Loading...
1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/nls.h>
14#include <linux/device.h>
15#include <linux/scatterlist.h>
16#include <linux/usb/quirks.h>
17#include <linux/usb/hcd.h> /* for usbcore internals */
18#include <asm/byteorder.h>
19
20#include "usb.h"
21
22static void cancel_async_set_config(struct usb_device *udev);
23
24struct api_context {
25 struct completion done;
26 int status;
27};
28
29static void usb_api_blocking_completion(struct urb *urb)
30{
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35}
36
37
38/*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45{
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77}
78
79/*-------------------------------------------------------------------*/
80/* returns status (negative) or length (positive) */
81static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85{
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102}
103
104/**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135{
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 /* dbg("usb_control_msg"); */
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156}
157EXPORT_SYMBOL_GPL(usb_control_msg);
158
159/**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187{
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189}
190EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192/**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225{
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs [i] || !io->urbs [i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs [i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY)
312 dev_err(&io->dev->dev,
313 "%s, unlink --> %d\n",
314 __func__, retval);
315 } else if (urb == io->urbs [i])
316 found = 1;
317 }
318 spin_lock(&io->lock);
319 }
320 urb->dev = NULL;
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value. This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
357int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 unsigned pipe, unsigned period, struct scatterlist *sg,
359 int nents, size_t length, gfp_t mem_flags)
360{
361 int i;
362 int urb_flags;
363 int use_sg;
364
365 if (!io || !dev || !sg
366 || usb_pipecontrol(pipe)
367 || usb_pipeisoc(pipe)
368 || nents <= 0)
369 return -EINVAL;
370
371 spin_lock_init(&io->lock);
372 io->dev = dev;
373 io->pipe = pipe;
374
375 if (dev->bus->sg_tablesize > 0) {
376 use_sg = true;
377 io->entries = 1;
378 } else {
379 use_sg = false;
380 io->entries = nents;
381 }
382
383 /* initialize all the urbs we'll use */
384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 if (!io->urbs)
386 goto nomem;
387
388 urb_flags = URB_NO_INTERRUPT;
389 if (usb_pipein(pipe))
390 urb_flags |= URB_SHORT_NOT_OK;
391
392 for_each_sg(sg, sg, io->entries, i) {
393 struct urb *urb;
394 unsigned len;
395
396 urb = usb_alloc_urb(0, mem_flags);
397 if (!urb) {
398 io->entries = i;
399 goto nomem;
400 }
401 io->urbs[i] = urb;
402
403 urb->dev = NULL;
404 urb->pipe = pipe;
405 urb->interval = period;
406 urb->transfer_flags = urb_flags;
407 urb->complete = sg_complete;
408 urb->context = io;
409 urb->sg = sg;
410
411 if (use_sg) {
412 /* There is no single transfer buffer */
413 urb->transfer_buffer = NULL;
414 urb->num_sgs = nents;
415
416 /* A length of zero means transfer the whole sg list */
417 len = length;
418 if (len == 0) {
419 struct scatterlist *sg2;
420 int j;
421
422 for_each_sg(sg, sg2, nents, j)
423 len += sg2->length;
424 }
425 } else {
426 /*
427 * Some systems can't use DMA; they use PIO instead.
428 * For their sakes, transfer_buffer is set whenever
429 * possible.
430 */
431 if (!PageHighMem(sg_page(sg)))
432 urb->transfer_buffer = sg_virt(sg);
433 else
434 urb->transfer_buffer = NULL;
435
436 len = sg->length;
437 if (length) {
438 len = min_t(unsigned, len, length);
439 length -= len;
440 if (length == 0)
441 io->entries = i + 1;
442 }
443 }
444 urb->transfer_buffer_length = len;
445 }
446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448 /* transaction state */
449 io->count = io->entries;
450 io->status = 0;
451 io->bytes = 0;
452 init_completion(&io->complete);
453 return 0;
454
455nomem:
456 sg_clean(io);
457 return -ENOMEM;
458}
459EXPORT_SYMBOL_GPL(usb_sg_init);
460
461/**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes. It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests. At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero. The number of io->bytes
474 * transferred is as requested.
475 * (2) error, where io->status is a negative errno value. The number
476 * of io->bytes transferred before the error is usually less
477 * than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 * is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed. The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed. It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred. That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
504void usb_sg_wait(struct usb_sg_request *io)
505{
506 int i;
507 int entries = io->entries;
508
509 /* queue the urbs. */
510 spin_lock_irq(&io->lock);
511 i = 0;
512 while (i < entries && !io->status) {
513 int retval;
514
515 io->urbs[i]->dev = io->dev;
516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518 /* after we submit, let completions or cancelations fire;
519 * we handshake using io->status.
520 */
521 spin_unlock_irq(&io->lock);
522 switch (retval) {
523 /* maybe we retrying will recover */
524 case -ENXIO: /* hc didn't queue this one */
525 case -EAGAIN:
526 case -ENOMEM:
527 io->urbs[i]->dev = NULL;
528 retval = 0;
529 yield();
530 break;
531
532 /* no error? continue immediately.
533 *
534 * NOTE: to work better with UHCI (4K I/O buffer may
535 * need 3K of TDs) it may be good to limit how many
536 * URBs are queued at once; N milliseconds?
537 */
538 case 0:
539 ++i;
540 cpu_relax();
541 break;
542
543 /* fail any uncompleted urbs */
544 default:
545 io->urbs[i]->dev = NULL;
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567}
568EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570/**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
578void usb_sg_cancel(struct usb_sg_request *io)
579{
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs [i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs [i]);
596 if (retval != -EINPROGRESS && retval != -EBUSY)
597 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
598 __func__, retval);
599 }
600 spin_lock(&io->lock);
601 }
602 spin_unlock_irqrestore(&io->lock, flags);
603}
604EXPORT_SYMBOL_GPL(usb_sg_cancel);
605
606/*-------------------------------------------------------------------*/
607
608/**
609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
610 * @dev: the device whose descriptor is being retrieved
611 * @type: the descriptor type (USB_DT_*)
612 * @index: the number of the descriptor
613 * @buf: where to put the descriptor
614 * @size: how big is "buf"?
615 * Context: !in_interrupt ()
616 *
617 * Gets a USB descriptor. Convenience functions exist to simplify
618 * getting some types of descriptors. Use
619 * usb_get_string() or usb_string() for USB_DT_STRING.
620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
621 * are part of the device structure.
622 * In addition to a number of USB-standard descriptors, some
623 * devices also use class-specific or vendor-specific descriptors.
624 *
625 * This call is synchronous, and may not be used in an interrupt context.
626 *
627 * Returns the number of bytes received on success, or else the status code
628 * returned by the underlying usb_control_msg() call.
629 */
630int usb_get_descriptor(struct usb_device *dev, unsigned char type,
631 unsigned char index, void *buf, int size)
632{
633 int i;
634 int result;
635
636 memset(buf, 0, size); /* Make sure we parse really received data */
637
638 for (i = 0; i < 3; ++i) {
639 /* retry on length 0 or error; some devices are flakey */
640 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
641 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
642 (type << 8) + index, 0, buf, size,
643 USB_CTRL_GET_TIMEOUT);
644 if (result <= 0 && result != -ETIMEDOUT)
645 continue;
646 if (result > 1 && ((u8 *)buf)[1] != type) {
647 result = -ENODATA;
648 continue;
649 }
650 break;
651 }
652 return result;
653}
654EXPORT_SYMBOL_GPL(usb_get_descriptor);
655
656/**
657 * usb_get_string - gets a string descriptor
658 * @dev: the device whose string descriptor is being retrieved
659 * @langid: code for language chosen (from string descriptor zero)
660 * @index: the number of the descriptor
661 * @buf: where to put the string
662 * @size: how big is "buf"?
663 * Context: !in_interrupt ()
664 *
665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
666 * in little-endian byte order).
667 * The usb_string() function will often be a convenient way to turn
668 * these strings into kernel-printable form.
669 *
670 * Strings may be referenced in device, configuration, interface, or other
671 * descriptors, and could also be used in vendor-specific ways.
672 *
673 * This call is synchronous, and may not be used in an interrupt context.
674 *
675 * Returns the number of bytes received on success, or else the status code
676 * returned by the underlying usb_control_msg() call.
677 */
678static int usb_get_string(struct usb_device *dev, unsigned short langid,
679 unsigned char index, void *buf, int size)
680{
681 int i;
682 int result;
683
684 for (i = 0; i < 3; ++i) {
685 /* retry on length 0 or stall; some devices are flakey */
686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
688 (USB_DT_STRING << 8) + index, langid, buf, size,
689 USB_CTRL_GET_TIMEOUT);
690 if (result == 0 || result == -EPIPE)
691 continue;
692 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
693 result = -ENODATA;
694 continue;
695 }
696 break;
697 }
698 return result;
699}
700
701static void usb_try_string_workarounds(unsigned char *buf, int *length)
702{
703 int newlength, oldlength = *length;
704
705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
706 if (!isprint(buf[newlength]) || buf[newlength + 1])
707 break;
708
709 if (newlength > 2) {
710 buf[0] = newlength;
711 *length = newlength;
712 }
713}
714
715static int usb_string_sub(struct usb_device *dev, unsigned int langid,
716 unsigned int index, unsigned char *buf)
717{
718 int rc;
719
720 /* Try to read the string descriptor by asking for the maximum
721 * possible number of bytes */
722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
723 rc = -EIO;
724 else
725 rc = usb_get_string(dev, langid, index, buf, 255);
726
727 /* If that failed try to read the descriptor length, then
728 * ask for just that many bytes */
729 if (rc < 2) {
730 rc = usb_get_string(dev, langid, index, buf, 2);
731 if (rc == 2)
732 rc = usb_get_string(dev, langid, index, buf, buf[0]);
733 }
734
735 if (rc >= 2) {
736 if (!buf[0] && !buf[1])
737 usb_try_string_workarounds(buf, &rc);
738
739 /* There might be extra junk at the end of the descriptor */
740 if (buf[0] < rc)
741 rc = buf[0];
742
743 rc = rc - (rc & 1); /* force a multiple of two */
744 }
745
746 if (rc < 2)
747 rc = (rc < 0 ? rc : -EINVAL);
748
749 return rc;
750}
751
752static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
753{
754 int err;
755
756 if (dev->have_langid)
757 return 0;
758
759 if (dev->string_langid < 0)
760 return -EPIPE;
761
762 err = usb_string_sub(dev, 0, 0, tbuf);
763
764 /* If the string was reported but is malformed, default to english
765 * (0x0409) */
766 if (err == -ENODATA || (err > 0 && err < 4)) {
767 dev->string_langid = 0x0409;
768 dev->have_langid = 1;
769 dev_err(&dev->dev,
770 "string descriptor 0 malformed (err = %d), "
771 "defaulting to 0x%04x\n",
772 err, dev->string_langid);
773 return 0;
774 }
775
776 /* In case of all other errors, we assume the device is not able to
777 * deal with strings at all. Set string_langid to -1 in order to
778 * prevent any string to be retrieved from the device */
779 if (err < 0) {
780 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
781 err);
782 dev->string_langid = -1;
783 return -EPIPE;
784 }
785
786 /* always use the first langid listed */
787 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788 dev->have_langid = 1;
789 dev_dbg(&dev->dev, "default language 0x%04x\n",
790 dev->string_langid);
791 return 0;
792}
793
794/**
795 * usb_string - returns UTF-8 version of a string descriptor
796 * @dev: the device whose string descriptor is being retrieved
797 * @index: the number of the descriptor
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 * Context: !in_interrupt ()
801 *
802 * This converts the UTF-16LE encoded strings returned by devices, from
803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804 * that are more usable in most kernel contexts. Note that this function
805 * chooses strings in the first language supported by the device.
806 *
807 * This call is synchronous, and may not be used in an interrupt context.
808 *
809 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
810 */
811int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812{
813 unsigned char *tbuf;
814 int err;
815
816 if (dev->state == USB_STATE_SUSPENDED)
817 return -EHOSTUNREACH;
818 if (size <= 0 || !buf || !index)
819 return -EINVAL;
820 buf[0] = 0;
821 tbuf = kmalloc(256, GFP_NOIO);
822 if (!tbuf)
823 return -ENOMEM;
824
825 err = usb_get_langid(dev, tbuf);
826 if (err < 0)
827 goto errout;
828
829 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830 if (err < 0)
831 goto errout;
832
833 size--; /* leave room for trailing NULL char in output buffer */
834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835 UTF16_LITTLE_ENDIAN, buf, size);
836 buf[err] = 0;
837
838 if (tbuf[1] != USB_DT_STRING)
839 dev_dbg(&dev->dev,
840 "wrong descriptor type %02x for string %d (\"%s\")\n",
841 tbuf[1], index, buf);
842
843 errout:
844 kfree(tbuf);
845 return err;
846}
847EXPORT_SYMBOL_GPL(usb_string);
848
849/* one UTF-8-encoded 16-bit character has at most three bytes */
850#define MAX_USB_STRING_SIZE (127 * 3 + 1)
851
852/**
853 * usb_cache_string - read a string descriptor and cache it for later use
854 * @udev: the device whose string descriptor is being read
855 * @index: the descriptor index
856 *
857 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
858 * or NULL if the index is 0 or the string could not be read.
859 */
860char *usb_cache_string(struct usb_device *udev, int index)
861{
862 char *buf;
863 char *smallbuf = NULL;
864 int len;
865
866 if (index <= 0)
867 return NULL;
868
869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870 if (buf) {
871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872 if (len > 0) {
873 smallbuf = kmalloc(++len, GFP_NOIO);
874 if (!smallbuf)
875 return buf;
876 memcpy(smallbuf, buf, len);
877 }
878 kfree(buf);
879 }
880 return smallbuf;
881}
882
883/*
884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885 * @dev: the device whose device descriptor is being updated
886 * @size: how much of the descriptor to read
887 * Context: !in_interrupt ()
888 *
889 * Updates the copy of the device descriptor stored in the device structure,
890 * which dedicates space for this purpose.
891 *
892 * Not exported, only for use by the core. If drivers really want to read
893 * the device descriptor directly, they can call usb_get_descriptor() with
894 * type = USB_DT_DEVICE and index = 0.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Returns the number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
901int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902{
903 struct usb_device_descriptor *desc;
904 int ret;
905
906 if (size > sizeof(*desc))
907 return -EINVAL;
908 desc = kmalloc(sizeof(*desc), GFP_NOIO);
909 if (!desc)
910 return -ENOMEM;
911
912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913 if (ret >= 0)
914 memcpy(&dev->descriptor, desc, size);
915 kfree(desc);
916 return ret;
917}
918
919/**
920 * usb_get_status - issues a GET_STATUS call
921 * @dev: the device whose status is being checked
922 * @type: USB_RECIP_*; for device, interface, or endpoint
923 * @target: zero (for device), else interface or endpoint number
924 * @data: pointer to two bytes of bitmap data
925 * Context: !in_interrupt ()
926 *
927 * Returns device, interface, or endpoint status. Normally only of
928 * interest to see if the device is self powered, or has enabled the
929 * remote wakeup facility; or whether a bulk or interrupt endpoint
930 * is halted ("stalled").
931 *
932 * Bits in these status bitmaps are set using the SET_FEATURE request,
933 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
934 * function should be used to clear halt ("stall") status.
935 *
936 * This call is synchronous, and may not be used in an interrupt context.
