Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
 
 
  31#include <linux/nsproxy.h>
  32#include <linux/capability.h>
  33#include <linux/cpu.h>
  34#include <linux/cgroup.h>
  35#include <linux/security.h>
  36#include <linux/hugetlb.h>
 
  37#include <linux/swap.h>
  38#include <linux/syscalls.h>
  39#include <linux/jiffies.h>
  40#include <linux/futex.h>
  41#include <linux/compat.h>
  42#include <linux/kthread.h>
  43#include <linux/task_io_accounting_ops.h>
  44#include <linux/rcupdate.h>
  45#include <linux/ptrace.h>
  46#include <linux/mount.h>
  47#include <linux/audit.h>
  48#include <linux/memcontrol.h>
  49#include <linux/ftrace.h>
 
  50#include <linux/profile.h>
  51#include <linux/rmap.h>
  52#include <linux/ksm.h>
  53#include <linux/acct.h>
 
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/freezer.h>
  57#include <linux/delayacct.h>
  58#include <linux/taskstats_kern.h>
  59#include <linux/random.h>
  60#include <linux/tty.h>
  61#include <linux/blkdev.h>
  62#include <linux/fs_struct.h>
  63#include <linux/magic.h>
  64#include <linux/perf_event.h>
  65#include <linux/posix-timers.h>
  66#include <linux/user-return-notifier.h>
  67#include <linux/oom.h>
  68#include <linux/khugepaged.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70#include <asm/pgtable.h>
  71#include <asm/pgalloc.h>
  72#include <asm/uaccess.h>
  73#include <asm/mmu_context.h>
  74#include <asm/cacheflush.h>
  75#include <asm/tlbflush.h>
  76
  77#include <trace/events/sched.h>
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/*
  80 * Protected counters by write_lock_irq(&tasklist_lock)
  81 */
  82unsigned long total_forks;	/* Handle normal Linux uptimes. */
  83int nr_threads;			/* The idle threads do not count.. */
  84
  85int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
  86
  87DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88
  89__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
  90
  91#ifdef CONFIG_PROVE_RCU
  92int lockdep_tasklist_lock_is_held(void)
  93{
  94	return lockdep_is_held(&tasklist_lock);
  95}
  96EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  97#endif /* #ifdef CONFIG_PROVE_RCU */
  98
  99int nr_processes(void)
 100{
 101	int cpu;
 102	int total = 0;
 103
 104	for_each_possible_cpu(cpu)
 105		total += per_cpu(process_counts, cpu);
 106
 107	return total;
 108}
 109
 110#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 111# define alloc_task_struct_node(node)		\
 112		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
 113# define free_task_struct(tsk)			\
 114		kmem_cache_free(task_struct_cachep, (tsk))
 115static struct kmem_cache *task_struct_cachep;
 
 
 
 
 
 
 
 
 
 
 116#endif
 117
 118#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
 119static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 120						  int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121{
 122#ifdef CONFIG_DEBUG_STACK_USAGE
 123	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124#else
 125	gfp_t mask = GFP_KERNEL;
 
 
 
 
 
 
 
 126#endif
 127	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	return page ? page_address(page) : NULL;
 
 
 130}
 131
 132static inline void free_thread_info(struct thread_info *ti)
 133{
 134	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 
 
 
 135}
 
 136#endif
 137
 138/* SLAB cache for signal_struct structures (tsk->signal) */
 139static struct kmem_cache *signal_cachep;
 140
 141/* SLAB cache for sighand_struct structures (tsk->sighand) */
 142struct kmem_cache *sighand_cachep;
 143
 144/* SLAB cache for files_struct structures (tsk->files) */
 145struct kmem_cache *files_cachep;
 146
 147/* SLAB cache for fs_struct structures (tsk->fs) */
 148struct kmem_cache *fs_cachep;
 149
 150/* SLAB cache for vm_area_struct structures */
 151struct kmem_cache *vm_area_cachep;
 152
 153/* SLAB cache for mm_struct structures (tsk->mm) */
 154static struct kmem_cache *mm_cachep;
 155
 156static void account_kernel_stack(struct thread_info *ti, int account)
 157{
 158	struct zone *zone = page_zone(virt_to_page(ti));
 159
 160	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 
 
 
 161}
 162
 163void free_task(struct task_struct *tsk)
 164{
 165	prop_local_destroy_single(&tsk->dirties);
 166	account_kernel_stack(tsk->stack, -1);
 167	free_thread_info(tsk->stack);
 168	rt_mutex_debug_task_free(tsk);
 169	ftrace_graph_exit_task(tsk);
 170	free_task_struct(tsk);
 171}
 172EXPORT_SYMBOL(free_task);
 173
 174static inline void free_signal_struct(struct signal_struct *sig)
 175{
 176	taskstats_tgid_free(sig);
 177	sched_autogroup_exit(sig);
 178	kmem_cache_free(signal_cachep, sig);
 
 
 
 
 
 
 
 179}
 180
 181static inline void put_signal_struct(struct signal_struct *sig)
 182{
 183	if (atomic_dec_and_test(&sig->sigcnt))
 184		free_signal_struct(sig);
 185}
 186
 187void __put_task_struct(struct task_struct *tsk)
 188{
 189	WARN_ON(!tsk->exit_state);
 190	WARN_ON(atomic_read(&tsk->usage));
 191	WARN_ON(tsk == current);
 192
 193	exit_creds(tsk);
 194	delayacct_tsk_free(tsk);
 195	put_signal_struct(tsk->signal);
 196
 197	if (!profile_handoff_task(tsk))
 198		free_task(tsk);
 
 
 
 
 
 
 199}
 200EXPORT_SYMBOL_GPL(__put_task_struct);
 201
 202/*
 203 * macro override instead of weak attribute alias, to workaround
 204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
 205 */
 206#ifndef arch_task_cache_init
 207#define arch_task_cache_init()
 208#endif
 209
 210void __init fork_init(unsigned long mempages)
 211{
 212#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 213#ifndef ARCH_MIN_TASKALIGN
 214#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 215#endif
 216	/* create a slab on which task_structs can be allocated */
 217	task_struct_cachep =
 218		kmem_cache_create("task_struct", sizeof(struct task_struct),
 219			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 220#endif
 221
 222	/* do the arch specific task caches init */
 223	arch_task_cache_init();
 224
 225	/*
 226	 * The default maximum number of threads is set to a safe
 227	 * value: the thread structures can take up at most half
 228	 * of memory.
 229	 */
 230	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 231
 232	/*
 233	 * we need to allow at least 20 threads to boot a system
 234	 */
 235	if (max_threads < 20)
 236		max_threads = 20;
 237
 238	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 239	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 240	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 241		init_task.signal->rlim[RLIMIT_NPROC];
 242}
 243
 244int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
 245					       struct task_struct *src)
 246{
 247	*dst = *src;
 
 
 
 
 
 
 
 
 
 
 248	return 0;
 249}
 250
 251static struct task_struct *dup_task_struct(struct task_struct *orig)
 252{
 253	struct task_struct *tsk;
 254	struct thread_info *ti;
 255	unsigned long *stackend;
 256	int node = tsk_fork_get_node(orig);
 257	int err;
 258
 259	prepare_to_copy(orig);
 260
 261	tsk = alloc_task_struct_node(node);
 262	if (!tsk)
 263		return NULL;
 264
 265	ti = alloc_thread_info_node(tsk, node);
 266	if (!ti) {
 267		free_task_struct(tsk);
 268		return NULL;
 269	}
 270
 271	err = arch_dup_task_struct(tsk, orig);
 272	if (err)
 273		goto out;
 274
 275	tsk->stack = ti;
 276
 277	err = prop_local_init_single(&tsk->dirties);
 278	if (err)
 279		goto out;
 280
 281	setup_thread_stack(tsk, orig);
 282	clear_user_return_notifier(tsk);
 283	clear_tsk_need_resched(tsk);
 284	stackend = end_of_stack(tsk);
 285	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 286
 287#ifdef CONFIG_CC_STACKPROTECTOR
 288	tsk->stack_canary = get_random_int();
 
 
 
 
 289#endif
 290
 
 
 
 
 
 291	/*
 292	 * One for us, one for whoever does the "release_task()" (usually
 293	 * parent)
 294	 */
 295	atomic_set(&tsk->usage, 2);
 296#ifdef CONFIG_BLK_DEV_IO_TRACE
 297	tsk->btrace_seq = 0;
 
 
 
 
 298#endif
 299	tsk->splice_pipe = NULL;
 300
 301	account_kernel_stack(ti, 1);
 302
 303	return tsk;
 304
 305out:
 306	free_thread_info(ti);
 307	free_task_struct(tsk);
 308	return NULL;
 309}
 
 310
 311#ifdef CONFIG_MMU
 312static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 
 313{
 314	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 315	struct rb_node **rb_link, *rb_parent;
 316	int retval;
 317	unsigned long charge;
 318	struct mempolicy *pol;
 319
 320	down_write(&oldmm->mmap_sem);
 
 
 
 
 321	flush_cache_dup_mm(oldmm);
 
 322	/*
 323	 * Not linked in yet - no deadlock potential:
 324	 */
 325	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 326
 327	mm->locked_vm = 0;
 328	mm->mmap = NULL;
 329	mm->mmap_cache = NULL;
 330	mm->free_area_cache = oldmm->mmap_base;
 331	mm->cached_hole_size = ~0UL;
 332	mm->map_count = 0;
 333	cpumask_clear(mm_cpumask(mm));
 334	mm->mm_rb = RB_ROOT;
 335	rb_link = &mm->mm_rb.rb_node;
 336	rb_parent = NULL;
 337	pprev = &mm->mmap;
 338	retval = ksm_fork(mm, oldmm);
 339	if (retval)
 340		goto out;
 341	retval = khugepaged_fork(mm, oldmm);
 342	if (retval)
 343		goto out;
 344
 345	prev = NULL;
 346	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 347		struct file *file;
 348
 349		if (mpnt->vm_flags & VM_DONTCOPY) {
 350			long pages = vma_pages(mpnt);
 351			mm->total_vm -= pages;
 352			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 353								-pages);
 354			continue;
 355		}
 356		charge = 0;
 
 
 
 
 
 
 
 
 357		if (mpnt->vm_flags & VM_ACCOUNT) {
 358			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 359			if (security_vm_enough_memory(len))
 
 360				goto fail_nomem;
 361			charge = len;
 362		}
 363		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 364		if (!tmp)
 365			goto fail_nomem;
 366		*tmp = *mpnt;
 367		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 368		pol = mpol_dup(vma_policy(mpnt));
 369		retval = PTR_ERR(pol);
 370		if (IS_ERR(pol))
 371			goto fail_nomem_policy;
 372		vma_set_policy(tmp, pol);
 373		tmp->vm_mm = mm;
 374		if (anon_vma_fork(tmp, mpnt))
 
 375			goto fail_nomem_anon_vma_fork;
 376		tmp->vm_flags &= ~VM_LOCKED;
 377		tmp->vm_next = tmp->vm_prev = NULL;
 
 
 
 
 
 
 
 
 378		file = tmp->vm_file;
 379		if (file) {
 380			struct inode *inode = file->f_path.dentry->d_inode;
 381			struct address_space *mapping = file->f_mapping;
 382
 383			get_file(file);
 384			if (tmp->vm_flags & VM_DENYWRITE)
 385				atomic_dec(&inode->i_writecount);
 386			mutex_lock(&mapping->i_mmap_mutex);
 387			if (tmp->vm_flags & VM_SHARED)
 388				mapping->i_mmap_writable++;
 389			flush_dcache_mmap_lock(mapping);
 390			/* insert tmp into the share list, just after mpnt */
 391			vma_prio_tree_add(tmp, mpnt);
 
 392			flush_dcache_mmap_unlock(mapping);
 393			mutex_unlock(&mapping->i_mmap_mutex);
 394		}
 395
 396		/*
 397		 * Clear hugetlb-related page reserves for children. This only
 398		 * affects MAP_PRIVATE mappings. Faults generated by the child
 399		 * are not guaranteed to succeed, even if read-only
 400		 */
 401		if (is_vm_hugetlb_page(tmp))
 402			reset_vma_resv_huge_pages(tmp);
 403
 404		/*
 405		 * Link in the new vma and copy the page table entries.
 406		 */
 407		*pprev = tmp;
 408		pprev = &tmp->vm_next;
 409		tmp->vm_prev = prev;
 410		prev = tmp;
 411
 412		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 413		rb_link = &tmp->vm_rb.rb_right;
 414		rb_parent = &tmp->vm_rb;
 415
 416		mm->map_count++;
 417		retval = copy_page_range(mm, oldmm, mpnt);
 
 418
 419		if (tmp->vm_ops && tmp->vm_ops->open)
 420			tmp->vm_ops->open(tmp);
 421
 422		if (retval)
 423			goto out;
 424	}
 425	/* a new mm has just been created */
 426	arch_dup_mmap(oldmm, mm);
 427	retval = 0;
 428out:
 429	up_write(&mm->mmap_sem);
 430	flush_tlb_mm(oldmm);
 431	up_write(&oldmm->mmap_sem);
 
 
 
 432	return retval;
 433fail_nomem_anon_vma_fork:
 434	mpol_put(pol);
 435fail_nomem_policy:
 436	kmem_cache_free(vm_area_cachep, tmp);
 437fail_nomem:
 438	retval = -ENOMEM;
 439	vm_unacct_memory(charge);
 440	goto out;
 441}
 442
 443static inline int mm_alloc_pgd(struct mm_struct *mm)
 444{
 445	mm->pgd = pgd_alloc(mm);
 446	if (unlikely(!mm->pgd))
 447		return -ENOMEM;
 448	return 0;
 449}
 450
 451static inline void mm_free_pgd(struct mm_struct *mm)
 452{
 453	pgd_free(mm, mm->pgd);
 454}
 455#else
 456#define dup_mmap(mm, oldmm)	(0)
 
 
 
 
 
 
 457#define mm_alloc_pgd(mm)	(0)
 458#define mm_free_pgd(mm)
 459#endif /* CONFIG_MMU */
 460
 461__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 464#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 467
 468static int __init coredump_filter_setup(char *s)
 469{
 470	default_dump_filter =
 471		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 472		MMF_DUMP_FILTER_MASK;
 473	return 1;
 474}
 475
 476__setup("coredump_filter=", coredump_filter_setup);
 477
 478#include <linux/init_task.h>
 479
 480static void mm_init_aio(struct mm_struct *mm)
 481{
 482#ifdef CONFIG_AIO
 483	spin_lock_init(&mm->ioctx_lock);
 484	INIT_HLIST_HEAD(&mm->ioctx_list);
 485#endif
 486}
 487
 488static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 
 489{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	atomic_set(&mm->mm_users, 1);
 491	atomic_set(&mm->mm_count, 1);
 492	init_rwsem(&mm->mmap_sem);
 
 493	INIT_LIST_HEAD(&mm->mmlist);
 494	mm->flags = (current->mm) ?
 495		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
 496	mm->core_state = NULL;
 497	mm->nr_ptes = 0;
 
 
 
 498	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 499	spin_lock_init(&mm->page_table_lock);
 500	mm->free_area_cache = TASK_UNMAPPED_BASE;
 501	mm->cached_hole_size = ~0UL;
 502	mm_init_aio(mm);
 503	mm_init_owner(mm, p);
 504	atomic_set(&mm->oom_disable_count, 0);
 
 
 
 
 
 
 
 
 505
 506	if (likely(!mm_alloc_pgd(mm))) {
 
 
 
 
 507		mm->def_flags = 0;
 508		mmu_notifier_mm_init(mm);
 509		return mm;
 510	}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 512	free_mm(mm);
 513	return NULL;
 514}
 515
 516/*
 517 * Allocate and initialize an mm_struct.
 518 */
 519struct mm_struct *mm_alloc(void)
 520{
 521	struct mm_struct *mm;
 522
 523	mm = allocate_mm();
 524	if (!mm)
 525		return NULL;
 526
 527	memset(mm, 0, sizeof(*mm));
 528	mm_init_cpumask(mm);
 529	return mm_init(mm, current);
 530}
 531
 532/*
 533 * Called when the last reference to the mm
 534 * is dropped: either by a lazy thread or by
 535 * mmput. Free the page directory and the mm.
 536 */
 537void __mmdrop(struct mm_struct *mm)
 538{
 539	BUG_ON(mm == &init_mm);
 540	mm_free_pgd(mm);
 541	destroy_context(mm);
 542	mmu_notifier_mm_destroy(mm);
 543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 544	VM_BUG_ON(mm->pmd_huge_pte);
 545#endif
 546	free_mm(mm);
 
 
 
 
 
 
 
 
 
 547}
 548EXPORT_SYMBOL_GPL(__mmdrop);
 549
 550/*
 551 * Decrement the use count and release all resources for an mm.
 552 */
 553void mmput(struct mm_struct *mm)
 554{
 555	might_sleep();
 556
 557	if (atomic_dec_and_test(&mm->mm_users)) {
 558		exit_aio(mm);
 559		ksm_exit(mm);
 560		khugepaged_exit(mm); /* must run before exit_mmap */
 561		exit_mmap(mm);
 562		set_mm_exe_file(mm, NULL);
 563		if (!list_empty(&mm->mmlist)) {
 564			spin_lock(&mmlist_lock);
 565			list_del(&mm->mmlist);
 566			spin_unlock(&mmlist_lock);
 567		}
 568		put_swap_token(mm);
 569		if (mm->binfmt)
 570			module_put(mm->binfmt->module);
 571		mmdrop(mm);
 572	}
 573}
 574EXPORT_SYMBOL_GPL(mmput);
 575
 576/*
 577 * We added or removed a vma mapping the executable. The vmas are only mapped
 578 * during exec and are not mapped with the mmap system call.
 579 * Callers must hold down_write() on the mm's mmap_sem for these
 580 */
 581void added_exe_file_vma(struct mm_struct *mm)
 582{
 583	mm->num_exe_file_vmas++;
 
 
 
 584}
 585
 586void removed_exe_file_vma(struct mm_struct *mm)
 587{
 588	mm->num_exe_file_vmas--;
 589	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
 590		fput(mm->exe_file);
 591		mm->exe_file = NULL;
 592	}
 593
 594}
 
 595
 
 
 
 
 
 
 
 
 
 
 
 596void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 597{
 
 
 
 
 
 
 
