Loading...
1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/nls.h>
14#include <linux/device.h>
15#include <linux/scatterlist.h>
16#include <linux/usb/quirks.h>
17#include <linux/usb/hcd.h> /* for usbcore internals */
18#include <asm/byteorder.h>
19
20#include "usb.h"
21
22static void cancel_async_set_config(struct usb_device *udev);
23
24struct api_context {
25 struct completion done;
26 int status;
27};
28
29static void usb_api_blocking_completion(struct urb *urb)
30{
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35}
36
37
38/*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45{
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77}
78
79/*-------------------------------------------------------------------*/
80/* returns status (negative) or length (positive) */
81static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85{
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102}
103
104/**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135{
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 /* dbg("usb_control_msg"); */
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156}
157EXPORT_SYMBOL_GPL(usb_control_msg);
158
159/**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187{
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189}
190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192/**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225{
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs [i] || !io->urbs [i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs [i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY)
312 dev_err(&io->dev->dev,
313 "%s, unlink --> %d\n",
314 __func__, retval);
315 } else if (urb == io->urbs [i])
316 found = 1;
317 }
318 spin_lock(&io->lock);
319 }
320 urb->dev = NULL;
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value. This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 unsigned pipe, unsigned period, struct scatterlist *sg,
359 int nents, size_t length, gfp_t mem_flags)
360{
361 int i;
362 int urb_flags;
363 int use_sg;
364
365 if (!io || !dev || !sg
366 || usb_pipecontrol(pipe)
367 || usb_pipeisoc(pipe)
368 || nents <= 0)
369 return -EINVAL;
370
371 spin_lock_init(&io->lock);
372 io->dev = dev;
373 io->pipe = pipe;
374
375 if (dev->bus->sg_tablesize > 0) {
376 use_sg = true;
377 io->entries = 1;
378 } else {
379 use_sg = false;
380 io->entries = nents;
381 }
382
383 /* initialize all the urbs we'll use */
384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 if (!io->urbs)
386 goto nomem;
387
388 urb_flags = URB_NO_INTERRUPT;
389 if (usb_pipein(pipe))
390 urb_flags |= URB_SHORT_NOT_OK;
391
392 for_each_sg(sg, sg, io->entries, i) {
393 struct urb *urb;
394 unsigned len;
395
396 urb = usb_alloc_urb(0, mem_flags);
397 if (!urb) {
398 io->entries = i;
399 goto nomem;
400 }
401 io->urbs[i] = urb;
402
403 urb->dev = NULL;
404 urb->pipe = pipe;
405 urb->interval = period;
406 urb->transfer_flags = urb_flags;
407 urb->complete = sg_complete;
408 urb->context = io;
409 urb->sg = sg;
410
411 if (use_sg) {
412 /* There is no single transfer buffer */
413 urb->transfer_buffer = NULL;
414 urb->num_sgs = nents;
415
416 /* A length of zero means transfer the whole sg list */
417 len = length;
418 if (len == 0) {
419 struct scatterlist *sg2;
420 int j;
421
422 for_each_sg(sg, sg2, nents, j)
423 len += sg2->length;
424 }
425 } else {
426 /*
427 * Some systems can't use DMA; they use PIO instead.
428 * For their sakes, transfer_buffer is set whenever
429 * possible.
430 */
431 if (!PageHighMem(sg_page(sg)))
432 urb->transfer_buffer = sg_virt(sg);
433 else
434 urb->transfer_buffer = NULL;
435
436 len = sg->length;
437 if (length) {
438 len = min_t(unsigned, len, length);
439 length -= len;
440 if (length == 0)
441 io->entries = i + 1;
442 }
443 }
444 urb->transfer_buffer_length = len;
445 }
446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448 /* transaction state */
449 io->count = io->entries;
450 io->status = 0;
451 io->bytes = 0;
452 init_completion(&io->complete);
453 return 0;
454
455nomem:
456 sg_clean(io);
457 return -ENOMEM;
458}
459EXPORT_SYMBOL_GPL(usb_sg_init);
460
461/**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes. It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests. At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero. The number of io->bytes
474 * transferred is as requested.
475 * (2) error, where io->status is a negative errno value. The number
476 * of io->bytes transferred before the error is usually less
477 * than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 * is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed. The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed. It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred. That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
504void usb_sg_wait(struct usb_sg_request *io)
505{
506 int i;
507 int entries = io->entries;
508
509 /* queue the urbs. */
510 spin_lock_irq(&io->lock);
511 i = 0;
512 while (i < entries && !io->status) {
513 int retval;
514
515 io->urbs[i]->dev = io->dev;
516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518 /* after we submit, let completions or cancelations fire;
519 * we handshake using io->status.
520 */
521 spin_unlock_irq(&io->lock);
522 switch (retval) {
523 /* maybe we retrying will recover */
524 case -ENXIO: /* hc didn't queue this one */
525 case -EAGAIN:
526 case -ENOMEM:
527 io->urbs[i]->dev = NULL;
528 retval = 0;
529 yield();
530 break;
531
532 /* no error? continue immediately.
533 *
534 * NOTE: to work better with UHCI (4K I/O buffer may
535 * need 3K of TDs) it may be good to limit how many
536 * URBs are queued at once; N milliseconds?
537 */
538 case 0:
539 ++i;
540 cpu_relax();
541 break;
542
543 /* fail any uncompleted urbs */
544 default:
545 io->urbs[i]->dev = NULL;
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567}
568EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570/**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
578void usb_sg_cancel(struct usb_sg_request *io)
579{
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs [i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs [i]);
596 if (retval != -EINPROGRESS && retval != -EBUSY)
597 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
598 __func__, retval);
599 }
600 spin_lock(&io->lock);
601 }
602 spin_unlock_irqrestore(&io->lock, flags);
603}
604EXPORT_SYMBOL_GPL(usb_sg_cancel);
605
606/*-------------------------------------------------------------------*/
607
608/**
609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
610 * @dev: the device whose descriptor is being retrieved
611 * @type: the descriptor type (USB_DT_*)
612 * @index: the number of the descriptor
613 * @buf: where to put the descriptor
614 * @size: how big is "buf"?
615 * Context: !in_interrupt ()
616 *
617 * Gets a USB descriptor. Convenience functions exist to simplify
618 * getting some types of descriptors. Use
619 * usb_get_string() or usb_string() for USB_DT_STRING.
620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
621 * are part of the device structure.
622 * In addition to a number of USB-standard descriptors, some
623 * devices also use class-specific or vendor-specific descriptors.
624 *
625 * This call is synchronous, and may not be used in an interrupt context.
626 *
627 * Returns the number of bytes received on success, or else the status code
628 * returned by the underlying usb_control_msg() call.
629 */
630int usb_get_descriptor(struct usb_device *dev, unsigned char type,
631 unsigned char index, void *buf, int size)
632{
633 int i;
634 int result;
635
636 memset(buf, 0, size); /* Make sure we parse really received data */
637
638 for (i = 0; i < 3; ++i) {
639 /* retry on length 0 or error; some devices are flakey */
640 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
641 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
642 (type << 8) + index, 0, buf, size,
643 USB_CTRL_GET_TIMEOUT);
644 if (result <= 0 && result != -ETIMEDOUT)
645 continue;
646 if (result > 1 && ((u8 *)buf)[1] != type) {
647 result = -ENODATA;
648 continue;
649 }
650 break;
651 }
652 return result;
653}
654EXPORT_SYMBOL_GPL(usb_get_descriptor);
655
656/**
657 * usb_get_string - gets a string descriptor
658 * @dev: the device whose string descriptor is being retrieved
659 * @langid: code for language chosen (from string descriptor zero)
660 * @index: the number of the descriptor
661 * @buf: where to put the string
662 * @size: how big is "buf"?
663 * Context: !in_interrupt ()
664 *
665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
666 * in little-endian byte order).
667 * The usb_string() function will often be a convenient way to turn
668 * these strings into kernel-printable form.
669 *
670 * Strings may be referenced in device, configuration, interface, or other
671 * descriptors, and could also be used in vendor-specific ways.
672 *
673 * This call is synchronous, and may not be used in an interrupt context.
674 *
675 * Returns the number of bytes received on success, or else the status code
676 * returned by the underlying usb_control_msg() call.
677 */
678static int usb_get_string(struct usb_device *dev, unsigned short langid,
679 unsigned char index, void *buf, int size)
680{
681 int i;
682 int result;
683
684 for (i = 0; i < 3; ++i) {
685 /* retry on length 0 or stall; some devices are flakey */
686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
688 (USB_DT_STRING << 8) + index, langid, buf, size,
689 USB_CTRL_GET_TIMEOUT);
690 if (result == 0 || result == -EPIPE)
691 continue;
692 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
693 result = -ENODATA;
694 continue;
695 }
696 break;
697 }
698 return result;
699}
700
701static void usb_try_string_workarounds(unsigned char *buf, int *length)
702{
703 int newlength, oldlength = *length;
704
705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
706 if (!isprint(buf[newlength]) || buf[newlength + 1])
707 break;
708
709 if (newlength > 2) {
710 buf[0] = newlength;
711 *length = newlength;
712 }
713}
714
715static int usb_string_sub(struct usb_device *dev, unsigned int langid,
716 unsigned int index, unsigned char *buf)
717{
718 int rc;
719
720 /* Try to read the string descriptor by asking for the maximum
721 * possible number of bytes */
722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
723 rc = -EIO;
724 else
725 rc = usb_get_string(dev, langid, index, buf, 255);
726
727 /* If that failed try to read the descriptor length, then
728 * ask for just that many bytes */
729 if (rc < 2) {
730 rc = usb_get_string(dev, langid, index, buf, 2);
731 if (rc == 2)
732 rc = usb_get_string(dev, langid, index, buf, buf[0]);
733 }
734
735 if (rc >= 2) {
736 if (!buf[0] && !buf[1])
737 usb_try_string_workarounds(buf, &rc);
738
739 /* There might be extra junk at the end of the descriptor */
740 if (buf[0] < rc)
741 rc = buf[0];
742
743 rc = rc - (rc & 1); /* force a multiple of two */
744 }
745
746 if (rc < 2)
747 rc = (rc < 0 ? rc : -EINVAL);
748
749 return rc;
750}
751
752static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
753{
754 int err;
755
756 if (dev->have_langid)
757 return 0;
758
759 if (dev->string_langid < 0)
760 return -EPIPE;
761
762 err = usb_string_sub(dev, 0, 0, tbuf);
763
764 /* If the string was reported but is malformed, default to english
765 * (0x0409) */
766 if (err == -ENODATA || (err > 0 && err < 4)) {
767 dev->string_langid = 0x0409;
768 dev->have_langid = 1;
769 dev_err(&dev->dev,
770 "string descriptor 0 malformed (err = %d), "
771 "defaulting to 0x%04x\n",
772 err, dev->string_langid);
773 return 0;
774 }
775
776 /* In case of all other errors, we assume the device is not able to
777 * deal with strings at all. Set string_langid to -1 in order to
778 * prevent any string to be retrieved from the device */
779 if (err < 0) {
780 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
781 err);
782 dev->string_langid = -1;
783 return -EPIPE;
784 }
785
786 /* always use the first langid listed */
787 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788 dev->have_langid = 1;
789 dev_dbg(&dev->dev, "default language 0x%04x\n",
790 dev->string_langid);
791 return 0;
792}
793
794/**
795 * usb_string - returns UTF-8 version of a string descriptor
796 * @dev: the device whose string descriptor is being retrieved
797 * @index: the number of the descriptor
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 * Context: !in_interrupt ()
801 *
802 * This converts the UTF-16LE encoded strings returned by devices, from
803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804 * that are more usable in most kernel contexts. Note that this function
805 * chooses strings in the first language supported by the device.
806 *
807 * This call is synchronous, and may not be used in an interrupt context.
808 *
809 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
810 */
811int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812{
813 unsigned char *tbuf;
814 int err;
815
816 if (dev->state == USB_STATE_SUSPENDED)
817 return -EHOSTUNREACH;
818 if (size <= 0 || !buf || !index)
819 return -EINVAL;
820 buf[0] = 0;
821 tbuf = kmalloc(256, GFP_NOIO);
822 if (!tbuf)
823 return -ENOMEM;
824
825 err = usb_get_langid(dev, tbuf);
826 if (err < 0)
827 goto errout;
828
829 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830 if (err < 0)
831 goto errout;
832
833 size--; /* leave room for trailing NULL char in output buffer */
834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835 UTF16_LITTLE_ENDIAN, buf, size);
836 buf[err] = 0;
837
838 if (tbuf[1] != USB_DT_STRING)
839 dev_dbg(&dev->dev,
840 "wrong descriptor type %02x for string %d (\"%s\")\n",
841 tbuf[1], index, buf);
842
843 errout:
844 kfree(tbuf);
845 return err;
846}
847EXPORT_SYMBOL_GPL(usb_string);
848
849/* one UTF-8-encoded 16-bit character has at most three bytes */
850#define MAX_USB_STRING_SIZE (127 * 3 + 1)
851
852/**
853 * usb_cache_string - read a string descriptor and cache it for later use
854 * @udev: the device whose string descriptor is being read
855 * @index: the descriptor index
856 *
857 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
858 * or NULL if the index is 0 or the string could not be read.
859 */
860char *usb_cache_string(struct usb_device *udev, int index)
861{
862 char *buf;
863 char *smallbuf = NULL;
864 int len;
865
866 if (index <= 0)
867 return NULL;
868
869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870 if (buf) {
871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872 if (len > 0) {
873 smallbuf = kmalloc(++len, GFP_NOIO);
874 if (!smallbuf)
875 return buf;
876 memcpy(smallbuf, buf, len);
877 }
878 kfree(buf);
879 }
880 return smallbuf;
881}
882
883/*
884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885 * @dev: the device whose device descriptor is being updated
886 * @size: how much of the descriptor to read
887 * Context: !in_interrupt ()
888 *
889 * Updates the copy of the device descriptor stored in the device structure,
890 * which dedicates space for this purpose.
891 *
892 * Not exported, only for use by the core. If drivers really want to read
893 * the device descriptor directly, they can call usb_get_descriptor() with
894 * type = USB_DT_DEVICE and index = 0.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Returns the number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
901int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902{
903 struct usb_device_descriptor *desc;
904 int ret;
905
906 if (size > sizeof(*desc))
907 return -EINVAL;
908 desc = kmalloc(sizeof(*desc), GFP_NOIO);
909 if (!desc)
910 return -ENOMEM;
911
912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913 if (ret >= 0)
914 memcpy(&dev->descriptor, desc, size);
915 kfree(desc);
916 return ret;
917}
918
919/**
920 * usb_get_status - issues a GET_STATUS call
921 * @dev: the device whose status is being checked
922 * @type: USB_RECIP_*; for device, interface, or endpoint
923 * @target: zero (for device), else interface or endpoint number
924 * @data: pointer to two bytes of bitmap data
925 * Context: !in_interrupt ()
926 *
927 * Returns device, interface, or endpoint status. Normally only of
928 * interest to see if the device is self powered, or has enabled the
929 * remote wakeup facility; or whether a bulk or interrupt endpoint
930 * is halted ("stalled").
931 *
932 * Bits in these status bitmaps are set using the SET_FEATURE request,
933 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
934 * function should be used to clear halt ("stall") status.
935 *
936 * This call is synchronous, and may not be used in an interrupt context.