937 *
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
940 */
941int usb_get_status(struct usb_device *dev, int type, int target, void *data)
942{
943 int ret;
944 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
945
946 if (!status)
947 return -ENOMEM;
948
949 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
950 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
951 sizeof(*status), USB_CTRL_GET_TIMEOUT);
952
953 *(u16 *)data = *status;
954 kfree(status);
955 return ret;
956}
957EXPORT_SYMBOL_GPL(usb_get_status);
958
959/**
960 * usb_clear_halt - tells device to clear endpoint halt/stall condition
961 * @dev: device whose endpoint is halted
962 * @pipe: endpoint "pipe" being cleared
963 * Context: !in_interrupt ()
964 *
965 * This is used to clear halt conditions for bulk and interrupt endpoints,
966 * as reported by URB completion status. Endpoints that are halted are
967 * sometimes referred to as being "stalled". Such endpoints are unable
968 * to transmit or receive data until the halt status is cleared. Any URBs
969 * queued for such an endpoint should normally be unlinked by the driver
970 * before clearing the halt condition, as described in sections 5.7.5
971 * and 5.8.5 of the USB 2.0 spec.
972 *
973 * Note that control and isochronous endpoints don't halt, although control
974 * endpoints report "protocol stall" (for unsupported requests) using the
975 * same status code used to report a true stall.
976 *
977 * This call is synchronous, and may not be used in an interrupt context.
978 *
979 * Returns zero on success, or else the status code returned by the
980 * underlying usb_control_msg() call.
981 */
982int usb_clear_halt(struct usb_device *dev, int pipe)
983{
984 int result;
985 int endp = usb_pipeendpoint(pipe);
986
987 if (usb_pipein(pipe))
988 endp |= USB_DIR_IN;
989
990 /* we don't care if it wasn't halted first. in fact some devices
991 * (like some ibmcam model 1 units) seem to expect hosts to make
992 * this request for iso endpoints, which can't halt!
993 */
994 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
995 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
996 USB_ENDPOINT_HALT, endp, NULL, 0,
997 USB_CTRL_SET_TIMEOUT);
998
999 /* don't un-halt or force to DATA0 except on success */
1000 if (result < 0)
1001 return result;
1002
1003 /* NOTE: seems like Microsoft and Apple don't bother verifying
1004 * the clear "took", so some devices could lock up if you check...
1005 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1006 *
1007 * NOTE: make sure the logic here doesn't diverge much from
1008 * the copy in usb-storage, for as long as we need two copies.
1009 */
1010
1011 usb_reset_endpoint(dev, endp);
1012
1013 return 0;
1014}
1015EXPORT_SYMBOL_GPL(usb_clear_halt);
1016
1017static int create_intf_ep_devs(struct usb_interface *intf)
1018{
1019 struct usb_device *udev = interface_to_usbdev(intf);
1020 struct usb_host_interface *alt = intf->cur_altsetting;
1021 int i;
1022
1023 if (intf->ep_devs_created || intf->unregistering)
1024 return 0;
1025
1026 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1027 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1028 intf->ep_devs_created = 1;
1029 return 0;
1030}
1031
1032static void remove_intf_ep_devs(struct usb_interface *intf)
1033{
1034 struct usb_host_interface *alt = intf->cur_altsetting;
1035 int i;
1036
1037 if (!intf->ep_devs_created)
1038 return;
1039
1040 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1041 usb_remove_ep_devs(&alt->endpoint[i]);
1042 intf->ep_devs_created = 0;
1043}
1044
1045/**
1046 * usb_disable_endpoint -- Disable an endpoint by address
1047 * @dev: the device whose endpoint is being disabled
1048 * @epaddr: the endpoint's address. Endpoint number for output,
1049 * endpoint number + USB_DIR_IN for input
1050 * @reset_hardware: flag to erase any endpoint state stored in the
1051 * controller hardware
1052 *
1053 * Disables the endpoint for URB submission and nukes all pending URBs.
1054 * If @reset_hardware is set then also deallocates hcd/hardware state
1055 * for the endpoint.
1056 */
1057void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1058 bool reset_hardware)
1059{
1060 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1061 struct usb_host_endpoint *ep;
1062
1063 if (!dev)
1064 return;
1065
1066 if (usb_endpoint_out(epaddr)) {
1067 ep = dev->ep_out[epnum];
1068 if (reset_hardware)
1069 dev->ep_out[epnum] = NULL;
1070 } else {
1071 ep = dev->ep_in[epnum];
1072 if (reset_hardware)
1073 dev->ep_in[epnum] = NULL;
1074 }
1075 if (ep) {
1076 ep->enabled = 0;
1077 usb_hcd_flush_endpoint(dev, ep);
1078 if (reset_hardware)
1079 usb_hcd_disable_endpoint(dev, ep);
1080 }
1081}
1082
1083/**
1084 * usb_reset_endpoint - Reset an endpoint's state.
1085 * @dev: the device whose endpoint is to be reset
1086 * @epaddr: the endpoint's address. Endpoint number for output,
1087 * endpoint number + USB_DIR_IN for input
1088 *
1089 * Resets any host-side endpoint state such as the toggle bit,
1090 * sequence number or current window.
1091 */
1092void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1093{
1094 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095 struct usb_host_endpoint *ep;
1096
1097 if (usb_endpoint_out(epaddr))
1098 ep = dev->ep_out[epnum];
1099 else
1100 ep = dev->ep_in[epnum];
1101 if (ep)
1102 usb_hcd_reset_endpoint(dev, ep);
1103}
1104EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1105
1106
1107/**
1108 * usb_disable_interface -- Disable all endpoints for an interface
1109 * @dev: the device whose interface is being disabled
1110 * @intf: pointer to the interface descriptor
1111 * @reset_hardware: flag to erase any endpoint state stored in the
1112 * controller hardware
1113 *
1114 * Disables all the endpoints for the interface's current altsetting.
1115 */
1116void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1117 bool reset_hardware)
1118{
1119 struct usb_host_interface *alt = intf->cur_altsetting;
1120 int i;
1121
1122 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1123 usb_disable_endpoint(dev,
1124 alt->endpoint[i].desc.bEndpointAddress,
1125 reset_hardware);
1126 }
1127}
1128
1129/**
1130 * usb_disable_device - Disable all the endpoints for a USB device
1131 * @dev: the device whose endpoints are being disabled
1132 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1133 *
1134 * Disables all the device's endpoints, potentially including endpoint 0.
1135 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1136 * pending urbs) and usbcore state for the interfaces, so that usbcore
1137 * must usb_set_configuration() before any interfaces could be used.
1138 *
1139 * Must be called with hcd->bandwidth_mutex held.
1140 */
1141void usb_disable_device(struct usb_device *dev, int skip_ep0)
1142{
1143 int i;
1144 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1145
1146 /* getting rid of interfaces will disconnect
1147 * any drivers bound to them (a key side effect)
1148 */
1149 if (dev->actconfig) {
1150 /*
1151 * FIXME: In order to avoid self-deadlock involving the
1152 * bandwidth_mutex, we have to mark all the interfaces
1153 * before unregistering any of them.
1154 */
1155 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1156 dev->actconfig->interface[i]->unregistering = 1;
1157
1158 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1159 struct usb_interface *interface;
1160
1161 /* remove this interface if it has been registered */
1162 interface = dev->actconfig->interface[i];
1163 if (!device_is_registered(&interface->dev))
1164 continue;
1165 dev_dbg(&dev->dev, "unregistering interface %s\n",
1166 dev_name(&interface->dev));
1167 remove_intf_ep_devs(interface);
1168 device_del(&interface->dev);
1169 }
1170
1171 /* Now that the interfaces are unbound, nobody should
1172 * try to access them.
1173 */
1174 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1175 put_device(&dev->actconfig->interface[i]->dev);
1176 dev->actconfig->interface[i] = NULL;
1177 }
1178 dev->actconfig = NULL;
1179 if (dev->state == USB_STATE_CONFIGURED)
1180 usb_set_device_state(dev, USB_STATE_ADDRESS);
1181 }
1182
1183 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1184 skip_ep0 ? "non-ep0" : "all");
1185 if (hcd->driver->check_bandwidth) {
1186 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1187 for (i = skip_ep0; i < 16; ++i) {
1188 usb_disable_endpoint(dev, i, false);
1189 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1190 }
1191 /* Remove endpoints from the host controller internal state */
1192 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193 /* Second pass: remove endpoint pointers */
1194 }
1195 for (i = skip_ep0; i < 16; ++i) {
1196 usb_disable_endpoint(dev, i, true);
1197 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1198 }
1199}
1200
1201/**
1202 * usb_enable_endpoint - Enable an endpoint for USB communications
1203 * @dev: the device whose interface is being enabled
1204 * @ep: the endpoint
1205 * @reset_ep: flag to reset the endpoint state
1206 *
1207 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1208 * For control endpoints, both the input and output sides are handled.
1209 */
1210void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1211 bool reset_ep)
1212{
1213 int epnum = usb_endpoint_num(&ep->desc);
1214 int is_out = usb_endpoint_dir_out(&ep->desc);
1215 int is_control = usb_endpoint_xfer_control(&ep->desc);
1216
1217 if (reset_ep)
1218 usb_hcd_reset_endpoint(dev, ep);
1219 if (is_out || is_control)
1220 dev->ep_out[epnum] = ep;
1221 if (!is_out || is_control)
1222 dev->ep_in[epnum] = ep;
1223 ep->enabled = 1;
1224}
1225
1226/**
1227 * usb_enable_interface - Enable all the endpoints for an interface
1228 * @dev: the device whose interface is being enabled
1229 * @intf: pointer to the interface descriptor
1230 * @reset_eps: flag to reset the endpoints' state
1231 *
1232 * Enables all the endpoints for the interface's current altsetting.
1233 */
1234void usb_enable_interface(struct usb_device *dev,
1235 struct usb_interface *intf, bool reset_eps)
1236{
1237 struct usb_host_interface *alt = intf->cur_altsetting;
1238 int i;
1239
1240 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1241 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1242}
1243
1244/**
1245 * usb_set_interface - Makes a particular alternate setting be current
1246 * @dev: the device whose interface is being updated
1247 * @interface: the interface being updated
1248 * @alternate: the setting being chosen.
1249 * Context: !in_interrupt ()
1250 *
1251 * This is used to enable data transfers on interfaces that may not
1252 * be enabled by default. Not all devices support such configurability.
1253 * Only the driver bound to an interface may change its setting.
1254 *
1255 * Within any given configuration, each interface may have several
1256 * alternative settings. These are often used to control levels of
1257 * bandwidth consumption. For example, the default setting for a high
1258 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1259 * while interrupt transfers of up to 3KBytes per microframe are legal.
1260 * Also, isochronous endpoints may never be part of an
1261 * interface's default setting. To access such bandwidth, alternate
1262 * interface settings must be made current.
1263 *
1264 * Note that in the Linux USB subsystem, bandwidth associated with
1265 * an endpoint in a given alternate setting is not reserved until an URB
1266 * is submitted that needs that bandwidth. Some other operating systems
1267 * allocate bandwidth early, when a configuration is chosen.
1268 *
1269 * This call is synchronous, and may not be used in an interrupt context.
1270 * Also, drivers must not change altsettings while urbs are scheduled for
1271 * endpoints in that interface; all such urbs must first be completed
1272 * (perhaps forced by unlinking).
1273 *
1274 * Returns zero on success, or else the status code returned by the
1275 * underlying usb_control_msg() call.
1276 */
1277int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1278{
1279 struct usb_interface *iface;
1280 struct usb_host_interface *alt;
1281 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1282 int ret;
1283 int manual = 0;
1284 unsigned int epaddr;
1285 unsigned int pipe;
1286
1287 if (dev->state == USB_STATE_SUSPENDED)
1288 return -EHOSTUNREACH;
1289
1290 iface = usb_ifnum_to_if(dev, interface);
1291 if (!iface) {
1292 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1293 interface);
1294 return -EINVAL;
1295 }
1296 if (iface->unregistering)
1297 return -ENODEV;
1298
1299 alt = usb_altnum_to_altsetting(iface, alternate);
1300 if (!alt) {
1301 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1302 alternate);
1303 return -EINVAL;
1304 }
1305
1306 /* Make sure we have enough bandwidth for this alternate interface.
1307 * Remove the current alt setting and add the new alt setting.
1308 */
1309 mutex_lock(hcd->bandwidth_mutex);
1310 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1311 if (ret < 0) {
1312 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1313 alternate);
1314 mutex_unlock(hcd->bandwidth_mutex);
1315 return ret;
1316 }
1317
1318 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1319 ret = -EPIPE;
1320 else
1321 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1322 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1323 alternate, interface, NULL, 0, 5000);
1324
1325 /* 9.4.10 says devices don't need this and are free to STALL the
1326 * request if the interface only has one alternate setting.
1327 */
1328 if (ret == -EPIPE && iface->num_altsetting == 1) {
1329 dev_dbg(&dev->dev,
1330 "manual set_interface for iface %d, alt %d\n",
1331 interface, alternate);
1332 manual = 1;
1333 } else if (ret < 0) {
1334 /* Re-instate the old alt setting */
1335 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1336 mutex_unlock(hcd->bandwidth_mutex);
1337 return ret;
1338 }
1339 mutex_unlock(hcd->bandwidth_mutex);
1340
1341 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1342 * when they implement async or easily-killable versions of this or
1343 * other "should-be-internal" functions (like clear_halt).
1344 * should hcd+usbcore postprocess control requests?
1345 */
1346
1347 /* prevent submissions using previous endpoint settings */
1348 if (iface->cur_altsetting != alt) {
1349 remove_intf_ep_devs(iface);
1350 usb_remove_sysfs_intf_files(iface);
1351 }
1352 usb_disable_interface(dev, iface, true);
1353
1354 iface->cur_altsetting = alt;
1355
1356 /* If the interface only has one altsetting and the device didn't
1357 * accept the request, we attempt to carry out the equivalent action
1358 * by manually clearing the HALT feature for each endpoint in the
1359 * new altsetting.
1360 */
1361 if (manual) {
1362 int i;
1363
1364 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1365 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1366 pipe = __create_pipe(dev,
1367 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1368 (usb_endpoint_out(epaddr) ?
1369 USB_DIR_OUT : USB_DIR_IN);
1370
1371 usb_clear_halt(dev, pipe);
1372 }
1373 }
1374
1375 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1376 *
1377 * Note:
1378 * Despite EP0 is always present in all interfaces/AS, the list of
1379 * endpoints from the descriptor does not contain EP0. Due to its
1380 * omnipresence one might expect EP0 being considered "affected" by
1381 * any SetInterface request and hence assume toggles need to be reset.
1382 * However, EP0 toggles are re-synced for every individual transfer
1383 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1384 * (Likewise, EP0 never "halts" on well designed devices.)
1385 */
1386 usb_enable_interface(dev, iface, true);
1387 if (device_is_registered(&iface->dev)) {
1388 usb_create_sysfs_intf_files(iface);
1389 create_intf_ep_devs(iface);
1390 }
1391 return 0;
1392}
1393EXPORT_SYMBOL_GPL(usb_set_interface);
1394
1395/**
1396 * usb_reset_configuration - lightweight device reset
1397 * @dev: the device whose configuration is being reset
1398 *
1399 * This issues a standard SET_CONFIGURATION request to the device using
1400 * the current configuration. The effect is to reset most USB-related
1401 * state in the device, including interface altsettings (reset to zero),
1402 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1403 * endpoints). Other usbcore state is unchanged, including bindings of
1404 * usb device drivers to interfaces.
1405 *
1406 * Because this affects multiple interfaces, avoid using this with composite
1407 * (multi-interface) devices. Instead, the driver for each interface may
1408 * use usb_set_interface() on the interfaces it claims. Be careful though;
1409 * some devices don't support the SET_INTERFACE request, and others won't
1410 * reset all the interface state (notably endpoint state). Resetting the whole
1411 * configuration would affect other drivers' interfaces.
