Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the
  14 * next paragraph) shall be included in all copies or substantial portions
  15 * of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24 *
  25 */
  26
  27#ifndef _UAPI_I915_DRM_H_
  28#define _UAPI_I915_DRM_H_
  29
  30#include "drm.h"
  31
  32#if defined(__cplusplus)
  33extern "C" {
  34#endif
  35
  36/* Please note that modifications to all structs defined here are
  37 * subject to backwards-compatibility constraints.
  38 */
  39
  40/**
  41 * DOC: uevents generated by i915 on it's device node
  42 *
  43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
  44 *	event from the gpu l3 cache. Additional information supplied is ROW,
  45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
  46 *	track of these events and if a specific cache-line seems to have a
  47 *	persistent error remap it with the l3 remapping tool supplied in
  48 *	intel-gpu-tools.  The value supplied with the event is always 1.
  49 *
  50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
  51 *	hangcheck. The error detection event is a good indicator of when things
  52 *	began to go badly. The value supplied with the event is a 1 upon error
  53 *	detection, and a 0 upon reset completion, signifying no more error
  54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
  55 *	cause the related events to not be seen.
  56 *
  57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
  58 *	GPU. The value supplied with the event is always 1. NOTE: Disable
  59 *	reset via module parameter will cause this event to not be seen.
  60 */
  61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
  62#define I915_ERROR_UEVENT		"ERROR"
  63#define I915_RESET_UEVENT		"RESET"
  64
  65/**
  66 * struct i915_user_extension - Base class for defining a chain of extensions
  67 *
  68 * Many interfaces need to grow over time. In most cases we can simply
  69 * extend the struct and have userspace pass in more data. Another option,
  70 * as demonstrated by Vulkan's approach to providing extensions for forward
  71 * and backward compatibility, is to use a list of optional structs to
  72 * provide those extra details.
  73 *
  74 * The key advantage to using an extension chain is that it allows us to
  75 * redefine the interface more easily than an ever growing struct of
  76 * increasing complexity, and for large parts of that interface to be
  77 * entirely optional. The downside is more pointer chasing; chasing across
  78 * the __user boundary with pointers encapsulated inside u64.
  79 *
  80 * Example chaining:
  81 *
  82 * .. code-block:: C
  83 *
  84 *	struct i915_user_extension ext3 {
  85 *		.next_extension = 0, // end
  86 *		.name = ...,
  87 *	};
  88 *	struct i915_user_extension ext2 {
  89 *		.next_extension = (uintptr_t)&ext3,
  90 *		.name = ...,
  91 *	};
  92 *	struct i915_user_extension ext1 {
  93 *		.next_extension = (uintptr_t)&ext2,
  94 *		.name = ...,
  95 *	};
  96 *
  97 * Typically the struct i915_user_extension would be embedded in some uAPI
  98 * struct, and in this case we would feed it the head of the chain(i.e ext1),
  99 * which would then apply all of the above extensions.
 100 *
 101 */
 102struct i915_user_extension {
 103	/**
 104	 * @next_extension:
 105	 *
 106	 * Pointer to the next struct i915_user_extension, or zero if the end.
 107	 */
 108	__u64 next_extension;
 109	/**
 110	 * @name: Name of the extension.
 111	 *
 112	 * Note that the name here is just some integer.
 113	 *
 114	 * Also note that the name space for this is not global for the whole
 115	 * driver, but rather its scope/meaning is limited to the specific piece
 116	 * of uAPI which has embedded the struct i915_user_extension.
 117	 */
 118	__u32 name;
 119	/**
 120	 * @flags: MBZ
 121	 *
 122	 * All undefined bits must be zero.
 123	 */
 124	__u32 flags;
 125	/**
 126	 * @rsvd: MBZ
 127	 *
 128	 * Reserved for future use; must be zero.
 129	 */
 130	__u32 rsvd[4];
 131};
 132
 133/*
 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the
 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
 136 */
 137enum i915_mocs_table_index {
 138	/*
 139	 * Not cached anywhere, coherency between CPU and GPU accesses is
 140	 * guaranteed.
 141	 */
 142	I915_MOCS_UNCACHED,
 143	/*
 144	 * Cacheability and coherency controlled by the kernel automatically
 145	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
 146	 * usage of the surface (used for display scanout or not).
 147	 */
 148	I915_MOCS_PTE,
 149	/*
 150	 * Cached in all GPU caches available on the platform.
 151	 * Coherency between CPU and GPU accesses to the surface is not
 152	 * guaranteed without extra synchronization.
 153	 */
 154	I915_MOCS_CACHED,
 155};
 156
 157/*
 158 * Different engines serve different roles, and there may be more than one
 159 * engine serving each role. enum drm_i915_gem_engine_class provides a
 160 * classification of the role of the engine, which may be used when requesting
 161 * operations to be performed on a certain subset of engines, or for providing
 162 * information about that group.
 163 */
 164enum drm_i915_gem_engine_class {
 165	I915_ENGINE_CLASS_RENDER	= 0,
 166	I915_ENGINE_CLASS_COPY		= 1,
 167	I915_ENGINE_CLASS_VIDEO		= 2,
 168	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
 169
 170	/* should be kept compact */
 171
 172	I915_ENGINE_CLASS_INVALID	= -1
 173};
 174
 175/*
 176 * There may be more than one engine fulfilling any role within the system.
 177 * Each engine of a class is given a unique instance number and therefore
 178 * any engine can be specified by its class:instance tuplet. APIs that allow
 179 * access to any engine in the system will use struct i915_engine_class_instance
 180 * for this identification.