937 *
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
940 */
941int usb_get_status(struct usb_device *dev, int type, int target, void *data)
942{
943 int ret;
944 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
945
946 if (!status)
947 return -ENOMEM;
948
949 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
950 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
951 sizeof(*status), USB_CTRL_GET_TIMEOUT);
952
953 *(u16 *)data = *status;
954 kfree(status);
955 return ret;
956}
957EXPORT_SYMBOL_GPL(usb_get_status);
958
959/**
960 * usb_clear_halt - tells device to clear endpoint halt/stall condition
961 * @dev: device whose endpoint is halted
962 * @pipe: endpoint "pipe" being cleared
963 * Context: !in_interrupt ()
964 *
965 * This is used to clear halt conditions for bulk and interrupt endpoints,
966 * as reported by URB completion status. Endpoints that are halted are
967 * sometimes referred to as being "stalled". Such endpoints are unable
968 * to transmit or receive data until the halt status is cleared. Any URBs
969 * queued for such an endpoint should normally be unlinked by the driver
970 * before clearing the halt condition, as described in sections 5.7.5
971 * and 5.8.5 of the USB 2.0 spec.
972 *
973 * Note that control and isochronous endpoints don't halt, although control
974 * endpoints report "protocol stall" (for unsupported requests) using the
975 * same status code used to report a true stall.
976 *
977 * This call is synchronous, and may not be used in an interrupt context.
978 *
979 * Returns zero on success, or else the status code returned by the
980 * underlying usb_control_msg() call.
981 */
982int usb_clear_halt(struct usb_device *dev, int pipe)
983{
984 int result;
985 int endp = usb_pipeendpoint(pipe);
986
987 if (usb_pipein(pipe))
988 endp |= USB_DIR_IN;
989
990 /* we don't care if it wasn't halted first. in fact some devices
991 * (like some ibmcam model 1 units) seem to expect hosts to make
992 * this request for iso endpoints, which can't halt!
993 */
994 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
995 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
996 USB_ENDPOINT_HALT, endp, NULL, 0,
997 USB_CTRL_SET_TIMEOUT);
998
999 /* don't un-halt or force to DATA0 except on success */
1000 if (result < 0)
1001 return result;
1002
1003 /* NOTE: seems like Microsoft and Apple don't bother verifying
1004 * the clear "took", so some devices could lock up if you check...
1005 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1006 *
1007 * NOTE: make sure the logic here doesn't diverge much from
1008 * the copy in usb-storage, for as long as we need two copies.
1009 */
1010
1011 usb_reset_endpoint(dev, endp);
1012
1013 return 0;
1014}
1015EXPORT_SYMBOL_GPL(usb_clear_halt);
1016
1017static int create_intf_ep_devs(struct usb_interface *intf)
1018{
1019 struct usb_device *udev = interface_to_usbdev(intf);
1020 struct usb_host_interface *alt = intf->cur_altsetting;
1021 int i;
1022
1023 if (intf->ep_devs_created || intf->unregistering)
1024 return 0;
1025
1026 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1027 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1028 intf->ep_devs_created = 1;
1029 return 0;
1030}
1031
1032static void remove_intf_ep_devs(struct usb_interface *intf)
1033{
1034 struct usb_host_interface *alt = intf->cur_altsetting;
1035 int i;
1036
1037 if (!intf->ep_devs_created)
1038 return;
1039
1040 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1041 usb_remove_ep_devs(&alt->endpoint[i]);
1042 intf->ep_devs_created = 0;
1043}
1044
1045/**
1046 * usb_disable_endpoint -- Disable an endpoint by address
1047 * @dev: the device whose endpoint is being disabled
1048 * @epaddr: the endpoint's address. Endpoint number for output,
1049 * endpoint number + USB_DIR_IN for input
1050 * @reset_hardware: flag to erase any endpoint state stored in the
1051 * controller hardware
1052 *
1053 * Disables the endpoint for URB submission and nukes all pending URBs.
1054 * If @reset_hardware is set then also deallocates hcd/hardware state
1055 * for the endpoint.
1056 */
1057void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1058 bool reset_hardware)
1059{
1060 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1061 struct usb_host_endpoint *ep;
1062
1063 if (!dev)
1064 return;
1065
1066 if (usb_endpoint_out(epaddr)) {
1067 ep = dev->ep_out[epnum];
1068 if (reset_hardware)
1069 dev->ep_out[epnum] = NULL;
1070 } else {
1071 ep = dev->ep_in[epnum];
1072 if (reset_hardware)
1073 dev->ep_in[epnum] = NULL;
1074 }
1075 if (ep) {
1076 ep->enabled = 0;
1077 usb_hcd_flush_endpoint(dev, ep);
1078 if (reset_hardware)
1079 usb_hcd_disable_endpoint(dev, ep);
1080 }
1081}
1082
1083/**
1084 * usb_reset_endpoint - Reset an endpoint's state.
1085 * @dev: the device whose endpoint is to be reset
1086 * @epaddr: the endpoint's address. Endpoint number for output,
1087 * endpoint number + USB_DIR_IN for input
1088 *
1089 * Resets any host-side endpoint state such as the toggle bit,
1090 * sequence number or current window.
1091 */
1092void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1093{
1094 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095 struct usb_host_endpoint *ep;
1096
1097 if (usb_endpoint_out(epaddr))
1098 ep = dev->ep_out[epnum];
1099 else
1100 ep = dev->ep_in[epnum];
1101 if (ep)
1102 usb_hcd_reset_endpoint(dev, ep);
1103}
1104EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1105
1106
1107/**
1108 * usb_disable_interface -- Disable all endpoints for an interface
1109 * @dev: the device whose interface is being disabled
1110 * @intf: pointer to the interface descriptor
1111 * @reset_hardware: flag to erase any endpoint state stored in the
1112 * controller hardware
1113 *
1114 * Disables all the endpoints for the interface's current altsetting.
1115 */
1116void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1117 bool reset_hardware)
1118{
1119 struct usb_host_interface *alt = intf->cur_altsetting;
1120 int i;
1121
1122 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1123 usb_disable_endpoint(dev,
1124 alt->endpoint[i].desc.bEndpointAddress,
1125 reset_hardware);
1126 }
1127}
1128
1129/**
1130 * usb_disable_device - Disable all the endpoints for a USB device
1131 * @dev: the device whose endpoints are being disabled
1132 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1133 *
1134 * Disables all the device's endpoints, potentially including endpoint 0.
1135 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1136 * pending urbs) and usbcore state for the interfaces, so that usbcore
1137 * must usb_set_configuration() before any interfaces could be used.
1138 *
1139 * Must be called with hcd->bandwidth_mutex held.
1140 */
1141void usb_disable_device(struct usb_device *dev, int skip_ep0)
1142{
1143 int i;
1144 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1145
1146 /* getting rid of interfaces will disconnect
1147 * any drivers bound to them (a key side effect)
1148 */
1149 if (dev->actconfig) {
1150 /*
1151 * FIXME: In order to avoid self-deadlock involving the
1152 * bandwidth_mutex, we have to mark all the interfaces
1153 * before unregistering any of them.
1154 */
1155 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1156 dev->actconfig->interface[i]->unregistering = 1;
1157
1158 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1159 struct usb_interface *interface;
1160
1161 /* remove this interface if it has been registered */
1162 interface = dev->actconfig->interface[i];
1163 if (!device_is_registered(&interface->dev))
1164 continue;
1165 dev_dbg(&dev->dev, "unregistering interface %s\n",
1166 dev_name(&interface->dev));
1167 remove_intf_ep_devs(interface);
1168 device_del(&interface->dev);
1169 }
1170
1171 /* Now that the interfaces are unbound, nobody should
1172 * try to access them.
1173 */
1174 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1175 put_device(&dev->actconfig->interface[i]->dev);
1176 dev->actconfig->interface[i] = NULL;
1177 }
1178 dev->actconfig = NULL;
1179 if (dev->state == USB_STATE_CONFIGURED)
1180 usb_set_device_state(dev, USB_STATE_ADDRESS);
1181 }
1182
1183 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1184 skip_ep0 ? "non-ep0" : "all");
1185 if (hcd->driver->check_bandwidth) {
1186 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1187 for (i = skip_ep0; i < 16; ++i) {
1188 usb_disable_endpoint(dev, i, false);
1189 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1190 }
1191 /* Remove endpoints from the host controller internal state */
1192 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193 /* Second pass: remove endpoint pointers */
1194 }
1195 for (i = skip_ep0; i < 16; ++i) {
1196 usb_disable_endpoint(dev, i, true);
1197 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1198 }
1199}
1200
1201/**
1202 * usb_enable_endpoint - Enable an endpoint for USB communications
1203 * @dev: the device whose interface is being enabled
1204 * @ep: the endpoint
1205 * @reset_ep: flag to reset the endpoint state
1206 *
1207 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1208 * For control endpoints, both the input and output sides are handled.
1209 */
1210void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1211 bool reset_ep)
1212{
1213 int epnum = usb_endpoint_num(&ep->desc);
1214 int is_out = usb_endpoint_dir_out(&ep->desc);
1215 int is_control = usb_endpoint_xfer_control(&ep->desc);
1216
1217 if (reset_ep)
1218 usb_hcd_reset_endpoint(dev, ep);
1219 if (is_out || is_control)
1220 dev->ep_out[epnum] = ep;
1221 if (!is_out || is_control)
1222 dev->ep_in[epnum] = ep;
1223 ep->enabled = 1;
1224}
1225
1226/**
1227 * usb_enable_interface - Enable all the endpoints for an interface
1228 * @dev: the device whose interface is being enabled
1229 * @intf: pointer to the interface descriptor
1230 * @reset_eps: flag to reset the endpoints' state
1231 *
1232 * Enables all the endpoints for the interface's current altsetting.
1233 */
1234void usb_enable_interface(struct usb_device *dev,
1235 struct usb_interface *intf, bool reset_eps)
1236{
1237 struct usb_host_interface *alt = intf->cur_altsetting;
1238 int i;
1239
1240 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1241 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1242}
1243
1244/**
1245 * usb_set_interface - Makes a particular alternate setting be current
1246 * @dev: the device whose interface is being updated
1247 * @interface: the interface being updated
1248 * @alternate: the setting being chosen.
1249 * Context: !in_interrupt ()
1250 *
1251 * This is used to enable data transfers on interfaces that may not
1252 * be enabled by default. Not all devices support such configurability.
1253 * Only the driver bound to an interface may change its setting.
1254 *
1255 * Within any given configuration, each interface may have several
1256 * alternative settings. These are often used to control levels of
1257 * bandwidth consumption. For example, the default setting for a high
1258 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1259 * while interrupt transfers of up to 3KBytes per microframe are legal.
1260 * Also, isochronous endpoints may never be part of an
1261 * interface's default setting. To access such bandwidth, alternate
1262 * interface settings must be made current.
1263 *
1264 * Note that in the Linux USB subsystem, bandwidth associated with
1265 * an endpoint in a given alternate setting is not reserved until an URB
1266 * is submitted that needs that bandwidth. Some other operating systems
1267 * allocate bandwidth early, when a configuration is chosen.
1268 *
1269 * This call is synchronous, and may not be used in an interrupt context.
1270 * Also, drivers must not change altsettings while urbs are scheduled for
1271 * endpoints in that interface; all such urbs must first be completed
1272 * (perhaps forced by unlinking).
1273 *
1274 * Returns zero on success, or else the status code returned by the
1275 * underlying usb_control_msg() call.
1276 */
1277int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1278{
1279 struct usb_interface *iface;
1280 struct usb_host_interface *alt;
1281 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1282 int ret;
1283 int manual = 0;
1284 unsigned int epaddr;
1285 unsigned int pipe;
1286
1287 if (dev->state == USB_STATE_SUSPENDED)
1288 return -EHOSTUNREACH;
1289
1290 iface = usb_ifnum_to_if(dev, interface);
1291 if (!iface) {
1292 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1293 interface);
1294 return -EINVAL;
1295 }
1296 if (iface->unregistering)
1297 return -ENODEV;
1298
1299 alt = usb_altnum_to_altsetting(iface, alternate);
1300 if (!alt) {
1301 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1302 alternate);
1303 return -EINVAL;
1304 }
1305
1306 /* Make sure we have enough bandwidth for this alternate interface.
1307 * Remove the current alt setting and add the new alt setting.
1308 */
1309 mutex_lock(hcd->bandwidth_mutex);
1310 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1311 if (ret < 0) {
1312 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1313 alternate);
1314 mutex_unlock(hcd->bandwidth_mutex);
1315 return ret;
1316 }
1317
1318 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1319 ret = -EPIPE;
1320 else
1321 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1322 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1323 alternate, interface, NULL, 0, 5000);
1324
1325 /* 9.4.10 says devices don't need this and are free to STALL the
1326 * request if the interface only has one alternate setting.
1327 */
1328 if (ret == -EPIPE && iface->num_altsetting == 1) {
1329 dev_dbg(&dev->dev,
1330 "manual set_interface for iface %d, alt %d\n",
1331 interface, alternate);
1332 manual = 1;
1333 } else if (ret < 0) {
1334 /* Re-instate the old alt setting */
1335 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1336 mutex_unlock(hcd->bandwidth_mutex);
1337 return ret;
1338 }
1339 mutex_unlock(hcd->bandwidth_mutex);
1340
1341 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1342 * when they implement async or easily-killable versions of this or
1343 * other "should-be-internal" functions (like clear_halt).
1344 * should hcd+usbcore postprocess control requests?
1345 */
1346
1347 /* prevent submissions using previous endpoint settings */
1348 if (iface->cur_altsetting != alt) {
1349 remove_intf_ep_devs(iface);
1350 usb_remove_sysfs_intf_files(iface);
1351 }
1352 usb_disable_interface(dev, iface, true);
1353
1354 iface->cur_altsetting = alt;
1355
1356 /* If the interface only has one altsetting and the device didn't
1357 * accept the request, we attempt to carry out the equivalent action
1358 * by manually clearing the HALT feature for each endpoint in the
1359 * new altsetting.
1360 */
1361 if (manual) {
1362 int i;
1363
1364 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1365 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1366 pipe = __create_pipe(dev,
1367 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1368 (usb_endpoint_out(epaddr) ?
1369 USB_DIR_OUT : USB_DIR_IN);
1370
1371 usb_clear_halt(dev, pipe);
1372 }
1373 }
1374
1375 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1376 *
1377 * Note:
1378 * Despite EP0 is always present in all interfaces/AS, the list of
1379 * endpoints from the descriptor does not contain EP0. Due to its
1380 * omnipresence one might expect EP0 being considered "affected" by
1381 * any SetInterface request and hence assume toggles need to be reset.
1382 * However, EP0 toggles are re-synced for every individual transfer
1383 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1384 * (Likewise, EP0 never "halts" on well designed devices.)
1385 */
1386 usb_enable_interface(dev, iface, true);
1387 if (device_is_registered(&iface->dev)) {
1388 usb_create_sysfs_intf_files(iface);
1389 create_intf_ep_devs(iface);
1390 }
1391 return 0;
1392}
1393EXPORT_SYMBOL_GPL(usb_set_interface);
1394
1395/**
1396 * usb_reset_configuration - lightweight device reset
1397 * @dev: the device whose configuration is being reset
1398 *
1399 * This issues a standard SET_CONFIGURATION request to the device using
1400 * the current configuration. The effect is to reset most USB-related
1401 * state in the device, including interface altsettings (reset to zero),
1402 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1403 * endpoints). Other usbcore state is unchanged, including bindings of
1404 * usb device drivers to interfaces.
