Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
 
 
  31#include <linux/nsproxy.h>
  32#include <linux/capability.h>
  33#include <linux/cpu.h>
  34#include <linux/cgroup.h>
  35#include <linux/security.h>
  36#include <linux/hugetlb.h>
 
  37#include <linux/swap.h>
  38#include <linux/syscalls.h>
  39#include <linux/jiffies.h>
  40#include <linux/futex.h>
  41#include <linux/compat.h>
  42#include <linux/kthread.h>
  43#include <linux/task_io_accounting_ops.h>
  44#include <linux/rcupdate.h>
  45#include <linux/ptrace.h>
  46#include <linux/mount.h>
  47#include <linux/audit.h>
  48#include <linux/memcontrol.h>
  49#include <linux/ftrace.h>
 
  50#include <linux/profile.h>
  51#include <linux/rmap.h>
  52#include <linux/ksm.h>
  53#include <linux/acct.h>
 
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/freezer.h>
  57#include <linux/delayacct.h>
  58#include <linux/taskstats_kern.h>
  59#include <linux/random.h>
  60#include <linux/tty.h>
  61#include <linux/blkdev.h>
  62#include <linux/fs_struct.h>
  63#include <linux/magic.h>
  64#include <linux/perf_event.h>
  65#include <linux/posix-timers.h>
  66#include <linux/user-return-notifier.h>
  67#include <linux/oom.h>
  68#include <linux/khugepaged.h>
 
 
 
 
 
 
 
 
 
 
 
  69
  70#include <asm/pgtable.h>
  71#include <asm/pgalloc.h>
  72#include <asm/uaccess.h>
  73#include <asm/mmu_context.h>
  74#include <asm/cacheflush.h>
  75#include <asm/tlbflush.h>
  76
  77#include <trace/events/sched.h>
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/*
  80 * Protected counters by write_lock_irq(&tasklist_lock)
  81 */
  82unsigned long total_forks;	/* Handle normal Linux uptimes. */
  83int nr_threads;			/* The idle threads do not count.. */
  84
  85int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
  86
  87DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88
  89__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
  90
  91#ifdef CONFIG_PROVE_RCU
  92int lockdep_tasklist_lock_is_held(void)
  93{
  94	return lockdep_is_held(&tasklist_lock);
  95}
  96EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  97#endif /* #ifdef CONFIG_PROVE_RCU */
  98
  99int nr_processes(void)
 100{
 101	int cpu;
 102	int total = 0;
 103
 104	for_each_possible_cpu(cpu)
 105		total += per_cpu(process_counts, cpu);
 106
 107	return total;
 108}
 109
 110#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 111# define alloc_task_struct_node(node)		\
 112		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
 113# define free_task_struct(tsk)			\
 114		kmem_cache_free(task_struct_cachep, (tsk))
 115static struct kmem_cache *task_struct_cachep;
 
 
 
 
 
 
 
 
 
 
 116#endif
 117
 118#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
 119static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 120						  int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121{
 122#ifdef CONFIG_DEBUG_STACK_USAGE
 123	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124#else
 125	gfp_t mask = GFP_KERNEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126#endif
 127	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
 128
 129	return page ? page_address(page) : NULL;
 130}
 
 
 131
 132static inline void free_thread_info(struct thread_info *ti)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133{
 134	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 
 
 
 135}
 
 136#endif
 137
 138/* SLAB cache for signal_struct structures (tsk->signal) */
 139static struct kmem_cache *signal_cachep;
 140
 141/* SLAB cache for sighand_struct structures (tsk->sighand) */
 142struct kmem_cache *sighand_cachep;
 143
 144/* SLAB cache for files_struct structures (tsk->files) */
 145struct kmem_cache *files_cachep;
 146
 147/* SLAB cache for fs_struct structures (tsk->fs) */
 148struct kmem_cache *fs_cachep;
 149
 150/* SLAB cache for vm_area_struct structures */
 151struct kmem_cache *vm_area_cachep;
 152
 153/* SLAB cache for mm_struct structures (tsk->mm) */
 154static struct kmem_cache *mm_cachep;
 155
 156static void account_kernel_stack(struct thread_info *ti, int account)
 157{
 158	struct zone *zone = page_zone(virt_to_page(ti));
 159
 160	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 
 
 
 161}
 162
 163void free_task(struct task_struct *tsk)
 164{
 165	prop_local_destroy_single(&tsk->dirties);
 166	account_kernel_stack(tsk->stack, -1);
 167	free_thread_info(tsk->stack);
 168	rt_mutex_debug_task_free(tsk);
 169	ftrace_graph_exit_task(tsk);
 170	free_task_struct(tsk);
 171}
 172EXPORT_SYMBOL(free_task);
 173
 174static inline void free_signal_struct(struct signal_struct *sig)
 175{
 176	taskstats_tgid_free(sig);
 177	sched_autogroup_exit(sig);
 178	kmem_cache_free(signal_cachep, sig);
 
 
 
 
 
 
 
 179}
 180
 181static inline void put_signal_struct(struct signal_struct *sig)
 182{
 183	if (atomic_dec_and_test(&sig->sigcnt))
 184		free_signal_struct(sig);
 185}
 186
 187void __put_task_struct(struct task_struct *tsk)
 188{
 189	WARN_ON(!tsk->exit_state);
 190	WARN_ON(atomic_read(&tsk->usage));
 191	WARN_ON(tsk == current);
 192
 193	exit_creds(tsk);
 194	delayacct_tsk_free(tsk);
 195	put_signal_struct(tsk->signal);
 196
 197	if (!profile_handoff_task(tsk))
 198		free_task(tsk);
 
 
 
 
 
 199}
 200EXPORT_SYMBOL_GPL(__put_task_struct);
 201
 202/*
 203 * macro override instead of weak attribute alias, to workaround
 204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
 205 */
 206#ifndef arch_task_cache_init
 207#define arch_task_cache_init()
 208#endif
 209
 210void __init fork_init(unsigned long mempages)
 211{
 212#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 213#ifndef ARCH_MIN_TASKALIGN
 214#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 215#endif
 216	/* create a slab on which task_structs can be allocated */
 217	task_struct_cachep =
 218		kmem_cache_create("task_struct", sizeof(struct task_struct),
 219			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 220#endif
 221
 222	/* do the arch specific task caches init */
 223	arch_task_cache_init();
 224
 225	/*
 226	 * The default maximum number of threads is set to a safe
 227	 * value: the thread structures can take up at most half
 228	 * of memory.
 229	 */
 230	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 231
 232	/*
 233	 * we need to allow at least 20 threads to boot a system
 234	 */
 235	if (max_threads < 20)
 236		max_threads = 20;
 237
 238	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 239	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 240	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 241		init_task.signal->rlim[RLIMIT_NPROC];
 242}
 243
 244int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
 245					       struct task_struct *src)
 246{
 247	*dst = *src;
 
 
 
 
 
 
 
 
 
 248	return 0;
 249}
 250
 251static struct task_struct *dup_task_struct(struct task_struct *orig)
 252{
 253	struct task_struct *tsk;
 254	struct thread_info *ti;
 255	unsigned long *stackend;
 256	int node = tsk_fork_get_node(orig);
 257	int err;
 258
 259	prepare_to_copy(orig);
 260
 261	tsk = alloc_task_struct_node(node);
 262	if (!tsk)
 263		return NULL;
 264
 265	ti = alloc_thread_info_node(tsk, node);
 266	if (!ti) {
 267		free_task_struct(tsk);
 268		return NULL;
 269	}
 270
 271	err = arch_dup_task_struct(tsk, orig);
 272	if (err)
 273		goto out;
 274
 275	tsk->stack = ti;
 276
 277	err = prop_local_init_single(&tsk->dirties);
 278	if (err)
 279		goto out;
 280
 281	setup_thread_stack(tsk, orig);
 282	clear_user_return_notifier(tsk);
 283	clear_tsk_need_resched(tsk);
 284	stackend = end_of_stack(tsk);
 285	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 286
 287#ifdef CONFIG_CC_STACKPROTECTOR
 288	tsk->stack_canary = get_random_int();
 
 
 
 
 289#endif
 290
 
 
 
 
 
 291	/*
 292	 * One for us, one for whoever does the "release_task()" (usually
 293	 * parent)
 294	 */
 295	atomic_set(&tsk->usage, 2);
 296#ifdef CONFIG_BLK_DEV_IO_TRACE
 297	tsk->btrace_seq = 0;
 
 
 
 
 298#endif
 299	tsk->splice_pipe = NULL;
 300
 301	account_kernel_stack(ti, 1);
 302
 303	return tsk;
 304
 305out:
 306	free_thread_info(ti);
 307	free_task_struct(tsk);
 308	return NULL;
 309}
 
 310
 311#ifdef CONFIG_MMU
 312static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 
 313{
 314	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 315	struct rb_node **rb_link, *rb_parent;
 316	int retval;
 317	unsigned long charge;
 318	struct mempolicy *pol;
 319
 320	down_write(&oldmm->mmap_sem);
 
 
 
 
 321	flush_cache_dup_mm(oldmm);
 
 322	/*
 323	 * Not linked in yet - no deadlock potential:
 324	 */
 325	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 326
 327	mm->locked_vm = 0;
 328	mm->mmap = NULL;
 329	mm->mmap_cache = NULL;
 330	mm->free_area_cache = oldmm->mmap_base;
 331	mm->cached_hole_size = ~0UL;
 332	mm->map_count = 0;
 333	cpumask_clear(mm_cpumask(mm));
 334	mm->mm_rb = RB_ROOT;
 335	rb_link = &mm->mm_rb.rb_node;
 336	rb_parent = NULL;
 337	pprev = &mm->mmap;
 338	retval = ksm_fork(mm, oldmm);
 339	if (retval)
 340		goto out;
 341	retval = khugepaged_fork(mm, oldmm);
 342	if (retval)
 343		goto out;
 344
 345	prev = NULL;
 346	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 347		struct file *file;
 348
 349		if (mpnt->vm_flags & VM_DONTCOPY) {
 350			long pages = vma_pages(mpnt);
 351			mm->total_vm -= pages;
 352			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 353								-pages);
 354			continue;
 355		}
 356		charge = 0;
 
 
 
 
 
 
 
 
 357		if (mpnt->vm_flags & VM_ACCOUNT) {
 358			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 359			if (security_vm_enough_memory(len))
 
 360				goto fail_nomem;
 361			charge = len;
 362		}
 363		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 364		if (!tmp)
 365			goto fail_nomem;
 366		*tmp = *mpnt;
 367		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 368		pol = mpol_dup(vma_policy(mpnt));
 369		retval = PTR_ERR(pol);
 370		if (IS_ERR(pol))
 371			goto fail_nomem_policy;
 372		vma_set_policy(tmp, pol);
 373		tmp->vm_mm = mm;
 374		if (anon_vma_fork(tmp, mpnt))
 
 375			goto fail_nomem_anon_vma_fork;
 376		tmp->vm_flags &= ~VM_LOCKED;
 377		tmp->vm_next = tmp->vm_prev = NULL;
 
 
 
 
 
 
 
 
 378		file = tmp->vm_file;
 379		if (file) {
 380			struct inode *inode = file->f_path.dentry->d_inode;
 381			struct address_space *mapping = file->f_mapping;
 382
 383			get_file(file);
 384			if (tmp->vm_flags & VM_DENYWRITE)
 385				atomic_dec(&inode->i_writecount);
 386			mutex_lock(&mapping->i_mmap_mutex);
 387			if (tmp->vm_flags & VM_SHARED)
 388				mapping->i_mmap_writable++;
 389			flush_dcache_mmap_lock(mapping);
 390			/* insert tmp into the share list, just after mpnt */
 391			vma_prio_tree_add(tmp, mpnt);
 
 392			flush_dcache_mmap_unlock(mapping);
 393			mutex_unlock(&mapping->i_mmap_mutex);
 394		}
 395
 396		/*
 397		 * Clear hugetlb-related page reserves for children. This only
 398		 * affects MAP_PRIVATE mappings. Faults generated by the child
 399		 * are not guaranteed to succeed, even if read-only
 400		 */
 401		if (is_vm_hugetlb_page(tmp))
 402			reset_vma_resv_huge_pages(tmp);
 403
 404		/*
 405		 * Link in the new vma and copy the page table entries.
 406		 */
 407		*pprev = tmp;
 408		pprev = &tmp->vm_next;
 409		tmp->vm_prev = prev;
 410		prev = tmp;
 411
 412		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 413		rb_link = &tmp->vm_rb.rb_right;
 414		rb_parent = &tmp->vm_rb;
 415
 416		mm->map_count++;
 417		retval = copy_page_range(mm, oldmm, mpnt);
 
 418
 419		if (tmp->vm_ops && tmp->vm_ops->open)
 420			tmp->vm_ops->open(tmp);
 421
 422		if (retval)
 423			goto out;
 424	}
 425	/* a new mm has just been created */
 426	arch_dup_mmap(oldmm, mm);
 427	retval = 0;
 428out:
 429	up_write(&mm->mmap_sem);
 430	flush_tlb_mm(oldmm);
 431	up_write(&oldmm->mmap_sem);
 
 
 
 432	return retval;
 433fail_nomem_anon_vma_fork:
 434	mpol_put(pol);
 435fail_nomem_policy:
 436	kmem_cache_free(vm_area_cachep, tmp);
 437fail_nomem:
 438	retval = -ENOMEM;
 439	vm_unacct_memory(charge);
 440	goto out;
 441}
 442
 443static inline int mm_alloc_pgd(struct mm_struct *mm)
 444{
 445	mm->pgd = pgd_alloc(mm);
 446	if (unlikely(!mm->pgd))
 447		return -ENOMEM;
 448	return 0;
 449}
 450
 451static inline void mm_free_pgd(struct mm_struct *mm)
 452{
 453	pgd_free(mm, mm->pgd);
 454}
 455#else
 456#define dup_mmap(mm, oldmm)	(0)
 
 
 
 
 
 
 457#define mm_alloc_pgd(mm)	(0)
 458#define mm_free_pgd(mm)
 459#endif /* CONFIG_MMU */
 460
 461__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 464#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 467
 468static int __init coredump_filter_setup(char *s)
 469{
 470	default_dump_filter =
 471		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 472		MMF_DUMP_FILTER_MASK;
 473	return 1;
 474}
 475
 476__setup("coredump_filter=", coredump_filter_setup);
 477
 478#include <linux/init_task.h>
 479
 480static void mm_init_aio(struct mm_struct *mm)
 481{
 482#ifdef CONFIG_AIO
 483	spin_lock_init(&mm->ioctx_lock);
 484	INIT_HLIST_HEAD(&mm->ioctx_list);
 
 
 
 
 
 
 
 
 
 485#endif
 486}
 487
 488static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 489{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	atomic_set(&mm->mm_users, 1);
 491	atomic_set(&mm->mm_count, 1);
 492	init_rwsem(&mm->mmap_sem);
 493	INIT_LIST_HEAD(&mm->mmlist);
 494	mm->flags = (current->mm) ?
 495		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
 496	mm->core_state = NULL;
 497	mm->nr_ptes = 0;
 
 
 
 
 498	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 499	spin_lock_init(&mm->page_table_lock);
 500	mm->free_area_cache = TASK_UNMAPPED_BASE;
 501	mm->cached_hole_size = ~0UL;
 502	mm_init_aio(mm);
 503	mm_init_owner(mm, p);
 504	atomic_set(&mm->oom_disable_count, 0);
 
 
 
 
 
 
 505
 506	if (likely(!mm_alloc_pgd(mm))) {
 
 
 
 
 507		mm->def_flags = 0;
 508		mmu_notifier_mm_init(mm);
 509		return mm;
 510	}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 512	free_mm(mm);
 513	return NULL;
 514}
 515
 516/*
 517 * Allocate and initialize an mm_struct.
 518 */
 519struct mm_struct *mm_alloc(void)
 520{
 521	struct mm_struct *mm;
 522
 523	mm = allocate_mm();
 524	if (!mm)
 525		return NULL;
 526
 527	memset(mm, 0, sizeof(*mm));
 528	mm_init_cpumask(mm);
 529	return mm_init(mm, current);
 530}
 531
 532/*
 533 * Called when the last reference to the mm
 534 * is dropped: either by a lazy thread or by
 535 * mmput. Free the page directory and the mm.
 536 */
 537void __mmdrop(struct mm_struct *mm)
 538{
 539	BUG_ON(mm == &init_mm);
 540	mm_free_pgd(mm);
 541	destroy_context(mm);
 542	mmu_notifier_mm_destroy(mm);
 543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 544	VM_BUG_ON(mm->pmd_huge_pte);
 545#endif
 546	free_mm(mm);
 
 
 
 
 
 
 
 
 
