	if (i_size_read(inode) > 0) {
446		ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
447		if (ret)
 
 
448			goto out_put;
 
449	}
450
451	spin_lock(&root->cache_lock);
452	if (root->cached != BTRFS_CACHE_FINISHED) {
453		ret = -1;
454		spin_unlock(&root->cache_lock);
455		goto out_put;
456	}
457	spin_unlock(&root->cache_lock);
458
459	spin_lock(&ctl->tree_lock);
460	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
461	prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
462	prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
463	spin_unlock(&ctl->tree_lock);
464
465	/* Just to make sure we have enough space */
466	prealloc += 8 * PAGE_CACHE_SIZE;
467
468	ret = btrfs_check_data_free_space(inode, prealloc);
469	if (ret)
470		goto out_put;
471
472	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
473					      prealloc, prealloc, &alloc_hint);
474	if (ret)
 
475		goto out_put;
476	btrfs_free_reserved_data_space(inode, prealloc);
477
 
 
478out_put:
479	iput(inode);
 
 
 
 
 
480out:
481	if (ret == 0)
482		ret = btrfs_write_out_ino_cache(root, trans, path);
483
484	btrfs_free_path(path);
 
485	return ret;
486}
487
488static int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
489{
490	struct btrfs_path *path;
491	int ret;
492	struct extent_buffer *l;
493	struct btrfs_key search_key;
494	struct btrfs_key found_key;
495	int slot;
496
497	path = btrfs_alloc_path();
498	if (!path)
499		return -ENOMEM;
500
501	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
502	search_key.type = -1;
503	search_key.offset = (u64)-1;
504	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
505	if (ret < 0)
506		goto error;
507	BUG_ON(ret == 0);
508	if (path->slots[0] > 0) {
509		slot = path->slots[0] - 1;
510		l = path->nodes[0];
511		btrfs_item_key_to_cpu(l, &found_key, slot);
512		*objectid = max_t(u64, found_key.objectid,
513				  BTRFS_FIRST_FREE_OBJECTID - 1);
514	} else {
515		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
516	}
517	ret = 0;
518error:
519	btrfs_free_path(path);
520	return ret;
521}
522
523int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
524{
525	int ret;
526	mutex_lock(&root->objectid_mutex);
527
528	if (unlikely(root->highest_objectid < BTRFS_FIRST_FREE_OBJECTID)) {
529		ret = btrfs_find_highest_objectid(root,
530						  &root->highest_objectid);
531		if (ret)
532			goto out;
533	}
534
535	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
 
 
 
536		ret = -ENOSPC;
537		goto out;
538	}
539
540	*objectid = ++root->highest_objectid;
541	ret = 0;
542out:
543	mutex_unlock(&root->objectid_mutex);
544	return ret;
545}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/delay.h>
  7#include <linux/kthread.h>
  8#include <linux/pagemap.h>
  9
 10#include "ctree.h"
 11#include "disk-io.h"
 12#include "free-space-cache.h"
 13#include "inode-map.h"
 14#include "transaction.h"
 15
 16static int caching_kthread(void *data)
 17{
 18	struct btrfs_root *root = data;
 19	struct btrfs_fs_info *fs_info = root->fs_info;
 20	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
 21	struct btrfs_key key;
 22	struct btrfs_path *path;
 23	struct extent_buffer *leaf;
 24	u64 last = (u64)-1;
 25	int slot;
 26	int ret;
 27
 28	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
 29		return 0;
 30
 31	path = btrfs_alloc_path();
 32	if (!path)
 33		return -ENOMEM;
 34
 35	/* Since the commit root is read-only, we can safely skip locking. */
 36	path->skip_locking = 1;
 37	path->search_commit_root = 1;
 38	path->reada = READA_FORWARD;
 39
 40	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 41	key.offset = 0;
 42	key.type = BTRFS_INODE_ITEM_KEY;
 43again:
 44	/* need to make sure the commit_root doesn't disappear */
 45	down_read(&fs_info->commit_root_sem);
 46
 47	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 48	if (ret < 0)
 49		goto out;
 50
 51	while (1) {
 52		if (btrfs_fs_closing(fs_info))
 53			goto out;
 54
 55		leaf = path->nodes[0];
 56		slot = path->slots[0];
 57		if (slot >= btrfs_header_nritems(leaf)) {
 58			ret = btrfs_next_leaf(root, path);
 59			if (ret < 0)
 60				goto out;
 61			else if (ret > 0)
 62				break;
 63
 64			if (need_resched() ||
 65			    btrfs_transaction_in_commit(fs_info)) {
 66				leaf = path->nodes[0];
 67
 68				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
 
 69					break;
 