1405 *
1406 * Because this affects multiple interfaces, avoid using this with composite
1407 * (multi-interface) devices. Instead, the driver for each interface may
1408 * use usb_set_interface() on the interfaces it claims. Be careful though;
1409 * some devices don't support the SET_INTERFACE request, and others won't
1410 * reset all the interface state (notably endpoint state). Resetting the whole
1411 * configuration would affect other drivers' interfaces.
1412 *
1413 * The caller must own the device lock.
1414 *
1415 * Returns zero on success, else a negative error code.
1416 */
1417int usb_reset_configuration(struct usb_device *dev)
1418{
1419 int i, retval;
1420 struct usb_host_config *config;
1421 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1422
1423 if (dev->state == USB_STATE_SUSPENDED)
1424 return -EHOSTUNREACH;
1425
1426 /* caller must have locked the device and must own
1427 * the usb bus readlock (so driver bindings are stable);
1428 * calls during probe() are fine
1429 */
1430
1431 for (i = 1; i < 16; ++i) {
1432 usb_disable_endpoint(dev, i, true);
1433 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1434 }
1435
1436 config = dev->actconfig;
1437 retval = 0;
1438 mutex_lock(hcd->bandwidth_mutex);
1439 /* Make sure we have enough bandwidth for each alternate setting 0 */
1440 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1441 struct usb_interface *intf = config->interface[i];
1442 struct usb_host_interface *alt;
1443
1444 alt = usb_altnum_to_altsetting(intf, 0);
1445 if (!alt)
1446 alt = &intf->altsetting[0];
1447 if (alt != intf->cur_altsetting)
1448 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1449 intf->cur_altsetting, alt);
1450 if (retval < 0)
1451 break;
1452 }
1453 /* If not, reinstate the old alternate settings */
1454 if (retval < 0) {
1455reset_old_alts:
1456 for (i--; i >= 0; i--) {
1457 struct usb_interface *intf = config->interface[i];
1458 struct usb_host_interface *alt;
1459
1460 alt = usb_altnum_to_altsetting(intf, 0);
1461 if (!alt)
1462 alt = &intf->altsetting[0];
1463 if (alt != intf->cur_altsetting)
1464 usb_hcd_alloc_bandwidth(dev, NULL,
1465 alt, intf->cur_altsetting);
1466 }
1467 mutex_unlock(hcd->bandwidth_mutex);
1468 return retval;
1469 }
1470 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1471 USB_REQ_SET_CONFIGURATION, 0,
1472 config->desc.bConfigurationValue, 0,
1473 NULL, 0, USB_CTRL_SET_TIMEOUT);
1474 if (retval < 0)
1475 goto reset_old_alts;
1476 mutex_unlock(hcd->bandwidth_mutex);
1477
1478 /* re-init hc/hcd interface/endpoint state */
1479 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1480 struct usb_interface *intf = config->interface[i];
1481 struct usb_host_interface *alt;
1482
1483 alt = usb_altnum_to_altsetting(intf, 0);
1484
1485 /* No altsetting 0? We'll assume the first altsetting.
1486 * We could use a GetInterface call, but if a device is
1487 * so non-compliant that it doesn't have altsetting 0
1488 * then I wouldn't trust its reply anyway.
1489 */
1490 if (!alt)
1491 alt = &intf->altsetting[0];
1492
1493 if (alt != intf->cur_altsetting) {
1494 remove_intf_ep_devs(intf);
1495 usb_remove_sysfs_intf_files(intf);
1496 }
1497 intf->cur_altsetting = alt;
1498 usb_enable_interface(dev, intf, true);
1499 if (device_is_registered(&intf->dev)) {
1500 usb_create_sysfs_intf_files(intf);
1501 create_intf_ep_devs(intf);
1502 }
1503 }
1504 return 0;
1505}
1506EXPORT_SYMBOL_GPL(usb_reset_configuration);
1507
1508static void usb_release_interface(struct device *dev)
1509{
1510 struct usb_interface *intf = to_usb_interface(dev);
1511 struct usb_interface_cache *intfc =
1512 altsetting_to_usb_interface_cache(intf->altsetting);
1513
1514 kref_put(&intfc->ref, usb_release_interface_cache);
1515 kfree(intf);
1516}
1517
1518#ifdef CONFIG_HOTPLUG
1519static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1520{
1521 struct usb_device *usb_dev;
1522 struct usb_interface *intf;
1523 struct usb_host_interface *alt;
1524
1525 intf = to_usb_interface(dev);
1526 usb_dev = interface_to_usbdev(intf);
1527 alt = intf->cur_altsetting;
1528
1529 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1530 alt->desc.bInterfaceClass,
1531 alt->desc.bInterfaceSubClass,
1532 alt->desc.bInterfaceProtocol))
1533 return -ENOMEM;
1534
1535 if (add_uevent_var(env,
1536 "MODALIAS=usb:"
1537 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1538 le16_to_cpu(usb_dev->descriptor.idVendor),
1539 le16_to_cpu(usb_dev->descriptor.idProduct),
1540 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1541 usb_dev->descriptor.bDeviceClass,
1542 usb_dev->descriptor.bDeviceSubClass,
1543 usb_dev->descriptor.bDeviceProtocol,
1544 alt->desc.bInterfaceClass,
1545 alt->desc.bInterfaceSubClass,
1546 alt->desc.bInterfaceProtocol))
1547 return -ENOMEM;
1548
1549 return 0;
1550}
1551
1552#else
1553
1554static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1555{
1556 return -ENODEV;
1557}
1558#endif /* CONFIG_HOTPLUG */
1559
1560struct device_type usb_if_device_type = {
1561 .name = "usb_interface",
1562 .release = usb_release_interface,
1563 .uevent = usb_if_uevent,
1564};
1565
1566static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1567 struct usb_host_config *config,
1568 u8 inum)
1569{
1570 struct usb_interface_assoc_descriptor *retval = NULL;
1571 struct usb_interface_assoc_descriptor *intf_assoc;
1572 int first_intf;
1573 int last_intf;
1574 int i;
1575
1576 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1577 intf_assoc = config->intf_assoc[i];
1578 if (intf_assoc->bInterfaceCount == 0)
1579 continue;
1580
1581 first_intf = intf_assoc->bFirstInterface;
1582 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1583 if (inum >= first_intf && inum <= last_intf) {
1584 if (!retval)
1585 retval = intf_assoc;
1586 else
1587 dev_err(&dev->dev, "Interface #%d referenced"
1588 " by multiple IADs\n", inum);
1589 }
1590 }
1591
1592 return retval;
1593}
1594
1595
1596/*
1597 * Internal function to queue a device reset
1598 *
1599 * This is initialized into the workstruct in 'struct
1600 * usb_device->reset_ws' that is launched by
1601 * message.c:usb_set_configuration() when initializing each 'struct
1602 * usb_interface'.
1603 *
1604 * It is safe to get the USB device without reference counts because
1605 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1606 * this function will be ran only if @iface is alive (and before
1607 * freeing it any scheduled instances of it will have been cancelled).
1608 *
1609 * We need to set a flag (usb_dev->reset_running) because when we call
1610 * the reset, the interfaces might be unbound. The current interface
1611 * cannot try to remove the queued work as it would cause a deadlock
1612 * (you cannot remove your work from within your executing
1613 * workqueue). This flag lets it know, so that
1614 * usb_cancel_queued_reset() doesn't try to do it.
1615 *
1616 * See usb_queue_reset_device() for more details
1617 */
1618static void __usb_queue_reset_device(struct work_struct *ws)
1619{
1620 int rc;
1621 struct usb_interface *iface =
1622 container_of(ws, struct usb_interface, reset_ws);
1623 struct usb_device *udev = interface_to_usbdev(iface);
1624
1625 rc = usb_lock_device_for_reset(udev, iface);
1626 if (rc >= 0) {
1627 iface->reset_running = 1;
1628 usb_reset_device(udev);
1629 iface->reset_running = 0;
1630 usb_unlock_device(udev);
1631 }
1632}
1633
1634
1635/*
1636 * usb_set_configuration - Makes a particular device setting be current
1637 * @dev: the device whose configuration is being updated
1638 * @configuration: the configuration being chosen.
1639 * Context: !in_interrupt(), caller owns the device lock
1640 *
1641 * This is used to enable non-default device modes. Not all devices
1642 * use this kind of configurability; many devices only have one
1643 * configuration.
1644 *
1645 * @configuration is the value of the configuration to be installed.
1646 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1647 * must be non-zero; a value of zero indicates that the device in
1648 * unconfigured. However some devices erroneously use 0 as one of their
1649 * configuration values. To help manage such devices, this routine will
1650 * accept @configuration = -1 as indicating the device should be put in
1651 * an unconfigured state.
1652 *
1653 * USB device configurations may affect Linux interoperability,
1654 * power consumption and the functionality available. For example,
1655 * the default configuration is limited to using 100mA of bus power,
1656 * so that when certain device functionality requires more power,
1657 * and the device is bus powered, that functionality should be in some
1658 * non-default device configuration. Other device modes may also be
1659 * reflected as configuration options, such as whether two ISDN
1660 * channels are available independently; and choosing between open
1661 * standard device protocols (like CDC) or proprietary ones.
1662 *
1663 * Note that a non-authorized device (dev->authorized == 0) will only
1664 * be put in unconfigured mode.
1665 *
1666 * Note that USB has an additional level of device configurability,
1667 * associated with interfaces. That configurability is accessed using
1668 * usb_set_interface().
1669 *
1670 * This call is synchronous. The calling context must be able to sleep,
1671 * must own the device lock, and must not hold the driver model's USB
1672 * bus mutex; usb interface driver probe() methods cannot use this routine.
1673 *
1674 * Returns zero on success, or else the status code returned by the
1675 * underlying call that failed. On successful completion, each interface
1676 * in the original device configuration has been destroyed, and each one
1677 * in the new configuration has been probed by all relevant usb device
1678 * drivers currently known to the kernel.
1679 */
1680int usb_set_configuration(struct usb_device *dev, int configuration)
1681{
1682 int i, ret;
1683 struct usb_host_config *cp = NULL;
1684 struct usb_interface **new_interfaces = NULL;
1685 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1686 int n, nintf;
1687
1688 if (dev->authorized == 0 || configuration == -1)
1689 configuration = 0;
1690 else {
1691 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1692 if (dev->config[i].desc.bConfigurationValue ==
1693 configuration) {
1694 cp = &dev->config[i];
1695 break;
1696 }
1697 }
1698 }
1699 if ((!cp && configuration != 0))
1700 return -EINVAL;
1701
1702 /* The USB spec says configuration 0 means unconfigured.
1703 * But if a device includes a configuration numbered 0,
1704 * we will accept it as a correctly configured state.
1705 * Use -1 if you really want to unconfigure the device.
1706 */
1707 if (cp && configuration == 0)
1708 dev_warn(&dev->dev, "config 0 descriptor??\n");
1709
1710 /* Allocate memory for new interfaces before doing anything else,
1711 * so that if we run out then nothing will have changed. */
1712 n = nintf = 0;
1713 if (cp) {
1714 nintf = cp->desc.bNumInterfaces;
1715 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1716 GFP_NOIO);
1717 if (!new_interfaces) {
1718 dev_err(&dev->dev, "Out of memory\n");
1719 return -ENOMEM;
1720 }
1721
1722 for (; n < nintf; ++n) {
1723 new_interfaces[n] = kzalloc(
1724 sizeof(struct usb_interface),
1725 GFP_NOIO);
1726 if (!new_interfaces[n]) {
1727 dev_err(&dev->dev, "Out of memory\n");
1728 ret = -ENOMEM;
1729free_interfaces:
1730 while (--n >= 0)
1731 kfree(new_interfaces[n]);
1732 kfree(new_interfaces);
1733 return ret;
1734 }
1735 }
1736
1737 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1738 if (i < 0)
1739 dev_warn(&dev->dev, "new config #%d exceeds power "
1740 "limit by %dmA\n",
1741 configuration, -i);
1742 }
1743
1744 /* Wake up the device so we can send it the Set-Config request */
1745 ret = usb_autoresume_device(dev);
1746 if (ret)
1747 goto free_interfaces;
1748
1749 /* if it's already configured, clear out old state first.
1750 * getting rid of old interfaces means unbinding their drivers.
1751 */
1752 mutex_lock(hcd->bandwidth_mutex);
1753 if (dev->state != USB_STATE_ADDRESS)
1754 usb_disable_device(dev, 1); /* Skip ep0 */
1755
1756 /* Get rid of pending async Set-Config requests for this device */
1757 cancel_async_set_config(dev);
1758
1759 /* Make sure we have bandwidth (and available HCD resources) for this
1760 * configuration. Remove endpoints from the schedule if we're dropping
1761 * this configuration to set configuration 0. After this point, the
1762 * host controller will not allow submissions to dropped endpoints. If
1763 * this call fails, the device state is unchanged.
1764 */
1765 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1766 if (ret < 0) {
1767 mutex_unlock(hcd->bandwidth_mutex);
1768 usb_autosuspend_device(dev);
1769 goto free_interfaces;
1770 }
1771
1772 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1773 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1774 NULL, 0, USB_CTRL_SET_TIMEOUT);
1775 if (ret < 0) {
1776 /* All the old state is gone, so what else can we do?
1777 * The device is probably useless now anyway.
1778 */
1779 cp = NULL;
1780 }
1781
1782 dev->actconfig = cp;
1783 if (!cp) {
1784 usb_set_device_state(dev, USB_STATE_ADDRESS);
1785 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1786 mutex_unlock(hcd->bandwidth_mutex);
1787 usb_autosuspend_device(dev);
1788 goto free_interfaces;
1789 }
1790 mutex_unlock(hcd->bandwidth_mutex);
1791 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1792
1793 /* Initialize the new interface structures and the
1794 * hc/hcd/usbcore interface/endpoint state.
1795 */
1796 for (i = 0; i < nintf; ++i) {
1797 struct usb_interface_cache *intfc;
1798 struct usb_interface *intf;
1799 struct usb_host_interface *alt;
1800
1801 cp->interface[i] = intf = new_interfaces[i];
1802 intfc = cp->intf_cache[i];
1803 intf->altsetting = intfc->altsetting;
1804 intf->num_altsetting = intfc->num_altsetting;
1805 intf->intf_assoc = find_iad(dev, cp, i);
1806 kref_get(&intfc->ref);
1807
1808 alt = usb_altnum_to_altsetting(intf, 0);
1809
1810 /* No altsetting 0? We'll assume the first altsetting.
1811 * We could use a GetInterface call, but if a device is
1812 * so non-compliant that it doesn't have altsetting 0
1813 * then I wouldn't trust its reply anyway.
1814 */
1815 if (!alt)
1816 alt = &intf->altsetting[0];
1817
1818 intf->cur_altsetting = alt;
1819 usb_enable_interface(dev, intf, true);
1820 intf->dev.parent = &dev->dev;
1821 intf->dev.driver = NULL;
1822 intf->dev.bus = &usb_bus_type;
1823 intf->dev.type = &usb_if_device_type;
1824 intf->dev.groups = usb_interface_groups;
1825 intf->dev.dma_mask = dev->dev.dma_mask;
1826 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1827 intf->minor = -1;
1828 device_initialize(&intf->dev);
1829 pm_runtime_no_callbacks(&intf->dev);
1830 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1831 dev->bus->busnum, dev->devpath,
1832 configuration, alt->desc.bInterfaceNumber);
1833 }
1834 kfree(new_interfaces);
1835
1836 if (cp->string == NULL &&
1837 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1838 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1839
1840 /* Now that all the interfaces are set up, register them
1841 * to trigger binding of drivers to interfaces. probe()
1842 * routines may install different altsettings and may
1843 * claim() any interfaces not yet bound. Many class drivers
1844 * need that: CDC, audio, video, etc.
