Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * OpenRISC process.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 *
 17 * This file handles the architecture-dependent parts of process handling...
 18 */
 19
 20#define __KERNEL_SYSCALLS__
 21#include <stdarg.h>
 22
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/mm.h>
 28#include <linux/stddef.h>
 29#include <linux/unistd.h>
 30#include <linux/ptrace.h>
 31#include <linux/slab.h>
 32#include <linux/elfcore.h>
 33#include <linux/interrupt.h>
 34#include <linux/delay.h>
 35#include <linux/init_task.h>
 36#include <linux/mqueue.h>
 37#include <linux/fs.h>
 38
 39#include <asm/uaccess.h>
 40#include <asm/pgtable.h>
 41#include <asm/system.h>
 42#include <asm/io.h>
 43#include <asm/processor.h>
 44#include <asm/spr_defs.h>
 45
 46#include <linux/smp.h>
 47
 48/*
 49 * Pointer to Current thread info structure.
 50 *
 51 * Used at user space -> kernel transitions.
 52 */
 53struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 54
 55void machine_restart(void)
 56{
 57	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 58	__asm__("l.nop 1");
 59}
 60
 61/*
 62 * Similar to machine_power_off, but don't shut off power.  Add code
 63 * here to freeze the system for e.g. post-mortem debug purpose when
 64 * possible.  This halt has nothing to do with the idle halt.
 65 */
 66void machine_halt(void)
 67{
 68	printk(KERN_INFO "*** MACHINE HALT ***\n");
 69	__asm__("l.nop 1");
 70}
 71
 72/* If or when software power-off is implemented, add code here.  */
 73void machine_power_off(void)
 74{
 75	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 76	__asm__("l.nop 1");
 77}
 78
 79void (*pm_power_off) (void) = machine_power_off;
 80
 81/*
 82 * When a process does an "exec", machine state like FPU and debug
 83 * registers need to be reset.  This is a hook function for that.
 84 * Currently we don't have any such state to reset, so this is empty.
 85 */
 86void flush_thread(void)
 87{
 88}
 89
 90void show_regs(struct pt_regs *regs)
 91{
 92	extern void show_registers(struct pt_regs *regs);
 93
 
 94	/* __PHX__ cleanup this mess */
 95	show_registers(regs);
 96}
 97
 98unsigned long thread_saved_pc(struct task_struct *t)
 99{
100	return (unsigned long)user_regs(t->stack)->pc;
101}
102
103void release_thread(struct task_struct *dead_task)
104{
105}
106
107/*
108 * Copy the thread-specific (arch specific) info from the current
109 * process to the new one p
110 */
111extern asmlinkage void ret_from_fork(void);
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113int
114copy_thread(unsigned long clone_flags, unsigned long usp,
115	    unsigned long unused, struct task_struct *p, struct pt_regs *regs)
116{
117	struct pt_regs *childregs;
118	struct pt_regs *kregs;
119	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
120	struct thread_info *ti;
121	unsigned long top_of_kernel_stack;
122
123	top_of_kernel_stack = sp;
124
125	p->set_child_tid = p->clear_child_tid = NULL;
126
127	/* Copy registers */
128	/* redzone */
129	sp -= STACK_FRAME_OVERHEAD;
130	sp -= sizeof(struct pt_regs);
131	childregs = (struct pt_regs *)sp;
132
133	/* Copy parent registers */
134	*childregs = *regs;
 
 
135
136	if ((childregs->sr & SPR_SR_SM) == 1) {
137		/* for kernel thread, set `current_thread_info'
138		 * and stackptr in new task
139		 */
140		childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
141		childregs->gpr[10] = (unsigned long)task_thread_info(p);
142	} else {
143		childregs->sp = usp;
144	}
145
146	childregs->gpr[11] = 0;	/* Result from fork() */
147
148	/*
149	 * The way this works is that at some point in the future
150	 * some task will call _switch to switch to the new task.
151	 * That will pop off the stack frame created below and start
152	 * the new task running at ret_from_fork.  The new task will
153	 * do some house keeping and then return from the fork or clone
154	 * system call, using the stack frame created above.
155	 */
156	/* redzone */
157	sp -= STACK_FRAME_OVERHEAD;
158	sp -= sizeof(struct pt_regs);
159	kregs = (struct pt_regs *)sp;
160
161	ti = task_thread_info(p);
162	ti->ksp = sp;
163
164	/* kregs->sp must store the location of the 'pre-switch' kernel stack
165	 * pointer... for a newly forked process, this is simply the top of
166	 * the kernel stack.
167	 */
168	kregs->sp = top_of_kernel_stack;
169	kregs->gpr[3] = (unsigned long)current;	/* arg to schedule_tail */
170	kregs->gpr[10] = (unsigned long)task_thread_info(p);
171	kregs->gpr[9] = (unsigned long)ret_from_fork;
172
 