 181 */
 182struct i915_engine_class_instance {
 183	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
 184	__u16 engine_instance;
 185#define I915_ENGINE_CLASS_INVALID_NONE -1
 186#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
 187};
 188
 189/**
 190 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
 191 *
 192 */
 193
 194enum drm_i915_pmu_engine_sample {
 195	I915_SAMPLE_BUSY = 0,
 196	I915_SAMPLE_WAIT = 1,
 197	I915_SAMPLE_SEMA = 2
 198};
 199
 200#define I915_PMU_SAMPLE_BITS (4)
 201#define I915_PMU_SAMPLE_MASK (0xf)
 202#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
 203#define I915_PMU_CLASS_SHIFT \
 204	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
 205
 206#define __I915_PMU_ENGINE(class, instance, sample) \
 207	((class) << I915_PMU_CLASS_SHIFT | \
 208	(instance) << I915_PMU_SAMPLE_BITS | \
 209	(sample))
 210
 211#define I915_PMU_ENGINE_BUSY(class, instance) \
 212	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
 213
 214#define I915_PMU_ENGINE_WAIT(class, instance) \
 215	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
 216
 217#define I915_PMU_ENGINE_SEMA(class, instance) \
 218	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
 219
 220#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
 221
 222#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
 223#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
 224#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
 225#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
 226#define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
 227
 228#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
 229
 230/* Each region is a minimum of 16k, and there are at most 255 of them.
 231 */
 232#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
 233				 * of chars for next/prev indices */
 234#define I915_LOG_MIN_TEX_REGION_SIZE 14
 235
 236typedef struct _drm_i915_init {
 237	enum {
 238		I915_INIT_DMA = 0x01,
 239		I915_CLEANUP_DMA = 0x02,
 240		I915_RESUME_DMA = 0x03
 241	} func;
 242	unsigned int mmio_offset;
 243	int sarea_priv_offset;
 244	unsigned int ring_start;
 245	unsigned int ring_end;
 246	unsigned int ring_size;
 247	unsigned int front_offset;
 248	unsigned int back_offset;
 249	unsigned int depth_offset;
 250	unsigned int w;
 251	unsigned int h;
 252	unsigned int pitch;
 253	unsigned int pitch_bits;
 254	unsigned int back_pitch;
 255	unsigned int depth_pitch;
 256	unsigned int cpp;
 257	unsigned int chipset;
 258} drm_i915_init_t;
 259
 260typedef struct _drm_i915_sarea {
 261	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
 262	int last_upload;	/* last time texture was uploaded */
 263	int last_enqueue;	/* last time a buffer was enqueued */
 264	int last_dispatch;	/* age of the most recently dispatched buffer */
 265	int ctxOwner;		/* last context to upload state */
 266	int texAge;
 267	int pf_enabled;		/* is pageflipping allowed? */
 268	int pf_active;
 269	int pf_current_page;	/* which buffer is being displayed? */
 270	int perf_boxes;		/* performance boxes to be displayed */
 271	int width, height;      /* screen size in pixels */
 272
 273	drm_handle_t front_handle;
 274	int front_offset;
 275	int front_size;
 276
 277	drm_handle_t back_handle;
 278	int back_offset;
 279	int back_size;
 280
 281	drm_handle_t depth_handle;
 282	int depth_offset;
 283	int depth_size;
 284
 285	drm_handle_t tex_handle;
 286	int tex_offset;
 287	int tex_size;
 288	int log_tex_granularity;
 289	int pitch;
 290	int rotation;           /* 0, 90, 180 or 270 */
 291	int rotated_offset;
 292	int rotated_size;
 293	int rotated_pitch;
 294	int virtualX, virtualY;
 295
 296	unsigned int front_tiled;
 297	unsigned int back_tiled;
 298	unsigned int depth_tiled;
 299	unsigned int rotated_tiled;
 300	unsigned int rotated2_tiled;
 301
 302	int pipeA_x;
 303	int pipeA_y;
 304	int pipeA_w;
 305	int pipeA_h;
 306	int pipeB_x;
 307	int pipeB_y;
 308	int pipeB_w;
 309	int pipeB_h;
 310
 311	/* fill out some space for old userspace triple buffer */
 312	drm_handle_t unused_handle;
 313	__u32 unused1, unused2, unused3;
 314
 315	/* buffer object handles for static buffers. May change
 316	 * over the lifetime of the client.
 317	 */
 318	__u32 front_bo_handle;
 319	__u32 back_bo_handle;
 320	__u32 unused_bo_handle;
 321	__u32 depth_bo_handle;
 322
 323} drm_i915_sarea_t;
 324
 325/* due to userspace building against these headers we need some compat here */
 326#define planeA_x pipeA_x
 327#define planeA_y pipeA_y
 328#define planeA_w pipeA_w
 329#define planeA_h pipeA_h
 330#define planeB_x pipeB_x
 331#define planeB_y pipeB_y
 332#define planeB_w pipeB_w
 333#define planeB_h pipeB_h
 334
 335/* Flags for perf_boxes
 336 */
 337#define I915_BOX_RING_EMPTY    0x1
 338#define I915_BOX_FLIP          0x2
 339#define I915_BOX_WAIT          0x4
 340#define I915_BOX_TEXTURE_LOAD  0x8
 341#define I915_BOX_LOST_CONTEXT  0x10
 342
 343/*
 344 * i915 specific ioctls.
