Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
  21
  22#define DM_MSG_PREFIX "bufio"
  23
  24/*
  25 * Memory management policy:
  26 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  27 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  28 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  29 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  30 *	dirty buffers.
  31 */
  32#define DM_BUFIO_MIN_BUFFERS		8
  33
  34#define DM_BUFIO_MEMORY_PERCENT		2
  35#define DM_BUFIO_VMALLOC_PERCENT	25
  36#define DM_BUFIO_WRITEBACK_RATIO	3
  37#define DM_BUFIO_LOW_WATERMARK_RATIO	16
  38
  39/*
  40 * Check buffer ages in this interval (seconds)
  41 */
  42#define DM_BUFIO_WORK_TIMER_SECS	30
  43
  44/*
  45 * Free buffers when they are older than this (seconds)
  46 */
  47#define DM_BUFIO_DEFAULT_AGE_SECS	300
  48
  49/*
  50 * The nr of bytes of cached data to keep around.
  51 */
  52#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  53
  54/*
  55 * Align buffer writes to this boundary.
  56 * Tests show that SSDs have the highest IOPS when using 4k writes.
  57 */
  58#define DM_BUFIO_WRITE_ALIGN		4096
  59
  60/*
  61 * dm_buffer->list_mode
  62 */
  63#define LIST_CLEAN	0
  64#define LIST_DIRTY	1
  65#define LIST_SIZE	2
  66
  67/*
  68 * Linking of buffers:
  69 *	All buffers are linked to buffer_tree with their node field.
  70 *
  71 *	Clean buffers that are not being written (B_WRITING not set)
  72 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  73 *
  74 *	Dirty and clean buffers that are being written are linked to
  75 *	lru[LIST_DIRTY] with their lru_list field. When the write
  76 *	finishes, the buffer cannot be relinked immediately (because we
  77 *	are in an interrupt context and relinking requires process
  78 *	context), so some clean-not-writing buffers can be held on
  79 *	dirty_lru too.  They are later added to lru in the process
  80 *	context.
  81 */
  82struct dm_bufio_client {
  83	struct mutex lock;
  84
  85	struct list_head lru[LIST_SIZE];
  86	unsigned long n_buffers[LIST_SIZE];
  87
  88	struct block_device *bdev;
  89	unsigned block_size;
  90	s8 sectors_per_block_bits;
  91	void (*alloc_callback)(struct dm_buffer *);
  92	void (*write_callback)(struct dm_buffer *);
  93
  94	struct kmem_cache *slab_buffer;
  95	struct kmem_cache *slab_cache;
  96	struct dm_io_client *dm_io;
  97
  98	struct list_head reserved_buffers;
  99	unsigned need_reserved_buffers;
 100
 101	unsigned minimum_buffers;
 102
 103	struct rb_root buffer_tree;
 104	wait_queue_head_t free_buffer_wait;
 105
 106	sector_t start;
 107
 108	int async_write_error;
 109
 110	struct list_head client_list;
 111	struct shrinker shrinker;
 112};
 113
 114/*
 115 * Buffer state bits.
 116 */
 117#define B_READING	0
 118#define B_WRITING	1
 119#define B_DIRTY		2
 120
 121/*
 122 * Describes how the block was allocated:
 123 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 124 * See the comment at alloc_buffer_data.
 125 */
 126enum data_mode {
 127	DATA_MODE_SLAB = 0,
 128	DATA_MODE_GET_FREE_PAGES = 1,
 129	DATA_MODE_VMALLOC = 2,
 130	DATA_MODE_LIMIT = 3
 131};
 132
 133struct dm_buffer {
 134	struct rb_node node;
 135	struct list_head lru_list;
 136	struct list_head global_list;
 137	sector_t block;
 138	void *data;
 139	unsigned char data_mode;		/* DATA_MODE_* */
 140	unsigned char list_mode;		/* LIST_* */
 141	blk_status_t read_error;
 142	blk_status_t write_error;
 143	unsigned accessed;
 144	unsigned hold_count;
 145	unsigned long state;
 146	unsigned long last_accessed;
 147	unsigned dirty_start;
 148	unsigned dirty_end;
 149	unsigned write_start;
 150	unsigned write_end;
 151	struct dm_bufio_client *c;
 152	struct list_head write_list;
 153	void (*end_io)(struct dm_buffer *, blk_status_t);
 154#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 155#define MAX_STACK 10
 156	unsigned int stack_len;
 157	unsigned long stack_entries[MAX_STACK];
 158#endif
 159};
 160
 161/*----------------------------------------------------------------*/
 162
 163#define dm_bufio_in_request()	(!!current->bio_list)
 164
 165static void dm_bufio_lock(struct dm_bufio_client *c)
 166{
 167	mutex_lock_nested(&c->lock, dm_bufio_in_request());
 168}
 169
 170static int dm_bufio_trylock(struct dm_bufio_client *c)
 171{
 172	return mutex_trylock(&c->lock);
 173}
 174
 175static void dm_bufio_unlock(struct dm_bufio_client *c)
 176{
 177	mutex_unlock(&c->lock);
 178}
 179
 180/*----------------------------------------------------------------*/
 181
 182/*
 183 * Default cache size: available memory divided by the ratio.
 184 */
 185static unsigned long dm_bufio_default_cache_size;
 186
 187/*
 188 * Total cache size set by the user.
 189 */
 190static unsigned long dm_bufio_cache_size;
 191
 192/*
 193 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 194 * at any time.  If it disagrees, the user has changed cache size.
 195 */
 196static unsigned long dm_bufio_cache_size_latch;
 197
 198static DEFINE_SPINLOCK(global_spinlock);
 199
 200static LIST_HEAD(global_queue);
 201
 202static unsigned long global_num = 0;
 203
 204/*
 205 * Buffers are freed after this timeout
 206 */
 207static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 208static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 209
 210static unsigned long dm_bufio_peak_allocated;
 211static unsigned long dm_bufio_allocated_kmem_cache;
 212static unsigned long dm_bufio_allocated_get_free_pages;
 213static unsigned long dm_bufio_allocated_vmalloc;
 214static unsigned long dm_bufio_current_allocated;
 215
 216/*----------------------------------------------------------------*/
 217
 218/*
 219 * The current number of clients.
 220 */
 221static int dm_bufio_client_count;
 222
 223/*
 224 * The list of all clients.
 225 */
 226static LIST_HEAD(dm_bufio_all_clients);
 227
 228/*
 229 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
 230 */
 231static DEFINE_MUTEX(dm_bufio_clients_lock);
 232
 233static struct workqueue_struct *dm_bufio_wq;
 234static struct delayed_work dm_bufio_cleanup_old_work;
 235static struct work_struct dm_bufio_replacement_work;
 236
 237
 238#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 239static void buffer_record_stack(struct dm_buffer *b)
 240{
 241	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
 242}
 243#endif
 244
 245/*----------------------------------------------------------------
 246 * A red/black tree acts as an index for all the buffers.