 
173	return 0;
174}
175
176/*
177 * Set up a thread for executing a new program
178 */
179void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
180{
181	unsigned long sr = regs->sr & ~SPR_SR_SM;
182
183	set_fs(USER_DS);
184	memset(regs->gpr, 0, sizeof(regs->gpr));
185
186	regs->pc = pc;
187	regs->sr = sr;
188	regs->sp = sp;
189
190/*	printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
191}
192
193/* Fill in the fpu structure for a core dump.  */
194int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
195{
196	/* TODO */
197	return 0;
198}
199
200extern struct thread_info *_switch(struct thread_info *old_ti,
201				   struct thread_info *new_ti);
202
203struct task_struct *__switch_to(struct task_struct *old,
204				struct task_struct *new)
205{
206	struct task_struct *last;
207	struct thread_info *new_ti, *old_ti;
208	unsigned long flags;
209
210	local_irq_save(flags);
211
212	/* current_set is an array of saved current pointers
213	 * (one for each cpu). we need them at user->kernel transition,
214	 * while we save them at kernel->user transition
215	 */
216	new_ti = new->stack;
217	old_ti = old->stack;
218
219	current_thread_info_set[smp_processor_id()] = new_ti;
220	last = (_switch(old_ti, new_ti))->task;
221
222	local_irq_restore(flags);
223
224	return last;
225}
226
227/*
228 * Write out registers in core dump format, as defined by the
229 * struct user_regs_struct
230 */
231void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
232{
233	dest[0] = 0; /* r0 */
234	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
235	dest[32] = regs->pc;
236	dest[33] = regs->sr;
237	dest[34] = 0;
238	dest[35] = 0;
239}
240
241extern void _kernel_thread_helper(void);
242
243void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
244{
245	do_exit(fn(arg));
246}
247
248/*
249 * Create a kernel thread.
250 */
251int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
252{
253	struct pt_regs regs;
254
255	memset(&regs, 0, sizeof(regs));
256
257	regs.gpr[20] = (unsigned long)fn;
258	regs.gpr[22] = (unsigned long)arg;
259	regs.sr = mfspr(SPR_SR);
260	regs.pc = (unsigned long)_kernel_thread_helper;
261
262	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
263		       0, &regs, 0, NULL, NULL);
264}
265
266/*
267 * sys_execve() executes a new program.
268 */
269asmlinkage long _sys_execve(const char __user *name,
270			    const char __user * const __user *argv,
271			    const char __user * const __user *envp,
272			    struct pt_regs *regs)
273{
274	int error;
275	char *filename;
276
277	filename = getname(name);
278	error = PTR_ERR(filename);
279
280	if (IS_ERR(filename))
281		goto out;
282
283	error = do_execve(filename, argv, envp, regs);
284	putname(filename);
285
286out:
287	return error;
288}
289
290unsigned long get_wchan(struct task_struct *p)
291{
292	/* TODO */
293
294	return 0;
295}
296
297int kernel_execve(const char *filename, char *const argv[], char *const envp[])
298{
299	register long __res asm("r11") = __NR_execve;
300	register long __a asm("r3") = (long)(filename);
301	register long __b asm("r4") = (long)(argv);
302	register long __c asm("r5") = (long)(envp);
303	__asm__ volatile ("l.sys 1"
304			  : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
305			  : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
306			  : "r6", "r7", "r8", "r12", "r13", "r15",
307			    "r17", "r19", "r21", "r23", "r25", "r27",
308			    "r29", "r31");
309	__asm__ volatile ("l.nop");
310	return __res;
311}
v4.6
  1/*
  2 * OpenRISC process.c
  3 *
  4 * Linux architectural port borrowing liberally from similar works of
  5 * others.  All original copyrights apply as per the original source
  6 * declaration.
  7 *
  8 * Modifications for the OpenRISC architecture:
  9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
 10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
 11 *
 12 *      This program is free software; you can redistribute it and/or
 13 *      modify it under the terms of the GNU General Public License
 14 *      as published by the Free Software Foundation; either version
 15 *      2 of the License, or (at your option) any later version.
 16 *
 17 * This file handles the architecture-dependent parts of process handling...
 18 */
 19
 20#define __KERNEL_SYSCALLS__
 21#include <stdarg.h>
 22
 23#include <linux/errno.h>
 24#include <linux/sched.h>
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/mm.h>
 28#include <linux/stddef.h>
 29#include <linux/unistd.h>
 30#include <linux/ptrace.h>
 31#include <linux/slab.h>
 32#include <linux/elfcore.h>
 33#include <linux/interrupt.h>
 34#include <linux/delay.h>
 35#include <linux/init_task.h>
 36#include <linux/mqueue.h>
 37#include <linux/fs.h>
 38
 39#include <asm/uaccess.h>
 40#include <asm/pgtable.h>
 