 
 
 598	if (new_exe_file)
 599		get_file(new_exe_file);
 600	if (mm->exe_file)
 601		fput(mm->exe_file);
 602	mm->exe_file = new_exe_file;
 603	mm->num_exe_file_vmas = 0;
 604}
 605
 
 
 
 
 
 
 606struct file *get_mm_exe_file(struct mm_struct *mm)
 607{
 608	struct file *exe_file;
 609
 610	/* We need mmap_sem to protect against races with removal of
 611	 * VM_EXECUTABLE vmas */
 612	down_read(&mm->mmap_sem);
 613	exe_file = mm->exe_file;
 614	if (exe_file)
 615		get_file(exe_file);
 616	up_read(&mm->mmap_sem);
 617	return exe_file;
 618}
 
 619
 620static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
 
 
 
 
 
 
 
 621{
 622	/* It's safe to write the exe_file pointer without exe_file_lock because
 623	 * this is called during fork when the task is not yet in /proc */
 624	newmm->exe_file = get_mm_exe_file(oldmm);
 
 
 
 
 
 
 
 
 625}
 
 626
 627/**
 628 * get_task_mm - acquire a reference to the task's mm
 629 *
 630 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 631 * this kernel workthread has transiently adopted a user mm with use_mm,
 632 * to do its AIO) is not set and if so returns a reference to it, after
 633 * bumping up the use count.  User must release the mm via mmput()
 634 * after use.  Typically used by /proc and ptrace.
 635 */
 636struct mm_struct *get_task_mm(struct task_struct *task)
 637{
 638	struct mm_struct *mm;
 639
 640	task_lock(task);
 641	mm = task->mm;
 642	if (mm) {
 643		if (task->flags & PF_KTHREAD)
 644			mm = NULL;
 645		else
 646			atomic_inc(&mm->mm_users);
 647	}
 648	task_unlock(task);
 649	return mm;
 650}
 651EXPORT_SYMBOL_GPL(get_task_mm);
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653/* Please note the differences between mmput and mm_release.
 654 * mmput is called whenever we stop holding onto a mm_struct,
 655 * error success whatever.
 656 *
 657 * mm_release is called after a mm_struct has been removed
 658 * from the current process.
 659 *
 660 * This difference is important for error handling, when we
 661 * only half set up a mm_struct for a new process and need to restore
 662 * the old one.  Because we mmput the new mm_struct before
 663 * restoring the old one. . .
 664 * Eric Biederman 10 January 1998
 665 */
 666void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 667{
 668	struct completion *vfork_done = tsk->vfork_done;
 669
 670	/* Get rid of any futexes when releasing the mm */
 671#ifdef CONFIG_FUTEX
 672	if (unlikely(tsk->robust_list)) {
 673		exit_robust_list(tsk);
 674		tsk->robust_list = NULL;
 675	}
 676#ifdef CONFIG_COMPAT
 677	if (unlikely(tsk->compat_robust_list)) {
 678		compat_exit_robust_list(tsk);
 679		tsk->compat_robust_list = NULL;
 680	}
 681#endif
 682	if (unlikely(!list_empty(&tsk->pi_state_list)))
 683		exit_pi_state_list(tsk);
 684#endif
 685
 686	/* Get rid of any cached register state */
 687	deactivate_mm(tsk, mm);
 688
 689	/* notify parent sleeping on vfork() */
 690	if (vfork_done) {
 691		tsk->vfork_done = NULL;
 692		complete(vfork_done);
 693	}
 694
 695	/*
 696	 * If we're exiting normally, clear a user-space tid field if
 697	 * requested.  We leave this alone when dying by signal, to leave
 698	 * the value intact in a core dump, and to save the unnecessary
 699	 * trouble otherwise.  Userland only wants this done for a sys_exit.
 700	 */
 701	if (tsk->clear_child_tid) {
 702		if (!(tsk->flags & PF_SIGNALED) &&
 703		    atomic_read(&mm->mm_users) > 1) {
 704			/*
 705			 * We don't check the error code - if userspace has
 706			 * not set up a proper pointer then tough luck.
 707			 */
 708			put_user(0, tsk->clear_child_tid);
 709			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 710					1, NULL, NULL, 0);
 711		}
 712		tsk->clear_child_tid = NULL;
 713	}
 
 
 
 
 
 
 
 714}
 715
 716/*
 717 * Allocate a new mm structure and copy contents from the
 718 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719 */
 720struct mm_struct *dup_mm(struct task_struct *tsk)
 
 721{
 722	struct mm_struct *mm, *oldmm = current->mm;
 723	int err;
 724
 725	if (!oldmm)
 726		return NULL;
 727
 728	mm = allocate_mm();
 729	if (!mm)
 730		goto fail_nomem;
 731
 732	memcpy(mm, oldmm, sizeof(*mm));
 733	mm_init_cpumask(mm);
 734
 735	/* Initializing for Swap token stuff */
 736	mm->token_priority = 0;
 737	mm->last_interval = 0;
 738
 739#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 740	mm->pmd_huge_pte = NULL;
 741#endif
 742
 743	if (!mm_init(mm, tsk))
 744		goto fail_nomem;
 745
 746	if (init_new_context(tsk, mm))
 747		goto fail_nocontext;
 748
 749	dup_mm_exe_file(oldmm, mm);
 750
 751	err = dup_mmap(mm, oldmm);
 752	if (err)
 753		goto free_pt;
 754
 755	mm->hiwater_rss = get_mm_rss(mm);
 756	mm->hiwater_vm = mm->total_vm;
 757
 758	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 759		goto free_pt;
 760
 761	return mm;
 762
 763free_pt:
 764	/* don't put binfmt in mmput, we haven't got module yet */
 765	mm->binfmt = NULL;
 
 766	mmput(mm);
 767
 768fail_nomem:
 769	return NULL;
 770
 771fail_nocontext:
 772	/*
 773	 * If init_new_context() failed, we cannot use mmput() to free the mm
 774	 * because it calls destroy_context()
 775	 */
 776	mm_free_pgd(mm);
 777	free_mm(mm);
 778	return NULL;
 779}
 780
 781static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 782{
 783	struct mm_struct *mm, *oldmm;
 784	int retval;
 785
 786	tsk->min_flt = tsk->maj_flt = 0;
 787	tsk->nvcsw = tsk->nivcsw = 0;
 788#ifdef CONFIG_DETECT_HUNG_TASK
 789	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
 790#endif
 791
 792	tsk->mm = NULL;
 793	tsk->active_mm = NULL;
 794
 795	/*
 796	 * Are we cloning a kernel thread?
 797	 *
 798	 * We need to steal a active VM for that..
 799	 */
 800	oldmm = current->mm;
 801	if (!oldmm)
 802		return 0;
 803
 
 
 
 804	if (clone_flags & CLONE_VM) {
 805		atomic_inc(&oldmm->mm_users);
 806		mm = oldmm;
 807		goto good_mm;
 
 
 
 808	}
 809
 810	retval = -ENOMEM;
 811	mm = dup_mm(tsk);
 812	if (!mm)
 813		goto fail_nomem;
 814
 815good_mm:
 816	/* Initializing for Swap token stuff */
 817	mm->token_priority = 0;
 818	mm->last_interval = 0;
 819	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 820		atomic_inc(&mm->oom_disable_count);
 821
 822	tsk->mm = mm;
 823	tsk->active_mm = mm;
 824	return 0;
 825
 826fail_nomem:
 827	return retval;
 828}
 829
 830static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 831{
 832	struct fs_struct *fs = current->fs;
 833	if (clone_flags & CLONE_FS) {
 834		/* tsk->fs is already what we want */
 835		spin_lock(&fs->lock);
 836		if (fs->in_exec) {
 837			spin_unlock(&fs->lock);
 838			return -EAGAIN;
 839		}
 840		fs->users++;
 841		spin_unlock(&fs->lock);
 842		return 0;
 843	}
 844	tsk->fs = copy_fs_struct(fs);
 845	if (!tsk->fs)
 846		return -ENOMEM;
 847	return 0;
 848}
 849
 850static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 851{
 852	struct files_struct *oldf, *newf;
 853	int error = 0;
 854
 855	/*
 856	 * A background process may not have any files ...
 857	 */
 858	oldf = current->files;
 859	if (!oldf)
 860		goto out;
 861
 862	if (clone_flags & CLONE_FILES) {
 863		atomic_inc(&oldf->count);
 864		goto out;
 865	}
 866
 867	newf = dup_fd(oldf, &error);
 868	if (!newf)
 869		goto out;
 870
 871	tsk->files = newf;
 872	error = 0;
 873out:
 874	return error;
 875}
 876
 877static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 878{
 879#ifdef CONFIG_BLOCK
 880	struct io_context *ioc = current->io_context;
 
 881
 882	if (!ioc)
 883		return 0;
 884	/*
 885	 * Share io context with parent, if CLONE_IO is set
 886	 */
 887	if (clone_flags & CLONE_IO) {
 888		tsk->io_context = ioc_task_link(ioc);
 889		if (unlikely(!tsk->io_context))
 890			return -ENOMEM;
 891	} else if (ioprio_valid(ioc->ioprio)) {
 892		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
 893		if (unlikely(!tsk->io_context))
 894			return -ENOMEM;
 895
 896		tsk->io_context->ioprio = ioc->ioprio;
 
 897	}
 898#endif
 899	return 0;
 900}
 901
 902static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 903{
 904	struct sighand_struct *sig;
 905
 906	if (clone_flags & CLONE_SIGHAND) {
 907		atomic_inc(&current->sighand->count);
 908		return 0;
 909	}
 910	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 911	rcu_assign_pointer(tsk->sighand, sig);
 912	if (!sig)
 913		return -ENOMEM;
 914	atomic_set(&sig->count, 1);
 
 
 915	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
 916	return 0;
 917}
 918
 919void __cleanup_sighand(struct sighand_struct *sighand)
 920{
 921	if (atomic_dec_and_test(&sighand->count))
 
 
 
 
 
 922		kmem_cache_free(sighand_cachep, sighand);
 
 923}
 924
 925
 926/*
 927 * Initialize POSIX timer handling for a thread group.
 928 */
 929static void posix_cpu_timers_init_group(struct signal_struct *sig)
 930{
 
 931	unsigned long cpu_limit;
 932
 933	/* Thread group counters. */
 934	thread_group_cputime_init(sig);
 935
 936	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 937	if (cpu_limit != RLIM_INFINITY) {
 938		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
 939		sig->cputimer.running = 1;
 940	}
 941
 942	/* The timer lists. */
 943	INIT_LIST_HEAD(&sig->cpu_timers[0]);
 944	INIT_LIST_HEAD(&sig->cpu_timers[1]);
 945	INIT_LIST_HEAD(&sig->cpu_timers[2]);
 946}
 947
 948static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 949{
 950	struct signal_struct *sig;
 951
 952	if (clone_flags & CLONE_THREAD)
 953		return 0;
 954
 955	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
 956	tsk->signal = sig;
 957	if (!sig)
 958		return -ENOMEM;
 959
 960	sig->nr_threads = 1;
 961	atomic_set(&sig->live, 1);
 962	atomic_set(&sig->sigcnt, 1);
 
 
 
 
 
 963	init_waitqueue_head(&sig->wait_chldexit);
 964	if (clone_flags & CLONE_NEWPID)
 965		sig->flags |= SIGNAL_UNKILLABLE;
 966	sig->curr_target = tsk;
 967	init_sigpending(&sig->shared_pending);
 968	INIT_LIST_HEAD(&sig->posix_timers);
 
 
 969
 
 
 970	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 971	sig->real_timer.function = it_real_fn;
 
 972
 973	task_lock(current->group_leader);
 974	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 975	task_unlock(current->group_leader);
 976
 977	posix_cpu_timers_init_group(sig);
 978
 979	tty_audit_fork(sig);
 980	sched_autogroup_fork(sig);
 981
 982#ifdef CONFIG_CGROUPS
 983	init_rwsem(&sig->threadgroup_fork_lock);
 984#endif
 985
 986	sig->oom_adj = current->signal->oom_adj;
 987	sig->oom_score_adj = current->signal->oom_score_adj;
 988	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
 989
 990	mutex_init(&sig->cred_guard_mutex);
 
 991
 992	return 0;
 993}
 994
 995static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 996{
 997	unsigned long new_flags = p->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998
 999	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1000	new_flags |= PF_FORKNOEXEC;
1001	new_flags |= PF_STARTING;
1002	p->flags = new_flags;
1003	clear_freeze_flag(p);
 
 
 
1004}
1005
1006SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1007{
1008	current->clear_child_tid = tidptr;
1009
1010	return task_pid_vnr(current);
1011}
1012
1013static void rt_mutex_init_task(struct task_struct *p)
1014{
1015	raw_spin_lock_init(&p->pi_lock);
1016#ifdef CONFIG_RT_MUTEXES
1017	plist_head_init(&p->pi_waiters);
 
1018	p->pi_blocked_on = NULL;
1019#endif
1020}
1021
1022#ifdef CONFIG_MM_OWNER
1023void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1024{
1025	mm->owner = p;
 
 
 
1026}
1027#endif /* CONFIG_MM_OWNER */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029/*
1030 * Initialize POSIX timer handling for a single task.
1031 */
1032static void posix_cpu_timers_init(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	tsk->cputime_expires.prof_exp = cputime_zero;
1035	tsk->cputime_expires.virt_exp = cputime_zero;
1036	tsk->cputime_expires.sched_exp = 0;
1037	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1038	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1039	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040}
1041
1042/*
1043 * This creates a new process as a copy of the old one,
1044 * but does not actually start it yet.
1045 *
1046 * It copies the registers, and all the appropriate
1047 * parts of the process environment (as per the clone
1048 * flags). The actual kick-off is left to the caller.
1049 */
1050static struct task_struct *copy_process(unsigned long clone_flags,
1051					unsigned long stack_start,
1052					struct pt_regs *regs,
1053					unsigned long stack_size,
1054					int __user *child_tidptr,
1055					struct pid *pid,
1056					int trace)
 
 
1057{
1058	int retval;
1059	struct task_struct *p;
1060	int cgroup_callbacks_done = 0;
 
 
 
1061
 
 
 
 
1062	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1063		return ERR_PTR(-EINVAL);
1064
 
 
 
1065	/*
1066	 * Thread groups must share signals as well, and detached threads
1067	 * can only be started up within the thread group.
1068	 */
1069	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1070		return ERR_PTR(-EINVAL);
1071
1072	/*
1073	 * Shared signal handlers imply shared VM. By way of the above,
1074	 * thread groups also imply shared VM. Blocking this case allows
1075	 * for various simplifications in other code.
1076	 */
1077	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1078		return ERR_PTR(-EINVAL);
1079
1080	/*
1081	 * Siblings of global init remain as zombies on exit since they are
1082	 * not reaped by their parent (swapper). To solve this and to avoid
1083	 * multi-rooted process trees, prevent global and container-inits
1084	 * from creating siblings.
1085	 */
1086	if ((clone_flags & CLONE_PARENT) &&
1087				current->signal->flags & SIGNAL_UNKILLABLE)
1088		return ERR_PTR(-EINVAL);
1089
1090	retval = security_task_create(clone_flags);
1091	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092		goto fork_out;
1093
1094	retval = -ENOMEM;
1095	p = dup_task_struct(current);
1096	if (!p)
1097		goto fork_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099	ftrace_graph_init_task(p);
1100
1101	rt_mutex_init_task(p);
1102
 
1103#ifdef CONFIG_PROVE_LOCKING
1104	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1105	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1106#endif
1107	retval = -EAGAIN;
1108	if (atomic_read(&p->real_cred->user->processes) >=
1109			task_rlimit(p, RLIMIT_NPROC)) {
1110		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1111		    p->real_cred->user != INIT_USER)
1112			goto bad_fork_free;
1113	}
1114	current->flags &= ~PF_NPROC_EXCEEDED;
1115
1116	retval = copy_creds(p, clone_flags);
1117	if (retval < 0)
1118		goto bad_fork_free;
1119
1120	/*
1121	 * If multiple threads are within copy_process(), then this check
1122	 * triggers too late. This doesn't hurt, the check is only there
1123	 * to stop root fork bombs.
1124	 */
1125	retval = -EAGAIN;
1126	if (nr_threads >= max_threads)
1127		goto bad_fork_cleanup_count;
1128
1129	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1130		goto bad_fork_cleanup_count;
1131
1132	p->did_exec = 0;
1133	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1134	copy_flags(clone_flags, p);
 
1135	INIT_LIST_HEAD(&p->children);
1136	INIT_LIST_HEAD(&p->sibling);
1137	rcu_copy_process(p);
1138	p->vfork_done = NULL;
1139	spin_lock_init(&p->alloc_lock);
1140
1141	init_sigpending(&p->pending);
1142
1143	p->utime = cputime_zero;
1144	p->stime = cputime_zero;
1145	p->gtime = cputime_zero;
1146	p->utimescaled = cputime_zero;
1147	p->stimescaled = cputime_zero;
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1149	p->prev_utime = cputime_zero;
1150	p->prev_stime = cputime_zero;
 
 
1151#endif
 
 
 
 
 
1152#if defined(SPLIT_RSS_COUNTING)
1153	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1154#endif
1155
1156	p->default_timer_slack_ns = current->timer_slack_ns;
1157
 
 
 
 
1158	task_io_accounting_init(&p->ioac);
1159	acct_clear_integrals(p);
1160
1161	posix_cpu_timers_init(p);
1162
1163	do_posix_clock_monotonic_gettime(&p->start_time);
1164	p->real_start_time = p->start_time;
1165	monotonic_to_bootbased(&p->real_start_time);
1166	p->io_context = NULL;
1167	p->audit_context = NULL;
1168	if (clone_flags & CLONE_THREAD)
1169		threadgroup_fork_read_lock(current);
1170	cgroup_fork(p);
1171#ifdef CONFIG_NUMA
1172	p->mempolicy = mpol_dup(p->mempolicy);
1173	if (IS_ERR(p->mempolicy)) {
1174		retval = PTR_ERR(p->mempolicy);
1175		p->mempolicy = NULL;
1176		goto bad_fork_cleanup_cgroup;
1177	}
1178	mpol_fix_fork_child_flag(p);
1179#endif
1180#ifdef CONFIG_CPUSETS
1181	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1182	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
 