1845 */
1846 for (i = 0; i < nintf; ++i) {
1847 struct usb_interface *intf = cp->interface[i];
1848
1849 dev_dbg(&dev->dev,
1850 "adding %s (config #%d, interface %d)\n",
1851 dev_name(&intf->dev), configuration,
1852 intf->cur_altsetting->desc.bInterfaceNumber);
1853 device_enable_async_suspend(&intf->dev);
1854 ret = device_add(&intf->dev);
1855 if (ret != 0) {
1856 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1857 dev_name(&intf->dev), ret);
1858 continue;
1859 }
1860 create_intf_ep_devs(intf);
1861 }
1862
1863 usb_autosuspend_device(dev);
1864 return 0;
1865}
1866
1867static LIST_HEAD(set_config_list);
1868static DEFINE_SPINLOCK(set_config_lock);
1869
1870struct set_config_request {
1871 struct usb_device *udev;
1872 int config;
1873 struct work_struct work;
1874 struct list_head node;
1875};
1876
1877/* Worker routine for usb_driver_set_configuration() */
1878static void driver_set_config_work(struct work_struct *work)
1879{
1880 struct set_config_request *req =
1881 container_of(work, struct set_config_request, work);
1882 struct usb_device *udev = req->udev;
1883
1884 usb_lock_device(udev);
1885 spin_lock(&set_config_lock);
1886 list_del(&req->node);
1887 spin_unlock(&set_config_lock);
1888
1889 if (req->config >= -1) /* Is req still valid? */
1890 usb_set_configuration(udev, req->config);
1891 usb_unlock_device(udev);
1892 usb_put_dev(udev);
1893 kfree(req);
1894}
1895
1896/* Cancel pending Set-Config requests for a device whose configuration
1897 * was just changed
1898 */
1899static void cancel_async_set_config(struct usb_device *udev)
1900{
1901 struct set_config_request *req;
1902
1903 spin_lock(&set_config_lock);
1904 list_for_each_entry(req, &set_config_list, node) {
1905 if (req->udev == udev)
1906 req->config = -999; /* Mark as cancelled */
1907 }
1908 spin_unlock(&set_config_lock);
1909}
1910
1911/**
1912 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1913 * @udev: the device whose configuration is being updated
1914 * @config: the configuration being chosen.
1915 * Context: In process context, must be able to sleep
1916 *
1917 * Device interface drivers are not allowed to change device configurations.
1918 * This is because changing configurations will destroy the interface the
1919 * driver is bound to and create new ones; it would be like a floppy-disk
1920 * driver telling the computer to replace the floppy-disk drive with a
1921 * tape drive!
1922 *
1923 * Still, in certain specialized circumstances the need may arise. This
1924 * routine gets around the normal restrictions by using a work thread to
1925 * submit the change-config request.
1926 *
1927 * Returns 0 if the request was successfully queued, error code otherwise.
1928 * The caller has no way to know whether the queued request will eventually
1929 * succeed.
1930 */
1931int usb_driver_set_configuration(struct usb_device *udev, int config)
1932{
1933 struct set_config_request *req;
1934
1935 req = kmalloc(sizeof(*req), GFP_KERNEL);
1936 if (!req)
1937 return -ENOMEM;
1938 req->udev = udev;
1939 req->config = config;
1940 INIT_WORK(&req->work, driver_set_config_work);
1941
1942 spin_lock(&set_config_lock);
1943 list_add(&req->node, &set_config_list);
1944 spin_unlock(&set_config_lock);
1945
1946 usb_get_dev(udev);
1947 schedule_work(&req->work);
1948 return 0;
1949}
1950EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/pci.h> /* for scatterlist macros */
9#include <linux/usb.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/timer.h>
14#include <linux/ctype.h>
15#include <linux/nls.h>
16#include <linux/device.h>
17#include <linux/scatterlist.h>
18#include <linux/usb/cdc.h>
19#include <linux/usb/quirks.h>
20#include <linux/usb/hcd.h> /* for usbcore internals */
21#include <linux/usb/of.h>
22#include <asm/byteorder.h>
23
24#include "usb.h"
25
26static void cancel_async_set_config(struct usb_device *udev);
27
28struct api_context {
29 struct completion done;
30 int status;
31};
32
33static void usb_api_blocking_completion(struct urb *urb)
34{
35 struct api_context *ctx = urb->context;
36
37 ctx->status = urb->status;
38 complete(&ctx->done);
39}
40
41
42/*
43 * Starts urb and waits for completion or timeout. Note that this call
44 * is NOT interruptible. Many device driver i/o requests should be
45 * interruptible and therefore these drivers should implement their
46 * own interruptible routines.
47 */
48static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49{
50 struct api_context ctx;
51 unsigned long expire;
52 int retval;
53
54 init_completion(&ctx.done);
55 urb->context = &ctx;
56 urb->actual_length = 0;
57 retval = usb_submit_urb(urb, GFP_NOIO);
58 if (unlikely(retval))
59 goto out;
60
61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 usb_kill_urb(urb);
64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65
66 dev_dbg(&urb->dev->dev,
67 "%s timed out on ep%d%s len=%u/%u\n",
68 current->comm,
69 usb_endpoint_num(&urb->ep->desc),
70 usb_urb_dir_in(urb) ? "in" : "out",
71 urb->actual_length,
72 urb->transfer_buffer_length);
73 } else
74 retval = ctx.status;
75out:
76 if (actual_length)
77 *actual_length = urb->actual_length;
78
79 usb_free_urb(urb);
80 return retval;
81}
82
83/*-------------------------------------------------------------------*/
84/* returns status (negative) or length (positive) */
85static int usb_internal_control_msg(struct usb_device *usb_dev,
86 unsigned int pipe,
87 struct usb_ctrlrequest *cmd,
88 void *data, int len, int timeout)
89{
90 struct urb *urb;
91 int retv;
92 int length;
93
94 urb = usb_alloc_urb(0, GFP_NOIO);
95 if (!urb)
96 return -ENOMEM;
97
98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 len, usb_api_blocking_completion, NULL);
100
101 retv = usb_start_wait_urb(urb, timeout, &length);
102 if (retv < 0)
103 return retv;
104 else
105 return length;
106}
107
108/**
109 * usb_control_msg - Builds a control urb, sends it off and waits for completion
110 * @dev: pointer to the usb device to send the message to
111 * @pipe: endpoint "pipe" to send the message to
112 * @request: USB message request value
113 * @requesttype: USB message request type value
114 * @value: USB message value
115 * @index: USB message index value
116 * @data: pointer to the data to send
117 * @size: length in bytes of the data to send
118 * @timeout: time in msecs to wait for the message to complete before timing
119 * out (if 0 the wait is forever)
120 *
121 * Context: !in_interrupt ()
122 *
123 * This function sends a simple control message to a specified endpoint and
124 * waits for the message to complete, or timeout.
125 *
126 * Don't use this function from within an interrupt context. If you need
127 * an asynchronous message, or need to send a message from within interrupt
128 * context, use usb_submit_urb(). If a thread in your driver uses this call,
129 * make sure your disconnect() method can wait for it to complete. Since you
130 * don't have a handle on the URB used, you can't cancel the request.
131 *
132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
133 * error number.
134 */
135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 __u8 requesttype, __u16 value, __u16 index, void *data,
137 __u16 size, int timeout)
138{
139 struct usb_ctrlrequest *dr;
140 int ret;
141
142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 if (!dr)
144 return -ENOMEM;
145
146 dr->bRequestType = requesttype;
147 dr->bRequest = request;
148 dr->wValue = cpu_to_le16(value);
149 dr->wIndex = cpu_to_le16(index);
150 dr->wLength = cpu_to_le16(size);
151
152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153
154 /* Linger a bit, prior to the next control message. */
155 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 msleep(200);
157
158 kfree(dr);
159
160 return ret;
161}
162EXPORT_SYMBOL_GPL(usb_control_msg);
163
164/**
165 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166 * @usb_dev: pointer to the usb device to send the message to
167 * @pipe: endpoint "pipe" to send the message to
168 * @data: pointer to the data to send
169 * @len: length in bytes of the data to send
170 * @actual_length: pointer to a location to put the actual length transferred
171 * in bytes
172 * @timeout: time in msecs to wait for the message to complete before
173 * timing out (if 0 the wait is forever)
174 *
175 * Context: !in_interrupt ()
176 *
177 * This function sends a simple interrupt message to a specified endpoint and
178 * waits for the message to complete, or timeout.
179 *
180 * Don't use this function from within an interrupt context. If you need
181 * an asynchronous message, or need to send a message from within interrupt
182 * context, use usb_submit_urb() If a thread in your driver uses this call,
183 * make sure your disconnect() method can wait for it to complete. Since you
184 * don't have a handle on the URB used, you can't cancel the request.
185 *
186 * Return:
187 * If successful, 0. Otherwise a negative error number. The number of actual
188 * bytes transferred will be stored in the @actual_length parameter.
189 */
190int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 void *data, int len, int *actual_length, int timeout)
192{
193 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194}
195EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196
197/**
198 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199 * @usb_dev: pointer to the usb device to send the message to
200 * @pipe: endpoint "pipe" to send the message to
201 * @data: pointer to the data to send
202 * @len: length in bytes of the data to send
203 * @actual_length: pointer to a location to put the actual length transferred
204 * in bytes
205 * @timeout: time in msecs to wait for the message to complete before
206 * timing out (if 0 the wait is forever)
207 *
208 * Context: !in_interrupt ()
209 *
210 * This function sends a simple bulk message to a specified endpoint
211 * and waits for the message to complete, or timeout.
212 *
213 * Don't use this function from within an interrupt context. If you need
214 * an asynchronous message, or need to send a message from within interrupt
215 * context, use usb_submit_urb() If a thread in your driver uses this call,
216 * make sure your disconnect() method can wait for it to complete. Since you
217 * don't have a handle on the URB used, you can't cancel the request.
218 *
219 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220 * users are forced to abuse this routine by using it to submit URBs for
221 * interrupt endpoints. We will take the liberty of creating an interrupt URB
222 * (with the default interval) if the target is an interrupt endpoint.
223 *
224 * Return:
225 * If successful, 0. Otherwise a negative error number. The number of actual
226 * bytes transferred will be stored in the @actual_length parameter.
227 *
228 */
229int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 void *data, int len, int *actual_length, int timeout)
231{
232 struct urb *urb;
233 struct usb_host_endpoint *ep;
234
235 ep = usb_pipe_endpoint(usb_dev, pipe);
236 if (!ep || len < 0)
237 return -EINVAL;
238
239 urb = usb_alloc_urb(0, GFP_KERNEL);
240 if (!urb)
241 return -ENOMEM;
242
243 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 USB_ENDPOINT_XFER_INT) {
245 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 usb_api_blocking_completion, NULL,
248 ep->desc.bInterval);
249 } else
250 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 usb_api_blocking_completion, NULL);
252
253 return usb_start_wait_urb(urb, timeout, actual_length);
254}
255EXPORT_SYMBOL_GPL(usb_bulk_msg);
256
257/*-------------------------------------------------------------------*/
258
259static void sg_clean(struct usb_sg_request *io)
260{
261 if (io->urbs) {
262 while (io->entries--)
263 usb_free_urb(io->urbs[io->entries]);
264 kfree(io->urbs);
265 io->urbs = NULL;
266 }
267 io->dev = NULL;
268}
269
270static void sg_complete(struct urb *urb)
271{
272 unsigned long flags;
273 struct usb_sg_request *io = urb->context;
274 int status = urb->status;
275
276 spin_lock_irqsave(&io->lock, flags);
277
278 /* In 2.5 we require hcds' endpoint queues not to progress after fault
279 * reports, until the completion callback (this!) returns. That lets
280 * device driver code (like this routine) unlink queued urbs first,
281 * if it needs to, since the HC won't work on them at all. So it's
282 * not possible for page N+1 to overwrite page N, and so on.
283 *
284 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
285 * complete before the HCD can get requests away from hardware,
286 * though never during cleanup after a hard fault.
287 */
288 if (io->status
289 && (io->status != -ECONNRESET
290 || status != -ECONNRESET)
291 && urb->actual_length) {
292 dev_err(io->dev->bus->controller,
293 "dev %s ep%d%s scatterlist error %d/%d\n",
294 io->dev->devpath,
295 usb_endpoint_num(&urb->ep->desc),
296 usb_urb_dir_in(urb) ? "in" : "out",
297 status, io->status);
298 /* BUG (); */
299 }
300
301 if (io->status == 0 && status && status != -ECONNRESET) {
302 int i, found, retval;
303
304 io->status = status;
305
306 /* the previous urbs, and this one, completed already.
307 * unlink pending urbs so they won't rx/tx bad data.
308 * careful: unlink can sometimes be synchronous...
309 */
310 spin_unlock_irqrestore(&io->lock, flags);
311 for (i = 0, found = 0; i < io->entries; i++) {
312 if (!io->urbs[i])
313 continue;
314 if (found) {
315 usb_block_urb(io->urbs[i]);
316 retval = usb_unlink_urb(io->urbs[i]);
317 if (retval != -EINPROGRESS &&
318 retval != -ENODEV &&
319 retval != -EBUSY &&
320 retval != -EIDRM)
321 dev_err(&io->dev->dev,
322 "%s, unlink --> %d\n",
323 __func__, retval);
324 } else if (urb == io->urbs[i])
325 found = 1;
326 }
327 spin_lock_irqsave(&io->lock, flags);
328 }
329
330 /* on the last completion, signal usb_sg_wait() */
331 io->bytes += urb->actual_length;
332 io->count--;
333 if (!io->count)
334 complete(&io->complete);
335
336 spin_unlock_irqrestore(&io->lock, flags);
337}
338
339
340/**
341 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
342 * @io: request block being initialized. until usb_sg_wait() returns,
343 * treat this as a pointer to an opaque block of memory,
344 * @dev: the usb device that will send or receive the data
345 * @pipe: endpoint "pipe" used to transfer the data
346 * @period: polling rate for interrupt endpoints, in frames or
347 * (for high speed endpoints) microframes; ignored for bulk
348 * @sg: scatterlist entries
349 * @nents: how many entries in the scatterlist
350 * @length: how many bytes to send from the scatterlist, or zero to
351 * send every byte identified in the list.
352 * @mem_flags: SLAB_* flags affecting memory allocations in this call
353 *
354 * This initializes a scatter/gather request, allocating resources such as
355 * I/O mappings and urb memory (except maybe memory used by USB controller
356 * drivers).
357 *
358 * The request must be issued using usb_sg_wait(), which waits for the I/O to
359 * complete (or to be canceled) and then cleans up all resources allocated by
360 * usb_sg_init().
361 *
362 * The request may be canceled with usb_sg_cancel(), either before or after
363 * usb_sg_wait() is called.
364 *
365 * Return: Zero for success, else a negative errno value.