1412 *
1413 * The caller must own the device lock.
1414 *
1415 * Returns zero on success, else a negative error code.
1416 */
1417int usb_reset_configuration(struct usb_device *dev)
1418{
1419 int i, retval;
1420 struct usb_host_config *config;
1421 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1422
1423 if (dev->state == USB_STATE_SUSPENDED)
1424 return -EHOSTUNREACH;
1425
1426 /* caller must have locked the device and must own
1427 * the usb bus readlock (so driver bindings are stable);
1428 * calls during probe() are fine
1429 */
1430
1431 for (i = 1; i < 16; ++i) {
1432 usb_disable_endpoint(dev, i, true);
1433 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1434 }
1435
1436 config = dev->actconfig;
1437 retval = 0;
1438 mutex_lock(hcd->bandwidth_mutex);
1439 /* Make sure we have enough bandwidth for each alternate setting 0 */
1440 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1441 struct usb_interface *intf = config->interface[i];
1442 struct usb_host_interface *alt;
1443
1444 alt = usb_altnum_to_altsetting(intf, 0);
1445 if (!alt)
1446 alt = &intf->altsetting[0];
1447 if (alt != intf->cur_altsetting)
1448 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1449 intf->cur_altsetting, alt);
1450 if (retval < 0)
1451 break;
1452 }
1453 /* If not, reinstate the old alternate settings */
1454 if (retval < 0) {
1455reset_old_alts:
1456 for (i--; i >= 0; i--) {
1457 struct usb_interface *intf = config->interface[i];
1458 struct usb_host_interface *alt;
1459
1460 alt = usb_altnum_to_altsetting(intf, 0);
1461 if (!alt)
1462 alt = &intf->altsetting[0];
1463 if (alt != intf->cur_altsetting)
1464 usb_hcd_alloc_bandwidth(dev, NULL,
1465 alt, intf->cur_altsetting);
1466 }
1467 mutex_unlock(hcd->bandwidth_mutex);
1468 return retval;
1469 }
1470 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1471 USB_REQ_SET_CONFIGURATION, 0,
1472 config->desc.bConfigurationValue, 0,
1473 NULL, 0, USB_CTRL_SET_TIMEOUT);
1474 if (retval < 0)
1475 goto reset_old_alts;
1476 mutex_unlock(hcd->bandwidth_mutex);
1477
1478 /* re-init hc/hcd interface/endpoint state */
1479 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1480 struct usb_interface *intf = config->interface[i];
1481 struct usb_host_interface *alt;
1482
1483 alt = usb_altnum_to_altsetting(intf, 0);
1484
1485 /* No altsetting 0? We'll assume the first altsetting.
1486 * We could use a GetInterface call, but if a device is
1487 * so non-compliant that it doesn't have altsetting 0
1488 * then I wouldn't trust its reply anyway.
1489 */
1490 if (!alt)
1491 alt = &intf->altsetting[0];
1492
1493 if (alt != intf->cur_altsetting) {
1494 remove_intf_ep_devs(intf);
1495 usb_remove_sysfs_intf_files(intf);
1496 }
1497 intf->cur_altsetting = alt;
1498 usb_enable_interface(dev, intf, true);
1499 if (device_is_registered(&intf->dev)) {
1500 usb_create_sysfs_intf_files(intf);
1501 create_intf_ep_devs(intf);
1502 }
1503 }
1504 return 0;
1505}
1506EXPORT_SYMBOL_GPL(usb_reset_configuration);
1507
1508static void usb_release_interface(struct device *dev)
1509{
1510 struct usb_interface *intf = to_usb_interface(dev);
1511 struct usb_interface_cache *intfc =
1512 altsetting_to_usb_interface_cache(intf->altsetting);
1513
1514 kref_put(&intfc->ref, usb_release_interface_cache);
1515 kfree(intf);
1516}
1517
1518#ifdef CONFIG_HOTPLUG
1519static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1520{
1521 struct usb_device *usb_dev;
1522 struct usb_interface *intf;
1523 struct usb_host_interface *alt;
1524
1525 intf = to_usb_interface(dev);
1526 usb_dev = interface_to_usbdev(intf);
1527 alt = intf->cur_altsetting;
1528
1529 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1530 alt->desc.bInterfaceClass,
1531 alt->desc.bInterfaceSubClass,
1532 alt->desc.bInterfaceProtocol))
1533 return -ENOMEM;
1534
1535 if (add_uevent_var(env,
1536 "MODALIAS=usb:"
1537 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1538 le16_to_cpu(usb_dev->descriptor.idVendor),
1539 le16_to_cpu(usb_dev->descriptor.idProduct),
1540 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1541 usb_dev->descriptor.bDeviceClass,
1542 usb_dev->descriptor.bDeviceSubClass,
1543 usb_dev->descriptor.bDeviceProtocol,
1544 alt->desc.bInterfaceClass,
1545 alt->desc.bInterfaceSubClass,
1546 alt->desc.bInterfaceProtocol))
1547 return -ENOMEM;
1548
1549 return 0;
1550}
1551
1552#else
1553
1554static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1555{
1556 return -ENODEV;
1557}
1558#endif /* CONFIG_HOTPLUG */
1559
1560struct device_type usb_if_device_type = {
1561 .name = "usb_interface",
1562 .release = usb_release_interface,
1563 .uevent = usb_if_uevent,
1564};
1565
1566static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1567 struct usb_host_config *config,
1568 u8 inum)
1569{
1570 struct usb_interface_assoc_descriptor *retval = NULL;
1571 struct usb_interface_assoc_descriptor *intf_assoc;
1572 int first_intf;
1573 int last_intf;
1574 int i;
1575
1576 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1577 intf_assoc = config->intf_assoc[i];
1578 if (intf_assoc->bInterfaceCount == 0)
1579 continue;
1580
1581 first_intf = intf_assoc->bFirstInterface;
1582 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1583 if (inum >= first_intf && inum <= last_intf) {
1584 if (!retval)
1585 retval = intf_assoc;
1586 else
1587 dev_err(&dev->dev, "Interface #%d referenced"
1588 " by multiple IADs\n", inum);
1589 }
1590 }
1591
1592 return retval;
1593}
1594
1595
1596/*
1597 * Internal function to queue a device reset
1598 *
1599 * This is initialized into the workstruct in 'struct
1600 * usb_device->reset_ws' that is launched by
1601 * message.c:usb_set_configuration() when initializing each 'struct
1602 * usb_interface'.
1603 *
1604 * It is safe to get the USB device without reference counts because
1605 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1606 * this function will be ran only if @iface is alive (and before
1607 * freeing it any scheduled instances of it will have been cancelled).
1608 *
1609 * We need to set a flag (usb_dev->reset_running) because when we call
1610 * the reset, the interfaces might be unbound. The current interface
1611 * cannot try to remove the queued work as it would cause a deadlock
1612 * (you cannot remove your work from within your executing
1613 * workqueue). This flag lets it know, so that
1614 * usb_cancel_queued_reset() doesn't try to do it.
1615 *
1616 * See usb_queue_reset_device() for more details
1617 */
1618static void __usb_queue_reset_device(struct work_struct *ws)
1619{
1620 int rc;
1621 struct usb_interface *iface =
1622 container_of(ws, struct usb_interface, reset_ws);
1623 struct usb_device *udev = interface_to_usbdev(iface);
1624
1625 rc = usb_lock_device_for_reset(udev, iface);
1626 if (rc >= 0) {
1627 iface->reset_running = 1;
1628 usb_reset_device(udev);
1629 iface->reset_running = 0;
1630 usb_unlock_device(udev);
1631 }
1632}
1633
1634
1635/*
1636 * usb_set_configuration - Makes a particular device setting be current
1637 * @dev: the device whose configuration is being updated
1638 * @configuration: the configuration being chosen.
1639 * Context: !in_interrupt(), caller owns the device lock
1640 *
1641 * This is used to enable non-default device modes. Not all devices
1642 * use this kind of configurability; many devices only have one
1643 * configuration.
1644 *
1645 * @configuration is the value of the configuration to be installed.
1646 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1647 * must be non-zero; a value of zero indicates that the device in
1648 * unconfigured. However some devices erroneously use 0 as one of their
1649 * configuration values. To help manage such devices, this routine will
1650 * accept @configuration = -1 as indicating the device should be put in
1651 * an unconfigured state.
1652 *
1653 * USB device configurations may affect Linux interoperability,
1654 * power consumption and the functionality available. For example,
1655 * the default configuration is limited to using 100mA of bus power,
1656 * so that when certain device functionality requires more power,
1657 * and the device is bus powered, that functionality should be in some
1658 * non-default device configuration. Other device modes may also be
1659 * reflected as configuration options, such as whether two ISDN
1660 * channels are available independently; and choosing between open
1661 * standard device protocols (like CDC) or proprietary ones.
1662 *
1663 * Note that a non-authorized device (dev->authorized == 0) will only
1664 * be put in unconfigured mode.
1665 *
1666 * Note that USB has an additional level of device configurability,
1667 * associated with interfaces. That configurability is accessed using
1668 * usb_set_interface().
1669 *
1670 * This call is synchronous. The calling context must be able to sleep,
1671 * must own the device lock, and must not hold the driver model's USB
1672 * bus mutex; usb interface driver probe() methods cannot use this routine.
1673 *
1674 * Returns zero on success, or else the status code returned by the
1675 * underlying call that failed. On successful completion, each interface
1676 * in the original device configuration has been destroyed, and each one
1677 * in the new configuration has been probed by all relevant usb device
1678 * drivers currently known to the kernel.
1679 */
1680int usb_set_configuration(struct usb_device *dev, int configuration)
1681{
1682 int i, ret;
1683 struct usb_host_config *cp = NULL;
1684 struct usb_interface **new_interfaces = NULL;
1685 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1686 int n, nintf;
1687
1688 if (dev->authorized == 0 || configuration == -1)
1689 configuration = 0;
1690 else {
1691 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1692 if (dev->config[i].desc.bConfigurationValue ==
1693 configuration) {
1694 cp = &dev->config[i];
1695 break;
1696 }
1697 }
1698 }
1699 if ((!cp && configuration != 0))
1700 return -EINVAL;
1701
1702 /* The USB spec says configuration 0 means unconfigured.
1703 * But if a device includes a configuration numbered 0,
1704 * we will accept it as a correctly configured state.
1705 * Use -1 if you really want to unconfigure the device.
1706 */
1707 if (cp && configuration == 0)
1708 dev_warn(&dev->dev, "config 0 descriptor??\n");
1709
1710 /* Allocate memory for new interfaces before doing anything else,
1711 * so that if we run out then nothing will have changed. */
1712 n = nintf = 0;
1713 if (cp) {
1714 nintf = cp->desc.bNumInterfaces;
1715 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1716 GFP_NOIO);
1717 if (!new_interfaces) {
1718 dev_err(&dev->dev, "Out of memory\n");
1719 return -ENOMEM;
1720 }
1721
1722 for (; n < nintf; ++n) {
1723 new_interfaces[n] = kzalloc(
1724 sizeof(struct usb_interface),
1725 GFP_NOIO);
1726 if (!new_interfaces[n]) {
1727 dev_err(&dev->dev, "Out of memory\n");
1728 ret = -ENOMEM;
1729free_interfaces:
1730 while (--n >= 0)
1731 kfree(new_interfaces[n]);
1732 kfree(new_interfaces);
1733 return ret;
1734 }
1735 }
1736
1737 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1738 if (i < 0)
1739 dev_warn(&dev->dev, "new config #%d exceeds power "
1740 "limit by %dmA\n",
1741 configuration, -i);
1742 }
1743
1744 /* Wake up the device so we can send it the Set-Config request */
1745 ret = usb_autoresume_device(dev);
1746 if (ret)
1747 goto free_interfaces;
1748
1749 /* if it's already configured, clear out old state first.
1750 * getting rid of old interfaces means unbinding their drivers.
1751 */
1752 mutex_lock(hcd->bandwidth_mutex);
1753 if (dev->state != USB_STATE_ADDRESS)
1754 usb_disable_device(dev, 1); /* Skip ep0 */
1755
1756 /* Get rid of pending async Set-Config requests for this device */
1757 cancel_async_set_config(dev);
1758
1759 /* Make sure we have bandwidth (and available HCD resources) for this
1760 * configuration. Remove endpoints from the schedule if we're dropping
1761 * this configuration to set configuration 0. After this point, the
1762 * host controller will not allow submissions to dropped endpoints. If
1763 * this call fails, the device state is unchanged.
1764 */
1765 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1766 if (ret < 0) {
1767 mutex_unlock(hcd->bandwidth_mutex);
1768 usb_autosuspend_device(dev);
1769 goto free_interfaces;
1770 }
1771
1772 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1773 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1774 NULL, 0, USB_CTRL_SET_TIMEOUT);
1775 if (ret < 0) {
1776 /* All the old state is gone, so what else can we do?
1777 * The device is probably useless now anyway.
1778 */
1779 cp = NULL;
1780 }
1781
1782 dev->actconfig = cp;
1783 if (!cp) {
1784 usb_set_device_state(dev, USB_STATE_ADDRESS);
1785 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1786 mutex_unlock(hcd->bandwidth_mutex);
1787 usb_autosuspend_device(dev);
1788 goto free_interfaces;
1789 }
1790 mutex_unlock(hcd->bandwidth_mutex);
1791 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1792
1793 /* Initialize the new interface structures and the
1794 * hc/hcd/usbcore interface/endpoint state.
1795 */
1796 for (i = 0; i < nintf; ++i) {
1797 struct usb_interface_cache *intfc;
1798 struct usb_interface *intf;
1799 struct usb_host_interface *alt;
1800
1801 cp->interface[i] = intf = new_interfaces[i];
1802 intfc = cp->intf_cache[i];
1803 intf->altsetting = intfc->altsetting;
1804 intf->num_altsetting = intfc->num_altsetting;
1805 intf->intf_assoc = find_iad(dev, cp, i);
1806 kref_get(&intfc->ref);
1807
1808 alt = usb_altnum_to_altsetting(intf, 0);
1809
1810 /* No altsetting 0? We'll assume the first altsetting.
1811 * We could use a GetInterface call, but if a device is
1812 * so non-compliant that it doesn't have altsetting 0
1813 * then I wouldn't trust its reply anyway.
1814 */
1815 if (!alt)
1816 alt = &intf->altsetting[0];
1817
1818 intf->cur_altsetting = alt;
1819 usb_enable_interface(dev, intf, true);
1820 intf->dev.parent = &dev->dev;
1821 intf->dev.driver = NULL;
1822 intf->dev.bus = &usb_bus_type;
1823 intf->dev.type = &usb_if_device_type;
1824 intf->dev.groups = usb_interface_groups;
1825 intf->dev.dma_mask = dev->dev.dma_mask;
1826 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1827 intf->minor = -1;
1828 device_initialize(&intf->dev);
1829 pm_runtime_no_callbacks(&intf->dev);
1830 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1831 dev->bus->busnum, dev->devpath,
1832 configuration, alt->desc.bInterfaceNumber);
1833 }
1834 kfree(new_interfaces);
1835
1836 if (cp->string == NULL &&
1837 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1838 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1839
1840 /* Now that all the interfaces are set up, register them
1841 * to trigger binding of drivers to interfaces. probe()
1842 * routines may install different altsettings and may
1843 * claim() any interfaces not yet bound. Many class drivers
1844 * need that: CDC, audio, video, etc.
