Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
  21
  22#define DM_MSG_PREFIX "bufio"
  23
  24/*
  25 * Memory management policy:
  26 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  27 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  28 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  29 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  30 *	dirty buffers.
  31 */
  32#define DM_BUFIO_MIN_BUFFERS		8
  33
  34#define DM_BUFIO_MEMORY_PERCENT		2
  35#define DM_BUFIO_VMALLOC_PERCENT	25
  36#define DM_BUFIO_WRITEBACK_PERCENT	75
  37
  38/*
  39 * Check buffer ages in this interval (seconds)
  40 */
  41#define DM_BUFIO_WORK_TIMER_SECS	30
  42
  43/*
  44 * Free buffers when they are older than this (seconds)
  45 */
  46#define DM_BUFIO_DEFAULT_AGE_SECS	300
  47
  48/*
  49 * The nr of bytes of cached data to keep around.
  50 */
  51#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  52
  53/*
  54 * Align buffer writes to this boundary.
  55 * Tests show that SSDs have the highest IOPS when using 4k writes.
  56 */
  57#define DM_BUFIO_WRITE_ALIGN		4096
  58
  59/*
  60 * dm_buffer->list_mode
  61 */
  62#define LIST_CLEAN	0
  63#define LIST_DIRTY	1
  64#define LIST_SIZE	2
  65
  66/*
  67 * Linking of buffers:
  68 *	All buffers are linked to cache_hash with their hash_list field.
  69 *
  70 *	Clean buffers that are not being written (B_WRITING not set)
  71 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  72 *
  73 *	Dirty and clean buffers that are being written are linked to
  74 *	lru[LIST_DIRTY] with their lru_list field. When the write
  75 *	finishes, the buffer cannot be relinked immediately (because we
  76 *	are in an interrupt context and relinking requires process
  77 *	context), so some clean-not-writing buffers can be held on
  78 *	dirty_lru too.  They are later added to lru in the process
  79 *	context.
  80 */
  81struct dm_bufio_client {
  82	struct mutex lock;
  83
  84	struct list_head lru[LIST_SIZE];
  85	unsigned long n_buffers[LIST_SIZE];
  86
  87	struct block_device *bdev;
  88	unsigned block_size;
  89	s8 sectors_per_block_bits;
  90	void (*alloc_callback)(struct dm_buffer *);
  91	void (*write_callback)(struct dm_buffer *);
  92
  93	struct kmem_cache *slab_buffer;
  94	struct kmem_cache *slab_cache;
  95	struct dm_io_client *dm_io;
  96
  97	struct list_head reserved_buffers;
  98	unsigned need_reserved_buffers;
  99
 100	unsigned minimum_buffers;
 101
 102	struct rb_root buffer_tree;
 103	wait_queue_head_t free_buffer_wait;
 104
 105	sector_t start;
 106
 107	int async_write_error;
 108
 109	struct list_head client_list;
 110	struct shrinker shrinker;
 111};
 112
 113/*
 114 * Buffer state bits.
 115 */
 116#define B_READING	0
 117#define B_WRITING	1
 118#define B_DIRTY		2
 119
 120/*
 121 * Describes how the block was allocated:
 122 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 123 * See the comment at alloc_buffer_data.
 124 */
 125enum data_mode {
 126	DATA_MODE_SLAB = 0,
 127	DATA_MODE_GET_FREE_PAGES = 1,
 128	DATA_MODE_VMALLOC = 2,
 129	DATA_MODE_LIMIT = 3
 130};
 131
 132struct dm_buffer {
 133	struct rb_node node;
 134	struct list_head lru_list;
 135	sector_t block;
 136	void *data;
 137	unsigned char data_mode;		/* DATA_MODE_* */
 138	unsigned char list_mode;		/* LIST_* */
 139	blk_status_t read_error;
 140	blk_status_t write_error;
 141	unsigned hold_count;
 142	unsigned long state;
 143	unsigned long last_accessed;
 144	unsigned dirty_start;
 145	unsigned dirty_end;
 146	unsigned write_start;
 147	unsigned write_end;
 148	struct dm_bufio_client *c;
 149	struct list_head write_list;
 150	void (*end_io)(struct dm_buffer *, blk_status_t);
 151#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 152#define MAX_STACK 10
 153	struct stack_trace stack_trace;
 154	unsigned long stack_entries[MAX_STACK];
 155#endif
 156};
 157
 158/*----------------------------------------------------------------*/
 159
 160#define dm_bufio_in_request()	(!!current->bio_list)
 161
 162static void dm_bufio_lock(struct dm_bufio_client *c)
 163{
 164	mutex_lock_nested(&c->lock, dm_bufio_in_request());
 165}
 166
 167static int dm_bufio_trylock(struct dm_bufio_client *c)
 168{
 169	return mutex_trylock(&c->lock);
 170}
 171
 172static void dm_bufio_unlock(struct dm_bufio_client *c)
 173{
 174	mutex_unlock(&c->lock);
 175}
 176
 177/*----------------------------------------------------------------*/
 178
 179/*
 180 * Default cache size: available memory divided by the ratio.
 181 */
 182static unsigned long dm_bufio_default_cache_size;
 183
 184/*
 185 * Total cache size set by the user.
 186 */
 187static unsigned long dm_bufio_cache_size;
 188
 189/*
 190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 191 * at any time.  If it disagrees, the user has changed cache size.
 192 */
 193static unsigned long dm_bufio_cache_size_latch;
 194
 195static DEFINE_SPINLOCK(param_spinlock);
 196
 197/*
 198 * Buffers are freed after this timeout
 199 */
 200static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 201static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 202
 203static unsigned long dm_bufio_peak_allocated;
 204static unsigned long dm_bufio_allocated_kmem_cache;
 205static unsigned long dm_bufio_allocated_get_free_pages;
 206static unsigned long dm_bufio_allocated_vmalloc;
 207static unsigned long dm_bufio_current_allocated;
 208
 209/*----------------------------------------------------------------*/
 210
 211/*
 212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
 213 */
 214static unsigned long dm_bufio_cache_size_per_client;
 215
 216/*
 217 * The current number of clients.
 218 */
 219static int dm_bufio_client_count;
 220
 221/*
 222 * The list of all clients.
 223 */
 224static LIST_HEAD(dm_bufio_all_clients);
 225
 226/*
 227 * This mutex protects dm_bufio_cache_size_latch,
 228 * dm_bufio_cache_size_per_client and dm_bufio_client_count
 229 */
 230static DEFINE_MUTEX(dm_bufio_clients_lock);
 231
 232#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 233static void buffer_record_stack(struct dm_buffer *b)
 234{
 235	b->stack_trace.nr_entries = 0;
 236	b->stack_trace.max_entries = MAX_STACK;
 237	b->stack_trace.entries = b->stack_entries;
 238	b->stack_trace.skip = 2;
 239	save_stack_trace(&b->stack_trace);
 240}
 241#endif
 242
 243/*----------------------------------------------------------------
 244 * A red/black tree acts as an index for all the buffers.