366 */
367int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
368 unsigned pipe, unsigned period, struct scatterlist *sg,
369 int nents, size_t length, gfp_t mem_flags)
370{
371 int i;
372 int urb_flags;
373 int use_sg;
374
375 if (!io || !dev || !sg
376 || usb_pipecontrol(pipe)
377 || usb_pipeisoc(pipe)
378 || nents <= 0)
379 return -EINVAL;
380
381 spin_lock_init(&io->lock);
382 io->dev = dev;
383 io->pipe = pipe;
384
385 if (dev->bus->sg_tablesize > 0) {
386 use_sg = true;
387 io->entries = 1;
388 } else {
389 use_sg = false;
390 io->entries = nents;
391 }
392
393 /* initialize all the urbs we'll use */
394 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
395 if (!io->urbs)
396 goto nomem;
397
398 urb_flags = URB_NO_INTERRUPT;
399 if (usb_pipein(pipe))
400 urb_flags |= URB_SHORT_NOT_OK;
401
402 for_each_sg(sg, sg, io->entries, i) {
403 struct urb *urb;
404 unsigned len;
405
406 urb = usb_alloc_urb(0, mem_flags);
407 if (!urb) {
408 io->entries = i;
409 goto nomem;
410 }
411 io->urbs[i] = urb;
412
413 urb->dev = NULL;
414 urb->pipe = pipe;
415 urb->interval = period;
416 urb->transfer_flags = urb_flags;
417 urb->complete = sg_complete;
418 urb->context = io;
419 urb->sg = sg;
420
421 if (use_sg) {
422 /* There is no single transfer buffer */
423 urb->transfer_buffer = NULL;
424 urb->num_sgs = nents;
425
426 /* A length of zero means transfer the whole sg list */
427 len = length;
428 if (len == 0) {
429 struct scatterlist *sg2;
430 int j;
431
432 for_each_sg(sg, sg2, nents, j)
433 len += sg2->length;
434 }
435 } else {
436 /*
437 * Some systems can't use DMA; they use PIO instead.
438 * For their sakes, transfer_buffer is set whenever
439 * possible.
440 */
441 if (!PageHighMem(sg_page(sg)))
442 urb->transfer_buffer = sg_virt(sg);
443 else
444 urb->transfer_buffer = NULL;
445
446 len = sg->length;
447 if (length) {
448 len = min_t(size_t, len, length);
449 length -= len;
450 if (length == 0)
451 io->entries = i + 1;
452 }
453 }
454 urb->transfer_buffer_length = len;
455 }
456 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
457
458 /* transaction state */
459 io->count = io->entries;
460 io->status = 0;
461 io->bytes = 0;
462 init_completion(&io->complete);
463 return 0;
464
465nomem:
466 sg_clean(io);
467 return -ENOMEM;
468}
469EXPORT_SYMBOL_GPL(usb_sg_init);
470
471/**
472 * usb_sg_wait - synchronously execute scatter/gather request
473 * @io: request block handle, as initialized with usb_sg_init().
474 * some fields become accessible when this call returns.
475 * Context: !in_interrupt ()
476 *
477 * This function blocks until the specified I/O operation completes. It
478 * leverages the grouping of the related I/O requests to get good transfer
479 * rates, by queueing the requests. At higher speeds, such queuing can
480 * significantly improve USB throughput.
481 *
482 * There are three kinds of completion for this function.
483 *
484 * (1) success, where io->status is zero. The number of io->bytes
485 * transferred is as requested.
486 * (2) error, where io->status is a negative errno value. The number
487 * of io->bytes transferred before the error is usually less
488 * than requested, and can be nonzero.
489 * (3) cancellation, a type of error with status -ECONNRESET that
490 * is initiated by usb_sg_cancel().
491 *
492 * When this function returns, all memory allocated through usb_sg_init() or
493 * this call will have been freed. The request block parameter may still be
494 * passed to usb_sg_cancel(), or it may be freed. It could also be
495 * reinitialized and then reused.
496 *
497 * Data Transfer Rates:
498 *
499 * Bulk transfers are valid for full or high speed endpoints.
500 * The best full speed data rate is 19 packets of 64 bytes each
501 * per frame, or 1216 bytes per millisecond.
502 * The best high speed data rate is 13 packets of 512 bytes each
503 * per microframe, or 52 KBytes per millisecond.
504 *
505 * The reason to use interrupt transfers through this API would most likely
506 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507 * could be transferred. That capability is less useful for low or full
508 * speed interrupt endpoints, which allow at most one packet per millisecond,
509 * of at most 8 or 64 bytes (respectively).
510 *
511 * It is not necessary to call this function to reserve bandwidth for devices
512 * under an xHCI host controller, as the bandwidth is reserved when the
513 * configuration or interface alt setting is selected.
514 */
515void usb_sg_wait(struct usb_sg_request *io)
516{
517 int i;
518 int entries = io->entries;
519
520 /* queue the urbs. */
521 spin_lock_irq(&io->lock);
522 i = 0;
523 while (i < entries && !io->status) {
524 int retval;
525
526 io->urbs[i]->dev = io->dev;
527 spin_unlock_irq(&io->lock);
528
529 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
530
531 switch (retval) {
532 /* maybe we retrying will recover */
533 case -ENXIO: /* hc didn't queue this one */
534 case -EAGAIN:
535 case -ENOMEM:
536 retval = 0;
537 yield();
538 break;
539
540 /* no error? continue immediately.
541 *
542 * NOTE: to work better with UHCI (4K I/O buffer may
543 * need 3K of TDs) it may be good to limit how many
544 * URBs are queued at once; N milliseconds?
545 */
546 case 0:
547 ++i;
548 cpu_relax();
549 break;
550
551 /* fail any uncompleted urbs */
552 default:
553 io->urbs[i]->status = retval;
554 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 __func__, retval);
556 usb_sg_cancel(io);
557 }
558 spin_lock_irq(&io->lock);
559 if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 io->status = retval;
561 }
562 io->count -= entries - i;
563 if (io->count == 0)
564 complete(&io->complete);
565 spin_unlock_irq(&io->lock);
566
567 /* OK, yes, this could be packaged as non-blocking.
568 * So could the submit loop above ... but it's easier to
569 * solve neither problem than to solve both!
570 */
571 wait_for_completion(&io->complete);
572
573 sg_clean(io);
574}
575EXPORT_SYMBOL_GPL(usb_sg_wait);
576
577/**
578 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579 * @io: request block, initialized with usb_sg_init()
580 *
581 * This stops a request after it has been started by usb_sg_wait().
582 * It can also prevents one initialized by usb_sg_init() from starting,
583 * so that call just frees resources allocated to the request.
584 */
585void usb_sg_cancel(struct usb_sg_request *io)
586{
587 unsigned long flags;
588 int i, retval;
589
590 spin_lock_irqsave(&io->lock, flags);
591 if (io->status) {
592 spin_unlock_irqrestore(&io->lock, flags);
593 return;
594 }
595 /* shut everything down */
596 io->status = -ECONNRESET;
597 spin_unlock_irqrestore(&io->lock, flags);
598
599 for (i = io->entries - 1; i >= 0; --i) {
600 usb_block_urb(io->urbs[i]);
601
602 retval = usb_unlink_urb(io->urbs[i]);
603 if (retval != -EINPROGRESS
604 && retval != -ENODEV
605 && retval != -EBUSY
606 && retval != -EIDRM)
607 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
608 __func__, retval);
609 }
610}
611EXPORT_SYMBOL_GPL(usb_sg_cancel);
612
613/*-------------------------------------------------------------------*/
614
615/**
616 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
617 * @dev: the device whose descriptor is being retrieved
618 * @type: the descriptor type (USB_DT_*)
619 * @index: the number of the descriptor
620 * @buf: where to put the descriptor
621 * @size: how big is "buf"?
622 * Context: !in_interrupt ()
623 *
624 * Gets a USB descriptor. Convenience functions exist to simplify
625 * getting some types of descriptors. Use
626 * usb_get_string() or usb_string() for USB_DT_STRING.
627 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
628 * are part of the device structure.
629 * In addition to a number of USB-standard descriptors, some
630 * devices also use class-specific or vendor-specific descriptors.
631 *
632 * This call is synchronous, and may not be used in an interrupt context.
633 *
634 * Return: The number of bytes received on success, or else the status code
635 * returned by the underlying usb_control_msg() call.
636 */
637int usb_get_descriptor(struct usb_device *dev, unsigned char type,
638 unsigned char index, void *buf, int size)
639{
640 int i;
641 int result;
642
643 memset(buf, 0, size); /* Make sure we parse really received data */
644
645 for (i = 0; i < 3; ++i) {
646 /* retry on length 0 or error; some devices are flakey */
647 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
648 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
649 (type << 8) + index, 0, buf, size,
650 USB_CTRL_GET_TIMEOUT);
651 if (result <= 0 && result != -ETIMEDOUT)
652 continue;
653 if (result > 1 && ((u8 *)buf)[1] != type) {
654 result = -ENODATA;
655 continue;
656 }
657 break;
658 }
659 return result;
660}
661EXPORT_SYMBOL_GPL(usb_get_descriptor);
662
663/**
664 * usb_get_string - gets a string descriptor
665 * @dev: the device whose string descriptor is being retrieved
666 * @langid: code for language chosen (from string descriptor zero)
667 * @index: the number of the descriptor
668 * @buf: where to put the string
669 * @size: how big is "buf"?
670 * Context: !in_interrupt ()
671 *
672 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
673 * in little-endian byte order).
674 * The usb_string() function will often be a convenient way to turn
675 * these strings into kernel-printable form.
676 *
677 * Strings may be referenced in device, configuration, interface, or other
678 * descriptors, and could also be used in vendor-specific ways.
679 *
680 * This call is synchronous, and may not be used in an interrupt context.
681 *
682 * Return: The number of bytes received on success, or else the status code
683 * returned by the underlying usb_control_msg() call.
684 */
685static int usb_get_string(struct usb_device *dev, unsigned short langid,
686 unsigned char index, void *buf, int size)
687{
688 int i;
689 int result;
690
691 for (i = 0; i < 3; ++i) {
692 /* retry on length 0 or stall; some devices are flakey */
693 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
694 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
695 (USB_DT_STRING << 8) + index, langid, buf, size,
696 USB_CTRL_GET_TIMEOUT);
697 if (result == 0 || result == -EPIPE)
698 continue;
699 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
700 result = -ENODATA;
701 continue;
702 }
703 break;
704 }
705 return result;
706}
707
708static void usb_try_string_workarounds(unsigned char *buf, int *length)
709{
710 int newlength, oldlength = *length;
711
712 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
713 if (!isprint(buf[newlength]) || buf[newlength + 1])
714 break;
715
716 if (newlength > 2) {
717 buf[0] = newlength;
718 *length = newlength;
719 }
720}
721
722static int usb_string_sub(struct usb_device *dev, unsigned int langid,
723 unsigned int index, unsigned char *buf)
724{
725 int rc;
726
727 /* Try to read the string descriptor by asking for the maximum
728 * possible number of bytes */
729 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
730 rc = -EIO;
731 else
732 rc = usb_get_string(dev, langid, index, buf, 255);
733
734 /* If that failed try to read the descriptor length, then
735 * ask for just that many bytes */
736 if (rc < 2) {
737 rc = usb_get_string(dev, langid, index, buf, 2);
738 if (rc == 2)
739 rc = usb_get_string(dev, langid, index, buf, buf[0]);
740 }
741
742 if (rc >= 2) {
743 if (!buf[0] && !buf[1])
744 usb_try_string_workarounds(buf, &rc);
745
746 /* There might be extra junk at the end of the descriptor */
747 if (buf[0] < rc)
748 rc = buf[0];
749
750 rc = rc - (rc & 1); /* force a multiple of two */
751 }
752
753 if (rc < 2)
754 rc = (rc < 0 ? rc : -EINVAL);
755
756 return rc;
757}
758
759static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
760{
761 int err;
762
763 if (dev->have_langid)
764 return 0;
765
766 if (dev->string_langid < 0)
767 return -EPIPE;
768
769 err = usb_string_sub(dev, 0, 0, tbuf);
770
771 /* If the string was reported but is malformed, default to english
772 * (0x0409) */
773 if (err == -ENODATA || (err > 0 && err < 4)) {
774 dev->string_langid = 0x0409;
775 dev->have_langid = 1;
776 dev_err(&dev->dev,
777 "language id specifier not provided by device, defaulting to English\n");
778 return 0;
779 }
780
781 /* In case of all other errors, we assume the device is not able to
782 * deal with strings at all. Set string_langid to -1 in order to
783 * prevent any string to be retrieved from the device */
784 if (err < 0) {
785 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
786 err);
787 dev->string_langid = -1;
788 return -EPIPE;
789 }
790
791 /* always use the first langid listed */
792 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
793 dev->have_langid = 1;
794 dev_dbg(&dev->dev, "default language 0x%04x\n",
795 dev->string_langid);
796 return 0;
797}
798
799/**
800 * usb_string - returns UTF-8 version of a string descriptor
801 * @dev: the device whose string descriptor is being retrieved
802 * @index: the number of the descriptor
803 * @buf: where to put the string
804 * @size: how big is "buf"?
805 * Context: !in_interrupt ()
806 *
807 * This converts the UTF-16LE encoded strings returned by devices, from
808 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
809 * that are more usable in most kernel contexts. Note that this function
810 * chooses strings in the first language supported by the device.
811 *
812 * This call is synchronous, and may not be used in an interrupt context.
813 *
814 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
815 */
816int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
817{
818 unsigned char *tbuf;
819 int err;
820
821 if (dev->state == USB_STATE_SUSPENDED)
822 return -EHOSTUNREACH;
823 if (size <= 0 || !buf)
824 return -EINVAL;
825 buf[0] = 0;
826 if (index <= 0 || index >= 256)
827 return -EINVAL;
828 tbuf = kmalloc(256, GFP_NOIO);
829 if (!tbuf)
830 return -ENOMEM;
831
832 err = usb_get_langid(dev, tbuf);
833 if (err < 0)
834 goto errout;
835
836 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
837 if (err < 0)
838 goto errout;
839
840 size--; /* leave room for trailing NULL char in output buffer */
841 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
842 UTF16_LITTLE_ENDIAN, buf, size);
843 buf[err] = 0;
844
845 if (tbuf[1] != USB_DT_STRING)
846 dev_dbg(&dev->dev,
847 "wrong descriptor type %02x for string %d (\"%s\")\n",
848 tbuf[1], index, buf);
849
850 errout:
851 kfree(tbuf);
852 return err;
853}
854EXPORT_SYMBOL_GPL(usb_string);
855
856/* one UTF-8-encoded 16-bit character has at most three bytes */
857#define MAX_USB_STRING_SIZE (127 * 3 + 1)
858
859/**
860 * usb_cache_string - read a string descriptor and cache it for later use
861 * @udev: the device whose string descriptor is being read
862 * @index: the descriptor index
863 *
864 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
865 * or %NULL if the index is 0 or the string could not be read.
866 */
867char *usb_cache_string(struct usb_device *udev, int index)
868{
869 char *buf;
870 char *smallbuf = NULL;
871 int len;
872
873 if (index <= 0)
874 return NULL;
875
876 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
877 if (buf) {
878 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
879 if (len > 0) {
880 smallbuf = kmalloc(++len, GFP_NOIO);
881 if (!smallbuf)
882 return buf;
883 memcpy(smallbuf, buf, len);
884 }
885 kfree(buf);
886 }
887 return smallbuf;
888}
889
890/*
891 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
892 * @dev: the device whose device descriptor is being updated
893 * @size: how much of the descriptor to read
894 * Context: !in_interrupt ()
895 *
896 * Updates the copy of the device descriptor stored in the device structure,
897 * which dedicates space for this purpose.
898 *
899 * Not exported, only for use by the core. If drivers really want to read
900 * the device descriptor directly, they can call usb_get_descriptor() with
901 * type = USB_DT_DEVICE and index = 0.
902 *
903 * This call is synchronous, and may not be used in an interrupt context.
904 *
905 * Return: The number of bytes received on success, or else the status code
906 * returned by the underlying usb_control_msg() call.