 41#include <asm/io.h>
 42#include <asm/processor.h>
 43#include <asm/spr_defs.h>
 44
 45#include <linux/smp.h>
 46
 47/*
 48 * Pointer to Current thread info structure.
 49 *
 50 * Used at user space -> kernel transitions.
 51 */
 52struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
 53
 54void machine_restart(void)
 55{
 56	printk(KERN_INFO "*** MACHINE RESTART ***\n");
 57	__asm__("l.nop 1");
 58}
 59
 60/*
 61 * Similar to machine_power_off, but don't shut off power.  Add code
 62 * here to freeze the system for e.g. post-mortem debug purpose when
 63 * possible.  This halt has nothing to do with the idle halt.
 64 */
 65void machine_halt(void)
 66{
 67	printk(KERN_INFO "*** MACHINE HALT ***\n");
 68	__asm__("l.nop 1");
 69}
 70
 71/* If or when software power-off is implemented, add code here.  */
 72void machine_power_off(void)
 73{
 74	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
 75	__asm__("l.nop 1");
 76}
 77
 78void (*pm_power_off) (void) = machine_power_off;
 79
 80/*
 81 * When a process does an "exec", machine state like FPU and debug
 82 * registers need to be reset.  This is a hook function for that.
 83 * Currently we don't have any such state to reset, so this is empty.
 84 */
 85void flush_thread(void)
 86{
 87}
 88
 89void show_regs(struct pt_regs *regs)
 90{
 91	extern void show_registers(struct pt_regs *regs);
 92
 93	show_regs_print_info(KERN_DEFAULT);
 94	/* __PHX__ cleanup this mess */
 95	show_registers(regs);
 96}
 97
 98unsigned long thread_saved_pc(struct task_struct *t)
 99{
100	return (unsigned long)user_regs(t->stack)->pc;
101}
102
103void release_thread(struct task_struct *dead_task)
104{
105}
106
107/*
108 * Copy the thread-specific (arch specific) info from the current
109 * process to the new one p
110 */
111extern asmlinkage void ret_from_fork(void);
112
113/*
114 * copy_thread
115 * @clone_flags: flags
116 * @usp: user stack pointer or fn for kernel thread
117 * @arg: arg to fn for kernel thread; always NULL for userspace thread
118 * @p: the newly created task
119 * @regs: CPU context to copy for userspace thread; always NULL for kthread
120 *
121 * At the top of a newly initialized kernel stack are two stacked pt_reg
122 * structures.  The first (topmost) is the userspace context of the thread.
123 * The second is the kernelspace context of the thread.
124 *
125 * A kernel thread will not be returning to userspace, so the topmost pt_regs
126 * struct can be uninitialized; it _does_ need to exist, though, because
127 * a kernel thread can become a userspace thread by doing a kernel_execve, in
128 * which case the topmost context will be initialized and used for 'returning'
129 * to userspace.
130 *
131 * The second pt_reg struct needs to be initialized to 'return' to
132 * ret_from_fork.  A kernel thread will need to set r20 to the address of
133 * a function to call into (with arg in r22); userspace threads need to set
134 * r20 to NULL in which case ret_from_fork will just continue a return to
135 * userspace.
136 *
137 * A kernel thread 'fn' may return; this is effectively what happens when
138 * kernel_execve is called.  In that case, the userspace pt_regs must have
139 * been initialized (which kernel_execve takes care of, see start_thread
140 * below); ret_from_fork will then continue its execution causing the
141 * 'kernel thread' to return to userspace as a userspace thread.
142 */
143
144int
145copy_thread(unsigned long clone_flags, unsigned long usp,
146	    unsigned long arg, struct task_struct *p)
147{
148	struct pt_regs *userregs;
149	struct pt_regs *kregs;
150	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 
151	unsigned long top_of_kernel_stack;
152
153	top_of_kernel_stack = sp;
154
155	p->set_child_tid = p->clear_child_tid = NULL;
156
157	/* Locate userspace context on stack... */
158	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
 