1845 */
1846 for (i = 0; i < nintf; ++i) {
1847 struct usb_interface *intf = cp->interface[i];
1848
1849 dev_dbg(&dev->dev,
1850 "adding %s (config #%d, interface %d)\n",
1851 dev_name(&intf->dev), configuration,
1852 intf->cur_altsetting->desc.bInterfaceNumber);
1853 device_enable_async_suspend(&intf->dev);
1854 ret = device_add(&intf->dev);
1855 if (ret != 0) {
1856 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1857 dev_name(&intf->dev), ret);
1858 continue;
1859 }
1860 create_intf_ep_devs(intf);
1861 }
1862
1863 usb_autosuspend_device(dev);
1864 return 0;
1865}
1866
1867static LIST_HEAD(set_config_list);
1868static DEFINE_SPINLOCK(set_config_lock);
1869
1870struct set_config_request {
1871 struct usb_device *udev;
1872 int config;
1873 struct work_struct work;
1874 struct list_head node;
1875};
1876
1877/* Worker routine for usb_driver_set_configuration() */
1878static void driver_set_config_work(struct work_struct *work)
1879{
1880 struct set_config_request *req =
1881 container_of(work, struct set_config_request, work);
1882 struct usb_device *udev = req->udev;
1883
1884 usb_lock_device(udev);
1885 spin_lock(&set_config_lock);
1886 list_del(&req->node);
1887 spin_unlock(&set_config_lock);
1888
1889 if (req->config >= -1) /* Is req still valid? */
1890 usb_set_configuration(udev, req->config);
1891 usb_unlock_device(udev);
1892 usb_put_dev(udev);
1893 kfree(req);
1894}
1895
1896/* Cancel pending Set-Config requests for a device whose configuration
1897 * was just changed
1898 */
1899static void cancel_async_set_config(struct usb_device *udev)
1900{
1901 struct set_config_request *req;
1902
1903 spin_lock(&set_config_lock);
1904 list_for_each_entry(req, &set_config_list, node) {
1905 if (req->udev == udev)
1906 req->config = -999; /* Mark as cancelled */
1907 }
1908 spin_unlock(&set_config_lock);
1909}
1910
1911/**
1912 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1913 * @udev: the device whose configuration is being updated
1914 * @config: the configuration being chosen.
1915 * Context: In process context, must be able to sleep
1916 *
1917 * Device interface drivers are not allowed to change device configurations.
1918 * This is because changing configurations will destroy the interface the
1919 * driver is bound to and create new ones; it would be like a floppy-disk
1920 * driver telling the computer to replace the floppy-disk drive with a
1921 * tape drive!
1922 *
1923 * Still, in certain specialized circumstances the need may arise. This
1924 * routine gets around the normal restrictions by using a work thread to
1925 * submit the change-config request.
1926 *
1927 * Returns 0 if the request was successfully queued, error code otherwise.
1928 * The caller has no way to know whether the queued request will eventually
1929 * succeed.
1930 */
1931int usb_driver_set_configuration(struct usb_device *udev, int config)
1932{
1933 struct set_config_request *req;
1934
1935 req = kmalloc(sizeof(*req), GFP_KERNEL);
1936 if (!req)
1937 return -ENOMEM;
1938 req->udev = udev;
1939 req->config = config;
1940 INIT_WORK(&req->work, driver_set_config_work);
1941
1942 spin_lock(&set_config_lock);
1943 list_add(&req->node, &set_config_list);
1944 spin_unlock(&set_config_lock);
1945
1946 usb_get_dev(udev);
1947 schedule_work(&req->work);
1948 return 0;
1949}
1950EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/acpi.h>
9#include <linux/pci.h> /* for scatterlist macros */
10#include <linux/usb.h>
11#include <linux/module.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/timer.h>
15#include <linux/ctype.h>
16#include <linux/nls.h>
17#include <linux/device.h>
18#include <linux/scatterlist.h>
19#include <linux/usb/cdc.h>
20#include <linux/usb/quirks.h>
21#include <linux/usb/hcd.h> /* for usbcore internals */
22#include <linux/usb/of.h>
23#include <asm/byteorder.h>
24
25#include "usb.h"
26
27static void cancel_async_set_config(struct usb_device *udev);
28
29struct api_context {
30 struct completion done;
31 int status;
32};
33
34static void usb_api_blocking_completion(struct urb *urb)
35{
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40}
41
42
43/*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
49static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50{
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82}
83
84/*-------------------------------------------------------------------*/
85/* returns status (negative) or length (positive) */
86static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90{
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107}
108
109/**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: task context, might sleep.
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
136int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139{
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162}
163EXPORT_SYMBOL_GPL(usb_control_msg);
164
165/**
166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167 * @dev: pointer to the usb device to send the message to
168 * @endpoint: endpoint to send the message to
169 * @request: USB message request value
170 * @requesttype: USB message request type value
171 * @value: USB message value
172 * @index: USB message index value
173 * @driver_data: pointer to the data to send
174 * @size: length in bytes of the data to send
175 * @timeout: time in msecs to wait for the message to complete before timing
176 * out (if 0 the wait is forever)
177 * @memflags: the flags for memory allocation for buffers
178 *
179 * Context: !in_interrupt ()
180 *
181 * This function sends a control message to a specified endpoint that is not
182 * expected to fill in a response (i.e. a "send message") and waits for the
183 * message to complete, or timeout.
184 *
185 * Do not use this function from within an interrupt context. If you need
186 * an asynchronous message, or need to send a message from within interrupt
187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
188 * make sure your disconnect() method can wait for it to complete. Since you
189 * don't have a handle on the URB used, you can't cancel the request.
190 *
191 * The data pointer can be made to a reference on the stack, or anywhere else,
192 * as it will not be modified at all. This does not have the restriction that
193 * usb_control_msg() has where the data pointer must be to dynamically allocated
194 * memory (i.e. memory that can be successfully DMAed to a device).
195 *
196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
197 */
198int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 __u8 requesttype, __u16 value, __u16 index,
200 const void *driver_data, __u16 size, int timeout,
201 gfp_t memflags)
202{
203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 int ret;
205 u8 *data = NULL;
206
207 if (size) {
208 data = kmemdup(driver_data, size, memflags);
209 if (!data)
210 return -ENOMEM;
211 }
212
213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
214 data, size, timeout);
215 kfree(data);
216
217 if (ret < 0)
218 return ret;
219
220 return 0;
221}
222EXPORT_SYMBOL_GPL(usb_control_msg_send);
223
224/**
225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
226 * @dev: pointer to the usb device to send the message to
227 * @endpoint: endpoint to send the message to
228 * @request: USB message request value
229 * @requesttype: USB message request type value
230 * @value: USB message value
231 * @index: USB message index value
232 * @driver_data: pointer to the data to be filled in by the message
233 * @size: length in bytes of the data to be received
234 * @timeout: time in msecs to wait for the message to complete before timing
235 * out (if 0 the wait is forever)
236 * @memflags: the flags for memory allocation for buffers
237 *
238 * Context: !in_interrupt ()
239 *
240 * This function sends a control message to a specified endpoint that is
241 * expected to fill in a response (i.e. a "receive message") and waits for the
242 * message to complete, or timeout.
243 *
244 * Do not use this function from within an interrupt context. If you need
245 * an asynchronous message, or need to send a message from within interrupt
246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
247 * make sure your disconnect() method can wait for it to complete. Since you
248 * don't have a handle on the URB used, you can't cancel the request.
249 *
250 * The data pointer can be made to a reference on the stack, or anywhere else
251 * that can be successfully written to. This function does not have the
252 * restriction that usb_control_msg() has where the data pointer must be to
253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
254 * device).
255 *
256 * The "whole" message must be properly received from the device in order for
257 * this function to be successful. If a device returns less than the expected
258 * amount of data, then the function will fail. Do not use this for messages
259 * where a variable amount of data might be returned.
260 *
261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
262 */
263int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
264 __u8 requesttype, __u16 value, __u16 index,
265 void *driver_data, __u16 size, int timeout,
266 gfp_t memflags)
267{
268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
269 int ret;
270 u8 *data;
271
272 if (!size || !driver_data)
273 return -EINVAL;
274
275 data = kmalloc(size, memflags);
276 if (!data)
277 return -ENOMEM;
278
279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
280 data, size, timeout);
281
282 if (ret < 0)
283 goto exit;
284
285 if (ret == size) {
286 memcpy(driver_data, data, size);
287 ret = 0;
288 } else {
289 ret = -EREMOTEIO;
290 }
291
292exit:
293 kfree(data);
294 return ret;
295}
296EXPORT_SYMBOL_GPL(usb_control_msg_recv);
297
298/**
299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
300 * @usb_dev: pointer to the usb device to send the message to
301 * @pipe: endpoint "pipe" to send the message to
302 * @data: pointer to the data to send
303 * @len: length in bytes of the data to send
304 * @actual_length: pointer to a location to put the actual length transferred
305 * in bytes
306 * @timeout: time in msecs to wait for the message to complete before
307 * timing out (if 0 the wait is forever)
308 *
309 * Context: task context, might sleep.
310 *
311 * This function sends a simple interrupt message to a specified endpoint and
312 * waits for the message to complete, or timeout.
313 *
314 * Don't use this function from within an interrupt context. If you need
315 * an asynchronous message, or need to send a message from within interrupt
316 * context, use usb_submit_urb() If a thread in your driver uses this call,
317 * make sure your disconnect() method can wait for it to complete. Since you
318 * don't have a handle on the URB used, you can't cancel the request.
319 *
320 * Return:
321 * If successful, 0. Otherwise a negative error number. The number of actual
322 * bytes transferred will be stored in the @actual_length parameter.
323 */
324int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
325 void *data, int len, int *actual_length, int timeout)
326{
327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
328}
329EXPORT_SYMBOL_GPL(usb_interrupt_msg);
330
331/**
332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
333 * @usb_dev: pointer to the usb device to send the message to
334 * @pipe: endpoint "pipe" to send the message to
335 * @data: pointer to the data to send
336 * @len: length in bytes of the data to send
337 * @actual_length: pointer to a location to put the actual length transferred
338 * in bytes
339 * @timeout: time in msecs to wait for the message to complete before
340 * timing out (if 0 the wait is forever)
341 *
342 * Context: task context, might sleep.
343 *
344 * This function sends a simple bulk message to a specified endpoint
345 * and waits for the message to complete, or timeout.
346 *
347 * Don't use this function from within an interrupt context. If you need
348 * an asynchronous message, or need to send a message from within interrupt
349 * context, use usb_submit_urb() If a thread in your driver uses this call,
350 * make sure your disconnect() method can wait for it to complete. Since you
351 * don't have a handle on the URB used, you can't cancel the request.
352 *
353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
354 * users are forced to abuse this routine by using it to submit URBs for
355 * interrupt endpoints. We will take the liberty of creating an interrupt URB
356 * (with the default interval) if the target is an interrupt endpoint.
357 *
358 * Return:
359 * If successful, 0. Otherwise a negative error number. The number of actual
360 * bytes transferred will be stored in the @actual_length parameter.
361 *
362 */
363int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
364 void *data, int len, int *actual_length, int timeout)
365{
366 struct urb *urb;
367 struct usb_host_endpoint *ep;
368
369 ep = usb_pipe_endpoint(usb_dev, pipe);
370 if (!ep || len < 0)
371 return -EINVAL;
372
373 urb = usb_alloc_urb(0, GFP_KERNEL);
374 if (!urb)
375 return -ENOMEM;
376
377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
378 USB_ENDPOINT_XFER_INT) {
379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
380 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
381 usb_api_blocking_completion, NULL,
382 ep->desc.bInterval);
383 } else
384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
385 usb_api_blocking_completion, NULL);
386
387 return usb_start_wait_urb(urb, timeout, actual_length);
388}
389EXPORT_SYMBOL_GPL(usb_bulk_msg);
390
391/*-------------------------------------------------------------------*/
392
393static void sg_clean(struct usb_sg_request *io)
394{
395 if (io->urbs) {
396 while (io->entries--)
397 usb_free_urb(io->urbs[io->entries]);
398 kfree(io->urbs);
399 io->urbs = NULL;
400 }
401 io->dev = NULL;
402}
403
404static void sg_complete(struct urb *urb)
405{
406 unsigned long flags;
407 struct usb_sg_request *io = urb->context;
408 int status = urb->status;
409
410 spin_lock_irqsave(&io->lock, flags);
411
412 /* In 2.5 we require hcds' endpoint queues not to progress after fault
413 * reports, until the completion callback (this!) returns. That lets
414 * device driver code (like this routine) unlink queued urbs first,
415 * if it needs to, since the HC won't work on them at all. So it's
416 * not possible for page N+1 to overwrite page N, and so on.
417 *
418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
419 * complete before the HCD can get requests away from hardware,
420 * though never during cleanup after a hard fault.
421 */
422 if (io->status
423 && (io->status != -ECONNRESET
424 || status != -ECONNRESET)
425 && urb->actual_length) {
426 dev_err(io->dev->bus->controller,
427 "dev %s ep%d%s scatterlist error %d/%d\n",
428 io->dev->devpath,
429 usb_endpoint_num(&urb->ep->desc),
430 usb_urb_dir_in(urb) ? "in" : "out",
431 status, io->status);
432 /* BUG (); */
433 }
434
435 if (io->status == 0 && status && status != -ECONNRESET) {
436 int i, found, retval;
437
438 io->status = status;
439
440 /* the previous urbs, and this one, completed already.
441 * unlink pending urbs so they won't rx/tx bad data.
442 * careful: unlink can sometimes be synchronous...
443 */
444 spin_unlock_irqrestore(&io->lock, flags);
445 for (i = 0, found = 0; i < io->entries; i++) {
446 if (!io->urbs[i])
447 continue;
448 if (found) {
449 usb_block_urb(io->urbs[i]);
450 retval = usb_unlink_urb(io->urbs[i]);
451 if (retval != -EINPROGRESS &&
452 retval != -ENODEV &&
453 retval != -EBUSY &&
454 retval != -EIDRM)
455 dev_err(&io->dev->dev,
456 "%s, unlink --> %d\n",
457 __func__, retval);
458 } else if (urb == io->urbs[i])
459 found = 1;
460 }
461 spin_lock_irqsave(&io->lock, flags);
462 }
463
464 /* on the last completion, signal usb_sg_wait() */
465 io->bytes += urb->actual_length;
466 io->count--;
467 if (!io->count)
468 complete(&io->complete);
469
470 spin_unlock_irqrestore(&io->lock, flags);
471}
472
473
474/**
475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
476 * @io: request block being initialized. until usb_sg_wait() returns,
477 * treat this as a pointer to an opaque block of memory,
478 * @dev: the usb device that will send or receive the data
479 * @pipe: endpoint "pipe" used to transfer the data
480 * @period: polling rate for interrupt endpoints, in frames or
481 * (for high speed endpoints) microframes; ignored for bulk
482 * @sg: scatterlist entries
483 * @nents: how many entries in the scatterlist
484 * @length: how many bytes to send from the scatterlist, or zero to
485 * send every byte identified in the list.
486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
487 *
488 * This initializes a scatter/gather request, allocating resources such as
489 * I/O mappings and urb memory (except maybe memory used by USB controller
490 * drivers).
491 *
492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
493 * complete (or to be canceled) and then cleans up all resources allocated by
494 * usb_sg_init().
495 *
496 * The request may be canceled with usb_sg_cancel(), either before or after
497 * usb_sg_wait() is called.
498 *
499 * Return: Zero for success, else a negative errno value.