 547}
 548EXPORT_SYMBOL_GPL(__mmdrop);
 549
 550/*
 551 * Decrement the use count and release all resources for an mm.
 552 */
 553void mmput(struct mm_struct *mm)
 554{
 555	might_sleep();
 556
 557	if (atomic_dec_and_test(&mm->mm_users)) {
 558		exit_aio(mm);
 559		ksm_exit(mm);
 560		khugepaged_exit(mm); /* must run before exit_mmap */
 561		exit_mmap(mm);
 562		set_mm_exe_file(mm, NULL);
 563		if (!list_empty(&mm->mmlist)) {
 564			spin_lock(&mmlist_lock);
 565			list_del(&mm->mmlist);
 566			spin_unlock(&mmlist_lock);
 567		}
 568		put_swap_token(mm);
 569		if (mm->binfmt)
 570			module_put(mm->binfmt->module);
 571		mmdrop(mm);
 572	}
 573}
 574EXPORT_SYMBOL_GPL(mmput);
 575
 576/*
 577 * We added or removed a vma mapping the executable. The vmas are only mapped
 578 * during exec and are not mapped with the mmap system call.
 579 * Callers must hold down_write() on the mm's mmap_sem for these
 580 */
 581void added_exe_file_vma(struct mm_struct *mm)
 582{
 583	mm->num_exe_file_vmas++;
 
 
 
 584}
 585
 586void removed_exe_file_vma(struct mm_struct *mm)
 587{
 588	mm->num_exe_file_vmas--;
 589	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
 590		fput(mm->exe_file);
 591		mm->exe_file = NULL;
 592	}
 593
 594}
 
 595
 
 
 
 
 
 
 
 
 
 
 
 596void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 597{
 
 
 
 
 
 
 
 
 
 598	if (new_exe_file)
 599		get_file(new_exe_file);
 600	if (mm->exe_file)
 601		fput(mm->exe_file);
 602	mm->exe_file = new_exe_file;
 603	mm->num_exe_file_vmas = 0;
 604}
 605
 
 
 
 
 
 
 606struct file *get_mm_exe_file(struct mm_struct *mm)
 607{
 608	struct file *exe_file;
 609
 610	/* We need mmap_sem to protect against races with removal of
 611	 * VM_EXECUTABLE vmas */
 612	down_read(&mm->mmap_sem);
 613	exe_file = mm->exe_file;
 614	if (exe_file)
 615		get_file(exe_file);
 616	up_read(&mm->mmap_sem);
 617	return exe_file;
 618}
 
 619
 620static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
 
 
 
 
 
 
 
 621{
 622	/* It's safe to write the exe_file pointer without exe_file_lock because
 623	 * this is called during fork when the task is not yet in /proc */
 624	newmm->exe_file = get_mm_exe_file(oldmm);
 
 
 
 
 
 
 
 
 625}
 
 626
 627/**
 628 * get_task_mm - acquire a reference to the task's mm
 629 *
 630 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 631 * this kernel workthread has transiently adopted a user mm with use_mm,
 632 * to do its AIO) is not set and if so returns a reference to it, after
 633 * bumping up the use count.  User must release the mm via mmput()
 634 * after use.  Typically used by /proc and ptrace.
 635 */
 636struct mm_struct *get_task_mm(struct task_struct *task)
 637{
 638	struct mm_struct *mm;
 639
 640	task_lock(task);
 641	mm = task->mm;
 642	if (mm) {
 643		if (task->flags & PF_KTHREAD)
 644			mm = NULL;
 645		else
 646			atomic_inc(&mm->mm_users);
 647	}
 648	task_unlock(task);
 649	return mm;
 650}
 651EXPORT_SYMBOL_GPL(get_task_mm);
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653/* Please note the differences between mmput and mm_release.
 654 * mmput is called whenever we stop holding onto a mm_struct,
 655 * error success whatever.
 656 *
 657 * mm_release is called after a mm_struct has been removed
 658 * from the current process.
 659 *
 660 * This difference is important for error handling, when we
 661 * only half set up a mm_struct for a new process and need to restore
 662 * the old one.  Because we mmput the new mm_struct before
 663 * restoring the old one. . .
 664 * Eric Biederman 10 January 1998
 665 */
 666void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 667{
 668	struct completion *vfork_done = tsk->vfork_done;
 669
 670	/* Get rid of any futexes when releasing the mm */
 671#ifdef CONFIG_FUTEX
 672	if (unlikely(tsk->robust_list)) {
 673		exit_robust_list(tsk);
 674		tsk->robust_list = NULL;
 675	}
 676#ifdef CONFIG_COMPAT
 677	if (unlikely(tsk->compat_robust_list)) {
 678		compat_exit_robust_list(tsk);
 679		tsk->compat_robust_list = NULL;
 680	}
 681#endif
 682	if (unlikely(!list_empty(&tsk->pi_state_list)))
 683		exit_pi_state_list(tsk);
 684#endif
 685
 686	/* Get rid of any cached register state */
 687	deactivate_mm(tsk, mm);
 688
 689	/* notify parent sleeping on vfork() */
 690	if (vfork_done) {
 691		tsk->vfork_done = NULL;
 692		complete(vfork_done);
 693	}
 694
 695	/*
 696	 * If we're exiting normally, clear a user-space tid field if
 697	 * requested.  We leave this alone when dying by signal, to leave
 698	 * the value intact in a core dump, and to save the unnecessary
 699	 * trouble otherwise.  Userland only wants this done for a sys_exit.
 700	 */
 701	if (tsk->clear_child_tid) {
 702		if (!(tsk->flags & PF_SIGNALED) &&
 703		    atomic_read(&mm->mm_users) > 1) {
 704			/*
 705			 * We don't check the error code - if userspace has
 706			 * not set up a proper pointer then tough luck.
 707			 */
 708			put_user(0, tsk->clear_child_tid);
 709			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 710					1, NULL, NULL, 0);
 711		}
 712		tsk->clear_child_tid = NULL;
 713	}
 
 
 
 
 
 
 
 714}
 715
 716/*
 717 * Allocate a new mm structure and copy contents from the
 718 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719 */
 720struct mm_struct *dup_mm(struct task_struct *tsk)
 
 721{
 722	struct mm_struct *mm, *oldmm = current->mm;
 723	int err;
 724
 725	if (!oldmm)
 726		return NULL;
 727
 728	mm = allocate_mm();
 729	if (!mm)
 730		goto fail_nomem;
 731
 732	memcpy(mm, oldmm, sizeof(*mm));
 733	mm_init_cpumask(mm);
 734
 735	/* Initializing for Swap token stuff */
 736	mm->token_priority = 0;
 737	mm->last_interval = 0;
 738
 739#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 740	mm->pmd_huge_pte = NULL;
 741#endif
 742
 743	if (!mm_init(mm, tsk))
 744		goto fail_nomem;
 745
 746	if (init_new_context(tsk, mm))
 747		goto fail_nocontext;
 748
 749	dup_mm_exe_file(oldmm, mm);
 750
 751	err = dup_mmap(mm, oldmm);
 752	if (err)
 753		goto free_pt;
 754
 755	mm->hiwater_rss = get_mm_rss(mm);
 756	mm->hiwater_vm = mm->total_vm;
 757
 758	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 759		goto free_pt;
 760
 761	return mm;
 762
 763free_pt:
 764	/* don't put binfmt in mmput, we haven't got module yet */
 765	mm->binfmt = NULL;
 
 766	mmput(mm);
 767
 768fail_nomem:
 769	return NULL;
 770
 771fail_nocontext:
 772	/*
 773	 * If init_new_context() failed, we cannot use mmput() to free the mm
 774	 * because it calls destroy_context()
 775	 */
 776	mm_free_pgd(mm);
 777	free_mm(mm);
 778	return NULL;
 779}
 780
 781static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 782{
 783	struct mm_struct *mm, *oldmm;
 784	int retval;
 785
 786	tsk->min_flt = tsk->maj_flt = 0;
 787	tsk->nvcsw = tsk->nivcsw = 0;
 788#ifdef CONFIG_DETECT_HUNG_TASK
 789	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
 790#endif
 791
 792	tsk->mm = NULL;
 793	tsk->active_mm = NULL;
 794
 795	/*
 796	 * Are we cloning a kernel thread?
 797	 *
 798	 * We need to steal a active VM for that..
 799	 */
 800	oldmm = current->mm;
 801	if (!oldmm)
 802		return 0;
 803
 
 
 
 804	if (clone_flags & CLONE_VM) {
 805		atomic_inc(&oldmm->mm_users);
 806		mm = oldmm;
 807		goto good_mm;
 808	}
 809
 810	retval = -ENOMEM;
 811	mm = dup_mm(tsk);
 812	if (!mm)
 813		goto fail_nomem;
 814
 815good_mm:
 816	/* Initializing for Swap token stuff */
 817	mm->token_priority = 0;
 818	mm->last_interval = 0;
 819	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 820		atomic_inc(&mm->oom_disable_count);
 821
 822	tsk->mm = mm;
 823	tsk->active_mm = mm;
 824	return 0;
 825
 826fail_nomem:
 827	return retval;
 828}
 829
 830static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 831{
 832	struct fs_struct *fs = current->fs;
 833	if (clone_flags & CLONE_FS) {
 834		/* tsk->fs is already what we want */
 835		spin_lock(&fs->lock);
 836		if (fs->in_exec) {
 837			spin_unlock(&fs->lock);
 838			return -EAGAIN;
 839		}
 840		fs->users++;
 841		spin_unlock(&fs->lock);
 842		return 0;
 843	}
 844	tsk->fs = copy_fs_struct(fs);
 845	if (!tsk->fs)
 846		return -ENOMEM;
 847	return 0;
 848}
 849
 850static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 851{
 852	struct files_struct *oldf, *newf;
 853	int error = 0;
 854
 855	/*
 856	 * A background process may not have any files ...
 857	 */
 858	oldf = current->files;
 859	if (!oldf)
 860		goto out;
 861
 862	if (clone_flags & CLONE_FILES) {
 863		atomic_inc(&oldf->count);
 864		goto out;
 865	}
 866
 867	newf = dup_fd(oldf, &error);
 868	if (!newf)
 869		goto out;
 870
 871	tsk->files = newf;
 872	error = 0;
 873out:
 874	return error;
 875}
 876
 877static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 878{
 879#ifdef CONFIG_BLOCK
 880	struct io_context *ioc = current->io_context;
 
 881
 882	if (!ioc)
 883		return 0;
 884	/*
 885	 * Share io context with parent, if CLONE_IO is set
 886	 */
 887	if (clone_flags & CLONE_IO) {
 888		tsk->io_context = ioc_task_link(ioc);
 889		if (unlikely(!tsk->io_context))
 890			return -ENOMEM;
 891	} else if (ioprio_valid(ioc->ioprio)) {
 892		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
 893		if (unlikely(!tsk->io_context))
 894			return -ENOMEM;
 895
 896		tsk->io_context->ioprio = ioc->ioprio;
 
 897	}
 898#endif
 899	return 0;
 900}
 901
 902static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 903{
 904	struct sighand_struct *sig;
 905
 906	if (clone_flags & CLONE_SIGHAND) {
 907		atomic_inc(&current->sighand->count);
 908		return 0;
 909	}
 910	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 911	rcu_assign_pointer(tsk->sighand, sig);
 912	if (!sig)
 913		return -ENOMEM;
 914	atomic_set(&sig->count, 1);
 
 
 915	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
 916	return 0;
 917}
 918
 919void __cleanup_sighand(struct sighand_struct *sighand)
 920{
 921	if (atomic_dec_and_test(&sighand->count))
 
 
 
 
 
 922		kmem_cache_free(sighand_cachep, sighand);
 
 923}
 924
 925
 926/*
 927 * Initialize POSIX timer handling for a thread group.
 928 */
 929static void posix_cpu_timers_init_group(struct signal_struct *sig)
 930{
 
 931	unsigned long cpu_limit;
 932
 933	/* Thread group counters. */
 934	thread_group_cputime_init(sig);
 935
 936	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 937	if (cpu_limit != RLIM_INFINITY) {
 938		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
 939		sig->cputimer.running = 1;
 940	}
 941
 942	/* The timer lists. */
 943	INIT_LIST_HEAD(&sig->cpu_timers[0]);
 944	INIT_LIST_HEAD(&sig->cpu_timers[1]);
 945	INIT_LIST_HEAD(&sig->cpu_timers[2]);
 946}
 947
 948static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 949{
 950	struct signal_struct *sig;
 951
 952	if (clone_flags & CLONE_THREAD)
 953		return 0;
 954
 955	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
 956	tsk->signal = sig;
 957	if (!sig)
 958		return -ENOMEM;
 959
 960	sig->nr_threads = 1;
 961	atomic_set(&sig->live, 1);
 962	atomic_set(&sig->sigcnt, 1);
 
 
 
 
 
 963	init_waitqueue_head(&sig->wait_chldexit);
 964	if (clone_flags & CLONE_NEWPID)
 965		sig->flags |= SIGNAL_UNKILLABLE;
 966	sig->curr_target = tsk;
 967	init_sigpending(&sig->shared_pending);
 968	INIT_LIST_HEAD(&sig->posix_timers);
 
 
 969
 
 
 970	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 971	sig->real_timer.function = it_real_fn;
 
 972
 973	task_lock(current->group_leader);
 974	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 975	task_unlock(current->group_leader);
 976
 977	posix_cpu_timers_init_group(sig);
 978
 979	tty_audit_fork(sig);
 980	sched_autogroup_fork(sig);
 981
 982#ifdef CONFIG_CGROUPS
 983	init_rwsem(&sig->threadgroup_fork_lock);
 984#endif
 985
 986	sig->oom_adj = current->signal->oom_adj;
 987	sig->oom_score_adj = current->signal->oom_score_adj;
 988	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
 989
 990	mutex_init(&sig->cred_guard_mutex);
 
 991
 992	return 0;
 993}
 994
 995static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 996{
 997	unsigned long new_flags = p->flags;
 
 
 
 
 
 
 
 
 
 
 
 998
 999	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1000	new_flags |= PF_FORKNOEXEC;
1001	new_flags |= PF_STARTING;
1002	p->flags = new_flags;
1003	clear_freeze_flag(p);
 
 
 
 
 
 
 
 
 
 
 
1004}
1005
1006SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1007{
1008	current->clear_child_tid = tidptr;
1009
1010	return task_pid_vnr(current);
1011}
1012
1013static void rt_mutex_init_task(struct task_struct *p)
1014{
1015	raw_spin_lock_init(&p->pi_lock);
1016#ifdef CONFIG_RT_MUTEXES
1017	plist_head_init(&p->pi_waiters);
 
1018	p->pi_blocked_on = NULL;
1019#endif
1020}
1021
1022#ifdef CONFIG_MM_OWNER
1023void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1024{
1025	mm->owner = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027#endif /* CONFIG_MM_OWNER */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029/*
1030 * Initialize POSIX timer handling for a single task.
1031 */
1032static void posix_cpu_timers_init(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	tsk->cputime_expires.prof_exp = cputime_zero;
1035	tsk->cputime_expires.virt_exp = cputime_zero;
1036	tsk->cputime_expires.sched_exp = 0;
1037	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1038	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1039	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 
 
 
 
 
1040}
1041
1042/*
1043 * This creates a new process as a copy of the old one,
1044 * but does not actually start it yet.
1045 *
1046 * It copies the registers, and all the appropriate
1047 * parts of the process environment (as per the clone
1048 * flags). The actual kick-off is left to the caller.
1049 */
1050static struct task_struct *copy_process(unsigned long clone_flags,
1051					unsigned long stack_start,
1052					struct pt_regs *regs,
1053					unsigned long stack_size,
1054					int __user *child_tidptr,
1055					struct pid *pid,
1056					int trace)
 
 
1057{
1058	int retval;
1059	struct task_struct *p;
1060	int cgroup_callbacks_done = 0;
 
 
 
1061
 
 
 
 
1062	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1063		return ERR_PTR(-EINVAL);
1064
 
 
 
1065	/*
1066	 * Thread groups must share signals as well, and detached threads
1067	 * can only be started up within the thread group.
1068	 */
1069	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1070		return ERR_PTR(-EINVAL);
1071
1072	/*
1073	 * Shared signal handlers imply shared VM. By way of the above,
1074	 * thread groups also imply shared VM. Blocking this case allows
1075	 * for various simplifications in other code.
1076	 */
1077	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1078		return ERR_PTR(-EINVAL);
1079
1080	/*
1081	 * Siblings of global init remain as zombies on exit since they are
1082	 * not reaped by their parent (swapper). To solve this and to avoid
1083	 * multi-rooted process trees, prevent global and container-inits
1084	 * from creating siblings.
1085	 */
1086	if ((clone_flags & CLONE_PARENT) &&
1087				current->signal->flags & SIGNAL_UNKILLABLE)
1088		return ERR_PTR(-EINVAL);
1089
1090	retval = security_task_create(clone_flags);
1091	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092		goto fork_out;
1093
1094	retval = -ENOMEM;
1095	p = dup_task_struct(current);
1096	if (!p)
1097		goto fork_out;
1098
 