 70
 71				/*
 72				 * Save the key so we can advances forward
 73				 * in the next search.
 74				 */
 75				btrfs_item_key_to_cpu(leaf, &key, 0);
 76				btrfs_release_path(path);
 77				root->ino_cache_progress = last;
 78				up_read(&fs_info->commit_root_sem);
 79				schedule_timeout(1);
 80				goto again;
 81			} else
 82				continue;
 83		}
 84
 85		btrfs_item_key_to_cpu(leaf, &key, slot);
 86
 87		if (key.type != BTRFS_INODE_ITEM_KEY)
 88			goto next;
 89
 90		if (key.objectid >= root->highest_objectid)
 91			break;
 92
 93		if (last != (u64)-1 && last + 1 != key.objectid) {
 94			__btrfs_add_free_space(fs_info, ctl, last + 1,
 95					       key.objectid - last - 1);
 96			wake_up(&root->ino_cache_wait);
 97		}
 98
 99		last = key.objectid;
100next:
101		path->slots[0]++;
102	}
103
104	if (last < root->highest_objectid - 1) {
105		__btrfs_add_free_space(fs_info, ctl, last + 1,
106				       root->highest_objectid - last - 1);
107	}
108
109	spin_lock(&root->ino_cache_lock);
110	root->ino_cache_state = BTRFS_CACHE_FINISHED;
111	spin_unlock(&root->ino_cache_lock);
112
113	root->ino_cache_progress = (u64)-1;
114	btrfs_unpin_free_ino(root);
115out:
116	wake_up(&root->ino_cache_wait);
117	up_read(&fs_info->commit_root_sem);
118
119	btrfs_free_path(path);
120
121	return ret;
122}
123
124static void start_caching(struct btrfs_root *root)
125{
126	struct btrfs_fs_info *fs_info = root->fs_info;
127	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
128	struct task_struct *tsk;
129	int ret;
130	u64 objectid;
131
132	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
133		return;
134
135	spin_lock(&root->ino_cache_lock);
136	if (root->ino_cache_state != BTRFS_CACHE_NO) {
137		spin_unlock(&root->ino_cache_lock);
138		return;
139	}
140
141	root->ino_cache_state = BTRFS_CACHE_STARTED;
142	spin_unlock(&root->ino_cache_lock);
143
144	ret = load_free_ino_cache(fs_info, root);
145	if (ret == 1) {
146		spin_lock(&root->ino_cache_lock);
147		root->ino_cache_state = BTRFS_CACHE_FINISHED;
148		spin_unlock(&root->ino_cache_lock);
149		return;
150	}
151
152	/*
153	 * It can be quite time-consuming to fill the cache by searching
154	 * through the extent tree, and this can keep ino allocation path
155	 * waiting. Therefore at start we quickly find out the highest
156	 * inode number and we know we can use inode numbers which fall in
157	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
158	 */
159	ret = btrfs_find_free_objectid(root, &objectid);
160	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
161		__btrfs_add_free_space(fs_info, ctl, objectid,
162				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
163	}
164
165	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
166			  root->root_key.objectid);
167	if (IS_ERR(tsk)) {
168		btrfs_warn(fs_info, "failed to start inode caching task");
169		btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
170					     "disabling inode map caching");
171	}
172}
173
174int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
175{
176	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
177		return btrfs_find_free_objectid(root, objectid);
178
179again:
180	*objectid = btrfs_find_ino_for_alloc(root);
181
182	if (*objectid != 0)
183		return 0;
184
185	start_caching(root);
186
187	wait_event(root->ino_cache_wait,
188		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
189		   root->free_ino_ctl->free_space > 0);
190
191	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
192	    root->free_ino_ctl->free_space == 0)
193		return -ENOSPC;
194	else
195		goto again;
196}
197
198void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
199{
200	struct btrfs_fs_info *fs_info = root->fs_info;
201	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
202
203	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
204		return;
 
205again:
206	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
207		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
208	} else {
209		down_write(&fs_info->commit_root_sem);
210		spin_lock(&root->ino_cache_lock);
211		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
212			spin_unlock(&root->ino_cache_lock);
213			up_write(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
 
214			goto again;
215		}
216		spin_unlock(&root->ino_cache_lock);
217
218		start_caching(root);
219
220		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
 
 
 
