Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Freescale eSPI controller driver.
  3 *
  4 * Copyright 2010 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 11#include <linux/module.h>
 12#include <linux/delay.h>
 13#include <linux/irq.h>
 14#include <linux/spi/spi.h>
 15#include <linux/platform_device.h>
 16#include <linux/fsl_devices.h>
 
 
 17#include <linux/mm.h>
 18#include <linux/of.h>
 
 
 19#include <linux/of_platform.h>
 20#include <linux/of_spi.h>
 21#include <linux/interrupt.h>
 22#include <linux/err.h>
 23#include <sysdev/fsl_soc.h>
 24
 25#include "spi-fsl-lib.h"
 26
 27/* eSPI Controller registers */
 28struct fsl_espi_reg {
 29	__be32 mode;		/* 0x000 - eSPI mode register */
 30	__be32 event;		/* 0x004 - eSPI event register */
 31	__be32 mask;		/* 0x008 - eSPI mask register */
 32	__be32 command;		/* 0x00c - eSPI command register */
 33	__be32 transmit;	/* 0x010 - eSPI transmit FIFO access register*/
 34	__be32 receive;		/* 0x014 - eSPI receive FIFO access register*/
 35	u8 res[8];		/* 0x018 - 0x01c reserved */
 36	__be32 csmode[4];	/* 0x020 - 0x02c eSPI cs mode register */
 37};
 38
 39struct fsl_espi_transfer {
 40	const void *tx_buf;
 41	void *rx_buf;
 42	unsigned len;
 43	unsigned n_tx;
 44	unsigned n_rx;
 45	unsigned actual_length;
 46	int status;
 47};
 48
 49/* eSPI Controller mode register definitions */
 50#define SPMODE_ENABLE		(1 << 31)
 51#define SPMODE_LOOP		(1 << 30)
 52#define SPMODE_TXTHR(x)		((x) << 8)
 53#define SPMODE_RXTHR(x)		((x) << 0)
 54
 55/* eSPI Controller CS mode register definitions */
 56#define CSMODE_CI_INACTIVEHIGH	(1 << 31)
 57#define CSMODE_CP_BEGIN_EDGECLK	(1 << 30)
 58#define CSMODE_REV		(1 << 29)
 59#define CSMODE_DIV16		(1 << 28)
 60#define CSMODE_PM(x)		((x) << 24)
 61#define CSMODE_POL_1		(1 << 20)
 62#define CSMODE_LEN(x)		((x) << 16)
 63#define CSMODE_BEF(x)		((x) << 12)
 64#define CSMODE_AFT(x)		((x) << 8)
 65#define CSMODE_CG(x)		((x) << 3)
 66
 
 
 
 67/* Default mode/csmode for eSPI controller */
 68#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
 69#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 70		| CSMODE_AFT(0) | CSMODE_CG(1))
 71
 72/* SPIE register values */
 73#define	SPIE_NE		0x00000200	/* Not empty */
 74#define	SPIE_NF		0x00000100	/* Not full */
 75
 76/* SPIM register values */
 77#define	SPIM_NE		0x00000200	/* Not empty */
 78#define	SPIM_NF		0x00000100	/* Not full */
 79#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 80#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81
 82/* SPCOM register values */
 83#define SPCOM_CS(x)		((x) << 30)
 
 
 
 84#define SPCOM_TRANLEN(x)	((x) << 0)
 85#define	SPCOM_TRANLEN_MAX	0xFFFF	/* Max transaction length */
 86
 87static void fsl_espi_change_mode(struct spi_device *spi)
 88{
 89	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
 90	struct spi_mpc8xxx_cs *cs = spi->controller_state;
 91	struct fsl_espi_reg *reg_base = mspi->reg_base;
 92	__be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
 93	__be32 __iomem *espi_mode = &reg_base->mode;
 94	u32 tmp;
 95	unsigned long flags;
 96
 97	/* Turn off IRQs locally to minimize time that SPI is disabled. */
 98	local_irq_save(flags);
 99
100	/* Turn off SPI unit prior changing mode */
101	tmp = mpc8xxx_spi_read_reg(espi_mode);
102	mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
103	mpc8xxx_spi_write_reg(mode, cs->hw_mode);
104	mpc8xxx_spi_write_reg(espi_mode, tmp);
105
106	local_irq_restore(flags);
107}
 
 
 
 
 
108
109static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
110{
111	u32 data;
112	u16 data_h;
113	u16 data_l;
114	const u32 *tx = mpc8xxx_spi->tx;
115
116	if (!tx)
117		return 0;
118
119	data = *tx++ << mpc8xxx_spi->tx_shift;
120	data_l = data & 0xffff;
121	data_h = (data >> 16) & 0xffff;
122	swab16s(&data_l);
123	swab16s(&data_h);
124	data = data_h | data_l;
125
126	mpc8xxx_spi->tx = tx;
127	return data;
128}
129
130static int fsl_espi_setup_transfer(struct spi_device *spi,
131					struct spi_transfer *t)
 
 
 
132{
133	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
134	int bits_per_word = 0;
135	u8 pm;
136	u32 hz = 0;
137	struct spi_mpc8xxx_cs *cs = spi->controller_state;
138
139	if (t) {
140		bits_per_word = t->bits_per_word;
141		hz = t->speed_hz;
142	}
143
144	/* spi_transfer level calls that work per-word */
145	if (!bits_per_word)
146		bits_per_word = spi->bits_per_word;
147
148	/* Make sure its a bit width we support [4..16] */
149	if ((bits_per_word < 4) || (bits_per_word > 16))
150		return -EINVAL;
 
151
152	if (!hz)
153		hz = spi->max_speed_hz;
 