500 */
501int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
502 unsigned pipe, unsigned period, struct scatterlist *sg,
503 int nents, size_t length, gfp_t mem_flags)
504{
505 int i;
506 int urb_flags;
507 int use_sg;
508
509 if (!io || !dev || !sg
510 || usb_pipecontrol(pipe)
511 || usb_pipeisoc(pipe)
512 || nents <= 0)
513 return -EINVAL;
514
515 spin_lock_init(&io->lock);
516 io->dev = dev;
517 io->pipe = pipe;
518
519 if (dev->bus->sg_tablesize > 0) {
520 use_sg = true;
521 io->entries = 1;
522 } else {
523 use_sg = false;
524 io->entries = nents;
525 }
526
527 /* initialize all the urbs we'll use */
528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
529 if (!io->urbs)
530 goto nomem;
531
532 urb_flags = URB_NO_INTERRUPT;
533 if (usb_pipein(pipe))
534 urb_flags |= URB_SHORT_NOT_OK;
535
536 for_each_sg(sg, sg, io->entries, i) {
537 struct urb *urb;
538 unsigned len;
539
540 urb = usb_alloc_urb(0, mem_flags);
541 if (!urb) {
542 io->entries = i;
543 goto nomem;
544 }
545 io->urbs[i] = urb;
546
547 urb->dev = NULL;
548 urb->pipe = pipe;
549 urb->interval = period;
550 urb->transfer_flags = urb_flags;
551 urb->complete = sg_complete;
552 urb->context = io;
553 urb->sg = sg;
554
555 if (use_sg) {
556 /* There is no single transfer buffer */
557 urb->transfer_buffer = NULL;
558 urb->num_sgs = nents;
559
560 /* A length of zero means transfer the whole sg list */
561 len = length;
562 if (len == 0) {
563 struct scatterlist *sg2;
564 int j;
565
566 for_each_sg(sg, sg2, nents, j)
567 len += sg2->length;
568 }
569 } else {
570 /*
571 * Some systems can't use DMA; they use PIO instead.
572 * For their sakes, transfer_buffer is set whenever
573 * possible.
574 */
575 if (!PageHighMem(sg_page(sg)))
576 urb->transfer_buffer = sg_virt(sg);
577 else
578 urb->transfer_buffer = NULL;
579
580 len = sg->length;
581 if (length) {
582 len = min_t(size_t, len, length);
583 length -= len;
584 if (length == 0)
585 io->entries = i + 1;
586 }
587 }
588 urb->transfer_buffer_length = len;
589 }
590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
591
592 /* transaction state */
593 io->count = io->entries;
594 io->status = 0;
595 io->bytes = 0;
596 init_completion(&io->complete);
597 return 0;
598
599nomem:
600 sg_clean(io);
601 return -ENOMEM;
602}
603EXPORT_SYMBOL_GPL(usb_sg_init);
604
605/**
606 * usb_sg_wait - synchronously execute scatter/gather request
607 * @io: request block handle, as initialized with usb_sg_init().
608 * some fields become accessible when this call returns.
609 *
610 * Context: task context, might sleep.
611 *
612 * This function blocks until the specified I/O operation completes. It
613 * leverages the grouping of the related I/O requests to get good transfer
614 * rates, by queueing the requests. At higher speeds, such queuing can
615 * significantly improve USB throughput.
616 *
617 * There are three kinds of completion for this function.
618 *
619 * (1) success, where io->status is zero. The number of io->bytes
620 * transferred is as requested.
621 * (2) error, where io->status is a negative errno value. The number
622 * of io->bytes transferred before the error is usually less
623 * than requested, and can be nonzero.
624 * (3) cancellation, a type of error with status -ECONNRESET that
625 * is initiated by usb_sg_cancel().
626 *
627 * When this function returns, all memory allocated through usb_sg_init() or
628 * this call will have been freed. The request block parameter may still be
629 * passed to usb_sg_cancel(), or it may be freed. It could also be
630 * reinitialized and then reused.
631 *
632 * Data Transfer Rates:
633 *
634 * Bulk transfers are valid for full or high speed endpoints.
635 * The best full speed data rate is 19 packets of 64 bytes each
636 * per frame, or 1216 bytes per millisecond.
637 * The best high speed data rate is 13 packets of 512 bytes each
638 * per microframe, or 52 KBytes per millisecond.
639 *
640 * The reason to use interrupt transfers through this API would most likely
641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
642 * could be transferred. That capability is less useful for low or full
643 * speed interrupt endpoints, which allow at most one packet per millisecond,
644 * of at most 8 or 64 bytes (respectively).
645 *
646 * It is not necessary to call this function to reserve bandwidth for devices
647 * under an xHCI host controller, as the bandwidth is reserved when the
648 * configuration or interface alt setting is selected.
649 */
650void usb_sg_wait(struct usb_sg_request *io)
651{
652 int i;
653 int entries = io->entries;
654
655 /* queue the urbs. */
656 spin_lock_irq(&io->lock);
657 i = 0;
658 while (i < entries && !io->status) {
659 int retval;
660
661 io->urbs[i]->dev = io->dev;
662 spin_unlock_irq(&io->lock);
663
664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
665
666 switch (retval) {
667 /* maybe we retrying will recover */
668 case -ENXIO: /* hc didn't queue this one */
669 case -EAGAIN:
670 case -ENOMEM:
671 retval = 0;
672 yield();
673 break;
674
675 /* no error? continue immediately.
676 *
677 * NOTE: to work better with UHCI (4K I/O buffer may
678 * need 3K of TDs) it may be good to limit how many
679 * URBs are queued at once; N milliseconds?
680 */
681 case 0:
682 ++i;
683 cpu_relax();
684 break;
685
686 /* fail any uncompleted urbs */
687 default:
688 io->urbs[i]->status = retval;
689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
690 __func__, retval);
691 usb_sg_cancel(io);
692 }
693 spin_lock_irq(&io->lock);
694 if (retval && (io->status == 0 || io->status == -ECONNRESET))
695 io->status = retval;
696 }
697 io->count -= entries - i;
698 if (io->count == 0)
699 complete(&io->complete);
700 spin_unlock_irq(&io->lock);
701
702 /* OK, yes, this could be packaged as non-blocking.
703 * So could the submit loop above ... but it's easier to
704 * solve neither problem than to solve both!
705 */
706 wait_for_completion(&io->complete);
707
708 sg_clean(io);
709}
710EXPORT_SYMBOL_GPL(usb_sg_wait);
711
712/**
713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
714 * @io: request block, initialized with usb_sg_init()
715 *
716 * This stops a request after it has been started by usb_sg_wait().
717 * It can also prevents one initialized by usb_sg_init() from starting,
718 * so that call just frees resources allocated to the request.
719 */
720void usb_sg_cancel(struct usb_sg_request *io)
721{
722 unsigned long flags;
723 int i, retval;
724
725 spin_lock_irqsave(&io->lock, flags);
726 if (io->status || io->count == 0) {
727 spin_unlock_irqrestore(&io->lock, flags);
728 return;
729 }
730 /* shut everything down */
731 io->status = -ECONNRESET;
732 io->count++; /* Keep the request alive until we're done */
733 spin_unlock_irqrestore(&io->lock, flags);
734
735 for (i = io->entries - 1; i >= 0; --i) {
736 usb_block_urb(io->urbs[i]);
737
738 retval = usb_unlink_urb(io->urbs[i]);
739 if (retval != -EINPROGRESS
740 && retval != -ENODEV
741 && retval != -EBUSY
742 && retval != -EIDRM)
743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
744 __func__, retval);
745 }
746
747 spin_lock_irqsave(&io->lock, flags);
748 io->count--;
749 if (!io->count)
750 complete(&io->complete);
751 spin_unlock_irqrestore(&io->lock, flags);
752}
753EXPORT_SYMBOL_GPL(usb_sg_cancel);
754
755/*-------------------------------------------------------------------*/
756
757/**
758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
759 * @dev: the device whose descriptor is being retrieved
760 * @type: the descriptor type (USB_DT_*)
761 * @index: the number of the descriptor
762 * @buf: where to put the descriptor
763 * @size: how big is "buf"?
764 *
765 * Context: task context, might sleep.
766 *
767 * Gets a USB descriptor. Convenience functions exist to simplify
768 * getting some types of descriptors. Use
769 * usb_get_string() or usb_string() for USB_DT_STRING.
770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
771 * are part of the device structure.
772 * In addition to a number of USB-standard descriptors, some
773 * devices also use class-specific or vendor-specific descriptors.
774 *
775 * This call is synchronous, and may not be used in an interrupt context.
776 *
777 * Return: The number of bytes received on success, or else the status code
778 * returned by the underlying usb_control_msg() call.
779 */
780int usb_get_descriptor(struct usb_device *dev, unsigned char type,
781 unsigned char index, void *buf, int size)
782{
783 int i;
784 int result;
785
786 if (size <= 0) /* No point in asking for no data */
787 return -EINVAL;
788
789 memset(buf, 0, size); /* Make sure we parse really received data */
790
791 for (i = 0; i < 3; ++i) {
792 /* retry on length 0 or error; some devices are flakey */
793 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
794 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
795 (type << 8) + index, 0, buf, size,
796 USB_CTRL_GET_TIMEOUT);
797 if (result <= 0 && result != -ETIMEDOUT)
798 continue;
799 if (result > 1 && ((u8 *)buf)[1] != type) {
800 result = -ENODATA;
801 continue;
802 }
803 break;
804 }
805 return result;
806}
807EXPORT_SYMBOL_GPL(usb_get_descriptor);
808
809/**
810 * usb_get_string - gets a string descriptor
811 * @dev: the device whose string descriptor is being retrieved
812 * @langid: code for language chosen (from string descriptor zero)
813 * @index: the number of the descriptor
814 * @buf: where to put the string
815 * @size: how big is "buf"?
816 *
817 * Context: task context, might sleep.
818 *
819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
820 * in little-endian byte order).
821 * The usb_string() function will often be a convenient way to turn
822 * these strings into kernel-printable form.
823 *
824 * Strings may be referenced in device, configuration, interface, or other
825 * descriptors, and could also be used in vendor-specific ways.
826 *
827 * This call is synchronous, and may not be used in an interrupt context.
828 *
829 * Return: The number of bytes received on success, or else the status code
830 * returned by the underlying usb_control_msg() call.
831 */
832static int usb_get_string(struct usb_device *dev, unsigned short langid,
833 unsigned char index, void *buf, int size)
834{
835 int i;
836 int result;
837
838 if (size <= 0) /* No point in asking for no data */
839 return -EINVAL;
840
841 for (i = 0; i < 3; ++i) {
842 /* retry on length 0 or stall; some devices are flakey */
843 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
845 (USB_DT_STRING << 8) + index, langid, buf, size,
846 USB_CTRL_GET_TIMEOUT);
847 if (result == 0 || result == -EPIPE)
848 continue;
849 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
850 result = -ENODATA;
851 continue;
852 }
853 break;
854 }
855 return result;
856}
857
858static void usb_try_string_workarounds(unsigned char *buf, int *length)
859{
860 int newlength, oldlength = *length;
861
862 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
863 if (!isprint(buf[newlength]) || buf[newlength + 1])
864 break;
865
866 if (newlength > 2) {
867 buf[0] = newlength;
868 *length = newlength;
869 }
870}
871
872static int usb_string_sub(struct usb_device *dev, unsigned int langid,
873 unsigned int index, unsigned char *buf)
874{
875 int rc;
876
877 /* Try to read the string descriptor by asking for the maximum
878 * possible number of bytes */
879 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
880 rc = -EIO;
881 else
882 rc = usb_get_string(dev, langid, index, buf, 255);
883
884 /* If that failed try to read the descriptor length, then
885 * ask for just that many bytes */
886 if (rc < 2) {
887 rc = usb_get_string(dev, langid, index, buf, 2);
888 if (rc == 2)
889 rc = usb_get_string(dev, langid, index, buf, buf[0]);
890 }
891
892 if (rc >= 2) {
893 if (!buf[0] && !buf[1])
894 usb_try_string_workarounds(buf, &rc);
895
896 /* There might be extra junk at the end of the descriptor */
897 if (buf[0] < rc)
898 rc = buf[0];
899
900 rc = rc - (rc & 1); /* force a multiple of two */
901 }
902
903 if (rc < 2)
904 rc = (rc < 0 ? rc : -EINVAL);
905
906 return rc;
907}
908
909static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
910{
911 int err;
912
913 if (dev->have_langid)
914 return 0;
915
916 if (dev->string_langid < 0)
917 return -EPIPE;
918
919 err = usb_string_sub(dev, 0, 0, tbuf);
920
921 /* If the string was reported but is malformed, default to english
922 * (0x0409) */
923 if (err == -ENODATA || (err > 0 && err < 4)) {
924 dev->string_langid = 0x0409;
925 dev->have_langid = 1;
926 dev_err(&dev->dev,
927 "language id specifier not provided by device, defaulting to English\n");
928 return 0;
929 }
930
931 /* In case of all other errors, we assume the device is not able to
932 * deal with strings at all. Set string_langid to -1 in order to
933 * prevent any string to be retrieved from the device */
934 if (err < 0) {
935 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
936 err);
937 dev->string_langid = -1;
938 return -EPIPE;
939 }
940
941 /* always use the first langid listed */
942 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
943 dev->have_langid = 1;
944 dev_dbg(&dev->dev, "default language 0x%04x\n",
945 dev->string_langid);
946 return 0;
947}
948
949/**
950 * usb_string - returns UTF-8 version of a string descriptor
951 * @dev: the device whose string descriptor is being retrieved
952 * @index: the number of the descriptor
953 * @buf: where to put the string
954 * @size: how big is "buf"?
955 *
956 * Context: task context, might sleep.
957 *
958 * This converts the UTF-16LE encoded strings returned by devices, from
959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
960 * that are more usable in most kernel contexts. Note that this function
961 * chooses strings in the first language supported by the device.
962 *
963 * This call is synchronous, and may not be used in an interrupt context.
964 *
965 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
966 */
967int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
968{
969 unsigned char *tbuf;
970 int err;
971
972 if (dev->state == USB_STATE_SUSPENDED)
973 return -EHOSTUNREACH;
974 if (size <= 0 || !buf)
975 return -EINVAL;
976 buf[0] = 0;
977 if (index <= 0 || index >= 256)
978 return -EINVAL;
979 tbuf = kmalloc(256, GFP_NOIO);
980 if (!tbuf)
981 return -ENOMEM;
982
983 err = usb_get_langid(dev, tbuf);
984 if (err < 0)
985 goto errout;
986
987 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
988 if (err < 0)
989 goto errout;
990
991 size--; /* leave room for trailing NULL char in output buffer */
992 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
993 UTF16_LITTLE_ENDIAN, buf, size);
994 buf[err] = 0;
995
996 if (tbuf[1] != USB_DT_STRING)
997 dev_dbg(&dev->dev,
998 "wrong descriptor type %02x for string %d (\"%s\")\n",
999 tbuf[1], index, buf);
1000
1001 errout:
1002 kfree(tbuf);
1003 return err;
1004}
1005EXPORT_SYMBOL_GPL(usb_string);
1006
1007/* one UTF-8-encoded 16-bit character has at most three bytes */
1008#define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009
1010/**
1011 * usb_cache_string - read a string descriptor and cache it for later use
1012 * @udev: the device whose string descriptor is being read
1013 * @index: the descriptor index
1014 *
1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016 * or %NULL if the index is 0 or the string could not be read.
1017 */
1018char *usb_cache_string(struct usb_device *udev, int index)
1019{
1020 char *buf;
1021 char *smallbuf = NULL;
1022 int len;
1023
1024 if (index <= 0)
1025 return NULL;
1026
1027 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028 if (buf) {
1029 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030 if (len > 0) {
1031 smallbuf = kmalloc(++len, GFP_NOIO);
1032 if (!smallbuf)
1033 return buf;
1034 memcpy(smallbuf, buf, len);
1035 }
1036 kfree(buf);
1037 }
1038 return smallbuf;
1039}
1040
1041/*
1042 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1043 * @dev: the device whose device descriptor is being updated
1044 * @size: how much of the descriptor to read
1045 *
1046 * Context: task context, might sleep.