 
221
222		up_write(&fs_info->commit_root_sem);
223	}
224}
225
226/*
227 * When a transaction is committed, we'll move those inode numbers which are
228 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
229 * others will just be dropped, because the commit root we were searching has
230 * changed.
231 *
232 * Must be called with root->fs_info->commit_root_sem held
233 */
234void btrfs_unpin_free_ino(struct btrfs_root *root)
235{
236	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
237	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
238	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
239	struct btrfs_free_space *info;
240	struct rb_node *n;
241	u64 count;
242
243	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
244		return;
245
246	while (1) {
247		bool add_to_ctl = true;
248
249		spin_lock(rbroot_lock);
250		n = rb_first(rbroot);
251		if (!n) {
252			spin_unlock(rbroot_lock);
253			break;
254		}
255
256		info = rb_entry(n, struct btrfs_free_space, offset_index);
257		BUG_ON(info->bitmap); /* Logic error */
258
259		if (info->offset > root->ino_cache_progress)
260			add_to_ctl = false;
261		else if (info->offset + info->bytes > root->ino_cache_progress)
262			count = root->ino_cache_progress - info->offset + 1;
263		else
264			count = info->bytes;
265
 
 
266		rb_erase(&info->offset_index, rbroot);
267		spin_unlock(rbroot_lock);
268		if (add_to_ctl)
269			__btrfs_add_free_space(root->fs_info, ctl,
270					       info->offset, count);
271		kmem_cache_free(btrfs_free_space_cachep, info);
272	}
273}
274
275#define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
276#define INODES_PER_BITMAP (PAGE_SIZE * 8)
277
278/*
279 * The goal is to keep the memory used by the free_ino tree won't
280 * exceed the memory if we use bitmaps only.
281 */
282static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
283{
284	struct btrfs_free_space *info;
285	struct rb_node *n;
286	int max_ino;
287	int max_bitmaps;
288
289	n = rb_last(&ctl->free_space_offset);
290	if (!n) {
291		ctl->extents_thresh = INIT_THRESHOLD;
292		return;
293	}
294	info = rb_entry(n, struct btrfs_free_space, offset_index);
295
296	/*
297	 * Find the maximum inode number in the filesystem. Note we
298	 * ignore the fact that this can be a bitmap, because we are
299	 * not doing precise calculation.
300	 */
301	max_ino = info->bytes - 1;
302
303	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
304	if (max_bitmaps <= ctl->total_bitmaps) {
305		ctl->extents_thresh = 0;
306		return;
307	}
308
309	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
310				PAGE_SIZE / sizeof(*info);
311}
312
313/*
314 * We don't fall back to bitmap, if we are below the extents threshold
315 * or this chunk of inode numbers is a big one.
316 */
317static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
318		       struct btrfs_free_space *info)
319{
320	if (ctl->free_extents < ctl->extents_thresh ||
321	    info->bytes > INODES_PER_BITMAP / 10)
322		return false;
323
324	return true;
325}
326
327static const struct btrfs_free_space_op free_ino_op = {
328	.recalc_thresholds	= recalculate_thresholds,
329	.use_bitmap		= use_bitmap,
330};
331
332static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
333{
334}
335
336static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
337			      struct btrfs_free_space *info)
338{
339	/*
340	 * We always use extents for two reasons:
341	 *
342	 * - The pinned tree is only used during the process of caching
343	 *   work.
344	 * - Make code simpler. See btrfs_unpin_free_ino().
345	 */
346	return false;
347}
348
349static const struct btrfs_free_space_op pinned_free_ino_op = {
350	.recalc_thresholds	= pinned_recalc_thresholds,
351	.use_bitmap		= pinned_use_bitmap,
352};
353
354void btrfs_init_free_ino_ctl(struct btrfs_root *root)
355{
356	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
357	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
358
359	spin_lock_init(&ctl->tree_lock);
360	ctl->unit = 1;
361	ctl->start = 0;
362	ctl->private = NULL;
363	ctl->op = &free_ino_op;
364	INIT_LIST_HEAD(&ctl->trimming_ranges);
365	mutex_init(&ctl->cache_writeout_mutex);
366
367	/*
368	 * Initially we allow to use 16K of ram to cache chunks of
369	 * inode numbers before we resort to bitmaps. This is somewhat
370	 * arbitrary, but it will be adjusted in runtime.
371	 */
372	ctl->extents_thresh = INIT_THRESHOLD;
373
374	spin_lock_init(&pinned->tree_lock);
375	pinned->unit = 1;
376	pinned->start = 0;
377	pinned->private = NULL;
378	pinned->extents_thresh = 0;
379	pinned->op = &pinned_free_ino_op;
380}
381
382int btrfs_save_ino_cache(struct btrfs_root *root,
383			 struct btrfs_trans_handle *trans)
384{
385	struct btrfs_fs_info *fs_info = root->fs_info;
386	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
387	struct btrfs_path *path;
388	struct inode *inode;
389	struct btrfs_block_rsv *rsv;
390	struct extent_changeset *data_reserved = NULL;
391	u64 num_bytes;
392	u64 alloc_hint = 0;
393	int ret;
394	int prealloc;
395	bool retry = false;
396
397	/* only fs tree and subvol/snap needs ino cache */
398	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
399	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
400	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
401		return 0;
402
403	/* Don't save inode cache if we are deleting this root */
404	if (btrfs_root_refs(&root->root_item) == 0)
 