 
154
155	cs->rx_shift = 0;
156	cs->tx_shift = 0;
157	cs->get_rx = mpc8xxx_spi_rx_buf_u32;
158	cs->get_tx = mpc8xxx_spi_tx_buf_u32;
159	if (bits_per_word <= 8) {
160		cs->rx_shift = 8 - bits_per_word;
161	} else if (bits_per_word <= 16) {
162		cs->rx_shift = 16 - bits_per_word;
163		if (spi->mode & SPI_LSB_FIRST)
164			cs->get_tx = fsl_espi_tx_buf_lsb;
165	} else {
166		return -EINVAL;
167	}
168
169	mpc8xxx_spi->rx_shift = cs->rx_shift;
170	mpc8xxx_spi->tx_shift = cs->tx_shift;
171	mpc8xxx_spi->get_rx = cs->get_rx;
172	mpc8xxx_spi->get_tx = cs->get_tx;
 
173
174	bits_per_word = bits_per_word - 1;
 
 
 
 
175
176	/* mask out bits we are going to set */
177	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
 
 
178
179	cs->hw_mode |= CSMODE_LEN(bits_per_word);
 
 
 
 
180
181	if ((mpc8xxx_spi->spibrg / hz) > 64) {
182		cs->hw_mode |= CSMODE_DIV16;
183		pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
184
185		WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
186			  "Will use %d Hz instead.\n", dev_name(&spi->dev),
187			  hz, mpc8xxx_spi->spibrg / 1024);
188		if (pm > 16)
189			pm = 16;
190	} else {
191		pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
192	}
193	if (pm)
194		pm--;
195
196	cs->hw_mode |= CSMODE_PM(pm);
 
 
 
 
 
 
 
197
198	fsl_espi_change_mode(spi);
199	return 0;
200}
201
202static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
203		unsigned int len)
204{
205	u32 word;
206	struct fsl_espi_reg *reg_base = mspi->reg_base;
207
208	mspi->count = len;
209
210	/* enable rx ints */
211	mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
212
213	/* transmit word */
214	word = mspi->get_tx(mspi);
215	mpc8xxx_spi_write_reg(&reg_base->transmit, word);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
217	return 0;
218}
219
220static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
221{
222	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
223	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
224	unsigned int len = t->len;
225	u8 bits_per_word;
226	int ret;
227
228	bits_per_word = spi->bits_per_word;
229	if (t->bits_per_word)
230		bits_per_word = t->bits_per_word;
231
232	mpc8xxx_spi->len = t->len;
233	len = roundup(len, 4) / 4;
234
235	mpc8xxx_spi->tx = t->tx_buf;
236	mpc8xxx_spi->rx = t->rx_buf;
237
238	INIT_COMPLETION(mpc8xxx_spi->done);
239
240	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
241	if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
242		dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
243				" beyond the SPCOM[TRANLEN] field\n", t->len);
244		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245	}
246	mpc8xxx_spi_write_reg(&reg_base->command,
247		(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
248
249	ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
250	if (ret)
251		return ret;
252
253	wait_for_completion(&mpc8xxx_spi->done);
254
255	/* disable rx ints */
256	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
257
258	return mpc8xxx_spi->count;
259}
260
261static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
262{
263	if (cmd) {
264		cmd[1] = (u8)(addr >> 16);
265		cmd[2] = (u8)(addr >> 8);
266		cmd[3] = (u8)(addr >> 0);
267	}
268}
269
270static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
271{
272	if (cmd)
273		return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
274
275	return 0;
276}
277
278static void fsl_espi_do_trans(struct spi_message *m,
279				struct fsl_espi_transfer *tr)
280{
281	struct spi_device *spi = m->spi;
282	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
283	struct fsl_espi_transfer *espi_trans = tr;
284	struct spi_message message;
285	struct spi_transfer *t, *first, trans;
286	int status = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
288	spi_message_init(&message);
289	memset(&trans, 0, sizeof(trans));
 
 
 
 
 
290
291	first = list_first_entry(&m->transfers, struct spi_transfer,
292			transfer_list);
293	list_for_each_entry(t, &m->transfers, transfer_list) {
294		if ((first->bits_per_word != t->bits_per_word) ||
295			(first->speed_hz != t->speed_hz)) {
296			espi_trans->status = -EINVAL;
297			dev_err(mspi->dev, "bits_per_word/speed_hz should be"
298					" same for the same SPI transfer\n");
299			return;
300		}
 
 
 
 
 
 
 
301
302		trans.speed_hz = t->speed_hz;
303		trans.bits_per_word = t->bits_per_word;
304		trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
305	}
306
307	trans.len = espi_trans->len;
308	trans.tx_buf = espi_trans->tx_buf;
309	trans.rx_buf = espi_trans->rx_buf;
310	spi_message_add_tail(&trans, &message);
311
312	list_for_each_entry(t, &message.transfers, transfer_list) {
313		if (t->bits_per_word || t->speed_hz) {
314			status = -EINVAL;
315
316			status = fsl_espi_setup_transfer(spi, t);
317			if (status < 0)
318				break;
319		}
320
321		if (t->len)
322			status = fsl_espi_bufs(spi, t);
323
324		if (status) {
325			status = -EMSGSIZE;
326			break;
327		}
328
329		if (t->delay_usecs)
330			udelay(t->delay_usecs);
 
331	}
332
333	espi_trans->status = status;
334	fsl_espi_setup_transfer(spi, NULL);
 
 
 