1047 *
1048 * Updates the copy of the device descriptor stored in the device structure,
1049 * which dedicates space for this purpose.
1050 *
1051 * Not exported, only for use by the core. If drivers really want to read
1052 * the device descriptor directly, they can call usb_get_descriptor() with
1053 * type = USB_DT_DEVICE and index = 0.
1054 *
1055 * This call is synchronous, and may not be used in an interrupt context.
1056 *
1057 * Return: The number of bytes received on success, or else the status code
1058 * returned by the underlying usb_control_msg() call.
1059 */
1060int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1061{
1062 struct usb_device_descriptor *desc;
1063 int ret;
1064
1065 if (size > sizeof(*desc))
1066 return -EINVAL;
1067 desc = kmalloc(sizeof(*desc), GFP_NOIO);
1068 if (!desc)
1069 return -ENOMEM;
1070
1071 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1072 if (ret >= 0)
1073 memcpy(&dev->descriptor, desc, size);
1074 kfree(desc);
1075 return ret;
1076}
1077
1078/*
1079 * usb_set_isoch_delay - informs the device of the packet transmit delay
1080 * @dev: the device whose delay is to be informed
1081 * Context: task context, might sleep
1082 *
1083 * Since this is an optional request, we don't bother if it fails.
1084 */
1085int usb_set_isoch_delay(struct usb_device *dev)
1086{
1087 /* skip hub devices */
1088 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1089 return 0;
1090
1091 /* skip non-SS/non-SSP devices */
1092 if (dev->speed < USB_SPEED_SUPER)
1093 return 0;
1094
1095 return usb_control_msg_send(dev, 0,
1096 USB_REQ_SET_ISOCH_DELAY,
1097 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1098 dev->hub_delay, 0, NULL, 0,
1099 USB_CTRL_SET_TIMEOUT,
1100 GFP_NOIO);
1101}
1102
1103/**
1104 * usb_get_status - issues a GET_STATUS call
1105 * @dev: the device whose status is being checked
1106 * @recip: USB_RECIP_*; for device, interface, or endpoint
1107 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1108 * @target: zero (for device), else interface or endpoint number
1109 * @data: pointer to two bytes of bitmap data
1110 *
1111 * Context: task context, might sleep.
1112 *
1113 * Returns device, interface, or endpoint status. Normally only of
1114 * interest to see if the device is self powered, or has enabled the
1115 * remote wakeup facility; or whether a bulk or interrupt endpoint
1116 * is halted ("stalled").
1117 *
1118 * Bits in these status bitmaps are set using the SET_FEATURE request,
1119 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
1120 * function should be used to clear halt ("stall") status.
1121 *
1122 * This call is synchronous, and may not be used in an interrupt context.
1123 *
1124 * Returns 0 and the status value in *@data (in host byte order) on success,
1125 * or else the status code from the underlying usb_control_msg() call.
1126 */
1127int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1128 void *data)
1129{
1130 int ret;
1131 void *status;
1132 int length;
1133
1134 switch (type) {
1135 case USB_STATUS_TYPE_STANDARD:
1136 length = 2;
1137 break;
1138 case USB_STATUS_TYPE_PTM:
1139 if (recip != USB_RECIP_DEVICE)
1140 return -EINVAL;
1141
1142 length = 4;
1143 break;
1144 default:
1145 return -EINVAL;
1146 }
1147
1148 status = kmalloc(length, GFP_KERNEL);
1149 if (!status)
1150 return -ENOMEM;
1151
1152 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1153 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1154 target, status, length, USB_CTRL_GET_TIMEOUT);
1155
1156 switch (ret) {
1157 case 4:
1158 if (type != USB_STATUS_TYPE_PTM) {
1159 ret = -EIO;
1160 break;
1161 }
1162
1163 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1164 ret = 0;
1165 break;
1166 case 2:
1167 if (type != USB_STATUS_TYPE_STANDARD) {
1168 ret = -EIO;
1169 break;
1170 }
1171
1172 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1173 ret = 0;
1174 break;
1175 default:
1176 ret = -EIO;
1177 }
1178
1179 kfree(status);
1180 return ret;
1181}
1182EXPORT_SYMBOL_GPL(usb_get_status);
1183
1184/**
1185 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1186 * @dev: device whose endpoint is halted
1187 * @pipe: endpoint "pipe" being cleared
1188 *
1189 * Context: task context, might sleep.
1190 *
1191 * This is used to clear halt conditions for bulk and interrupt endpoints,
1192 * as reported by URB completion status. Endpoints that are halted are
1193 * sometimes referred to as being "stalled". Such endpoints are unable
1194 * to transmit or receive data until the halt status is cleared. Any URBs
1195 * queued for such an endpoint should normally be unlinked by the driver
1196 * before clearing the halt condition, as described in sections 5.7.5
1197 * and 5.8.5 of the USB 2.0 spec.
1198 *
1199 * Note that control and isochronous endpoints don't halt, although control
1200 * endpoints report "protocol stall" (for unsupported requests) using the
1201 * same status code used to report a true stall.
1202 *
1203 * This call is synchronous, and may not be used in an interrupt context.
1204 *
1205 * Return: Zero on success, or else the status code returned by the
1206 * underlying usb_control_msg() call.
1207 */
1208int usb_clear_halt(struct usb_device *dev, int pipe)
1209{
1210 int result;
1211 int endp = usb_pipeendpoint(pipe);
1212
1213 if (usb_pipein(pipe))
1214 endp |= USB_DIR_IN;
1215
1216 /* we don't care if it wasn't halted first. in fact some devices
1217 * (like some ibmcam model 1 units) seem to expect hosts to make
1218 * this request for iso endpoints, which can't halt!
1219 */
1220 result = usb_control_msg_send(dev, 0,
1221 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1222 USB_ENDPOINT_HALT, endp, NULL, 0,
1223 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1224
1225 /* don't un-halt or force to DATA0 except on success */
1226 if (result)
1227 return result;
1228
1229 /* NOTE: seems like Microsoft and Apple don't bother verifying
1230 * the clear "took", so some devices could lock up if you check...
1231 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1232 *
1233 * NOTE: make sure the logic here doesn't diverge much from
1234 * the copy in usb-storage, for as long as we need two copies.
1235 */
1236
1237 usb_reset_endpoint(dev, endp);
1238
1239 return 0;
1240}
1241EXPORT_SYMBOL_GPL(usb_clear_halt);
1242
1243static int create_intf_ep_devs(struct usb_interface *intf)
1244{
1245 struct usb_device *udev = interface_to_usbdev(intf);
1246 struct usb_host_interface *alt = intf->cur_altsetting;
1247 int i;
1248
1249 if (intf->ep_devs_created || intf->unregistering)
1250 return 0;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1254 intf->ep_devs_created = 1;
1255 return 0;
1256}
1257
1258static void remove_intf_ep_devs(struct usb_interface *intf)
1259{
1260 struct usb_host_interface *alt = intf->cur_altsetting;
1261 int i;
1262
1263 if (!intf->ep_devs_created)
1264 return;
1265
1266 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1267 usb_remove_ep_devs(&alt->endpoint[i]);
1268 intf->ep_devs_created = 0;
1269}
1270
1271/**
1272 * usb_disable_endpoint -- Disable an endpoint by address
1273 * @dev: the device whose endpoint is being disabled
1274 * @epaddr: the endpoint's address. Endpoint number for output,
1275 * endpoint number + USB_DIR_IN for input
1276 * @reset_hardware: flag to erase any endpoint state stored in the
1277 * controller hardware
1278 *
1279 * Disables the endpoint for URB submission and nukes all pending URBs.
1280 * If @reset_hardware is set then also deallocates hcd/hardware state
1281 * for the endpoint.
1282 */
1283void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1284 bool reset_hardware)
1285{
1286 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1287 struct usb_host_endpoint *ep;
1288
1289 if (!dev)
1290 return;
1291
1292 if (usb_endpoint_out(epaddr)) {
1293 ep = dev->ep_out[epnum];
1294 if (reset_hardware && epnum != 0)
1295 dev->ep_out[epnum] = NULL;
1296 } else {
1297 ep = dev->ep_in[epnum];
1298 if (reset_hardware && epnum != 0)
1299 dev->ep_in[epnum] = NULL;
1300 }
1301 if (ep) {
1302 ep->enabled = 0;
1303 usb_hcd_flush_endpoint(dev, ep);
1304 if (reset_hardware)
1305 usb_hcd_disable_endpoint(dev, ep);
1306 }
1307}
1308
1309/**
1310 * usb_reset_endpoint - Reset an endpoint's state.
1311 * @dev: the device whose endpoint is to be reset
1312 * @epaddr: the endpoint's address. Endpoint number for output,
1313 * endpoint number + USB_DIR_IN for input
1314 *
1315 * Resets any host-side endpoint state such as the toggle bit,
1316 * sequence number or current window.
1317 */
1318void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1319{
1320 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1321 struct usb_host_endpoint *ep;
1322
1323 if (usb_endpoint_out(epaddr))
1324 ep = dev->ep_out[epnum];
1325 else
1326 ep = dev->ep_in[epnum];
1327 if (ep)
1328 usb_hcd_reset_endpoint(dev, ep);
1329}
1330EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1331
1332
1333/**
1334 * usb_disable_interface -- Disable all endpoints for an interface
1335 * @dev: the device whose interface is being disabled
1336 * @intf: pointer to the interface descriptor
1337 * @reset_hardware: flag to erase any endpoint state stored in the
1338 * controller hardware
1339 *
1340 * Disables all the endpoints for the interface's current altsetting.
1341 */
1342void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1343 bool reset_hardware)
1344{
1345 struct usb_host_interface *alt = intf->cur_altsetting;
1346 int i;
1347
1348 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1349 usb_disable_endpoint(dev,
1350 alt->endpoint[i].desc.bEndpointAddress,
1351 reset_hardware);
1352 }
1353}
1354
1355/*
1356 * usb_disable_device_endpoints -- Disable all endpoints for a device
1357 * @dev: the device whose endpoints are being disabled
1358 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1359 */
1360static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1361{
1362 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1363 int i;
1364
1365 if (hcd->driver->check_bandwidth) {
1366 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1367 for (i = skip_ep0; i < 16; ++i) {
1368 usb_disable_endpoint(dev, i, false);
1369 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1370 }
1371 /* Remove endpoints from the host controller internal state */
1372 mutex_lock(hcd->bandwidth_mutex);
1373 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1374 mutex_unlock(hcd->bandwidth_mutex);
1375 }
1376 /* Second pass: remove endpoint pointers */
1377 for (i = skip_ep0; i < 16; ++i) {
1378 usb_disable_endpoint(dev, i, true);
1379 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1380 }
1381}
1382
1383/**
1384 * usb_disable_device - Disable all the endpoints for a USB device
1385 * @dev: the device whose endpoints are being disabled
1386 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1387 *
1388 * Disables all the device's endpoints, potentially including endpoint 0.
1389 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1390 * pending urbs) and usbcore state for the interfaces, so that usbcore
1391 * must usb_set_configuration() before any interfaces could be used.
1392 */
1393void usb_disable_device(struct usb_device *dev, int skip_ep0)
1394{
1395 int i;
1396
1397 /* getting rid of interfaces will disconnect
1398 * any drivers bound to them (a key side effect)
1399 */
1400 if (dev->actconfig) {
1401 /*
1402 * FIXME: In order to avoid self-deadlock involving the
1403 * bandwidth_mutex, we have to mark all the interfaces
1404 * before unregistering any of them.
1405 */
1406 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1407 dev->actconfig->interface[i]->unregistering = 1;
1408
1409 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1410 struct usb_interface *interface;
1411
1412 /* remove this interface if it has been registered */
1413 interface = dev->actconfig->interface[i];
1414 if (!device_is_registered(&interface->dev))
1415 continue;
1416 dev_dbg(&dev->dev, "unregistering interface %s\n",
1417 dev_name(&interface->dev));
1418 remove_intf_ep_devs(interface);
1419 device_del(&interface->dev);
1420 }
1421
1422 /* Now that the interfaces are unbound, nobody should
1423 * try to access them.
1424 */
1425 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1426 put_device(&dev->actconfig->interface[i]->dev);
1427 dev->actconfig->interface[i] = NULL;
1428 }
1429
1430 usb_disable_usb2_hardware_lpm(dev);
1431 usb_unlocked_disable_lpm(dev);
1432 usb_disable_ltm(dev);
1433
1434 dev->actconfig = NULL;
1435 if (dev->state == USB_STATE_CONFIGURED)
1436 usb_set_device_state(dev, USB_STATE_ADDRESS);
1437 }
1438
1439 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1440 skip_ep0 ? "non-ep0" : "all");
1441
1442 usb_disable_device_endpoints(dev, skip_ep0);
1443}
1444
1445/**
1446 * usb_enable_endpoint - Enable an endpoint for USB communications
1447 * @dev: the device whose interface is being enabled
1448 * @ep: the endpoint
1449 * @reset_ep: flag to reset the endpoint state
1450 *
1451 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1452 * For control endpoints, both the input and output sides are handled.
1453 */
1454void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1455 bool reset_ep)
1456{
1457 int epnum = usb_endpoint_num(&ep->desc);
1458 int is_out = usb_endpoint_dir_out(&ep->desc);
1459 int is_control = usb_endpoint_xfer_control(&ep->desc);
1460
1461 if (reset_ep)
1462 usb_hcd_reset_endpoint(dev, ep);
1463 if (is_out || is_control)
1464 dev->ep_out[epnum] = ep;
1465 if (!is_out || is_control)
1466 dev->ep_in[epnum] = ep;
1467 ep->enabled = 1;
1468}
1469
1470/**
1471 * usb_enable_interface - Enable all the endpoints for an interface
1472 * @dev: the device whose interface is being enabled
1473 * @intf: pointer to the interface descriptor
1474 * @reset_eps: flag to reset the endpoints' state
1475 *
1476 * Enables all the endpoints for the interface's current altsetting.
1477 */
1478void usb_enable_interface(struct usb_device *dev,
1479 struct usb_interface *intf, bool reset_eps)
1480{
1481 struct usb_host_interface *alt = intf->cur_altsetting;
1482 int i;
1483
1484 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1485 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1486}
1487
1488/**
1489 * usb_set_interface - Makes a particular alternate setting be current
1490 * @dev: the device whose interface is being updated
1491 * @interface: the interface being updated
1492 * @alternate: the setting being chosen.
1493 *
1494 * Context: task context, might sleep.
1495 *
1496 * This is used to enable data transfers on interfaces that may not
1497 * be enabled by default. Not all devices support such configurability.
1498 * Only the driver bound to an interface may change its setting.
1499 *
1500 * Within any given configuration, each interface may have several
1501 * alternative settings. These are often used to control levels of
1502 * bandwidth consumption. For example, the default setting for a high
1503 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1504 * while interrupt transfers of up to 3KBytes per microframe are legal.
1505 * Also, isochronous endpoints may never be part of an
1506 * interface's default setting. To access such bandwidth, alternate
1507 * interface settings must be made current.
1508 *
1509 * Note that in the Linux USB subsystem, bandwidth associated with
1510 * an endpoint in a given alternate setting is not reserved until an URB
1511 * is submitted that needs that bandwidth. Some other operating systems
1512 * allocate bandwidth early, when a configuration is chosen.
1513 *
1514 * xHCI reserves bandwidth and configures the alternate setting in
1515 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1516 * may be disabled. Drivers cannot rely on any particular alternate
1517 * setting being in effect after a failure.