1183#endif
1184#ifdef CONFIG_TRACE_IRQFLAGS
1185	p->irq_events = 0;
1186#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1187	p->hardirqs_enabled = 1;
1188#else
1189	p->hardirqs_enabled = 0;
1190#endif
1191	p->hardirq_enable_ip = 0;
1192	p->hardirq_enable_event = 0;
1193	p->hardirq_disable_ip = _THIS_IP_;
1194	p->hardirq_disable_event = 0;
1195	p->softirqs_enabled = 1;
1196	p->softirq_enable_ip = _THIS_IP_;
1197	p->softirq_enable_event = 0;
1198	p->softirq_disable_ip = 0;
1199	p->softirq_disable_event = 0;
1200	p->hardirq_context = 0;
1201	p->softirq_context = 0;
1202#endif
 
 
 
1203#ifdef CONFIG_LOCKDEP
1204	p->lockdep_depth = 0; /* no locks held yet */
1205	p->curr_chain_key = 0;
1206	p->lockdep_recursion = 0;
1207#endif
1208
1209#ifdef CONFIG_DEBUG_MUTEXES
1210	p->blocked_on = NULL; /* not blocked yet */
1211#endif
1212#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1213	p->memcg_batch.do_batch = 0;
1214	p->memcg_batch.memcg = NULL;
 
 
 
1215#endif
1216
1217	/* Perform scheduler related setup. Assign this task to a CPU. */
1218	sched_fork(p);
 
 
1219
1220	retval = perf_event_init_task(p);
1221	if (retval)
1222		goto bad_fork_cleanup_policy;
1223	retval = audit_alloc(p);
1224	if (retval)
1225		goto bad_fork_cleanup_policy;
1226	/* copy all the process information */
1227	retval = copy_semundo(clone_flags, p);
 
1228	if (retval)
1229		goto bad_fork_cleanup_audit;
 
 
 
1230	retval = copy_files(clone_flags, p);
1231	if (retval)
1232		goto bad_fork_cleanup_semundo;
1233	retval = copy_fs(clone_flags, p);
1234	if (retval)
1235		goto bad_fork_cleanup_files;
1236	retval = copy_sighand(clone_flags, p);
1237	if (retval)
1238		goto bad_fork_cleanup_fs;
1239	retval = copy_signal(clone_flags, p);
1240	if (retval)
1241		goto bad_fork_cleanup_sighand;
1242	retval = copy_mm(clone_flags, p);
1243	if (retval)
1244		goto bad_fork_cleanup_signal;
1245	retval = copy_namespaces(clone_flags, p);
1246	if (retval)
1247		goto bad_fork_cleanup_mm;
1248	retval = copy_io(clone_flags, p);
1249	if (retval)
1250		goto bad_fork_cleanup_namespaces;
1251	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1252	if (retval)
1253		goto bad_fork_cleanup_io;
1254
 
 
1255	if (pid != &init_struct_pid) {
1256		retval = -ENOMEM;
1257		pid = alloc_pid(p->nsproxy->pid_ns);
1258		if (!pid)
1259			goto bad_fork_cleanup_io;
 
 
1260	}
1261
1262	p->pid = pid_nr(pid);
1263	p->tgid = p->pid;
1264	if (clone_flags & CLONE_THREAD)
1265		p->tgid = current->tgid;
1266
1267	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1268	/*
1269	 * Clear TID on mm_release()?
1270	 */
1271	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272#ifdef CONFIG_BLOCK
1273	p->plug = NULL;
1274#endif
1275#ifdef CONFIG_FUTEX
1276	p->robust_list = NULL;
1277#ifdef CONFIG_COMPAT
1278	p->compat_robust_list = NULL;
1279#endif
1280	INIT_LIST_HEAD(&p->pi_state_list);
1281	p->pi_state_cache = NULL;
1282#endif
1283	/*
1284	 * sigaltstack should be cleared when sharing the same VM
1285	 */
1286	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1287		p->sas_ss_sp = p->sas_ss_size = 0;
1288
1289	/*
1290	 * Syscall tracing and stepping should be turned off in the
1291	 * child regardless of CLONE_PTRACE.
1292	 */
1293	user_disable_single_step(p);
1294	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1295#ifdef TIF_SYSCALL_EMU
1296	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1297#endif
1298	clear_all_latency_tracing(p);
1299
1300	/* ok, now we should be set up.. */
1301	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
 
 
 
 
 
 
 
 
 
 
 
 
1302	p->pdeath_signal = 0;
1303	p->exit_state = 0;
 
 
 
 
 
1304
1305	/*
1306	 * Ok, make it visible to the rest of the system.
1307	 * We dont wake it up yet.
 
 
1308	 */
1309	p->group_leader = p;
1310	INIT_LIST_HEAD(&p->thread_group);
 
1311
1312	/* Now that the task is set up, run cgroup callbacks if
1313	 * necessary. We need to run them before the task is visible
1314	 * on the tasklist. */
1315	cgroup_fork_callbacks(p);
1316	cgroup_callbacks_done = 1;
 
 
1317
1318	/* Need tasklist lock for parent etc handling! */
 
 
 
 
 
 
1319	write_lock_irq(&tasklist_lock);
1320
1321	/* CLONE_PARENT re-uses the old parent */
1322	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1323		p->real_parent = current->real_parent;
1324		p->parent_exec_id = current->parent_exec_id;
 
 
 
 
1325	} else {
1326		p->real_parent = current;
1327		p->parent_exec_id = current->self_exec_id;
 
1328	}
1329
 
 
 
 
1330	spin_lock(&current->sighand->siglock);
1331
1332	/*
1333	 * Process group and session signals need to be delivered to just the
1334	 * parent before the fork or both the parent and the child after the
1335	 * fork. Restart if a signal comes in before we add the new process to
1336	 * it's process group.
1337	 * A fatal signal pending means that current will exit, so the new
1338	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339	*/
1340	recalc_sigpending();
1341	if (signal_pending(current)) {
1342		spin_unlock(&current->sighand->siglock);
1343		write_unlock_irq(&tasklist_lock);
1344		retval = -ERESTARTNOINTR;
1345		goto bad_fork_free_pid;
1346	}
1347
1348	if (clone_flags & CLONE_THREAD) {
1349		current->signal->nr_threads++;
1350		atomic_inc(&current->signal->live);
1351		atomic_inc(&current->signal->sigcnt);
1352		p->group_leader = current->group_leader;
1353		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1354	}
1355
 
 
 
 
 
1356	if (likely(p->pid)) {
1357		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358
 
1359		if (thread_group_leader(p)) {
1360			if (is_child_reaper(pid))
1361				p->nsproxy->pid_ns->child_reaper = p;
1362
1363			p->signal->leader_pid = pid;
 
 
 
 
 
1364			p->signal->tty = tty_kref_get(current->signal->tty);
1365			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1366			attach_pid(p, PIDTYPE_SID, task_session(current));
 
 
 
 
 
1367			list_add_tail(&p->sibling, &p->real_parent->children);
1368			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
 
 
1369			__this_cpu_inc(process_counts);
 
 
 
 
 
 
 
 
 
1370		}
1371		attach_pid(p, PIDTYPE_PID, pid);
1372		nr_threads++;
1373	}
1374
1375	total_forks++;
 
1376	spin_unlock(&current->sighand->siglock);
 
1377	write_unlock_irq(&tasklist_lock);
 
1378	proc_fork_connector(p);
1379	cgroup_post_fork(p);
1380	if (clone_flags & CLONE_THREAD)
1381		threadgroup_fork_read_unlock(current);
1382	perf_event_fork(p);
 
 
 
 
 
 
1383	return p;
1384
 
 
 
 
 
 
 
 
 
 
1385bad_fork_free_pid:
1386	if (pid != &init_struct_pid)
1387		free_pid(pid);
 
 
1388bad_fork_cleanup_io:
1389	if (p->io_context)
1390		exit_io_context(p);
1391bad_fork_cleanup_namespaces:
1392	exit_task_namespaces(p);
1393bad_fork_cleanup_mm:
1394	if (p->mm) {
1395		task_lock(p);
1396		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1397			atomic_dec(&p->mm->oom_disable_count);
1398		task_unlock(p);
1399		mmput(p->mm);
1400	}
1401bad_fork_cleanup_signal:
1402	if (!(clone_flags & CLONE_THREAD))
1403		free_signal_struct(p->signal);
1404bad_fork_cleanup_sighand:
1405	__cleanup_sighand(p->sighand);
1406bad_fork_cleanup_fs:
1407	exit_fs(p); /* blocking */
1408bad_fork_cleanup_files:
1409	exit_files(p); /* blocking */
1410bad_fork_cleanup_semundo:
1411	exit_sem(p);
 
 
1412bad_fork_cleanup_audit:
1413	audit_free(p);
1414bad_fork_cleanup_policy:
1415	perf_event_free_task(p);
 
 
1416#ifdef CONFIG_NUMA
1417	mpol_put(p->mempolicy);
1418bad_fork_cleanup_cgroup:
1419#endif
1420	if (clone_flags & CLONE_THREAD)
1421		threadgroup_fork_read_unlock(current);
1422	cgroup_exit(p, cgroup_callbacks_done);
1423	delayacct_tsk_free(p);
1424	module_put(task_thread_info(p)->exec_domain->module);
1425bad_fork_cleanup_count:
1426	atomic_dec(&p->cred->user->processes);
1427	exit_creds(p);
1428bad_fork_free:
1429	free_task(p);
 
 
1430fork_out:
 
 
 
1431	return ERR_PTR(retval);
1432}
1433
1434noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1435{
1436	memset(regs, 0, sizeof(struct pt_regs));
1437	return regs;
1438}
1439
1440static inline void init_idle_pids(struct pid_link *links)
1441{
1442	enum pid_type type;
1443
1444	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1445		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1446		links[type].pid = &init_struct_pid;
1447	}
1448}
1449
1450struct task_struct * __cpuinit fork_idle(int cpu)
1451{
1452	struct task_struct *task;
1453	struct pt_regs regs;
 
 
1454
1455	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1456			    &init_struct_pid, 0);
1457	if (!IS_ERR(task)) {
1458		init_idle_pids(task->pids);
1459		init_idle(task, cpu);
1460	}
1461
1462	return task;
1463}
1464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465/*
1466 *  Ok, this is the main fork-routine.
1467 *
1468 * It copies the process, and if successful kick-starts
1469 * it and waits for it to finish using the VM if required.
 
 
1470 */
1471long do_fork(unsigned long clone_flags,
1472	      unsigned long stack_start,
1473	      struct pt_regs *regs,
1474	      unsigned long stack_size,
1475	      int __user *parent_tidptr,
1476	      int __user *child_tidptr)
1477{
 
 
 
1478	struct task_struct *p;
1479	int trace = 0;
1480	long nr;
1481
1482	/*
1483	 * Do some preliminary argument and permissions checking before we
1484	 * actually start allocating stuff
1485	 */
1486	if (clone_flags & CLONE_NEWUSER) {
1487		if (clone_flags & CLONE_THREAD)
1488			return -EINVAL;
1489		/* hopefully this check will go away when userns support is
1490		 * complete
1491		 */
1492		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1493				!capable(CAP_SETGID))
1494			return -EPERM;
1495	}
1496
1497	/*
1498	 * Determine whether and which event to report to ptracer.  When
1499	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1500	 * requested, no event is reported; otherwise, report if the event
1501	 * for the type of forking is enabled.
1502	 */
1503	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1504		if (clone_flags & CLONE_VFORK)
1505			trace = PTRACE_EVENT_VFORK;
1506		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1507			trace = PTRACE_EVENT_CLONE;
1508		else
1509			trace = PTRACE_EVENT_FORK;
1510
1511		if (likely(!ptrace_event_enabled(current, trace)))
1512			trace = 0;
1513	}
1514
1515	p = copy_process(clone_flags, stack_start, regs, stack_size,
1516			 child_tidptr, NULL, trace);
 
 
 
 
1517	/*
1518	 * Do this prior waking up the new thread - the thread pointer
1519	 * might get invalid after that point, if the thread exits quickly.
1520	 */
1521	if (!IS_ERR(p)) {
1522		struct completion vfork;
1523
1524		trace_sched_process_fork(current, p);
 
1525
1526		nr = task_pid_vnr(p);
 
1527
1528		if (clone_flags & CLONE_PARENT_SETTID)
1529			put_user(nr, parent_tidptr);
 
 
 
1530
1531		if (clone_flags & CLONE_VFORK) {
1532			p->vfork_done = &vfork;
1533			init_completion(&vfork);
1534		}
1535
1536		audit_finish_fork(p);
 
 
1537
1538		/*
1539		 * We set PF_STARTING at creation in case tracing wants to
1540		 * use this to distinguish a fully live task from one that
1541		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1542		 * and set the child going.
1543		 */
1544		p->flags &= ~PF_STARTING;
1545
1546		wake_up_new_task(p);
 
 
1547
1548		/* forking complete and child started to run, tell ptracer */
1549		if (unlikely(trace))
1550			ptrace_event(trace, nr);
1551
1552		if (clone_flags & CLONE_VFORK) {
1553			freezer_do_not_count();
1554			wait_for_completion(&vfork);
1555			freezer_count();
1556			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1557		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558	} else {
1559		nr = PTR_ERR(p);
 
 
 
 
 
 
 
 
1560	}
1561	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562}
1563
1564#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1565#define ARCH_MIN_MMSTRUCT_ALIGN 0
1566#endif
1567
1568static void sighand_ctor(void *data)
1569{
1570	struct sighand_struct *sighand = data;
1571
1572	spin_lock_init(&sighand->siglock);
1573	init_waitqueue_head(&sighand->signalfd_wqh);
1574}
1575
1576void __init proc_caches_init(void)
1577{
 
 
1578	sighand_cachep = kmem_cache_create("sighand_cache",
1579			sizeof(struct sighand_struct), 0,
1580			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1581			SLAB_NOTRACK, sighand_ctor);
1582	signal_cachep = kmem_cache_create("signal_cache",
1583			sizeof(struct signal_struct), 0,
1584			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1585	files_cachep = kmem_cache_create("files_cache",
1586			sizeof(struct files_struct), 0,
1587			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1588	fs_cachep = kmem_cache_create("fs_cache",
1589			sizeof(struct fs_struct), 0,
1590			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
 
1591	/*
1592	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1593	 * whole struct cpumask for the OFFSTACK case. We could change
1594	 * this to *only* allocate as much of it as required by the
1595	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1596	 * is at the end of the structure, exactly for that reason.
1597	 */
1598	mm_cachep = kmem_cache_create("mm_struct",
1599			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1600			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1601	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
 
 
 
1602	mmap_init();
1603	nsproxy_cache_init();
1604}
1605
1606/*
1607 * Check constraints on flags passed to the unshare system call.
1608 */
1609static int check_unshare_flags(unsigned long unshare_flags)
1610{
1611	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
 
 
1614		return -EINVAL;
1615	/*
1616	 * Not implemented, but pretend it works if there is nothing to
1617	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1618	 * needs to unshare vm.
 
1619	 */
1620	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1621		/* FIXME: get_task_mm() increments ->mm_users */
1622		if (atomic_read(&current->mm->mm_users) > 1)
 
 
 
 
 
 
 
1623			return -EINVAL;
1624	}
1625
1626	return 0;
1627}
1628
1629/*
1630 * Unshare the filesystem structure if it is being shared
1631 */
1632static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1633{
1634	struct fs_struct *fs = current->fs;
1635
1636	if (!(unshare_flags & CLONE_FS) || !fs)
1637		return 0;
1638
1639	/* don't need lock here; in the worst case we'll do useless copy */
1640	if (fs->users == 1)
1641		return 0;
1642
1643	*new_fsp = copy_fs_struct(fs);
1644	if (!*new_fsp)
1645		return -ENOMEM;
1646
1647	return 0;
1648}
1649
1650/*
1651 * Unshare file descriptor table if it is being shared
1652 */
1653static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
1654{
1655	struct files_struct *fd = current->files;
1656	int error = 0;
1657
1658	if ((unshare_flags & CLONE_FILES) &&
1659	    (fd && atomic_read(&fd->count) > 1)) {
1660		*new_fdp = dup_fd(fd, &error);
1661		if (!*new_fdp)
1662			return error;
1663	}
1664
1665	return 0;
1666}
1667
1668/*
1669 * unshare allows a process to 'unshare' part of the process
1670 * context which was originally shared using clone.  copy_*
1671 * functions used by do_fork() cannot be used here directly
1672 * because they modify an inactive task_struct that is being
1673 * constructed. Here we are modifying the current, active,
1674 * task_struct.
1675 */
1676SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1677{
1678	struct fs_struct *fs, *new_fs = NULL;
1679	struct files_struct *fd, *new_fd = NULL;
 
1680	struct nsproxy *new_nsproxy = NULL;
1681	int do_sysvsem = 0;
1682	int err;
1683
1684	err = check_unshare_flags(unshare_flags);
1685	if (err)
1686		goto bad_unshare_out;
1687
 
 
 
 
 
 
 
 
 
 
 
 
1688	/*
1689	 * If unsharing namespace, must also unshare filesystem information.
1690	 */
1691	if (unshare_flags & CLONE_NEWNS)
1692		unshare_flags |= CLONE_FS;
 
 
 
 
1693	/*
1694	 * CLONE_NEWIPC must also detach from the undolist: after switching
1695	 * to a new ipc namespace, the semaphore arrays from the old
1696	 * namespace are unreachable.
1697	 */
1698	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1699		do_sysvsem = 1;
1700	err = unshare_fs(unshare_flags, &new_fs);
1701	if (err)
1702		goto bad_unshare_out;
1703	err = unshare_fd(unshare_flags, &new_fd);
1704	if (err)
1705		goto bad_unshare_cleanup_fs;
1706	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1707	if (err)
1708		goto bad_unshare_cleanup_fd;
 
 
 
 
 
 
 
 
 
 
1709
1710	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1711		if (do_sysvsem) {
1712			/*
1713			 * CLONE_SYSVSEM is equivalent to sys_exit().
1714			 */
1715			exit_sem(current);
1716		}
 
 
 
 
 