 345 *
 346 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 347 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 348 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 349 */
 350#define DRM_I915_INIT		0x00
 351#define DRM_I915_FLUSH		0x01
 352#define DRM_I915_FLIP		0x02
 353#define DRM_I915_BATCHBUFFER	0x03
 354#define DRM_I915_IRQ_EMIT	0x04
 355#define DRM_I915_IRQ_WAIT	0x05
 356#define DRM_I915_GETPARAM	0x06
 357#define DRM_I915_SETPARAM	0x07
 358#define DRM_I915_ALLOC		0x08
 359#define DRM_I915_FREE		0x09
 360#define DRM_I915_INIT_HEAP	0x0a
 361#define DRM_I915_CMDBUFFER	0x0b
 362#define DRM_I915_DESTROY_HEAP	0x0c
 363#define DRM_I915_SET_VBLANK_PIPE	0x0d
 364#define DRM_I915_GET_VBLANK_PIPE	0x0e
 365#define DRM_I915_VBLANK_SWAP	0x0f
 366#define DRM_I915_HWS_ADDR	0x11
 367#define DRM_I915_GEM_INIT	0x13
 368#define DRM_I915_GEM_EXECBUFFER	0x14
 369#define DRM_I915_GEM_PIN	0x15
 370#define DRM_I915_GEM_UNPIN	0x16
 371#define DRM_I915_GEM_BUSY	0x17
 372#define DRM_I915_GEM_THROTTLE	0x18
 373#define DRM_I915_GEM_ENTERVT	0x19
 374#define DRM_I915_GEM_LEAVEVT	0x1a
 375#define DRM_I915_GEM_CREATE	0x1b
 376#define DRM_I915_GEM_PREAD	0x1c
 377#define DRM_I915_GEM_PWRITE	0x1d
 378#define DRM_I915_GEM_MMAP	0x1e
 379#define DRM_I915_GEM_SET_DOMAIN	0x1f
 380#define DRM_I915_GEM_SW_FINISH	0x20
 381#define DRM_I915_GEM_SET_TILING	0x21
 382#define DRM_I915_GEM_GET_TILING	0x22
 383#define DRM_I915_GEM_GET_APERTURE 0x23
 384#define DRM_I915_GEM_MMAP_GTT	0x24
 385#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
 386#define DRM_I915_GEM_MADVISE	0x26
 387#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
 388#define DRM_I915_OVERLAY_ATTRS	0x28
 389#define DRM_I915_GEM_EXECBUFFER2	0x29
 390#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
 391#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
 392#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
 393#define DRM_I915_GEM_WAIT	0x2c
 394#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
 395#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
 396#define DRM_I915_GEM_SET_CACHING	0x2f
 397#define DRM_I915_GEM_GET_CACHING	0x30
 398#define DRM_I915_REG_READ		0x31
 399#define DRM_I915_GET_RESET_STATS	0x32
 400#define DRM_I915_GEM_USERPTR		0x33
 401#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
 402#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
 403#define DRM_I915_PERF_OPEN		0x36
 404#define DRM_I915_PERF_ADD_CONFIG	0x37
 405#define DRM_I915_PERF_REMOVE_CONFIG	0x38
 406#define DRM_I915_QUERY			0x39
 407#define DRM_I915_GEM_VM_CREATE		0x3a
 408#define DRM_I915_GEM_VM_DESTROY		0x3b
 409#define DRM_I915_GEM_CREATE_EXT		0x3c
 410/* Must be kept compact -- no holes */
 411
 412#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
 413#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
 414#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
 415#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
 416#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
 417#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
 418#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
 419#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
 420#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
 421#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
 422#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
 423#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
 424#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
 425#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 426#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 427#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
 428#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
 429#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
 430#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
 431#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
 432#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
 433#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
 434#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
 435#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
 436#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
 437#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
 438#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
 439#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
 440#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
 441#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
 442#define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
 443#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
 444#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
 445#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
 446#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
 447#define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
 448#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
 449#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
 450#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
 451#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
 452#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
 453#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
 454#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
 455#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
 456#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
 457#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 458#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 459#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
 460#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
 461#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
 462#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
 463#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
 464#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
 465#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
 466#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
 467#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
 468#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
 469#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
 470#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
 471#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
 472#define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
 473#define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
 474
 475/* Allow drivers to submit batchbuffers directly to hardware, relying
 476 * on the security mechanisms provided by hardware.
 477 */
 478typedef struct drm_i915_batchbuffer {
 479	int start;		/* agp offset */
 480	int used;		/* nr bytes in use */
 481	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 482	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 483	int num_cliprects;	/* mulitpass with multiple cliprects? */
 484	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 485} drm_i915_batchbuffer_t;
 486
 487/* As above, but pass a pointer to userspace buffer which can be
 488 * validated by the kernel prior to sending to hardware.
 489 */
 490typedef struct _drm_i915_cmdbuffer {
 491	char __user *buf;	/* pointer to userspace command buffer */
 492	int sz;			/* nr bytes in buf */
 493	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 494	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 495	int num_cliprects;	/* mulitpass with multiple cliprects? */
 496	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 497} drm_i915_cmdbuffer_t;
 498
 499/* Userspace can request & wait on irq's:
 500 */
 501typedef struct drm_i915_irq_emit {
 502	int __user *irq_seq;
 503} drm_i915_irq_emit_t;
 504
 505typedef struct drm_i915_irq_wait {
 506	int irq_seq;
 507} drm_i915_irq_wait_t;
 508
 509/*
 510 * Different modes of per-process Graphics Translation Table,
 511 * see I915_PARAM_HAS_ALIASING_PPGTT
 512 */
 513#define I915_GEM_PPGTT_NONE	0
 514#define I915_GEM_PPGTT_ALIASING	1
 515#define I915_GEM_PPGTT_FULL	2
 516
 517/* Ioctl to query kernel params:
 518 */
 519#define I915_PARAM_IRQ_ACTIVE            1
 520#define I915_PARAM_ALLOW_BATCHBUFFER     2
 521#define I915_PARAM_LAST_DISPATCH         3
 522#define I915_PARAM_CHIPSET_ID            4
 523#define I915_PARAM_HAS_GEM               5
 524#define I915_PARAM_NUM_FENCES_AVAIL      6
 525#define I915_PARAM_HAS_OVERLAY           7
 526#define I915_PARAM_HAS_PAGEFLIPPING	 8
 527#define I915_PARAM_HAS_EXECBUF2          9
 528#define I915_PARAM_HAS_BSD		 10
 529#define I915_PARAM_HAS_BLT		 11
 530#define I915_PARAM_HAS_RELAXED_FENCING	 12
 531#define I915_PARAM_HAS_COHERENT_RINGS	 13
 532#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
 533#define I915_PARAM_HAS_RELAXED_DELTA	 15
 534#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
 535#define I915_PARAM_HAS_LLC     	 	 17
 536#define I915_PARAM_HAS_ALIASING_PPGTT	 18
 537#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
 538#define I915_PARAM_HAS_SEMAPHORES	 20
 539#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
 540#define I915_PARAM_HAS_VEBOX		 22
 541#define I915_PARAM_HAS_SECURE_BATCHES	 23
 542#define I915_PARAM_HAS_PINNED_BATCHES	 24
 543#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
 544#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
 545#define I915_PARAM_HAS_WT     	 	 27
 546#define I915_PARAM_CMD_PARSER_VERSION	 28
 547#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
 548#define I915_PARAM_MMAP_VERSION          30
 549#define I915_PARAM_HAS_BSD2		 31
 550#define I915_PARAM_REVISION              32
 551#define I915_PARAM_SUBSLICE_TOTAL	 33
 552#define I915_PARAM_EU_TOTAL		 34
 553#define I915_PARAM_HAS_GPU_RESET	 35
 554#define I915_PARAM_HAS_RESOURCE_STREAMER 36
 555#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
 556#define I915_PARAM_HAS_POOLED_EU	 38
 557#define I915_PARAM_MIN_EU_IN_POOL	 39
 558#define I915_PARAM_MMAP_GTT_VERSION	 40
 559
 560/*
 561 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
 562 * priorities and the driver will attempt to execute batches in priority order.