1518 *
1519 * This call is synchronous, and may not be used in an interrupt context.
1520 * Also, drivers must not change altsettings while urbs are scheduled for
1521 * endpoints in that interface; all such urbs must first be completed
1522 * (perhaps forced by unlinking).
1523 *
1524 * Return: Zero on success, or else the status code returned by the
1525 * underlying usb_control_msg() call.
1526 */
1527int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1528{
1529 struct usb_interface *iface;
1530 struct usb_host_interface *alt;
1531 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1532 int i, ret, manual = 0;
1533 unsigned int epaddr;
1534 unsigned int pipe;
1535
1536 if (dev->state == USB_STATE_SUSPENDED)
1537 return -EHOSTUNREACH;
1538
1539 iface = usb_ifnum_to_if(dev, interface);
1540 if (!iface) {
1541 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1542 interface);
1543 return -EINVAL;
1544 }
1545 if (iface->unregistering)
1546 return -ENODEV;
1547
1548 alt = usb_altnum_to_altsetting(iface, alternate);
1549 if (!alt) {
1550 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1551 alternate);
1552 return -EINVAL;
1553 }
1554 /*
1555 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1556 * including freeing dropped endpoint ring buffers.
1557 * Make sure the interface endpoints are flushed before that
1558 */
1559 usb_disable_interface(dev, iface, false);
1560
1561 /* Make sure we have enough bandwidth for this alternate interface.
1562 * Remove the current alt setting and add the new alt setting.
1563 */
1564 mutex_lock(hcd->bandwidth_mutex);
1565 /* Disable LPM, and re-enable it once the new alt setting is installed,
1566 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1567 */
1568 if (usb_disable_lpm(dev)) {
1569 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1570 mutex_unlock(hcd->bandwidth_mutex);
1571 return -ENOMEM;
1572 }
1573 /* Changing alt-setting also frees any allocated streams */
1574 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1575 iface->cur_altsetting->endpoint[i].streams = 0;
1576
1577 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1578 if (ret < 0) {
1579 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1580 alternate);
1581 usb_enable_lpm(dev);
1582 mutex_unlock(hcd->bandwidth_mutex);
1583 return ret;
1584 }
1585
1586 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1587 ret = -EPIPE;
1588 else
1589 ret = usb_control_msg_send(dev, 0,
1590 USB_REQ_SET_INTERFACE,
1591 USB_RECIP_INTERFACE, alternate,
1592 interface, NULL, 0, 5000,
1593 GFP_NOIO);
1594
1595 /* 9.4.10 says devices don't need this and are free to STALL the
1596 * request if the interface only has one alternate setting.
1597 */
1598 if (ret == -EPIPE && iface->num_altsetting == 1) {
1599 dev_dbg(&dev->dev,
1600 "manual set_interface for iface %d, alt %d\n",
1601 interface, alternate);
1602 manual = 1;
1603 } else if (ret) {
1604 /* Re-instate the old alt setting */
1605 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1606 usb_enable_lpm(dev);
1607 mutex_unlock(hcd->bandwidth_mutex);
1608 return ret;
1609 }
1610 mutex_unlock(hcd->bandwidth_mutex);
1611
1612 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1613 * when they implement async or easily-killable versions of this or
1614 * other "should-be-internal" functions (like clear_halt).
1615 * should hcd+usbcore postprocess control requests?
1616 */
1617
1618 /* prevent submissions using previous endpoint settings */
1619 if (iface->cur_altsetting != alt) {
1620 remove_intf_ep_devs(iface);
1621 usb_remove_sysfs_intf_files(iface);
1622 }
1623 usb_disable_interface(dev, iface, true);
1624
1625 iface->cur_altsetting = alt;
1626
1627 /* Now that the interface is installed, re-enable LPM. */
1628 usb_unlocked_enable_lpm(dev);
1629
1630 /* If the interface only has one altsetting and the device didn't
1631 * accept the request, we attempt to carry out the equivalent action
1632 * by manually clearing the HALT feature for each endpoint in the
1633 * new altsetting.
1634 */
1635 if (manual) {
1636 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1637 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1638 pipe = __create_pipe(dev,
1639 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1640 (usb_endpoint_out(epaddr) ?
1641 USB_DIR_OUT : USB_DIR_IN);
1642
1643 usb_clear_halt(dev, pipe);
1644 }
1645 }
1646
1647 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1648 *
1649 * Note:
1650 * Despite EP0 is always present in all interfaces/AS, the list of
1651 * endpoints from the descriptor does not contain EP0. Due to its
1652 * omnipresence one might expect EP0 being considered "affected" by
1653 * any SetInterface request and hence assume toggles need to be reset.
1654 * However, EP0 toggles are re-synced for every individual transfer
1655 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1656 * (Likewise, EP0 never "halts" on well designed devices.)
1657 */
1658 usb_enable_interface(dev, iface, true);
1659 if (device_is_registered(&iface->dev)) {
1660 usb_create_sysfs_intf_files(iface);
1661 create_intf_ep_devs(iface);
1662 }
1663 return 0;
1664}
1665EXPORT_SYMBOL_GPL(usb_set_interface);
1666
1667/**
1668 * usb_reset_configuration - lightweight device reset
1669 * @dev: the device whose configuration is being reset
1670 *
1671 * This issues a standard SET_CONFIGURATION request to the device using
1672 * the current configuration. The effect is to reset most USB-related
1673 * state in the device, including interface altsettings (reset to zero),
1674 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1675 * endpoints). Other usbcore state is unchanged, including bindings of
1676 * usb device drivers to interfaces.
1677 *
1678 * Because this affects multiple interfaces, avoid using this with composite
1679 * (multi-interface) devices. Instead, the driver for each interface may
1680 * use usb_set_interface() on the interfaces it claims. Be careful though;
1681 * some devices don't support the SET_INTERFACE request, and others won't
1682 * reset all the interface state (notably endpoint state). Resetting the whole
1683 * configuration would affect other drivers' interfaces.
1684 *
1685 * The caller must own the device lock.
1686 *
1687 * Return: Zero on success, else a negative error code.
1688 *
1689 * If this routine fails the device will probably be in an unusable state
1690 * with endpoints disabled, and interfaces only partially enabled.
1691 */
1692int usb_reset_configuration(struct usb_device *dev)
1693{
1694 int i, retval;
1695 struct usb_host_config *config;
1696 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1697
1698 if (dev->state == USB_STATE_SUSPENDED)
1699 return -EHOSTUNREACH;
1700
1701 /* caller must have locked the device and must own
1702 * the usb bus readlock (so driver bindings are stable);
1703 * calls during probe() are fine
1704 */
1705
1706 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1707
1708 config = dev->actconfig;
1709 retval = 0;
1710 mutex_lock(hcd->bandwidth_mutex);
1711 /* Disable LPM, and re-enable it once the configuration is reset, so
1712 * that the xHCI driver can recalculate the U1/U2 timeouts.
1713 */
1714 if (usb_disable_lpm(dev)) {
1715 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1716 mutex_unlock(hcd->bandwidth_mutex);
1717 return -ENOMEM;
1718 }
1719
1720 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1721 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1722 if (retval < 0) {
1723 usb_enable_lpm(dev);
1724 mutex_unlock(hcd->bandwidth_mutex);
1725 return retval;
1726 }
1727 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1728 config->desc.bConfigurationValue, 0,
1729 NULL, 0, USB_CTRL_SET_TIMEOUT,
1730 GFP_NOIO);
1731 if (retval) {
1732 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1733 usb_enable_lpm(dev);
1734 mutex_unlock(hcd->bandwidth_mutex);
1735 return retval;
1736 }
1737 mutex_unlock(hcd->bandwidth_mutex);
1738
1739 /* re-init hc/hcd interface/endpoint state */
1740 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1741 struct usb_interface *intf = config->interface[i];
1742 struct usb_host_interface *alt;
1743
1744 alt = usb_altnum_to_altsetting(intf, 0);
1745
1746 /* No altsetting 0? We'll assume the first altsetting.
1747 * We could use a GetInterface call, but if a device is
1748 * so non-compliant that it doesn't have altsetting 0
1749 * then I wouldn't trust its reply anyway.
1750 */
1751 if (!alt)
1752 alt = &intf->altsetting[0];
1753
1754 if (alt != intf->cur_altsetting) {
1755 remove_intf_ep_devs(intf);
1756 usb_remove_sysfs_intf_files(intf);
1757 }
1758 intf->cur_altsetting = alt;
1759 usb_enable_interface(dev, intf, true);
1760 if (device_is_registered(&intf->dev)) {
1761 usb_create_sysfs_intf_files(intf);
1762 create_intf_ep_devs(intf);
1763 }
1764 }
1765 /* Now that the interfaces are installed, re-enable LPM. */
1766 usb_unlocked_enable_lpm(dev);
1767 return 0;
1768}
1769EXPORT_SYMBOL_GPL(usb_reset_configuration);
1770
1771static void usb_release_interface(struct device *dev)
1772{
1773 struct usb_interface *intf = to_usb_interface(dev);
1774 struct usb_interface_cache *intfc =
1775 altsetting_to_usb_interface_cache(intf->altsetting);
1776
1777 kref_put(&intfc->ref, usb_release_interface_cache);
1778 usb_put_dev(interface_to_usbdev(intf));
1779 of_node_put(dev->of_node);
1780 kfree(intf);
1781}
1782
1783/*
1784 * usb_deauthorize_interface - deauthorize an USB interface
1785 *
1786 * @intf: USB interface structure
1787 */
1788void usb_deauthorize_interface(struct usb_interface *intf)
1789{
1790 struct device *dev = &intf->dev;
1791
1792 device_lock(dev->parent);
1793
1794 if (intf->authorized) {
1795 device_lock(dev);
1796 intf->authorized = 0;
1797 device_unlock(dev);
1798
1799 usb_forced_unbind_intf(intf);
1800 }
1801
1802 device_unlock(dev->parent);
1803}
1804
1805/*
1806 * usb_authorize_interface - authorize an USB interface
1807 *
1808 * @intf: USB interface structure
1809 */
1810void usb_authorize_interface(struct usb_interface *intf)
1811{
1812 struct device *dev = &intf->dev;
1813
1814 if (!intf->authorized) {
1815 device_lock(dev);
1816 intf->authorized = 1; /* authorize interface */
1817 device_unlock(dev);
1818 }
1819}
1820
1821static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1822{
1823 struct usb_device *usb_dev;
1824 struct usb_interface *intf;
1825 struct usb_host_interface *alt;
1826
1827 intf = to_usb_interface(dev);
1828 usb_dev = interface_to_usbdev(intf);
1829 alt = intf->cur_altsetting;
1830
1831 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1832 alt->desc.bInterfaceClass,
1833 alt->desc.bInterfaceSubClass,
1834 alt->desc.bInterfaceProtocol))
1835 return -ENOMEM;
1836
1837 if (add_uevent_var(env,
1838 "MODALIAS=usb:"
1839 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1840 le16_to_cpu(usb_dev->descriptor.idVendor),
1841 le16_to_cpu(usb_dev->descriptor.idProduct),
1842 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1843 usb_dev->descriptor.bDeviceClass,
1844 usb_dev->descriptor.bDeviceSubClass,
1845 usb_dev->descriptor.bDeviceProtocol,
1846 alt->desc.bInterfaceClass,
1847 alt->desc.bInterfaceSubClass,
1848 alt->desc.bInterfaceProtocol,
1849 alt->desc.bInterfaceNumber))
1850 return -ENOMEM;
1851
1852 return 0;
1853}
1854
1855struct device_type usb_if_device_type = {
1856 .name = "usb_interface",
1857 .release = usb_release_interface,
1858 .uevent = usb_if_uevent,
1859};
1860
1861static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1862 struct usb_host_config *config,
1863 u8 inum)
1864{
1865 struct usb_interface_assoc_descriptor *retval = NULL;
1866 struct usb_interface_assoc_descriptor *intf_assoc;
1867 int first_intf;
1868 int last_intf;
1869 int i;
1870
1871 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1872 intf_assoc = config->intf_assoc[i];
1873 if (intf_assoc->bInterfaceCount == 0)
1874 continue;
1875
1876 first_intf = intf_assoc->bFirstInterface;
1877 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1878 if (inum >= first_intf && inum <= last_intf) {
1879 if (!retval)
1880 retval = intf_assoc;
1881 else
1882 dev_err(&dev->dev, "Interface #%d referenced"
1883 " by multiple IADs\n", inum);
1884 }
1885 }
1886
1887 return retval;
1888}
1889
1890
1891/*
1892 * Internal function to queue a device reset
1893 * See usb_queue_reset_device() for more details
1894 */
1895static void __usb_queue_reset_device(struct work_struct *ws)
1896{
1897 int rc;
1898 struct usb_interface *iface =
1899 container_of(ws, struct usb_interface, reset_ws);
1900 struct usb_device *udev = interface_to_usbdev(iface);
1901
1902 rc = usb_lock_device_for_reset(udev, iface);
1903 if (rc >= 0) {
1904 usb_reset_device(udev);
1905 usb_unlock_device(udev);
1906 }
1907 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1908}
1909
1910
1911/*
1912 * usb_set_configuration - Makes a particular device setting be current
1913 * @dev: the device whose configuration is being updated
1914 * @configuration: the configuration being chosen.
1915 *
1916 * Context: task context, might sleep. Caller holds device lock.
1917 *
1918 * This is used to enable non-default device modes. Not all devices
1919 * use this kind of configurability; many devices only have one
1920 * configuration.
1921 *
1922 * @configuration is the value of the configuration to be installed.
1923 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1924 * must be non-zero; a value of zero indicates that the device in
1925 * unconfigured. However some devices erroneously use 0 as one of their
1926 * configuration values. To help manage such devices, this routine will
1927 * accept @configuration = -1 as indicating the device should be put in
1928 * an unconfigured state.
1929 *
1930 * USB device configurations may affect Linux interoperability,
1931 * power consumption and the functionality available. For example,
1932 * the default configuration is limited to using 100mA of bus power,
1933 * so that when certain device functionality requires more power,
1934 * and the device is bus powered, that functionality should be in some
1935 * non-default device configuration. Other device modes may also be
1936 * reflected as configuration options, such as whether two ISDN
1937 * channels are available independently; and choosing between open
1938 * standard device protocols (like CDC) or proprietary ones.
1939 *
1940 * Note that a non-authorized device (dev->authorized == 0) will only
1941 * be put in unconfigured mode.
1942 *
1943 * Note that USB has an additional level of device configurability,
1944 * associated with interfaces. That configurability is accessed using
1945 * usb_set_interface().
1946 *
1947 * This call is synchronous. The calling context must be able to sleep,
1948 * must own the device lock, and must not hold the driver model's USB
1949 * bus mutex; usb interface driver probe() methods cannot use this routine.
1950 *
1951 * Returns zero on success, or else the status code returned by the
1952 * underlying call that failed. On successful completion, each interface
1953 * in the original device configuration has been destroyed, and each one
1954 * in the new configuration has been probed by all relevant usb device
1955 * drivers currently known to the kernel.
1956 */
1957int usb_set_configuration(struct usb_device *dev, int configuration)
1958{
1959 int i, ret;
1960 struct usb_host_config *cp = NULL;
1961 struct usb_interface **new_interfaces = NULL;
1962 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1963 int n, nintf;
1964
1965 if (dev->authorized == 0 || configuration == -1)
1966 configuration = 0;
1967 else {
1968 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1969 if (dev->config[i].desc.bConfigurationValue ==
1970 configuration) {
1971 cp = &dev->config[i];
1972 break;
1973 }
1974 }
1975 }
1976 if ((!cp && configuration != 0))
1977 return -EINVAL;
1978
1979 /* The USB spec says configuration 0 means unconfigured.