 
 
 
 
 
 
 
 
 
 
 
1099	ftrace_graph_init_task(p);
1100
1101	rt_mutex_init_task(p);
1102
 
1103#ifdef CONFIG_PROVE_LOCKING
1104	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1105	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1106#endif
1107	retval = -EAGAIN;
1108	if (atomic_read(&p->real_cred->user->processes) >=
1109			task_rlimit(p, RLIMIT_NPROC)) {
1110		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1111		    p->real_cred->user != INIT_USER)
1112			goto bad_fork_free;
1113	}
1114	current->flags &= ~PF_NPROC_EXCEEDED;
1115
1116	retval = copy_creds(p, clone_flags);
1117	if (retval < 0)
1118		goto bad_fork_free;
1119
1120	/*
1121	 * If multiple threads are within copy_process(), then this check
1122	 * triggers too late. This doesn't hurt, the check is only there
1123	 * to stop root fork bombs.
1124	 */
1125	retval = -EAGAIN;
1126	if (nr_threads >= max_threads)
1127		goto bad_fork_cleanup_count;
1128
1129	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1130		goto bad_fork_cleanup_count;
1131
1132	p->did_exec = 0;
1133	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1134	copy_flags(clone_flags, p);
 
1135	INIT_LIST_HEAD(&p->children);
1136	INIT_LIST_HEAD(&p->sibling);
1137	rcu_copy_process(p);
1138	p->vfork_done = NULL;
1139	spin_lock_init(&p->alloc_lock);
1140
1141	init_sigpending(&p->pending);
1142
1143	p->utime = cputime_zero;
1144	p->stime = cputime_zero;
1145	p->gtime = cputime_zero;
1146	p->utimescaled = cputime_zero;
1147	p->stimescaled = cputime_zero;
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1149	p->prev_utime = cputime_zero;
1150	p->prev_stime = cputime_zero;
 
 
1151#endif
 
1152#if defined(SPLIT_RSS_COUNTING)
1153	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1154#endif
1155
1156	p->default_timer_slack_ns = current->timer_slack_ns;
1157
 
 
 
 
1158	task_io_accounting_init(&p->ioac);
1159	acct_clear_integrals(p);
1160
1161	posix_cpu_timers_init(p);
1162
1163	do_posix_clock_monotonic_gettime(&p->start_time);
1164	p->real_start_time = p->start_time;
1165	monotonic_to_bootbased(&p->real_start_time);
1166	p->io_context = NULL;
1167	p->audit_context = NULL;
1168	if (clone_flags & CLONE_THREAD)
1169		threadgroup_fork_read_lock(current);
1170	cgroup_fork(p);
1171#ifdef CONFIG_NUMA
1172	p->mempolicy = mpol_dup(p->mempolicy);
1173	if (IS_ERR(p->mempolicy)) {
1174		retval = PTR_ERR(p->mempolicy);
1175		p->mempolicy = NULL;
1176		goto bad_fork_cleanup_cgroup;
1177	}
1178	mpol_fix_fork_child_flag(p);
1179#endif
1180#ifdef CONFIG_CPUSETS
1181	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1182	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
 
1183#endif
1184#ifdef CONFIG_TRACE_IRQFLAGS
1185	p->irq_events = 0;
1186#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1187	p->hardirqs_enabled = 1;
1188#else
1189	p->hardirqs_enabled = 0;
1190#endif
1191	p->hardirq_enable_ip = 0;
1192	p->hardirq_enable_event = 0;
1193	p->hardirq_disable_ip = _THIS_IP_;
1194	p->hardirq_disable_event = 0;
1195	p->softirqs_enabled = 1;
1196	p->softirq_enable_ip = _THIS_IP_;
1197	p->softirq_enable_event = 0;
1198	p->softirq_disable_ip = 0;
1199	p->softirq_disable_event = 0;
1200	p->hardirq_context = 0;
1201	p->softirq_context = 0;
1202#endif
 
 
 
1203#ifdef CONFIG_LOCKDEP
1204	p->lockdep_depth = 0; /* no locks held yet */
1205	p->curr_chain_key = 0;
1206	p->lockdep_recursion = 0;
1207#endif
1208
1209#ifdef CONFIG_DEBUG_MUTEXES
1210	p->blocked_on = NULL; /* not blocked yet */
1211#endif
1212#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1213	p->memcg_batch.do_batch = 0;
1214	p->memcg_batch.memcg = NULL;
1215#endif
1216
1217	/* Perform scheduler related setup. Assign this task to a CPU. */
1218	sched_fork(p);
 
 
1219
1220	retval = perf_event_init_task(p);
1221	if (retval)
1222		goto bad_fork_cleanup_policy;
1223	retval = audit_alloc(p);
1224	if (retval)
1225		goto bad_fork_cleanup_policy;
1226	/* copy all the process information */
1227	retval = copy_semundo(clone_flags, p);
 
1228	if (retval)
1229		goto bad_fork_cleanup_audit;
 
 
 
1230	retval = copy_files(clone_flags, p);
1231	if (retval)
1232		goto bad_fork_cleanup_semundo;
1233	retval = copy_fs(clone_flags, p);
1234	if (retval)
1235		goto bad_fork_cleanup_files;
1236	retval = copy_sighand(clone_flags, p);
1237	if (retval)
1238		goto bad_fork_cleanup_fs;
1239	retval = copy_signal(clone_flags, p);
1240	if (retval)
1241		goto bad_fork_cleanup_sighand;
1242	retval = copy_mm(clone_flags, p);
1243	if (retval)
1244		goto bad_fork_cleanup_signal;
1245	retval = copy_namespaces(clone_flags, p);
1246	if (retval)
1247		goto bad_fork_cleanup_mm;
1248	retval = copy_io(clone_flags, p);
1249	if (retval)
1250		goto bad_fork_cleanup_namespaces;
1251	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1252	if (retval)
1253		goto bad_fork_cleanup_io;
1254
 
 
1255	if (pid != &init_struct_pid) {
1256		retval = -ENOMEM;
1257		pid = alloc_pid(p->nsproxy->pid_ns);
1258		if (!pid)
1259			goto bad_fork_cleanup_io;
 
 
1260	}
1261
1262	p->pid = pid_nr(pid);
1263	p->tgid = p->pid;
1264	if (clone_flags & CLONE_THREAD)
1265		p->tgid = current->tgid;
1266
1267	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1268	/*
1269	 * Clear TID on mm_release()?
1270	 */
1271	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272#ifdef CONFIG_BLOCK
1273	p->plug = NULL;
1274#endif
1275#ifdef CONFIG_FUTEX
1276	p->robust_list = NULL;
1277#ifdef CONFIG_COMPAT
1278	p->compat_robust_list = NULL;
1279#endif
1280	INIT_LIST_HEAD(&p->pi_state_list);
1281	p->pi_state_cache = NULL;
1282#endif
1283	/*
1284	 * sigaltstack should be cleared when sharing the same VM
1285	 */
1286	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1287		p->sas_ss_sp = p->sas_ss_size = 0;
1288
1289	/*
1290	 * Syscall tracing and stepping should be turned off in the
1291	 * child regardless of CLONE_PTRACE.
1292	 */
1293	user_disable_single_step(p);
1294	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1295#ifdef TIF_SYSCALL_EMU
1296	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1297#endif
1298	clear_all_latency_tracing(p);
1299
1300	/* ok, now we should be set up.. */
1301	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302	p->pdeath_signal = 0;
1303	p->exit_state = 0;
 
1304
1305	/*
1306	 * Ok, make it visible to the rest of the system.
1307	 * We dont wake it up yet.
 
 
 
 
 
 
 
 
 
 
 
 
 
1308	 */
1309	p->group_leader = p;
1310	INIT_LIST_HEAD(&p->thread_group);
1311
1312	/* Now that the task is set up, run cgroup callbacks if
1313	 * necessary. We need to run them before the task is visible
1314	 * on the tasklist. */
1315	cgroup_fork_callbacks(p);
1316	cgroup_callbacks_done = 1;
1317
1318	/* Need tasklist lock for parent etc handling! */
 
 
 
1319	write_lock_irq(&tasklist_lock);
1320
1321	/* CLONE_PARENT re-uses the old parent */
1322	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1323		p->real_parent = current->real_parent;
1324		p->parent_exec_id = current->parent_exec_id;
1325	} else {
1326		p->real_parent = current;
1327		p->parent_exec_id = current->self_exec_id;
1328	}
1329
 
 
1330	spin_lock(&current->sighand->siglock);
1331
1332	/*
1333	 * Process group and session signals need to be delivered to just the
1334	 * parent before the fork or both the parent and the child after the
1335	 * fork. Restart if a signal comes in before we add the new process to
1336	 * it's process group.
1337	 * A fatal signal pending means that current will exit, so the new
1338	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339	*/
1340	recalc_sigpending();
1341	if (signal_pending(current)) {
1342		spin_unlock(&current->sighand->siglock);
1343		write_unlock_irq(&tasklist_lock);
1344		retval = -ERESTARTNOINTR;
1345		goto bad_fork_free_pid;
1346	}
1347
1348	if (clone_flags & CLONE_THREAD) {
1349		current->signal->nr_threads++;
1350		atomic_inc(&current->signal->live);
1351		atomic_inc(&current->signal->sigcnt);
1352		p->group_leader = current->group_leader;
1353		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1354	}
1355
 
 
 
 
 
1356	if (likely(p->pid)) {
1357		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358
 
1359		if (thread_group_leader(p)) {
1360			if (is_child_reaper(pid))
1361				p->nsproxy->pid_ns->child_reaper = p;
1362
1363			p->signal->leader_pid = pid;
 
 
 
 
 
1364			p->signal->tty = tty_kref_get(current->signal->tty);
1365			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1366			attach_pid(p, PIDTYPE_SID, task_session(current));
 
 
 
 
 
1367			list_add_tail(&p->sibling, &p->real_parent->children);
1368			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
 
 
1369			__this_cpu_inc(process_counts);
 
 
 
 
 
 
 
 
 
1370		}
1371		attach_pid(p, PIDTYPE_PID, pid);
1372		nr_threads++;
1373	}
1374
1375	total_forks++;
 
1376	spin_unlock(&current->sighand->siglock);
 
1377	write_unlock_irq(&tasklist_lock);
 
1378	proc_fork_connector(p);
1379	cgroup_post_fork(p);
1380	if (clone_flags & CLONE_THREAD)
1381		threadgroup_fork_read_unlock(current);
1382	perf_event_fork(p);
 
 
 
 
1383	return p;
1384
 
 
 
 
 
 
 
 
 
1385bad_fork_free_pid:
1386	if (pid != &init_struct_pid)
1387		free_pid(pid);
 
 
1388bad_fork_cleanup_io:
1389	if (p->io_context)
1390		exit_io_context(p);
1391bad_fork_cleanup_namespaces:
1392	exit_task_namespaces(p);
1393bad_fork_cleanup_mm:
1394	if (p->mm) {
1395		task_lock(p);
1396		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1397			atomic_dec(&p->mm->oom_disable_count);
1398		task_unlock(p);
1399		mmput(p->mm);
1400	}
1401bad_fork_cleanup_signal:
1402	if (!(clone_flags & CLONE_THREAD))
1403		free_signal_struct(p->signal);
1404bad_fork_cleanup_sighand:
1405	__cleanup_sighand(p->sighand);
1406bad_fork_cleanup_fs:
1407	exit_fs(p); /* blocking */
1408bad_fork_cleanup_files:
1409	exit_files(p); /* blocking */
1410bad_fork_cleanup_semundo:
1411	exit_sem(p);
 
 
1412bad_fork_cleanup_audit:
1413	audit_free(p);
1414bad_fork_cleanup_policy:
1415	perf_event_free_task(p);
 
 
1416#ifdef CONFIG_NUMA
1417	mpol_put(p->mempolicy);
1418bad_fork_cleanup_cgroup:
1419#endif
1420	if (clone_flags & CLONE_THREAD)
1421		threadgroup_fork_read_unlock(current);
1422	cgroup_exit(p, cgroup_callbacks_done);
1423	delayacct_tsk_free(p);
1424	module_put(task_thread_info(p)->exec_domain->module);
1425bad_fork_cleanup_count:
1426	atomic_dec(&p->cred->user->processes);
1427	exit_creds(p);
1428bad_fork_free:
1429	free_task(p);
 
 
1430fork_out:
 
 
 
1431	return ERR_PTR(retval);
1432}
1433
1434noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1435{
1436	memset(regs, 0, sizeof(struct pt_regs));
1437	return regs;
1438}
1439
1440static inline void init_idle_pids(struct pid_link *links)
1441{
1442	enum pid_type type;
1443
1444	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1445		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1446		links[type].pid = &init_struct_pid;
1447	}
1448}
1449
1450struct task_struct * __cpuinit fork_idle(int cpu)
1451{
1452	struct task_struct *task;
1453	struct pt_regs regs;
 
 
1454
1455	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1456			    &init_struct_pid, 0);
1457	if (!IS_ERR(task)) {
1458		init_idle_pids(task->pids);
1459		init_idle(task, cpu);
1460	}
1461
1462	return task;
1463}
1464
 
 
 
 
 
1465/*
1466 *  Ok, this is the main fork-routine.
1467 *
1468 * It copies the process, and if successful kick-starts
1469 * it and waits for it to finish using the VM if required.
 
 
1470 */
1471long do_fork(unsigned long clone_flags,
1472	      unsigned long stack_start,
1473	      struct pt_regs *regs,
1474	      unsigned long stack_size,
1475	      int __user *parent_tidptr,
1476	      int __user *child_tidptr)
1477{
 
 
 
1478	struct task_struct *p;
1479	int trace = 0;
1480	long nr;
1481
1482	/*
1483	 * Do some preliminary argument and permissions checking before we
1484	 * actually start allocating stuff
1485	 */
1486	if (clone_flags & CLONE_NEWUSER) {
1487		if (clone_flags & CLONE_THREAD)
1488			return -EINVAL;
1489		/* hopefully this check will go away when userns support is
1490		 * complete
1491		 */
1492		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1493				!capable(CAP_SETGID))
1494			return -EPERM;
1495	}
1496
1497	/*
1498	 * Determine whether and which event to report to ptracer.  When
1499	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1500	 * requested, no event is reported; otherwise, report if the event
1501	 * for the type of forking is enabled.
1502	 */
1503	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1504		if (clone_flags & CLONE_VFORK)
1505			trace = PTRACE_EVENT_VFORK;
1506		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1507			trace = PTRACE_EVENT_CLONE;
1508		else
1509			trace = PTRACE_EVENT_FORK;
1510
1511		if (likely(!ptrace_event_enabled(current, trace)))
1512			trace = 0;
1513	}
1514
1515	p = copy_process(clone_flags, stack_start, regs, stack_size,
1516			 child_tidptr, NULL, trace);
 
 
 
 
1517	/*
1518	 * Do this prior waking up the new thread - the thread pointer
1519	 * might get invalid after that point, if the thread exits quickly.
1520	 */
1521	if (!IS_ERR(p)) {
1522		struct completion vfork;
1523
1524		trace_sched_process_fork(current, p);
 
1525
1526		nr = task_pid_vnr(p);
 
1527
1528		if (clone_flags & CLONE_PARENT_SETTID)
1529			put_user(nr, parent_tidptr);
 
 
 
1530
1531		if (clone_flags & CLONE_VFORK) {
1532			p->vfork_done = &vfork;
1533			init_completion(&vfork);
1534		}
1535
1536		audit_finish_fork(p);
 
 
1537
1538		/*
1539		 * We set PF_STARTING at creation in case tracing wants to
1540		 * use this to distinguish a fully live task from one that
1541		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1542		 * and set the child going.
1543		 */
1544		p->flags &= ~PF_STARTING;
1545
1546		wake_up_new_task(p);
 
 
1547
1548		/* forking complete and child started to run, tell ptracer */
1549		if (unlikely(trace))
1550			ptrace_event(trace, nr);
1551
1552		if (clone_flags & CLONE_VFORK) {
1553			freezer_do_not_count();
1554			wait_for_completion(&vfork);
1555			freezer_count();
1556			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1557		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558	} else {
1559		nr = PTR_ERR(p);
 
 
 
 
 
 
 
 
1560	}
1561	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562}
1563
1564#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1565#define ARCH_MIN_MMSTRUCT_ALIGN 0
1566#endif
1567
1568static void sighand_ctor(void *data)
1569{
1570	struct sighand_struct *sighand = data;
1571
1572	spin_lock_init(&sighand->siglock);
1573	init_waitqueue_head(&sighand->signalfd_wqh);
1574}
1575
1576void __init proc_caches_init(void)
1577{
 
 
1578	sighand_cachep = kmem_cache_create("sighand_cache",
1579			sizeof(struct sighand_struct), 0,
1580			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1581			SLAB_NOTRACK, sighand_ctor);
1582	signal_cachep = kmem_cache_create("signal_cache",
1583			sizeof(struct signal_struct), 0,
1584			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1585	files_cachep = kmem_cache_create("files_cache",
1586			sizeof(struct files_struct), 0,
1587			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1588	fs_cachep = kmem_cache_create("fs_cache",
1589			sizeof(struct fs_struct), 0,
1590			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
 
1591	/*
1592	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1593	 * whole struct cpumask for the OFFSTACK case. We could change
1594	 * this to *only* allocate as much of it as required by the
1595	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1596	 * is at the end of the structure, exactly for that reason.
1597	 */
1598	mm_cachep = kmem_cache_create("mm_struct",
1599			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1600			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1601	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
 
 
 
1602	mmap_init();
1603	nsproxy_cache_init();
1604}
1605
1606/*
1607 * Check constraints on flags passed to the unshare system call.
1608 */
1609static int check_unshare_flags(unsigned long unshare_flags)
1610{
1611	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
 
 
1614		return -EINVAL;
1615	/*
1616	 * Not implemented, but pretend it works if there is nothing to
1617	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1618	 * needs to unshare vm.
 