 563 * The param returns a capability bitmask, nonzero implies that the scheduler
 564 * is enabled, with different features present according to the mask.
 565 *
 566 * The initial priority for each batch is supplied by the context and is
 567 * controlled via I915_CONTEXT_PARAM_PRIORITY.
 568 */
 569#define I915_PARAM_HAS_SCHEDULER	 41
 570#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
 571#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
 572#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
 573#define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
 574#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
 575
 576#define I915_PARAM_HUC_STATUS		 42
 577
 578/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
 579 * synchronisation with implicit fencing on individual objects.
 580 * See EXEC_OBJECT_ASYNC.
 581 */
 582#define I915_PARAM_HAS_EXEC_ASYNC	 43
 583
 584/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
 585 * both being able to pass in a sync_file fd to wait upon before executing,
 586 * and being able to return a new sync_file fd that is signaled when the
 587 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
 588 */
 589#define I915_PARAM_HAS_EXEC_FENCE	 44
 590
 591/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
 592 * user specified bufffers for post-mortem debugging of GPU hangs. See
 593 * EXEC_OBJECT_CAPTURE.
 594 */
 595#define I915_PARAM_HAS_EXEC_CAPTURE	 45
 596
 597#define I915_PARAM_SLICE_MASK		 46
 598
 599/* Assuming it's uniform for each slice, this queries the mask of subslices
 600 * per-slice for this system.
 601 */
 602#define I915_PARAM_SUBSLICE_MASK	 47
 603
 604/*
 605 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
 606 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
 607 */
 608#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
 609
 610/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 611 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
 612 */
 613#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
 614
 615/*
 616 * Query whether every context (both per-file default and user created) is
 617 * isolated (insofar as HW supports). If this parameter is not true, then
 618 * freshly created contexts may inherit values from an existing context,
 619 * rather than default HW values. If true, it also ensures (insofar as HW
 620 * supports) that all state set by this context will not leak to any other
 621 * context.
 622 *
 623 * As not every engine across every gen support contexts, the returned
 624 * value reports the support of context isolation for individual engines by
 625 * returning a bitmask of each engine class set to true if that class supports
 626 * isolation.
 627 */
 628#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
 629
 630/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
 631 * registers. This used to be fixed per platform but from CNL onwards, this
 632 * might vary depending on the parts.
 633 */
 634#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
 635
 636/*
 637 * Once upon a time we supposed that writes through the GGTT would be
 638 * immediately in physical memory (once flushed out of the CPU path). However,
 639 * on a few different processors and chipsets, this is not necessarily the case
 640 * as the writes appear to be buffered internally. Thus a read of the backing
 641 * storage (physical memory) via a different path (with different physical tags
 642 * to the indirect write via the GGTT) will see stale values from before
 643 * the GGTT write. Inside the kernel, we can for the most part keep track of
 644 * the different read/write domains in use (e.g. set-domain), but the assumption
 645 * of coherency is baked into the ABI, hence reporting its true state in this
 646 * parameter.
 647 *
 648 * Reports true when writes via mmap_gtt are immediately visible following an
 649 * lfence to flush the WCB.
 650 *
 651 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
 652 * internal buffer and are _not_ immediately visible to third parties accessing
 653 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
 654 * communications channel when reporting false is strongly disadvised.
 655 */
 656#define I915_PARAM_MMAP_GTT_COHERENT	52
 657
 658/*
 659 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
 660 * execution through use of explicit fence support.
 661 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
 662 */
 663#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
 664
 665/*
 666 * Revision of the i915-perf uAPI. The value returned helps determine what
 667 * i915-perf features are available. See drm_i915_perf_property_id.
 668 */
 669#define I915_PARAM_PERF_REVISION	54
 670
 671/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 672 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
 673 * I915_EXEC_USE_EXTENSIONS.
 674 */
 675#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
 676
 677/* Must be kept compact -- no holes and well documented */
 678
 679typedef struct drm_i915_getparam {
 680	__s32 param;
 681	/*
 682	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
 683	 * compat32 code. Don't repeat this mistake.