 
335}
336
337static void fsl_espi_cmd_trans(struct spi_message *m,
338				struct fsl_espi_transfer *trans, u8 *rx_buff)
339{
340	struct spi_transfer *t;
341	u8 *local_buf;
342	int i = 0;
343	struct fsl_espi_transfer *espi_trans = trans;
344
345	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
346	if (!local_buf) {
347		espi_trans->status = -ENOMEM;
348		return;
349	}
350
351	list_for_each_entry(t, &m->transfers, transfer_list) {
352		if (t->tx_buf) {
353			memcpy(local_buf + i, t->tx_buf, t->len);
354			i += t->len;
355		}
356	}
357
358	espi_trans->tx_buf = local_buf;
359	espi_trans->rx_buf = local_buf + espi_trans->n_tx;
360	fsl_espi_do_trans(m, espi_trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
362	espi_trans->actual_length = espi_trans->len;
363	kfree(local_buf);
364}
365
366static void fsl_espi_rw_trans(struct spi_message *m,
367				struct fsl_espi_transfer *trans, u8 *rx_buff)
368{
369	struct fsl_espi_transfer *espi_trans = trans;
370	unsigned int n_tx = espi_trans->n_tx;
371	unsigned int n_rx = espi_trans->n_rx;
372	struct spi_transfer *t;
373	u8 *local_buf;
374	u8 *rx_buf = rx_buff;
375	unsigned int trans_len;
376	unsigned int addr;
377	int i, pos, loop;
378
379	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
380	if (!local_buf) {
381		espi_trans->status = -ENOMEM;
382		return;
383	}
384
385	for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
386		trans_len = n_rx - pos;
387		if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
388			trans_len = SPCOM_TRANLEN_MAX - n_tx;
389
390		i = 0;
391		list_for_each_entry(t, &m->transfers, transfer_list) {
392			if (t->tx_buf) {
393				memcpy(local_buf + i, t->tx_buf, t->len);
394				i += t->len;
395			}
396		}
397
398		if (pos > 0) {
399			addr = fsl_espi_cmd2addr(local_buf);
400			addr += pos;
401			fsl_espi_addr2cmd(addr, local_buf);
402		}
 
 
 
 
 
 
 
 
 
 
403
404		espi_trans->n_tx = n_tx;
405		espi_trans->n_rx = trans_len;
406		espi_trans->len = trans_len + n_tx;
407		espi_trans->tx_buf = local_buf;
408		espi_trans->rx_buf = local_buf + n_tx;
409		fsl_espi_do_trans(m, espi_trans);
410
411		memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
412
413		if (loop > 0)
414			espi_trans->actual_length += espi_trans->len - n_tx;
415		else
416			espi_trans->actual_length += espi_trans->len;
417	}
418
419	kfree(local_buf);
 
 
 
420}
421
422static void fsl_espi_do_one_msg(struct spi_message *m)
 
423{
424	struct spi_transfer *t;
425	u8 *rx_buf = NULL;
426	unsigned int n_tx = 0;
427	unsigned int n_rx = 0;
428	struct fsl_espi_transfer espi_trans;
 
 
429
430	list_for_each_entry(t, &m->transfers, transfer_list) {
431		if (t->tx_buf)
432			n_tx += t->len;
433		if (t->rx_buf) {
434			n_rx += t->len;
435			rx_buf = t->rx_buf;
436		}
437	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438
439	espi_trans.n_tx = n_tx;
440	espi_trans.n_rx = n_rx;
441	espi_trans.len = n_tx + n_rx;
442	espi_trans.actual_length = 0;
443	espi_trans.status = 0;
444
445	if (!rx_buf)
446		fsl_espi_cmd_trans(m, &espi_trans, NULL);
447	else
448		fsl_espi_rw_trans(m, &espi_trans, rx_buf);
449
450	m->actual_length = espi_trans.actual_length;
451	m->status = espi_trans.status;
452	m->complete(m->context);
453}
454
455static int fsl_espi_setup(struct spi_device *spi)
456{
457	struct mpc8xxx_spi *mpc8xxx_spi;
458	struct fsl_espi_reg *reg_base;
459	int retval;
460	u32 hw_mode;
461	u32 loop_mode;
462	struct spi_mpc8xxx_cs *cs = spi->controller_state;
463
464	if (!spi->max_speed_hz)
465		return -EINVAL;
466
467	if (!cs) {
468		cs = kzalloc(sizeof *cs, GFP_KERNEL);
469		if (!cs)
470			return -ENOMEM;
471		spi->controller_state = cs;
472	}
473
474	mpc8xxx_spi = spi_master_get_devdata(spi->master);
475	reg_base = mpc8xxx_spi->reg_base;
476
477	hw_mode = cs->hw_mode; /* Save original settings */
478	cs->hw_mode = mpc8xxx_spi_read_reg(
479			&reg_base->csmode[spi->chip_select]);
480	/* mask out bits we are going to set */
481	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
482			 | CSMODE_REV);
483
484	if (spi->mode & SPI_CPHA)
485		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
486	if (spi->mode & SPI_CPOL)
487		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
488	if (!(spi->mode & SPI_LSB_FIRST))
489		cs->hw_mode |= CSMODE_REV;
490
491	/* Handle the loop mode */
492	loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
493	loop_mode &= ~SPMODE_LOOP;
494	if (spi->mode & SPI_LOOP)
495		loop_mode |= SPMODE_LOOP;
496	mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
 
 
 
 
 
497
498	retval = fsl_espi_setup_transfer(spi, NULL);
499	if (retval < 0) {
500		cs->hw_mode = hw_mode; /* Restore settings */
501		return retval;
502	}
503	return 0;
504}
505
506void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
507{
508	struct fsl_espi_reg *reg_base = mspi->reg_base;
509
510	/* We need handle RX first */
511	if (events & SPIE_NE) {
512		u32 rx_data, tmp;
513		u8 rx_data_8;
514
515		/* Spin until RX is done */
516		while (SPIE_RXCNT(events) < min(4, mspi->len)) {
517			cpu_relax();
518			events = mpc8xxx_spi_read_reg(&reg_base->event);
519		}
520
521		if (mspi->len >= 4) {
522			rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
523		} else {
524			tmp = mspi->len;
525			rx_data = 0;
526			while (tmp--) {
527				rx_data_8 = in_8((u8 *)&reg_base->receive);
528				rx_data |= (rx_data_8 << (tmp * 8));
529			}
530
531			rx_data <<= (4 - mspi->len) * 8;
532		}
533
534		mspi->len -= 4;
 
535
536		if (mspi->rx)
537			mspi->get_rx(rx_data, mspi);
538	}
539
540	if (!(events & SPIE_NF)) {
541		int ret;
 
542
543		/* spin until TX is done */
544		ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
545				&reg_base->event)) & SPIE_NF) == 0, 1000, 0);
546		if (!ret) {
547			dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
548			return;
549		}
550	}
551
552	/* Clear the events */
553	mpc8xxx_spi_write_reg(&reg_base->event, events);
554
555	mspi->count -= 1;
556	if (mspi->count) {
557		u32 word = mspi->get_tx(mspi);
558
559		mpc8xxx_spi_write_reg(&reg_base->transmit, word);
560	} else {
561		complete(&mspi->done);
562	}
563}
564
565static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
566{
567	struct mpc8xxx_spi *mspi = context_data;
568	struct fsl_espi_reg *reg_base = mspi->reg_base;
569	irqreturn_t ret = IRQ_NONE;
570	u32 events;
571
 