 245 *--------------------------------------------------------------*/
 246static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 247{
 248	struct rb_node *n = c->buffer_tree.rb_node;
 249	struct dm_buffer *b;
 250
 251	while (n) {
 252		b = container_of(n, struct dm_buffer, node);
 253
 254		if (b->block == block)
 255			return b;
 256
 257		n = (b->block < block) ? n->rb_left : n->rb_right;
 258	}
 259
 260	return NULL;
 261}
 262
 263static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 264{
 265	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 266	struct dm_buffer *found;
 267
 268	while (*new) {
 269		found = container_of(*new, struct dm_buffer, node);
 270
 271		if (found->block == b->block) {
 272			BUG_ON(found != b);
 273			return;
 274		}
 275
 276		parent = *new;
 277		new = (found->block < b->block) ?
 278			&((*new)->rb_left) : &((*new)->rb_right);
 279	}
 280
 281	rb_link_node(&b->node, parent, new);
 282	rb_insert_color(&b->node, &c->buffer_tree);
 283}
 284
 285static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 286{
 287	rb_erase(&b->node, &c->buffer_tree);
 288}
 289
 290/*----------------------------------------------------------------*/
 291
 292static void adjust_total_allocated(unsigned char data_mode, long diff)
 293{
 294	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 295		&dm_bufio_allocated_kmem_cache,
 296		&dm_bufio_allocated_get_free_pages,
 297		&dm_bufio_allocated_vmalloc,
 298	};
 299
 300	spin_lock(&param_spinlock);
 301
 302	*class_ptr[data_mode] += diff;
 303
 304	dm_bufio_current_allocated += diff;
 305
 306	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 307		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 308
 309	spin_unlock(&param_spinlock);
 310}
 311
 312/*
 313 * Change the number of clients and recalculate per-client limit.
 314 */
 315static void __cache_size_refresh(void)
 316{
 317	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 318	BUG_ON(dm_bufio_client_count < 0);
 319
 320	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 321
 322	/*
 323	 * Use default if set to 0 and report the actual cache size used.
 324	 */
 325	if (!dm_bufio_cache_size_latch) {
 326		(void)cmpxchg(&dm_bufio_cache_size, 0,
 327			      dm_bufio_default_cache_size);
 328		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 329	}
 330
 331	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
 332					 (dm_bufio_client_count ? : 1);
 333}
 334
 335/*
 336 * Allocating buffer data.
 337 *
 338 * Small buffers are allocated with kmem_cache, to use space optimally.
 339 *
 340 * For large buffers, we choose between get_free_pages and vmalloc.
 341 * Each has advantages and disadvantages.
 342 *
 343 * __get_free_pages can randomly fail if the memory is fragmented.
 344 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 345 * as low as 128M) so using it for caching is not appropriate.
 346 *
 347 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 348 * won't have a fatal effect here, but it just causes flushes of some other
 349 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 350 * always fails (i.e. order >= MAX_ORDER).
 351 *
 352 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 353 * initial reserve allocation, so there's no risk of wasting all vmalloc
 354 * space.
 355 */
 356static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 357			       unsigned char *data_mode)
 358{
 359	if (unlikely(c->slab_cache != NULL)) {
 360		*data_mode = DATA_MODE_SLAB;
 361		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 362	}
 363
 364	if (c->block_size <= KMALLOC_MAX_SIZE &&
 365	    gfp_mask & __GFP_NORETRY) {
 366		*data_mode = DATA_MODE_GET_FREE_PAGES;
 367		return (void *)__get_free_pages(gfp_mask,
 368						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 369	}
 370
 371	*data_mode = DATA_MODE_VMALLOC;
 372
 373	/*
 374	 * __vmalloc allocates the data pages and auxiliary structures with
 375	 * gfp_flags that were specified, but pagetables are always allocated
 376	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 377	 *
 378	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 379	 * all allocations done by this process (including pagetables) are done
 380	 * as if GFP_NOIO was specified.
 381	 */
 382	if (gfp_mask & __GFP_NORETRY) {
 383		unsigned noio_flag = memalloc_noio_save();
 384		void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 385
 386		memalloc_noio_restore(noio_flag);
 387		return ptr;
 388	}
 389
 390	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 391}
 392
 393/*
 394 * Free buffer's data.
 395 */
 396static void free_buffer_data(struct dm_bufio_client *c,
 397			     void *data, unsigned char data_mode)
 398{
 399	switch (data_mode) {
 400	case DATA_MODE_SLAB:
 401		kmem_cache_free(c->slab_cache, data);
 402		break;
 403
 404	case DATA_MODE_GET_FREE_PAGES:
 405		free_pages((unsigned long)data,
 406			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 407		break;
 408
 409	case DATA_MODE_VMALLOC:
 410		vfree(data);
 411		break;
 412
 413	default:
 414		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 415		       data_mode);
 416		BUG();
 417	}
 418}
 419
 420/*
 421 * Allocate buffer and its data.
 422 */
 423static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 424{
 425	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 426
 427	if (!b)
 428		return NULL;
 429
 430	b->c = c;
 431
 432	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 433	if (!b->data) {
 434		kmem_cache_free(c->slab_buffer, b);
 435		return NULL;
 436	}
 437
 438	adjust_total_allocated(b->data_mode, (long)c->block_size);
 439
 440#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 441	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
 442#endif
 443	return b;
 444}
 445
 446/*
 447 * Free buffer and its data.
 448 */
 449static void free_buffer(struct dm_buffer *b)
 450{
 451	struct dm_bufio_client *c = b->c;
 452
 453	adjust_total_allocated(b->data_mode, -(long)c->block_size);
 454
 455	free_buffer_data(c, b->data, b->data_mode);
 456	kmem_cache_free(c->slab_buffer, b);
 457}
 458
 459/*
 460 * Link buffer to the hash list and clean or dirty queue.
 461 */
 462static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 463{
 464	struct dm_bufio_client *c = b->c;
 465
 466	c->n_buffers[dirty]++;
 467	b->block = block;
 468	b->list_mode = dirty;
 469	list_add(&b->lru_list, &c->lru[dirty]);
 470	__insert(b->c, b);
 471	b->last_accessed = jiffies;
 472}
 473
 474/*
 475 * Unlink buffer from the hash list and dirty or clean queue.
 476 */
 477static void __unlink_buffer(struct dm_buffer *b)
 478{
 479	struct dm_bufio_client *c = b->c;
 480
 481	BUG_ON(!c->n_buffers[b->list_mode]);
 482
 483	c->n_buffers[b->list_mode]--;
 484	__remove(b->c, b);
 485	list_del(&b->lru_list);
 486}
 487
 488/*
 489 * Place the buffer to the head of dirty or clean LRU queue.
 490 */
 491static void __relink_lru(struct dm_buffer *b, int dirty)
 492{
 493	struct dm_bufio_client *c = b->c;
 494
 495	BUG_ON(!c->n_buffers[b->list_mode]);
 496
 497	c->n_buffers[b->list_mode]--;
 498	c->n_buffers[dirty]++;
 499	b->list_mode = dirty;
 500	list_move(&b->lru_list, &c->lru[dirty]);
 501	b->last_accessed = jiffies;
 502}
 503
 504/*----------------------------------------------------------------
 505 * Submit I/O on the buffer.