 684	 */
 685	int __user *value;
 686} drm_i915_getparam_t;
 687
 688/* Ioctl to set kernel params:
 689 */
 690#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
 691#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
 692#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
 693#define I915_SETPARAM_NUM_USED_FENCES                     4
 694/* Must be kept compact -- no holes */
 695
 696typedef struct drm_i915_setparam {
 697	int param;
 698	int value;
 699} drm_i915_setparam_t;
 700
 701/* A memory manager for regions of shared memory:
 702 */
 703#define I915_MEM_REGION_AGP 1
 704
 705typedef struct drm_i915_mem_alloc {
 706	int region;
 707	int alignment;
 708	int size;
 709	int __user *region_offset;	/* offset from start of fb or agp */
 710} drm_i915_mem_alloc_t;
 711
 712typedef struct drm_i915_mem_free {
 713	int region;
 714	int region_offset;
 715} drm_i915_mem_free_t;
 716
 717typedef struct drm_i915_mem_init_heap {
 718	int region;
 719	int size;
 720	int start;
 721} drm_i915_mem_init_heap_t;
 722
 723/* Allow memory manager to be torn down and re-initialized (eg on
 724 * rotate):
 725 */
 726typedef struct drm_i915_mem_destroy_heap {
 727	int region;
 728} drm_i915_mem_destroy_heap_t;
 729
 730/* Allow X server to configure which pipes to monitor for vblank signals
 731 */
 732#define	DRM_I915_VBLANK_PIPE_A	1
 733#define	DRM_I915_VBLANK_PIPE_B	2
 734
 735typedef struct drm_i915_vblank_pipe {
 736	int pipe;
 737} drm_i915_vblank_pipe_t;
 738
 739/* Schedule buffer swap at given vertical blank:
 740 */
 741typedef struct drm_i915_vblank_swap {
 742	drm_drawable_t drawable;
 743	enum drm_vblank_seq_type seqtype;
 744	unsigned int sequence;
 745} drm_i915_vblank_swap_t;
 746
 747typedef struct drm_i915_hws_addr {
 748	__u64 addr;
 749} drm_i915_hws_addr_t;
 750
 751struct drm_i915_gem_init {
 752	/**
 753	 * Beginning offset in the GTT to be managed by the DRM memory
 754	 * manager.
 755	 */
 756	__u64 gtt_start;
 757	/**
 758	 * Ending offset in the GTT to be managed by the DRM memory
 759	 * manager.
 760	 */
 761	__u64 gtt_end;
 762};
 763
 764struct drm_i915_gem_create {
 765	/**
 766	 * Requested size for the object.
 767	 *
 768	 * The (page-aligned) allocated size for the object will be returned.
 769	 */
 770	__u64 size;
 771	/**
 772	 * Returned handle for the object.
 773	 *
 774	 * Object handles are nonzero.
 775	 */
 776	__u32 handle;
 777	__u32 pad;
 778};
 779
 780struct drm_i915_gem_pread {
 781	/** Handle for the object being read. */
 782	__u32 handle;
 783	__u32 pad;
 784	/** Offset into the object to read from */
 785	__u64 offset;
 786	/** Length of data to read */
 787	__u64 size;
 788	/**
 789	 * Pointer to write the data into.
 790	 *
 791	 * This is a fixed-size type for 32/64 compatibility.
 792	 */
 793	__u64 data_ptr;
 794};
 795
 796struct drm_i915_gem_pwrite {
 797	/** Handle for the object being written to. */
 798	__u32 handle;
 799	__u32 pad;
 800	/** Offset into the object to write to */
 801	__u64 offset;
 802	/** Length of data to write */
 803	__u64 size;
 804	/**
 805	 * Pointer to read the data from.
 806	 *
 807	 * This is a fixed-size type for 32/64 compatibility.
 808	 */
 809	__u64 data_ptr;
 810};
 811
 812struct drm_i915_gem_mmap {
 813	/** Handle for the object being mapped. */
 814	__u32 handle;
 815	__u32 pad;
 816	/** Offset in the object to map. */
 817	__u64 offset;
 818	/**
 819	 * Length of data to map.
 820	 *
 821	 * The value will be page-aligned.
 822	 */
 823	__u64 size;
 824	/**
 825	 * Returned pointer the data was mapped at.
 826	 *
 827	 * This is a fixed-size type for 32/64 compatibility.
 828	 */
 829	__u64 addr_ptr;
 830
 831	/**
 832	 * Flags for extended behaviour.
 833	 *
 834	 * Added in version 2.
 835	 */
 836	__u64 flags;
 837#define I915_MMAP_WC 0x1
 838};
 839
 840struct drm_i915_gem_mmap_gtt {
 841	/** Handle for the object being mapped. */
 842	__u32 handle;
 843	__u32 pad;
 844	/**
 845	 * Fake offset to use for subsequent mmap call
 846	 *
 847	 * This is a fixed-size type for 32/64 compatibility.
 848	 */
 849	__u64 offset;
 850};
 851
 852struct drm_i915_gem_mmap_offset {
 853	/** Handle for the object being mapped. */
 854	__u32 handle;
 855	__u32 pad;
 856	/**
 857	 * Fake offset to use for subsequent mmap call
 858	 *
 859	 * This is a fixed-size type for 32/64 compatibility.
 860	 */
 861	__u64 offset;
 862
 863	/**
 864	 * Flags for extended behaviour.
 865	 *
 866	 * It is mandatory that one of the MMAP_OFFSET types
 867	 * (GTT, WC, WB, UC, etc) should be included.
 868	 */
 869	__u64 flags;
 870#define I915_MMAP_OFFSET_GTT 0
 871#define I915_MMAP_OFFSET_WC  1
 872#define I915_MMAP_OFFSET_WB  2
 873#define I915_MMAP_OFFSET_UC  3
 874
 875	/*
 876	 * Zero-terminated chain of extensions.
 877	 *
 878	 * No current extensions defined; mbz.
 879	 */
 880	__u64 extensions;
 881};
 882
 883struct drm_i915_gem_set_domain {
 884	/** Handle for the object */
 885	__u32 handle;
 886
 887	/** New read domains */
 888	__u32 read_domains;
 889
 890	/** New write domain */
 891	__u32 write_domain;
 892};
 893
 894struct drm_i915_gem_sw_finish {
 895	/** Handle for the object */
 896	__u32 handle;
 897};
 898
 899struct drm_i915_gem_relocation_entry {
 900	/**
 901	 * Handle of the buffer being pointed to by this relocation entry.
