Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * OpenRISC process.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 *
 17 * This file handles the architecture-dependent parts of process handling...
 18 */
 19
 20#define __KERNEL_SYSCALLS__
 21#include <stdarg.h>
 22
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/mm.h>
 28#include <linux/stddef.h>
 29#include <linux/unistd.h>
 30#include <linux/ptrace.h>
 31#include <linux/slab.h>
 32#include <linux/elfcore.h>
 33#include <linux/interrupt.h>
 34#include <linux/delay.h>
 35#include <linux/init_task.h>
 36#include <linux/mqueue.h>
 37#include <linux/fs.h>
 38
 39#include <asm/uaccess.h>
 40#include <asm/pgtable.h>
 41#include <asm/system.h>
 42#include <asm/io.h>
 43#include <asm/processor.h>
 44#include <asm/spr_defs.h>
 45
 46#include <linux/smp.h>
 47
 48/*
 49 * Pointer to Current thread info structure.
 50 *
 51 * Used at user space -> kernel transitions.
 52 */
 53struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 54
 55void machine_restart(void)
 56{
 57	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 58	__asm__("l.nop 1");
 59}
 60
 61/*
 62 * Similar to machine_power_off, but don't shut off power.  Add code
 63 * here to freeze the system for e.g. post-mortem debug purpose when
 64 * possible.  This halt has nothing to do with the idle halt.
 65 */
 66void machine_halt(void)
 67{
 68	printk(KERN_INFO "*** MACHINE HALT ***\n");
 69	__asm__("l.nop 1");
 70}
 71
 72/* If or when software power-off is implemented, add code here.  */
 73void machine_power_off(void)
 74{
 75	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 76	__asm__("l.nop 1");
 77}
 78
 
 
 
 
 
 
 
 
 
 
 
 79void (*pm_power_off) (void) = machine_power_off;
 
 80
 81/*
 82 * When a process does an "exec", machine state like FPU and debug
 83 * registers need to be reset.  This is a hook function for that.
 84 * Currently we don't have any such state to reset, so this is empty.
 85 */
 86void flush_thread(void)
 87{
 88}
 89
 90void show_regs(struct pt_regs *regs)
 91{
 92	extern void show_registers(struct pt_regs *regs);
 93
 
 94	/* __PHX__ cleanup this mess */
 95	show_registers(regs);
 96}
 97
 98unsigned long thread_saved_pc(struct task_struct *t)
 99{
100	return (unsigned long)user_regs(t->stack)->pc;
101}
102
103void release_thread(struct task_struct *dead_task)
104{
105}
106
107/*
108 * Copy the thread-specific (arch specific) info from the current
109 * process to the new one p
110 */
111extern asmlinkage void ret_from_fork(void);
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113int
114copy_thread(unsigned long clone_flags, unsigned long usp,
115	    unsigned long unused, struct task_struct *p, struct pt_regs *regs)
116{
117	struct pt_regs *childregs;
118	struct pt_regs *kregs;
119	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
120	struct thread_info *ti;
121	unsigned long top_of_kernel_stack;
122
123	top_of_kernel_stack = sp;
124
125	p->set_child_tid = p->clear_child_tid = NULL;
126
127	/* Copy registers */
128	/* redzone */
129	sp -= STACK_FRAME_OVERHEAD;
130	sp -= sizeof(struct pt_regs);
131	childregs = (struct pt_regs *)sp;
132
133	/* Copy parent registers */
134	*childregs = *regs;
 
 
135
136	if ((childregs->sr & SPR_SR_SM) == 1) {
137		/* for kernel thread, set `current_thread_info'
138		 * and stackptr in new task
139		 */
140		childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
141		childregs->gpr[10] = (unsigned long)task_thread_info(p);
142	} else {
143		childregs->sp = usp;
144	}
145
146	childregs->gpr[11] = 0;	/* Result from fork() */
 
147
148	/*
149	 * The way this works is that at some point in the future
150	 * some task will call _switch to switch to the new task.
151	 * That will pop off the stack frame created below and start
152	 * the new task running at ret_from_fork.  The new task will
153	 * do some house keeping and then return from the fork or clone
154	 * system call, using the stack frame created above.
155	 */
156	/* redzone */
157	sp -= STACK_FRAME_OVERHEAD;
158	sp -= sizeof(struct pt_regs);
159	kregs = (struct pt_regs *)sp;
 