1619	 */
1620	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1621		/* FIXME: get_task_mm() increments ->mm_users */
1622		if (atomic_read(&current->mm->mm_users) > 1)
 
 
 
 
 
 
 
1623			return -EINVAL;
1624	}
1625
1626	return 0;
1627}
1628
1629/*
1630 * Unshare the filesystem structure if it is being shared
1631 */
1632static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1633{
1634	struct fs_struct *fs = current->fs;
1635
1636	if (!(unshare_flags & CLONE_FS) || !fs)
1637		return 0;
1638
1639	/* don't need lock here; in the worst case we'll do useless copy */
1640	if (fs->users == 1)
1641		return 0;
1642
1643	*new_fsp = copy_fs_struct(fs);
1644	if (!*new_fsp)
1645		return -ENOMEM;
1646
1647	return 0;
1648}
1649
1650/*
1651 * Unshare file descriptor table if it is being shared
1652 */
1653static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
1654{
1655	struct files_struct *fd = current->files;
1656	int error = 0;
1657
1658	if ((unshare_flags & CLONE_FILES) &&
1659	    (fd && atomic_read(&fd->count) > 1)) {
1660		*new_fdp = dup_fd(fd, &error);
1661		if (!*new_fdp)
1662			return error;
1663	}
1664
1665	return 0;
1666}
1667
1668/*
1669 * unshare allows a process to 'unshare' part of the process
1670 * context which was originally shared using clone.  copy_*
1671 * functions used by do_fork() cannot be used here directly
1672 * because they modify an inactive task_struct that is being
1673 * constructed. Here we are modifying the current, active,
1674 * task_struct.
1675 */
1676SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1677{
1678	struct fs_struct *fs, *new_fs = NULL;
1679	struct files_struct *fd, *new_fd = NULL;
 
1680	struct nsproxy *new_nsproxy = NULL;
1681	int do_sysvsem = 0;
1682	int err;
1683
1684	err = check_unshare_flags(unshare_flags);
1685	if (err)
1686		goto bad_unshare_out;
1687
 
 
 
 
 
 
 
 
 
 
 
 
1688	/*
1689	 * If unsharing namespace, must also unshare filesystem information.
1690	 */
1691	if (unshare_flags & CLONE_NEWNS)
1692		unshare_flags |= CLONE_FS;
 
 
 
 
1693	/*
1694	 * CLONE_NEWIPC must also detach from the undolist: after switching
1695	 * to a new ipc namespace, the semaphore arrays from the old
1696	 * namespace are unreachable.
1697	 */
1698	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1699		do_sysvsem = 1;
1700	err = unshare_fs(unshare_flags, &new_fs);
1701	if (err)
1702		goto bad_unshare_out;
1703	err = unshare_fd(unshare_flags, &new_fd);
1704	if (err)
1705		goto bad_unshare_cleanup_fs;
1706	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1707	if (err)
1708		goto bad_unshare_cleanup_fd;
 
 
 
 
1709
1710	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1711		if (do_sysvsem) {
1712			/*
1713			 * CLONE_SYSVSEM is equivalent to sys_exit().
1714			 */
1715			exit_sem(current);
1716		}
 
 
 
 
 
1717
1718		if (new_nsproxy) {
1719			switch_task_namespaces(current, new_nsproxy);
1720			new_nsproxy = NULL;
1721		}
1722
1723		task_lock(current);
1724
1725		if (new_fs) {
1726			fs = current->fs;
1727			spin_lock(&fs->lock);
1728			current->fs = new_fs;
1729			if (--fs->users)
1730				new_fs = NULL;
1731			else
1732				new_fs = fs;
1733			spin_unlock(&fs->lock);
1734		}
1735
1736		if (new_fd) {
1737			fd = current->files;
1738			current->files = new_fd;
1739			new_fd = fd;
1740		}
1741
1742		task_unlock(current);
 
 
 
 
 
 
1743	}
1744
1745	if (new_nsproxy)
1746		put_nsproxy(new_nsproxy);
1747
 
 
 
1748bad_unshare_cleanup_fd:
1749	if (new_fd)
1750		put_files_struct(new_fd);
1751
1752bad_unshare_cleanup_fs:
1753	if (new_fs)
1754		free_fs_struct(new_fs);
1755
1756bad_unshare_out:
1757	return err;
1758}
1759
 
 
 
 
 
1760/*
1761 *	Helper to unshare the files of the current task.
1762 *	We don't want to expose copy_files internals to
1763 *	the exec layer of the kernel.
1764 */
1765
1766int unshare_files(struct files_struct **displaced)
1767{
1768	struct task_struct *task = current;
1769	struct files_struct *copy = NULL;
1770	int error;
1771
1772	error = unshare_fd(CLONE_FILES, &copy);
1773	if (error || !copy) {
1774		*displaced = NULL;
1775		return error;
1776	}
1777	*displaced = task->files;
1778	task_lock(task);
1779	task->files = copy;
1780	task_unlock(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	return 0;
1782}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98
 
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear the KASAN shadow of the stack. */
 228		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 229
 230		/* Clear stale pointers from reused stack. */
 231		memset(s->addr, 0, THREAD_SIZE);
 232
 233		tsk->stack_vm_area = s;
 234		tsk->stack = s->addr;
 235		return s->addr;
 236	}
 237
 238	/*
 239	 * Allocated stacks are cached and later reused by new threads,
 240	 * so memcg accounting is performed manually on assigning/releasing
 241	 * stacks to tasks. Drop __GFP_ACCOUNT.
 242	 */
 243	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244				     VMALLOC_START, VMALLOC_END,
 245				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246				     PAGE_KERNEL,
 247				     0, node, __builtin_return_address(0));
 248
 249	/*
 250	 * We can't call find_vm_area() in interrupt context, and
 251	 * free_thread_stack() can be called in interrupt context,
 252	 * so cache the vm_struct.
 253	 */
 254	if (stack) {
 255		tsk->stack_vm_area = find_vm_area(stack);
 256		tsk->stack = stack;
 257	}
 258	return stack;
 259#else
 260	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261					     THREAD_SIZE_ORDER);
 262
 263	if (likely(page)) {
 264		tsk->stack = kasan_reset_tag(page_address(page));
 265		return tsk->stack;
 266	}
 267	return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274	struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276	if (vm) {
 277		int i;
 278
 279		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 280			memcg_kmem_uncharge_page(vm->pages[i], 0);
 281
 282		for (i = 0; i < NR_CACHED_STACKS; i++) {
 283			if (this_cpu_cmpxchg(cached_stacks[i],
 284					NULL, tsk->stack_vm_area) != NULL)
 285				continue;
 286
 287			return;
 288		}
 289
 290		vfree_atomic(tsk->stack);
 291		return;
 292	}
 293#endif
 
 294
 295	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 296}
 297# else
 298static struct kmem_cache *thread_stack_cache;
 299
 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 301						  int node)
 302{
 303	unsigned long *stack;
 304	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 305	stack = kasan_reset_tag(stack);
 306	tsk->stack = stack;
 307	return stack;
 308}
 309
 310static void free_thread_stack(struct task_struct *tsk)
 311{
 312	kmem_cache_free(thread_stack_cache, tsk->stack);
 313}
 314
 315void thread_stack_cache_init(void)
 316{
 317	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 318					THREAD_SIZE, THREAD_SIZE, 0, 0,
 319					THREAD_SIZE, NULL);
 320	BUG_ON(thread_stack_cache == NULL);
 321}
 322# endif
 323#endif
 324
 325/* SLAB cache for signal_struct structures (tsk->signal) */
 326static struct kmem_cache *signal_cachep;
 327
 328/* SLAB cache for sighand_struct structures (tsk->sighand) */
 329struct kmem_cache *sighand_cachep;
 330
 331/* SLAB cache for files_struct structures (tsk->files) */
 332struct kmem_cache *files_cachep;
 333
 334/* SLAB cache for fs_struct structures (tsk->fs) */
 335struct kmem_cache *fs_cachep;
 336
 337/* SLAB cache for vm_area_struct structures */
 338static struct kmem_cache *vm_area_cachep;
 339
 340/* SLAB cache for mm_struct structures (tsk->mm) */
 341static struct kmem_cache *mm_cachep;
 342
 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 344{
 345	struct vm_area_struct *vma;
 346
 347	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348	if (vma)
 349		vma_init(vma, mm);
 350	return vma;
 351}
 352
 353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 354{
 355	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 356
 357	if (new) {
 358		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 359		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 360		/*
 361		 * orig->shared.rb may be modified concurrently, but the clone
 362		 * will be reinitialized.
 363		 */
 364		*new = data_race(*orig);
 365		INIT_LIST_HEAD(&new->anon_vma_chain);
 366		new->vm_next = new->vm_prev = NULL;
 367	}
 368	return new;
 369}
 370
 371void vm_area_free(struct vm_area_struct *vma)
 372{
 373	kmem_cache_free(vm_area_cachep, vma);
 
 374}
 375
 376static void account_kernel_stack(struct task_struct *tsk, int account)
 377{
 378	void *stack = task_stack_page(tsk);
 379	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 380
 
 
 
 381
 382	/* All stack pages are in the same node. */
 383	if (vm)
 384		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
 385				      account * (THREAD_SIZE / 1024));
 386	else
 387		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
 388				      account * (THREAD_SIZE / 1024));
 389}
 
 390
 391static int memcg_charge_kernel_stack(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 392{
 393#ifdef CONFIG_VMAP_STACK
 394	struct vm_struct *vm = task_stack_vm_area(tsk);
 395	int ret;
 
 
 
 
 
 
 396
 397	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 
 398
 399	if (vm) {
 400		int i;
 
 
 
 
 
 
 
 
 
 
 401
 402		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 403
 404		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 405			/*
 406			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
 407			 * pointer is NULL, and memcg_kmem_uncharge_page() in
 408			 * free_thread_stack() will ignore this page.
 409			 */
 410			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 411						     0);
 412			if (ret)
 413				return ret;
 414		}
 415	}
 416#endif
 417	return 0;
 418}
 419
 420static void release_task_stack(struct task_struct *tsk)
 421{
 422	if (WARN_ON(tsk->state != TASK_DEAD))
 423		return;  /* Better to leak the stack than to free prematurely */
 
 
 
 424
 425	account_kernel_stack(tsk, -1);
 426	free_thread_stack(tsk);
 427	tsk->stack = NULL;
 428#ifdef CONFIG_VMAP_STACK
 429	tsk->stack_vm_area = NULL;
 430#endif
 431}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433#ifdef CONFIG_THREAD_INFO_IN_TASK
 434void put_task_stack(struct task_struct *tsk)
 435{
 436	if (refcount_dec_and_test(&tsk->stack_refcount))
 437		release_task_stack(tsk);
 438}
 439#endif
 440
 441void free_task(struct task_struct *tsk)
 442{
 443	scs_release(tsk);
 444
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446	/*
 447	 * The task is finally done with both the stack and thread_info,
 448	 * so free both.
 449	 */
 450	release_task_stack(tsk);
 451#else
 452	/*
 453	 * If the task had a separate stack allocation, it should be gone
 454	 * by now.
 455	 */
 456	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458	rt_mutex_debug_task_free(tsk);
 459	ftrace_graph_exit_task(tsk);
 460	arch_release_task_struct(tsk);
 461	if (tsk->flags & PF_KTHREAD)
 462		free_kthread_struct(tsk);
 
 
 
 463	free_task_struct(tsk);
 
 464}
 465EXPORT_SYMBOL(free_task);
 466
 467#ifdef CONFIG_MMU
 468static __latent_entropy int dup_mmap(struct mm_struct *mm,
 469					struct mm_struct *oldmm)
 470{
 471	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 472	struct rb_node **rb_link, *rb_parent;
 473	int retval;
 474	unsigned long charge;
 475	LIST_HEAD(uf);
 476
 477	uprobe_start_dup_mmap();
 478	if (mmap_write_lock_killable(oldmm)) {
 479		retval = -EINTR;
 480		goto fail_uprobe_end;
 481	}
 482	flush_cache_dup_mm(oldmm);
 483	uprobe_dup_mmap(oldmm, mm);
 484	/*
 485	 * Not linked in yet - no deadlock potential:
 486	 */
 487	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 488
 489	/* No ordering required: file already has been exposed. */
 490	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 491
 492	mm->total_vm = oldmm->total_vm;
 493	mm->data_vm = oldmm->data_vm;
 494	mm->exec_vm = oldmm->exec_vm;
 495	mm->stack_vm = oldmm->stack_vm;
 496
 
 
 
 
 
 
 
 
 497	rb_link = &mm->mm_rb.rb_node;
 498	rb_parent = NULL;
 499	pprev = &mm->mmap;
 500	retval = ksm_fork(mm, oldmm);
 501	if (retval)
 502		goto out;
 503	retval = khugepaged_fork(mm, oldmm);
 504	if (retval)
 505		goto out;
 506
 507	prev = NULL;
 508	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 509		struct file *file;
 510
 511		if (mpnt->vm_flags & VM_DONTCOPY) {
 512			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 
 
 
 513			continue;
 514		}
 515		charge = 0;
 516		/*
 517		 * Don't duplicate many vmas if we've been oom-killed (for
 518		 * example)
 519		 */
 520		if (fatal_signal_pending(current)) {
 521			retval = -EINTR;
 522			goto out;
 523		}
 524		if (mpnt->vm_flags & VM_ACCOUNT) {
 525			unsigned long len = vma_pages(mpnt);
 526
 527			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 528				goto fail_nomem;
 529			charge = len;
 530		}
 531		tmp = vm_area_dup(mpnt);
 532		if (!tmp)
 533			goto fail_nomem;
 534		retval = vma_dup_policy(mpnt, tmp);
 535		if (retval)
 
 
 
 536			goto fail_nomem_policy;
 
 537		tmp->vm_mm = mm;
 538		retval = dup_userfaultfd(tmp, &uf);
 539		if (retval)
 540			goto fail_nomem_anon_vma_fork;
 541		if (tmp->vm_flags & VM_WIPEONFORK) {
 542			/*
 543			 * VM_WIPEONFORK gets a clean slate in the child.
 544			 * Don't prepare anon_vma until fault since we don't
 545			 * copy page for current vma.
 546			 */
 547			tmp->anon_vma = NULL;
 548		} else if (anon_vma_fork(tmp, mpnt))
 549			goto fail_nomem_anon_vma_fork;
 550		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 551		file = tmp->vm_file;
 552		if (file) {
 553			struct inode *inode = file_inode(file);
 554			struct address_space *mapping = file->f_mapping;
 555
 556			get_file(file);
 557			if (tmp->vm_flags & VM_DENYWRITE)
 558				atomic_dec(&inode->i_writecount);
 559			i_mmap_lock_write(mapping);
 560			if (tmp->vm_flags & VM_SHARED)
 561				atomic_inc(&mapping->i_mmap_writable);
 562			flush_dcache_mmap_lock(mapping);
 563			/* insert tmp into the share list, just after mpnt */
 564			vma_interval_tree_insert_after(tmp, mpnt,
 565					&mapping->i_mmap);
 566			flush_dcache_mmap_unlock(mapping);
 567			i_mmap_unlock_write(mapping);
 568		}
 569
 570		/*
 571		 * Clear hugetlb-related page reserves for children. This only
 572		 * affects MAP_PRIVATE mappings. Faults generated by the child
 573		 * are not guaranteed to succeed, even if read-only
 574		 */
 575		if (is_vm_hugetlb_page(tmp))
 576			reset_vma_resv_huge_pages(tmp);
 577
 578		/*
 579		 * Link in the new vma and copy the page table entries.
 580		 */
 581		*pprev = tmp;
 582		pprev = &tmp->vm_next;
 583		tmp->vm_prev = prev;
 584		prev = tmp;
 585
 586		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 587		rb_link = &tmp->vm_rb.rb_right;
 588		rb_parent = &tmp->vm_rb;
 589
 590		mm->map_count++;
 591		if (!(tmp->vm_flags & VM_WIPEONFORK))
 592			retval = copy_page_range(mm, oldmm, mpnt, tmp);
 593
 594		if (tmp->vm_ops && tmp->vm_ops->open)
 595			tmp->vm_ops->open(tmp);
 596
 597		if (retval)
 598			goto out;
 599	}
 600	/* a new mm has just been created */
 601	retval = arch_dup_mmap(oldmm, mm);
 