 247 *--------------------------------------------------------------*/
 248static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 249{
 250	struct rb_node *n = c->buffer_tree.rb_node;
 251	struct dm_buffer *b;
 252
 253	while (n) {
 254		b = container_of(n, struct dm_buffer, node);
 255
 256		if (b->block == block)
 257			return b;
 258
 259		n = (b->block < block) ? n->rb_left : n->rb_right;
 260	}
 261
 262	return NULL;
 263}
 264
 265static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 266{
 267	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 268	struct dm_buffer *found;
 269
 270	while (*new) {
 271		found = container_of(*new, struct dm_buffer, node);
 272
 273		if (found->block == b->block) {
 274			BUG_ON(found != b);
 275			return;
 276		}
 277
 278		parent = *new;
 279		new = (found->block < b->block) ?
 280			&((*new)->rb_left) : &((*new)->rb_right);
 281	}
 282
 283	rb_link_node(&b->node, parent, new);
 284	rb_insert_color(&b->node, &c->buffer_tree);
 285}
 286
 287static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 288{
 289	rb_erase(&b->node, &c->buffer_tree);
 290}
 291
 292/*----------------------------------------------------------------*/
 293
 294static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
 295{
 296	unsigned char data_mode;
 297	long diff;
 298
 299	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 300		&dm_bufio_allocated_kmem_cache,
 301		&dm_bufio_allocated_get_free_pages,
 302		&dm_bufio_allocated_vmalloc,
 303	};
 304
 305	data_mode = b->data_mode;
 306	diff = (long)b->c->block_size;
 307	if (unlink)
 308		diff = -diff;
 309
 310	spin_lock(&global_spinlock);
 311
 312	*class_ptr[data_mode] += diff;
 313
 314	dm_bufio_current_allocated += diff;
 315
 316	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 317		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 318
 319	b->accessed = 1;
 320
 321	if (!unlink) {
 322		list_add(&b->global_list, &global_queue);
 323		global_num++;
 324		if (dm_bufio_current_allocated > dm_bufio_cache_size)
 325			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
 326	} else {
 327		list_del(&b->global_list);
 328		global_num--;
 329	}
 330
 331	spin_unlock(&global_spinlock);
 332}
 333
 334/*
 335 * Change the number of clients and recalculate per-client limit.
 336 */
 337static void __cache_size_refresh(void)
 338{
 339	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 340	BUG_ON(dm_bufio_client_count < 0);
 341
 342	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 343
 344	/*
 345	 * Use default if set to 0 and report the actual cache size used.
 346	 */
 347	if (!dm_bufio_cache_size_latch) {
 348		(void)cmpxchg(&dm_bufio_cache_size, 0,
 349			      dm_bufio_default_cache_size);
 350		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 351	}
 352}
 353
 354/*
 355 * Allocating buffer data.
 356 *
 357 * Small buffers are allocated with kmem_cache, to use space optimally.
 358 *
 359 * For large buffers, we choose between get_free_pages and vmalloc.
 360 * Each has advantages and disadvantages.
 361 *
 362 * __get_free_pages can randomly fail if the memory is fragmented.
 363 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 364 * as low as 128M) so using it for caching is not appropriate.
 365 *
 366 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 367 * won't have a fatal effect here, but it just causes flushes of some other
 368 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 369 * always fails (i.e. order >= MAX_ORDER).
 370 *
 371 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 372 * initial reserve allocation, so there's no risk of wasting all vmalloc
 373 * space.
 374 */
 375static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 376			       unsigned char *data_mode)
 377{
 378	if (unlikely(c->slab_cache != NULL)) {
 379		*data_mode = DATA_MODE_SLAB;
 380		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 381	}
 382
 383	if (c->block_size <= KMALLOC_MAX_SIZE &&
 384	    gfp_mask & __GFP_NORETRY) {
 385		*data_mode = DATA_MODE_GET_FREE_PAGES;
 386		return (void *)__get_free_pages(gfp_mask,
 387						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 388	}
 389
 390	*data_mode = DATA_MODE_VMALLOC;
 391
 392	/*
 393	 * __vmalloc allocates the data pages and auxiliary structures with
 394	 * gfp_flags that were specified, but pagetables are always allocated
 395	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 396	 *
 397	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 398	 * all allocations done by this process (including pagetables) are done
 399	 * as if GFP_NOIO was specified.
 400	 */
 401	if (gfp_mask & __GFP_NORETRY) {
 402		unsigned noio_flag = memalloc_noio_save();
 403		void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 404
 405		memalloc_noio_restore(noio_flag);
 406		return ptr;
 407	}
 408
 409	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 410}
 411
 412/*
 413 * Free buffer's data.
 414 */
 415static void free_buffer_data(struct dm_bufio_client *c,
 416			     void *data, unsigned char data_mode)
 417{
 418	switch (data_mode) {
 419	case DATA_MODE_SLAB:
 420		kmem_cache_free(c->slab_cache, data);
 421		break;
 422
 423	case DATA_MODE_GET_FREE_PAGES:
 424		free_pages((unsigned long)data,
 425			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 426		break;
 427
 428	case DATA_MODE_VMALLOC:
 429		vfree(data);
 430		break;
 431
 432	default:
 433		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 434		       data_mode);
 435		BUG();
 436	}
 437}
 438
 439/*
 440 * Allocate buffer and its data.
 441 */
 442static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 443{
 444	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 445
 446	if (!b)
 447		return NULL;
 448
 449	b->c = c;
 450
 451	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 452	if (!b->data) {
 453		kmem_cache_free(c->slab_buffer, b);
 454		return NULL;
 455	}
 456
 457#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 458	b->stack_len = 0;
 459#endif
 460	return b;
 461}
 462
 463/*
 464 * Free buffer and its data.
 465 */
 466static void free_buffer(struct dm_buffer *b)
 467{
 468	struct dm_bufio_client *c = b->c;
 469
 470	free_buffer_data(c, b->data, b->data_mode);
 471	kmem_cache_free(c->slab_buffer, b);
 472}
 473
 474/*
 475 * Link buffer to the buffer tree and clean or dirty queue.
 476 */
 477static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 478{
 479	struct dm_bufio_client *c = b->c;
 480
 481	c->n_buffers[dirty]++;
 482	b->block = block;
 483	b->list_mode = dirty;
 484	list_add(&b->lru_list, &c->lru[dirty]);
 485	__insert(b->c, b);
 486	b->last_accessed = jiffies;
 487
 488	adjust_total_allocated(b, false);
 489}
 490
 491/*
 492 * Unlink buffer from the buffer tree and dirty or clean queue.
 493 */
 494static void __unlink_buffer(struct dm_buffer *b)
 495{
 496	struct dm_bufio_client *c = b->c;
 497
 498	BUG_ON(!c->n_buffers[b->list_mode]);
 499
 500	c->n_buffers[b->list_mode]--;
 501	__remove(b->c, b);
 502	list_del(&b->lru_list);
 503
 504	adjust_total_allocated(b, true);
 505}
 506
 507/*
 508 * Place the buffer to the head of dirty or clean LRU queue.
 509 */
 510static void __relink_lru(struct dm_buffer *b, int dirty)
 511{
 512	struct dm_bufio_client *c = b->c;
 513
 514	b->accessed = 1;
 515
 516	BUG_ON(!c->n_buffers[b->list_mode]);
 517
 518	c->n_buffers[b->list_mode]--;
 519	c->n_buffers[dirty]++;
 520	b->list_mode = dirty;
 521	list_move(&b->lru_list, &c->lru[dirty]);
 522	b->last_accessed = jiffies;
 523}
 524
 525/*----------------------------------------------------------------
 526 * Submit I/O on the buffer.