160
161	ti = task_thread_info(p);
162	ti->ksp = sp;
163
164	/* kregs->sp must store the location of the 'pre-switch' kernel stack
165	 * pointer... for a newly forked process, this is simply the top of
166	 * the kernel stack.
167	 */
168	kregs->sp = top_of_kernel_stack;
169	kregs->gpr[3] = (unsigned long)current;	/* arg to schedule_tail */
170	kregs->gpr[10] = (unsigned long)task_thread_info(p);
171	kregs->gpr[9] = (unsigned long)ret_from_fork;
172
 
 
173	return 0;
174}
175
176/*
177 * Set up a thread for executing a new program
178 */
179void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
180{
181	unsigned long sr = regs->sr & ~SPR_SR_SM;
182
183	set_fs(USER_DS);
184	memset(regs->gpr, 0, sizeof(regs->gpr));
185
186	regs->pc = pc;
187	regs->sr = sr;
188	regs->sp = sp;
189
190/*	printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
191}
192
193/* Fill in the fpu structure for a core dump.  */
194int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
195{
196	/* TODO */
197	return 0;
198}
199
200extern struct thread_info *_switch(struct thread_info *old_ti,
201				   struct thread_info *new_ti);
 
202
203struct task_struct *__switch_to(struct task_struct *old,
204				struct task_struct *new)
205{
206	struct task_struct *last;
207	struct thread_info *new_ti, *old_ti;
208	unsigned long flags;
209
210	local_irq_save(flags);
211
212	/* current_set is an array of saved current pointers
213	 * (one for each cpu). we need them at user->kernel transition,
214	 * while we save them at kernel->user transition
215	 */
216	new_ti = new->stack;
217	old_ti = old->stack;
218
 
 
219	current_thread_info_set[smp_processor_id()] = new_ti;
220	last = (_switch(old_ti, new_ti))->task;
221
222	local_irq_restore(flags);
223
224	return last;
225}
226
227/*
228 * Write out registers in core dump format, as defined by the
229 * struct user_regs_struct
230 */
231void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
232{
233	dest[0] = 0; /* r0 */
234	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
235	dest[32] = regs->pc;
236	dest[33] = regs->sr;
237	dest[34] = 0;
238	dest[35] = 0;
239}
240
241extern void _kernel_thread_helper(void);
242
243void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
244{
245	do_exit(fn(arg));
246}
247
248/*
249 * Create a kernel thread.
250 */
251int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
252{
253	struct pt_regs regs;
254
255	memset(&regs, 0, sizeof(regs));
256
257	regs.gpr[20] = (unsigned long)fn;
258	regs.gpr[22] = (unsigned long)arg;
259	regs.sr = mfspr(SPR_SR);
260	regs.pc = (unsigned long)_kernel_thread_helper;
261
262	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
263		       0, &regs, 0, NULL, NULL);
264}
265
266/*
267 * sys_execve() executes a new program.
268 */
269asmlinkage long _sys_execve(const char __user *name,
270			    const char __user * const __user *argv,
271			    const char __user * const __user *envp,
272			    struct pt_regs *regs)
273{
274	int error;
275	char *filename;
276
277	filename = getname(name);
278	error = PTR_ERR(filename);
279
280	if (IS_ERR(filename))
281		goto out;
282
283	error = do_execve(filename, argv, envp, regs);
284	putname(filename);
285
286out:
287	return error;
288}
289
290unsigned long get_wchan(struct task_struct *p)
291{
292	/* TODO */
293
294	return 0;
295}
296
297int kernel_execve(const char *filename, char *const argv[], char *const envp[])
298{
299	register long __res asm("r11") = __NR_execve;
300	register long __a asm("r3") = (long)(filename);
301	register long __b asm("r4") = (long)(argv);
302	register long __c asm("r5") = (long)(envp);
303	__asm__ volatile ("l.sys 1"
304			  : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
305			  : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
306			  : "r6", "r7", "r8", "r12", "r13", "r15",
307			    "r17", "r19", "r21", "r23", "r25", "r27",
308			    "r29", "r31");
309	__asm__ volatile ("l.nop");
310	return __res;
311}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * OpenRISC process.c
  4 *
  5 * Linux architectural port borrowing liberally from similar works of
  6 * others.  All original copyrights apply as per the original source
  7 * declaration.
  8 *
  9 * Modifications for the OpenRISC architecture:
 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 12 *
 