 
572	/* Get interrupt events(tx/rx) */
573	events = mpc8xxx_spi_read_reg(&reg_base->event);
574	if (events)
575		ret = IRQ_HANDLED;
 
 
576
577	dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
578
579	fsl_espi_cpu_irq(mspi, events);
580
581	return ret;
 
 
 
 
 
582}
583
584static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
 
585{
586	iounmap(mspi->reg_base);
 
 
 
 
 
 
 
 
587}
588
589static struct spi_master * __devinit fsl_espi_probe(struct device *dev,
590		struct resource *mem, unsigned int irq)
591{
592	struct fsl_spi_platform_data *pdata = dev->platform_data;
593	struct spi_master *master;
594	struct mpc8xxx_spi *mpc8xxx_spi;
595	struct fsl_espi_reg *reg_base;
596	u32 regval;
597	int i, ret = 0;
598
599	master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
600	if (!master) {
601		ret = -ENOMEM;
602		goto err;
603	}
604
605	dev_set_drvdata(dev, master);
 
 
606
607	ret = mpc8xxx_spi_probe(dev, mem, irq);
608	if (ret)
609		goto err_probe;
 
610
611	master->setup = fsl_espi_setup;
 
 
 
 
 
 
612
613	mpc8xxx_spi = spi_master_get_devdata(master);
614	mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
615	mpc8xxx_spi->spi_remove = fsl_espi_remove;
616
617	mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
618	if (!mpc8xxx_spi->reg_base) {
619		ret = -ENOMEM;
620		goto err_probe;
621	}
622
623	reg_base = mpc8xxx_spi->reg_base;
 
 
 
 
 
624
625	/* Register for SPI Interrupt */
626	ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
627			  0, "fsl_espi", mpc8xxx_spi);
628	if (ret)
629		goto free_irq;
630
631	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
632		mpc8xxx_spi->rx_shift = 16;
633		mpc8xxx_spi->tx_shift = 24;
634	}
 
 
635
636	/* SPI controller initializations */
637	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
638	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
639	mpc8xxx_spi_write_reg(&reg_base->command, 0);
640	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
 
641
642	/* Init eSPI CS mode register */
643	for (i = 0; i < pdata->max_chipselect; i++)
644		mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
 
 
645
646	/* Enable SPI interface */
647	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
 
 
 
 
 
 
 
 
648
649	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
 
 
650
651	ret = spi_register_master(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652	if (ret < 0)
653		goto unreg_master;
 
 
654
655	dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
 
656
657	return master;
658
659unreg_master:
660	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
661free_irq:
662	iounmap(mpc8xxx_spi->reg_base);
663err_probe:
664	spi_master_put(master);
665err:
666	return ERR_PTR(ret);
667}
668
669static int of_fsl_espi_get_chipselects(struct device *dev)
670{
671	struct device_node *np = dev->of_node;
672	struct fsl_spi_platform_data *pdata = dev->platform_data;
673	const u32 *prop;
674	int len;
675
676	prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
677	if (!prop || len < sizeof(*prop)) {
678		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
679		return -EINVAL;
680	}
681
682	pdata->max_chipselect = *prop;
683	pdata->cs_control = NULL;
684
685	return 0;
686}
687
688static int __devinit of_fsl_espi_probe(struct platform_device *ofdev)
689{
690	struct device *dev = &ofdev->dev;
691	struct device_node *np = ofdev->dev.of_node;
692	struct spi_master *master;
693	struct resource mem;
694	struct resource irq;
695	int ret = -ENOMEM;
696
697	ret = of_mpc8xxx_spi_probe(ofdev);
698	if (ret)
699		return ret;
 
700
701	ret = of_fsl_espi_get_chipselects(dev);
702	if (ret)
703		goto err;
704
705	ret = of_address_to_resource(np, 0, &mem);
706	if (ret)
707		goto err;
708
709	ret = of_irq_to_resource(np, 0, &irq);
710	if (!ret) {
711		ret = -EINVAL;
712		goto err;
713	}
714
715	master = fsl_espi_probe(dev, &mem, irq.start);
716	if (IS_ERR(master)) {
717		ret = PTR_ERR(master);
718		goto err;
719	}
 
720
721	return 0;
 
722
723err:
724	return ret;
 
 
 
 
 
 
 
 
 
725}
726
727static int __devexit of_fsl_espi_remove(struct platform_device *dev)
728{
729	return mpc8xxx_spi_remove(&dev->dev);
 
 
 
 
 
 
 
 
 
730}
 
 
 
 
 
 
 
731
732static const struct of_device_id of_fsl_espi_match[] = {
733	{ .compatible = "fsl,mpc8536-espi" },
734	{}
735};
736MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
737
738static struct platform_driver fsl_espi_driver = {
739	.driver = {
740		.name = "fsl_espi",
741		.owner = THIS_MODULE,
742		.of_match_table = of_fsl_espi_match,
 
743	},
744	.probe		= of_fsl_espi_probe,
745	.remove		= __devexit_p(of_fsl_espi_remove),
746};
747
748static int __init fsl_espi_init(void)
749{
750	return platform_driver_register(&fsl_espi_driver);
751}
752module_init(fsl_espi_init);
753
754static void __exit fsl_espi_exit(void)
755{
756	platform_driver_unregister(&fsl_espi_driver);
757}
758module_exit(fsl_espi_exit);
759
760MODULE_AUTHOR("Mingkai Hu");
761MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
762MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale eSPI controller driver.
  4 *
  5 * Copyright 2010 Freescale Semiconductor, Inc.
 