 506 *
 507 * Bio interface is faster but it has some problems:
 508 *	the vector list is limited (increasing this limit increases
 509 *	memory-consumption per buffer, so it is not viable);
 510 *
 511 *	the memory must be direct-mapped, not vmalloced;
 512 *
 513 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 514 * it is not vmalloced, try using the bio interface.
 515 *
 516 * If the buffer is big, if it is vmalloced or if the underlying device
 517 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 518 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 519 * shortcomings.
 520 *--------------------------------------------------------------*/
 521
 522/*
 523 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 524 * that the request was handled directly with bio interface.
 525 */
 526static void dmio_complete(unsigned long error, void *context)
 527{
 528	struct dm_buffer *b = context;
 529
 530	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 531}
 532
 533static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
 534		     unsigned n_sectors, unsigned offset)
 535{
 536	int r;
 537	struct dm_io_request io_req = {
 538		.bi_op = rw,
 539		.bi_op_flags = 0,
 540		.notify.fn = dmio_complete,
 541		.notify.context = b,
 542		.client = b->c->dm_io,
 543	};
 544	struct dm_io_region region = {
 545		.bdev = b->c->bdev,
 546		.sector = sector,
 547		.count = n_sectors,
 548	};
 549
 550	if (b->data_mode != DATA_MODE_VMALLOC) {
 551		io_req.mem.type = DM_IO_KMEM;
 552		io_req.mem.ptr.addr = (char *)b->data + offset;
 553	} else {
 554		io_req.mem.type = DM_IO_VMA;
 555		io_req.mem.ptr.vma = (char *)b->data + offset;
 556	}
 557
 558	r = dm_io(&io_req, 1, &region, NULL);
 559	if (unlikely(r))
 560		b->end_io(b, errno_to_blk_status(r));
 561}
 562
 563static void bio_complete(struct bio *bio)
 564{
 565	struct dm_buffer *b = bio->bi_private;
 566	blk_status_t status = bio->bi_status;
 567	bio_put(bio);
 568	b->end_io(b, status);
 569}
 570
 571static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
 572		    unsigned n_sectors, unsigned offset)
 573{
 574	struct bio *bio;
 575	char *ptr;
 576	unsigned vec_size, len;
 577
 578	vec_size = b->c->block_size >> PAGE_SHIFT;
 579	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 580		vec_size += 2;
 581
 582	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
 583	if (!bio) {
 584dmio:
 585		use_dmio(b, rw, sector, n_sectors, offset);
 586		return;
 587	}
 588
 589	bio->bi_iter.bi_sector = sector;
 590	bio_set_dev(bio, b->c->bdev);
 591	bio_set_op_attrs(bio, rw, 0);
 592	bio->bi_end_io = bio_complete;
 593	bio->bi_private = b;
 594
 595	ptr = (char *)b->data + offset;
 596	len = n_sectors << SECTOR_SHIFT;
 597
 598	do {
 599		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 600		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 601				  offset_in_page(ptr))) {
 602			bio_put(bio);
 603			goto dmio;
 604		}
 605
 606		len -= this_step;
 607		ptr += this_step;
 608	} while (len > 0);
 609
 610	submit_bio(bio);
 611}
 612
 613static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
 614{
 615	unsigned n_sectors;
 616	sector_t sector;
 617	unsigned offset, end;
 618
 619	b->end_io = end_io;
 620
 621	if (likely(b->c->sectors_per_block_bits >= 0))
 622		sector = b->block << b->c->sectors_per_block_bits;
 623	else
 624		sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
 625	sector += b->c->start;
 626
 627	if (rw != REQ_OP_WRITE) {
 628		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 629		offset = 0;
 630	} else {
 631		if (b->c->write_callback)
 632			b->c->write_callback(b);
 633		offset = b->write_start;
 634		end = b->write_end;
 635		offset &= -DM_BUFIO_WRITE_ALIGN;
 636		end += DM_BUFIO_WRITE_ALIGN - 1;
 637		end &= -DM_BUFIO_WRITE_ALIGN;
 638		if (unlikely(end > b->c->block_size))
 639			end = b->c->block_size;
 640
 641		sector += offset >> SECTOR_SHIFT;
 642		n_sectors = (end - offset) >> SECTOR_SHIFT;
 643	}
 644
 645	if (b->data_mode != DATA_MODE_VMALLOC)
 646		use_bio(b, rw, sector, n_sectors, offset);
 647	else
 648		use_dmio(b, rw, sector, n_sectors, offset);
 649}
 650
 651/*----------------------------------------------------------------
 652 * Writing dirty buffers
 653 *--------------------------------------------------------------*/
 654
 655/*
 656 * The endio routine for write.
 657 *
 658 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 659 * it.
 660 */
 661static void write_endio(struct dm_buffer *b, blk_status_t status)
 662{
 663	b->write_error = status;
 664	if (unlikely(status)) {
 665		struct dm_bufio_client *c = b->c;
 666
 667		(void)cmpxchg(&c->async_write_error, 0,
 668				blk_status_to_errno(status));
 669	}
 670
 671	BUG_ON(!test_bit(B_WRITING, &b->state));
 672
 673	smp_mb__before_atomic();
 674	clear_bit(B_WRITING, &b->state);
 675	smp_mb__after_atomic();
 676
 677	wake_up_bit(&b->state, B_WRITING);
 678}
 679
 680/*
 681 * Initiate a write on a dirty buffer, but don't wait for it.
 682 *
 683 * - If the buffer is not dirty, exit.
 684 * - If there some previous write going on, wait for it to finish (we can't
 685 *   have two writes on the same buffer simultaneously).
 686 * - Submit our write and don't wait on it. We set B_WRITING indicating
 687 *   that there is a write in progress.
 688 */
 689static void __write_dirty_buffer(struct dm_buffer *b,
 690				 struct list_head *write_list)
 691{
 692	if (!test_bit(B_DIRTY, &b->state))
 693		return;
 694
 695	clear_bit(B_DIRTY, &b->state);
 696	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 697
 698	b->write_start = b->dirty_start;
 699	b->write_end = b->dirty_end;
 700
 701	if (!write_list)
 702		submit_io(b, REQ_OP_WRITE, write_endio);
 703	else
 704		list_add_tail(&b->write_list, write_list);
 705}
 706
 707static void __flush_write_list(struct list_head *write_list)
 708{
 709	struct blk_plug plug;
 710	blk_start_plug(&plug);
 711	while (!list_empty(write_list)) {
 712		struct dm_buffer *b =
 713			list_entry(write_list->next, struct dm_buffer, write_list);
 714		list_del(&b->write_list);
 715		submit_io(b, REQ_OP_WRITE, write_endio);
 716		cond_resched();
 717	}
 718	blk_finish_plug(&plug);
 719}
 720
 721/*
 722 * Wait until any activity on the buffer finishes.  Possibly write the
 723 * buffer if it is dirty.  When this function finishes, there is no I/O
 724 * running on the buffer and the buffer is not dirty.