 902	 *
 903	 * It's appealing to make this be an index into the mm_validate_entry
 904	 * list to refer to the buffer, but this allows the driver to create
 905	 * a relocation list for state buffers and not re-write it per
 906	 * exec using the buffer.
 907	 */
 908	__u32 target_handle;
 909
 910	/**
 911	 * Value to be added to the offset of the target buffer to make up
 912	 * the relocation entry.
 913	 */
 914	__u32 delta;
 915
 916	/** Offset in the buffer the relocation entry will be written into */
 917	__u64 offset;
 918
 919	/**
 920	 * Offset value of the target buffer that the relocation entry was last
 921	 * written as.
 922	 *
 923	 * If the buffer has the same offset as last time, we can skip syncing
 924	 * and writing the relocation.  This value is written back out by
 925	 * the execbuffer ioctl when the relocation is written.
 926	 */
 927	__u64 presumed_offset;
 928
 929	/**
 930	 * Target memory domains read by this operation.
 931	 */
 932	__u32 read_domains;
 933
 934	/**
 935	 * Target memory domains written by this operation.
 936	 *
 937	 * Note that only one domain may be written by the whole
 938	 * execbuffer operation, so that where there are conflicts,
 939	 * the application will get -EINVAL back.
 940	 */
 941	__u32 write_domain;
 942};
 943
 944/** @{
 945 * Intel memory domains
 946 *
 947 * Most of these just align with the various caches in
 948 * the system and are used to flush and invalidate as
 949 * objects end up cached in different domains.
 950 */
 951/** CPU cache */
 952#define I915_GEM_DOMAIN_CPU		0x00000001
 953/** Render cache, used by 2D and 3D drawing */
 954#define I915_GEM_DOMAIN_RENDER		0x00000002
 955/** Sampler cache, used by texture engine */
 956#define I915_GEM_DOMAIN_SAMPLER		0x00000004
 957/** Command queue, used to load batch buffers */
 958#define I915_GEM_DOMAIN_COMMAND		0x00000008
 959/** Instruction cache, used by shader programs */
 960#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
 961/** Vertex address cache */
 962#define I915_GEM_DOMAIN_VERTEX		0x00000020
 963/** GTT domain - aperture and scanout */
 964#define I915_GEM_DOMAIN_GTT		0x00000040
 965/** WC domain - uncached access */
 966#define I915_GEM_DOMAIN_WC		0x00000080
 967/** @} */
 968
 969struct drm_i915_gem_exec_object {
 970	/**
 971	 * User's handle for a buffer to be bound into the GTT for this
 972	 * operation.
 973	 */
 974	__u32 handle;
 975
 976	/** Number of relocations to be performed on this buffer */
 977	__u32 relocation_count;
 978	/**
 979	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
 980	 * the relocations to be performed in this buffer.
 981	 */
 982	__u64 relocs_ptr;
 983
 984	/** Required alignment in graphics aperture */
 985	__u64 alignment;
 986
 987	/**
 988	 * Returned value of the updated offset of the object, for future
 989	 * presumed_offset writes.
 990	 */
 991	__u64 offset;
 992};
 993
 994/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
 995struct drm_i915_gem_execbuffer {
 996	/**
 997	 * List of buffers to be validated with their relocations to be
 998	 * performend on them.
 999	 *
1000	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1001	 *
1002	 * These buffers must be listed in an order such that all relocations
1003	 * a buffer is performing refer to buffers that have already appeared
1004	 * in the validate list.
1005	 */
1006	__u64 buffers_ptr;
1007	__u32 buffer_count;
1008
1009	/** Offset in the batchbuffer to start execution from. */
1010	__u32 batch_start_offset;
1011	/** Bytes used in batchbuffer from batch_start_offset */
1012	__u32 batch_len;
1013	__u32 DR1;
1014	__u32 DR4;
1015	__u32 num_cliprects;
1016	/** This is a struct drm_clip_rect *cliprects */
1017	__u64 cliprects_ptr;
1018};
1019
1020struct drm_i915_gem_exec_object2 {
1021	/**
1022	 * User's handle for a buffer to be bound into the GTT for this
1023	 * operation.
1024	 */
1025	__u32 handle;
1026
1027	/** Number of relocations to be performed on this buffer */
1028	__u32 relocation_count;
1029	/**
1030	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1031	 * the relocations to be performed in this buffer.
1032	 */
1033	__u64 relocs_ptr;
1034
1035	/** Required alignment in graphics aperture */
1036	__u64 alignment;
1037
1038	/**
1039	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1040	 * the user with the GTT offset at which this object will be pinned.
1041	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1042	 * presumed_offset of the object.
1043	 * During execbuffer2 the kernel populates it with the value of the
1044	 * current GTT offset of the object, for future presumed_offset writes.
1045	 */
1046	__u64 offset;
1047
1048#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1049#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1050#define EXEC_OBJECT_WRITE		 (1<<2)
1051#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1052#define EXEC_OBJECT_PINNED		 (1<<4)
1053#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1054/* The kernel implicitly tracks GPU activity on all GEM objects, and
1055 * synchronises operations with outstanding rendering. This includes
1056 * rendering on other devices if exported via dma-buf. However, sometimes
1057 * this tracking is too coarse and the user knows better. For example,
1058 * if the object is split into non-overlapping ranges shared between different
1059 * clients or engines (i.e. suballocating objects), the implicit tracking
1060 * by kernel assumes that each operation affects the whole object rather
1061 * than an individual range, causing needless synchronisation between clients.
1062 * The kernel will also forgo any CPU cache flushes prior to rendering from
1063 * the object as the client is expected to be also handling such domain
1064 * tracking.