 
 
 
 
  6 */
 
  7#include <linux/delay.h>
  8#include <linux/err.h>
 
 
  9#include <linux/fsl_devices.h>
 10#include <linux/interrupt.h>
 11#include <linux/module.h>
 12#include <linux/mm.h>
 13#include <linux/of.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16#include <linux/of_platform.h>
 17#include <linux/platform_device.h>
 18#include <linux/spi/spi.h>
 19#include <linux/pm_runtime.h>
 20#include <sysdev/fsl_soc.h>
 21
 
 
 22/* eSPI Controller registers */
 23#define ESPI_SPMODE	0x00	/* eSPI mode register */
 24#define ESPI_SPIE	0x04	/* eSPI event register */
 25#define ESPI_SPIM	0x08	/* eSPI mask register */
 26#define ESPI_SPCOM	0x0c	/* eSPI command register */
 27#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
 28#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
 29#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
 
 
 
 30
 31#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
 
 
 
 
 
 
 
 
 32
 33/* eSPI Controller mode register definitions */
 34#define SPMODE_ENABLE		BIT(31)
 35#define SPMODE_LOOP		BIT(30)
 36#define SPMODE_TXTHR(x)		((x) << 8)
 37#define SPMODE_RXTHR(x)		((x) << 0)
 38
 39/* eSPI Controller CS mode register definitions */
 40#define CSMODE_CI_INACTIVEHIGH	BIT(31)
 41#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
 42#define CSMODE_REV		BIT(29)
 43#define CSMODE_DIV16		BIT(28)
 44#define CSMODE_PM(x)		((x) << 24)
 45#define CSMODE_POL_1		BIT(20)
 46#define CSMODE_LEN(x)		((x) << 16)
 47#define CSMODE_BEF(x)		((x) << 12)
 48#define CSMODE_AFT(x)		((x) << 8)
 49#define CSMODE_CG(x)		((x) << 3)
 50
 51#define FSL_ESPI_FIFO_SIZE	32
 52#define FSL_ESPI_RXTHR		15
 53
 54/* Default mode/csmode for eSPI controller */
 55#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
 56#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 57		| CSMODE_AFT(0) | CSMODE_CG(1))
 58
 59/* SPIE register values */
 
 
 
 
 
 
 60#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 61#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 62#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
 63#define	SPIE_DON		BIT(14)	/* TX done */
 64#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
 65#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
 66#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
 67#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
 68#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
 69
 70/* SPIM register values */
 71#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
 72#define	SPIM_DON		BIT(14)	/* TX done */
 73#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
 74#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
 75#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
 76#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
 77#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
 78
 79/* SPCOM register values */
 80#define SPCOM_CS(x)		((x) << 30)
 81#define SPCOM_DO		BIT(28) /* Dual output */
 82#define SPCOM_TO		BIT(27) /* TX only */
 83#define SPCOM_RXSKIP(x)		((x) << 16)
 84#define SPCOM_TRANLEN(x)	((x) << 0)
 
 85
 86#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 
 
 
 
 
 
 
 
 87
 88#define AUTOSUSPEND_TIMEOUT 2000
 
 89
 90struct fsl_espi {
 91	struct device *dev;
 92	void __iomem *reg_base;
 
 
 93
 94	struct list_head *m_transfers;
 95	struct spi_transfer *tx_t;
 96	unsigned int tx_pos;
 97	bool tx_done;
 98	struct spi_transfer *rx_t;
 99	unsigned int rx_pos;
100	bool rx_done;
101
102	bool swab;
103	unsigned int rxskip;
 
 
 
 
104
105	spinlock_t lock;
 
106
107	u32 spibrg;             /* SPIBRG input clock */
 
 
 
 
 
108
109	struct completion done;
110};
 
111
112struct fsl_espi_cs {
113	u32 hw_mode;
114};
115
116static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
117{
118	return ioread32be(espi->reg_base + offset);
119}
 
 
 
 
 
 
 
 
 
 
 
 
120
121static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
122{
123	return ioread16be(espi->reg_base + offset);
124}
125
126static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
127{
128	return ioread8(espi->reg_base + offset);
129}
130
131static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
132				      u32 val)
133{
134	iowrite32be(val, espi->reg_base + offset);
135}
 
 
 
 
 
 
 
 
136
137static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
138					u16 val)
139{
140	iowrite16be(val, espi->reg_base + offset);
141}
142
143static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
144				       u8 val)
145{
146	iowrite8(val, espi->reg_base + offset);
147}
148
149static int fsl_espi_check_message(struct spi_message *m)
150{
151	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
152	struct spi_transfer *t, *first;
153
154	if (m->frame_length > SPCOM_TRANLEN_MAX) {
155		dev_err(espi->dev, "message too long, size is %u bytes\n",
156			m->frame_length);
157		return -EMSGSIZE;
158	}
159
160	first = list_first_entry(&m->transfers, struct spi_transfer,
161				 transfer_list);
 
162
163	list_for_each_entry(t, &m->transfers, transfer_list) {
164		if (first->bits_per_word != t->bits_per_word ||
165		    first->speed_hz != t->speed_hz) {
166			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
167			return -EINVAL;
168		}
 
169	}
 
 
170
171	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
172	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
173	    first->bits_per_word != 16) {
174		dev_err(espi->dev,
175			"MSB-first transfer not supported for wordsize %u\n",
176			first->bits_per_word);
177		return -EINVAL;
178	}
179
 
180	return 0;
181}
182
183static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
 
184{
185	struct spi_transfer *t;
186	unsigned int i = 0, rxskip = 0;
 
 
 
 
 