 602out:
 603	mmap_write_unlock(mm);
 604	flush_tlb_mm(oldmm);
 605	mmap_write_unlock(oldmm);
 606	dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608	uprobe_end_dup_mmap();
 609	return retval;
 610fail_nomem_anon_vma_fork:
 611	mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613	vm_area_free(tmp);
 614fail_nomem:
 615	retval = -ENOMEM;
 616	vm_unacct_memory(charge);
 617	goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622	mm->pgd = pgd_alloc(mm);
 623	if (unlikely(!mm->pgd))
 624		return -ENOMEM;
 625	return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630	pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635	mmap_write_lock(oldmm);
 636	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637	mmap_write_unlock(oldmm);
 638	return 0;
 639}
 640#define mm_alloc_pgd(mm)	(0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646	int i;
 647
 648	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 649			 "Please make sure 'struct resident_page_types[]' is updated as well");
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 656				 mm, resident_page_types[i], x);
 657	}
 658
 659	if (mm_pgtables_bytes(mm))
 660		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 661				mm_pgtables_bytes(mm));
 662
 663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 664	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 665#endif
 666}
 667
 668#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 669#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 670
 671/*
 672 * Called when the last reference to the mm
 673 * is dropped: either by a lazy thread or by
 674 * mmput. Free the page directory and the mm.
 675 */
 676void __mmdrop(struct mm_struct *mm)
 677{
 678	BUG_ON(mm == &init_mm);
 679	WARN_ON_ONCE(mm == current->mm);
 680	WARN_ON_ONCE(mm == current->active_mm);
 681	mm_free_pgd(mm);
 682	destroy_context(mm);
 683	mmu_notifier_subscriptions_destroy(mm);
 684	check_mm(mm);
 685	put_user_ns(mm->user_ns);
 686	free_mm(mm);
 687}
 688EXPORT_SYMBOL_GPL(__mmdrop);
 689
 690static void mmdrop_async_fn(struct work_struct *work)
 691{
 692	struct mm_struct *mm;
 693
 694	mm = container_of(work, struct mm_struct, async_put_work);
 695	__mmdrop(mm);
 696}
 697
 698static void mmdrop_async(struct mm_struct *mm)
 699{
 700	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 701		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 702		schedule_work(&mm->async_put_work);
 703	}
 704}
 705
 706static inline void free_signal_struct(struct signal_struct *sig)
 707{
 708	taskstats_tgid_free(sig);
 709	sched_autogroup_exit(sig);
 710	/*
 711	 * __mmdrop is not safe to call from softirq context on x86 due to
 712	 * pgd_dtor so postpone it to the async context
 713	 */
 714	if (sig->oom_mm)
 715		mmdrop_async(sig->oom_mm);
 716	kmem_cache_free(signal_cachep, sig);
 717}
 718
 719static inline void put_signal_struct(struct signal_struct *sig)
 720{
 721	if (refcount_dec_and_test(&sig->sigcnt))
 722		free_signal_struct(sig);
 723}
 724
 725void __put_task_struct(struct task_struct *tsk)
 726{
 727	WARN_ON(!tsk->exit_state);
 728	WARN_ON(refcount_read(&tsk->usage));
 729	WARN_ON(tsk == current);
 730
 731	cgroup_free(tsk);
 732	task_numa_free(tsk, true);
 733	security_task_free(tsk);
 734	exit_creds(tsk);
 735	delayacct_tsk_free(tsk);
 736	put_signal_struct(tsk->signal);
 737
 738	if (!profile_handoff_task(tsk))
 739		free_task(tsk);
 740}
 741EXPORT_SYMBOL_GPL(__put_task_struct);
 742
 743void __init __weak arch_task_cache_init(void) { }
 744
 745/*
 746 * set_max_threads
 747 */
 748static void set_max_threads(unsigned int max_threads_suggested)
 749{
 750	u64 threads;
 751	unsigned long nr_pages = totalram_pages();
 752
 753	/*
 754	 * The number of threads shall be limited such that the thread
 755	 * structures may only consume a small part of the available memory.
 756	 */
 757	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 758		threads = MAX_THREADS;
 759	else
 760		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 761				    (u64) THREAD_SIZE * 8UL);
 762
 763	if (threads > max_threads_suggested)
 764		threads = max_threads_suggested;
 765
 766	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 767}
 768
 769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 770/* Initialized by the architecture: */
 771int arch_task_struct_size __read_mostly;
 772#endif
 773
 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 776{
 777	/* Fetch thread_struct whitelist for the architecture. */
 778	arch_thread_struct_whitelist(offset, size);
 779
 780	/*
 781	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 782	 * adjust offset to position of thread_struct in task_struct.
 783	 */
 784	if (unlikely(*size == 0))
 785		*offset = 0;
 786	else
 787		*offset += offsetof(struct task_struct, thread);
 788}
 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 790
 791void __init fork_init(void)
 792{
 793	int i;
 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 795#ifndef ARCH_MIN_TASKALIGN
 796#define ARCH_MIN_TASKALIGN	0
 797#endif
 798	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 799	unsigned long useroffset, usersize;
 800
 801	/* create a slab on which task_structs can be allocated */
 802	task_struct_whitelist(&useroffset, &usersize);
 803	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 804			arch_task_struct_size, align,
 805			SLAB_PANIC|SLAB_ACCOUNT,
 806			useroffset, usersize, NULL);
 807#endif
 808
 809	/* do the arch specific task caches init */
 810	arch_task_cache_init();
 811
 812	set_max_threads(MAX_THREADS);
 813
 814	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 815	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 816	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 817		init_task.signal->rlim[RLIMIT_NPROC];
 818
 819	for (i = 0; i < UCOUNT_COUNTS; i++) {
 820		init_user_ns.ucount_max[i] = max_threads/2;
 821	}
 822
 823#ifdef CONFIG_VMAP_STACK
 824	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 825			  NULL, free_vm_stack_cache);
 826#endif
 827
 828	scs_init();
 829
 830	lockdep_init_task(&init_task);
 831	uprobes_init();
 832}
 833
 834int __weak arch_dup_task_struct(struct task_struct *dst,
 835					       struct task_struct *src)
 836{
 837	*dst = *src;
 838	return 0;
 839}
 840
 841void set_task_stack_end_magic(struct task_struct *tsk)
 842{
 843	unsigned long *stackend;
 844
 845	stackend = end_of_stack(tsk);
 846	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 847}
 848
 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 850{
 851	struct task_struct *tsk;
 852	unsigned long *stack;
 853	struct vm_struct *stack_vm_area __maybe_unused;
 854	int err;
 855
 856	if (node == NUMA_NO_NODE)
 857		node = tsk_fork_get_node(orig);
 858	tsk = alloc_task_struct_node(node);
 859	if (!tsk)
 860		return NULL;
 861
 862	stack = alloc_thread_stack_node(tsk, node);
 863	if (!stack)
 864		goto free_tsk;
 865
 866	if (memcg_charge_kernel_stack(tsk))
 867		goto free_stack;
 868
 869	stack_vm_area = task_stack_vm_area(tsk);
 870
 871	err = arch_dup_task_struct(tsk, orig);
 872
 873	/*
 874	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 875	 * sure they're properly initialized before using any stack-related
 876	 * functions again.
 877	 */
 878	tsk->stack = stack;
 879#ifdef CONFIG_VMAP_STACK
 880	tsk->stack_vm_area = stack_vm_area;
 881#endif
 882#ifdef CONFIG_THREAD_INFO_IN_TASK
 883	refcount_set(&tsk->stack_refcount, 1);
 884#endif
 885
 886	if (err)
 887		goto free_stack;
 888
 889	err = scs_prepare(tsk, node);
 890	if (err)
 891		goto free_stack;
 892
 893#ifdef CONFIG_SECCOMP
 894	/*
 895	 * We must handle setting up seccomp filters once we're under
 896	 * the sighand lock in case orig has changed between now and
 897	 * then. Until then, filter must be NULL to avoid messing up
 898	 * the usage counts on the error path calling free_task.
 899	 */
 900	tsk->seccomp.filter = NULL;
 901#endif
 902
 903	setup_thread_stack(tsk, orig);
 904	clear_user_return_notifier(tsk);
 905	clear_tsk_need_resched(tsk);
 906	set_task_stack_end_magic(tsk);
 907
 908#ifdef CONFIG_STACKPROTECTOR
 909	tsk->stack_canary = get_random_canary();
 910#endif
 911	if (orig->cpus_ptr == &orig->cpus_mask)
 912		tsk->cpus_ptr = &tsk->cpus_mask;
 913
 914	/*
 915	 * One for the user space visible state that goes away when reaped.
 916	 * One for the scheduler.
 917	 */
 918	refcount_set(&tsk->rcu_users, 2);
 919	/* One for the rcu users */
 920	refcount_set(&tsk->usage, 1);
 921#ifdef CONFIG_BLK_DEV_IO_TRACE
 922	tsk->btrace_seq = 0;
 923#endif
 924	tsk->splice_pipe = NULL;
 925	tsk->task_frag.page = NULL;
 926	tsk->wake_q.next = NULL;
 927
 928	account_kernel_stack(tsk, 1);
 929
 930	kcov_task_init(tsk);
 931
 932#ifdef CONFIG_FAULT_INJECTION
 933	tsk->fail_nth = 0;
 934#endif
 935
 936#ifdef CONFIG_BLK_CGROUP
 937	tsk->throttle_queue = NULL;
 938	tsk->use_memdelay = 0;
 939#endif
 940
 941#ifdef CONFIG_MEMCG
 942	tsk->active_memcg = NULL;
 943#endif
 944	return tsk;
 945
 946free_stack:
 947	free_thread_stack(tsk);
 948free_tsk:
 949	free_task_struct(tsk);
 950	return NULL;
 951}
 952
 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 954
 955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 956
 957static int __init coredump_filter_setup(char *s)
 958{
 959	default_dump_filter =
 960		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 961		MMF_DUMP_FILTER_MASK;
 962	return 1;
 963}
 964
 965__setup("coredump_filter=", coredump_filter_setup);
 966
 967#include <linux/init_task.h>
 968
 969static void mm_init_aio(struct mm_struct *mm)
 970{
 971#ifdef CONFIG_AIO
 972	spin_lock_init(&mm->ioctx_lock);
 973	mm->ioctx_table = NULL;
 974#endif
 975}
 976
 977static __always_inline void mm_clear_owner(struct mm_struct *mm,
 978					   struct task_struct *p)
 979{
 980#ifdef CONFIG_MEMCG
 981	if (mm->owner == p)
 982		WRITE_ONCE(mm->owner, NULL);
 983#endif
 984}
 985
 986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 987{
 988#ifdef CONFIG_MEMCG
 989	mm->owner = p;
 990#endif
 991}
 992
 993static void mm_init_uprobes_state(struct mm_struct *mm)
 994{
 995#ifdef CONFIG_UPROBES
 996	mm->uprobes_state.xol_area = NULL;
 997#endif
 998}
 999
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001	struct user_namespace *user_ns)
1002{
1003	mm->mmap = NULL;
1004	mm->mm_rb = RB_ROOT;
1005	mm->vmacache_seqnum = 0;
1006	atomic_set(&mm->mm_users, 1);
1007	atomic_set(&mm->mm_count, 1);
1008	mmap_init_lock(mm);
1009	INIT_LIST_HEAD(&mm->mmlist);
 
 
1010	mm->core_state = NULL;
1011	mm_pgtables_bytes_init(mm);
1012	mm->map_count = 0;
1013	mm->locked_vm = 0;
1014	atomic_set(&mm->has_pinned, 0);
1015	atomic64_set(&mm->pinned_vm, 0);
1016	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017	spin_lock_init(&mm->page_table_lock);
1018	spin_lock_init(&mm->arg_lock);
1019	mm_init_cpumask(mm);
1020	mm_init_aio(mm);
1021	mm_init_owner(mm, p);
1022	RCU_INIT_POINTER(mm->exe_file, NULL);
1023	mmu_notifier_subscriptions_init(mm);
1024	init_tlb_flush_pending(mm);
1025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026	mm->pmd_huge_pte = NULL;
1027#endif
1028	mm_init_uprobes_state(mm);
1029
1030	if (current->mm) {
1031		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033	} else {
1034		mm->flags = default_dump_filter;
1035		mm->def_flags = 0;
 
 
1036	}
1037
1038	if (mm_alloc_pgd(mm))
1039		goto fail_nopgd;
1040
1041	if (init_new_context(p, mm))
1042		goto fail_nocontext;
1043
1044	mm->user_ns = get_user_ns(user_ns);
1045	return mm;
1046
1047fail_nocontext:
1048	mm_free_pgd(mm);
1049fail_nopgd:
1050	free_mm(mm);
1051	return NULL;
1052}
1053
1054/*
1055 * Allocate and initialize an mm_struct.
1056 */
1057struct mm_struct *mm_alloc(void)
1058{
1059	struct mm_struct *mm;
1060
1061	mm = allocate_mm();
1062	if (!mm)
1063		return NULL;
1064
1065	memset(mm, 0, sizeof(*mm));
1066	return mm_init(mm, current, current_user_ns());
 
1067}
1068
1069static inline void __mmput(struct mm_struct *mm)
 
 
 
 
 
1070{
1071	VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073	uprobe_clear_state(mm);
1074	exit_aio(mm);
1075	ksm_exit(mm);
1076	khugepaged_exit(mm); /* must run before exit_mmap */
1077	exit_mmap(mm);
1078	mm_put_huge_zero_page(mm);
1079	set_mm_exe_file(mm, NULL);
1080	if (!list_empty(&mm->mmlist)) {
1081		spin_lock(&mmlist_lock);
1082		list_del(&mm->mmlist);
1083		spin_unlock(&mmlist_lock);
1084	}
1085	if (mm->binfmt)
1086		module_put(mm->binfmt->module);
1087	mmdrop(mm);
1088}
 
1089
1090/*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093void mmput(struct mm_struct *mm)
1094{
1095	might_sleep();
1096
1097	if (atomic_dec_and_test(&mm->mm_users))
1098		__mmput(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099}
1100EXPORT_SYMBOL_GPL(mmput);
1101
1102#ifdef CONFIG_MMU
1103static void mmput_async_fn(struct work_struct *work)
 
 
 
 
1104{
1105	struct mm_struct *mm = container_of(work, struct mm_struct,
1106					    async_put_work);
1107
1108	__mmput(mm);
1109}
1110
1111void mmput_async(struct mm_struct *mm)
1112{
1113	if (atomic_dec_and_test(&mm->mm_users)) {
1114		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115		schedule_work(&mm->async_put_work);
 
1116	}
 
1117}
1118#endif
1119
1120/**
1121 * set_mm_exe_file - change a reference to the mm's executable file
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132{
1133	struct file *old_exe_file;
1134
1135	/*
1136	 * It is safe to dereference the exe_file without RCU as
1137	 * this function is only called if nobody else can access
1138	 * this mm -- see comment above for justification.
1139	 */
1140	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142	if (new_exe_file)
1143		get_file(new_exe_file);
1144	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145	if (old_exe_file)
1146		fput(old_exe_file);
 
1147}
1148
1149/**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155struct file *get_mm_exe_file(struct mm_struct *mm)
1156{
1157	struct file *exe_file;
1158
1159	rcu_read_lock();
1160	exe_file = rcu_dereference(mm->exe_file);
1161	if (exe_file && !get_file_rcu(exe_file))
1162		exe_file = NULL;
1163	rcu_read_unlock();
 
 
1164	return exe_file;
1165}
1166EXPORT_SYMBOL(get_mm_exe_file);
1167
1168/**
1169 * get_task_exe_file - acquire a reference to the task's executable file
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175struct file *get_task_exe_file(struct task_struct *task)
1176{
1177	struct file *exe_file = NULL;
1178	struct mm_struct *mm;
1179
1180	task_lock(task);
1181	mm = task->mm;
1182	if (mm) {
1183		if (!(task->flags & PF_KTHREAD))
1184			exe_file = get_mm_exe_file(mm);
1185	}
1186	task_unlock(task);
1187	return exe_file;
1188}
1189EXPORT_SYMBOL(get_task_exe_file);
1190
1191/**
1192 * get_task_mm - acquire a reference to the task's mm
1193 *
1194 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count.  User must release the mm via mmput()
1198 * after use.  Typically used by /proc and ptrace.
1199 */
1200struct mm_struct *get_task_mm(struct task_struct *task)
1201{
1202	struct mm_struct *mm;
1203
1204	task_lock(task);
1205	mm = task->mm;
1206	if (mm) {
1207		if (task->flags & PF_KTHREAD)
1208			mm = NULL;
1209		else
1210			mmget(mm);
1211	}
1212	task_unlock(task);
1213	return mm;
1214}
1215EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218{
1219	struct mm_struct *mm;
1220	int err;
1221
1222	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223	if (err)
1224		return ERR_PTR(err);
1225
1226	mm = get_task_mm(task);
1227	if (mm && mm != current->mm &&
1228			!ptrace_may_access(task, mode)) {
1229		mmput(mm);
1230		mm = ERR_PTR(-EACCES);
1231	}
1232	mutex_unlock(&task->signal->exec_update_mutex);
1233
1234	return mm;
1235}
1236
1237static void complete_vfork_done(struct task_struct *tsk)
1238{
1239	struct completion *vfork;
1240
1241	task_lock(tsk);
1242	vfork = tsk->vfork_done;
1243	if (likely(vfork)) {
1244		tsk->vfork_done = NULL;
1245		complete(vfork);
1246	}
1247	task_unlock(tsk);
1248}
1249
1250static int wait_for_vfork_done(struct task_struct *child,
1251				struct completion *vfork)
1252{
1253	int killed;
1254
1255	freezer_do_not_count();
1256	cgroup_enter_frozen();
1257	killed = wait_for_completion_killable(vfork);
1258	cgroup_leave_frozen(false);
1259	freezer_count();
1260
1261	if (killed) {
1262		task_lock(child);
1263		child->vfork_done = NULL;
1264		task_unlock(child);
1265	}
1266
1267	put_task_struct(child);
1268	return killed;
1269}
1270
1271/* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one.  Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285{
1286	uprobe_free_utask(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287
1288	/* Get rid of any cached register state */
1289	deactivate_mm(tsk, mm);
1290
 
 
 
 
 
 
1291	/*
1292	 * Signal userspace if we're not exiting with a core dump
1293	 * because we want to leave the value intact for debugging
1294	 * purposes.
 