1065 *
1066 * The kernel maintains the implicit tracking in order to manage resources
1067 * used by the GPU - this flag only disables the synchronisation prior to
1068 * rendering with this object in this execbuf.
1069 *
1070 * Opting out of implicit synhronisation requires the user to do its own
1071 * explicit tracking to avoid rendering corruption. See, for example,
1072 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1073 */
1074#define EXEC_OBJECT_ASYNC		(1<<6)
1075/* Request that the contents of this execobject be copied into the error
1076 * state upon a GPU hang involving this batch for post-mortem debugging.
1077 * These buffers are recorded in no particular order as "user" in
1078 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1079 * if the kernel supports this flag.
1080 */
1081#define EXEC_OBJECT_CAPTURE		(1<<7)
1082/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1083#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1084	__u64 flags;
1085
1086	union {
1087		__u64 rsvd1;
1088		__u64 pad_to_size;
1089	};
1090	__u64 rsvd2;
1091};
1092
1093struct drm_i915_gem_exec_fence {
1094	/**
1095	 * User's handle for a drm_syncobj to wait on or signal.
1096	 */
1097	__u32 handle;
1098
1099#define I915_EXEC_FENCE_WAIT            (1<<0)
1100#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1101#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1102	__u32 flags;
1103};
1104
1105/*
1106 * See drm_i915_gem_execbuffer_ext_timeline_fences.
1107 */
1108#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1109
1110/*
1111 * This structure describes an array of drm_syncobj and associated points for
1112 * timeline variants of drm_syncobj. It is invalid to append this structure to
1113 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1114 */
1115struct drm_i915_gem_execbuffer_ext_timeline_fences {
1116	struct i915_user_extension base;
1117
1118	/**
1119	 * Number of element in the handles_ptr & value_ptr arrays.
1120	 */
1121	__u64 fence_count;
1122
1123	/**
1124	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1125	 * fence_count.
1126	 */
1127	__u64 handles_ptr;
1128
1129	/**
1130	 * Pointer to an array of u64 values of length fence_count. Values
1131	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1132	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1133	 */
1134	__u64 values_ptr;
1135};
1136
1137struct drm_i915_gem_execbuffer2 {
1138	/**
1139	 * List of gem_exec_object2 structs
1140	 */
1141	__u64 buffers_ptr;
1142	__u32 buffer_count;
1143
1144	/** Offset in the batchbuffer to start execution from. */
1145	__u32 batch_start_offset;
1146	/** Bytes used in batchbuffer from batch_start_offset */
1147	__u32 batch_len;
1148	__u32 DR1;
1149	__u32 DR4;
1150	__u32 num_cliprects;
1151	/**
1152	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1153	 * & I915_EXEC_USE_EXTENSIONS are not set.
1154	 *
1155	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1156	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1157	 * of the array.
1158	 *
1159	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1160	 * single struct i915_user_extension and num_cliprects is 0.
1161	 */
1162	__u64 cliprects_ptr;
1163#define I915_EXEC_RING_MASK              (0x3f)
1164#define I915_EXEC_DEFAULT                (0<<0)
1165#define I915_EXEC_RENDER                 (1<<0)
1166#define I915_EXEC_BSD                    (2<<0)
1167#define I915_EXEC_BLT                    (3<<0)
1168#define I915_EXEC_VEBOX                  (4<<0)
1169
1170/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1171 * Gen6+ only supports relative addressing to dynamic state (default) and
1172 * absolute addressing.
1173 *
1174 * These flags are ignored for the BSD and BLT rings.
1175 */
1176#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1177#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1178#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1179#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1180	__u64 flags;
1181	__u64 rsvd1; /* now used for context info */
1182	__u64 rsvd2;
1183};
1184
1185/** Resets the SO write offset registers for transform feedback on gen7. */
1186#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1187
1188/** Request a privileged ("secure") batch buffer. Note only available for
1189 * DRM_ROOT_ONLY | DRM_MASTER processes.
1190 */
1191#define I915_EXEC_SECURE		(1<<9)
1192
1193/** Inform the kernel that the batch is and will always be pinned. This
1194 * negates the requirement for a workaround to be performed to avoid
1195 * an incoherent CS (such as can be found on 830/845). If this flag is
1196 * not passed, the kernel will endeavour to make sure the batch is
1197 * coherent with the CS before execution. If this flag is passed,
1198 * userspace assumes the responsibility for ensuring the same.
1199 */
1200#define I915_EXEC_IS_PINNED		(1<<10)
1201
1202/** Provide a hint to the kernel that the command stream and auxiliary
1203 * state buffers already holds the correct presumed addresses and so the
1204 * relocation process may be skipped if no buffers need to be moved in
1205 * preparation for the execbuffer.
1206 */
1207#define I915_EXEC_NO_RELOC		(1<<11)
1208
1209/** Use the reloc.handle as an index into the exec object array rather
1210 * than as the per-file handle.
1211 */
1212#define I915_EXEC_HANDLE_LUT		(1<<12)
1213
1214/** Used for switching BSD rings on the platforms with two BSD rings */
1215#define I915_EXEC_BSD_SHIFT	 (13)
1216#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1217/* default ping-pong mode */
1218#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1219#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1220#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1221
1222/** Tell the kernel that the batchbuffer is processed by
1223 *  the resource streamer.
1224 */
1225#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1226
1227/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1228 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1229 * the batch.
1230 *
1231 * Returns -EINVAL if the sync_file fd cannot be found.
1232 */
1233#define I915_EXEC_FENCE_IN		(1<<16)
1234
1235/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1236 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1237 * to the caller, and it should be close() after use. (The fd is a regular
1238 * file descriptor and will be cleaned up on process termination. It holds
1239 * a reference to the request, but nothing else.)
1240 *
1241 * The sync_file fd can be combined with other sync_file and passed either
1242 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1243 * will only occur after this request completes), or to other devices.