 527 *
 528 * Bio interface is faster but it has some problems:
 529 *	the vector list is limited (increasing this limit increases
 530 *	memory-consumption per buffer, so it is not viable);
 531 *
 532 *	the memory must be direct-mapped, not vmalloced;
 533 *
 534 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 535 * it is not vmalloced, try using the bio interface.
 536 *
 537 * If the buffer is big, if it is vmalloced or if the underlying device
 538 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 539 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 540 * shortcomings.
 541 *--------------------------------------------------------------*/
 542
 543/*
 544 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 545 * that the request was handled directly with bio interface.
 546 */
 547static void dmio_complete(unsigned long error, void *context)
 548{
 549	struct dm_buffer *b = context;
 550
 551	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 552}
 553
 554static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
 555		     unsigned n_sectors, unsigned offset)
 556{
 557	int r;
 558	struct dm_io_request io_req = {
 559		.bi_op = rw,
 560		.bi_op_flags = 0,
 561		.notify.fn = dmio_complete,
 562		.notify.context = b,
 563		.client = b->c->dm_io,
 564	};
 565	struct dm_io_region region = {
 566		.bdev = b->c->bdev,
 567		.sector = sector,
 568		.count = n_sectors,
 569	};
 570
 571	if (b->data_mode != DATA_MODE_VMALLOC) {
 572		io_req.mem.type = DM_IO_KMEM;
 573		io_req.mem.ptr.addr = (char *)b->data + offset;
 574	} else {
 575		io_req.mem.type = DM_IO_VMA;
 576		io_req.mem.ptr.vma = (char *)b->data + offset;
 577	}
 578
 579	r = dm_io(&io_req, 1, &region, NULL);
 580	if (unlikely(r))
 581		b->end_io(b, errno_to_blk_status(r));
 582}
 583
 584static void bio_complete(struct bio *bio)
 585{
 586	struct dm_buffer *b = bio->bi_private;
 587	blk_status_t status = bio->bi_status;
 588	bio_put(bio);
 589	b->end_io(b, status);
 590}
 591
 592static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
 593		    unsigned n_sectors, unsigned offset)
 594{
 595	struct bio *bio;
 596	char *ptr;
 597	unsigned vec_size, len;
 598
 599	vec_size = b->c->block_size >> PAGE_SHIFT;
 600	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 601		vec_size += 2;
 602
 603	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
 604	if (!bio) {
 605dmio:
 606		use_dmio(b, rw, sector, n_sectors, offset);
 607		return;
 608	}
 609
 610	bio->bi_iter.bi_sector = sector;
 611	bio_set_dev(bio, b->c->bdev);
 612	bio_set_op_attrs(bio, rw, 0);
 613	bio->bi_end_io = bio_complete;
 614	bio->bi_private = b;
 615
 616	ptr = (char *)b->data + offset;
 617	len = n_sectors << SECTOR_SHIFT;
 618
 619	do {
 620		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 621		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 622				  offset_in_page(ptr))) {
 623			bio_put(bio);
 624			goto dmio;
 625		}
 626
 627		len -= this_step;
 628		ptr += this_step;
 629	} while (len > 0);
 630
 631	submit_bio(bio);
 632}
 633
 634static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
 635{
 636	unsigned n_sectors;
 637	sector_t sector;
 638	unsigned offset, end;
 639
 640	b->end_io = end_io;
 641
 642	if (likely(b->c->sectors_per_block_bits >= 0))
 643		sector = b->block << b->c->sectors_per_block_bits;
 644	else
 645		sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
 646	sector += b->c->start;
 647
 648	if (rw != REQ_OP_WRITE) {
 649		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 650		offset = 0;
 651	} else {
 652		if (b->c->write_callback)
 653			b->c->write_callback(b);
 654		offset = b->write_start;
 655		end = b->write_end;
 656		offset &= -DM_BUFIO_WRITE_ALIGN;
 657		end += DM_BUFIO_WRITE_ALIGN - 1;
 658		end &= -DM_BUFIO_WRITE_ALIGN;
 659		if (unlikely(end > b->c->block_size))
 660			end = b->c->block_size;
 661
 662		sector += offset >> SECTOR_SHIFT;
 663		n_sectors = (end - offset) >> SECTOR_SHIFT;
 664	}
 665
 666	if (b->data_mode != DATA_MODE_VMALLOC)
 667		use_bio(b, rw, sector, n_sectors, offset);
 668	else
 669		use_dmio(b, rw, sector, n_sectors, offset);
 670}
 671
 672/*----------------------------------------------------------------
 673 * Writing dirty buffers
 674 *--------------------------------------------------------------*/
 675
 676/*
 677 * The endio routine for write.
 678 *
 679 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 680 * it.
 681 */
 682static void write_endio(struct dm_buffer *b, blk_status_t status)
 683{
 684	b->write_error = status;
 685	if (unlikely(status)) {
 686		struct dm_bufio_client *c = b->c;
 687
 688		(void)cmpxchg(&c->async_write_error, 0,
 689				blk_status_to_errno(status));
 690	}
 691
 692	BUG_ON(!test_bit(B_WRITING, &b->state));
 693
 694	smp_mb__before_atomic();
 695	clear_bit(B_WRITING, &b->state);
 696	smp_mb__after_atomic();
 697
 698	wake_up_bit(&b->state, B_WRITING);
 699}
 700
 701/*
 702 * Initiate a write on a dirty buffer, but don't wait for it.
 703 *
 704 * - If the buffer is not dirty, exit.
 705 * - If there some previous write going on, wait for it to finish (we can't
 706 *   have two writes on the same buffer simultaneously).
 707 * - Submit our write and don't wait on it. We set B_WRITING indicating
 708 *   that there is a write in progress.
 709 */
 710static void __write_dirty_buffer(struct dm_buffer *b,
 711				 struct list_head *write_list)
 712{
 713	if (!test_bit(B_DIRTY, &b->state))
 714		return;
 715
 716	clear_bit(B_DIRTY, &b->state);
 717	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 718
 719	b->write_start = b->dirty_start;
 720	b->write_end = b->dirty_end;
 721
 722	if (!write_list)
 723		submit_io(b, REQ_OP_WRITE, write_endio);
 724	else
 725		list_add_tail(&b->write_list, write_list);
 726}
 727
 728static void __flush_write_list(struct list_head *write_list)
 729{
 730	struct blk_plug plug;
 731	blk_start_plug(&plug);
 732	while (!list_empty(write_list)) {
 733		struct dm_buffer *b =
 734			list_entry(write_list->next, struct dm_buffer, write_list);
 735		list_del(&b->write_list);
 736		submit_io(b, REQ_OP_WRITE, write_endio);
 737		cond_resched();
 738	}
 739	blk_finish_plug(&plug);
 740}
 741
 742/*
 743 * Wait until any activity on the buffer finishes.  Possibly write the
 744 * buffer if it is dirty.  When this function finishes, there is no I/O
 745 * running on the buffer and the buffer is not dirty.