1295	 */
1296	if (tsk->clear_child_tid) {
1297		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298		    atomic_read(&mm->mm_users) > 1) {
1299			/*
1300			 * We don't check the error code - if userspace has
1301			 * not set up a proper pointer then tough luck.
1302			 */
1303			put_user(0, tsk->clear_child_tid);
1304			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305					1, NULL, NULL, 0, 0);
1306		}
1307		tsk->clear_child_tid = NULL;
1308	}
1309
1310	/*
1311	 * All done, finally we can wake up parent and return this mm to him.
1312	 * Also kthread_stop() uses this completion for synchronization.
1313	 */
1314	if (tsk->vfork_done)
1315		complete_vfork_done(tsk);
1316}
1317
1318void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319{
1320	futex_exit_release(tsk);
1321	mm_release(tsk, mm);
1322}
1323
1324void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325{
1326	futex_exec_release(tsk);
1327	mm_release(tsk, mm);
1328}
1329
1330/**
1331 * dup_mm() - duplicates an existing mm structure
1332 * @tsk: the task_struct with which the new mm will be associated.
1333 * @oldmm: the mm to duplicate.
1334 *
1335 * Allocates a new mm structure and duplicates the provided @oldmm structure
1336 * content into it.
1337 *
1338 * Return: the duplicated mm or NULL on failure.
1339 */
1340static struct mm_struct *dup_mm(struct task_struct *tsk,
1341				struct mm_struct *oldmm)
1342{
1343	struct mm_struct *mm;
1344	int err;
1345
 
 
 
1346	mm = allocate_mm();
1347	if (!mm)
1348		goto fail_nomem;
1349
1350	memcpy(mm, oldmm, sizeof(*mm));
 
1351
1352	if (!mm_init(mm, tsk, mm->user_ns))
 
 
 
 
 
 
 
 
1353		goto fail_nomem;
1354
 
 
 
 
 
1355	err = dup_mmap(mm, oldmm);
1356	if (err)
1357		goto free_pt;
1358
1359	mm->hiwater_rss = get_mm_rss(mm);
1360	mm->hiwater_vm = mm->total_vm;
1361
1362	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363		goto free_pt;
1364
1365	return mm;
1366
1367free_pt:
1368	/* don't put binfmt in mmput, we haven't got module yet */
1369	mm->binfmt = NULL;
1370	mm_init_owner(mm, NULL);
1371	mmput(mm);
1372
1373fail_nomem:
1374	return NULL;
 
 
 
 
 
 
 
 
 
1375}
1376
1377static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379	struct mm_struct *mm, *oldmm;
1380	int retval;
1381
1382	tsk->min_flt = tsk->maj_flt = 0;
1383	tsk->nvcsw = tsk->nivcsw = 0;
1384#ifdef CONFIG_DETECT_HUNG_TASK
1385	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386	tsk->last_switch_time = 0;
1387#endif
1388
1389	tsk->mm = NULL;
1390	tsk->active_mm = NULL;
1391
1392	/*
1393	 * Are we cloning a kernel thread?
1394	 *
1395	 * We need to steal a active VM for that..
1396	 */
1397	oldmm = current->mm;
1398	if (!oldmm)
1399		return 0;
1400
1401	/* initialize the new vmacache entries */
1402	vmacache_flush(tsk);
1403
1404	if (clone_flags & CLONE_VM) {
1405		mmget(oldmm);
1406		mm = oldmm;
1407		goto good_mm;
1408	}
1409
1410	retval = -ENOMEM;
1411	mm = dup_mm(tsk, current->mm);
1412	if (!mm)
1413		goto fail_nomem;
1414
1415good_mm:
 
 
 
 
 
 
1416	tsk->mm = mm;
1417	tsk->active_mm = mm;
1418	return 0;
1419
1420fail_nomem:
1421	return retval;
1422}
1423
1424static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425{
1426	struct fs_struct *fs = current->fs;
1427	if (clone_flags & CLONE_FS) {
1428		/* tsk->fs is already what we want */
1429		spin_lock(&fs->lock);
1430		if (fs->in_exec) {
1431			spin_unlock(&fs->lock);
1432			return -EAGAIN;
1433		}
1434		fs->users++;
1435		spin_unlock(&fs->lock);
1436		return 0;
1437	}
1438	tsk->fs = copy_fs_struct(fs);
1439	if (!tsk->fs)
1440		return -ENOMEM;
1441	return 0;
1442}
1443
1444static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1445{
1446	struct files_struct *oldf, *newf;
1447	int error = 0;
1448
1449	/*
1450	 * A background process may not have any files ...
1451	 */
1452	oldf = current->files;
1453	if (!oldf)
1454		goto out;
1455
1456	if (clone_flags & CLONE_FILES) {
1457		atomic_inc(&oldf->count);
1458		goto out;
1459	}
1460
1461	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462	if (!newf)
1463		goto out;
1464
1465	tsk->files = newf;
1466	error = 0;
1467out:
1468	return error;
1469}
1470
1471static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472{
1473#ifdef CONFIG_BLOCK
1474	struct io_context *ioc = current->io_context;
1475	struct io_context *new_ioc;
1476
1477	if (!ioc)
1478		return 0;
1479	/*
1480	 * Share io context with parent, if CLONE_IO is set
1481	 */
1482	if (clone_flags & CLONE_IO) {
1483		ioc_task_link(ioc);
1484		tsk->io_context = ioc;
 
1485	} else if (ioprio_valid(ioc->ioprio)) {
1486		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487		if (unlikely(!new_ioc))
1488			return -ENOMEM;
1489
1490		new_ioc->ioprio = ioc->ioprio;
1491		put_io_context(new_ioc);
1492	}
1493#endif
1494	return 0;
1495}
1496
1497static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498{
1499	struct sighand_struct *sig;
1500
1501	if (clone_flags & CLONE_SIGHAND) {
1502		refcount_inc(&current->sighand->count);
1503		return 0;
1504	}
1505	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506	RCU_INIT_POINTER(tsk->sighand, sig);
1507	if (!sig)
1508		return -ENOMEM;
1509
1510	refcount_set(&sig->count, 1);
1511	spin_lock_irq(&current->sighand->siglock);
1512	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513	spin_unlock_irq(&current->sighand->siglock);
1514
1515	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517		flush_signal_handlers(tsk, 0);
1518
1519	return 0;
1520}
1521
1522void __cleanup_sighand(struct sighand_struct *sighand)
1523{
1524	if (refcount_dec_and_test(&sighand->count)) {
1525		signalfd_cleanup(sighand);
1526		/*
1527		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528		 * without an RCU grace period, see __lock_task_sighand().
1529		 */
1530		kmem_cache_free(sighand_cachep, sighand);
1531	}
1532}
1533
 
1534/*
1535 * Initialize POSIX timer handling for a thread group.
1536 */
1537static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538{
1539	struct posix_cputimers *pct = &sig->posix_cputimers;
1540	unsigned long cpu_limit;
1541
1542	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
 
 
 
1544}
1545
1546static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547{
1548	struct signal_struct *sig;
1549
1550	if (clone_flags & CLONE_THREAD)
1551		return 0;
1552
1553	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554	tsk->signal = sig;
1555	if (!sig)
1556		return -ENOMEM;
1557
1558	sig->nr_threads = 1;
1559	atomic_set(&sig->live, 1);
1560	refcount_set(&sig->sigcnt, 1);
1561
1562	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565
1566	init_waitqueue_head(&sig->wait_chldexit);
 
 
1567	sig->curr_target = tsk;
1568	init_sigpending(&sig->shared_pending);
1569	INIT_HLIST_HEAD(&sig->multiprocess);
1570	seqlock_init(&sig->stats_lock);
1571	prev_cputime_init(&sig->prev_cputime);
1572
1573#ifdef CONFIG_POSIX_TIMERS
1574	INIT_LIST_HEAD(&sig->posix_timers);
1575	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576	sig->real_timer.function = it_real_fn;
1577#endif
1578
1579	task_lock(current->group_leader);
1580	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581	task_unlock(current->group_leader);
1582
1583	posix_cpu_timers_init_group(sig);
1584
1585	tty_audit_fork(sig);
1586	sched_autogroup_fork(sig);
1587
 
 
 
 
 
1588	sig->oom_score_adj = current->signal->oom_score_adj;
1589	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590
1591	mutex_init(&sig->cred_guard_mutex);
1592	mutex_init(&sig->exec_update_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
 
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678#ifdef CONFIG_TASKS_TRACE_RCU
1679	p->trc_reader_nesting = 0;
1680	p->trc_reader_special.s = 0;
1681	INIT_LIST_HEAD(&p->trc_holdout_list);
1682#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683}
1684
1685struct pid *pidfd_pid(const struct file *file)
1686{
1687	if (file->f_op == &pidfd_fops)
1688		return file->private_data;
1689
1690	return ERR_PTR(-EBADF);
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695	struct pid *pid = file->private_data;
1696
1697	file->private_data = NULL;
1698	put_pid(pid);
1699	return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703/**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the  pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 *   namespace (also take care to create new mount namespaces in the
1732 *   new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 *   have exactly one entry, which is 0
1737 */
1738static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739{
1740	struct pid *pid = f->private_data;
1741	struct pid_namespace *ns;
1742	pid_t nr = -1;
1743
1744	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746		nr = pid_nr_ns(pid, ns);
1747	}
1748
1749	seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751#ifdef CONFIG_PID_NS
1752	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753	if (nr > 0) {
1754		int i;
1755
1756		/* If nr is non-zero it means that 'pid' is valid and that
1757		 * ns, i.e. the pid namespace associated with the procfs
1758		 * instance, is in the pid namespace hierarchy of pid.
1759		 * Start at one below the already printed level.
1760		 */
1761		for (i = ns->level + 1; i <= pid->level; i++)
1762			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763	}
1764#endif
1765	seq_putc(m, '\n');
1766}
1767#endif
1768
1769/*
1770 * Poll support for process exit notification.
1771 */
1772static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773{
1774	struct pid *pid = file->private_data;
1775	__poll_t poll_flags = 0;
1776
1777	poll_wait(file, &pid->wait_pidfd, pts);
1778
1779	/*
1780	 * Inform pollers only when the whole thread group exits.
1781	 * If the thread group leader exits before all other threads in the
1782	 * group, then poll(2) should block, similar to the wait(2) family.
1783	 */
1784	if (thread_group_exited(pid))
1785		poll_flags = EPOLLIN | EPOLLRDNORM;
1786
1787	return poll_flags;
1788}
1789
1790const struct file_operations pidfd_fops = {
1791	.release = pidfd_release,
1792	.poll = pidfd_poll,
1793#ifdef CONFIG_PROC_FS
1794	.show_fdinfo = pidfd_show_fdinfo,
1795#endif
1796};
1797
1798static void __delayed_free_task(struct rcu_head *rhp)
1799{
1800	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801
1802	free_task(tsk);
1803}
1804
1805static __always_inline void delayed_free_task(struct task_struct *tsk)
1806{
1807	if (IS_ENABLED(CONFIG_MEMCG))
1808		call_rcu(&tsk->rcu, __delayed_free_task);
1809	else
1810		free_task(tsk);
1811}
1812
1813/*
1814 * This creates a new process as a copy of the old one,
1815 * but does not actually start it yet.
1816 *
1817 * It copies the registers, and all the appropriate
1818 * parts of the process environment (as per the clone
1819 * flags). The actual kick-off is left to the caller.
1820 */
1821static __latent_entropy struct task_struct *copy_process(
 
 
 
 
1822					struct pid *pid,
1823					int trace,
1824					int node,
1825					struct kernel_clone_args *args)
1826{
1827	int pidfd = -1, retval;
1828	struct task_struct *p;
1829	struct multiprocess_signals delayed;
1830	struct file *pidfile = NULL;
1831	u64 clone_flags = args->flags;
1832	struct nsproxy *nsp = current->nsproxy;
1833
1834	/*
1835	 * Don't allow sharing the root directory with processes in a different
1836	 * namespace
1837	 */
1838	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839		return ERR_PTR(-EINVAL);
1840
1841	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842		return ERR_PTR(-EINVAL);
1843
1844	/*
1845	 * Thread groups must share signals as well, and detached threads
1846	 * can only be started up within the thread group.
1847	 */
1848	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849		return ERR_PTR(-EINVAL);
1850
1851	/*
1852	 * Shared signal handlers imply shared VM. By way of the above,
1853	 * thread groups also imply shared VM. Blocking this case allows
1854	 * for various simplifications in other code.
1855	 */
1856	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857		return ERR_PTR(-EINVAL);
1858
1859	/*
1860	 * Siblings of global init remain as zombies on exit since they are
1861	 * not reaped by their parent (swapper). To solve this and to avoid
1862	 * multi-rooted process trees, prevent global and container-inits
1863	 * from creating siblings.
1864	 */
1865	if ((clone_flags & CLONE_PARENT) &&
1866				current->signal->flags & SIGNAL_UNKILLABLE)
1867		return ERR_PTR(-EINVAL);
1868
1869	/*
1870	 * If the new process will be in a different pid or user namespace
1871	 * do not allow it to share a thread group with the forking task.
1872	 */
1873	if (clone_flags & CLONE_THREAD) {
1874		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1876			return ERR_PTR(-EINVAL);
1877	}
1878
1879	/*
1880	 * If the new process will be in a different time namespace
1881	 * do not allow it to share VM or a thread group with the forking task.
1882	 */
1883	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884		if (nsp->time_ns != nsp->time_ns_for_children)
1885			return ERR_PTR(-EINVAL);
1886	}
1887
1888	if (clone_flags & CLONE_PIDFD) {
1889		/*
1890		 * - CLONE_DETACHED is blocked so that we can potentially
1891		 *   reuse it later for CLONE_PIDFD.
1892		 * - CLONE_THREAD is blocked until someone really needs it.
1893		 */
1894		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895			return ERR_PTR(-EINVAL);
1896	}
1897
1898	/*
1899	 * Force any signals received before this point to be delivered
1900	 * before the fork happens.  Collect up signals sent to multiple
1901	 * processes that happen during the fork and delay them so that
1902	 * they appear to happen after the fork.
1903	 */
1904	sigemptyset(&delayed.signal);
1905	INIT_HLIST_NODE(&delayed.node);
1906
1907	spin_lock_irq(&current->sighand->siglock);
1908	if (!(clone_flags & CLONE_THREAD))
1909		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910	recalc_sigpending();
1911	spin_unlock_irq(&current->sighand->siglock);
1912	retval = -ERESTARTNOINTR;
1913	if (signal_pending(current))
1914		goto fork_out;
1915
1916	retval = -ENOMEM;
1917	p = dup_task_struct(current, node);
1918	if (!p)
1919		goto fork_out;
1920
1921	/*
1922	 * This _must_ happen before we call free_task(), i.e. before we jump
1923	 * to any of the bad_fork_* labels. This is to avoid freeing
1924	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925	 * kernel threads (PF_KTHREAD).
1926	 */
1927	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928	/*
1929	 * Clear TID on mm_release()?
1930	 */
1931	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932
1933	ftrace_graph_init_task(p);
1934
1935	rt_mutex_init_task(p);
1936
1937	lockdep_assert_irqs_enabled();
1938#ifdef CONFIG_PROVE_LOCKING
 