1717
1718		if (new_nsproxy) {
1719			switch_task_namespaces(current, new_nsproxy);
1720			new_nsproxy = NULL;
1721		}
1722
1723		task_lock(current);
1724
1725		if (new_fs) {
1726			fs = current->fs;
1727			spin_lock(&fs->lock);
1728			current->fs = new_fs;
1729			if (--fs->users)
1730				new_fs = NULL;
1731			else
1732				new_fs = fs;
1733			spin_unlock(&fs->lock);
1734		}
1735
1736		if (new_fd) {
1737			fd = current->files;
1738			current->files = new_fd;
1739			new_fd = fd;
1740		}
1741
1742		task_unlock(current);
 
 
 
 
 
 
1743	}
1744
1745	if (new_nsproxy)
1746		put_nsproxy(new_nsproxy);
1747
 
 
 
1748bad_unshare_cleanup_fd:
1749	if (new_fd)
1750		put_files_struct(new_fd);
1751
1752bad_unshare_cleanup_fs:
1753	if (new_fs)
1754		free_fs_struct(new_fs);
1755
1756bad_unshare_out:
1757	return err;
1758}
1759
 
 
 
 
 
1760/*
1761 *	Helper to unshare the files of the current task.
1762 *	We don't want to expose copy_files internals to
1763 *	the exec layer of the kernel.
1764 */
1765
1766int unshare_files(struct files_struct **displaced)
1767{
1768	struct task_struct *task = current;
1769	struct files_struct *copy = NULL;
1770	int error;
1771
1772	error = unshare_fd(CLONE_FILES, &copy);
1773	if (error || !copy) {
1774		*displaced = NULL;
1775		return error;
1776	}
1777	*displaced = task->files;
1778	task_lock(task);
1779	task->files = copy;
1780	task_unlock(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	return 0;
1782}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98#include <linux/io_uring.h>
  99#include <linux/bpf.h>
 100
 
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 196static int free_vm_stack_cache(unsigned int cpu)
 197{
 198	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 199	int i;
 200
 201	for (i = 0; i < NR_CACHED_STACKS; i++) {
 202		struct vm_struct *vm_stack = cached_vm_stacks[i];
 203
 204		if (!vm_stack)
 205			continue;
 206
 207		vfree(vm_stack->addr);
 208		cached_vm_stacks[i] = NULL;
 209	}
 210
 211	return 0;
 212}
 213#endif
 214
 215static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 216{
 217#ifdef CONFIG_VMAP_STACK
 218	void *stack;
 219	int i;
 220
 221	for (i = 0; i < NR_CACHED_STACKS; i++) {
 222		struct vm_struct *s;
 223
 224		s = this_cpu_xchg(cached_stacks[i], NULL);
 225
 226		if (!s)
 227			continue;
 228
 229		/* Mark stack accessible for KASAN. */
 230		kasan_unpoison_range(s->addr, THREAD_SIZE);
 231
 232		/* Clear stale pointers from reused stack. */
 233		memset(s->addr, 0, THREAD_SIZE);
 234
 235		tsk->stack_vm_area = s;
 236		tsk->stack = s->addr;
 237		return s->addr;
 238	}
 239
 240	/*
 241	 * Allocated stacks are cached and later reused by new threads,
 242	 * so memcg accounting is performed manually on assigning/releasing
 243	 * stacks to tasks. Drop __GFP_ACCOUNT.
 244	 */
 245	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 246				     VMALLOC_START, VMALLOC_END,
 247				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 248				     PAGE_KERNEL,
 249				     0, node, __builtin_return_address(0));
 250
 251	/*
 252	 * We can't call find_vm_area() in interrupt context, and
 253	 * free_thread_stack() can be called in interrupt context,
 254	 * so cache the vm_struct.
 255	 */
 256	if (stack) {
 257		tsk->stack_vm_area = find_vm_area(stack);
 258		tsk->stack = stack;
 259	}
 260	return stack;
 261#else
 262	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 263					     THREAD_SIZE_ORDER);
 264
 265	if (likely(page)) {
 266		tsk->stack = kasan_reset_tag(page_address(page));
 267		return tsk->stack;
 268	}
 269	return NULL;
 270#endif
 271}
 272
 273static inline void free_thread_stack(struct task_struct *tsk)
 274{
 275#ifdef CONFIG_VMAP_STACK
 276	struct vm_struct *vm = task_stack_vm_area(tsk);
 277
 278	if (vm) {
 279		int i;
 280
 281		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 282			memcg_kmem_uncharge_page(vm->pages[i], 0);
 283
 284		for (i = 0; i < NR_CACHED_STACKS; i++) {
 285			if (this_cpu_cmpxchg(cached_stacks[i],
 286					NULL, tsk->stack_vm_area) != NULL)
 287				continue;
 288
 289			return;
 290		}
 291
 292		vfree_atomic(tsk->stack);
 293		return;
 294	}
 295#endif
 296
 297	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 298}
 299# else
 300static struct kmem_cache *thread_stack_cache;
 301
 302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 303						  int node)
 304{
 305	unsigned long *stack;
 306	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 307	stack = kasan_reset_tag(stack);
 308	tsk->stack = stack;
 309	return stack;
 310}
 311
 312static void free_thread_stack(struct task_struct *tsk)
 313{
 314	kmem_cache_free(thread_stack_cache, tsk->stack);
 315}
 316
 317void thread_stack_cache_init(void)
 318{
 319	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 320					THREAD_SIZE, THREAD_SIZE, 0, 0,
 321					THREAD_SIZE, NULL);
 322	BUG_ON(thread_stack_cache == NULL);
 323}
 324# endif
 325#endif
 326
 327/* SLAB cache for signal_struct structures (tsk->signal) */
 328static struct kmem_cache *signal_cachep;
 329
 330/* SLAB cache for sighand_struct structures (tsk->sighand) */
 331struct kmem_cache *sighand_cachep;
 332
 333/* SLAB cache for files_struct structures (tsk->files) */
 334struct kmem_cache *files_cachep;
 335
 336/* SLAB cache for fs_struct structures (tsk->fs) */
 337struct kmem_cache *fs_cachep;
 338
 339/* SLAB cache for vm_area_struct structures */
 340static struct kmem_cache *vm_area_cachep;
 341
 342/* SLAB cache for mm_struct structures (tsk->mm) */
 343static struct kmem_cache *mm_cachep;
 344
 345struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 346{
 347	struct vm_area_struct *vma;
 348
 349	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 350	if (vma)
 351		vma_init(vma, mm);
 352	return vma;
 353}
 354
 355struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 356{
 357	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 358
 359	if (new) {
 360		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 361		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 362		/*
 363		 * orig->shared.rb may be modified concurrently, but the clone
 364		 * will be reinitialized.
 365		 */
 366		*new = data_race(*orig);
 367		INIT_LIST_HEAD(&new->anon_vma_chain);
 368		new->vm_next = new->vm_prev = NULL;
 369	}
 370	return new;
 371}
 372
 373void vm_area_free(struct vm_area_struct *vma)
 374{
 375	kmem_cache_free(vm_area_cachep, vma);
 
 376}
 377
 378static void account_kernel_stack(struct task_struct *tsk, int account)
 379{
 380	void *stack = task_stack_page(tsk);
 381	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 382
 383	if (vm) {
 384		int i;
 
 385
 386		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 387			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 388					      account * (PAGE_SIZE / 1024));
 389	} else {
 390		/* All stack pages are in the same node. */
 391		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 392				      account * (THREAD_SIZE / 1024));
 393	}
 394}
 
 
 
 
 
 
 
 
 
 395
 396static int memcg_charge_kernel_stack(struct task_struct *tsk)
 397{
 398#ifdef CONFIG_VMAP_STACK
 399	struct vm_struct *vm = task_stack_vm_area(tsk);
 400	int ret;
 
 
 
 
 
 
 
 
 
 401
 402	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 
 
 
 
 
 403
 404	if (vm) {
 405		int i;
 
 
 
 406
 407		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 408
 409		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 410			/*
 411			 * If memcg_kmem_charge_page() fails, page's
 412			 * memory cgroup pointer is NULL, and
 413			 * memcg_kmem_uncharge_page() in free_thread_stack()
 414			 * will ignore this page.
 415			 */
 416			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 417						     0);
 418			if (ret)
 419				return ret;
 420		}
 421	}
 422#endif
 423	return 0;
 424}
 425
 426static void release_task_stack(struct task_struct *tsk)
 427{
 428	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 429		return;  /* Better to leak the stack than to free prematurely */
 
 
 
 430
 431	account_kernel_stack(tsk, -1);
 432	free_thread_stack(tsk);
 433	tsk->stack = NULL;
 434#ifdef CONFIG_VMAP_STACK
 435	tsk->stack_vm_area = NULL;
 436#endif
 437}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439#ifdef CONFIG_THREAD_INFO_IN_TASK
 440void put_task_stack(struct task_struct *tsk)
 441{
 442	if (refcount_dec_and_test(&tsk->stack_refcount))
 443		release_task_stack(tsk);
 444}
 445#endif
 446
 447void free_task(struct task_struct *tsk)
 448{
 449	scs_release(tsk);
 450
 451#ifndef CONFIG_THREAD_INFO_IN_TASK
 452	/*
 453	 * The task is finally done with both the stack and thread_info,
 454	 * so free both.
 455	 */
 456	release_task_stack(tsk);
 457#else
 458	/*
 459	 * If the task had a separate stack allocation, it should be gone
 460	 * by now.
 461	 */
 462	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 463#endif
 464	rt_mutex_debug_task_free(tsk);
 465	ftrace_graph_exit_task(tsk);
 466	arch_release_task_struct(tsk);
 467	if (tsk->flags & PF_KTHREAD)
 468		free_kthread_struct(tsk);
 
 
 
 469	free_task_struct(tsk);
 
 470}
 471EXPORT_SYMBOL(free_task);
 472
 473#ifdef CONFIG_MMU
 474static __latent_entropy int dup_mmap(struct mm_struct *mm,
 475					struct mm_struct *oldmm)
 476{
 477	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 478	struct rb_node **rb_link, *rb_parent;
 479	int retval;
 480	unsigned long charge;
 481	LIST_HEAD(uf);
 482
 483	uprobe_start_dup_mmap();
 484	if (mmap_write_lock_killable(oldmm)) {
 485		retval = -EINTR;
 486		goto fail_uprobe_end;
 487	}
 488	flush_cache_dup_mm(oldmm);
 489	uprobe_dup_mmap(oldmm, mm);
 490	/*
 491	 * Not linked in yet - no deadlock potential:
 492	 */
 493	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 494
 495	/* No ordering required: file already has been exposed. */
 496	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 497
 498	mm->total_vm = oldmm->total_vm;
 499	mm->data_vm = oldmm->data_vm;
 500	mm->exec_vm = oldmm->exec_vm;
 501	mm->stack_vm = oldmm->stack_vm;
 502
 
 
 
 
 
 
 
 
 503	rb_link = &mm->mm_rb.rb_node;
 504	rb_parent = NULL;
 505	pprev = &mm->mmap;
 506	retval = ksm_fork(mm, oldmm);
 507	if (retval)
 508		goto out;
 509	retval = khugepaged_fork(mm, oldmm);
 510	if (retval)
 511		goto out;
 512
 513	prev = NULL;
 514	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 515		struct file *file;
 516
 517		if (mpnt->vm_flags & VM_DONTCOPY) {
 518			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 
 
 
 519			continue;
 520		}
 521		charge = 0;
 522		/*
 523		 * Don't duplicate many vmas if we've been oom-killed (for
 524		 * example)
 525		 */
 526		if (fatal_signal_pending(current)) {
 527			retval = -EINTR;
 528			goto out;
 529		}
 530		if (mpnt->vm_flags & VM_ACCOUNT) {
 531			unsigned long len = vma_pages(mpnt);
 532
 533			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 534				goto fail_nomem;
 535			charge = len;
 536		}
 537		tmp = vm_area_dup(mpnt);
 538		if (!tmp)
 539			goto fail_nomem;
 540		retval = vma_dup_policy(mpnt, tmp);
 541		if (retval)
 
 
 
 542			goto fail_nomem_policy;
 
 543		tmp->vm_mm = mm;
 544		retval = dup_userfaultfd(tmp, &uf);
 545		if (retval)
 546			goto fail_nomem_anon_vma_fork;
 547		if (tmp->vm_flags & VM_WIPEONFORK) {
 548			/*
 549			 * VM_WIPEONFORK gets a clean slate in the child.
 550			 * Don't prepare anon_vma until fault since we don't
 551			 * copy page for current vma.
 552			 */
 553			tmp->anon_vma = NULL;
 554		} else if (anon_vma_fork(tmp, mpnt))
 555			goto fail_nomem_anon_vma_fork;
 556		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 557		file = tmp->vm_file;
 558		if (file) {
 559			struct inode *inode = file_inode(file);
 560			struct address_space *mapping = file->f_mapping;
 561
 562			get_file(file);
 563			if (tmp->vm_flags & VM_DENYWRITE)
 564				put_write_access(inode);
 565			i_mmap_lock_write(mapping);
 566			if (tmp->vm_flags & VM_SHARED)
 567				mapping_allow_writable(mapping);
 568			flush_dcache_mmap_lock(mapping);
 569			/* insert tmp into the share list, just after mpnt */
 570			vma_interval_tree_insert_after(tmp, mpnt,
 571					&mapping->i_mmap);
 572			flush_dcache_mmap_unlock(mapping);
 573			i_mmap_unlock_write(mapping);
 574		}
 575
 576		/*
 577		 * Clear hugetlb-related page reserves for children. This only
 578		 * affects MAP_PRIVATE mappings. Faults generated by the child
 579		 * are not guaranteed to succeed, even if read-only
 580		 */
 581		if (is_vm_hugetlb_page(tmp))
 582			reset_vma_resv_huge_pages(tmp);
 583
 584		/*
 585		 * Link in the new vma and copy the page table entries.
 586		 */
 587		*pprev = tmp;
 588		pprev = &tmp->vm_next;
 589		tmp->vm_prev = prev;
 590		prev = tmp;
 591
 592		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 593		rb_link = &tmp->vm_rb.rb_right;
 594		rb_parent = &tmp->vm_rb;
 595
 596		mm->map_count++;
 597		if (!(tmp->vm_flags & VM_WIPEONFORK))
 598			retval = copy_page_range(tmp, mpnt);
 599
 600		if (tmp->vm_ops && tmp->vm_ops->open)
 601			tmp->vm_ops->open(tmp);
 602
 603		if (retval)
 604			goto out;
 605	}
 606	/* a new mm has just been created */
 607	retval = arch_dup_mmap(oldmm, mm);
 