 746 */
 747static void __make_buffer_clean(struct dm_buffer *b)
 748{
 749	BUG_ON(b->hold_count);
 750
 751	if (!b->state)	/* fast case */
 752		return;
 753
 754	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 755	__write_dirty_buffer(b, NULL);
 756	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 757}
 758
 759/*
 760 * Find some buffer that is not held by anybody, clean it, unlink it and
 761 * return it.
 762 */
 763static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 764{
 765	struct dm_buffer *b;
 766
 767	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 768		BUG_ON(test_bit(B_WRITING, &b->state));
 769		BUG_ON(test_bit(B_DIRTY, &b->state));
 770
 771		if (!b->hold_count) {
 772			__make_buffer_clean(b);
 773			__unlink_buffer(b);
 774			return b;
 775		}
 776		cond_resched();
 777	}
 778
 779	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 780		BUG_ON(test_bit(B_READING, &b->state));
 781
 782		if (!b->hold_count) {
 783			__make_buffer_clean(b);
 784			__unlink_buffer(b);
 785			return b;
 786		}
 787		cond_resched();
 788	}
 789
 790	return NULL;
 791}
 792
 793/*
 794 * Wait until some other threads free some buffer or release hold count on
 795 * some buffer.
 796 *
 797 * This function is entered with c->lock held, drops it and regains it
 798 * before exiting.
 799 */
 800static void __wait_for_free_buffer(struct dm_bufio_client *c)
 801{
 802	DECLARE_WAITQUEUE(wait, current);
 803
 804	add_wait_queue(&c->free_buffer_wait, &wait);
 805	set_current_state(TASK_UNINTERRUPTIBLE);
 806	dm_bufio_unlock(c);
 807
 808	io_schedule();
 809
 810	remove_wait_queue(&c->free_buffer_wait, &wait);
 811
 812	dm_bufio_lock(c);
 813}
 814
 815enum new_flag {
 816	NF_FRESH = 0,
 817	NF_READ = 1,
 818	NF_GET = 2,
 819	NF_PREFETCH = 3
 820};
 821
 822/*
 823 * Allocate a new buffer. If the allocation is not possible, wait until
 824 * some other thread frees a buffer.
 825 *
 826 * May drop the lock and regain it.
 827 */
 828static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 829{
 830	struct dm_buffer *b;
 831	bool tried_noio_alloc = false;
 832
 833	/*
 834	 * dm-bufio is resistant to allocation failures (it just keeps
 835	 * one buffer reserved in cases all the allocations fail).
 836	 * So set flags to not try too hard:
 837	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 838	 *		    mutex and wait ourselves.
 839	 *	__GFP_NORETRY: don't retry and rather return failure
 840	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 841	 *	__GFP_NOWARN: don't print a warning in case of failure
 842	 *
 843	 * For debugging, if we set the cache size to 1, no new buffers will
 844	 * be allocated.
 845	 */
 846	while (1) {
 847		if (dm_bufio_cache_size_latch != 1) {
 848			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 849			if (b)
 850				return b;
 851		}
 852
 853		if (nf == NF_PREFETCH)
 854			return NULL;
 855
 856		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 857			dm_bufio_unlock(c);
 858			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 859			dm_bufio_lock(c);
 860			if (b)
 861				return b;
 862			tried_noio_alloc = true;
 863		}
 864
 865		if (!list_empty(&c->reserved_buffers)) {
 866			b = list_entry(c->reserved_buffers.next,
 867				       struct dm_buffer, lru_list);
 868			list_del(&b->lru_list);
 869			c->need_reserved_buffers++;
 870
 871			return b;
 872		}
 873
 874		b = __get_unclaimed_buffer(c);
 875		if (b)
 876			return b;
 877
 878		__wait_for_free_buffer(c);
 879	}
 880}
 881
 882static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 883{
 884	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 885
 886	if (!b)
 887		return NULL;
 888
 889	if (c->alloc_callback)
 890		c->alloc_callback(b);
 891
 892	return b;
 893}
 894
 895/*
 896 * Free a buffer and wake other threads waiting for free buffers.
 897 */
 898static void __free_buffer_wake(struct dm_buffer *b)
 899{
 900	struct dm_bufio_client *c = b->c;
 901
 902	if (!c->need_reserved_buffers)
 903		free_buffer(b);
 904	else {
 905		list_add(&b->lru_list, &c->reserved_buffers);
 906		c->need_reserved_buffers--;
 907	}
 908
 909	wake_up(&c->free_buffer_wait);
 910}
 911
 912static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 913					struct list_head *write_list)
 914{
 915	struct dm_buffer *b, *tmp;
 916
 917	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 918		BUG_ON(test_bit(B_READING, &b->state));
 919
 920		if (!test_bit(B_DIRTY, &b->state) &&
 921		    !test_bit(B_WRITING, &b->state)) {
 922			__relink_lru(b, LIST_CLEAN);
 923			continue;
 924		}
 925
 926		if (no_wait && test_bit(B_WRITING, &b->state))
 927			return;
 928
 929		__write_dirty_buffer(b, write_list);
 930		cond_resched();
 931	}
 932}
 933
 934/*
 935 * Check if we're over watermark.
 936 * If we are over threshold_buffers, start freeing buffers.
 937 * If we're over "limit_buffers", block until we get under the limit.
 938 */
 939static void __check_watermark(struct dm_bufio_client *c,
 940			      struct list_head *write_list)
 941{
 942	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
 943		__write_dirty_buffers_async(c, 1, write_list);
 944}
 945
 946/*----------------------------------------------------------------
 947 * Getting a buffer
 948 *--------------------------------------------------------------*/
 949
 950static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 951				     enum new_flag nf, int *need_submit,
 952				     struct list_head *write_list)
 953{
 954	struct dm_buffer *b, *new_b = NULL;
 955
 956	*need_submit = 0;
 957
 958	b = __find(c, block);
 959	if (b)
 960		goto found_buffer;
 961
 962	if (nf == NF_GET)
 963		return NULL;
 964
 965	new_b = __alloc_buffer_wait(c, nf);
 966	if (!new_b)
 967		return NULL;
 968
 969	/*
 970	 * We've had a period where the mutex was unlocked, so need to
 971	 * recheck the buffer tree.
 972	 */
 973	b = __find(c, block);
 974	if (b) {
 975		__free_buffer_wake(new_b);
 976		goto found_buffer;
 977	}
 978
 979	__check_watermark(c, write_list);
 980
 981	b = new_b;
 982	b->hold_count = 1;
 983	b->read_error = 0;
 984	b->write_error = 0;
 985	__link_buffer(b, block, LIST_CLEAN);
 986
 987	if (nf == NF_FRESH) {
 988		b->state = 0;
 989		return b;
 990	}
 991
 992	b->state = 1 << B_READING;
 993	*need_submit = 1;
 994
 995	return b;
 996
 997found_buffer:
 998	if (nf == NF_PREFETCH)
 999		return NULL;
1000	/*
1001	 * Note: it is essential that we don't wait for the buffer to be
1002	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1003	 * dm_bufio_prefetch can be used in the driver request routine.
1004	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1005	 * the same buffer, it would deadlock if we waited.