1939	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940#endif
1941	retval = -EAGAIN;
1942	if (atomic_read(&p->real_cred->user->processes) >=
1943			task_rlimit(p, RLIMIT_NPROC)) {
1944		if (p->real_cred->user != INIT_USER &&
1945		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946			goto bad_fork_free;
1947	}
1948	current->flags &= ~PF_NPROC_EXCEEDED;
1949
1950	retval = copy_creds(p, clone_flags);
1951	if (retval < 0)
1952		goto bad_fork_free;
1953
1954	/*
1955	 * If multiple threads are within copy_process(), then this check
1956	 * triggers too late. This doesn't hurt, the check is only there
1957	 * to stop root fork bombs.
1958	 */
1959	retval = -EAGAIN;
1960	if (data_race(nr_threads >= max_threads))
 
 
 
1961		goto bad_fork_cleanup_count;
1962
 
1963	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965	p->flags |= PF_FORKNOEXEC;
1966	INIT_LIST_HEAD(&p->children);
1967	INIT_LIST_HEAD(&p->sibling);
1968	rcu_copy_process(p);
1969	p->vfork_done = NULL;
1970	spin_lock_init(&p->alloc_lock);
1971
1972	init_sigpending(&p->pending);
1973
1974	p->utime = p->stime = p->gtime = 0;
1975#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976	p->utimescaled = p->stimescaled = 0;
1977#endif
1978	prev_cputime_init(&p->prev_cputime);
1979
1980#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981	seqcount_init(&p->vtime.seqcount);
1982	p->vtime.starttime = 0;
1983	p->vtime.state = VTIME_INACTIVE;
1984#endif
1985
1986#if defined(SPLIT_RSS_COUNTING)
1987	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988#endif
1989
1990	p->default_timer_slack_ns = current->timer_slack_ns;
1991
1992#ifdef CONFIG_PSI
1993	p->psi_flags = 0;
1994#endif
1995
1996	task_io_accounting_init(&p->ioac);
1997	acct_clear_integrals(p);
1998
1999	posix_cputimers_init(&p->posix_cputimers);
2000
 
 
 
2001	p->io_context = NULL;
2002	audit_set_context(p, NULL);
 
 
2003	cgroup_fork(p);
2004#ifdef CONFIG_NUMA
2005	p->mempolicy = mpol_dup(p->mempolicy);
2006	if (IS_ERR(p->mempolicy)) {
2007		retval = PTR_ERR(p->mempolicy);
2008		p->mempolicy = NULL;
2009		goto bad_fork_cleanup_threadgroup_lock;
2010	}
 
2011#endif
2012#ifdef CONFIG_CPUSETS
2013	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016#endif
2017#ifdef CONFIG_TRACE_IRQFLAGS
2018	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021	p->softirqs_enabled		= 1;
2022	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
2023#endif
2024
2025	p->pagefault_disabled = 0;
2026
2027#ifdef CONFIG_LOCKDEP
2028	lockdep_init_task(p);
 
 
2029#endif
2030
2031#ifdef CONFIG_DEBUG_MUTEXES
2032	p->blocked_on = NULL; /* not blocked yet */
2033#endif
2034#ifdef CONFIG_BCACHE
2035	p->sequential_io	= 0;
2036	p->sequential_io_avg	= 0;
2037#endif
2038
2039	/* Perform scheduler related setup. Assign this task to a CPU. */
2040	retval = sched_fork(clone_flags, p);
2041	if (retval)
2042		goto bad_fork_cleanup_policy;
2043
2044	retval = perf_event_init_task(p);
2045	if (retval)
2046		goto bad_fork_cleanup_policy;
2047	retval = audit_alloc(p);
2048	if (retval)
2049		goto bad_fork_cleanup_perf;
2050	/* copy all the process information */
2051	shm_init_task(p);
2052	retval = security_task_alloc(p, clone_flags);
2053	if (retval)
2054		goto bad_fork_cleanup_audit;
2055	retval = copy_semundo(clone_flags, p);
2056	if (retval)
2057		goto bad_fork_cleanup_security;
2058	retval = copy_files(clone_flags, p);
2059	if (retval)
2060		goto bad_fork_cleanup_semundo;
2061	retval = copy_fs(clone_flags, p);
2062	if (retval)
2063		goto bad_fork_cleanup_files;
2064	retval = copy_sighand(clone_flags, p);
2065	if (retval)
2066		goto bad_fork_cleanup_fs;
2067	retval = copy_signal(clone_flags, p);
2068	if (retval)
2069		goto bad_fork_cleanup_sighand;
2070	retval = copy_mm(clone_flags, p);
2071	if (retval)
2072		goto bad_fork_cleanup_signal;
2073	retval = copy_namespaces(clone_flags, p);
2074	if (retval)
2075		goto bad_fork_cleanup_mm;
2076	retval = copy_io(clone_flags, p);
2077	if (retval)
2078		goto bad_fork_cleanup_namespaces;
2079	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080	if (retval)
2081		goto bad_fork_cleanup_io;
2082
2083	stackleak_task_init(p);
2084
2085	if (pid != &init_struct_pid) {
2086		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087				args->set_tid_size);
2088		if (IS_ERR(pid)) {
2089			retval = PTR_ERR(pid);
2090			goto bad_fork_cleanup_thread;
2091		}
2092	}
2093
 
 
 
 
 
 
2094	/*
2095	 * This has to happen after we've potentially unshared the file
2096	 * descriptor table (so that the pidfd doesn't leak into the child
2097	 * if the fd table isn't shared).
2098	 */
2099	if (clone_flags & CLONE_PIDFD) {
2100		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2101		if (retval < 0)
2102			goto bad_fork_free_pid;
2103
2104		pidfd = retval;
2105
2106		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107					      O_RDWR | O_CLOEXEC);
2108		if (IS_ERR(pidfile)) {
2109			put_unused_fd(pidfd);
2110			retval = PTR_ERR(pidfile);
2111			goto bad_fork_free_pid;
2112		}
2113		get_pid(pid);	/* held by pidfile now */
2114
2115		retval = put_user(pidfd, args->pidfd);
2116		if (retval)
2117			goto bad_fork_put_pidfd;
2118	}
2119
2120#ifdef CONFIG_BLOCK
2121	p->plug = NULL;
2122#endif
2123	futex_init_task(p);
2124
 
 
 
 
 
 
2125	/*
2126	 * sigaltstack should be cleared when sharing the same VM
2127	 */
2128	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129		sas_ss_reset(p);
2130
2131	/*
2132	 * Syscall tracing and stepping should be turned off in the
2133	 * child regardless of CLONE_PTRACE.
2134	 */
2135	user_disable_single_step(p);
2136	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137#ifdef TIF_SYSCALL_EMU
2138	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139#endif
2140	clear_tsk_latency_tracing(p);
2141
2142	/* ok, now we should be set up.. */
2143	p->pid = pid_nr(pid);
2144	if (clone_flags & CLONE_THREAD) {
2145		p->exit_signal = -1;
2146		p->group_leader = current->group_leader;
2147		p->tgid = current->tgid;
2148	} else {
2149		if (clone_flags & CLONE_PARENT)
2150			p->exit_signal = current->group_leader->exit_signal;
2151		else
2152			p->exit_signal = args->exit_signal;
2153		p->group_leader = p;
2154		p->tgid = p->pid;
2155	}
2156
2157	p->nr_dirtied = 0;
2158	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159	p->dirty_paused_when = 0;
2160
2161	p->pdeath_signal = 0;
2162	INIT_LIST_HEAD(&p->thread_group);
2163	p->task_works = NULL;
2164
2165	/*
2166	 * Ensure that the cgroup subsystem policies allow the new process to be
2167	 * forked. It should be noted the the new process's css_set can be changed
2168	 * between here and cgroup_post_fork() if an organisation operation is in
2169	 * progress.
2170	 */
2171	retval = cgroup_can_fork(p, args);
2172	if (retval)
2173		goto bad_fork_put_pidfd;
2174
2175	/*
2176	 * From this point on we must avoid any synchronous user-space
2177	 * communication until we take the tasklist-lock. In particular, we do
2178	 * not want user-space to be able to predict the process start-time by
2179	 * stalling fork(2) after we recorded the start_time but before it is
2180	 * visible to the system.
2181	 */
 
 
2182
2183	p->start_time = ktime_get_ns();
2184	p->start_boottime = ktime_get_boottime_ns();
 
 
 
2185
2186	/*
2187	 * Make it visible to the rest of the system, but dont wake it up yet.
2188	 * Need tasklist lock for parent etc handling!
2189	 */
2190	write_lock_irq(&tasklist_lock);
2191
2192	/* CLONE_PARENT re-uses the old parent */
2193	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194		p->real_parent = current->real_parent;
2195		p->parent_exec_id = current->parent_exec_id;
2196	} else {
2197		p->real_parent = current;
2198		p->parent_exec_id = current->self_exec_id;
2199	}
2200
2201	klp_copy_process(p);
2202
2203	spin_lock(&current->sighand->siglock);
2204
2205	/*
2206	 * Copy seccomp details explicitly here, in case they were changed
2207	 * before holding sighand lock.
2208	 */
2209	copy_seccomp(p);
2210
2211	rseq_fork(p, clone_flags);
2212
2213	/* Don't start children in a dying pid namespace */
2214	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215		retval = -ENOMEM;
2216		goto bad_fork_cancel_cgroup;
 
 
2217	}
2218
2219	/* Let kill terminate clone/fork in the middle */
2220	if (fatal_signal_pending(current)) {
2221		retval = -EINTR;
2222		goto bad_fork_cancel_cgroup;
 
 
2223	}
2224
2225	/* past the last point of failure */
2226	if (pidfile)
2227		fd_install(pidfd, pidfile);
2228
2229	init_task_pid_links(p);
2230	if (likely(p->pid)) {
2231		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232
2233		init_task_pid(p, PIDTYPE_PID, pid);
2234		if (thread_group_leader(p)) {
2235			init_task_pid(p, PIDTYPE_TGID, pid);
2236			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238
2239			if (is_child_reaper(pid)) {
2240				ns_of_pid(pid)->child_reaper = p;
2241				p->signal->flags |= SIGNAL_UNKILLABLE;
2242			}
2243			p->signal->shared_pending.signal = delayed.signal;
2244			p->signal->tty = tty_kref_get(current->signal->tty);
2245			/*
2246			 * Inherit has_child_subreaper flag under the same
2247			 * tasklist_lock with adding child to the process tree
2248			 * for propagate_has_child_subreaper optimization.
2249			 */
2250			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251							 p->real_parent->signal->is_child_subreaper;
2252			list_add_tail(&p->sibling, &p->real_parent->children);
2253			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254			attach_pid(p, PIDTYPE_TGID);
2255			attach_pid(p, PIDTYPE_PGID);
2256			attach_pid(p, PIDTYPE_SID);
2257			__this_cpu_inc(process_counts);
2258		} else {
2259			current->signal->nr_threads++;
2260			atomic_inc(&current->signal->live);
2261			refcount_inc(&current->signal->sigcnt);
2262			task_join_group_stop(p);
2263			list_add_tail_rcu(&p->thread_group,
2264					  &p->group_leader->thread_group);
2265			list_add_tail_rcu(&p->thread_node,
2266					  &p->signal->thread_head);
2267		}
2268		attach_pid(p, PIDTYPE_PID);
2269		nr_threads++;
2270	}
 
2271	total_forks++;
2272	hlist_del_init(&delayed.node);
2273	spin_unlock(&current->sighand->siglock);
2274	syscall_tracepoint_update(p);
2275	write_unlock_irq(&tasklist_lock);
2276
2277	proc_fork_connector(p);
2278	sched_post_fork(p);
2279	cgroup_post_fork(p, args);
 
2280	perf_event_fork(p);
2281
2282	trace_task_newtask(p, clone_flags);
2283	uprobe_copy_process(p, clone_flags);
2284
2285	return p;
2286
2287bad_fork_cancel_cgroup:
2288	spin_unlock(&current->sighand->siglock);
2289	write_unlock_irq(&tasklist_lock);
2290	cgroup_cancel_fork(p, args);
2291bad_fork_put_pidfd:
2292	if (clone_flags & CLONE_PIDFD) {
2293		fput(pidfile);
2294		put_unused_fd(pidfd);
2295	}
2296bad_fork_free_pid:
2297	if (pid != &init_struct_pid)
2298		free_pid(pid);
2299bad_fork_cleanup_thread:
2300	exit_thread(p);
2301bad_fork_cleanup_io:
2302	if (p->io_context)
2303		exit_io_context(p);
2304bad_fork_cleanup_namespaces:
2305	exit_task_namespaces(p);
2306bad_fork_cleanup_mm:
2307	if (p->mm) {
2308		mm_clear_owner(p->mm, p);
 
 
 
2309		mmput(p->mm);
2310	}
2311bad_fork_cleanup_signal:
2312	if (!(clone_flags & CLONE_THREAD))
2313		free_signal_struct(p->signal);
2314bad_fork_cleanup_sighand:
2315	__cleanup_sighand(p->sighand);
2316bad_fork_cleanup_fs:
2317	exit_fs(p); /* blocking */
2318bad_fork_cleanup_files:
2319	exit_files(p); /* blocking */
2320bad_fork_cleanup_semundo:
2321	exit_sem(p);
2322bad_fork_cleanup_security:
2323	security_task_free(p);
2324bad_fork_cleanup_audit:
2325	audit_free(p);
2326bad_fork_cleanup_perf:
2327	perf_event_free_task(p);
2328bad_fork_cleanup_policy:
2329	lockdep_free_task(p);
2330#ifdef CONFIG_NUMA
2331	mpol_put(p->mempolicy);
2332bad_fork_cleanup_threadgroup_lock:
2333#endif
 
 
 
2334	delayacct_tsk_free(p);
 
2335bad_fork_cleanup_count:
2336	atomic_dec(&p->cred->user->processes);
2337	exit_creds(p);
2338bad_fork_free:
2339	p->state = TASK_DEAD;
2340	put_task_stack(p);
2341	delayed_free_task(p);
2342fork_out:
2343	spin_lock_irq(&current->sighand->siglock);
2344	hlist_del_init(&delayed.node);
2345	spin_unlock_irq(&current->sighand->siglock);
2346	return ERR_PTR(retval);
2347}
2348
2349static inline void init_idle_pids(struct task_struct *idle)
 
 
 
 
 
 
2350{
2351	enum pid_type type;
2352
2353	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355		init_task_pid(idle, type, &init_struct_pid);
2356	}
2357}
2358
2359struct task_struct *fork_idle(int cpu)
2360{
2361	struct task_struct *task;
2362	struct kernel_clone_args args = {
2363		.flags = CLONE_VM,
2364	};
2365
2366	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
 
2367	if (!IS_ERR(task)) {
2368		init_idle_pids(task);
2369		init_idle(task, cpu);
2370	}
2371
2372	return task;
2373}
2374
2375struct mm_struct *copy_init_mm(void)
2376{
2377	return dup_mm(NULL, &init_mm);
2378}
2379
2380/*
2381 *  Ok, this is the main fork-routine.
2382 *
2383 * It copies the process, and if successful kick-starts
2384 * it and waits for it to finish using the VM if required.
2385 *
2386 * args->exit_signal is expected to be checked for sanity by the caller.
2387 */
2388long _do_fork(struct kernel_clone_args *args)
 
 
 
 
 
2389{
2390	u64 clone_flags = args->flags;
2391	struct completion vfork;
2392	struct pid *pid;
2393	struct task_struct *p;
2394	int trace = 0;
2395	long nr;
2396
2397	/*
2398	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401	 * field in struct clone_args and it still doesn't make sense to have
2402	 * them both point at the same memory location. Performing this check
2403	 * here has the advantage that we don't need to have a separate helper
2404	 * to check for legacy clone().
2405	 */
2406	if ((args->flags & CLONE_PIDFD) &&
2407	    (args->flags & CLONE_PARENT_SETTID) &&
2408	    (args->pidfd == args->parent_tid))
2409		return -EINVAL;
 