 608out:
 609	mmap_write_unlock(mm);
 610	flush_tlb_mm(oldmm);
 611	mmap_write_unlock(oldmm);
 612	dup_userfaultfd_complete(&uf);
 613fail_uprobe_end:
 614	uprobe_end_dup_mmap();
 615	return retval;
 616fail_nomem_anon_vma_fork:
 617	mpol_put(vma_policy(tmp));
 618fail_nomem_policy:
 619	vm_area_free(tmp);
 620fail_nomem:
 621	retval = -ENOMEM;
 622	vm_unacct_memory(charge);
 623	goto out;
 624}
 625
 626static inline int mm_alloc_pgd(struct mm_struct *mm)
 627{
 628	mm->pgd = pgd_alloc(mm);
 629	if (unlikely(!mm->pgd))
 630		return -ENOMEM;
 631	return 0;
 632}
 633
 634static inline void mm_free_pgd(struct mm_struct *mm)
 635{
 636	pgd_free(mm, mm->pgd);
 637}
 638#else
 639static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 640{
 641	mmap_write_lock(oldmm);
 642	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 643	mmap_write_unlock(oldmm);
 644	return 0;
 645}
 646#define mm_alloc_pgd(mm)	(0)
 647#define mm_free_pgd(mm)
 648#endif /* CONFIG_MMU */
 649
 650static void check_mm(struct mm_struct *mm)
 651{
 652	int i;
 653
 654	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 655			 "Please make sure 'struct resident_page_types[]' is updated as well");
 656
 657	for (i = 0; i < NR_MM_COUNTERS; i++) {
 658		long x = atomic_long_read(&mm->rss_stat.count[i]);
 659
 660		if (unlikely(x))
 661			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 662				 mm, resident_page_types[i], x);
 663	}
 664
 665	if (mm_pgtables_bytes(mm))
 666		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 667				mm_pgtables_bytes(mm));
 668
 669#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 670	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 671#endif
 672}
 673
 674#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 675#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 676
 677/*
 678 * Called when the last reference to the mm
 679 * is dropped: either by a lazy thread or by
 680 * mmput. Free the page directory and the mm.
 681 */
 682void __mmdrop(struct mm_struct *mm)
 683{
 684	BUG_ON(mm == &init_mm);
 685	WARN_ON_ONCE(mm == current->mm);
 686	WARN_ON_ONCE(mm == current->active_mm);
 687	mm_free_pgd(mm);
 688	destroy_context(mm);
 689	mmu_notifier_subscriptions_destroy(mm);
 690	check_mm(mm);
 691	put_user_ns(mm->user_ns);
 692	free_mm(mm);
 693}
 694EXPORT_SYMBOL_GPL(__mmdrop);
 695
 696static void mmdrop_async_fn(struct work_struct *work)
 697{
 698	struct mm_struct *mm;
 699
 700	mm = container_of(work, struct mm_struct, async_put_work);
 701	__mmdrop(mm);
 702}
 703
 704static void mmdrop_async(struct mm_struct *mm)
 705{
 706	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 707		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 708		schedule_work(&mm->async_put_work);
 709	}
 710}
 711
 712static inline void free_signal_struct(struct signal_struct *sig)
 713{
 714	taskstats_tgid_free(sig);
 715	sched_autogroup_exit(sig);
 716	/*
 717	 * __mmdrop is not safe to call from softirq context on x86 due to
 718	 * pgd_dtor so postpone it to the async context
 719	 */
 720	if (sig->oom_mm)
 721		mmdrop_async(sig->oom_mm);
 722	kmem_cache_free(signal_cachep, sig);
 723}
 724
 725static inline void put_signal_struct(struct signal_struct *sig)
 726{
 727	if (refcount_dec_and_test(&sig->sigcnt))
 728		free_signal_struct(sig);
 729}
 730
 731void __put_task_struct(struct task_struct *tsk)
 732{
 733	WARN_ON(!tsk->exit_state);
 734	WARN_ON(refcount_read(&tsk->usage));
 735	WARN_ON(tsk == current);
 736
 737	io_uring_free(tsk);
 738	cgroup_free(tsk);
 739	task_numa_free(tsk, true);
 740	security_task_free(tsk);
 741	bpf_task_storage_free(tsk);
 742	exit_creds(tsk);
 743	delayacct_tsk_free(tsk);
 744	put_signal_struct(tsk->signal);
 745	sched_core_free(tsk);
 746
 747	if (!profile_handoff_task(tsk))
 748		free_task(tsk);
 749}
 750EXPORT_SYMBOL_GPL(__put_task_struct);
 751
 752void __init __weak arch_task_cache_init(void) { }
 753
 754/*
 755 * set_max_threads
 756 */
 757static void set_max_threads(unsigned int max_threads_suggested)
 758{
 759	u64 threads;
 760	unsigned long nr_pages = totalram_pages();
 761
 762	/*
 763	 * The number of threads shall be limited such that the thread
 764	 * structures may only consume a small part of the available memory.
 765	 */
 766	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 767		threads = MAX_THREADS;
 768	else
 769		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 770				    (u64) THREAD_SIZE * 8UL);
 771
 772	if (threads > max_threads_suggested)
 773		threads = max_threads_suggested;
 774
 775	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 776}
 777
 778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 779/* Initialized by the architecture: */
 780int arch_task_struct_size __read_mostly;
 781#endif
 782
 783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 785{
 786	/* Fetch thread_struct whitelist for the architecture. */
 787	arch_thread_struct_whitelist(offset, size);
 788
 789	/*
 790	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 791	 * adjust offset to position of thread_struct in task_struct.
 792	 */
 793	if (unlikely(*size == 0))
 794		*offset = 0;
 795	else
 796		*offset += offsetof(struct task_struct, thread);
 797}
 798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 799
 800void __init fork_init(void)
 801{
 802	int i;
 803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 804#ifndef ARCH_MIN_TASKALIGN
 805#define ARCH_MIN_TASKALIGN	0
 806#endif
 807	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 808	unsigned long useroffset, usersize;
 809
 810	/* create a slab on which task_structs can be allocated */
 811	task_struct_whitelist(&useroffset, &usersize);
 812	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 813			arch_task_struct_size, align,
 814			SLAB_PANIC|SLAB_ACCOUNT,
 815			useroffset, usersize, NULL);
 816#endif
 817
 818	/* do the arch specific task caches init */
 819	arch_task_cache_init();
 820
 821	set_max_threads(MAX_THREADS);
 822
 823	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 824	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 825	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 826		init_task.signal->rlim[RLIMIT_NPROC];
 827
 828	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
 829		init_user_ns.ucount_max[i] = max_threads/2;
 830
 831	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 832	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 833	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 834	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 835
 836#ifdef CONFIG_VMAP_STACK
 837	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 838			  NULL, free_vm_stack_cache);
 839#endif
 840
 841	scs_init();
 842
 843	lockdep_init_task(&init_task);
 844	uprobes_init();
 845}
 846
 847int __weak arch_dup_task_struct(struct task_struct *dst,
 848					       struct task_struct *src)
 849{
 850	*dst = *src;
 851	return 0;
 852}
 853
 854void set_task_stack_end_magic(struct task_struct *tsk)
 855{
 856	unsigned long *stackend;
 857
 858	stackend = end_of_stack(tsk);
 859	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 860}
 861
 862static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 863{
 864	struct task_struct *tsk;
 865	unsigned long *stack;
 866	struct vm_struct *stack_vm_area __maybe_unused;
 867	int err;
 868
 869	if (node == NUMA_NO_NODE)
 870		node = tsk_fork_get_node(orig);
 871	tsk = alloc_task_struct_node(node);
 872	if (!tsk)
 873		return NULL;
 874
 875	stack = alloc_thread_stack_node(tsk, node);
 876	if (!stack)
 877		goto free_tsk;
 878
 879	if (memcg_charge_kernel_stack(tsk))
 880		goto free_stack;
 881
 882	stack_vm_area = task_stack_vm_area(tsk);
 883
 884	err = arch_dup_task_struct(tsk, orig);
 885
 886	/*
 887	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 888	 * sure they're properly initialized before using any stack-related
 889	 * functions again.
 890	 */
 891	tsk->stack = stack;
 892#ifdef CONFIG_VMAP_STACK
 893	tsk->stack_vm_area = stack_vm_area;
 894#endif
 895#ifdef CONFIG_THREAD_INFO_IN_TASK
 896	refcount_set(&tsk->stack_refcount, 1);
 897#endif
 898
 899	if (err)
 900		goto free_stack;
 901
 902	err = scs_prepare(tsk, node);
 903	if (err)
 904		goto free_stack;
 905
 906#ifdef CONFIG_SECCOMP
 907	/*
 908	 * We must handle setting up seccomp filters once we're under
 909	 * the sighand lock in case orig has changed between now and
 910	 * then. Until then, filter must be NULL to avoid messing up
 911	 * the usage counts on the error path calling free_task.
 912	 */
 913	tsk->seccomp.filter = NULL;
 914#endif
 915
 916	setup_thread_stack(tsk, orig);
 917	clear_user_return_notifier(tsk);
 918	clear_tsk_need_resched(tsk);
 919	set_task_stack_end_magic(tsk);
 920	clear_syscall_work_syscall_user_dispatch(tsk);
 921
 922#ifdef CONFIG_STACKPROTECTOR
 923	tsk->stack_canary = get_random_canary();
 924#endif
 925	if (orig->cpus_ptr == &orig->cpus_mask)
 926		tsk->cpus_ptr = &tsk->cpus_mask;
 927
 928	/*
 929	 * One for the user space visible state that goes away when reaped.
 930	 * One for the scheduler.
 931	 */
 932	refcount_set(&tsk->rcu_users, 2);
 933	/* One for the rcu users */
 934	refcount_set(&tsk->usage, 1);
 935#ifdef CONFIG_BLK_DEV_IO_TRACE
 936	tsk->btrace_seq = 0;
 937#endif
 938	tsk->splice_pipe = NULL;
 939	tsk->task_frag.page = NULL;
 940	tsk->wake_q.next = NULL;
 941	tsk->pf_io_worker = NULL;
 942
 943	account_kernel_stack(tsk, 1);
 944
 945	kcov_task_init(tsk);
 946	kmap_local_fork(tsk);
 947
 948#ifdef CONFIG_FAULT_INJECTION
 949	tsk->fail_nth = 0;
 950#endif
 951
 952#ifdef CONFIG_BLK_CGROUP
 953	tsk->throttle_queue = NULL;
 954	tsk->use_memdelay = 0;
 955#endif
 956
 957#ifdef CONFIG_MEMCG
 958	tsk->active_memcg = NULL;
 959#endif
 960	return tsk;
 961
 962free_stack:
 963	free_thread_stack(tsk);
 964free_tsk:
 965	free_task_struct(tsk);
 966	return NULL;
 967}
 968
 969__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 970
 971static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 972
 973static int __init coredump_filter_setup(char *s)
 974{
 975	default_dump_filter =
 976		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 977		MMF_DUMP_FILTER_MASK;
 978	return 1;
 979}
 980
 981__setup("coredump_filter=", coredump_filter_setup);
 982
 983#include <linux/init_task.h>
 984
 985static void mm_init_aio(struct mm_struct *mm)
 986{
 987#ifdef CONFIG_AIO
 988	spin_lock_init(&mm->ioctx_lock);
 989	mm->ioctx_table = NULL;
 990#endif
 991}
 992
 993static __always_inline void mm_clear_owner(struct mm_struct *mm,
 994					   struct task_struct *p)
 995{
 996#ifdef CONFIG_MEMCG
 997	if (mm->owner == p)
 998		WRITE_ONCE(mm->owner, NULL);
 999#endif
1000}
1001
1002static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003{
1004#ifdef CONFIG_MEMCG
1005	mm->owner = p;
1006#endif
1007}
1008
1009static void mm_init_pasid(struct mm_struct *mm)
1010{
1011#ifdef CONFIG_IOMMU_SUPPORT
1012	mm->pasid = INIT_PASID;
1013#endif
1014}
1015
1016static void mm_init_uprobes_state(struct mm_struct *mm)
1017{
1018#ifdef CONFIG_UPROBES
1019	mm->uprobes_state.xol_area = NULL;
1020#endif
1021}
1022
1023static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024	struct user_namespace *user_ns)
1025{
1026	mm->mmap = NULL;
1027	mm->mm_rb = RB_ROOT;
1028	mm->vmacache_seqnum = 0;
1029	atomic_set(&mm->mm_users, 1);
1030	atomic_set(&mm->mm_count, 1);
1031	seqcount_init(&mm->write_protect_seq);
1032	mmap_init_lock(mm);
1033	INIT_LIST_HEAD(&mm->mmlist);
 
 
1034	mm->core_state = NULL;
1035	mm_pgtables_bytes_init(mm);
1036	mm->map_count = 0;
1037	mm->locked_vm = 0;
1038	atomic64_set(&mm->pinned_vm, 0);
1039	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1040	spin_lock_init(&mm->page_table_lock);
1041	spin_lock_init(&mm->arg_lock);
1042	mm_init_cpumask(mm);
1043	mm_init_aio(mm);
1044	mm_init_owner(mm, p);
1045	mm_init_pasid(mm);
1046	RCU_INIT_POINTER(mm->exe_file, NULL);
1047	mmu_notifier_subscriptions_init(mm);
1048	init_tlb_flush_pending(mm);
1049#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1050	mm->pmd_huge_pte = NULL;
1051#endif
1052	mm_init_uprobes_state(mm);
1053	hugetlb_count_init(mm);
1054
1055	if (current->mm) {
1056		mm->flags = current->mm->flags & MMF_INIT_MASK;
1057		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1058	} else {
1059		mm->flags = default_dump_filter;
1060		mm->def_flags = 0;
 
 
1061	}
1062
1063	if (mm_alloc_pgd(mm))
1064		goto fail_nopgd;
1065
1066	if (init_new_context(p, mm))
1067		goto fail_nocontext;
1068
1069	mm->user_ns = get_user_ns(user_ns);
1070	return mm;
1071
1072fail_nocontext:
1073	mm_free_pgd(mm);
1074fail_nopgd:
1075	free_mm(mm);
1076	return NULL;
1077}
1078
1079/*
1080 * Allocate and initialize an mm_struct.
1081 */
1082struct mm_struct *mm_alloc(void)
1083{
1084	struct mm_struct *mm;
1085
1086	mm = allocate_mm();
1087	if (!mm)
1088		return NULL;
1089
1090	memset(mm, 0, sizeof(*mm));
1091	return mm_init(mm, current, current_user_ns());
 
1092}
1093
1094static inline void __mmput(struct mm_struct *mm)
 
 
 
 
 
1095{
1096	VM_BUG_ON(atomic_read(&mm->mm_users));
1097
1098	uprobe_clear_state(mm);
1099	exit_aio(mm);
1100	ksm_exit(mm);
1101	khugepaged_exit(mm); /* must run before exit_mmap */
1102	exit_mmap(mm);
1103	mm_put_huge_zero_page(mm);
1104	set_mm_exe_file(mm, NULL);
1105	if (!list_empty(&mm->mmlist)) {
1106		spin_lock(&mmlist_lock);
1107		list_del(&mm->mmlist);
1108		spin_unlock(&mmlist_lock);
1109	}
1110	if (mm->binfmt)
1111		module_put(mm->binfmt->module);
1112	mmdrop(mm);
1113}
 
1114
1115/*
1116 * Decrement the use count and release all resources for an mm.
1117 */
1118void mmput(struct mm_struct *mm)
1119{
1120	might_sleep();
1121
1122	if (atomic_dec_and_test(&mm->mm_users))
1123		__mmput(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125EXPORT_SYMBOL_GPL(mmput);
1126
1127#ifdef CONFIG_MMU
1128static void mmput_async_fn(struct work_struct *work)
 
 
 
 
1129{
1130	struct mm_struct *mm = container_of(work, struct mm_struct,
1131					    async_put_work);
1132
1133	__mmput(mm);
1134}
1135
1136void mmput_async(struct mm_struct *mm)
1137{
1138	if (atomic_dec_and_test(&mm->mm_users)) {
1139		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1140		schedule_work(&mm->async_put_work);
 
1141	}
 
1142}
1143#endif
1144
1145/**
1146 * set_mm_exe_file - change a reference to the mm's executable file
1147 *
1148 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1149 *
1150 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1151 * invocations: in mmput() nobody alive left, in execve task is single
1152 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1153 * mm->exe_file, but does so without using set_mm_exe_file() in order
1154 * to avoid the need for any locks.
1155 */
1156void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1157{
1158	struct file *old_exe_file;
1159
1160	/*
1161	 * It is safe to dereference the exe_file without RCU as
1162	 * this function is only called if nobody else can access
1163	 * this mm -- see comment above for justification.
1164	 */
1165	old_exe_file = rcu_dereference_raw(mm->exe_file);
1166
1167	if (new_exe_file)
1168		get_file(new_exe_file);
1169	rcu_assign_pointer(mm->exe_file, new_exe_file);
1170	if (old_exe_file)
1171		fput(old_exe_file);
 
1172}
1173
1174/**
1175 * get_mm_exe_file - acquire a reference to the mm's executable file
1176 *
1177 * Returns %NULL if mm has no associated executable file.
1178 * User must release file via fput().
1179 */
1180struct file *get_mm_exe_file(struct mm_struct *mm)
1181{
1182	struct file *exe_file;
1183
1184	rcu_read_lock();
1185	exe_file = rcu_dereference(mm->exe_file);
1186	if (exe_file && !get_file_rcu(exe_file))
1187		exe_file = NULL;
1188	rcu_read_unlock();
 
 
1189	return exe_file;
1190}
1191EXPORT_SYMBOL(get_mm_exe_file);
1192
1193/**
1194 * get_task_exe_file - acquire a reference to the task's executable file
1195 *
1196 * Returns %NULL if task's mm (if any) has no associated executable file or
1197 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1198 * User must release file via fput().
1199 */
1200struct file *get_task_exe_file(struct task_struct *task)
1201{
1202	struct file *exe_file = NULL;
1203	struct mm_struct *mm;
1204
1205	task_lock(task);
1206	mm = task->mm;
1207	if (mm) {
1208		if (!(task->flags & PF_KTHREAD))
1209			exe_file = get_mm_exe_file(mm);
1210	}
1211	task_unlock(task);
1212	return exe_file;
1213}
1214EXPORT_SYMBOL(get_task_exe_file);
1215
1216/**
1217 * get_task_mm - acquire a reference to the task's mm
1218 *
1219 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1220 * this kernel workthread has transiently adopted a user mm with use_mm,
1221 * to do its AIO) is not set and if so returns a reference to it, after
1222 * bumping up the use count.  User must release the mm via mmput()
1223 * after use.  Typically used by /proc and ptrace.
1224 */
1225struct mm_struct *get_task_mm(struct task_struct *task)
1226{
1227	struct mm_struct *mm;
1228
1229	task_lock(task);
1230	mm = task->mm;
1231	if (mm) {
1232		if (task->flags & PF_KTHREAD)
1233			mm = NULL;
1234		else
1235			mmget(mm);
1236	}
1237	task_unlock(task);
1238	return mm;
1239}
1240EXPORT_SYMBOL_GPL(get_task_mm);
1241
1242struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1243{
1244	struct mm_struct *mm;
1245	int err;
1246
1247	err =  down_read_killable(&task->signal->exec_update_lock);
1248	if (err)
1249		return ERR_PTR(err);
1250
1251	mm = get_task_mm(task);
1252	if (mm && mm != current->mm &&
1253			!ptrace_may_access(task, mode)) {
1254		mmput(mm);
1255		mm = ERR_PTR(-EACCES);
1256	}
1257	up_read(&task->signal->exec_update_lock);
1258
1259	return mm;
1260}
1261
1262static void complete_vfork_done(struct task_struct *tsk)
1263{
1264	struct completion *vfork;
1265
1266	task_lock(tsk);
1267	vfork = tsk->vfork_done;
1268	if (likely(vfork)) {
1269		tsk->vfork_done = NULL;
1270		complete(vfork);
1271	}
1272	task_unlock(tsk);
1273}
1274
1275static int wait_for_vfork_done(struct task_struct *child,
1276				struct completion *vfork)
1277{
1278	int killed;
1279
1280	freezer_do_not_count();
1281	cgroup_enter_frozen();
1282	killed = wait_for_completion_killable(vfork);
1283	cgroup_leave_frozen(false);
1284	freezer_count();
1285
1286	if (killed) {
1287		task_lock(child);
1288		child->vfork_done = NULL;
1289		task_unlock(child);
1290	}
1291
1292	put_task_struct(child);
1293	return killed;
1294}
1295
1296/* Please note the differences between mmput and mm_release.
1297 * mmput is called whenever we stop holding onto a mm_struct,
1298 * error success whatever.
1299 *
1300 * mm_release is called after a mm_struct has been removed
1301 * from the current process.
1302 *
1303 * This difference is important for error handling, when we
1304 * only half set up a mm_struct for a new process and need to restore
1305 * the old one.  Because we mmput the new mm_struct before
1306 * restoring the old one. . .
1307 * Eric Biederman 10 January 1998
1308 */
1309static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1310{
1311	uprobe_free_utask(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313	/* Get rid of any cached register state */
1314	deactivate_mm(tsk, mm);
1315
 
 
 
 
 
 
1316	/*
1317	 * Signal userspace if we're not exiting with a core dump
1318	 * because we want to leave the value intact for debugging
1319	 * purposes.
 