907 */
908int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
909{
910 struct usb_device_descriptor *desc;
911 int ret;
912
913 if (size > sizeof(*desc))
914 return -EINVAL;
915 desc = kmalloc(sizeof(*desc), GFP_NOIO);
916 if (!desc)
917 return -ENOMEM;
918
919 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
920 if (ret >= 0)
921 memcpy(&dev->descriptor, desc, size);
922 kfree(desc);
923 return ret;
924}
925
926/*
927 * usb_set_isoch_delay - informs the device of the packet transmit delay
928 * @dev: the device whose delay is to be informed
929 * Context: !in_interrupt()
930 *
931 * Since this is an optional request, we don't bother if it fails.
932 */
933int usb_set_isoch_delay(struct usb_device *dev)
934{
935 /* skip hub devices */
936 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
937 return 0;
938
939 /* skip non-SS/non-SSP devices */
940 if (dev->speed < USB_SPEED_SUPER)
941 return 0;
942
943 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
944 USB_REQ_SET_ISOCH_DELAY,
945 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
946 dev->hub_delay, 0, NULL, 0,
947 USB_CTRL_SET_TIMEOUT);
948}
949
950/**
951 * usb_get_status - issues a GET_STATUS call
952 * @dev: the device whose status is being checked
953 * @recip: USB_RECIP_*; for device, interface, or endpoint
954 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
955 * @target: zero (for device), else interface or endpoint number
956 * @data: pointer to two bytes of bitmap data
957 * Context: !in_interrupt ()
958 *
959 * Returns device, interface, or endpoint status. Normally only of
960 * interest to see if the device is self powered, or has enabled the
961 * remote wakeup facility; or whether a bulk or interrupt endpoint
962 * is halted ("stalled").
963 *
964 * Bits in these status bitmaps are set using the SET_FEATURE request,
965 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
966 * function should be used to clear halt ("stall") status.
967 *
968 * This call is synchronous, and may not be used in an interrupt context.
969 *
970 * Returns 0 and the status value in *@data (in host byte order) on success,
971 * or else the status code from the underlying usb_control_msg() call.
972 */
973int usb_get_status(struct usb_device *dev, int recip, int type, int target,
974 void *data)
975{
976 int ret;
977 void *status;
978 int length;
979
980 switch (type) {
981 case USB_STATUS_TYPE_STANDARD:
982 length = 2;
983 break;
984 case USB_STATUS_TYPE_PTM:
985 if (recip != USB_RECIP_DEVICE)
986 return -EINVAL;
987
988 length = 4;
989 break;
990 default:
991 return -EINVAL;
992 }
993
994 status = kmalloc(length, GFP_KERNEL);
995 if (!status)
996 return -ENOMEM;
997
998 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
999 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1000 target, status, length, USB_CTRL_GET_TIMEOUT);
1001
1002 switch (ret) {
1003 case 4:
1004 if (type != USB_STATUS_TYPE_PTM) {
1005 ret = -EIO;
1006 break;
1007 }
1008
1009 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1010 ret = 0;
1011 break;
1012 case 2:
1013 if (type != USB_STATUS_TYPE_STANDARD) {
1014 ret = -EIO;
1015 break;
1016 }
1017
1018 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1019 ret = 0;
1020 break;
1021 default:
1022 ret = -EIO;
1023 }
1024
1025 kfree(status);
1026 return ret;
1027}
1028EXPORT_SYMBOL_GPL(usb_get_status);
1029
1030/**
1031 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1032 * @dev: device whose endpoint is halted
1033 * @pipe: endpoint "pipe" being cleared
1034 * Context: !in_interrupt ()
1035 *
1036 * This is used to clear halt conditions for bulk and interrupt endpoints,
1037 * as reported by URB completion status. Endpoints that are halted are
1038 * sometimes referred to as being "stalled". Such endpoints are unable
1039 * to transmit or receive data until the halt status is cleared. Any URBs
1040 * queued for such an endpoint should normally be unlinked by the driver
1041 * before clearing the halt condition, as described in sections 5.7.5
1042 * and 5.8.5 of the USB 2.0 spec.
1043 *
1044 * Note that control and isochronous endpoints don't halt, although control
1045 * endpoints report "protocol stall" (for unsupported requests) using the
1046 * same status code used to report a true stall.
1047 *
1048 * This call is synchronous, and may not be used in an interrupt context.
1049 *
1050 * Return: Zero on success, or else the status code returned by the
1051 * underlying usb_control_msg() call.
1052 */
1053int usb_clear_halt(struct usb_device *dev, int pipe)
1054{
1055 int result;
1056 int endp = usb_pipeendpoint(pipe);
1057
1058 if (usb_pipein(pipe))
1059 endp |= USB_DIR_IN;
1060
1061 /* we don't care if it wasn't halted first. in fact some devices
1062 * (like some ibmcam model 1 units) seem to expect hosts to make
1063 * this request for iso endpoints, which can't halt!
1064 */
1065 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1066 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1067 USB_ENDPOINT_HALT, endp, NULL, 0,
1068 USB_CTRL_SET_TIMEOUT);
1069
1070 /* don't un-halt or force to DATA0 except on success */
1071 if (result < 0)
1072 return result;
1073
1074 /* NOTE: seems like Microsoft and Apple don't bother verifying
1075 * the clear "took", so some devices could lock up if you check...
1076 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1077 *
1078 * NOTE: make sure the logic here doesn't diverge much from
1079 * the copy in usb-storage, for as long as we need two copies.
1080 */
1081
1082 usb_reset_endpoint(dev, endp);
1083
1084 return 0;
1085}
1086EXPORT_SYMBOL_GPL(usb_clear_halt);
1087
1088static int create_intf_ep_devs(struct usb_interface *intf)
1089{
1090 struct usb_device *udev = interface_to_usbdev(intf);
1091 struct usb_host_interface *alt = intf->cur_altsetting;
1092 int i;
1093
1094 if (intf->ep_devs_created || intf->unregistering)
1095 return 0;
1096
1097 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1098 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1099 intf->ep_devs_created = 1;
1100 return 0;
1101}
1102
1103static void remove_intf_ep_devs(struct usb_interface *intf)
1104{
1105 struct usb_host_interface *alt = intf->cur_altsetting;
1106 int i;
1107
1108 if (!intf->ep_devs_created)
1109 return;
1110
1111 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1112 usb_remove_ep_devs(&alt->endpoint[i]);
1113 intf->ep_devs_created = 0;
1114}
1115
1116/**
1117 * usb_disable_endpoint -- Disable an endpoint by address
1118 * @dev: the device whose endpoint is being disabled
1119 * @epaddr: the endpoint's address. Endpoint number for output,
1120 * endpoint number + USB_DIR_IN for input
1121 * @reset_hardware: flag to erase any endpoint state stored in the
1122 * controller hardware
1123 *
1124 * Disables the endpoint for URB submission and nukes all pending URBs.
1125 * If @reset_hardware is set then also deallocates hcd/hardware state
1126 * for the endpoint.
1127 */
1128void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1129 bool reset_hardware)
1130{
1131 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1132 struct usb_host_endpoint *ep;
1133
1134 if (!dev)
1135 return;
1136
1137 if (usb_endpoint_out(epaddr)) {
1138 ep = dev->ep_out[epnum];
1139 if (reset_hardware)
1140 dev->ep_out[epnum] = NULL;
1141 } else {
1142 ep = dev->ep_in[epnum];
1143 if (reset_hardware)
1144 dev->ep_in[epnum] = NULL;
1145 }
1146 if (ep) {
1147 ep->enabled = 0;
1148 usb_hcd_flush_endpoint(dev, ep);
1149 if (reset_hardware)
1150 usb_hcd_disable_endpoint(dev, ep);
1151 }
1152}
1153
1154/**
1155 * usb_reset_endpoint - Reset an endpoint's state.
1156 * @dev: the device whose endpoint is to be reset
1157 * @epaddr: the endpoint's address. Endpoint number for output,
1158 * endpoint number + USB_DIR_IN for input
1159 *
1160 * Resets any host-side endpoint state such as the toggle bit,
1161 * sequence number or current window.
1162 */
1163void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1164{
1165 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1166 struct usb_host_endpoint *ep;
1167
1168 if (usb_endpoint_out(epaddr))
1169 ep = dev->ep_out[epnum];
1170 else
1171 ep = dev->ep_in[epnum];
1172 if (ep)
1173 usb_hcd_reset_endpoint(dev, ep);
1174}
1175EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1176
1177
1178/**
1179 * usb_disable_interface -- Disable all endpoints for an interface
1180 * @dev: the device whose interface is being disabled
1181 * @intf: pointer to the interface descriptor
1182 * @reset_hardware: flag to erase any endpoint state stored in the
1183 * controller hardware
1184 *
1185 * Disables all the endpoints for the interface's current altsetting.
1186 */
1187void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1188 bool reset_hardware)
1189{
1190 struct usb_host_interface *alt = intf->cur_altsetting;
1191 int i;
1192
1193 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1194 usb_disable_endpoint(dev,
1195 alt->endpoint[i].desc.bEndpointAddress,
1196 reset_hardware);
1197 }
1198}
1199
1200/**
1201 * usb_disable_device - Disable all the endpoints for a USB device
1202 * @dev: the device whose endpoints are being disabled
1203 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1204 *
1205 * Disables all the device's endpoints, potentially including endpoint 0.
1206 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1207 * pending urbs) and usbcore state for the interfaces, so that usbcore
1208 * must usb_set_configuration() before any interfaces could be used.
1209 */
1210void usb_disable_device(struct usb_device *dev, int skip_ep0)
1211{
1212 int i;
1213 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1214
1215 /* getting rid of interfaces will disconnect
1216 * any drivers bound to them (a key side effect)
1217 */
1218 if (dev->actconfig) {
1219 /*
1220 * FIXME: In order to avoid self-deadlock involving the
1221 * bandwidth_mutex, we have to mark all the interfaces
1222 * before unregistering any of them.
1223 */
1224 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1225 dev->actconfig->interface[i]->unregistering = 1;
1226
1227 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1228 struct usb_interface *interface;
1229
1230 /* remove this interface if it has been registered */
1231 interface = dev->actconfig->interface[i];
1232 if (!device_is_registered(&interface->dev))
1233 continue;
1234 dev_dbg(&dev->dev, "unregistering interface %s\n",
1235 dev_name(&interface->dev));
1236 remove_intf_ep_devs(interface);
1237 device_del(&interface->dev);
1238 }
1239
1240 /* Now that the interfaces are unbound, nobody should
1241 * try to access them.
1242 */
1243 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1244 put_device(&dev->actconfig->interface[i]->dev);
1245 dev->actconfig->interface[i] = NULL;
1246 }
1247
1248 usb_disable_usb2_hardware_lpm(dev);
1249 usb_unlocked_disable_lpm(dev);
1250 usb_disable_ltm(dev);
1251
1252 dev->actconfig = NULL;
1253 if (dev->state == USB_STATE_CONFIGURED)
1254 usb_set_device_state(dev, USB_STATE_ADDRESS);
1255 }
1256
1257 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1258 skip_ep0 ? "non-ep0" : "all");
1259 if (hcd->driver->check_bandwidth) {
1260 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1261 for (i = skip_ep0; i < 16; ++i) {
1262 usb_disable_endpoint(dev, i, false);
1263 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1264 }
1265 /* Remove endpoints from the host controller internal state */
1266 mutex_lock(hcd->bandwidth_mutex);
1267 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1268 mutex_unlock(hcd->bandwidth_mutex);
1269 /* Second pass: remove endpoint pointers */
1270 }
1271 for (i = skip_ep0; i < 16; ++i) {
1272 usb_disable_endpoint(dev, i, true);
1273 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1274 }
1275}
1276
1277/**
1278 * usb_enable_endpoint - Enable an endpoint for USB communications
1279 * @dev: the device whose interface is being enabled
1280 * @ep: the endpoint
1281 * @reset_ep: flag to reset the endpoint state
1282 *
1283 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1284 * For control endpoints, both the input and output sides are handled.
1285 */
1286void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1287 bool reset_ep)
1288{
1289 int epnum = usb_endpoint_num(&ep->desc);
1290 int is_out = usb_endpoint_dir_out(&ep->desc);
1291 int is_control = usb_endpoint_xfer_control(&ep->desc);
1292
1293 if (reset_ep)
1294 usb_hcd_reset_endpoint(dev, ep);
1295 if (is_out || is_control)
1296 dev->ep_out[epnum] = ep;
1297 if (!is_out || is_control)
1298 dev->ep_in[epnum] = ep;
1299 ep->enabled = 1;
1300}
1301
1302/**
1303 * usb_enable_interface - Enable all the endpoints for an interface
1304 * @dev: the device whose interface is being enabled
1305 * @intf: pointer to the interface descriptor
1306 * @reset_eps: flag to reset the endpoints' state
1307 *
1308 * Enables all the endpoints for the interface's current altsetting.
1309 */
1310void usb_enable_interface(struct usb_device *dev,
1311 struct usb_interface *intf, bool reset_eps)
1312{
1313 struct usb_host_interface *alt = intf->cur_altsetting;
1314 int i;
1315
1316 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1317 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1318}
1319
1320/**
1321 * usb_set_interface - Makes a particular alternate setting be current
1322 * @dev: the device whose interface is being updated
1323 * @interface: the interface being updated
1324 * @alternate: the setting being chosen.
1325 * Context: !in_interrupt ()
1326 *
1327 * This is used to enable data transfers on interfaces that may not
1328 * be enabled by default. Not all devices support such configurability.
1329 * Only the driver bound to an interface may change its setting.
1330 *
1331 * Within any given configuration, each interface may have several
1332 * alternative settings. These are often used to control levels of
1333 * bandwidth consumption. For example, the default setting for a high
1334 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1335 * while interrupt transfers of up to 3KBytes per microframe are legal.
1336 * Also, isochronous endpoints may never be part of an
1337 * interface's default setting. To access such bandwidth, alternate
1338 * interface settings must be made current.
1339 *
1340 * Note that in the Linux USB subsystem, bandwidth associated with
1341 * an endpoint in a given alternate setting is not reserved until an URB
1342 * is submitted that needs that bandwidth. Some other operating systems
1343 * allocate bandwidth early, when a configuration is chosen.
1344 *
1345 * xHCI reserves bandwidth and configures the alternate setting in
1346 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1347 * may be disabled. Drivers cannot rely on any particular alternate
1348 * setting being in effect after a failure.
1349 *
1350 * This call is synchronous, and may not be used in an interrupt context.
1351 * Also, drivers must not change altsettings while urbs are scheduled for
1352 * endpoints in that interface; all such urbs must first be completed
1353 * (perhaps forced by unlinking).
1354 *
1355 * Return: Zero on success, or else the status code returned by the
1356 * underlying usb_control_msg() call.
1357 */
1358int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1359{
1360 struct usb_interface *iface;
1361 struct usb_host_interface *alt;
1362 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1363 int i, ret, manual = 0;
1364 unsigned int epaddr;
1365 unsigned int pipe;
1366
1367 if (dev->state == USB_STATE_SUSPENDED)
1368 return -EHOSTUNREACH;
1369
1370 iface = usb_ifnum_to_if(dev, interface);
1371 if (!iface) {
1372 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1373 interface);
1374 return -EINVAL;
1375 }
1376 if (iface->unregistering)
1377 return -ENODEV;
1378
1379 alt = usb_altnum_to_altsetting(iface, alternate);
1380 if (!alt) {
1381 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1382 alternate);
1383 return -EINVAL;
1384 }
1385 /*
1386 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1387 * including freeing dropped endpoint ring buffers.