159	sp -= sizeof(struct pt_regs);
160	userregs = (struct pt_regs *) sp;
161
162	/* ...and kernel context */
163	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
164	sp -= sizeof(struct pt_regs);
165	kregs = (struct pt_regs *)sp;
166
167	if (unlikely(p->flags & PF_KTHREAD)) {
168		memset(kregs, 0, sizeof(struct pt_regs));
169		kregs->gpr[20] = usp; /* fn, kernel thread */
170		kregs->gpr[22] = arg;
 
 
171	} else {
172		*userregs = *current_pt_regs();
 
 
 
173
174		if (usp)
175			userregs->sp = usp;
176		userregs->gpr[11] = 0;	/* Result from fork() */
 
 
 
 
 
 
 
 
 
177
178		kregs->gpr[20] = 0;	/* Userspace thread */
179	}
180
181	/*
182	 * _switch wants the kernel stack page in pt_regs->sp so that it
183	 * can restore it to thread_info->ksp... see _switch for details.
184	 */
185	kregs->sp = top_of_kernel_stack;
 
 
186	kregs->gpr[9] = (unsigned long)ret_from_fork;
187
188	task_thread_info(p)->ksp = (unsigned long)kregs;
189
190	return 0;
191}
192
193/*
194 * Set up a thread for executing a new program
195 */
196void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
197{
198	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
199
200	memset(regs, 0, sizeof(struct pt_regs));
 
201
202	regs->pc = pc;
203	regs->sr = sr;
204	regs->sp = sp;
 
 
205}
206
207/* Fill in the fpu structure for a core dump.  */
208int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
209{
210	/* TODO */
211	return 0;
212}
213
214extern struct thread_info *_switch(struct thread_info *old_ti,
215				   struct thread_info *new_ti);
216
217struct task_struct *__switch_to(struct task_struct *old,
218				struct task_struct *new)
219{
220	struct task_struct *last;
221	struct thread_info *new_ti, *old_ti;
222	unsigned long flags;
223
224	local_irq_save(flags);
225
226	/* current_set is an array of saved current pointers
227	 * (one for each cpu). we need them at user->kernel transition,
228	 * while we save them at kernel->user transition
229	 */
230	new_ti = new->stack;
231	old_ti = old->stack;
232
233	current_thread_info_set[smp_processor_id()] = new_ti;
234	last = (_switch(old_ti, new_ti))->task;
235
236	local_irq_restore(flags);
237
238	return last;
239}
240
241/*
242 * Write out registers in core dump format, as defined by the
243 * struct user_regs_struct
244 */
245void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
246{
247	dest[0] = 0; /* r0 */
248	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
249	dest[32] = regs->pc;
250	dest[33] = regs->sr;
251	dest[34] = 0;
252	dest[35] = 0;
253}
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255unsigned long get_wchan(struct task_struct *p)
256{
257	/* TODO */
258
259	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260}