2410
2411	/*
2412	 * Determine whether and which event to report to ptracer.  When
2413	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414	 * requested, no event is reported; otherwise, report if the event
2415	 * for the type of forking is enabled.
2416	 */
2417	if (!(clone_flags & CLONE_UNTRACED)) {
2418		if (clone_flags & CLONE_VFORK)
2419			trace = PTRACE_EVENT_VFORK;
2420		else if (args->exit_signal != SIGCHLD)
2421			trace = PTRACE_EVENT_CLONE;
2422		else
2423			trace = PTRACE_EVENT_FORK;
2424
2425		if (likely(!ptrace_event_enabled(current, trace)))
2426			trace = 0;
2427	}
2428
2429	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2430	add_latent_entropy();
2431
2432	if (IS_ERR(p))
2433		return PTR_ERR(p);
2434
2435	/*
2436	 * Do this prior waking up the new thread - the thread pointer
2437	 * might get invalid after that point, if the thread exits quickly.
2438	 */
2439	trace_sched_process_fork(current, p);
 
2440
2441	pid = get_task_pid(p, PIDTYPE_PID);
2442	nr = pid_vnr(pid);
2443
2444	if (clone_flags & CLONE_PARENT_SETTID)
2445		put_user(nr, args->parent_tid);
2446
2447	if (clone_flags & CLONE_VFORK) {
2448		p->vfork_done = &vfork;
2449		init_completion(&vfork);
2450		get_task_struct(p);
2451	}
2452
2453	wake_up_new_task(p);
 
 
 
2454
2455	/* forking complete and child started to run, tell ptracer */
2456	if (unlikely(trace))
2457		ptrace_event_pid(trace, pid);
2458
2459	if (clone_flags & CLONE_VFORK) {
2460		if (!wait_for_vfork_done(p, &vfork))
2461			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2462	}
 
 
 
2463
2464	put_pid(pid);
2465	return nr;
2466}
2467
2468/*
2469 * Create a kernel thread.
2470 */
2471pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2472{
2473	struct kernel_clone_args args = {
2474		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475				    CLONE_UNTRACED) & ~CSIGNAL),
2476		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477		.stack		= (unsigned long)fn,
2478		.stack_size	= (unsigned long)arg,
2479	};
2480
2481	return _do_fork(&args);
2482}
2483
2484#ifdef __ARCH_WANT_SYS_FORK
2485SYSCALL_DEFINE0(fork)
2486{
2487#ifdef CONFIG_MMU
2488	struct kernel_clone_args args = {
2489		.exit_signal = SIGCHLD,
2490	};
2491
2492	return _do_fork(&args);
2493#else
2494	/* can not support in nommu mode */
2495	return -EINVAL;
2496#endif
2497}
2498#endif
2499
2500#ifdef __ARCH_WANT_SYS_VFORK
2501SYSCALL_DEFINE0(vfork)
2502{
2503	struct kernel_clone_args args = {
2504		.flags		= CLONE_VFORK | CLONE_VM,
2505		.exit_signal	= SIGCHLD,
2506	};
2507
2508	return _do_fork(&args);
2509}
2510#endif
2511
2512#ifdef __ARCH_WANT_SYS_CLONE
2513#ifdef CONFIG_CLONE_BACKWARDS
2514SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515		 int __user *, parent_tidptr,
2516		 unsigned long, tls,
2517		 int __user *, child_tidptr)
2518#elif defined(CONFIG_CLONE_BACKWARDS2)
2519SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520		 int __user *, parent_tidptr,
2521		 int __user *, child_tidptr,
2522		 unsigned long, tls)
2523#elif defined(CONFIG_CLONE_BACKWARDS3)
2524SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525		int, stack_size,
2526		int __user *, parent_tidptr,
2527		int __user *, child_tidptr,
2528		unsigned long, tls)
2529#else
2530SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531		 int __user *, parent_tidptr,
2532		 int __user *, child_tidptr,
2533		 unsigned long, tls)
2534#endif
2535{
2536	struct kernel_clone_args args = {
2537		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538		.pidfd		= parent_tidptr,
2539		.child_tid	= child_tidptr,
2540		.parent_tid	= parent_tidptr,
2541		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542		.stack		= newsp,
2543		.tls		= tls,
2544	};
2545
2546	return _do_fork(&args);
2547}
2548#endif
2549
2550#ifdef __ARCH_WANT_SYS_CLONE3
2551
2552noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553					      struct clone_args __user *uargs,
2554					      size_t usize)
2555{
2556	int err;
2557	struct clone_args args;
2558	pid_t *kset_tid = kargs->set_tid;
2559
2560	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561		     CLONE_ARGS_SIZE_VER0);
2562	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563		     CLONE_ARGS_SIZE_VER1);
2564	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565		     CLONE_ARGS_SIZE_VER2);
2566	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567
2568	if (unlikely(usize > PAGE_SIZE))
2569		return -E2BIG;
2570	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571		return -EINVAL;
2572
2573	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574	if (err)
2575		return err;
2576
2577	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578		return -EINVAL;
2579
2580	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581		return -EINVAL;
2582
2583	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584		return -EINVAL;
2585
2586	/*
2587	 * Verify that higher 32bits of exit_signal are unset and that
2588	 * it is a valid signal
2589	 */
2590	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591		     !valid_signal(args.exit_signal)))
2592		return -EINVAL;
2593
2594	if ((args.flags & CLONE_INTO_CGROUP) &&
2595	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596		return -EINVAL;
2597
2598	*kargs = (struct kernel_clone_args){
2599		.flags		= args.flags,
2600		.pidfd		= u64_to_user_ptr(args.pidfd),
2601		.child_tid	= u64_to_user_ptr(args.child_tid),
2602		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603		.exit_signal	= args.exit_signal,
2604		.stack		= args.stack,
2605		.stack_size	= args.stack_size,
2606		.tls		= args.tls,
2607		.set_tid_size	= args.set_tid_size,
2608		.cgroup		= args.cgroup,
2609	};
2610
2611	if (args.set_tid &&
2612		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613			(kargs->set_tid_size * sizeof(pid_t))))
2614		return -EFAULT;
2615
2616	kargs->set_tid = kset_tid;
2617
2618	return 0;
2619}
2620
2621/**
2622 * clone3_stack_valid - check and prepare stack
2623 * @kargs: kernel clone args
2624 *
2625 * Verify that the stack arguments userspace gave us are sane.
2626 * In addition, set the stack direction for userspace since it's easy for us to
2627 * determine.
2628 */
2629static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630{
2631	if (kargs->stack == 0) {
2632		if (kargs->stack_size > 0)
2633			return false;
2634	} else {
2635		if (kargs->stack_size == 0)
2636			return false;
2637
2638		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639			return false;
2640
2641#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642		kargs->stack += kargs->stack_size;
2643#endif
2644	}
2645
2646	return true;
2647}
2648
2649static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650{
2651	/* Verify that no unknown flags are passed along. */
2652	if (kargs->flags &
2653	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654		return false;
2655
2656	/*
2657	 * - make the CLONE_DETACHED bit reuseable for clone3
2658	 * - make the CSIGNAL bits reuseable for clone3
2659	 */
2660	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661		return false;
2662
2663	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665		return false;
2666
2667	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668	    kargs->exit_signal)
2669		return false;
2670
2671	if (!clone3_stack_valid(kargs))
2672		return false;
2673
2674	return true;
2675}
2676
2677/**
2678 * clone3 - create a new process with specific properties
2679 * @uargs: argument structure
2680 * @size:  size of @uargs
2681 *
2682 * clone3() is the extensible successor to clone()/clone2().
2683 * It takes a struct as argument that is versioned by its size.
2684 *
2685 * Return: On success, a positive PID for the child process.
2686 *         On error, a negative errno number.
2687 */
2688SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689{
2690	int err;
2691
2692	struct kernel_clone_args kargs;
2693	pid_t set_tid[MAX_PID_NS_LEVEL];
2694
2695	kargs.set_tid = set_tid;
2696
2697	err = copy_clone_args_from_user(&kargs, uargs, size);
2698	if (err)
2699		return err;
2700
2701	if (!clone3_args_valid(&kargs))
2702		return -EINVAL;
2703
2704	return _do_fork(&kargs);
2705}
2706#endif
2707
2708void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709{
2710	struct task_struct *leader, *parent, *child;
2711	int res;
2712
2713	read_lock(&tasklist_lock);
2714	leader = top = top->group_leader;
2715down:
2716	for_each_thread(leader, parent) {
2717		list_for_each_entry(child, &parent->children, sibling) {
2718			res = visitor(child, data);
2719			if (res) {
2720				if (res < 0)
2721					goto out;
2722				leader = child;
2723				goto down;
2724			}
2725up:
2726			;
2727		}
2728	}
2729
2730	if (leader != top) {
2731		child = leader;
2732		parent = child->real_parent;
2733		leader = parent->group_leader;
2734		goto up;
2735	}
2736out:
2737	read_unlock(&tasklist_lock);
2738}
2739
2740#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741#define ARCH_MIN_MMSTRUCT_ALIGN 0
2742#endif
2743
2744static void sighand_ctor(void *data)
2745{
2746	struct sighand_struct *sighand = data;
2747
2748	spin_lock_init(&sighand->siglock);
2749	init_waitqueue_head(&sighand->signalfd_wqh);
2750}
2751
2752void __init proc_caches_init(void)
2753{
2754	unsigned int mm_size;
2755
2756	sighand_cachep = kmem_cache_create("sighand_cache",
2757			sizeof(struct sighand_struct), 0,
2758			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759			SLAB_ACCOUNT, sighand_ctor);
2760	signal_cachep = kmem_cache_create("signal_cache",
2761			sizeof(struct signal_struct), 0,
2762			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763			NULL);
2764	files_cachep = kmem_cache_create("files_cache",
2765			sizeof(struct files_struct), 0,
2766			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767			NULL);
2768	fs_cachep = kmem_cache_create("fs_cache",
2769			sizeof(struct fs_struct), 0,
2770			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771			NULL);
2772
2773	/*
2774	 * The mm_cpumask is located at the end of mm_struct, and is
2775	 * dynamically sized based on the maximum CPU number this system
2776	 * can have, taking hotplug into account (nr_cpu_ids).
2777	 */
2778	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779
2780	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783			offsetof(struct mm_struct, saved_auxv),
2784			sizeof_field(struct mm_struct, saved_auxv),
2785			NULL);
2786	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2787	mmap_init();
2788	nsproxy_cache_init();
2789}
2790
2791/*
2792 * Check constraints on flags passed to the unshare system call.
2793 */
2794static int check_unshare_flags(unsigned long unshare_flags)
2795{
2796	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800				CLONE_NEWTIME))
2801		return -EINVAL;
2802	/*
2803	 * Not implemented, but pretend it works if there is nothing
2804	 * to unshare.  Note that unsharing the address space or the
2805	 * signal handlers also need to unshare the signal queues (aka
2806	 * CLONE_THREAD).
2807	 */
2808	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809		if (!thread_group_empty(current))
2810			return -EINVAL;
2811	}
2812	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813		if (refcount_read(&current->sighand->count) > 1)
2814			return -EINVAL;
2815	}
2816	if (unshare_flags & CLONE_VM) {
2817		if (!current_is_single_threaded())
2818			return -EINVAL;
2819	}
2820
2821	return 0;
2822}
2823
2824/*
2825 * Unshare the filesystem structure if it is being shared
2826 */
2827static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828{
2829	struct fs_struct *fs = current->fs;
2830
2831	if (!(unshare_flags & CLONE_FS) || !fs)
2832		return 0;
2833
2834	/* don't need lock here; in the worst case we'll do useless copy */
2835	if (fs->users == 1)
2836		return 0;
2837
2838	*new_fsp = copy_fs_struct(fs);
2839	if (!*new_fsp)
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845/*
2846 * Unshare file descriptor table if it is being shared
2847 */
2848int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849	       struct files_struct **new_fdp)
2850{
2851	struct files_struct *fd = current->files;
2852	int error = 0;
2853
2854	if ((unshare_flags & CLONE_FILES) &&
2855	    (fd && atomic_read(&fd->count) > 1)) {
2856		*new_fdp = dup_fd(fd, max_fds, &error);
2857		if (!*new_fdp)
2858			return error;
2859	}
2860
2861	return 0;
2862}
2863
2864/*
2865 * unshare allows a process to 'unshare' part of the process
2866 * context which was originally shared using clone.  copy_*
2867 * functions used by _do_fork() cannot be used here directly
2868 * because they modify an inactive task_struct that is being
2869 * constructed. Here we are modifying the current, active,
2870 * task_struct.
2871 */
2872int ksys_unshare(unsigned long unshare_flags)
2873{
2874	struct fs_struct *fs, *new_fs = NULL;
2875	struct files_struct *fd, *new_fd = NULL;
2876	struct cred *new_cred = NULL;
2877	struct nsproxy *new_nsproxy = NULL;
2878	int do_sysvsem = 0;
2879	int err;
2880
2881	/*
2882	 * If unsharing a user namespace must also unshare the thread group
2883	 * and unshare the filesystem root and working directories.
2884	 */
2885	if (unshare_flags & CLONE_NEWUSER)
2886		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887	/*
2888	 * If unsharing vm, must also unshare signal handlers.
2889	 */
2890	if (unshare_flags & CLONE_VM)
2891		unshare_flags |= CLONE_SIGHAND;
2892	/*
2893	 * If unsharing a signal handlers, must also unshare the signal queues.
2894	 */
2895	if (unshare_flags & CLONE_SIGHAND)
2896		unshare_flags |= CLONE_THREAD;
2897	/*
2898	 * If unsharing namespace, must also unshare filesystem information.
2899	 */
2900	if (unshare_flags & CLONE_NEWNS)
2901		unshare_flags |= CLONE_FS;
2902
2903	err = check_unshare_flags(unshare_flags);
2904	if (err)
2905		goto bad_unshare_out;
2906	/*
2907	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908	 * to a new ipc namespace, the semaphore arrays from the old
2909	 * namespace are unreachable.
2910	 */
2911	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912		do_sysvsem = 1;
2913	err = unshare_fs(unshare_flags, &new_fs);
2914	if (err)
2915		goto bad_unshare_out;
2916	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917	if (err)
2918		goto bad_unshare_cleanup_fs;
2919	err = unshare_userns(unshare_flags, &new_cred);
2920	if (err)
2921		goto bad_unshare_cleanup_fd;
2922	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923					 new_cred, new_fs);
2924	if (err)
2925		goto bad_unshare_cleanup_cred;
2926
2927	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928		if (do_sysvsem) {
2929			/*
2930			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931			 */
2932			exit_sem(current);
2933		}
2934		if (unshare_flags & CLONE_NEWIPC) {
2935			/* Orphan segments in old ns (see sem above). */
2936			exit_shm(current);
2937			shm_init_task(current);
2938		}
2939
2940		if (new_nsproxy)
2941			switch_task_namespaces(current, new_nsproxy);
 
 
2942
2943		task_lock(current);
2944
2945		if (new_fs) {
2946			fs = current->fs;
2947			spin_lock(&fs->lock);
2948			current->fs = new_fs;
2949			if (--fs->users)
2950				new_fs = NULL;
2951			else
2952				new_fs = fs;
2953			spin_unlock(&fs->lock);
2954		}
2955
2956		if (new_fd) {
2957			fd = current->files;
2958			current->files = new_fd;
2959			new_fd = fd;
2960		}
2961
2962		task_unlock(current);
2963
2964		if (new_cred) {
2965			/* Install the new user namespace */
2966			commit_creds(new_cred);
2967			new_cred = NULL;
2968		}
2969	}
2970
2971	perf_event_namespaces(current);
 
2972
2973bad_unshare_cleanup_cred:
2974	if (new_cred)
2975		put_cred(new_cred);
2976bad_unshare_cleanup_fd:
2977	if (new_fd)
2978		put_files_struct(new_fd);
2979
2980bad_unshare_cleanup_fs:
2981	if (new_fs)
2982		free_fs_struct(new_fs);
2983
2984bad_unshare_out:
2985	return err;
2986}
2987
2988SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989{
2990	return ksys_unshare(unshare_flags);
2991}
2992
2993/*
2994 *	Helper to unshare the files of the current task.
2995 *	We don't want to expose copy_files internals to
2996 *	the exec layer of the kernel.
2997 */
2998
2999int unshare_files(struct files_struct **displaced)
3000{
3001	struct task_struct *task = current;
3002	struct files_struct *copy = NULL;
3003	int error;
3004
3005	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006	if (error || !copy) {
3007		*displaced = NULL;
3008		return error;
3009	}
3010	*displaced = task->files;
3011	task_lock(task);
3012	task->files = copy;
3013	task_unlock(task);
3014	return 0;
3015}
3016
3017int sysctl_max_threads(struct ctl_table *table, int write,
3018		       void *buffer, size_t *lenp, loff_t *ppos)
3019{
3020	struct ctl_table t;
3021	int ret;
3022	int threads = max_threads;
3023	int min = 1;
3024	int max = MAX_THREADS;
3025
3026	t = *table;
3027	t.data = &threads;
3028	t.extra1 = &min;
3029	t.extra2 = &max;
3030
3031	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032	if (ret || !write)
3033		return ret;
3034
3035	max_threads = threads;
3036
3037	return 0;
3038}