1006	 */
1007	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1008		return NULL;
1009
1010	b->hold_count++;
1011	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1012		     test_bit(B_WRITING, &b->state));
1013	return b;
1014}
1015
1016/*
1017 * The endio routine for reading: set the error, clear the bit and wake up
1018 * anyone waiting on the buffer.
1019 */
1020static void read_endio(struct dm_buffer *b, blk_status_t status)
1021{
1022	b->read_error = status;
1023
1024	BUG_ON(!test_bit(B_READING, &b->state));
1025
1026	smp_mb__before_atomic();
1027	clear_bit(B_READING, &b->state);
1028	smp_mb__after_atomic();
1029
1030	wake_up_bit(&b->state, B_READING);
1031}
1032
1033/*
1034 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1035 * functions is similar except that dm_bufio_new doesn't read the
1036 * buffer from the disk (assuming that the caller overwrites all the data
1037 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1038 */
1039static void *new_read(struct dm_bufio_client *c, sector_t block,
1040		      enum new_flag nf, struct dm_buffer **bp)
1041{
1042	int need_submit;
1043	struct dm_buffer *b;
1044
1045	LIST_HEAD(write_list);
1046
1047	dm_bufio_lock(c);
1048	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1049#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1050	if (b && b->hold_count == 1)
1051		buffer_record_stack(b);
1052#endif
1053	dm_bufio_unlock(c);
1054
1055	__flush_write_list(&write_list);
1056
1057	if (!b)
1058		return NULL;
1059
1060	if (need_submit)
1061		submit_io(b, REQ_OP_READ, read_endio);
1062
1063	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1064
1065	if (b->read_error) {
1066		int error = blk_status_to_errno(b->read_error);
1067
1068		dm_bufio_release(b);
1069
1070		return ERR_PTR(error);
1071	}
1072
1073	*bp = b;
1074
1075	return b->data;
1076}
1077
1078void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1079		   struct dm_buffer **bp)
1080{
1081	return new_read(c, block, NF_GET, bp);
1082}
1083EXPORT_SYMBOL_GPL(dm_bufio_get);
1084
1085void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1086		    struct dm_buffer **bp)
1087{
1088	BUG_ON(dm_bufio_in_request());
1089
1090	return new_read(c, block, NF_READ, bp);
1091}
1092EXPORT_SYMBOL_GPL(dm_bufio_read);
1093
1094void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1095		   struct dm_buffer **bp)
1096{
1097	BUG_ON(dm_bufio_in_request());
1098
1099	return new_read(c, block, NF_FRESH, bp);
1100}
1101EXPORT_SYMBOL_GPL(dm_bufio_new);
1102
1103void dm_bufio_prefetch(struct dm_bufio_client *c,
1104		       sector_t block, unsigned n_blocks)
1105{
1106	struct blk_plug plug;
1107
1108	LIST_HEAD(write_list);
1109
1110	BUG_ON(dm_bufio_in_request());
1111
1112	blk_start_plug(&plug);
1113	dm_bufio_lock(c);
1114
1115	for (; n_blocks--; block++) {
1116		int need_submit;
1117		struct dm_buffer *b;
1118		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1119				&write_list);
1120		if (unlikely(!list_empty(&write_list))) {
1121			dm_bufio_unlock(c);
1122			blk_finish_plug(&plug);
1123			__flush_write_list(&write_list);
1124			blk_start_plug(&plug);
1125			dm_bufio_lock(c);
1126		}
1127		if (unlikely(b != NULL)) {
1128			dm_bufio_unlock(c);
1129
1130			if (need_submit)
1131				submit_io(b, REQ_OP_READ, read_endio);
1132			dm_bufio_release(b);
1133
1134			cond_resched();
1135
1136			if (!n_blocks)
1137				goto flush_plug;
1138			dm_bufio_lock(c);
1139		}
1140	}
1141
1142	dm_bufio_unlock(c);
1143
1144flush_plug:
1145	blk_finish_plug(&plug);
1146}
1147EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1148
1149void dm_bufio_release(struct dm_buffer *b)
1150{
1151	struct dm_bufio_client *c = b->c;
1152
1153	dm_bufio_lock(c);
1154
1155	BUG_ON(!b->hold_count);
1156
1157	b->hold_count--;
1158	if (!b->hold_count) {
1159		wake_up(&c->free_buffer_wait);
1160
1161		/*
1162		 * If there were errors on the buffer, and the buffer is not
1163		 * to be written, free the buffer. There is no point in caching
1164		 * invalid buffer.
1165		 */
1166		if ((b->read_error || b->write_error) &&
1167		    !test_bit(B_READING, &b->state) &&
1168		    !test_bit(B_WRITING, &b->state) &&
1169		    !test_bit(B_DIRTY, &b->state)) {
1170			__unlink_buffer(b);
1171			__free_buffer_wake(b);
1172		}
1173	}
1174
1175	dm_bufio_unlock(c);
1176}
1177EXPORT_SYMBOL_GPL(dm_bufio_release);
1178
1179void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1180					unsigned start, unsigned end)
1181{
1182	struct dm_bufio_client *c = b->c;
1183
1184	BUG_ON(start >= end);
1185	BUG_ON(end > b->c->block_size);
1186
1187	dm_bufio_lock(c);
1188
1189	BUG_ON(test_bit(B_READING, &b->state));
1190
1191	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1192		b->dirty_start = start;
1193		b->dirty_end = end;
1194		__relink_lru(b, LIST_DIRTY);
1195	} else {
1196		if (start < b->dirty_start)
1197			b->dirty_start = start;
1198		if (end > b->dirty_end)
1199			b->dirty_end = end;
1200	}
1201
1202	dm_bufio_unlock(c);
1203}
1204EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1205
1206void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1207{
1208	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1209}
1210EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1211
1212void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1213{
1214	LIST_HEAD(write_list);
1215
1216	BUG_ON(dm_bufio_in_request());
1217
1218	dm_bufio_lock(c);
1219	__write_dirty_buffers_async(c, 0, &write_list);
1220	dm_bufio_unlock(c);
1221	__flush_write_list(&write_list);
1222}
1223EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1224
1225/*
1226 * For performance, it is essential that the buffers are written asynchronously
1227 * and simultaneously (so that the block layer can merge the writes) and then
1228 * waited upon.
1229 *
1230 * Finally, we flush hardware disk cache.
1231 */
1232int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1233{
1234	int a, f;
1235	unsigned long buffers_processed = 0;
1236	struct dm_buffer *b, *tmp;
1237
1238	LIST_HEAD(write_list);
1239
1240	dm_bufio_lock(c);
1241	__write_dirty_buffers_async(c, 0, &write_list);
1242	dm_bufio_unlock(c);
1243	__flush_write_list(&write_list);
1244	dm_bufio_lock(c);
1245
1246again:
1247	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1248		int dropped_lock = 0;
1249
1250		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1251			buffers_processed++;
1252
1253		BUG_ON(test_bit(B_READING, &b->state));
1254
1255		if (test_bit(B_WRITING, &b->state)) {
1256			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1257				dropped_lock = 1;
1258				b->hold_count++;
1259				dm_bufio_unlock(c);
1260				wait_on_bit_io(&b->state, B_WRITING,
1261					       TASK_UNINTERRUPTIBLE);
1262				dm_bufio_lock(c);
1263				b->hold_count--;
1264			} else
1265				wait_on_bit_io(&b->state, B_WRITING,
1266					       TASK_UNINTERRUPTIBLE);
1267		}
1268
1269		if (!test_bit(B_DIRTY, &b->state) &&
1270		    !test_bit(B_WRITING, &b->state))
1271			__relink_lru(b, LIST_CLEAN);
1272
1273		cond_resched();
1274
1275		/*
1276		 * If we dropped the lock, the list is no longer consistent,
1277		 * so we must restart the search.