 725 */
 726static void __make_buffer_clean(struct dm_buffer *b)
 727{
 728	BUG_ON(b->hold_count);
 729
 730	if (!b->state)	/* fast case */
 731		return;
 732
 733	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 734	__write_dirty_buffer(b, NULL);
 735	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 736}
 737
 738/*
 739 * Find some buffer that is not held by anybody, clean it, unlink it and
 740 * return it.
 741 */
 742static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 743{
 744	struct dm_buffer *b;
 745
 746	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 747		BUG_ON(test_bit(B_WRITING, &b->state));
 748		BUG_ON(test_bit(B_DIRTY, &b->state));
 749
 750		if (!b->hold_count) {
 751			__make_buffer_clean(b);
 752			__unlink_buffer(b);
 753			return b;
 754		}
 755		cond_resched();
 756	}
 757
 758	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 759		BUG_ON(test_bit(B_READING, &b->state));
 760
 761		if (!b->hold_count) {
 762			__make_buffer_clean(b);
 763			__unlink_buffer(b);
 764			return b;
 765		}
 766		cond_resched();
 767	}
 768
 769	return NULL;
 770}
 771
 772/*
 773 * Wait until some other threads free some buffer or release hold count on
 774 * some buffer.
 775 *
 776 * This function is entered with c->lock held, drops it and regains it
 777 * before exiting.
 778 */
 779static void __wait_for_free_buffer(struct dm_bufio_client *c)
 780{
 781	DECLARE_WAITQUEUE(wait, current);
 782
 783	add_wait_queue(&c->free_buffer_wait, &wait);
 784	set_current_state(TASK_UNINTERRUPTIBLE);
 785	dm_bufio_unlock(c);
 786
 787	io_schedule();
 788
 789	remove_wait_queue(&c->free_buffer_wait, &wait);
 790
 791	dm_bufio_lock(c);
 792}
 793
 794enum new_flag {
 795	NF_FRESH = 0,
 796	NF_READ = 1,
 797	NF_GET = 2,
 798	NF_PREFETCH = 3
 799};
 800
 801/*
 802 * Allocate a new buffer. If the allocation is not possible, wait until
 803 * some other thread frees a buffer.
 804 *
 805 * May drop the lock and regain it.
 806 */
 807static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 808{
 809	struct dm_buffer *b;
 810	bool tried_noio_alloc = false;
 811
 812	/*
 813	 * dm-bufio is resistant to allocation failures (it just keeps
 814	 * one buffer reserved in cases all the allocations fail).
 815	 * So set flags to not try too hard:
 816	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 817	 *		    mutex and wait ourselves.
 818	 *	__GFP_NORETRY: don't retry and rather return failure
 819	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 820	 *	__GFP_NOWARN: don't print a warning in case of failure
 821	 *
 822	 * For debugging, if we set the cache size to 1, no new buffers will
 823	 * be allocated.
 824	 */
 825	while (1) {
 826		if (dm_bufio_cache_size_latch != 1) {
 827			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 828			if (b)
 829				return b;
 830		}
 831
 832		if (nf == NF_PREFETCH)
 833			return NULL;
 834
 835		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 836			dm_bufio_unlock(c);
 837			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 838			dm_bufio_lock(c);
 839			if (b)
 840				return b;
 841			tried_noio_alloc = true;
 842		}
 843
 844		if (!list_empty(&c->reserved_buffers)) {
 845			b = list_entry(c->reserved_buffers.next,
 846				       struct dm_buffer, lru_list);
 847			list_del(&b->lru_list);
 848			c->need_reserved_buffers++;
 849
 850			return b;
 851		}
 852
 853		b = __get_unclaimed_buffer(c);
 854		if (b)
 855			return b;
 856
 857		__wait_for_free_buffer(c);
 858	}
 859}
 860
 861static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 862{
 863	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 864
 865	if (!b)
 866		return NULL;
 867
 868	if (c->alloc_callback)
 869		c->alloc_callback(b);
 870
 871	return b;
 872}
 873
 874/*
 875 * Free a buffer and wake other threads waiting for free buffers.
 876 */
 877static void __free_buffer_wake(struct dm_buffer *b)
 878{
 879	struct dm_bufio_client *c = b->c;
 880
 881	if (!c->need_reserved_buffers)
 882		free_buffer(b);
 883	else {
 884		list_add(&b->lru_list, &c->reserved_buffers);
 885		c->need_reserved_buffers--;
 886	}
 887
 888	wake_up(&c->free_buffer_wait);
 889}
 890
 891static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 892					struct list_head *write_list)
 893{
 894	struct dm_buffer *b, *tmp;
 895
 896	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 897		BUG_ON(test_bit(B_READING, &b->state));
 898
 899		if (!test_bit(B_DIRTY, &b->state) &&
 900		    !test_bit(B_WRITING, &b->state)) {
 901			__relink_lru(b, LIST_CLEAN);
 902			continue;
 903		}
 904
 905		if (no_wait && test_bit(B_WRITING, &b->state))
 906			return;
 907
 908		__write_dirty_buffer(b, write_list);
 909		cond_resched();
 910	}
 911}
 912
 913/*
 914 * Get writeback threshold and buffer limit for a given client.
 915 */
 916static void __get_memory_limit(struct dm_bufio_client *c,
 917			       unsigned long *threshold_buffers,
 918			       unsigned long *limit_buffers)
 919{
 920	unsigned long buffers;
 921
 922	if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
 923		if (mutex_trylock(&dm_bufio_clients_lock)) {
 924			__cache_size_refresh();
 925			mutex_unlock(&dm_bufio_clients_lock);
 926		}
 927	}
 928
 929	buffers = dm_bufio_cache_size_per_client;
 930	if (likely(c->sectors_per_block_bits >= 0))
 931		buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
 932	else
 933		buffers /= c->block_size;
 934
 935	if (buffers < c->minimum_buffers)
 936		buffers = c->minimum_buffers;
 937
 938	*limit_buffers = buffers;
 939	*threshold_buffers = mult_frac(buffers,
 940				       DM_BUFIO_WRITEBACK_PERCENT, 100);
 941}
 942
 943/*
 944 * Check if we're over watermark.
 945 * If we are over threshold_buffers, start freeing buffers.
 946 * If we're over "limit_buffers", block until we get under the limit.
 947 */
 948static void __check_watermark(struct dm_bufio_client *c,
 949			      struct list_head *write_list)
 950{
 951	unsigned long threshold_buffers, limit_buffers;
 952
 953	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
 954
 955	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
 956	       limit_buffers) {
 957
 958		struct dm_buffer *b = __get_unclaimed_buffer(c);
 959
 960		if (!b)
 961			return;
 962
 963		__free_buffer_wake(b);
 964		cond_resched();
 965	}
 966
 967	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
 968		__write_dirty_buffers_async(c, 1, write_list);
 969}
 970
 971/*----------------------------------------------------------------
 972 * Getting a buffer
 973 *--------------------------------------------------------------*/
 974
 975static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 976				     enum new_flag nf, int *need_submit,
 977				     struct list_head *write_list)
 978{
 979	struct dm_buffer *b, *new_b = NULL;
 980
 981	*need_submit = 0;
 982
 983	b = __find(c, block);
 984	if (b)
 985		goto found_buffer;
 986
 987	if (nf == NF_GET)
 988		return NULL;
 989
 990	new_b = __alloc_buffer_wait(c, nf);
 991	if (!new_b)
 992		return NULL;
 993
 994	/*
 995	 * We've had a period where the mutex was unlocked, so need to
 996	 * recheck the hash table.