1320	 */
1321	if (tsk->clear_child_tid) {
1322		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1323		    atomic_read(&mm->mm_users) > 1) {
1324			/*
1325			 * We don't check the error code - if userspace has
1326			 * not set up a proper pointer then tough luck.
1327			 */
1328			put_user(0, tsk->clear_child_tid);
1329			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1330					1, NULL, NULL, 0, 0);
1331		}
1332		tsk->clear_child_tid = NULL;
1333	}
1334
1335	/*
1336	 * All done, finally we can wake up parent and return this mm to him.
1337	 * Also kthread_stop() uses this completion for synchronization.
1338	 */
1339	if (tsk->vfork_done)
1340		complete_vfork_done(tsk);
1341}
1342
1343void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1344{
1345	futex_exit_release(tsk);
1346	mm_release(tsk, mm);
1347}
1348
1349void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1350{
1351	futex_exec_release(tsk);
1352	mm_release(tsk, mm);
1353}
1354
1355/**
1356 * dup_mm() - duplicates an existing mm structure
1357 * @tsk: the task_struct with which the new mm will be associated.
1358 * @oldmm: the mm to duplicate.
1359 *
1360 * Allocates a new mm structure and duplicates the provided @oldmm structure
1361 * content into it.
1362 *
1363 * Return: the duplicated mm or NULL on failure.
1364 */
1365static struct mm_struct *dup_mm(struct task_struct *tsk,
1366				struct mm_struct *oldmm)
1367{
1368	struct mm_struct *mm;
1369	int err;
1370
 
 
 
1371	mm = allocate_mm();
1372	if (!mm)
1373		goto fail_nomem;
1374
1375	memcpy(mm, oldmm, sizeof(*mm));
 
 
 
 
 
1376
1377	if (!mm_init(mm, tsk, mm->user_ns))
 
 
 
 
1378		goto fail_nomem;
1379
 
 
 
 
 
1380	err = dup_mmap(mm, oldmm);
1381	if (err)
1382		goto free_pt;
1383
1384	mm->hiwater_rss = get_mm_rss(mm);
1385	mm->hiwater_vm = mm->total_vm;
1386
1387	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1388		goto free_pt;
1389
1390	return mm;
1391
1392free_pt:
1393	/* don't put binfmt in mmput, we haven't got module yet */
1394	mm->binfmt = NULL;
1395	mm_init_owner(mm, NULL);
1396	mmput(mm);
1397
1398fail_nomem:
1399	return NULL;
 
 
 
 
 
 
 
 
 
1400}
1401
1402static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1403{
1404	struct mm_struct *mm, *oldmm;
 
1405
1406	tsk->min_flt = tsk->maj_flt = 0;
1407	tsk->nvcsw = tsk->nivcsw = 0;
1408#ifdef CONFIG_DETECT_HUNG_TASK
1409	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1410	tsk->last_switch_time = 0;
1411#endif
1412
1413	tsk->mm = NULL;
1414	tsk->active_mm = NULL;
1415
1416	/*
1417	 * Are we cloning a kernel thread?
1418	 *
1419	 * We need to steal a active VM for that..
1420	 */
1421	oldmm = current->mm;
1422	if (!oldmm)
1423		return 0;
1424
1425	/* initialize the new vmacache entries */
1426	vmacache_flush(tsk);
1427
1428	if (clone_flags & CLONE_VM) {
1429		mmget(oldmm);
1430		mm = oldmm;
1431	} else {
1432		mm = dup_mm(tsk, current->mm);
1433		if (!mm)
1434			return -ENOMEM;
1435	}
1436
 
 
 
 
 
 
 
 
 
 
 
 
1437	tsk->mm = mm;
1438	tsk->active_mm = mm;
1439	return 0;
 
 
 
1440}
1441
1442static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443{
1444	struct fs_struct *fs = current->fs;
1445	if (clone_flags & CLONE_FS) {
1446		/* tsk->fs is already what we want */
1447		spin_lock(&fs->lock);
1448		if (fs->in_exec) {
1449			spin_unlock(&fs->lock);
1450			return -EAGAIN;
1451		}
1452		fs->users++;
1453		spin_unlock(&fs->lock);
1454		return 0;
1455	}
1456	tsk->fs = copy_fs_struct(fs);
1457	if (!tsk->fs)
1458		return -ENOMEM;
1459	return 0;
1460}
1461
1462static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1463{
1464	struct files_struct *oldf, *newf;
1465	int error = 0;
1466
1467	/*
1468	 * A background process may not have any files ...
1469	 */
1470	oldf = current->files;
1471	if (!oldf)
1472		goto out;
1473
1474	if (clone_flags & CLONE_FILES) {
1475		atomic_inc(&oldf->count);
1476		goto out;
1477	}
1478
1479	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480	if (!newf)
1481		goto out;
1482
1483	tsk->files = newf;
1484	error = 0;
1485out:
1486	return error;
1487}
1488
1489static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490{
1491#ifdef CONFIG_BLOCK
1492	struct io_context *ioc = current->io_context;
1493	struct io_context *new_ioc;
1494
1495	if (!ioc)
1496		return 0;
1497	/*
1498	 * Share io context with parent, if CLONE_IO is set
1499	 */
1500	if (clone_flags & CLONE_IO) {
1501		ioc_task_link(ioc);
1502		tsk->io_context = ioc;
 
1503	} else if (ioprio_valid(ioc->ioprio)) {
1504		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505		if (unlikely(!new_ioc))
1506			return -ENOMEM;
1507
1508		new_ioc->ioprio = ioc->ioprio;
1509		put_io_context(new_ioc);
1510	}
1511#endif
1512	return 0;
1513}
1514
1515static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516{
1517	struct sighand_struct *sig;
1518
1519	if (clone_flags & CLONE_SIGHAND) {
1520		refcount_inc(&current->sighand->count);
1521		return 0;
1522	}
1523	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524	RCU_INIT_POINTER(tsk->sighand, sig);
1525	if (!sig)
1526		return -ENOMEM;
1527
1528	refcount_set(&sig->count, 1);
1529	spin_lock_irq(&current->sighand->siglock);
1530	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531	spin_unlock_irq(&current->sighand->siglock);
1532
1533	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534	if (clone_flags & CLONE_CLEAR_SIGHAND)
1535		flush_signal_handlers(tsk, 0);
1536
1537	return 0;
1538}
1539
1540void __cleanup_sighand(struct sighand_struct *sighand)
1541{
1542	if (refcount_dec_and_test(&sighand->count)) {
1543		signalfd_cleanup(sighand);
1544		/*
1545		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546		 * without an RCU grace period, see __lock_task_sighand().
1547		 */
1548		kmem_cache_free(sighand_cachep, sighand);
1549	}
1550}
1551
 
1552/*
1553 * Initialize POSIX timer handling for a thread group.
1554 */
1555static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556{
1557	struct posix_cputimers *pct = &sig->posix_cputimers;
1558	unsigned long cpu_limit;
1559
1560	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
 
 
 
1562}
1563
1564static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565{
1566	struct signal_struct *sig;
1567
1568	if (clone_flags & CLONE_THREAD)
1569		return 0;
1570
1571	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572	tsk->signal = sig;
1573	if (!sig)
1574		return -ENOMEM;
1575
1576	sig->nr_threads = 1;
1577	atomic_set(&sig->live, 1);
1578	refcount_set(&sig->sigcnt, 1);
1579
1580	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583
1584	init_waitqueue_head(&sig->wait_chldexit);
 
 
1585	sig->curr_target = tsk;
1586	init_sigpending(&sig->shared_pending);
1587	INIT_HLIST_HEAD(&sig->multiprocess);
1588	seqlock_init(&sig->stats_lock);
1589	prev_cputime_init(&sig->prev_cputime);
1590
1591#ifdef CONFIG_POSIX_TIMERS
1592	INIT_LIST_HEAD(&sig->posix_timers);
1593	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594	sig->real_timer.function = it_real_fn;
1595#endif
1596
1597	task_lock(current->group_leader);
1598	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599	task_unlock(current->group_leader);
1600
1601	posix_cpu_timers_init_group(sig);
1602
1603	tty_audit_fork(sig);
1604	sched_autogroup_fork(sig);
1605
 
 
 
 
 
1606	sig->oom_score_adj = current->signal->oom_score_adj;
1607	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608
1609	mutex_init(&sig->cred_guard_mutex);
1610	init_rwsem(&sig->exec_update_lock);
1611
1612	return 0;
1613}
1614
1615static void copy_seccomp(struct task_struct *p)
1616{
1617#ifdef CONFIG_SECCOMP
1618	/*
1619	 * Must be called with sighand->lock held, which is common to
1620	 * all threads in the group. Holding cred_guard_mutex is not
1621	 * needed because this new task is not yet running and cannot
1622	 * be racing exec.
1623	 */
1624	assert_spin_locked(&current->sighand->siglock);
1625
1626	/* Ref-count the new filter user, and assign it. */
1627	get_seccomp_filter(current);
1628	p->seccomp = current->seccomp;
1629
1630	/*
1631	 * Explicitly enable no_new_privs here in case it got set
1632	 * between the task_struct being duplicated and holding the
1633	 * sighand lock. The seccomp state and nnp must be in sync.
1634	 */
1635	if (task_no_new_privs(current))
1636		task_set_no_new_privs(p);
1637
1638	/*
1639	 * If the parent gained a seccomp mode after copying thread
1640	 * flags and between before we held the sighand lock, we have
1641	 * to manually enable the seccomp thread flag here.
1642	 */
1643	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644		set_task_syscall_work(p, SECCOMP);
1645#endif
1646}
1647
1648SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649{
1650	current->clear_child_tid = tidptr;
1651
1652	return task_pid_vnr(current);
1653}
1654
1655static void rt_mutex_init_task(struct task_struct *p)
1656{
1657	raw_spin_lock_init(&p->pi_lock);
1658#ifdef CONFIG_RT_MUTEXES
1659	p->pi_waiters = RB_ROOT_CACHED;
1660	p->pi_top_task = NULL;
1661	p->pi_blocked_on = NULL;
1662#endif
1663}
1664
1665static inline void init_task_pid_links(struct task_struct *task)
 
1666{
1667	enum pid_type type;
1668
1669	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1670		INIT_HLIST_NODE(&task->pid_links[type]);
1671}
1672
1673static inline void
1674init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675{
1676	if (type == PIDTYPE_PID)
1677		task->thread_pid = pid;
1678	else
1679		task->signal->pids[type] = pid;
1680}
1681
1682static inline void rcu_copy_process(struct task_struct *p)
1683{
1684#ifdef CONFIG_PREEMPT_RCU
1685	p->rcu_read_lock_nesting = 0;
1686	p->rcu_read_unlock_special.s = 0;
1687	p->rcu_blocked_node = NULL;
1688	INIT_LIST_HEAD(&p->rcu_node_entry);
1689#endif /* #ifdef CONFIG_PREEMPT_RCU */
1690#ifdef CONFIG_TASKS_RCU
1691	p->rcu_tasks_holdout = false;
1692	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693	p->rcu_tasks_idle_cpu = -1;
1694#endif /* #ifdef CONFIG_TASKS_RCU */
1695#ifdef CONFIG_TASKS_TRACE_RCU
1696	p->trc_reader_nesting = 0;
1697	p->trc_reader_special.s = 0;
1698	INIT_LIST_HEAD(&p->trc_holdout_list);
1699#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700}
1701
1702struct pid *pidfd_pid(const struct file *file)
1703{
1704	if (file->f_op == &pidfd_fops)
1705		return file->private_data;
1706
1707	return ERR_PTR(-EBADF);
1708}
1709
1710static int pidfd_release(struct inode *inode, struct file *file)
1711{
1712	struct pid *pid = file->private_data;
1713
1714	file->private_data = NULL;
1715	put_pid(pid);
1716	return 0;
1717}
1718
1719#ifdef CONFIG_PROC_FS
1720/**
1721 * pidfd_show_fdinfo - print information about a pidfd
1722 * @m: proc fdinfo file
1723 * @f: file referencing a pidfd
1724 *
1725 * Pid:
1726 * This function will print the pid that a given pidfd refers to in the
1727 * pid namespace of the procfs instance.
1728 * If the pid namespace of the process is not a descendant of the pid
1729 * namespace of the procfs instance 0 will be shown as its pid. This is
1730 * similar to calling getppid() on a process whose parent is outside of
1731 * its pid namespace.
1732 *
1733 * NSpid:
1734 * If pid namespaces are supported then this function will also print
1735 * the pid of a given pidfd refers to for all descendant pid namespaces
1736 * starting from the current pid namespace of the instance, i.e. the
1737 * Pid field and the first entry in the NSpid field will be identical.
1738 * If the pid namespace of the process is not a descendant of the pid
1739 * namespace of the procfs instance 0 will be shown as its first NSpid
1740 * entry and no others will be shown.
1741 * Note that this differs from the Pid and NSpid fields in
1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743 * the  pid namespace of the procfs instance. The difference becomes
1744 * obvious when sending around a pidfd between pid namespaces from a
1745 * different branch of the tree, i.e. where no ancestral relation is
1746 * present between the pid namespaces:
1747 * - create two new pid namespaces ns1 and ns2 in the initial pid
1748 *   namespace (also take care to create new mount namespaces in the
1749 *   new pid namespace and mount procfs)
1750 * - create a process with a pidfd in ns1
1751 * - send pidfd from ns1 to ns2
1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753 *   have exactly one entry, which is 0
1754 */
1755static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756{
1757	struct pid *pid = f->private_data;
1758	struct pid_namespace *ns;
1759	pid_t nr = -1;
1760
1761	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1763		nr = pid_nr_ns(pid, ns);
1764	}
1765
1766	seq_put_decimal_ll(m, "Pid:\t", nr);
1767
1768#ifdef CONFIG_PID_NS
1769	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770	if (nr > 0) {
1771		int i;
1772
1773		/* If nr is non-zero it means that 'pid' is valid and that
1774		 * ns, i.e. the pid namespace associated with the procfs
1775		 * instance, is in the pid namespace hierarchy of pid.
1776		 * Start at one below the already printed level.
1777		 */
1778		for (i = ns->level + 1; i <= pid->level; i++)
1779			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780	}
1781#endif
1782	seq_putc(m, '\n');
1783}
1784#endif
1785
1786/*
1787 * Poll support for process exit notification.
1788 */
1789static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790{
1791	struct pid *pid = file->private_data;
1792	__poll_t poll_flags = 0;
1793
1794	poll_wait(file, &pid->wait_pidfd, pts);
1795
1796	/*
1797	 * Inform pollers only when the whole thread group exits.
1798	 * If the thread group leader exits before all other threads in the
1799	 * group, then poll(2) should block, similar to the wait(2) family.
1800	 */
1801	if (thread_group_exited(pid))
1802		poll_flags = EPOLLIN | EPOLLRDNORM;
1803
1804	return poll_flags;
1805}
1806
1807const struct file_operations pidfd_fops = {
1808	.release = pidfd_release,
1809	.poll = pidfd_poll,
1810#ifdef CONFIG_PROC_FS
1811	.show_fdinfo = pidfd_show_fdinfo,
1812#endif
1813};
1814
1815static void __delayed_free_task(struct rcu_head *rhp)
1816{
1817	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1818
1819	free_task(tsk);
1820}
1821
1822static __always_inline void delayed_free_task(struct task_struct *tsk)
1823{
1824	if (IS_ENABLED(CONFIG_MEMCG))
1825		call_rcu(&tsk->rcu, __delayed_free_task);
1826	else
1827		free_task(tsk);
1828}
1829
1830static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1831{
1832	/* Skip if kernel thread */
1833	if (!tsk->mm)
1834		return;
1835
1836	/* Skip if spawning a thread or using vfork */
1837	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1838		return;
1839
1840	/* We need to synchronize with __set_oom_adj */
1841	mutex_lock(&oom_adj_mutex);
1842	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1843	/* Update the values in case they were changed after copy_signal */
1844	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1845	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1846	mutex_unlock(&oom_adj_mutex);
1847}
1848
1849/*
1850 * This creates a new process as a copy of the old one,
1851 * but does not actually start it yet.
1852 *
1853 * It copies the registers, and all the appropriate
1854 * parts of the process environment (as per the clone
1855 * flags). The actual kick-off is left to the caller.
1856 */
1857static __latent_entropy struct task_struct *copy_process(
 
 
 
 
1858					struct pid *pid,
1859					int trace,
1860					int node,
1861					struct kernel_clone_args *args)
1862{
1863	int pidfd = -1, retval;
1864	struct task_struct *p;
1865	struct multiprocess_signals delayed;
1866	struct file *pidfile = NULL;
1867	u64 clone_flags = args->flags;
1868	struct nsproxy *nsp = current->nsproxy;
1869
1870	/*
1871	 * Don't allow sharing the root directory with processes in a different
1872	 * namespace
1873	 */
1874	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1875		return ERR_PTR(-EINVAL);
1876
1877	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1878		return ERR_PTR(-EINVAL);
1879
1880	/*
1881	 * Thread groups must share signals as well, and detached threads
1882	 * can only be started up within the thread group.
1883	 */
1884	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1885		return ERR_PTR(-EINVAL);
1886
1887	/*
1888	 * Shared signal handlers imply shared VM. By way of the above,
1889	 * thread groups also imply shared VM. Blocking this case allows
1890	 * for various simplifications in other code.
1891	 */
1892	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1893		return ERR_PTR(-EINVAL);
1894
1895	/*
1896	 * Siblings of global init remain as zombies on exit since they are
1897	 * not reaped by their parent (swapper). To solve this and to avoid
1898	 * multi-rooted process trees, prevent global and container-inits
1899	 * from creating siblings.
1900	 */
1901	if ((clone_flags & CLONE_PARENT) &&
1902				current->signal->flags & SIGNAL_UNKILLABLE)
1903		return ERR_PTR(-EINVAL);
1904
1905	/*
1906	 * If the new process will be in a different pid or user namespace
1907	 * do not allow it to share a thread group with the forking task.
1908	 */
1909	if (clone_flags & CLONE_THREAD) {
1910		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1911		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1912			return ERR_PTR(-EINVAL);
1913	}
1914
1915	/*
1916	 * If the new process will be in a different time namespace
1917	 * do not allow it to share VM or a thread group with the forking task.
1918	 */
1919	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1920		if (nsp->time_ns != nsp->time_ns_for_children)
1921			return ERR_PTR(-EINVAL);
1922	}
1923
1924	if (clone_flags & CLONE_PIDFD) {
1925		/*
1926		 * - CLONE_DETACHED is blocked so that we can potentially
1927		 *   reuse it later for CLONE_PIDFD.
1928		 * - CLONE_THREAD is blocked until someone really needs it.
1929		 */
1930		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1931			return ERR_PTR(-EINVAL);
1932	}
1933
1934	/*
1935	 * Force any signals received before this point to be delivered
1936	 * before the fork happens.  Collect up signals sent to multiple
1937	 * processes that happen during the fork and delay them so that
1938	 * they appear to happen after the fork.
1939	 */
1940	sigemptyset(&delayed.signal);
1941	INIT_HLIST_NODE(&delayed.node);
1942
1943	spin_lock_irq(&current->sighand->siglock);
1944	if (!(clone_flags & CLONE_THREAD))
1945		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1946	recalc_sigpending();
1947	spin_unlock_irq(&current->sighand->siglock);
1948	retval = -ERESTARTNOINTR;
1949	if (task_sigpending(current))
1950		goto fork_out;
1951
1952	retval = -ENOMEM;
1953	p = dup_task_struct(current, node);
1954	if (!p)
1955		goto fork_out;
1956	if (args->io_thread) {
1957		/*
1958		 * Mark us an IO worker, and block any signal that isn't
1959		 * fatal or STOP
1960		 */
1961		p->flags |= PF_IO_WORKER;
1962		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1963	}
1964
1965	/*
1966	 * This _must_ happen before we call free_task(), i.e. before we jump
1967	 * to any of the bad_fork_* labels. This is to avoid freeing
1968	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1969	 * kernel threads (PF_KTHREAD).
1970	 */
1971	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1972	/*
1973	 * Clear TID on mm_release()?
1974	 */
1975	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1976
1977	ftrace_graph_init_task(p);
1978
1979	rt_mutex_init_task(p);
1980
1981	lockdep_assert_irqs_enabled();
1982#ifdef CONFIG_PROVE_LOCKING
 