1278		 *
1279		 * In the most common case, the buffer just processed is
1280		 * relinked to the clean list, so we won't loop scanning the
1281		 * same buffer again and again.
1282		 *
1283		 * This may livelock if there is another thread simultaneously
1284		 * dirtying buffers, so we count the number of buffers walked
1285		 * and if it exceeds the total number of buffers, it means that
1286		 * someone is doing some writes simultaneously with us.  In
1287		 * this case, stop, dropping the lock.
1288		 */
1289		if (dropped_lock)
1290			goto again;
1291	}
1292	wake_up(&c->free_buffer_wait);
1293	dm_bufio_unlock(c);
1294
1295	a = xchg(&c->async_write_error, 0);
1296	f = dm_bufio_issue_flush(c);
1297	if (a)
1298		return a;
1299
1300	return f;
1301}
1302EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1303
1304/*
1305 * Use dm-io to send an empty barrier to flush the device.
1306 */
1307int dm_bufio_issue_flush(struct dm_bufio_client *c)
1308{
1309	struct dm_io_request io_req = {
1310		.bi_op = REQ_OP_WRITE,
1311		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1312		.mem.type = DM_IO_KMEM,
1313		.mem.ptr.addr = NULL,
1314		.client = c->dm_io,
1315	};
1316	struct dm_io_region io_reg = {
1317		.bdev = c->bdev,
1318		.sector = 0,
1319		.count = 0,
1320	};
1321
1322	BUG_ON(dm_bufio_in_request());
1323
1324	return dm_io(&io_req, 1, &io_reg, NULL);
1325}
1326EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1327
1328/*
1329 * We first delete any other buffer that may be at that new location.
1330 *
1331 * Then, we write the buffer to the original location if it was dirty.
1332 *
1333 * Then, if we are the only one who is holding the buffer, relink the buffer
1334 * in the buffer tree for the new location.
1335 *
1336 * If there was someone else holding the buffer, we write it to the new
1337 * location but not relink it, because that other user needs to have the buffer
1338 * at the same place.
1339 */
1340void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1341{
1342	struct dm_bufio_client *c = b->c;
1343	struct dm_buffer *new;
1344
1345	BUG_ON(dm_bufio_in_request());
1346
1347	dm_bufio_lock(c);
1348
1349retry:
1350	new = __find(c, new_block);
1351	if (new) {
1352		if (new->hold_count) {
1353			__wait_for_free_buffer(c);
1354			goto retry;
1355		}
1356
1357		/*
1358		 * FIXME: Is there any point waiting for a write that's going
1359		 * to be overwritten in a bit?
1360		 */
1361		__make_buffer_clean(new);
1362		__unlink_buffer(new);
1363		__free_buffer_wake(new);
1364	}
1365
1366	BUG_ON(!b->hold_count);
1367	BUG_ON(test_bit(B_READING, &b->state));
1368
1369	__write_dirty_buffer(b, NULL);
1370	if (b->hold_count == 1) {
1371		wait_on_bit_io(&b->state, B_WRITING,
1372			       TASK_UNINTERRUPTIBLE);
1373		set_bit(B_DIRTY, &b->state);
1374		b->dirty_start = 0;
1375		b->dirty_end = c->block_size;
1376		__unlink_buffer(b);
1377		__link_buffer(b, new_block, LIST_DIRTY);
1378	} else {
1379		sector_t old_block;
1380		wait_on_bit_lock_io(&b->state, B_WRITING,
1381				    TASK_UNINTERRUPTIBLE);
1382		/*
1383		 * Relink buffer to "new_block" so that write_callback
1384		 * sees "new_block" as a block number.
1385		 * After the write, link the buffer back to old_block.
1386		 * All this must be done in bufio lock, so that block number
1387		 * change isn't visible to other threads.
1388		 */
1389		old_block = b->block;
1390		__unlink_buffer(b);
1391		__link_buffer(b, new_block, b->list_mode);
1392		submit_io(b, REQ_OP_WRITE, write_endio);
1393		wait_on_bit_io(&b->state, B_WRITING,
1394			       TASK_UNINTERRUPTIBLE);
1395		__unlink_buffer(b);
1396		__link_buffer(b, old_block, b->list_mode);
1397	}
1398
1399	dm_bufio_unlock(c);
1400	dm_bufio_release(b);
1401}
1402EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1403
1404/*
1405 * Free the given buffer.
1406 *
1407 * This is just a hint, if the buffer is in use or dirty, this function
1408 * does nothing.
1409 */
1410void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1411{
1412	struct dm_buffer *b;
1413
1414	dm_bufio_lock(c);
1415
1416	b = __find(c, block);
1417	if (b && likely(!b->hold_count) && likely(!b->state)) {
1418		__unlink_buffer(b);
1419		__free_buffer_wake(b);
1420	}
1421
1422	dm_bufio_unlock(c);
1423}
1424EXPORT_SYMBOL_GPL(dm_bufio_forget);
1425
1426void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1427{
1428	c->minimum_buffers = n;
1429}
1430EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1431
1432unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1433{
1434	return c->block_size;
1435}
1436EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1437
1438sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1439{
1440	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1441	if (likely(c->sectors_per_block_bits >= 0))
1442		s >>= c->sectors_per_block_bits;
1443	else
1444		sector_div(s, c->block_size >> SECTOR_SHIFT);
1445	return s;
1446}
1447EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1448
1449sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1450{
1451	return b->block;
1452}
1453EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1454
1455void *dm_bufio_get_block_data(struct dm_buffer *b)
1456{
1457	return b->data;
1458}
1459EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1460
1461void *dm_bufio_get_aux_data(struct dm_buffer *b)
1462{
1463	return b + 1;
1464}
1465EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1466
1467struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1468{
1469	return b->c;
1470}
1471EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1472
1473static void drop_buffers(struct dm_bufio_client *c)
1474{
1475	struct dm_buffer *b;
1476	int i;
1477	bool warned = false;
1478
1479	BUG_ON(dm_bufio_in_request());
1480
1481	/*
1482	 * An optimization so that the buffers are not written one-by-one.