187
188	/*
189	 * prerequisites for ESPI rxskip mode:
190	 * - message has two transfers
191	 * - first transfer is a write and second is a read
192	 *
193	 * In addition the current low-level transfer mechanism requires
194	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
195	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
196	 * the TX FIFO isn't re-filled.
197	 */
198	list_for_each_entry(t, &m->transfers, transfer_list) {
199		if (i == 0) {
200			if (!t->tx_buf || t->rx_buf ||
201			    t->len > FSL_ESPI_FIFO_SIZE)
202				return 0;
203			rxskip = t->len;
204		} else if (i == 1) {
205			if (t->tx_buf || !t->rx_buf)
206				return 0;
207		}
208		i++;
209	}
210
211	return i == 2 ? rxskip : 0;
212}
213
214static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
215{
216	u32 tx_fifo_avail;
217	unsigned int tx_left;
218	const void *tx_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
220	/* if events is zero transfer has not started and tx fifo is empty */
221	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
222start:
223	tx_left = espi->tx_t->len - espi->tx_pos;
224	tx_buf = espi->tx_t->tx_buf;
225	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
226		if (tx_left >= 4) {
227			if (!tx_buf)
228				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
229			else if (espi->swab)
230				fsl_espi_write_reg(espi, ESPI_SPITF,
231					swahb32p(tx_buf + espi->tx_pos));
232			else
233				fsl_espi_write_reg(espi, ESPI_SPITF,
234					*(u32 *)(tx_buf + espi->tx_pos));
235			espi->tx_pos += 4;
236			tx_left -= 4;
237			tx_fifo_avail -= 4;
238		} else if (tx_left >= 2 && tx_buf && espi->swab) {
239			fsl_espi_write_reg16(espi, ESPI_SPITF,
240					swab16p(tx_buf + espi->tx_pos));
241			espi->tx_pos += 2;
242			tx_left -= 2;
243			tx_fifo_avail -= 2;
244		} else {
245			if (!tx_buf)
246				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
247			else
248				fsl_espi_write_reg8(espi, ESPI_SPITF,
249					*(u8 *)(tx_buf + espi->tx_pos));
250			espi->tx_pos += 1;
251			tx_left -= 1;
252			tx_fifo_avail -= 1;
253		}
254	}
 
 
255
256	if (!tx_left) {
257		/* Last transfer finished, in rxskip mode only one is needed */
258		if (list_is_last(&espi->tx_t->transfer_list,
259		    espi->m_transfers) || espi->rxskip) {
260			espi->tx_done = true;
261			return;
262		}
263		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
264		espi->tx_pos = 0;
265		/* continue with next transfer if tx fifo is not full */
266		if (tx_fifo_avail)
267			goto start;
 
 
 
 
 
 
268	}
269}
270
271static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
272{
273	u32 rx_fifo_avail = SPIE_RXCNT(events);
274	unsigned int rx_left;
275	void *rx_buf;
 
 
276
277start:
278	rx_left = espi->rx_t->len - espi->rx_pos;
279	rx_buf = espi->rx_t->rx_buf;
280	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
281		if (rx_left >= 4) {
282			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
283
284			if (rx_buf && espi->swab)
285				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
286			else if (rx_buf)
287				*(u32 *)(rx_buf + espi->rx_pos) = val;
288			espi->rx_pos += 4;
289			rx_left -= 4;
290			rx_fifo_avail -= 4;
291		} else if (rx_left >= 2 && rx_buf && espi->swab) {
292			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
293
294			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
295			espi->rx_pos += 2;
296			rx_left -= 2;
297			rx_fifo_avail -= 2;
298		} else {
299			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
300
301			if (rx_buf)
302				*(u8 *)(rx_buf + espi->rx_pos) = val;
303			espi->rx_pos += 1;
304			rx_left -= 1;
305			rx_fifo_avail -= 1;
306		}
307	}
308
309	if (!rx_left) {
310		if (list_is_last(&espi->rx_t->transfer_list,
311		    espi->m_transfers)) {
312			espi->rx_done = true;
 
 
 
 
313			return;
314		}
315		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
316		espi->rx_pos = 0;
317		/* continue with next transfer if rx fifo is not empty */
318		if (rx_fifo_avail)
319			goto start;
320	}
321}
322
323static void fsl_espi_setup_transfer(struct spi_device *spi,
324					struct spi_transfer *t)
325{
326	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
327	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
328	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
329	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
330	u32 hw_mode_old = cs->hw_mode;
 
 
 
 
 
 
 
 
 
 
331
332	/* mask out bits we are going to set */
333	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
334
335	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
336
337	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
 
338
339	if (pm > 15) {
340		cs->hw_mode |= CSMODE_DIV16;
341		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
342	}
343
344	cs->hw_mode |= CSMODE_PM(pm);
345
346	/* don't write the mode register if the mode doesn't change */
347	if (cs->hw_mode != hw_mode_old)
348		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
349				   cs->hw_mode);
350}
351
352static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
 
353{
354	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
355	unsigned int rx_len = t->len;
356	u32 mask, spcom;
357	int ret;
 
 
 
 
 
 
358
359	reinit_completion(&espi->done);
 
 
 
 
 
360
361	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
362	spcom = SPCOM_CS(spi->chip_select);
363	spcom |= SPCOM_TRANLEN(t->len - 1);
364
365	/* configure RXSKIP mode */
366	if (espi->rxskip) {
367		spcom |= SPCOM_RXSKIP(espi->rxskip);
368		rx_len = t->len - espi->rxskip;
369		if (t->rx_nbits == SPI_NBITS_DUAL)
370			spcom |= SPCOM_DO;
371	}
372
373	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
374
375	/* enable interrupts */
376	mask = SPIM_DON;
377	if (rx_len > FSL_ESPI_FIFO_SIZE)
378		mask |= SPIM_RXT;
379	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
380
381	/* Prevent filling the fifo from getting interrupted */
382	spin_lock_irq(&espi->lock);
383	fsl_espi_fill_tx_fifo(espi, 0);
384	spin_unlock_irq(&espi->lock);
385
386	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
387	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
388	if (ret == 0)
389		dev_err(espi->dev, "Transfer timed out!\n");
390
391	/* disable rx ints */
392	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
393
394	return ret == 0 ? -ETIMEDOUT : 0;
 
395}
396
397static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
 
398{
399	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
400	struct spi_device *spi = m->spi;
401	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
402
403	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
404	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
 
 
 
 
 
 
 
 
 
 
405
406	espi->m_transfers = &m->transfers;
407	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
408				      transfer_list);
409	espi->tx_pos = 0;
410	espi->tx_done = false;
411	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->rx_pos = 0;
414	espi->rx_done = false;
415
416	espi->rxskip = fsl_espi_check_rxskip_mode(m);
417	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
418		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
419		return -EINVAL;
420	}
421
422	/* In RXSKIP mode skip first transfer for reads */
423	if (espi->rxskip)
424		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
 