 997	 */
 998	b = __find(c, block);
 999	if (b) {
1000		__free_buffer_wake(new_b);
1001		goto found_buffer;
1002	}
1003
1004	__check_watermark(c, write_list);
1005
1006	b = new_b;
1007	b->hold_count = 1;
1008	b->read_error = 0;
1009	b->write_error = 0;
1010	__link_buffer(b, block, LIST_CLEAN);
1011
1012	if (nf == NF_FRESH) {
1013		b->state = 0;
1014		return b;
1015	}
1016
1017	b->state = 1 << B_READING;
1018	*need_submit = 1;
1019
1020	return b;
1021
1022found_buffer:
1023	if (nf == NF_PREFETCH)
1024		return NULL;
1025	/*
1026	 * Note: it is essential that we don't wait for the buffer to be
1027	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1028	 * dm_bufio_prefetch can be used in the driver request routine.
1029	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1030	 * the same buffer, it would deadlock if we waited.
1031	 */
1032	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1033		return NULL;
1034
1035	b->hold_count++;
1036	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1037		     test_bit(B_WRITING, &b->state));
1038	return b;
1039}
1040
1041/*
1042 * The endio routine for reading: set the error, clear the bit and wake up
1043 * anyone waiting on the buffer.
1044 */
1045static void read_endio(struct dm_buffer *b, blk_status_t status)
1046{
1047	b->read_error = status;
1048
1049	BUG_ON(!test_bit(B_READING, &b->state));
1050
1051	smp_mb__before_atomic();
1052	clear_bit(B_READING, &b->state);
1053	smp_mb__after_atomic();
1054
1055	wake_up_bit(&b->state, B_READING);
1056}
1057
1058/*
1059 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1060 * functions is similar except that dm_bufio_new doesn't read the
1061 * buffer from the disk (assuming that the caller overwrites all the data
1062 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1063 */
1064static void *new_read(struct dm_bufio_client *c, sector_t block,
1065		      enum new_flag nf, struct dm_buffer **bp)
1066{
1067	int need_submit;
1068	struct dm_buffer *b;
1069
1070	LIST_HEAD(write_list);
1071
1072	dm_bufio_lock(c);
1073	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1074#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1075	if (b && b->hold_count == 1)
1076		buffer_record_stack(b);
1077#endif
1078	dm_bufio_unlock(c);
1079
1080	__flush_write_list(&write_list);
1081
1082	if (!b)
1083		return NULL;
1084
1085	if (need_submit)
1086		submit_io(b, REQ_OP_READ, read_endio);
1087
1088	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1089
1090	if (b->read_error) {
1091		int error = blk_status_to_errno(b->read_error);
1092
1093		dm_bufio_release(b);
1094
1095		return ERR_PTR(error);
1096	}
1097
1098	*bp = b;
1099
1100	return b->data;
1101}
1102
1103void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1104		   struct dm_buffer **bp)
1105{
1106	return new_read(c, block, NF_GET, bp);
1107}
1108EXPORT_SYMBOL_GPL(dm_bufio_get);
1109
1110void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1111		    struct dm_buffer **bp)
1112{
1113	BUG_ON(dm_bufio_in_request());
1114
1115	return new_read(c, block, NF_READ, bp);
1116}
1117EXPORT_SYMBOL_GPL(dm_bufio_read);
1118
1119void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1120		   struct dm_buffer **bp)
1121{
1122	BUG_ON(dm_bufio_in_request());
1123
1124	return new_read(c, block, NF_FRESH, bp);
1125}
1126EXPORT_SYMBOL_GPL(dm_bufio_new);
1127
1128void dm_bufio_prefetch(struct dm_bufio_client *c,
1129		       sector_t block, unsigned n_blocks)
1130{
1131	struct blk_plug plug;
1132
1133	LIST_HEAD(write_list);
1134
1135	BUG_ON(dm_bufio_in_request());
1136
1137	blk_start_plug(&plug);
1138	dm_bufio_lock(c);
1139
1140	for (; n_blocks--; block++) {
1141		int need_submit;
1142		struct dm_buffer *b;
1143		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1144				&write_list);
1145		if (unlikely(!list_empty(&write_list))) {
1146			dm_bufio_unlock(c);
1147			blk_finish_plug(&plug);
1148			__flush_write_list(&write_list);
1149			blk_start_plug(&plug);
1150			dm_bufio_lock(c);
1151		}
1152		if (unlikely(b != NULL)) {
1153			dm_bufio_unlock(c);
1154
1155			if (need_submit)
1156				submit_io(b, REQ_OP_READ, read_endio);
1157			dm_bufio_release(b);
1158
1159			cond_resched();
1160
1161			if (!n_blocks)
1162				goto flush_plug;
1163			dm_bufio_lock(c);
1164		}
1165	}
1166
1167	dm_bufio_unlock(c);
1168
1169flush_plug:
1170	blk_finish_plug(&plug);
1171}
1172EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1173
1174void dm_bufio_release(struct dm_buffer *b)
1175{
1176	struct dm_bufio_client *c = b->c;
1177
1178	dm_bufio_lock(c);
1179
1180	BUG_ON(!b->hold_count);
1181
1182	b->hold_count--;
1183	if (!b->hold_count) {
1184		wake_up(&c->free_buffer_wait);
1185
1186		/*
1187		 * If there were errors on the buffer, and the buffer is not
1188		 * to be written, free the buffer. There is no point in caching
1189		 * invalid buffer.
1190		 */
1191		if ((b->read_error || b->write_error) &&
1192		    !test_bit(B_READING, &b->state) &&
1193		    !test_bit(B_WRITING, &b->state) &&
1194		    !test_bit(B_DIRTY, &b->state)) {
1195			__unlink_buffer(b);
1196			__free_buffer_wake(b);
1197		}
1198	}
1199
1200	dm_bufio_unlock(c);
1201}
1202EXPORT_SYMBOL_GPL(dm_bufio_release);
1203
1204void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1205					unsigned start, unsigned end)
1206{
1207	struct dm_bufio_client *c = b->c;
1208
1209	BUG_ON(start >= end);
1210	BUG_ON(end > b->c->block_size);
1211
1212	dm_bufio_lock(c);
1213
1214	BUG_ON(test_bit(B_READING, &b->state));
1215
1216	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1217		b->dirty_start = start;
1218		b->dirty_end = end;
1219		__relink_lru(b, LIST_DIRTY);
1220	} else {
1221		if (start < b->dirty_start)
1222			b->dirty_start = start;
1223		if (end > b->dirty_end)
1224			b->dirty_end = end;
1225	}
1226
1227	dm_bufio_unlock(c);
1228}
1229EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1230
1231void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1232{
1233	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1234}
1235EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1236
1237void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1238{
1239	LIST_HEAD(write_list);
1240
1241	BUG_ON(dm_bufio_in_request());
1242
1243	dm_bufio_lock(c);
1244	__write_dirty_buffers_async(c, 0, &write_list);
1245	dm_bufio_unlock(c);
1246	__flush_write_list(&write_list);
1247}
1248EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1249
1250/*
1251 * For performance, it is essential that the buffers are written asynchronously
1252 * and simultaneously (so that the block layer can merge the writes) and then
1253 * waited upon.