1483	 */
1484	dm_bufio_write_dirty_buffers_async(c);
1485
1486	dm_bufio_lock(c);
1487
1488	while ((b = __get_unclaimed_buffer(c)))
1489		__free_buffer_wake(b);
1490
1491	for (i = 0; i < LIST_SIZE; i++)
1492		list_for_each_entry(b, &c->lru[i], lru_list) {
1493			WARN_ON(!warned);
1494			warned = true;
1495			DMERR("leaked buffer %llx, hold count %u, list %d",
1496			      (unsigned long long)b->block, b->hold_count, i);
1497#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1498			stack_trace_print(b->stack_entries, b->stack_len, 1);
1499			/* mark unclaimed to avoid BUG_ON below */
1500			b->hold_count = 0;
1501#endif
1502		}
1503
1504#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1505	while ((b = __get_unclaimed_buffer(c)))
1506		__free_buffer_wake(b);
1507#endif
1508
1509	for (i = 0; i < LIST_SIZE; i++)
1510		BUG_ON(!list_empty(&c->lru[i]));
1511
1512	dm_bufio_unlock(c);
1513}
1514
1515/*
1516 * We may not be able to evict this buffer if IO pending or the client
1517 * is still using it.  Caller is expected to know buffer is too old.
1518 *
1519 * And if GFP_NOFS is used, we must not do any I/O because we hold
1520 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1521 * rerouted to different bufio client.
1522 */
1523static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1524{
1525	if (!(gfp & __GFP_FS)) {
1526		if (test_bit(B_READING, &b->state) ||
1527		    test_bit(B_WRITING, &b->state) ||
1528		    test_bit(B_DIRTY, &b->state))
1529			return false;
1530	}
1531
1532	if (b->hold_count)
1533		return false;
1534
1535	__make_buffer_clean(b);
1536	__unlink_buffer(b);
1537	__free_buffer_wake(b);
1538
1539	return true;
1540}
1541
1542static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1543{
1544	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1545	if (likely(c->sectors_per_block_bits >= 0))
1546		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1547	else
1548		retain_bytes /= c->block_size;
1549	return retain_bytes;
1550}
1551
1552static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1553			    gfp_t gfp_mask)
1554{
1555	int l;
1556	struct dm_buffer *b, *tmp;
1557	unsigned long freed = 0;
1558	unsigned long count = c->n_buffers[LIST_CLEAN] +
1559			      c->n_buffers[LIST_DIRTY];
1560	unsigned long retain_target = get_retain_buffers(c);
1561
1562	for (l = 0; l < LIST_SIZE; l++) {
1563		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1564			if (__try_evict_buffer(b, gfp_mask))
1565				freed++;
1566			if (!--nr_to_scan || ((count - freed) <= retain_target))
1567				return freed;
1568			cond_resched();
1569		}
1570	}
1571	return freed;
1572}
1573
1574static unsigned long
1575dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1576{
1577	struct dm_bufio_client *c;
1578	unsigned long freed;
1579
1580	c = container_of(shrink, struct dm_bufio_client, shrinker);
1581	if (sc->gfp_mask & __GFP_FS)
1582		dm_bufio_lock(c);
1583	else if (!dm_bufio_trylock(c))
1584		return SHRINK_STOP;
1585
1586	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1587	dm_bufio_unlock(c);
1588	return freed;
1589}
1590
1591static unsigned long
1592dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1593{
1594	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1595	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1596			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1597	unsigned long retain_target = get_retain_buffers(c);
1598
1599	return (count < retain_target) ? 0 : (count - retain_target);
1600}
1601
1602/*
1603 * Create the buffering interface
1604 */
1605struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1606					       unsigned reserved_buffers, unsigned aux_size,
1607					       void (*alloc_callback)(struct dm_buffer *),
1608					       void (*write_callback)(struct dm_buffer *))
1609{
1610	int r;
1611	struct dm_bufio_client *c;
1612	unsigned i;
1613	char slab_name[27];
1614
1615	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1616		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1617		r = -EINVAL;
1618		goto bad_client;
1619	}
1620
1621	c = kzalloc(sizeof(*c), GFP_KERNEL);
1622	if (!c) {
1623		r = -ENOMEM;
1624		goto bad_client;
1625	}
1626	c->buffer_tree = RB_ROOT;
1627
1628	c->bdev = bdev;
1629	c->block_size = block_size;
1630	if (is_power_of_2(block_size))
1631		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1632	else
1633		c->sectors_per_block_bits = -1;
1634
1635	c->alloc_callback = alloc_callback;
1636	c->write_callback = write_callback;
1637
1638	for (i = 0; i < LIST_SIZE; i++) {
1639		INIT_LIST_HEAD(&c->lru[i]);
1640		c->n_buffers[i] = 0;
1641	}
1642
1643	mutex_init(&c->lock);
1644	INIT_LIST_HEAD(&c->reserved_buffers);
1645	c->need_reserved_buffers = reserved_buffers;
1646
1647	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1648
1649	init_waitqueue_head(&c->free_buffer_wait);
1650	c->async_write_error = 0;
1651
1652	c->dm_io = dm_io_client_create();
1653	if (IS_ERR(c->dm_io)) {
1654		r = PTR_ERR(c->dm_io);
1655		goto bad_dm_io;
1656	}
1657
1658	if (block_size <= KMALLOC_MAX_SIZE &&
1659	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1660		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1661		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1662		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1663						  SLAB_RECLAIM_ACCOUNT, NULL);
1664		if (!c->slab_cache) {
1665			r = -ENOMEM;
1666			goto bad;
1667		}
1668	}
1669	if (aux_size)
1670		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1671	else
1672		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1673	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1674					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1675	if (!c->slab_buffer) {
1676		r = -ENOMEM;
1677		goto bad;
1678	}
1679
1680	while (c->need_reserved_buffers) {
1681		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1682
1683		if (!b) {
1684			r = -ENOMEM;
1685			goto bad;
1686		}
1687		__free_buffer_wake(b);
1688	}
1689
1690	c->shrinker.count_objects = dm_bufio_shrink_count;
1691	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1692	c->shrinker.seeks = 1;
1693	c->shrinker.batch = 0;
1694	r = register_shrinker(&c->shrinker);
1695	if (r)
1696		goto bad;
1697
1698	mutex_lock(&dm_bufio_clients_lock);
1699	dm_bufio_client_count++;
1700	list_add(&c->client_list, &dm_bufio_all_clients);
1701	__cache_size_refresh();
1702	mutex_unlock(&dm_bufio_clients_lock);
1703
1704	return c;
1705
1706bad:
1707	while (!list_empty(&c->reserved_buffers)) {
1708		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1709						 struct dm_buffer, lru_list);
1710		list_del(&b->lru_list);
1711		free_buffer(b);
1712	}
1713	kmem_cache_destroy(c->slab_cache);
1714	kmem_cache_destroy(c->slab_buffer);
1715	dm_io_client_destroy(c->dm_io);
1716bad_dm_io:
1717	mutex_destroy(&c->lock);
1718	kfree(c);
1719bad_client:
1720	return ERR_PTR(r);
1721}
1722EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1723
1724/*
1725 * Free the buffering interface.
1726 * It is required that there are no references on any buffers.