 
 
425
426	fsl_espi_setup_transfer(spi, trans);
427
428	ret = fsl_espi_bufs(spi, trans);
 
 
 
 
429
430	if (trans->delay_usecs)
431		udelay(trans->delay_usecs);
432
433	return ret;
434}
435
436static int fsl_espi_do_one_msg(struct spi_master *master,
437			       struct spi_message *m)
438{
439	unsigned int delay_usecs = 0, rx_nbits = 0;
440	struct spi_transfer *t, trans = {};
441	int ret;
442
443	ret = fsl_espi_check_message(m);
444	if (ret)
445		goto out;
446
447	list_for_each_entry(t, &m->transfers, transfer_list) {
448		if (t->delay_usecs > delay_usecs)
449			delay_usecs = t->delay_usecs;
450		if (t->rx_nbits > rx_nbits)
451			rx_nbits = t->rx_nbits;
452	}
453
454	t = list_first_entry(&m->transfers, struct spi_transfer,
455			     transfer_list);
456
457	trans.len = m->frame_length;
458	trans.speed_hz = t->speed_hz;
459	trans.bits_per_word = t->bits_per_word;
460	trans.delay_usecs = delay_usecs;
461	trans.rx_nbits = rx_nbits;
462
463	if (trans.len)
464		ret = fsl_espi_trans(m, &trans);
465
466	m->actual_length = ret ? 0 : trans.len;
467out:
468	if (m->status == -EINPROGRESS)
469		m->status = ret;
470
471	spi_finalize_current_message(master);
472
473	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
474}
475
476static int fsl_espi_setup(struct spi_device *spi)
477{
478	struct fsl_espi *espi;
 
 
 
479	u32 loop_mode;
480	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 
 
 
481
482	if (!cs) {
483		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
484		if (!cs)
485			return -ENOMEM;
486		spi_set_ctldata(spi, cs);
487	}
488
489	espi = spi_master_get_devdata(spi->master);
 
490
491	pm_runtime_get_sync(espi->dev);
492
493	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
494	/* mask out bits we are going to set */
495	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
496			 | CSMODE_REV);
497
498	if (spi->mode & SPI_CPHA)
499		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
500	if (spi->mode & SPI_CPOL)
501		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
502	if (!(spi->mode & SPI_LSB_FIRST))
503		cs->hw_mode |= CSMODE_REV;
504
505	/* Handle the loop mode */
506	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
507	loop_mode &= ~SPMODE_LOOP;
508	if (spi->mode & SPI_LOOP)
509		loop_mode |= SPMODE_LOOP;
510	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
511
512	fsl_espi_setup_transfer(spi, NULL);
513
514	pm_runtime_mark_last_busy(espi->dev);
515	pm_runtime_put_autosuspend(espi->dev);
516
 
 
 
 
 
517	return 0;
518}
519
520static void fsl_espi_cleanup(struct spi_device *spi)
521{
522	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
523
524	kfree(cs);
525	spi_set_ctldata(spi, NULL);
526}
 
 
 
 
 
 
 
527
528static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
529{
530	if (!espi->rx_done)
531		fsl_espi_read_rx_fifo(espi, events);
 
 
 
 
 
532
533	if (!espi->tx_done)
534		fsl_espi_fill_tx_fifo(espi, events);
535
536	if (!espi->tx_done || !espi->rx_done)
537		return;
538
539	/* we're done, but check for errors before returning */
540	events = fsl_espi_read_reg(espi, ESPI_SPIE);
 
541
542	if (!(events & SPIE_DON))
543		dev_err(espi->dev,
544			"Transfer done but SPIE_DON isn't set!\n");
545
546	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
547		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
548		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
549			SPIE_RXCNT(events), SPIE_TXCNT(events));
 
 
 
550	}
551
552	complete(&espi->done);
 
 
 
 
 
 
 
 
 
 
553}
554
555static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
556{
557	struct fsl_espi *espi = context_data;
 
 
558	u32 events;
559
560	spin_lock(&espi->lock);
561
562	/* Get interrupt events(tx/rx) */
563	events = fsl_espi_read_reg(espi, ESPI_SPIE);
564	if (!events) {
565		spin_unlock(&espi->lock);
566		return IRQ_NONE;
567	}
568
569	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
570
571	fsl_espi_cpu_irq(espi, events);
572
573	/* Clear the events */
574	fsl_espi_write_reg(espi, ESPI_SPIE, events);
575
576	spin_unlock(&espi->lock);
577
578	return IRQ_HANDLED;
579}
580
581#ifdef CONFIG_PM
582static int fsl_espi_runtime_suspend(struct device *dev)
583{
584	struct spi_master *master = dev_get_drvdata(dev);
585	struct fsl_espi *espi = spi_master_get_devdata(master);
586	u32 regval;
587
588	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
589	regval &= ~SPMODE_ENABLE;
590	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
591
592	return 0;
593}
594
595static int fsl_espi_runtime_resume(struct device *dev)
 
596{
597	struct spi_master *master = dev_get_drvdata(dev);
598	struct fsl_espi *espi = spi_master_get_devdata(master);
 
 
599	u32 regval;
 
600
601	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
602	regval |= SPMODE_ENABLE;
603	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
 
 
604
605	return 0;
606}
607#endif
608
609static size_t fsl_espi_max_message_size(struct spi_device *spi)
610{
611	return SPCOM_TRANLEN_MAX;
612}
613
614static void fsl_espi_init_regs(struct device *dev, bool initial)
615{
616	struct spi_master *master = dev_get_drvdata(dev);
617	struct fsl_espi *espi = spi_master_get_devdata(master);
618	struct device_node *nc;
619	u32 csmode, cs, prop;
620	int ret;
621
622	/* SPI controller initializations */
623	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
624	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
625	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
626	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
 
 
 