1983	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1984#endif
1985	retval = -EAGAIN;
1986	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1987		if (p->real_cred->user != INIT_USER &&
1988		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
 
1989			goto bad_fork_free;
1990	}
1991	current->flags &= ~PF_NPROC_EXCEEDED;
1992
1993	retval = copy_creds(p, clone_flags);
1994	if (retval < 0)
1995		goto bad_fork_free;
1996
1997	/*
1998	 * If multiple threads are within copy_process(), then this check
1999	 * triggers too late. This doesn't hurt, the check is only there
2000	 * to stop root fork bombs.
2001	 */
2002	retval = -EAGAIN;
2003	if (data_race(nr_threads >= max_threads))
2004		goto bad_fork_cleanup_count;
2005
 
 
 
 
2006	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2007	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2008	p->flags |= PF_FORKNOEXEC;
2009	INIT_LIST_HEAD(&p->children);
2010	INIT_LIST_HEAD(&p->sibling);
2011	rcu_copy_process(p);
2012	p->vfork_done = NULL;
2013	spin_lock_init(&p->alloc_lock);
2014
2015	init_sigpending(&p->pending);
2016
2017	p->utime = p->stime = p->gtime = 0;
2018#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2019	p->utimescaled = p->stimescaled = 0;
2020#endif
2021	prev_cputime_init(&p->prev_cputime);
2022
2023#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2024	seqcount_init(&p->vtime.seqcount);
2025	p->vtime.starttime = 0;
2026	p->vtime.state = VTIME_INACTIVE;
2027#endif
2028
2029#ifdef CONFIG_IO_URING
2030	p->io_uring = NULL;
2031#endif
2032
2033#if defined(SPLIT_RSS_COUNTING)
2034	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2035#endif
2036
2037	p->default_timer_slack_ns = current->timer_slack_ns;
2038
2039#ifdef CONFIG_PSI
2040	p->psi_flags = 0;
2041#endif
2042
2043	task_io_accounting_init(&p->ioac);
2044	acct_clear_integrals(p);
2045
2046	posix_cputimers_init(&p->posix_cputimers);
2047
 
 
 
2048	p->io_context = NULL;
2049	audit_set_context(p, NULL);
 
 
2050	cgroup_fork(p);
2051#ifdef CONFIG_NUMA
2052	p->mempolicy = mpol_dup(p->mempolicy);
2053	if (IS_ERR(p->mempolicy)) {
2054		retval = PTR_ERR(p->mempolicy);
2055		p->mempolicy = NULL;
2056		goto bad_fork_cleanup_threadgroup_lock;
2057	}
 
2058#endif
2059#ifdef CONFIG_CPUSETS
2060	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2061	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2062	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2063#endif
2064#ifdef CONFIG_TRACE_IRQFLAGS
2065	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2066	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2067	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2068	p->softirqs_enabled		= 1;
2069	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
2070#endif
2071
2072	p->pagefault_disabled = 0;
2073
2074#ifdef CONFIG_LOCKDEP
2075	lockdep_init_task(p);
 
 
2076#endif
2077
2078#ifdef CONFIG_DEBUG_MUTEXES
2079	p->blocked_on = NULL; /* not blocked yet */
2080#endif
2081#ifdef CONFIG_BCACHE
2082	p->sequential_io	= 0;
2083	p->sequential_io_avg	= 0;
2084#endif
2085#ifdef CONFIG_BPF_SYSCALL
2086	RCU_INIT_POINTER(p->bpf_storage, NULL);
2087#endif
2088
2089	/* Perform scheduler related setup. Assign this task to a CPU. */
2090	retval = sched_fork(clone_flags, p);
2091	if (retval)
2092		goto bad_fork_cleanup_policy;
2093
2094	retval = perf_event_init_task(p, clone_flags);
2095	if (retval)
2096		goto bad_fork_cleanup_policy;
2097	retval = audit_alloc(p);
2098	if (retval)
2099		goto bad_fork_cleanup_perf;
2100	/* copy all the process information */
2101	shm_init_task(p);
2102	retval = security_task_alloc(p, clone_flags);
2103	if (retval)
2104		goto bad_fork_cleanup_audit;
2105	retval = copy_semundo(clone_flags, p);
2106	if (retval)
2107		goto bad_fork_cleanup_security;
2108	retval = copy_files(clone_flags, p);
2109	if (retval)
2110		goto bad_fork_cleanup_semundo;
2111	retval = copy_fs(clone_flags, p);
2112	if (retval)
2113		goto bad_fork_cleanup_files;
2114	retval = copy_sighand(clone_flags, p);
2115	if (retval)
2116		goto bad_fork_cleanup_fs;
2117	retval = copy_signal(clone_flags, p);
2118	if (retval)
2119		goto bad_fork_cleanup_sighand;
2120	retval = copy_mm(clone_flags, p);
2121	if (retval)
2122		goto bad_fork_cleanup_signal;
2123	retval = copy_namespaces(clone_flags, p);
2124	if (retval)
2125		goto bad_fork_cleanup_mm;
2126	retval = copy_io(clone_flags, p);
2127	if (retval)
2128		goto bad_fork_cleanup_namespaces;
2129	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2130	if (retval)
2131		goto bad_fork_cleanup_io;
2132
2133	stackleak_task_init(p);
2134
2135	if (pid != &init_struct_pid) {
2136		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2137				args->set_tid_size);
2138		if (IS_ERR(pid)) {
2139			retval = PTR_ERR(pid);
2140			goto bad_fork_cleanup_thread;
2141		}
2142	}
2143
 
 
 
 
 
 
2144	/*
2145	 * This has to happen after we've potentially unshared the file
2146	 * descriptor table (so that the pidfd doesn't leak into the child
2147	 * if the fd table isn't shared).
2148	 */
2149	if (clone_flags & CLONE_PIDFD) {
2150		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2151		if (retval < 0)
2152			goto bad_fork_free_pid;
2153
2154		pidfd = retval;
2155
2156		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2157					      O_RDWR | O_CLOEXEC);
2158		if (IS_ERR(pidfile)) {
2159			put_unused_fd(pidfd);
2160			retval = PTR_ERR(pidfile);
2161			goto bad_fork_free_pid;
2162		}
2163		get_pid(pid);	/* held by pidfile now */
2164
2165		retval = put_user(pidfd, args->pidfd);
2166		if (retval)
2167			goto bad_fork_put_pidfd;
2168	}
2169
2170#ifdef CONFIG_BLOCK
2171	p->plug = NULL;
2172#endif
2173	futex_init_task(p);
2174
 
 
 
 
 
 
2175	/*
2176	 * sigaltstack should be cleared when sharing the same VM
2177	 */
2178	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2179		sas_ss_reset(p);
2180
2181	/*
2182	 * Syscall tracing and stepping should be turned off in the
2183	 * child regardless of CLONE_PTRACE.
2184	 */
2185	user_disable_single_step(p);
2186	clear_task_syscall_work(p, SYSCALL_TRACE);
2187#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2188	clear_task_syscall_work(p, SYSCALL_EMU);
2189#endif
2190	clear_tsk_latency_tracing(p);
2191
2192	/* ok, now we should be set up.. */
2193	p->pid = pid_nr(pid);
2194	if (clone_flags & CLONE_THREAD) {
2195		p->group_leader = current->group_leader;
2196		p->tgid = current->tgid;
2197	} else {
2198		p->group_leader = p;
2199		p->tgid = p->pid;
2200	}
2201
2202	p->nr_dirtied = 0;
2203	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2204	p->dirty_paused_when = 0;
2205
2206	p->pdeath_signal = 0;
2207	INIT_LIST_HEAD(&p->thread_group);
2208	p->task_works = NULL;
2209
2210#ifdef CONFIG_KRETPROBES
2211	p->kretprobe_instances.first = NULL;
2212#endif
2213
2214	/*
2215	 * Ensure that the cgroup subsystem policies allow the new process to be
2216	 * forked. It should be noted that the new process's css_set can be changed
2217	 * between here and cgroup_post_fork() if an organisation operation is in
2218	 * progress.
2219	 */
2220	retval = cgroup_can_fork(p, args);
2221	if (retval)
2222		goto bad_fork_put_pidfd;
2223
2224	/*
2225	 * From this point on we must avoid any synchronous user-space
2226	 * communication until we take the tasklist-lock. In particular, we do
2227	 * not want user-space to be able to predict the process start-time by
2228	 * stalling fork(2) after we recorded the start_time but before it is
2229	 * visible to the system.
2230	 */
2231
2232	p->start_time = ktime_get_ns();
2233	p->start_boottime = ktime_get_boottime_ns();
2234
2235	/*
2236	 * Make it visible to the rest of the system, but dont wake it up yet.
2237	 * Need tasklist lock for parent etc handling!
2238	 */
2239	write_lock_irq(&tasklist_lock);
2240
2241	/* CLONE_PARENT re-uses the old parent */
2242	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2243		p->real_parent = current->real_parent;
2244		p->parent_exec_id = current->parent_exec_id;
2245		if (clone_flags & CLONE_THREAD)
2246			p->exit_signal = -1;
2247		else
2248			p->exit_signal = current->group_leader->exit_signal;
2249	} else {
2250		p->real_parent = current;
2251		p->parent_exec_id = current->self_exec_id;
2252		p->exit_signal = args->exit_signal;
2253	}
2254
2255	klp_copy_process(p);
2256
2257	sched_core_fork(p);
2258
2259	spin_lock(&current->sighand->siglock);
2260
2261	/*
2262	 * Copy seccomp details explicitly here, in case they were changed
2263	 * before holding sighand lock.
2264	 */
2265	copy_seccomp(p);
2266
2267	rseq_fork(p, clone_flags);
2268
2269	/* Don't start children in a dying pid namespace */
2270	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2271		retval = -ENOMEM;
2272		goto bad_fork_cancel_cgroup;
 
 
2273	}
2274
2275	/* Let kill terminate clone/fork in the middle */
2276	if (fatal_signal_pending(current)) {
2277		retval = -EINTR;
2278		goto bad_fork_cancel_cgroup;
 
 
2279	}
2280
2281	/* past the last point of failure */
2282	if (pidfile)
2283		fd_install(pidfd, pidfile);
2284
2285	init_task_pid_links(p);
2286	if (likely(p->pid)) {
2287		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2288
2289		init_task_pid(p, PIDTYPE_PID, pid);
2290		if (thread_group_leader(p)) {
2291			init_task_pid(p, PIDTYPE_TGID, pid);
2292			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2293			init_task_pid(p, PIDTYPE_SID, task_session(current));
2294
2295			if (is_child_reaper(pid)) {
2296				ns_of_pid(pid)->child_reaper = p;
2297				p->signal->flags |= SIGNAL_UNKILLABLE;
2298			}
2299			p->signal->shared_pending.signal = delayed.signal;
2300			p->signal->tty = tty_kref_get(current->signal->tty);
2301			/*
2302			 * Inherit has_child_subreaper flag under the same
2303			 * tasklist_lock with adding child to the process tree
2304			 * for propagate_has_child_subreaper optimization.
2305			 */
2306			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2307							 p->real_parent->signal->is_child_subreaper;
2308			list_add_tail(&p->sibling, &p->real_parent->children);
2309			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2310			attach_pid(p, PIDTYPE_TGID);
2311			attach_pid(p, PIDTYPE_PGID);
2312			attach_pid(p, PIDTYPE_SID);
2313			__this_cpu_inc(process_counts);
2314		} else {
2315			current->signal->nr_threads++;
2316			atomic_inc(&current->signal->live);
2317			refcount_inc(&current->signal->sigcnt);
2318			task_join_group_stop(p);
2319			list_add_tail_rcu(&p->thread_group,
2320					  &p->group_leader->thread_group);
2321			list_add_tail_rcu(&p->thread_node,
2322					  &p->signal->thread_head);
2323		}
2324		attach_pid(p, PIDTYPE_PID);
2325		nr_threads++;
2326	}
 
2327	total_forks++;
2328	hlist_del_init(&delayed.node);
2329	spin_unlock(&current->sighand->siglock);
2330	syscall_tracepoint_update(p);
2331	write_unlock_irq(&tasklist_lock);
2332
2333	proc_fork_connector(p);
2334	sched_post_fork(p);
2335	cgroup_post_fork(p, args);
 
2336	perf_event_fork(p);
2337
2338	trace_task_newtask(p, clone_flags);
2339	uprobe_copy_process(p, clone_flags);
2340
2341	copy_oom_score_adj(clone_flags, p);
2342
2343	return p;
2344
2345bad_fork_cancel_cgroup:
2346	sched_core_free(p);
2347	spin_unlock(&current->sighand->siglock);
2348	write_unlock_irq(&tasklist_lock);
2349	cgroup_cancel_fork(p, args);
2350bad_fork_put_pidfd:
2351	if (clone_flags & CLONE_PIDFD) {
2352		fput(pidfile);
2353		put_unused_fd(pidfd);
2354	}
2355bad_fork_free_pid:
2356	if (pid != &init_struct_pid)
2357		free_pid(pid);
2358bad_fork_cleanup_thread:
2359	exit_thread(p);
2360bad_fork_cleanup_io:
2361	if (p->io_context)
2362		exit_io_context(p);
2363bad_fork_cleanup_namespaces:
2364	exit_task_namespaces(p);
2365bad_fork_cleanup_mm:
2366	if (p->mm) {
2367		mm_clear_owner(p->mm, p);
 
 
 
2368		mmput(p->mm);
2369	}
2370bad_fork_cleanup_signal:
2371	if (!(clone_flags & CLONE_THREAD))
2372		free_signal_struct(p->signal);
2373bad_fork_cleanup_sighand:
2374	__cleanup_sighand(p->sighand);
2375bad_fork_cleanup_fs:
2376	exit_fs(p); /* blocking */
2377bad_fork_cleanup_files:
2378	exit_files(p); /* blocking */
2379bad_fork_cleanup_semundo:
2380	exit_sem(p);
2381bad_fork_cleanup_security:
2382	security_task_free(p);
2383bad_fork_cleanup_audit:
2384	audit_free(p);
2385bad_fork_cleanup_perf:
2386	perf_event_free_task(p);
2387bad_fork_cleanup_policy:
2388	lockdep_free_task(p);
2389#ifdef CONFIG_NUMA
2390	mpol_put(p->mempolicy);
2391bad_fork_cleanup_threadgroup_lock:
2392#endif
 
 
 
2393	delayacct_tsk_free(p);
 
2394bad_fork_cleanup_count:
2395	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2396	exit_creds(p);
2397bad_fork_free:
2398	WRITE_ONCE(p->__state, TASK_DEAD);
2399	put_task_stack(p);
2400	delayed_free_task(p);
2401fork_out:
2402	spin_lock_irq(&current->sighand->siglock);
2403	hlist_del_init(&delayed.node);
2404	spin_unlock_irq(&current->sighand->siglock);
2405	return ERR_PTR(retval);
2406}
2407
2408static inline void init_idle_pids(struct task_struct *idle)
 
 
 
 
 
 
2409{
2410	enum pid_type type;
2411
2412	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2413		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2414		init_task_pid(idle, type, &init_struct_pid);
2415	}
2416}
2417
2418struct task_struct * __init fork_idle(int cpu)
2419{
2420	struct task_struct *task;
2421	struct kernel_clone_args args = {
2422		.flags = CLONE_VM,
2423	};
2424
2425	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
 
2426	if (!IS_ERR(task)) {
2427		init_idle_pids(task);
2428		init_idle(task, cpu);
2429	}
2430
2431	return task;
2432}
2433
2434struct mm_struct *copy_init_mm(void)
2435{
2436	return dup_mm(NULL, &init_mm);
2437}
2438
2439/*
2440 * This is like kernel_clone(), but shaved down and tailored to just
2441 * creating io_uring workers. It returns a created task, or an error pointer.
2442 * The returned task is inactive, and the caller must fire it up through
2443 * wake_up_new_task(p). All signals are blocked in the created task.
2444 */
2445struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2446{
2447	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2448				CLONE_IO;
2449	struct kernel_clone_args args = {
2450		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2451				    CLONE_UNTRACED) & ~CSIGNAL),
2452		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2453		.stack		= (unsigned long)fn,
2454		.stack_size	= (unsigned long)arg,
2455		.io_thread	= 1,
2456	};
2457
2458	return copy_process(NULL, 0, node, &args);
2459}
2460
2461/*
2462 *  Ok, this is the main fork-routine.
2463 *
2464 * It copies the process, and if successful kick-starts
2465 * it and waits for it to finish using the VM if required.
2466 *
2467 * args->exit_signal is expected to be checked for sanity by the caller.
2468 */
2469pid_t kernel_clone(struct kernel_clone_args *args)
 
 
 
 
 
2470{
2471	u64 clone_flags = args->flags;
2472	struct completion vfork;
2473	struct pid *pid;
2474	struct task_struct *p;
2475	int trace = 0;
2476	pid_t nr;
2477
2478	/*
2479	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2480	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2481	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2482	 * field in struct clone_args and it still doesn't make sense to have
2483	 * them both point at the same memory location. Performing this check
2484	 * here has the advantage that we don't need to have a separate helper
2485	 * to check for legacy clone().
2486	 */
2487	if ((args->flags & CLONE_PIDFD) &&
2488	    (args->flags & CLONE_PARENT_SETTID) &&
2489	    (args->pidfd == args->parent_tid))
2490		return -EINVAL;
 