1727 */
1728void dm_bufio_client_destroy(struct dm_bufio_client *c)
1729{
1730	unsigned i;
1731
1732	drop_buffers(c);
1733
1734	unregister_shrinker(&c->shrinker);
1735
1736	mutex_lock(&dm_bufio_clients_lock);
1737
1738	list_del(&c->client_list);
1739	dm_bufio_client_count--;
1740	__cache_size_refresh();
1741
1742	mutex_unlock(&dm_bufio_clients_lock);
1743
1744	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1745	BUG_ON(c->need_reserved_buffers);
1746
1747	while (!list_empty(&c->reserved_buffers)) {
1748		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1749						 struct dm_buffer, lru_list);
1750		list_del(&b->lru_list);
1751		free_buffer(b);
1752	}
1753
1754	for (i = 0; i < LIST_SIZE; i++)
1755		if (c->n_buffers[i])
1756			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1757
1758	for (i = 0; i < LIST_SIZE; i++)
1759		BUG_ON(c->n_buffers[i]);
1760
1761	kmem_cache_destroy(c->slab_cache);
1762	kmem_cache_destroy(c->slab_buffer);
1763	dm_io_client_destroy(c->dm_io);
1764	mutex_destroy(&c->lock);
1765	kfree(c);
1766}
1767EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1768
1769void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1770{
1771	c->start = start;
1772}
1773EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1774
1775static unsigned get_max_age_hz(void)
1776{
1777	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1778
1779	if (max_age > UINT_MAX / HZ)
1780		max_age = UINT_MAX / HZ;
1781
1782	return max_age * HZ;
1783}
1784
1785static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1786{
1787	return time_after_eq(jiffies, b->last_accessed + age_hz);
1788}
1789
1790static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1791{
1792	struct dm_buffer *b, *tmp;
1793	unsigned long retain_target = get_retain_buffers(c);
1794	unsigned long count;
1795	LIST_HEAD(write_list);
1796
1797	dm_bufio_lock(c);
1798
1799	__check_watermark(c, &write_list);
1800	if (unlikely(!list_empty(&write_list))) {
1801		dm_bufio_unlock(c);
1802		__flush_write_list(&write_list);
1803		dm_bufio_lock(c);
1804	}
1805
1806	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1807	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1808		if (count <= retain_target)
1809			break;
1810
1811		if (!older_than(b, age_hz))
1812			break;
1813
1814		if (__try_evict_buffer(b, 0))
1815			count--;
1816
1817		cond_resched();
1818	}
1819
1820	dm_bufio_unlock(c);
1821}
1822
1823static void do_global_cleanup(struct work_struct *w)
1824{
1825	struct dm_bufio_client *locked_client = NULL;
1826	struct dm_bufio_client *current_client;
1827	struct dm_buffer *b;
1828	unsigned spinlock_hold_count;
1829	unsigned long threshold = dm_bufio_cache_size -
1830		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1831	unsigned long loops = global_num * 2;
1832
1833	mutex_lock(&dm_bufio_clients_lock);
1834
1835	while (1) {
1836		cond_resched();
1837
1838		spin_lock(&global_spinlock);
1839		if (unlikely(dm_bufio_current_allocated <= threshold))
1840			break;
1841
1842		spinlock_hold_count = 0;
1843get_next:
1844		if (!loops--)
1845			break;
1846		if (unlikely(list_empty(&global_queue)))
1847			break;
1848		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1849
1850		if (b->accessed) {
1851			b->accessed = 0;
1852			list_move(&b->global_list, &global_queue);
1853			if (likely(++spinlock_hold_count < 16))
1854				goto get_next;
1855			spin_unlock(&global_spinlock);
1856			continue;
1857		}
1858
1859		current_client = b->c;
1860		if (unlikely(current_client != locked_client)) {
1861			if (locked_client)
1862				dm_bufio_unlock(locked_client);
1863
1864			if (!dm_bufio_trylock(current_client)) {
1865				spin_unlock(&global_spinlock);
1866				dm_bufio_lock(current_client);
1867				locked_client = current_client;
1868				continue;
1869			}
1870
1871			locked_client = current_client;
1872		}
1873
1874		spin_unlock(&global_spinlock);
1875
1876		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1877			spin_lock(&global_spinlock);
1878			list_move(&b->global_list, &global_queue);
1879			spin_unlock(&global_spinlock);
1880		}
1881	}
1882
1883	spin_unlock(&global_spinlock);
1884
1885	if (locked_client)
1886		dm_bufio_unlock(locked_client);
1887
1888	mutex_unlock(&dm_bufio_clients_lock);
1889}
1890
1891static void cleanup_old_buffers(void)
1892{
1893	unsigned long max_age_hz = get_max_age_hz();
1894	struct dm_bufio_client *c;
1895
1896	mutex_lock(&dm_bufio_clients_lock);
1897
1898	__cache_size_refresh();
1899
1900	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1901		__evict_old_buffers(c, max_age_hz);
1902
1903	mutex_unlock(&dm_bufio_clients_lock);
1904}
1905
1906static void work_fn(struct work_struct *w)
1907{
1908	cleanup_old_buffers();
1909
1910	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
1911			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1912}
1913
1914/*----------------------------------------------------------------
1915 * Module setup
1916 *--------------------------------------------------------------*/
1917
1918/*
1919 * This is called only once for the whole dm_bufio module.
1920 * It initializes memory limit.
1921 */
1922static int __init dm_bufio_init(void)
1923{
1924	__u64 mem;
1925
1926	dm_bufio_allocated_kmem_cache = 0;
1927	dm_bufio_allocated_get_free_pages = 0;
1928	dm_bufio_allocated_vmalloc = 0;
1929	dm_bufio_current_allocated = 0;
1930
1931	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
1932			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1933
1934	if (mem > ULONG_MAX)
1935		mem = ULONG_MAX;
1936
1937#ifdef CONFIG_MMU
1938	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1939		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1940#endif
1941
1942	dm_bufio_default_cache_size = mem;
1943
1944	mutex_lock(&dm_bufio_clients_lock);
1945	__cache_size_refresh();
1946	mutex_unlock(&dm_bufio_clients_lock);
1947
1948	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1949	if (!dm_bufio_wq)
1950		return -ENOMEM;
1951
1952	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
1953	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
1954	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
1955			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1956
1957	return 0;
1958}
1959
1960/*
1961 * This is called once when unloading the dm_bufio module.
1962 */
1963static void __exit dm_bufio_exit(void)
1964{
1965	int bug = 0;
1966
1967	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
1968	flush_workqueue(dm_bufio_wq);
1969	destroy_workqueue(dm_bufio_wq);
1970
1971	if (dm_bufio_client_count) {
1972		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1973			__func__, dm_bufio_client_count);
1974		bug = 1;
1975	}
1976
1977	if (dm_bufio_current_allocated) {
1978		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1979			__func__, dm_bufio_current_allocated);
1980		bug = 1;
1981	}
1982
1983	if (dm_bufio_allocated_get_free_pages) {
1984		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1985		       __func__, dm_bufio_allocated_get_free_pages);
1986		bug = 1;
1987	}
1988
1989	if (dm_bufio_allocated_vmalloc) {
1990		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1991		       __func__, dm_bufio_allocated_vmalloc);
1992		bug = 1;
1993	}
1994
1995	BUG_ON(bug);
1996}
1997
1998module_init(dm_bufio_init)
1999module_exit(dm_bufio_exit)
2000
2001module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2002MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2003
2004module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2005MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2006
2007module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2008MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2009
2010module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2011MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2012
2013module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2014MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2015
2016module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2017MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2018
2019module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2020MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2021
2022module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2023MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2024
2025MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2026MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2027MODULE_LICENSE("GPL");