1254 *
1255 * Finally, we flush hardware disk cache.
1256 */
1257int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1258{
1259	int a, f;
1260	unsigned long buffers_processed = 0;
1261	struct dm_buffer *b, *tmp;
1262
1263	LIST_HEAD(write_list);
1264
1265	dm_bufio_lock(c);
1266	__write_dirty_buffers_async(c, 0, &write_list);
1267	dm_bufio_unlock(c);
1268	__flush_write_list(&write_list);
1269	dm_bufio_lock(c);
1270
1271again:
1272	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1273		int dropped_lock = 0;
1274
1275		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1276			buffers_processed++;
1277
1278		BUG_ON(test_bit(B_READING, &b->state));
1279
1280		if (test_bit(B_WRITING, &b->state)) {
1281			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1282				dropped_lock = 1;
1283				b->hold_count++;
1284				dm_bufio_unlock(c);
1285				wait_on_bit_io(&b->state, B_WRITING,
1286					       TASK_UNINTERRUPTIBLE);
1287				dm_bufio_lock(c);
1288				b->hold_count--;
1289			} else
1290				wait_on_bit_io(&b->state, B_WRITING,
1291					       TASK_UNINTERRUPTIBLE);
1292		}
1293
1294		if (!test_bit(B_DIRTY, &b->state) &&
1295		    !test_bit(B_WRITING, &b->state))
1296			__relink_lru(b, LIST_CLEAN);
1297
1298		cond_resched();
1299
1300		/*
1301		 * If we dropped the lock, the list is no longer consistent,
1302		 * so we must restart the search.
1303		 *
1304		 * In the most common case, the buffer just processed is
1305		 * relinked to the clean list, so we won't loop scanning the
1306		 * same buffer again and again.
1307		 *
1308		 * This may livelock if there is another thread simultaneously
1309		 * dirtying buffers, so we count the number of buffers walked
1310		 * and if it exceeds the total number of buffers, it means that
1311		 * someone is doing some writes simultaneously with us.  In
1312		 * this case, stop, dropping the lock.
1313		 */
1314		if (dropped_lock)
1315			goto again;
1316	}
1317	wake_up(&c->free_buffer_wait);
1318	dm_bufio_unlock(c);
1319
1320	a = xchg(&c->async_write_error, 0);
1321	f = dm_bufio_issue_flush(c);
1322	if (a)
1323		return a;
1324
1325	return f;
1326}
1327EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1328
1329/*
1330 * Use dm-io to send and empty barrier flush the device.
1331 */
1332int dm_bufio_issue_flush(struct dm_bufio_client *c)
1333{
1334	struct dm_io_request io_req = {
1335		.bi_op = REQ_OP_WRITE,
1336		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1337		.mem.type = DM_IO_KMEM,
1338		.mem.ptr.addr = NULL,
1339		.client = c->dm_io,
1340	};
1341	struct dm_io_region io_reg = {
1342		.bdev = c->bdev,
1343		.sector = 0,
1344		.count = 0,
1345	};
1346
1347	BUG_ON(dm_bufio_in_request());
1348
1349	return dm_io(&io_req, 1, &io_reg, NULL);
1350}
1351EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1352
1353/*
1354 * We first delete any other buffer that may be at that new location.
1355 *
1356 * Then, we write the buffer to the original location if it was dirty.
1357 *
1358 * Then, if we are the only one who is holding the buffer, relink the buffer
1359 * in the hash queue for the new location.
1360 *
1361 * If there was someone else holding the buffer, we write it to the new
1362 * location but not relink it, because that other user needs to have the buffer
1363 * at the same place.
1364 */
1365void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1366{
1367	struct dm_bufio_client *c = b->c;
1368	struct dm_buffer *new;
1369
1370	BUG_ON(dm_bufio_in_request());
1371
1372	dm_bufio_lock(c);
1373
1374retry:
1375	new = __find(c, new_block);
1376	if (new) {
1377		if (new->hold_count) {
1378			__wait_for_free_buffer(c);
1379			goto retry;
1380		}
1381
1382		/*
1383		 * FIXME: Is there any point waiting for a write that's going
1384		 * to be overwritten in a bit?
1385		 */
1386		__make_buffer_clean(new);
1387		__unlink_buffer(new);
1388		__free_buffer_wake(new);
1389	}
1390
1391	BUG_ON(!b->hold_count);
1392	BUG_ON(test_bit(B_READING, &b->state));
1393
1394	__write_dirty_buffer(b, NULL);
1395	if (b->hold_count == 1) {
1396		wait_on_bit_io(&b->state, B_WRITING,
1397			       TASK_UNINTERRUPTIBLE);
1398		set_bit(B_DIRTY, &b->state);
1399		b->dirty_start = 0;
1400		b->dirty_end = c->block_size;
1401		__unlink_buffer(b);
1402		__link_buffer(b, new_block, LIST_DIRTY);
1403	} else {
1404		sector_t old_block;
1405		wait_on_bit_lock_io(&b->state, B_WRITING,
1406				    TASK_UNINTERRUPTIBLE);
1407		/*
1408		 * Relink buffer to "new_block" so that write_callback
1409		 * sees "new_block" as a block number.
1410		 * After the write, link the buffer back to old_block.
1411		 * All this must be done in bufio lock, so that block number
1412		 * change isn't visible to other threads.
1413		 */
1414		old_block = b->block;
1415		__unlink_buffer(b);
1416		__link_buffer(b, new_block, b->list_mode);
1417		submit_io(b, REQ_OP_WRITE, write_endio);
1418		wait_on_bit_io(&b->state, B_WRITING,
1419			       TASK_UNINTERRUPTIBLE);
1420		__unlink_buffer(b);
1421		__link_buffer(b, old_block, b->list_mode);
1422	}
1423
1424	dm_bufio_unlock(c);
1425	dm_bufio_release(b);
1426}
1427EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1428
1429/*
1430 * Free the given buffer.
1431 *
1432 * This is just a hint, if the buffer is in use or dirty, this function
1433 * does nothing.