405		return 0;
406
407	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
408		return 0;
409
410	path = btrfs_alloc_path();
411	if (!path)
412		return -ENOMEM;
413
414	rsv = trans->block_rsv;
415	trans->block_rsv = &fs_info->trans_block_rsv;
416
417	num_bytes = trans->bytes_reserved;
418	/*
419	 * 1 item for inode item insertion if need
420	 * 4 items for inode item update (in the worst case)
421	 * 1 items for slack space if we need do truncation
422	 * 1 item for free space object
423	 * 3 items for pre-allocation
424	 */
425	trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10);
426	ret = btrfs_block_rsv_add(root, trans->block_rsv,
427				  trans->bytes_reserved,
428				  BTRFS_RESERVE_NO_FLUSH);
429	if (ret)
430		goto out;
431	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
432				      trans->bytes_reserved, 1);
433again:
434	inode = lookup_free_ino_inode(root, path);
435	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
436		ret = PTR_ERR(inode);
437		goto out_release;
438	}
439
440	if (IS_ERR(inode)) {
441		BUG_ON(retry); /* Logic error */
442		retry = true;
443
444		ret = create_free_ino_inode(root, trans, path);
445		if (ret)
446			goto out_release;
447		goto again;
448	}
449
450	BTRFS_I(inode)->generation = 0;
451	ret = btrfs_update_inode(trans, root, inode);
452	if (ret) {
453		btrfs_abort_transaction(trans, ret);
454		goto out_put;
455	}
456
457	if (i_size_read(inode) > 0) {
458		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
459		if (ret) {
460			if (ret != -ENOSPC)
461				btrfs_abort_transaction(trans, ret);
462			goto out_put;
463		}
464	}
465
466	spin_lock(&root->ino_cache_lock);
467	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
468		ret = -1;
469		spin_unlock(&root->ino_cache_lock);
470		goto out_put;
471	}
472	spin_unlock(&root->ino_cache_lock);
473
474	spin_lock(&ctl->tree_lock);
475	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
476	prealloc = ALIGN(prealloc, PAGE_SIZE);
477	prealloc += ctl->total_bitmaps * PAGE_SIZE;
478	spin_unlock(&ctl->tree_lock);
479
480	/* Just to make sure we have enough space */
481	prealloc += 8 * PAGE_SIZE;
482
483	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
484	if (ret)
485		goto out_put;
486
487	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
488					      prealloc, prealloc, &alloc_hint);
489	if (ret) {
490		btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, true);
491		goto out_put;
492	}
493
494	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
495	btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, false);
496out_put:
497	iput(inode);
498out_release:
499	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
500				      trans->bytes_reserved, 0);
501	btrfs_block_rsv_release(fs_info, trans->block_rsv,
502				trans->bytes_reserved);
503out:
504	trans->block_rsv = rsv;
505	trans->bytes_reserved = num_bytes;
506
507	btrfs_free_path(path);
508	extent_changeset_free(data_reserved);
509	return ret;
510}
511
512int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
513{
514	struct btrfs_path *path;
515	int ret;
516	struct extent_buffer *l;
517	struct btrfs_key search_key;
518	struct btrfs_key found_key;
519	int slot;
520
521	path = btrfs_alloc_path();
522	if (!path)
523		return -ENOMEM;
524
525	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
526	search_key.type = -1;
527	search_key.offset = (u64)-1;
528	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
529	if (ret < 0)
530		goto error;
531	BUG_ON(ret == 0); /* Corruption */
532	if (path->slots[0] > 0) {
533		slot = path->slots[0] - 1;
534		l = path->nodes[0];
535		btrfs_item_key_to_cpu(l, &found_key, slot);
536		*objectid = max_t(u64, found_key.objectid,
537				  BTRFS_FIRST_FREE_OBJECTID - 1);
538	} else {
539		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
540	}
541	ret = 0;
542error:
543	btrfs_free_path(path);
544	return ret;
545}
546
547int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
548{
549	int ret;
550	mutex_lock(&root->objectid_mutex);
551
 
 
 
 
 
 
 
552	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
553		btrfs_warn(root->fs_info,
554			   "the objectid of root %llu reaches its highest value",
555			   root->root_key.objectid);
556		ret = -ENOSPC;
557		goto out;
558	}
559
560	*objectid = ++root->highest_objectid;
561	ret = 0;
562out:
563	mutex_unlock(&root->objectid_mutex);
564	return ret;
565}