 
 
 
 
 13 * This file handles the architecture-dependent parts of process handling...
 14 */
 15
 16#define __KERNEL_SYSCALLS__
 17#include <stdarg.h>
 18
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/debug.h>
 22#include <linux/sched/task.h>
 23#include <linux/sched/task_stack.h>
 24#include <linux/kernel.h>
 25#include <linux/export.h>
 26#include <linux/mm.h>
 27#include <linux/stddef.h>
 28#include <linux/unistd.h>
 29#include <linux/ptrace.h>
 30#include <linux/slab.h>
 31#include <linux/elfcore.h>
 32#include <linux/interrupt.h>
 33#include <linux/delay.h>
 34#include <linux/init_task.h>
 35#include <linux/mqueue.h>
 36#include <linux/fs.h>
 37
 38#include <linux/uaccess.h>
 39#include <asm/pgtable.h>
 
 40#include <asm/io.h>
 41#include <asm/processor.h>
 42#include <asm/spr_defs.h>
 43
 44#include <linux/smp.h>
 45
 46/*
 47 * Pointer to Current thread info structure.
 48 *
 49 * Used at user space -> kernel transitions.
 50 */
 51struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 52
 53void machine_restart(void)
 54{
 55	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 56	__asm__("l.nop 1");
 57}
 58
 59/*
 60 * Similar to machine_power_off, but don't shut off power.  Add code
 61 * here to freeze the system for e.g. post-mortem debug purpose when
 62 * possible.  This halt has nothing to do with the idle halt.
 63 */
 64void machine_halt(void)
 65{
 66	printk(KERN_INFO "*** MACHINE HALT ***\n");
 67	__asm__("l.nop 1");
 68}
 69
 70/* If or when software power-off is implemented, add code here.  */
 71void machine_power_off(void)
 72{
 73	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 74	__asm__("l.nop 1");
 75}
 76
 77/*
 78 * Send the doze signal to the cpu if available.
 79 * Make sure, that all interrupts are enabled
 80 */
 81void arch_cpu_idle(void)
 82{
 83	local_irq_enable();
 84	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
 85		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
 86}
 87
 88void (*pm_power_off) (void) = machine_power_off;
 89EXPORT_SYMBOL(pm_power_off);
 90
 91/*
 92 * When a process does an "exec", machine state like FPU and debug
 93 * registers need to be reset.  This is a hook function for that.
 94 * Currently we don't have any such state to reset, so this is empty.
 95 */
 96void flush_thread(void)
 97{
 98}
 99
100void show_regs(struct pt_regs *regs)
101{
102	extern void show_registers(struct pt_regs *regs);
103
104	show_regs_print_info(KERN_DEFAULT);
105	/* __PHX__ cleanup this mess */
106	show_registers(regs);
107}
108
 
 
 
 
 
109void release_thread(struct task_struct *dead_task)
110{
111}
112
113/*
114 * Copy the thread-specific (arch specific) info from the current
115 * process to the new one p
116 */
117extern asmlinkage void ret_from_fork(void);
118
119/*
120 * copy_thread
121 * @clone_flags: flags
122 * @usp: user stack pointer or fn for kernel thread
123 * @arg: arg to fn for kernel thread; always NULL for userspace thread
124 * @p: the newly created task
125 * @regs: CPU context to copy for userspace thread; always NULL for kthread
126 *
127 * At the top of a newly initialized kernel stack are two stacked pt_reg
128 * structures.  The first (topmost) is the userspace context of the thread.
129 * The second is the kernelspace context of the thread.
130 *
131 * A kernel thread will not be returning to userspace, so the topmost pt_regs
132 * struct can be uninitialized; it _does_ need to exist, though, because
133 * a kernel thread can become a userspace thread by doing a kernel_execve, in
134 * which case the topmost context will be initialized and used for 'returning'
135 * to userspace.
136 *
137 * The second pt_reg struct needs to be initialized to 'return' to
138 * ret_from_fork.  A kernel thread will need to set r20 to the address of
139 * a function to call into (with arg in r22); userspace threads need to set
140 * r20 to NULL in which case ret_from_fork will just continue a return to
141 * userspace.
142 *
143 * A kernel thread 'fn' may return; this is effectively what happens when
144 * kernel_execve is called.  In that case, the userspace pt_regs must have
145 * been initialized (which kernel_execve takes care of, see start_thread
146 * below); ret_from_fork will then continue its execution causing the
147 * 'kernel thread' to return to userspace as a userspace thread.
148 */
149
150int
151copy_thread(unsigned long clone_flags, unsigned long usp,
152	    unsigned long arg, struct task_struct *p)
153{
154	struct pt_regs *userregs;
155	struct pt_regs *kregs;
156	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 
157	unsigned long top_of_kernel_stack;
158
159	top_of_kernel_stack = sp;
160
161	/* Locate userspace context on stack... */
162	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
 