1434 */
1435void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1436{
1437	struct dm_buffer *b;
1438
1439	dm_bufio_lock(c);
1440
1441	b = __find(c, block);
1442	if (b && likely(!b->hold_count) && likely(!b->state)) {
1443		__unlink_buffer(b);
1444		__free_buffer_wake(b);
1445	}
1446
1447	dm_bufio_unlock(c);
1448}
1449EXPORT_SYMBOL_GPL(dm_bufio_forget);
1450
1451void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1452{
1453	c->minimum_buffers = n;
1454}
1455EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1456
1457unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1458{
1459	return c->block_size;
1460}
1461EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1462
1463sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1464{
1465	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1466	if (likely(c->sectors_per_block_bits >= 0))
1467		s >>= c->sectors_per_block_bits;
1468	else
1469		sector_div(s, c->block_size >> SECTOR_SHIFT);
1470	return s;
1471}
1472EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1473
1474sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1475{
1476	return b->block;
1477}
1478EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1479
1480void *dm_bufio_get_block_data(struct dm_buffer *b)
1481{
1482	return b->data;
1483}
1484EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1485
1486void *dm_bufio_get_aux_data(struct dm_buffer *b)
1487{
1488	return b + 1;
1489}
1490EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1491
1492struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1493{
1494	return b->c;
1495}
1496EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1497
1498static void drop_buffers(struct dm_bufio_client *c)
1499{
1500	struct dm_buffer *b;
1501	int i;
1502	bool warned = false;
1503
1504	BUG_ON(dm_bufio_in_request());
1505
1506	/*
1507	 * An optimization so that the buffers are not written one-by-one.
1508	 */
1509	dm_bufio_write_dirty_buffers_async(c);
1510
1511	dm_bufio_lock(c);
1512
1513	while ((b = __get_unclaimed_buffer(c)))
1514		__free_buffer_wake(b);
1515
1516	for (i = 0; i < LIST_SIZE; i++)
1517		list_for_each_entry(b, &c->lru[i], lru_list) {
1518			WARN_ON(!warned);
1519			warned = true;
1520			DMERR("leaked buffer %llx, hold count %u, list %d",
1521			      (unsigned long long)b->block, b->hold_count, i);
1522#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1523			print_stack_trace(&b->stack_trace, 1);
1524			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1525#endif
1526		}
1527
1528#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1529	while ((b = __get_unclaimed_buffer(c)))
1530		__free_buffer_wake(b);
1531#endif
1532
1533	for (i = 0; i < LIST_SIZE; i++)
1534		BUG_ON(!list_empty(&c->lru[i]));
1535
1536	dm_bufio_unlock(c);
1537}
1538
1539/*
1540 * We may not be able to evict this buffer if IO pending or the client
1541 * is still using it.  Caller is expected to know buffer is too old.
1542 *
1543 * And if GFP_NOFS is used, we must not do any I/O because we hold
1544 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1545 * rerouted to different bufio client.
1546 */
1547static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1548{
1549	if (!(gfp & __GFP_FS)) {
1550		if (test_bit(B_READING, &b->state) ||
1551		    test_bit(B_WRITING, &b->state) ||
1552		    test_bit(B_DIRTY, &b->state))
1553			return false;
1554	}
1555
1556	if (b->hold_count)
1557		return false;
1558
1559	__make_buffer_clean(b);
1560	__unlink_buffer(b);
1561	__free_buffer_wake(b);
1562
1563	return true;
1564}
1565
1566static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1567{
1568	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1569	if (likely(c->sectors_per_block_bits >= 0))
1570		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1571	else
1572		retain_bytes /= c->block_size;
1573	return retain_bytes;
1574}
1575
1576static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1577			    gfp_t gfp_mask)
1578{
1579	int l;
1580	struct dm_buffer *b, *tmp;
1581	unsigned long freed = 0;
1582	unsigned long count = c->n_buffers[LIST_CLEAN] +
1583			      c->n_buffers[LIST_DIRTY];
1584	unsigned long retain_target = get_retain_buffers(c);
1585
1586	for (l = 0; l < LIST_SIZE; l++) {
1587		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1588			if (__try_evict_buffer(b, gfp_mask))
1589				freed++;
1590			if (!--nr_to_scan || ((count - freed) <= retain_target))
1591				return freed;
1592			cond_resched();
1593		}
1594	}
1595	return freed;
1596}
1597
1598static unsigned long
1599dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1600{
1601	struct dm_bufio_client *c;
1602	unsigned long freed;
1603
1604	c = container_of(shrink, struct dm_bufio_client, shrinker);
1605	if (sc->gfp_mask & __GFP_FS)
1606		dm_bufio_lock(c);
1607	else if (!dm_bufio_trylock(c))
1608		return SHRINK_STOP;
1609
1610	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1611	dm_bufio_unlock(c);
1612	return freed;
1613}
1614
1615static unsigned long
1616dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1617{
1618	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1619	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1620			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1621	unsigned long retain_target = get_retain_buffers(c);
1622
1623	return (count < retain_target) ? 0 : (count - retain_target);
1624}
1625
1626/*
1627 * Create the buffering interface
1628 */
1629struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1630					       unsigned reserved_buffers, unsigned aux_size,
1631					       void (*alloc_callback)(struct dm_buffer *),
1632					       void (*write_callback)(struct dm_buffer *))
1633{
1634	int r;
1635	struct dm_bufio_client *c;
1636	unsigned i;
1637	char slab_name[27];
1638
1639	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1640		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1641		r = -EINVAL;
1642		goto bad_client;
1643	}
1644
1645	c = kzalloc(sizeof(*c), GFP_KERNEL);
1646	if (!c) {
1647		r = -ENOMEM;
1648		goto bad_client;
1649	}
1650	c->buffer_tree = RB_ROOT;
1651
1652	c->bdev = bdev;
1653	c->block_size = block_size;
1654	if (is_power_of_2(block_size))
1655		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1656	else
1657		c->sectors_per_block_bits = -1;
1658
1659	c->alloc_callback = alloc_callback;
1660	c->write_callback = write_callback;
1661
1662	for (i = 0; i < LIST_SIZE; i++) {
1663		INIT_LIST_HEAD(&c->lru[i]);
1664		c->n_buffers[i] = 0;
1665	}
1666
1667	mutex_init(&c->lock);
1668	INIT_LIST_HEAD(&c->reserved_buffers);
1669	c->need_reserved_buffers = reserved_buffers;
1670
1671	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1672
1673	init_waitqueue_head(&c->free_buffer_wait);
1674	c->async_write_error = 0;
1675
1676	c->dm_io = dm_io_client_create();
1677	if (IS_ERR(c->dm_io)) {
1678		r = PTR_ERR(c->dm_io);
1679		goto bad_dm_io;
1680	}
1681
1682	if (block_size <= KMALLOC_MAX_SIZE &&
1683	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1684		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1685		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1686		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1687						  SLAB_RECLAIM_ACCOUNT, NULL);
1688		if (!c->slab_cache) {
1689			r = -ENOMEM;
1690			goto bad;
1691		}
1692	}
1693	if (aux_size)
1694		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1695	else
1696		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1697	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1698					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1699	if (!c->slab_buffer) {
1700		r = -ENOMEM;
1701		goto bad;
1702	}
1703
1704	while (c->need_reserved_buffers) {
1705		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1706
1707		if (!b) {
1708			r = -ENOMEM;
1709			goto bad;
1710		}
1711		__free_buffer_wake(b);
1712	}
1713
1714	c->shrinker.count_objects = dm_bufio_shrink_count;
1715	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1716	c->shrinker.seeks = 1;
1717	c->shrinker.batch = 0;
1718	r = register_shrinker(&c->shrinker);
1719	if (r)
1720		goto bad;
1721
1722	mutex_lock(&dm_bufio_clients_lock);
1723	dm_bufio_client_count++;
1724	list_add(&c->client_list, &dm_bufio_all_clients);
1725	__cache_size_refresh();
1726	mutex_unlock(&dm_bufio_clients_lock);
1727
1728	return c;
1729
1730bad:
1731	while (!list_empty(&c->reserved_buffers)) {
1732		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1733						 struct dm_buffer, lru_list);
1734		list_del(&b->lru_list);
1735		free_buffer(b);
1736	}
1737	kmem_cache_destroy(c->slab_cache);
1738	kmem_cache_destroy(c->slab_buffer);
1739	dm_io_client_destroy(c->dm_io);
1740bad_dm_io:
1741	mutex_destroy(&c->lock);
1742	kfree(c);
1743bad_client:
1744	return ERR_PTR(r);
1745}
1746EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1747
1748/*
1749 * Free the buffering interface.