2491
2492	/*
2493	 * Determine whether and which event to report to ptracer.  When
2494	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2495	 * requested, no event is reported; otherwise, report if the event
2496	 * for the type of forking is enabled.
2497	 */
2498	if (!(clone_flags & CLONE_UNTRACED)) {
2499		if (clone_flags & CLONE_VFORK)
2500			trace = PTRACE_EVENT_VFORK;
2501		else if (args->exit_signal != SIGCHLD)
2502			trace = PTRACE_EVENT_CLONE;
2503		else
2504			trace = PTRACE_EVENT_FORK;
2505
2506		if (likely(!ptrace_event_enabled(current, trace)))
2507			trace = 0;
2508	}
2509
2510	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2511	add_latent_entropy();
2512
2513	if (IS_ERR(p))
2514		return PTR_ERR(p);
2515
2516	/*
2517	 * Do this prior waking up the new thread - the thread pointer
2518	 * might get invalid after that point, if the thread exits quickly.
2519	 */
2520	trace_sched_process_fork(current, p);
 
2521
2522	pid = get_task_pid(p, PIDTYPE_PID);
2523	nr = pid_vnr(pid);
2524
2525	if (clone_flags & CLONE_PARENT_SETTID)
2526		put_user(nr, args->parent_tid);
2527
2528	if (clone_flags & CLONE_VFORK) {
2529		p->vfork_done = &vfork;
2530		init_completion(&vfork);
2531		get_task_struct(p);
2532	}
2533
2534	wake_up_new_task(p);
 
 
 
2535
2536	/* forking complete and child started to run, tell ptracer */
2537	if (unlikely(trace))
2538		ptrace_event_pid(trace, pid);
2539
2540	if (clone_flags & CLONE_VFORK) {
2541		if (!wait_for_vfork_done(p, &vfork))
2542			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2543	}
 
 
 
2544
2545	put_pid(pid);
2546	return nr;
2547}
2548
2549/*
2550 * Create a kernel thread.
2551 */
2552pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2553{
2554	struct kernel_clone_args args = {
2555		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2556				    CLONE_UNTRACED) & ~CSIGNAL),
2557		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2558		.stack		= (unsigned long)fn,
2559		.stack_size	= (unsigned long)arg,
2560	};
2561
2562	return kernel_clone(&args);
2563}
2564
2565#ifdef __ARCH_WANT_SYS_FORK
2566SYSCALL_DEFINE0(fork)
2567{
2568#ifdef CONFIG_MMU
2569	struct kernel_clone_args args = {
2570		.exit_signal = SIGCHLD,
2571	};
2572
2573	return kernel_clone(&args);
2574#else
2575	/* can not support in nommu mode */
2576	return -EINVAL;
2577#endif
2578}
2579#endif
2580
2581#ifdef __ARCH_WANT_SYS_VFORK
2582SYSCALL_DEFINE0(vfork)
2583{
2584	struct kernel_clone_args args = {
2585		.flags		= CLONE_VFORK | CLONE_VM,
2586		.exit_signal	= SIGCHLD,
2587	};
2588
2589	return kernel_clone(&args);
2590}
2591#endif
2592
2593#ifdef __ARCH_WANT_SYS_CLONE
2594#ifdef CONFIG_CLONE_BACKWARDS
2595SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2596		 int __user *, parent_tidptr,
2597		 unsigned long, tls,
2598		 int __user *, child_tidptr)
2599#elif defined(CONFIG_CLONE_BACKWARDS2)
2600SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2601		 int __user *, parent_tidptr,
2602		 int __user *, child_tidptr,
2603		 unsigned long, tls)
2604#elif defined(CONFIG_CLONE_BACKWARDS3)
2605SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2606		int, stack_size,
2607		int __user *, parent_tidptr,
2608		int __user *, child_tidptr,
2609		unsigned long, tls)
2610#else
2611SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2612		 int __user *, parent_tidptr,
2613		 int __user *, child_tidptr,
2614		 unsigned long, tls)
2615#endif
2616{
2617	struct kernel_clone_args args = {
2618		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2619		.pidfd		= parent_tidptr,
2620		.child_tid	= child_tidptr,
2621		.parent_tid	= parent_tidptr,
2622		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2623		.stack		= newsp,
2624		.tls		= tls,
2625	};
2626
2627	return kernel_clone(&args);
2628}
2629#endif
2630
2631#ifdef __ARCH_WANT_SYS_CLONE3
2632
2633noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2634					      struct clone_args __user *uargs,
2635					      size_t usize)
2636{
2637	int err;
2638	struct clone_args args;
2639	pid_t *kset_tid = kargs->set_tid;
2640
2641	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2642		     CLONE_ARGS_SIZE_VER0);
2643	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2644		     CLONE_ARGS_SIZE_VER1);
2645	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2646		     CLONE_ARGS_SIZE_VER2);
2647	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2648
2649	if (unlikely(usize > PAGE_SIZE))
2650		return -E2BIG;
2651	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2652		return -EINVAL;
2653
2654	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2655	if (err)
2656		return err;
2657
2658	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2659		return -EINVAL;
2660
2661	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2662		return -EINVAL;
2663
2664	if (unlikely(args.set_tid && args.set_tid_size == 0))
2665		return -EINVAL;
2666
2667	/*
2668	 * Verify that higher 32bits of exit_signal are unset and that
2669	 * it is a valid signal
2670	 */
2671	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2672		     !valid_signal(args.exit_signal)))
2673		return -EINVAL;
2674
2675	if ((args.flags & CLONE_INTO_CGROUP) &&
2676	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2677		return -EINVAL;
2678
2679	*kargs = (struct kernel_clone_args){
2680		.flags		= args.flags,
2681		.pidfd		= u64_to_user_ptr(args.pidfd),
2682		.child_tid	= u64_to_user_ptr(args.child_tid),
2683		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2684		.exit_signal	= args.exit_signal,
2685		.stack		= args.stack,
2686		.stack_size	= args.stack_size,
2687		.tls		= args.tls,
2688		.set_tid_size	= args.set_tid_size,
2689		.cgroup		= args.cgroup,
2690	};
2691
2692	if (args.set_tid &&
2693		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2694			(kargs->set_tid_size * sizeof(pid_t))))
2695		return -EFAULT;
2696
2697	kargs->set_tid = kset_tid;
2698
2699	return 0;
2700}
2701
2702/**
2703 * clone3_stack_valid - check and prepare stack
2704 * @kargs: kernel clone args
2705 *
2706 * Verify that the stack arguments userspace gave us are sane.
2707 * In addition, set the stack direction for userspace since it's easy for us to
2708 * determine.
2709 */
2710static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2711{
2712	if (kargs->stack == 0) {
2713		if (kargs->stack_size > 0)
2714			return false;
2715	} else {
2716		if (kargs->stack_size == 0)
2717			return false;
2718
2719		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2720			return false;
2721
2722#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2723		kargs->stack += kargs->stack_size;
2724#endif
2725	}
2726
2727	return true;
2728}
2729
2730static bool clone3_args_valid(struct kernel_clone_args *kargs)
2731{
2732	/* Verify that no unknown flags are passed along. */
2733	if (kargs->flags &
2734	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2735		return false;
2736
2737	/*
2738	 * - make the CLONE_DETACHED bit reusable for clone3
2739	 * - make the CSIGNAL bits reusable for clone3
2740	 */
2741	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2742		return false;
2743
2744	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2745	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2746		return false;
2747
2748	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2749	    kargs->exit_signal)
2750		return false;
2751
2752	if (!clone3_stack_valid(kargs))
2753		return false;
2754
2755	return true;
2756}
2757
2758/**
2759 * clone3 - create a new process with specific properties
2760 * @uargs: argument structure
2761 * @size:  size of @uargs
2762 *
2763 * clone3() is the extensible successor to clone()/clone2().
2764 * It takes a struct as argument that is versioned by its size.
2765 *
2766 * Return: On success, a positive PID for the child process.
2767 *         On error, a negative errno number.
2768 */
2769SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2770{
2771	int err;
2772
2773	struct kernel_clone_args kargs;
2774	pid_t set_tid[MAX_PID_NS_LEVEL];
2775
2776	kargs.set_tid = set_tid;
2777
2778	err = copy_clone_args_from_user(&kargs, uargs, size);
2779	if (err)
2780		return err;
2781
2782	if (!clone3_args_valid(&kargs))
2783		return -EINVAL;
2784
2785	return kernel_clone(&kargs);
2786}
2787#endif
2788
2789void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2790{
2791	struct task_struct *leader, *parent, *child;
2792	int res;
2793
2794	read_lock(&tasklist_lock);
2795	leader = top = top->group_leader;
2796down:
2797	for_each_thread(leader, parent) {
2798		list_for_each_entry(child, &parent->children, sibling) {
2799			res = visitor(child, data);
2800			if (res) {
2801				if (res < 0)
2802					goto out;
2803				leader = child;
2804				goto down;
2805			}
2806up:
2807			;
2808		}
2809	}
2810
2811	if (leader != top) {
2812		child = leader;
2813		parent = child->real_parent;
2814		leader = parent->group_leader;
2815		goto up;
2816	}
2817out:
2818	read_unlock(&tasklist_lock);
2819}
2820
2821#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2822#define ARCH_MIN_MMSTRUCT_ALIGN 0
2823#endif
2824
2825static void sighand_ctor(void *data)
2826{
2827	struct sighand_struct *sighand = data;
2828
2829	spin_lock_init(&sighand->siglock);
2830	init_waitqueue_head(&sighand->signalfd_wqh);
2831}
2832
2833void __init proc_caches_init(void)
2834{
2835	unsigned int mm_size;
2836
2837	sighand_cachep = kmem_cache_create("sighand_cache",
2838			sizeof(struct sighand_struct), 0,
2839			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2840			SLAB_ACCOUNT, sighand_ctor);
2841	signal_cachep = kmem_cache_create("signal_cache",
2842			sizeof(struct signal_struct), 0,
2843			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2844			NULL);
2845	files_cachep = kmem_cache_create("files_cache",
2846			sizeof(struct files_struct), 0,
2847			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2848			NULL);
2849	fs_cachep = kmem_cache_create("fs_cache",
2850			sizeof(struct fs_struct), 0,
2851			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2852			NULL);
2853
2854	/*
2855	 * The mm_cpumask is located at the end of mm_struct, and is
2856	 * dynamically sized based on the maximum CPU number this system
2857	 * can have, taking hotplug into account (nr_cpu_ids).
2858	 */
2859	mm_size = sizeof(struct mm_struct) + cpumask_size();
2860
2861	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2862			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2863			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2864			offsetof(struct mm_struct, saved_auxv),
2865			sizeof_field(struct mm_struct, saved_auxv),
2866			NULL);
2867	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2868	mmap_init();
2869	nsproxy_cache_init();
2870}
2871
2872/*
2873 * Check constraints on flags passed to the unshare system call.
2874 */
2875static int check_unshare_flags(unsigned long unshare_flags)
2876{
2877	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2878				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2879				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2880				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2881				CLONE_NEWTIME))
2882		return -EINVAL;
2883	/*
2884	 * Not implemented, but pretend it works if there is nothing
2885	 * to unshare.  Note that unsharing the address space or the
2886	 * signal handlers also need to unshare the signal queues (aka
2887	 * CLONE_THREAD).
2888	 */
2889	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2890		if (!thread_group_empty(current))
2891			return -EINVAL;
2892	}
2893	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2894		if (refcount_read(&current->sighand->count) > 1)
2895			return -EINVAL;
2896	}
2897	if (unshare_flags & CLONE_VM) {
2898		if (!current_is_single_threaded())
2899			return -EINVAL;
2900	}
2901
2902	return 0;
2903}
2904
2905/*
2906 * Unshare the filesystem structure if it is being shared
2907 */
2908static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2909{
2910	struct fs_struct *fs = current->fs;
2911
2912	if (!(unshare_flags & CLONE_FS) || !fs)
2913		return 0;
2914
2915	/* don't need lock here; in the worst case we'll do useless copy */
2916	if (fs->users == 1)
2917		return 0;
2918
2919	*new_fsp = copy_fs_struct(fs);
2920	if (!*new_fsp)
2921		return -ENOMEM;
2922
2923	return 0;
2924}
2925
2926/*
2927 * Unshare file descriptor table if it is being shared
2928 */
2929int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2930	       struct files_struct **new_fdp)
2931{
2932	struct files_struct *fd = current->files;
2933	int error = 0;
2934
2935	if ((unshare_flags & CLONE_FILES) &&
2936	    (fd && atomic_read(&fd->count) > 1)) {
2937		*new_fdp = dup_fd(fd, max_fds, &error);
2938		if (!*new_fdp)
2939			return error;
2940	}
2941
2942	return 0;
2943}
2944
2945/*
2946 * unshare allows a process to 'unshare' part of the process
2947 * context which was originally shared using clone.  copy_*
2948 * functions used by kernel_clone() cannot be used here directly
2949 * because they modify an inactive task_struct that is being
2950 * constructed. Here we are modifying the current, active,
2951 * task_struct.
2952 */
2953int ksys_unshare(unsigned long unshare_flags)
2954{
2955	struct fs_struct *fs, *new_fs = NULL;
2956	struct files_struct *fd, *new_fd = NULL;
2957	struct cred *new_cred = NULL;
2958	struct nsproxy *new_nsproxy = NULL;
2959	int do_sysvsem = 0;
2960	int err;
2961
2962	/*
2963	 * If unsharing a user namespace must also unshare the thread group
2964	 * and unshare the filesystem root and working directories.
2965	 */
2966	if (unshare_flags & CLONE_NEWUSER)
2967		unshare_flags |= CLONE_THREAD | CLONE_FS;
2968	/*
2969	 * If unsharing vm, must also unshare signal handlers.
2970	 */
2971	if (unshare_flags & CLONE_VM)
2972		unshare_flags |= CLONE_SIGHAND;
2973	/*
2974	 * If unsharing a signal handlers, must also unshare the signal queues.
2975	 */
2976	if (unshare_flags & CLONE_SIGHAND)
2977		unshare_flags |= CLONE_THREAD;
2978	/*
2979	 * If unsharing namespace, must also unshare filesystem information.
2980	 */
2981	if (unshare_flags & CLONE_NEWNS)
2982		unshare_flags |= CLONE_FS;
2983
2984	err = check_unshare_flags(unshare_flags);
2985	if (err)
2986		goto bad_unshare_out;
2987	/*
2988	 * CLONE_NEWIPC must also detach from the undolist: after switching
2989	 * to a new ipc namespace, the semaphore arrays from the old
2990	 * namespace are unreachable.
2991	 */
2992	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2993		do_sysvsem = 1;
2994	err = unshare_fs(unshare_flags, &new_fs);
2995	if (err)
2996		goto bad_unshare_out;
2997	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2998	if (err)
2999		goto bad_unshare_cleanup_fs;
3000	err = unshare_userns(unshare_flags, &new_cred);
3001	if (err)
3002		goto bad_unshare_cleanup_fd;
3003	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3004					 new_cred, new_fs);
3005	if (err)
3006		goto bad_unshare_cleanup_cred;
3007
3008	if (new_cred) {
3009		err = set_cred_ucounts(new_cred);
3010		if (err)
3011			goto bad_unshare_cleanup_cred;
3012	}
3013
3014	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3015		if (do_sysvsem) {
3016			/*
3017			 * CLONE_SYSVSEM is equivalent to sys_exit().
3018			 */
3019			exit_sem(current);
3020		}
3021		if (unshare_flags & CLONE_NEWIPC) {
3022			/* Orphan segments in old ns (see sem above). */
3023			exit_shm(current);
3024			shm_init_task(current);
3025		}
3026
3027		if (new_nsproxy)
3028			switch_task_namespaces(current, new_nsproxy);
 
 
3029
3030		task_lock(current);
3031
3032		if (new_fs) {
3033			fs = current->fs;
3034			spin_lock(&fs->lock);
3035			current->fs = new_fs;
3036			if (--fs->users)
3037				new_fs = NULL;
3038			else
3039				new_fs = fs;
3040			spin_unlock(&fs->lock);
3041		}
3042
3043		if (new_fd) {
3044			fd = current->files;
3045			current->files = new_fd;
3046			new_fd = fd;
3047		}
3048
3049		task_unlock(current);
3050
3051		if (new_cred) {
3052			/* Install the new user namespace */
3053			commit_creds(new_cred);
3054			new_cred = NULL;
3055		}
3056	}
3057
3058	perf_event_namespaces(current);
 
3059
3060bad_unshare_cleanup_cred:
3061	if (new_cred)
3062		put_cred(new_cred);
3063bad_unshare_cleanup_fd:
3064	if (new_fd)
3065		put_files_struct(new_fd);
3066
3067bad_unshare_cleanup_fs:
3068	if (new_fs)
3069		free_fs_struct(new_fs);
3070
3071bad_unshare_out:
3072	return err;
3073}
3074
3075SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3076{
3077	return ksys_unshare(unshare_flags);
3078}
3079
3080/*
3081 *	Helper to unshare the files of the current task.
3082 *	We don't want to expose copy_files internals to
3083 *	the exec layer of the kernel.
3084 */
3085
3086int unshare_files(void)
3087{
3088	struct task_struct *task = current;
3089	struct files_struct *old, *copy = NULL;
3090	int error;
3091
3092	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3093	if (error || !copy)
 
3094		return error;
3095
3096	old = task->files;
3097	task_lock(task);
3098	task->files = copy;
3099	task_unlock(task);
3100	put_files_struct(old);
3101	return 0;
3102}
3103
3104int sysctl_max_threads(struct ctl_table *table, int write,
3105		       void *buffer, size_t *lenp, loff_t *ppos)
3106{
3107	struct ctl_table t;
3108	int ret;
3109	int threads = max_threads;
3110	int min = 1;
3111	int max = MAX_THREADS;
3112
3113	t = *table;
3114	t.data = &threads;
3115	t.extra1 = &min;
3116	t.extra2 = &max;
3117
3118	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3119	if (ret || !write)
3120		return ret;
3121
3122	max_threads = threads;
3123
3124	return 0;
3125}