1980 * But if a device includes a configuration numbered 0,
1981 * we will accept it as a correctly configured state.
1982 * Use -1 if you really want to unconfigure the device.
1983 */
1984 if (cp && configuration == 0)
1985 dev_warn(&dev->dev, "config 0 descriptor??\n");
1986
1987 /* Allocate memory for new interfaces before doing anything else,
1988 * so that if we run out then nothing will have changed. */
1989 n = nintf = 0;
1990 if (cp) {
1991 nintf = cp->desc.bNumInterfaces;
1992 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1993 GFP_NOIO);
1994 if (!new_interfaces)
1995 return -ENOMEM;
1996
1997 for (; n < nintf; ++n) {
1998 new_interfaces[n] = kzalloc(
1999 sizeof(struct usb_interface),
2000 GFP_NOIO);
2001 if (!new_interfaces[n]) {
2002 ret = -ENOMEM;
2003free_interfaces:
2004 while (--n >= 0)
2005 kfree(new_interfaces[n]);
2006 kfree(new_interfaces);
2007 return ret;
2008 }
2009 }
2010
2011 i = dev->bus_mA - usb_get_max_power(dev, cp);
2012 if (i < 0)
2013 dev_warn(&dev->dev, "new config #%d exceeds power "
2014 "limit by %dmA\n",
2015 configuration, -i);
2016 }
2017
2018 /* Wake up the device so we can send it the Set-Config request */
2019 ret = usb_autoresume_device(dev);
2020 if (ret)
2021 goto free_interfaces;
2022
2023 /* if it's already configured, clear out old state first.
2024 * getting rid of old interfaces means unbinding their drivers.
2025 */
2026 if (dev->state != USB_STATE_ADDRESS)
2027 usb_disable_device(dev, 1); /* Skip ep0 */
2028
2029 /* Get rid of pending async Set-Config requests for this device */
2030 cancel_async_set_config(dev);
2031
2032 /* Make sure we have bandwidth (and available HCD resources) for this
2033 * configuration. Remove endpoints from the schedule if we're dropping
2034 * this configuration to set configuration 0. After this point, the
2035 * host controller will not allow submissions to dropped endpoints. If
2036 * this call fails, the device state is unchanged.
2037 */
2038 mutex_lock(hcd->bandwidth_mutex);
2039 /* Disable LPM, and re-enable it once the new configuration is
2040 * installed, so that the xHCI driver can recalculate the U1/U2
2041 * timeouts.
2042 */
2043 if (dev->actconfig && usb_disable_lpm(dev)) {
2044 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2045 mutex_unlock(hcd->bandwidth_mutex);
2046 ret = -ENOMEM;
2047 goto free_interfaces;
2048 }
2049 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2050 if (ret < 0) {
2051 if (dev->actconfig)
2052 usb_enable_lpm(dev);
2053 mutex_unlock(hcd->bandwidth_mutex);
2054 usb_autosuspend_device(dev);
2055 goto free_interfaces;
2056 }
2057
2058 /*
2059 * Initialize the new interface structures and the
2060 * hc/hcd/usbcore interface/endpoint state.
2061 */
2062 for (i = 0; i < nintf; ++i) {
2063 struct usb_interface_cache *intfc;
2064 struct usb_interface *intf;
2065 struct usb_host_interface *alt;
2066 u8 ifnum;
2067
2068 cp->interface[i] = intf = new_interfaces[i];
2069 intfc = cp->intf_cache[i];
2070 intf->altsetting = intfc->altsetting;
2071 intf->num_altsetting = intfc->num_altsetting;
2072 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2073 kref_get(&intfc->ref);
2074
2075 alt = usb_altnum_to_altsetting(intf, 0);
2076
2077 /* No altsetting 0? We'll assume the first altsetting.
2078 * We could use a GetInterface call, but if a device is
2079 * so non-compliant that it doesn't have altsetting 0
2080 * then I wouldn't trust its reply anyway.
2081 */
2082 if (!alt)
2083 alt = &intf->altsetting[0];
2084
2085 ifnum = alt->desc.bInterfaceNumber;
2086 intf->intf_assoc = find_iad(dev, cp, ifnum);
2087 intf->cur_altsetting = alt;
2088 usb_enable_interface(dev, intf, true);
2089 intf->dev.parent = &dev->dev;
2090 if (usb_of_has_combined_node(dev)) {
2091 device_set_of_node_from_dev(&intf->dev, &dev->dev);
2092 } else {
2093 intf->dev.of_node = usb_of_get_interface_node(dev,
2094 configuration, ifnum);
2095 }
2096 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2097 intf->dev.driver = NULL;
2098 intf->dev.bus = &usb_bus_type;
2099 intf->dev.type = &usb_if_device_type;
2100 intf->dev.groups = usb_interface_groups;
2101 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2102 intf->minor = -1;
2103 device_initialize(&intf->dev);
2104 pm_runtime_no_callbacks(&intf->dev);
2105 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2106 dev->devpath, configuration, ifnum);
2107 usb_get_dev(dev);
2108 }
2109 kfree(new_interfaces);
2110
2111 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2112 configuration, 0, NULL, 0,
2113 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2114 if (ret && cp) {
2115 /*
2116 * All the old state is gone, so what else can we do?
2117 * The device is probably useless now anyway.
2118 */
2119 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2120 for (i = 0; i < nintf; ++i) {
2121 usb_disable_interface(dev, cp->interface[i], true);
2122 put_device(&cp->interface[i]->dev);
2123 cp->interface[i] = NULL;
2124 }
2125 cp = NULL;
2126 }
2127
2128 dev->actconfig = cp;
2129 mutex_unlock(hcd->bandwidth_mutex);
2130
2131 if (!cp) {
2132 usb_set_device_state(dev, USB_STATE_ADDRESS);
2133
2134 /* Leave LPM disabled while the device is unconfigured. */
2135 usb_autosuspend_device(dev);
2136 return ret;
2137 }
2138 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2139
2140 if (cp->string == NULL &&
2141 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2142 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2143
2144 /* Now that the interfaces are installed, re-enable LPM. */
2145 usb_unlocked_enable_lpm(dev);
2146 /* Enable LTM if it was turned off by usb_disable_device. */
2147 usb_enable_ltm(dev);
2148
2149 /* Now that all the interfaces are set up, register them
2150 * to trigger binding of drivers to interfaces. probe()
2151 * routines may install different altsettings and may
2152 * claim() any interfaces not yet bound. Many class drivers
2153 * need that: CDC, audio, video, etc.
2154 */
2155 for (i = 0; i < nintf; ++i) {
2156 struct usb_interface *intf = cp->interface[i];
2157
2158 if (intf->dev.of_node &&
2159 !of_device_is_available(intf->dev.of_node)) {
2160 dev_info(&dev->dev, "skipping disabled interface %d\n",
2161 intf->cur_altsetting->desc.bInterfaceNumber);
2162 continue;
2163 }
2164
2165 dev_dbg(&dev->dev,
2166 "adding %s (config #%d, interface %d)\n",
2167 dev_name(&intf->dev), configuration,
2168 intf->cur_altsetting->desc.bInterfaceNumber);
2169 device_enable_async_suspend(&intf->dev);
2170 ret = device_add(&intf->dev);
2171 if (ret != 0) {
2172 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2173 dev_name(&intf->dev), ret);
2174 continue;
2175 }
2176 create_intf_ep_devs(intf);
2177 }
2178
2179 usb_autosuspend_device(dev);
2180 return 0;
2181}
2182EXPORT_SYMBOL_GPL(usb_set_configuration);
2183
2184static LIST_HEAD(set_config_list);
2185static DEFINE_SPINLOCK(set_config_lock);
2186
2187struct set_config_request {
2188 struct usb_device *udev;
2189 int config;
2190 struct work_struct work;
2191 struct list_head node;
2192};
2193
2194/* Worker routine for usb_driver_set_configuration() */
2195static void driver_set_config_work(struct work_struct *work)
2196{
2197 struct set_config_request *req =
2198 container_of(work, struct set_config_request, work);
2199 struct usb_device *udev = req->udev;
2200
2201 usb_lock_device(udev);
2202 spin_lock(&set_config_lock);
2203 list_del(&req->node);
2204 spin_unlock(&set_config_lock);
2205
2206 if (req->config >= -1) /* Is req still valid? */
2207 usb_set_configuration(udev, req->config);
2208 usb_unlock_device(udev);
2209 usb_put_dev(udev);
2210 kfree(req);
2211}
2212
2213/* Cancel pending Set-Config requests for a device whose configuration
2214 * was just changed
2215 */
2216static void cancel_async_set_config(struct usb_device *udev)
2217{
2218 struct set_config_request *req;
2219
2220 spin_lock(&set_config_lock);
2221 list_for_each_entry(req, &set_config_list, node) {
2222 if (req->udev == udev)
2223 req->config = -999; /* Mark as cancelled */
2224 }
2225 spin_unlock(&set_config_lock);
2226}
2227
2228/**
2229 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2230 * @udev: the device whose configuration is being updated
2231 * @config: the configuration being chosen.
2232 * Context: In process context, must be able to sleep
2233 *
2234 * Device interface drivers are not allowed to change device configurations.
2235 * This is because changing configurations will destroy the interface the
2236 * driver is bound to and create new ones; it would be like a floppy-disk
2237 * driver telling the computer to replace the floppy-disk drive with a
2238 * tape drive!
2239 *
2240 * Still, in certain specialized circumstances the need may arise. This
2241 * routine gets around the normal restrictions by using a work thread to
2242 * submit the change-config request.
2243 *
2244 * Return: 0 if the request was successfully queued, error code otherwise.
2245 * The caller has no way to know whether the queued request will eventually
2246 * succeed.
2247 */
2248int usb_driver_set_configuration(struct usb_device *udev, int config)
2249{
2250 struct set_config_request *req;
2251
2252 req = kmalloc(sizeof(*req), GFP_KERNEL);
2253 if (!req)
2254 return -ENOMEM;
2255 req->udev = udev;
2256 req->config = config;
2257 INIT_WORK(&req->work, driver_set_config_work);
2258
2259 spin_lock(&set_config_lock);
2260 list_add(&req->node, &set_config_list);
2261 spin_unlock(&set_config_lock);
2262
2263 usb_get_dev(udev);
2264 schedule_work(&req->work);
2265 return 0;
2266}
2267EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2268
2269/**
2270 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2271 * @hdr: the place to put the results of the parsing
2272 * @intf: the interface for which parsing is requested
2273 * @buffer: pointer to the extra headers to be parsed
2274 * @buflen: length of the extra headers
2275 *
2276 * This evaluates the extra headers present in CDC devices which
2277 * bind the interfaces for data and control and provide details
2278 * about the capabilities of the device.
2279 *
2280 * Return: number of descriptors parsed or -EINVAL
2281 * if the header is contradictory beyond salvage
2282 */
2283
2284int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2285 struct usb_interface *intf,
2286 u8 *buffer,
2287 int buflen)
2288{
2289 /* duplicates are ignored */
2290 struct usb_cdc_union_desc *union_header = NULL;
2291
2292 /* duplicates are not tolerated */
2293 struct usb_cdc_header_desc *header = NULL;
2294 struct usb_cdc_ether_desc *ether = NULL;
2295 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2296 struct usb_cdc_mdlm_desc *desc = NULL;
2297
2298 unsigned int elength;
2299 int cnt = 0;
2300
2301 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2302 hdr->phonet_magic_present = false;
2303 while (buflen > 0) {
2304 elength = buffer[0];
2305 if (!elength) {
2306 dev_err(&intf->dev, "skipping garbage byte\n");
2307 elength = 1;
2308 goto next_desc;
2309 }
2310 if ((buflen < elength) || (elength < 3)) {
2311 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2312 break;
2313 }
2314 if (buffer[1] != USB_DT_CS_INTERFACE) {
2315 dev_err(&intf->dev, "skipping garbage\n");
2316 goto next_desc;
2317 }
2318
2319 switch (buffer[2]) {
2320 case USB_CDC_UNION_TYPE: /* we've found it */
2321 if (elength < sizeof(struct usb_cdc_union_desc))
2322 goto next_desc;
2323 if (union_header) {
2324 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2325 goto next_desc;
2326 }
2327 union_header = (struct usb_cdc_union_desc *)buffer;
2328 break;
2329 case USB_CDC_COUNTRY_TYPE:
2330 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2331 goto next_desc;
2332 hdr->usb_cdc_country_functional_desc =
2333 (struct usb_cdc_country_functional_desc *)buffer;
2334 break;
2335 case USB_CDC_HEADER_TYPE:
2336 if (elength != sizeof(struct usb_cdc_header_desc))
2337 goto next_desc;
2338 if (header)
2339 return -EINVAL;
2340 header = (struct usb_cdc_header_desc *)buffer;
2341 break;
2342 case USB_CDC_ACM_TYPE:
2343 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2344 goto next_desc;
2345 hdr->usb_cdc_acm_descriptor =
2346 (struct usb_cdc_acm_descriptor *)buffer;
2347 break;
2348 case USB_CDC_ETHERNET_TYPE:
2349 if (elength != sizeof(struct usb_cdc_ether_desc))
2350 goto next_desc;
2351 if (ether)
2352 return -EINVAL;
2353 ether = (struct usb_cdc_ether_desc *)buffer;
2354 break;
2355 case USB_CDC_CALL_MANAGEMENT_TYPE:
2356 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2357 goto next_desc;
2358 hdr->usb_cdc_call_mgmt_descriptor =
2359 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2360 break;
2361 case USB_CDC_DMM_TYPE:
2362 if (elength < sizeof(struct usb_cdc_dmm_desc))
2363 goto next_desc;
2364 hdr->usb_cdc_dmm_desc =
2365 (struct usb_cdc_dmm_desc *)buffer;
2366 break;
2367 case USB_CDC_MDLM_TYPE:
2368 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2369 goto next_desc;
2370 if (desc)
2371 return -EINVAL;
2372 desc = (struct usb_cdc_mdlm_desc *)buffer;
2373 break;
2374 case USB_CDC_MDLM_DETAIL_TYPE:
2375 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2376 goto next_desc;
2377 if (detail)
2378 return -EINVAL;
2379 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2380 break;
2381 case USB_CDC_NCM_TYPE:
2382 if (elength < sizeof(struct usb_cdc_ncm_desc))
2383 goto next_desc;
2384 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2385 break;
2386 case USB_CDC_MBIM_TYPE:
2387 if (elength < sizeof(struct usb_cdc_mbim_desc))
2388 goto next_desc;
2389
2390 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2391 break;
2392 case USB_CDC_MBIM_EXTENDED_TYPE:
2393 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2394 break;
2395 hdr->usb_cdc_mbim_extended_desc =
2396 (struct usb_cdc_mbim_extended_desc *)buffer;
2397 break;
2398 case CDC_PHONET_MAGIC_NUMBER:
2399 hdr->phonet_magic_present = true;
2400 break;
2401 default:
2402 /*
2403 * there are LOTS more CDC descriptors that
2404 * could legitimately be found here.
2405 */
2406 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2407 buffer[2], elength);
2408 goto next_desc;
2409 }
2410 cnt++;
2411next_desc:
2412 buflen -= elength;
2413 buffer += elength;
2414 }
2415 hdr->usb_cdc_union_desc = union_header;
2416 hdr->usb_cdc_header_desc = header;
2417 hdr->usb_cdc_mdlm_detail_desc = detail;
2418 hdr->usb_cdc_mdlm_desc = desc;
2419 hdr->usb_cdc_ether_desc = ether;
2420 return cnt;
2421}
2422
2423EXPORT_SYMBOL(cdc_parse_cdc_header);