 
 
163	sp -= sizeof(struct pt_regs);
164	userregs = (struct pt_regs *) sp;
165
166	/* ...and kernel context */
167	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
168	sp -= sizeof(struct pt_regs);
169	kregs = (struct pt_regs *)sp;
170
171	if (unlikely(p->flags & PF_KTHREAD)) {
172		memset(kregs, 0, sizeof(struct pt_regs));
173		kregs->gpr[20] = usp; /* fn, kernel thread */
174		kregs->gpr[22] = arg;
 
 
175	} else {
176		*userregs = *current_pt_regs();
 
177
178		if (usp)
179			userregs->sp = usp;
180
181		/*
182		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer passed to sys_clone.
183		 *
184		 * The kernel entry is:
185		 *	int clone (long flags, void *child_stack, int *parent_tid,
186		 *		int *child_tid, struct void *tls)
187		 *
188		 * This makes the source r7 in the kernel registers.
189		 */
190		if (clone_flags & CLONE_SETTLS)
191			userregs->gpr[10] = userregs->gpr[7];
192
193		userregs->gpr[11] = 0;	/* Result from fork() */
194
195		kregs->gpr[20] = 0;	/* Userspace thread */
196	}
197
198	/*
199	 * _switch wants the kernel stack page in pt_regs->sp so that it
200	 * can restore it to thread_info->ksp... see _switch for details.
201	 */
202	kregs->sp = top_of_kernel_stack;
 
 
203	kregs->gpr[9] = (unsigned long)ret_from_fork;
204
205	task_thread_info(p)->ksp = (unsigned long)kregs;
206
207	return 0;
208}
209
210/*
211 * Set up a thread for executing a new program
212 */
213void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
214{
215	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
216
217	memset(regs, 0, sizeof(struct pt_regs));
 
218
219	regs->pc = pc;
220	regs->sr = sr;
221	regs->sp = sp;
 
 
222}
223
224/* Fill in the fpu structure for a core dump.  */
225int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
226{
227	/* TODO */
228	return 0;
229}
230
231extern struct thread_info *_switch(struct thread_info *old_ti,
232				   struct thread_info *new_ti);
233extern int lwa_flag;
234
235struct task_struct *__switch_to(struct task_struct *old,
236				struct task_struct *new)
237{
238	struct task_struct *last;
239	struct thread_info *new_ti, *old_ti;
240	unsigned long flags;
241
242	local_irq_save(flags);
243
244	/* current_set is an array of saved current pointers
245	 * (one for each cpu). we need them at user->kernel transition,
246	 * while we save them at kernel->user transition
247	 */
248	new_ti = new->stack;
249	old_ti = old->stack;
250
251	lwa_flag = 0;
252
253	current_thread_info_set[smp_processor_id()] = new_ti;
254	last = (_switch(old_ti, new_ti))->task;
255
256	local_irq_restore(flags);
257
258	return last;
259}
260
261/*
262 * Write out registers in core dump format, as defined by the
263 * struct user_regs_struct
264 */
265void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
266{
267	dest[0] = 0; /* r0 */
268	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
269	dest[32] = regs->pc;
270	dest[33] = regs->sr;
271	dest[34] = 0;
272	dest[35] = 0;
273}
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275unsigned long get_wchan(struct task_struct *p)
276{
277	/* TODO */
278
279	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}