1388 * Make sure the interface endpoints are flushed before that
1389 */
1390 usb_disable_interface(dev, iface, false);
1391
1392 /* Make sure we have enough bandwidth for this alternate interface.
1393 * Remove the current alt setting and add the new alt setting.
1394 */
1395 mutex_lock(hcd->bandwidth_mutex);
1396 /* Disable LPM, and re-enable it once the new alt setting is installed,
1397 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1398 */
1399 if (usb_disable_lpm(dev)) {
1400 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1401 mutex_unlock(hcd->bandwidth_mutex);
1402 return -ENOMEM;
1403 }
1404 /* Changing alt-setting also frees any allocated streams */
1405 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1406 iface->cur_altsetting->endpoint[i].streams = 0;
1407
1408 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1409 if (ret < 0) {
1410 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1411 alternate);
1412 usb_enable_lpm(dev);
1413 mutex_unlock(hcd->bandwidth_mutex);
1414 return ret;
1415 }
1416
1417 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1418 ret = -EPIPE;
1419 else
1420 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1421 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1422 alternate, interface, NULL, 0, 5000);
1423
1424 /* 9.4.10 says devices don't need this and are free to STALL the
1425 * request if the interface only has one alternate setting.
1426 */
1427 if (ret == -EPIPE && iface->num_altsetting == 1) {
1428 dev_dbg(&dev->dev,
1429 "manual set_interface for iface %d, alt %d\n",
1430 interface, alternate);
1431 manual = 1;
1432 } else if (ret < 0) {
1433 /* Re-instate the old alt setting */
1434 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1435 usb_enable_lpm(dev);
1436 mutex_unlock(hcd->bandwidth_mutex);
1437 return ret;
1438 }
1439 mutex_unlock(hcd->bandwidth_mutex);
1440
1441 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1442 * when they implement async or easily-killable versions of this or
1443 * other "should-be-internal" functions (like clear_halt).
1444 * should hcd+usbcore postprocess control requests?
1445 */
1446
1447 /* prevent submissions using previous endpoint settings */
1448 if (iface->cur_altsetting != alt) {
1449 remove_intf_ep_devs(iface);
1450 usb_remove_sysfs_intf_files(iface);
1451 }
1452 usb_disable_interface(dev, iface, true);
1453
1454 iface->cur_altsetting = alt;
1455
1456 /* Now that the interface is installed, re-enable LPM. */
1457 usb_unlocked_enable_lpm(dev);
1458
1459 /* If the interface only has one altsetting and the device didn't
1460 * accept the request, we attempt to carry out the equivalent action
1461 * by manually clearing the HALT feature for each endpoint in the
1462 * new altsetting.
1463 */
1464 if (manual) {
1465 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1466 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1467 pipe = __create_pipe(dev,
1468 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1469 (usb_endpoint_out(epaddr) ?
1470 USB_DIR_OUT : USB_DIR_IN);
1471
1472 usb_clear_halt(dev, pipe);
1473 }
1474 }
1475
1476 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1477 *
1478 * Note:
1479 * Despite EP0 is always present in all interfaces/AS, the list of
1480 * endpoints from the descriptor does not contain EP0. Due to its
1481 * omnipresence one might expect EP0 being considered "affected" by
1482 * any SetInterface request and hence assume toggles need to be reset.
1483 * However, EP0 toggles are re-synced for every individual transfer
1484 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1485 * (Likewise, EP0 never "halts" on well designed devices.)
1486 */
1487 usb_enable_interface(dev, iface, true);
1488 if (device_is_registered(&iface->dev)) {
1489 usb_create_sysfs_intf_files(iface);
1490 create_intf_ep_devs(iface);
1491 }
1492 return 0;
1493}
1494EXPORT_SYMBOL_GPL(usb_set_interface);
1495
1496/**
1497 * usb_reset_configuration - lightweight device reset
1498 * @dev: the device whose configuration is being reset
1499 *
1500 * This issues a standard SET_CONFIGURATION request to the device using
1501 * the current configuration. The effect is to reset most USB-related
1502 * state in the device, including interface altsettings (reset to zero),
1503 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1504 * endpoints). Other usbcore state is unchanged, including bindings of
1505 * usb device drivers to interfaces.
1506 *
1507 * Because this affects multiple interfaces, avoid using this with composite
1508 * (multi-interface) devices. Instead, the driver for each interface may
1509 * use usb_set_interface() on the interfaces it claims. Be careful though;
1510 * some devices don't support the SET_INTERFACE request, and others won't
1511 * reset all the interface state (notably endpoint state). Resetting the whole
1512 * configuration would affect other drivers' interfaces.
1513 *
1514 * The caller must own the device lock.
1515 *
1516 * Return: Zero on success, else a negative error code.
1517 */
1518int usb_reset_configuration(struct usb_device *dev)
1519{
1520 int i, retval;
1521 struct usb_host_config *config;
1522 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1523
1524 if (dev->state == USB_STATE_SUSPENDED)
1525 return -EHOSTUNREACH;
1526
1527 /* caller must have locked the device and must own
1528 * the usb bus readlock (so driver bindings are stable);
1529 * calls during probe() are fine
1530 */
1531
1532 for (i = 1; i < 16; ++i) {
1533 usb_disable_endpoint(dev, i, true);
1534 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1535 }
1536
1537 config = dev->actconfig;
1538 retval = 0;
1539 mutex_lock(hcd->bandwidth_mutex);
1540 /* Disable LPM, and re-enable it once the configuration is reset, so
1541 * that the xHCI driver can recalculate the U1/U2 timeouts.
1542 */
1543 if (usb_disable_lpm(dev)) {
1544 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1545 mutex_unlock(hcd->bandwidth_mutex);
1546 return -ENOMEM;
1547 }
1548 /* Make sure we have enough bandwidth for each alternate setting 0 */
1549 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1550 struct usb_interface *intf = config->interface[i];
1551 struct usb_host_interface *alt;
1552
1553 alt = usb_altnum_to_altsetting(intf, 0);
1554 if (!alt)
1555 alt = &intf->altsetting[0];
1556 if (alt != intf->cur_altsetting)
1557 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1558 intf->cur_altsetting, alt);
1559 if (retval < 0)
1560 break;
1561 }
1562 /* If not, reinstate the old alternate settings */
1563 if (retval < 0) {
1564reset_old_alts:
1565 for (i--; i >= 0; i--) {
1566 struct usb_interface *intf = config->interface[i];
1567 struct usb_host_interface *alt;
1568
1569 alt = usb_altnum_to_altsetting(intf, 0);
1570 if (!alt)
1571 alt = &intf->altsetting[0];
1572 if (alt != intf->cur_altsetting)
1573 usb_hcd_alloc_bandwidth(dev, NULL,
1574 alt, intf->cur_altsetting);
1575 }
1576 usb_enable_lpm(dev);
1577 mutex_unlock(hcd->bandwidth_mutex);
1578 return retval;
1579 }
1580 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1581 USB_REQ_SET_CONFIGURATION, 0,
1582 config->desc.bConfigurationValue, 0,
1583 NULL, 0, USB_CTRL_SET_TIMEOUT);
1584 if (retval < 0)
1585 goto reset_old_alts;
1586 mutex_unlock(hcd->bandwidth_mutex);
1587
1588 /* re-init hc/hcd interface/endpoint state */
1589 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1590 struct usb_interface *intf = config->interface[i];
1591 struct usb_host_interface *alt;
1592
1593 alt = usb_altnum_to_altsetting(intf, 0);
1594
1595 /* No altsetting 0? We'll assume the first altsetting.
1596 * We could use a GetInterface call, but if a device is
1597 * so non-compliant that it doesn't have altsetting 0
1598 * then I wouldn't trust its reply anyway.
1599 */
1600 if (!alt)
1601 alt = &intf->altsetting[0];
1602
1603 if (alt != intf->cur_altsetting) {
1604 remove_intf_ep_devs(intf);
1605 usb_remove_sysfs_intf_files(intf);
1606 }
1607 intf->cur_altsetting = alt;
1608 usb_enable_interface(dev, intf, true);
1609 if (device_is_registered(&intf->dev)) {
1610 usb_create_sysfs_intf_files(intf);
1611 create_intf_ep_devs(intf);
1612 }
1613 }
1614 /* Now that the interfaces are installed, re-enable LPM. */
1615 usb_unlocked_enable_lpm(dev);
1616 return 0;
1617}
1618EXPORT_SYMBOL_GPL(usb_reset_configuration);
1619
1620static void usb_release_interface(struct device *dev)
1621{
1622 struct usb_interface *intf = to_usb_interface(dev);
1623 struct usb_interface_cache *intfc =
1624 altsetting_to_usb_interface_cache(intf->altsetting);
1625
1626 kref_put(&intfc->ref, usb_release_interface_cache);
1627 usb_put_dev(interface_to_usbdev(intf));
1628 of_node_put(dev->of_node);
1629 kfree(intf);
1630}
1631
1632/*
1633 * usb_deauthorize_interface - deauthorize an USB interface
1634 *
1635 * @intf: USB interface structure
1636 */
1637void usb_deauthorize_interface(struct usb_interface *intf)
1638{
1639 struct device *dev = &intf->dev;
1640
1641 device_lock(dev->parent);
1642
1643 if (intf->authorized) {
1644 device_lock(dev);
1645 intf->authorized = 0;
1646 device_unlock(dev);
1647
1648 usb_forced_unbind_intf(intf);
1649 }
1650
1651 device_unlock(dev->parent);
1652}
1653
1654/*
1655 * usb_authorize_interface - authorize an USB interface
1656 *
1657 * @intf: USB interface structure
1658 */
1659void usb_authorize_interface(struct usb_interface *intf)
1660{
1661 struct device *dev = &intf->dev;
1662
1663 if (!intf->authorized) {
1664 device_lock(dev);
1665 intf->authorized = 1; /* authorize interface */
1666 device_unlock(dev);
1667 }
1668}
1669
1670static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1671{
1672 struct usb_device *usb_dev;
1673 struct usb_interface *intf;
1674 struct usb_host_interface *alt;
1675
1676 intf = to_usb_interface(dev);
1677 usb_dev = interface_to_usbdev(intf);
1678 alt = intf->cur_altsetting;
1679
1680 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1681 alt->desc.bInterfaceClass,
1682 alt->desc.bInterfaceSubClass,
1683 alt->desc.bInterfaceProtocol))
1684 return -ENOMEM;
1685
1686 if (add_uevent_var(env,
1687 "MODALIAS=usb:"
1688 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1689 le16_to_cpu(usb_dev->descriptor.idVendor),
1690 le16_to_cpu(usb_dev->descriptor.idProduct),
1691 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1692 usb_dev->descriptor.bDeviceClass,
1693 usb_dev->descriptor.bDeviceSubClass,
1694 usb_dev->descriptor.bDeviceProtocol,
1695 alt->desc.bInterfaceClass,
1696 alt->desc.bInterfaceSubClass,
1697 alt->desc.bInterfaceProtocol,
1698 alt->desc.bInterfaceNumber))
1699 return -ENOMEM;
1700
1701 return 0;
1702}
1703
1704struct device_type usb_if_device_type = {
1705 .name = "usb_interface",
1706 .release = usb_release_interface,
1707 .uevent = usb_if_uevent,
1708};
1709
1710static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1711 struct usb_host_config *config,
1712 u8 inum)
1713{
1714 struct usb_interface_assoc_descriptor *retval = NULL;
1715 struct usb_interface_assoc_descriptor *intf_assoc;
1716 int first_intf;
1717 int last_intf;
1718 int i;
1719
1720 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1721 intf_assoc = config->intf_assoc[i];
1722 if (intf_assoc->bInterfaceCount == 0)
1723 continue;
1724
1725 first_intf = intf_assoc->bFirstInterface;
1726 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1727 if (inum >= first_intf && inum <= last_intf) {
1728 if (!retval)
1729 retval = intf_assoc;
1730 else
1731 dev_err(&dev->dev, "Interface #%d referenced"
1732 " by multiple IADs\n", inum);
1733 }
1734 }
1735
1736 return retval;
1737}
1738
1739
1740/*
1741 * Internal function to queue a device reset
1742 * See usb_queue_reset_device() for more details
1743 */
1744static void __usb_queue_reset_device(struct work_struct *ws)
1745{
1746 int rc;
1747 struct usb_interface *iface =
1748 container_of(ws, struct usb_interface, reset_ws);
1749 struct usb_device *udev = interface_to_usbdev(iface);
1750
1751 rc = usb_lock_device_for_reset(udev, iface);
1752 if (rc >= 0) {
1753 usb_reset_device(udev);
1754 usb_unlock_device(udev);
1755 }
1756 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1757}
1758
1759
1760/*
1761 * usb_set_configuration - Makes a particular device setting be current
1762 * @dev: the device whose configuration is being updated
1763 * @configuration: the configuration being chosen.
1764 * Context: !in_interrupt(), caller owns the device lock
1765 *
1766 * This is used to enable non-default device modes. Not all devices
1767 * use this kind of configurability; many devices only have one
1768 * configuration.
1769 *
1770 * @configuration is the value of the configuration to be installed.
1771 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1772 * must be non-zero; a value of zero indicates that the device in
1773 * unconfigured. However some devices erroneously use 0 as one of their
1774 * configuration values. To help manage such devices, this routine will
1775 * accept @configuration = -1 as indicating the device should be put in
1776 * an unconfigured state.
1777 *
1778 * USB device configurations may affect Linux interoperability,
1779 * power consumption and the functionality available. For example,
1780 * the default configuration is limited to using 100mA of bus power,
1781 * so that when certain device functionality requires more power,
1782 * and the device is bus powered, that functionality should be in some
1783 * non-default device configuration. Other device modes may also be
1784 * reflected as configuration options, such as whether two ISDN
1785 * channels are available independently; and choosing between open
1786 * standard device protocols (like CDC) or proprietary ones.
1787 *
1788 * Note that a non-authorized device (dev->authorized == 0) will only
1789 * be put in unconfigured mode.
1790 *
1791 * Note that USB has an additional level of device configurability,
1792 * associated with interfaces. That configurability is accessed using
1793 * usb_set_interface().
1794 *
1795 * This call is synchronous. The calling context must be able to sleep,
1796 * must own the device lock, and must not hold the driver model's USB
1797 * bus mutex; usb interface driver probe() methods cannot use this routine.
1798 *
1799 * Returns zero on success, or else the status code returned by the
1800 * underlying call that failed. On successful completion, each interface
1801 * in the original device configuration has been destroyed, and each one
1802 * in the new configuration has been probed by all relevant usb device
1803 * drivers currently known to the kernel.
1804 */
1805int usb_set_configuration(struct usb_device *dev, int configuration)
1806{
1807 int i, ret;
1808 struct usb_host_config *cp = NULL;
1809 struct usb_interface **new_interfaces = NULL;
1810 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1811 int n, nintf;
1812
1813 if (dev->authorized == 0 || configuration == -1)
1814 configuration = 0;
1815 else {
1816 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1817 if (dev->config[i].desc.bConfigurationValue ==
1818 configuration) {
1819 cp = &dev->config[i];
1820 break;
1821 }
1822 }
1823 }
1824 if ((!cp && configuration != 0))
1825 return -EINVAL;
1826
1827 /* The USB spec says configuration 0 means unconfigured.
1828 * But if a device includes a configuration numbered 0,
1829 * we will accept it as a correctly configured state.
1830 * Use -1 if you really want to unconfigure the device.