 
627
628	/* Init eSPI CS mode register */
629	for_each_available_child_of_node(master->dev.of_node, nc) {
630		/* get chip select */
631		ret = of_property_read_u32(nc, "reg", &cs);
632		if (ret || cs >= master->num_chipselect)
633			continue;
634
635		csmode = CSMODE_INIT_VAL;
 
 
 
 
636
637		/* check if CSBEF is set in device tree */
638		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
639		if (!ret) {
640			csmode &= ~(CSMODE_BEF(0xf));
641			csmode |= CSMODE_BEF(prop);
642		}
643
644		/* check if CSAFT is set in device tree */
645		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
646		if (!ret) {
647			csmode &= ~(CSMODE_AFT(0xf));
648			csmode |= CSMODE_AFT(prop);
649		}
650
651		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
652
653		if (initial)
654			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
655	}
656
657	/* Enable SPI interface */
658	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
659}
660
661static int fsl_espi_probe(struct device *dev, struct resource *mem,
662			  unsigned int irq, unsigned int num_cs)
663{
664	struct spi_master *master;
665	struct fsl_espi *espi;
666	int ret;
667
668	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
669	if (!master)
670		return -ENOMEM;
671
672	dev_set_drvdata(dev, master);
673
674	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
675			    SPI_LSB_FIRST | SPI_LOOP;
676	master->dev.of_node = dev->of_node;
677	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
678	master->setup = fsl_espi_setup;
679	master->cleanup = fsl_espi_cleanup;
680	master->transfer_one_message = fsl_espi_do_one_msg;
681	master->auto_runtime_pm = true;
682	master->max_message_size = fsl_espi_max_message_size;
683	master->num_chipselect = num_cs;
684
685	espi = spi_master_get_devdata(master);
686	spin_lock_init(&espi->lock);
687
688	espi->dev = dev;
689	espi->spibrg = fsl_get_sys_freq();
690	if (espi->spibrg == -1) {
691		dev_err(dev, "Can't get sys frequency!\n");
692		ret = -EINVAL;
693		goto err_probe;
694	}
695	/* determined by clock divider fields DIV16/PM in register SPMODEx */
696	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
697	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
698
699	init_completion(&espi->done);
700
701	espi->reg_base = devm_ioremap_resource(dev, mem);
702	if (IS_ERR(espi->reg_base)) {
703		ret = PTR_ERR(espi->reg_base);
704		goto err_probe;
705	}
706
707	/* Register for SPI Interrupt */
708	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
709	if (ret)
710		goto err_probe;
711
712	fsl_espi_init_regs(dev, true);
713
714	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
715	pm_runtime_use_autosuspend(dev);
716	pm_runtime_set_active(dev);
717	pm_runtime_enable(dev);
718	pm_runtime_get_sync(dev);
719
720	ret = devm_spi_register_master(dev, master);
721	if (ret < 0)
722		goto err_pm;
723
724	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
725
726	pm_runtime_mark_last_busy(dev);
727	pm_runtime_put_autosuspend(dev);
728
729	return 0;
730
731err_pm:
732	pm_runtime_put_noidle(dev);
733	pm_runtime_disable(dev);
734	pm_runtime_set_suspended(dev);
735err_probe:
736	spi_master_put(master);
737	return ret;
 
738}
739
740static int of_fsl_espi_get_chipselects(struct device *dev)
741{
742	struct device_node *np = dev->of_node;
743	u32 num_cs;
744	int ret;
 
745
746	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
747	if (ret) {
748		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
749		return 0;
750	}
751
752	return num_cs;
 
 
 
753}
754
755static int of_fsl_espi_probe(struct platform_device *ofdev)
756{
757	struct device *dev = &ofdev->dev;
758	struct device_node *np = ofdev->dev.of_node;
 
759	struct resource mem;
760	unsigned int irq, num_cs;
761	int ret;
762
763	if (of_property_read_bool(np, "mode")) {
764		dev_err(dev, "mode property is not supported on ESPI!\n");
765		return -EINVAL;
766	}
767
768	num_cs = of_fsl_espi_get_chipselects(dev);
769	if (!num_cs)
770		return -EINVAL;
771
772	ret = of_address_to_resource(np, 0, &mem);
773	if (ret)
774		return ret;
775
776	irq = irq_of_parse_and_map(np, 0);
777	if (!irq)
778		return -EINVAL;
 
 
779
780	return fsl_espi_probe(dev, &mem, irq, num_cs);
781}
782
783static int of_fsl_espi_remove(struct platform_device *dev)
784{
785	pm_runtime_disable(&dev->dev);
786
787	return 0;
788}
789
790#ifdef CONFIG_PM_SLEEP
791static int of_fsl_espi_suspend(struct device *dev)
792{
793	struct spi_master *master = dev_get_drvdata(dev);
794	int ret;
795
796	ret = spi_master_suspend(master);
797	if (ret)
798		return ret;
799
800	return pm_runtime_force_suspend(dev);
801}
802
803static int of_fsl_espi_resume(struct device *dev)
804{
805	struct spi_master *master = dev_get_drvdata(dev);
806	int ret;
807
808	fsl_espi_init_regs(dev, false);
809
810	ret = pm_runtime_force_resume(dev);
811	if (ret < 0)
812		return ret;
813
814	return spi_master_resume(master);
815}
816#endif /* CONFIG_PM_SLEEP */
817
818static const struct dev_pm_ops espi_pm = {
819	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
820			   fsl_espi_runtime_resume, NULL)
821	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
822};
823
824static const struct of_device_id of_fsl_espi_match[] = {
825	{ .compatible = "fsl,mpc8536-espi" },
826	{}
827};
828MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
829
830static struct platform_driver fsl_espi_driver = {
831	.driver = {
832		.name = "fsl_espi",
 
833		.of_match_table = of_fsl_espi_match,
834		.pm = &espi_pm,
835	},
836	.probe		= of_fsl_espi_probe,
837	.remove		= of_fsl_espi_remove,
838};
839module_platform_driver(fsl_espi_driver);
 
 
 
 
 
 
 
 
 
 
 
840
841MODULE_AUTHOR("Mingkai Hu");
842MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
843MODULE_LICENSE("GPL");