1750 * It is required that there are no references on any buffers.
1751 */
1752void dm_bufio_client_destroy(struct dm_bufio_client *c)
1753{
1754	unsigned i;
1755
1756	drop_buffers(c);
1757
1758	unregister_shrinker(&c->shrinker);
1759
1760	mutex_lock(&dm_bufio_clients_lock);
1761
1762	list_del(&c->client_list);
1763	dm_bufio_client_count--;
1764	__cache_size_refresh();
1765
1766	mutex_unlock(&dm_bufio_clients_lock);
1767
1768	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1769	BUG_ON(c->need_reserved_buffers);
1770
1771	while (!list_empty(&c->reserved_buffers)) {
1772		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1773						 struct dm_buffer, lru_list);
1774		list_del(&b->lru_list);
1775		free_buffer(b);
1776	}
1777
1778	for (i = 0; i < LIST_SIZE; i++)
1779		if (c->n_buffers[i])
1780			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1781
1782	for (i = 0; i < LIST_SIZE; i++)
1783		BUG_ON(c->n_buffers[i]);
1784
1785	kmem_cache_destroy(c->slab_cache);
1786	kmem_cache_destroy(c->slab_buffer);
1787	dm_io_client_destroy(c->dm_io);
1788	mutex_destroy(&c->lock);
1789	kfree(c);
1790}
1791EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1792
1793void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1794{
1795	c->start = start;
1796}
1797EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1798
1799static unsigned get_max_age_hz(void)
1800{
1801	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1802
1803	if (max_age > UINT_MAX / HZ)
1804		max_age = UINT_MAX / HZ;
1805
1806	return max_age * HZ;
1807}
1808
1809static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1810{
1811	return time_after_eq(jiffies, b->last_accessed + age_hz);
1812}
1813
1814static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1815{
1816	struct dm_buffer *b, *tmp;
1817	unsigned long retain_target = get_retain_buffers(c);
1818	unsigned long count;
1819	LIST_HEAD(write_list);
1820
1821	dm_bufio_lock(c);
1822
1823	__check_watermark(c, &write_list);
1824	if (unlikely(!list_empty(&write_list))) {
1825		dm_bufio_unlock(c);
1826		__flush_write_list(&write_list);
1827		dm_bufio_lock(c);
1828	}
1829
1830	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1831	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1832		if (count <= retain_target)
1833			break;
1834
1835		if (!older_than(b, age_hz))
1836			break;
1837
1838		if (__try_evict_buffer(b, 0))
1839			count--;
1840
1841		cond_resched();
1842	}
1843
1844	dm_bufio_unlock(c);
1845}
1846
1847static void cleanup_old_buffers(void)
1848{
1849	unsigned long max_age_hz = get_max_age_hz();
1850	struct dm_bufio_client *c;
1851
1852	mutex_lock(&dm_bufio_clients_lock);
1853
1854	__cache_size_refresh();
1855
1856	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1857		__evict_old_buffers(c, max_age_hz);
1858
1859	mutex_unlock(&dm_bufio_clients_lock);
1860}
1861
1862static struct workqueue_struct *dm_bufio_wq;
1863static struct delayed_work dm_bufio_work;
1864
1865static void work_fn(struct work_struct *w)
1866{
1867	cleanup_old_buffers();
1868
1869	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1870			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1871}
1872
1873/*----------------------------------------------------------------
1874 * Module setup
1875 *--------------------------------------------------------------*/
1876
1877/*
1878 * This is called only once for the whole dm_bufio module.
1879 * It initializes memory limit.
1880 */
1881static int __init dm_bufio_init(void)
1882{
1883	__u64 mem;
1884
1885	dm_bufio_allocated_kmem_cache = 0;
1886	dm_bufio_allocated_get_free_pages = 0;
1887	dm_bufio_allocated_vmalloc = 0;
1888	dm_bufio_current_allocated = 0;
1889
1890	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1891			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1892
1893	if (mem > ULONG_MAX)
1894		mem = ULONG_MAX;
1895
1896#ifdef CONFIG_MMU
1897	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1898		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1899#endif
1900
1901	dm_bufio_default_cache_size = mem;
1902
1903	mutex_lock(&dm_bufio_clients_lock);
1904	__cache_size_refresh();
1905	mutex_unlock(&dm_bufio_clients_lock);
1906
1907	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1908	if (!dm_bufio_wq)
1909		return -ENOMEM;
1910
1911	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1912	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1913			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1914
1915	return 0;
1916}
1917
1918/*
1919 * This is called once when unloading the dm_bufio module.
1920 */
1921static void __exit dm_bufio_exit(void)
1922{
1923	int bug = 0;
1924
1925	cancel_delayed_work_sync(&dm_bufio_work);
1926	destroy_workqueue(dm_bufio_wq);
1927
1928	if (dm_bufio_client_count) {
1929		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1930			__func__, dm_bufio_client_count);
1931		bug = 1;
1932	}
1933
1934	if (dm_bufio_current_allocated) {
1935		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1936			__func__, dm_bufio_current_allocated);
1937		bug = 1;
1938	}
1939
1940	if (dm_bufio_allocated_get_free_pages) {
1941		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1942		       __func__, dm_bufio_allocated_get_free_pages);
1943		bug = 1;
1944	}
1945
1946	if (dm_bufio_allocated_vmalloc) {
1947		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1948		       __func__, dm_bufio_allocated_vmalloc);
1949		bug = 1;
1950	}
1951
1952	BUG_ON(bug);
1953}
1954
1955module_init(dm_bufio_init)
1956module_exit(dm_bufio_exit)
1957
1958module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1959MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1960
1961module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1962MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1963
1964module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1965MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1966
1967module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1968MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1969
1970module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1971MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1972
1973module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1974MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1975
1976module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1977MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1978
1979module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1980MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1981
1982MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1983MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1984MODULE_LICENSE("GPL");