1831 */
1832 if (cp && configuration == 0)
1833 dev_warn(&dev->dev, "config 0 descriptor??\n");
1834
1835 /* Allocate memory for new interfaces before doing anything else,
1836 * so that if we run out then nothing will have changed. */
1837 n = nintf = 0;
1838 if (cp) {
1839 nintf = cp->desc.bNumInterfaces;
1840 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1841 GFP_NOIO);
1842 if (!new_interfaces)
1843 return -ENOMEM;
1844
1845 for (; n < nintf; ++n) {
1846 new_interfaces[n] = kzalloc(
1847 sizeof(struct usb_interface),
1848 GFP_NOIO);
1849 if (!new_interfaces[n]) {
1850 ret = -ENOMEM;
1851free_interfaces:
1852 while (--n >= 0)
1853 kfree(new_interfaces[n]);
1854 kfree(new_interfaces);
1855 return ret;
1856 }
1857 }
1858
1859 i = dev->bus_mA - usb_get_max_power(dev, cp);
1860 if (i < 0)
1861 dev_warn(&dev->dev, "new config #%d exceeds power "
1862 "limit by %dmA\n",
1863 configuration, -i);
1864 }
1865
1866 /* Wake up the device so we can send it the Set-Config request */
1867 ret = usb_autoresume_device(dev);
1868 if (ret)
1869 goto free_interfaces;
1870
1871 /* if it's already configured, clear out old state first.
1872 * getting rid of old interfaces means unbinding their drivers.
1873 */
1874 if (dev->state != USB_STATE_ADDRESS)
1875 usb_disable_device(dev, 1); /* Skip ep0 */
1876
1877 /* Get rid of pending async Set-Config requests for this device */
1878 cancel_async_set_config(dev);
1879
1880 /* Make sure we have bandwidth (and available HCD resources) for this
1881 * configuration. Remove endpoints from the schedule if we're dropping
1882 * this configuration to set configuration 0. After this point, the
1883 * host controller will not allow submissions to dropped endpoints. If
1884 * this call fails, the device state is unchanged.
1885 */
1886 mutex_lock(hcd->bandwidth_mutex);
1887 /* Disable LPM, and re-enable it once the new configuration is
1888 * installed, so that the xHCI driver can recalculate the U1/U2
1889 * timeouts.
1890 */
1891 if (dev->actconfig && usb_disable_lpm(dev)) {
1892 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1893 mutex_unlock(hcd->bandwidth_mutex);
1894 ret = -ENOMEM;
1895 goto free_interfaces;
1896 }
1897 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1898 if (ret < 0) {
1899 if (dev->actconfig)
1900 usb_enable_lpm(dev);
1901 mutex_unlock(hcd->bandwidth_mutex);
1902 usb_autosuspend_device(dev);
1903 goto free_interfaces;
1904 }
1905
1906 /*
1907 * Initialize the new interface structures and the
1908 * hc/hcd/usbcore interface/endpoint state.
1909 */
1910 for (i = 0; i < nintf; ++i) {
1911 struct usb_interface_cache *intfc;
1912 struct usb_interface *intf;
1913 struct usb_host_interface *alt;
1914 u8 ifnum;
1915
1916 cp->interface[i] = intf = new_interfaces[i];
1917 intfc = cp->intf_cache[i];
1918 intf->altsetting = intfc->altsetting;
1919 intf->num_altsetting = intfc->num_altsetting;
1920 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1921 kref_get(&intfc->ref);
1922
1923 alt = usb_altnum_to_altsetting(intf, 0);
1924
1925 /* No altsetting 0? We'll assume the first altsetting.
1926 * We could use a GetInterface call, but if a device is
1927 * so non-compliant that it doesn't have altsetting 0
1928 * then I wouldn't trust its reply anyway.
1929 */
1930 if (!alt)
1931 alt = &intf->altsetting[0];
1932
1933 ifnum = alt->desc.bInterfaceNumber;
1934 intf->intf_assoc = find_iad(dev, cp, ifnum);
1935 intf->cur_altsetting = alt;
1936 usb_enable_interface(dev, intf, true);
1937 intf->dev.parent = &dev->dev;
1938 if (usb_of_has_combined_node(dev)) {
1939 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1940 } else {
1941 intf->dev.of_node = usb_of_get_interface_node(dev,
1942 configuration, ifnum);
1943 }
1944 intf->dev.driver = NULL;
1945 intf->dev.bus = &usb_bus_type;
1946 intf->dev.type = &usb_if_device_type;
1947 intf->dev.groups = usb_interface_groups;
1948 /*
1949 * Please refer to usb_alloc_dev() to see why we set
1950 * dma_mask and dma_pfn_offset.
1951 */
1952 intf->dev.dma_mask = dev->dev.dma_mask;
1953 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1954 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1955 intf->minor = -1;
1956 device_initialize(&intf->dev);
1957 pm_runtime_no_callbacks(&intf->dev);
1958 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1959 dev->devpath, configuration, ifnum);
1960 usb_get_dev(dev);
1961 }
1962 kfree(new_interfaces);
1963
1964 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1965 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1966 NULL, 0, USB_CTRL_SET_TIMEOUT);
1967 if (ret < 0 && cp) {
1968 /*
1969 * All the old state is gone, so what else can we do?
1970 * The device is probably useless now anyway.
1971 */
1972 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1973 for (i = 0; i < nintf; ++i) {
1974 usb_disable_interface(dev, cp->interface[i], true);
1975 put_device(&cp->interface[i]->dev);
1976 cp->interface[i] = NULL;
1977 }
1978 cp = NULL;
1979 }
1980
1981 dev->actconfig = cp;
1982 mutex_unlock(hcd->bandwidth_mutex);
1983
1984 if (!cp) {
1985 usb_set_device_state(dev, USB_STATE_ADDRESS);
1986
1987 /* Leave LPM disabled while the device is unconfigured. */
1988 usb_autosuspend_device(dev);
1989 return ret;
1990 }
1991 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1992
1993 if (cp->string == NULL &&
1994 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1995 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1996
1997 /* Now that the interfaces are installed, re-enable LPM. */
1998 usb_unlocked_enable_lpm(dev);
1999 /* Enable LTM if it was turned off by usb_disable_device. */
2000 usb_enable_ltm(dev);
2001
2002 /* Now that all the interfaces are set up, register them
2003 * to trigger binding of drivers to interfaces. probe()
2004 * routines may install different altsettings and may
2005 * claim() any interfaces not yet bound. Many class drivers
2006 * need that: CDC, audio, video, etc.
2007 */
2008 for (i = 0; i < nintf; ++i) {
2009 struct usb_interface *intf = cp->interface[i];
2010
2011 if (intf->dev.of_node &&
2012 !of_device_is_available(intf->dev.of_node)) {
2013 dev_info(&dev->dev, "skipping disabled interface %d\n",
2014 intf->cur_altsetting->desc.bInterfaceNumber);
2015 continue;
2016 }
2017
2018 dev_dbg(&dev->dev,
2019 "adding %s (config #%d, interface %d)\n",
2020 dev_name(&intf->dev), configuration,
2021 intf->cur_altsetting->desc.bInterfaceNumber);
2022 device_enable_async_suspend(&intf->dev);
2023 ret = device_add(&intf->dev);
2024 if (ret != 0) {
2025 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2026 dev_name(&intf->dev), ret);
2027 continue;
2028 }
2029 create_intf_ep_devs(intf);
2030 }
2031
2032 usb_autosuspend_device(dev);
2033 return 0;
2034}
2035EXPORT_SYMBOL_GPL(usb_set_configuration);
2036
2037static LIST_HEAD(set_config_list);
2038static DEFINE_SPINLOCK(set_config_lock);
2039
2040struct set_config_request {
2041 struct usb_device *udev;
2042 int config;
2043 struct work_struct work;
2044 struct list_head node;
2045};
2046
2047/* Worker routine for usb_driver_set_configuration() */
2048static void driver_set_config_work(struct work_struct *work)
2049{
2050 struct set_config_request *req =
2051 container_of(work, struct set_config_request, work);
2052 struct usb_device *udev = req->udev;
2053
2054 usb_lock_device(udev);
2055 spin_lock(&set_config_lock);
2056 list_del(&req->node);
2057 spin_unlock(&set_config_lock);
2058
2059 if (req->config >= -1) /* Is req still valid? */
2060 usb_set_configuration(udev, req->config);
2061 usb_unlock_device(udev);
2062 usb_put_dev(udev);
2063 kfree(req);
2064}
2065
2066/* Cancel pending Set-Config requests for a device whose configuration
2067 * was just changed
2068 */
2069static void cancel_async_set_config(struct usb_device *udev)
2070{
2071 struct set_config_request *req;
2072
2073 spin_lock(&set_config_lock);
2074 list_for_each_entry(req, &set_config_list, node) {
2075 if (req->udev == udev)
2076 req->config = -999; /* Mark as cancelled */
2077 }
2078 spin_unlock(&set_config_lock);
2079}
2080
2081/**
2082 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2083 * @udev: the device whose configuration is being updated
2084 * @config: the configuration being chosen.
2085 * Context: In process context, must be able to sleep
2086 *
2087 * Device interface drivers are not allowed to change device configurations.
2088 * This is because changing configurations will destroy the interface the
2089 * driver is bound to and create new ones; it would be like a floppy-disk
2090 * driver telling the computer to replace the floppy-disk drive with a
2091 * tape drive!
2092 *
2093 * Still, in certain specialized circumstances the need may arise. This
2094 * routine gets around the normal restrictions by using a work thread to
2095 * submit the change-config request.
2096 *
2097 * Return: 0 if the request was successfully queued, error code otherwise.
2098 * The caller has no way to know whether the queued request will eventually
2099 * succeed.
2100 */
2101int usb_driver_set_configuration(struct usb_device *udev, int config)
2102{
2103 struct set_config_request *req;
2104
2105 req = kmalloc(sizeof(*req), GFP_KERNEL);
2106 if (!req)
2107 return -ENOMEM;
2108 req->udev = udev;
2109 req->config = config;
2110 INIT_WORK(&req->work, driver_set_config_work);
2111
2112 spin_lock(&set_config_lock);
2113 list_add(&req->node, &set_config_list);
2114 spin_unlock(&set_config_lock);
2115
2116 usb_get_dev(udev);
2117 schedule_work(&req->work);
2118 return 0;
2119}
2120EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2121
2122/**
2123 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2124 * @hdr: the place to put the results of the parsing
2125 * @intf: the interface for which parsing is requested
2126 * @buffer: pointer to the extra headers to be parsed
2127 * @buflen: length of the extra headers
2128 *
2129 * This evaluates the extra headers present in CDC devices which
2130 * bind the interfaces for data and control and provide details
2131 * about the capabilities of the device.
2132 *
2133 * Return: number of descriptors parsed or -EINVAL
2134 * if the header is contradictory beyond salvage
2135 */
2136
2137int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2138 struct usb_interface *intf,
2139 u8 *buffer,
2140 int buflen)
2141{
2142 /* duplicates are ignored */
2143 struct usb_cdc_union_desc *union_header = NULL;
2144
2145 /* duplicates are not tolerated */
2146 struct usb_cdc_header_desc *header = NULL;
2147 struct usb_cdc_ether_desc *ether = NULL;
2148 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2149 struct usb_cdc_mdlm_desc *desc = NULL;
2150
2151 unsigned int elength;
2152 int cnt = 0;
2153
2154 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2155 hdr->phonet_magic_present = false;
2156 while (buflen > 0) {
2157 elength = buffer[0];
2158 if (!elength) {
2159 dev_err(&intf->dev, "skipping garbage byte\n");
2160 elength = 1;
2161 goto next_desc;
2162 }
2163 if ((buflen < elength) || (elength < 3)) {
2164 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2165 break;
2166 }
2167 if (buffer[1] != USB_DT_CS_INTERFACE) {
2168 dev_err(&intf->dev, "skipping garbage\n");
2169 goto next_desc;
2170 }
2171
2172 switch (buffer[2]) {
2173 case USB_CDC_UNION_TYPE: /* we've found it */
2174 if (elength < sizeof(struct usb_cdc_union_desc))
2175 goto next_desc;
2176 if (union_header) {
2177 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2178 goto next_desc;
2179 }
2180 union_header = (struct usb_cdc_union_desc *)buffer;
2181 break;
2182 case USB_CDC_COUNTRY_TYPE:
2183 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2184 goto next_desc;
2185 hdr->usb_cdc_country_functional_desc =
2186 (struct usb_cdc_country_functional_desc *)buffer;
2187 break;
2188 case USB_CDC_HEADER_TYPE:
2189 if (elength != sizeof(struct usb_cdc_header_desc))
2190 goto next_desc;
2191 if (header)
2192 return -EINVAL;
2193 header = (struct usb_cdc_header_desc *)buffer;
2194 break;
2195 case USB_CDC_ACM_TYPE:
2196 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2197 goto next_desc;
2198 hdr->usb_cdc_acm_descriptor =
2199 (struct usb_cdc_acm_descriptor *)buffer;
2200 break;
2201 case USB_CDC_ETHERNET_TYPE:
2202 if (elength != sizeof(struct usb_cdc_ether_desc))
2203 goto next_desc;
2204 if (ether)
2205 return -EINVAL;
2206 ether = (struct usb_cdc_ether_desc *)buffer;
2207 break;
2208 case USB_CDC_CALL_MANAGEMENT_TYPE:
2209 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2210 goto next_desc;
2211 hdr->usb_cdc_call_mgmt_descriptor =
2212 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2213 break;
2214 case USB_CDC_DMM_TYPE:
2215 if (elength < sizeof(struct usb_cdc_dmm_desc))
2216 goto next_desc;
2217 hdr->usb_cdc_dmm_desc =
2218 (struct usb_cdc_dmm_desc *)buffer;
2219 break;
2220 case USB_CDC_MDLM_TYPE:
2221 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2222 goto next_desc;
2223 if (desc)
2224 return -EINVAL;
2225 desc = (struct usb_cdc_mdlm_desc *)buffer;
2226 break;
2227 case USB_CDC_MDLM_DETAIL_TYPE:
2228 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2229 goto next_desc;
2230 if (detail)
2231 return -EINVAL;
2232 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2233 break;
2234 case USB_CDC_NCM_TYPE:
2235 if (elength < sizeof(struct usb_cdc_ncm_desc))
2236 goto next_desc;
2237 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2238 break;
2239 case USB_CDC_MBIM_TYPE:
2240 if (elength < sizeof(struct usb_cdc_mbim_desc))
2241 goto next_desc;
2242
2243 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2244 break;
2245 case USB_CDC_MBIM_EXTENDED_TYPE:
2246 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2247 break;
2248 hdr->usb_cdc_mbim_extended_desc =
2249 (struct usb_cdc_mbim_extended_desc *)buffer;
2250 break;
2251 case CDC_PHONET_MAGIC_NUMBER:
2252 hdr->phonet_magic_present = true;
2253 break;
2254 default:
2255 /*
2256 * there are LOTS more CDC descriptors that
2257 * could legitimately be found here.
2258 */
2259 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2260 buffer[2], elength);
2261 goto next_desc;
2262 }
2263 cnt++;
2264next_desc:
2265 buflen -= elength;
2266 buffer += elength;
2267 }
2268 hdr->usb_cdc_union_desc = union_header;
2269 hdr->usb_cdc_header_desc = header;
2270 hdr->usb_cdc_mdlm_detail_desc = detail;
2271 hdr->usb_cdc_mdlm_desc = desc;
2272 hdr->usb_cdc_ether_desc = ether;
2273 return cnt;
2274}
2275
2276EXPORT_SYMBOL(cdc_parse_cdc_header);