1244 *
1245 * Using I915_EXEC_FENCE_OUT requires use of
1246 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1247 * back to userspace. Failure to do so will cause the out-fence to always
1248 * be reported as zero, and the real fence fd to be leaked.
1249 */
1250#define I915_EXEC_FENCE_OUT		(1<<17)
1251
1252/*
1253 * Traditionally the execbuf ioctl has only considered the final element in
1254 * the execobject[] to be the executable batch. Often though, the client
1255 * will known the batch object prior to construction and being able to place
1256 * it into the execobject[] array first can simplify the relocation tracking.
1257 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1258 * execobject[] as the * batch instead (the default is to use the last
1259 * element).
1260 */
1261#define I915_EXEC_BATCH_FIRST		(1<<18)
1262
1263/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1264 * define an array of i915_gem_exec_fence structures which specify a set of
1265 * dma fences to wait upon or signal.
1266 */
1267#define I915_EXEC_FENCE_ARRAY   (1<<19)
1268
1269/*
1270 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1271 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1272 * the batch.
1273 *
1274 * Returns -EINVAL if the sync_file fd cannot be found.
1275 */
1276#define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1277
1278/*
1279 * Setting I915_EXEC_USE_EXTENSIONS implies that
1280 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1281 * list of i915_user_extension. Each i915_user_extension node is the base of a
1282 * larger structure. The list of supported structures are listed in the
1283 * drm_i915_gem_execbuffer_ext enum.
1284 */
1285#define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1286
1287#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1288
1289#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1290#define i915_execbuffer2_set_context_id(eb2, context) \
1291	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1292#define i915_execbuffer2_get_context_id(eb2) \
1293	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1294
1295struct drm_i915_gem_pin {
1296	/** Handle of the buffer to be pinned. */
1297	__u32 handle;
1298	__u32 pad;
1299
1300	/** alignment required within the aperture */
1301	__u64 alignment;
1302
1303	/** Returned GTT offset of the buffer. */
1304	__u64 offset;
1305};
1306
1307struct drm_i915_gem_unpin {
1308	/** Handle of the buffer to be unpinned. */
1309	__u32 handle;
1310	__u32 pad;
1311};
1312
1313struct drm_i915_gem_busy {
1314	/** Handle of the buffer to check for busy */
1315	__u32 handle;
1316
1317	/** Return busy status
1318	 *
1319	 * A return of 0 implies that the object is idle (after
1320	 * having flushed any pending activity), and a non-zero return that
1321	 * the object is still in-flight on the GPU. (The GPU has not yet
1322	 * signaled completion for all pending requests that reference the
1323	 * object.) An object is guaranteed to become idle eventually (so
1324	 * long as no new GPU commands are executed upon it). Due to the
1325	 * asynchronous nature of the hardware, an object reported
1326	 * as busy may become idle before the ioctl is completed.
1327	 *
1328	 * Furthermore, if the object is busy, which engine is busy is only
1329	 * provided as a guide and only indirectly by reporting its class
1330	 * (there may be more than one engine in each class). There are race
1331	 * conditions which prevent the report of which engines are busy from
1332	 * being always accurate.  However, the converse is not true. If the
1333	 * object is idle, the result of the ioctl, that all engines are idle,
1334	 * is accurate.
1335	 *
1336	 * The returned dword is split into two fields to indicate both
1337	 * the engine classess on which the object is being read, and the
1338	 * engine class on which it is currently being written (if any).
1339	 *
1340	 * The low word (bits 0:15) indicate if the object is being written
1341	 * to by any engine (there can only be one, as the GEM implicit
1342	 * synchronisation rules force writes to be serialised). Only the
1343	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1344	 * 1 not 0 etc) for the last write is reported.
1345	 *
1346	 * The high word (bits 16:31) are a bitmask of which engines classes
1347	 * are currently reading from the object. Multiple engines may be
1348	 * reading from the object simultaneously.
1349	 *
1350	 * The value of each engine class is the same as specified in the
1351	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1352	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1353	 * reported as active itself. Some hardware may have parallel
1354	 * execution engines, e.g. multiple media engines, which are
1355	 * mapped to the same class identifier and so are not separately
1356	 * reported for busyness.
1357	 *
1358	 * Caveat emptor:
1359	 * Only the boolean result of this query is reliable; that is whether
1360	 * the object is idle or busy. The report of which engines are busy
1361	 * should be only used as a heuristic.
1362	 */
1363	__u32 busy;
1364};
1365
1366/**
1367 * I915_CACHING_NONE
1368 *
1369 * GPU access is not coherent with cpu caches. Default for machines without an
1370 * LLC.
1371 */
1372#define I915_CACHING_NONE		0
1373/**
1374 * I915_CACHING_CACHED
1375 *
1376 * GPU access is coherent with cpu caches and furthermore the data is cached in
1377 * last-level caches shared between cpu cores and the gpu GT. Default on
1378 * machines with HAS_LLC.
1379 */
1380#define I915_CACHING_CACHED		1
1381/**
1382 * I915_CACHING_DISPLAY
1383 *
1384 * Special GPU caching mode which is coherent with the scanout engines.
1385 * Transparently falls back to I915_CACHING_NONE on platforms where no special
1386 * cache mode (like write-through or gfdt flushing) is available. The kernel
1387 * automatically sets this mode when using a buffer as a scanout target.
1388 * Userspace can manually set this mode to avoid a costly stall and clflush in
1389 * the hotpath of drawing the first frame.
1390 */
1391#define I915_CACHING_DISPLAY		2
1392
1393struct drm_i915_gem_caching {
1394	/**
1395	 * Handle of the buffer to set/get the caching level of. */
1396	__u32 handle;
1397
1398	/**
1399	 * Cacheing level to apply or return value
1400	 *
1401	 * bits0-15 are for generic caching control (i.e. the above defined
1402	 * values). bits16-31 are reserved for platform-specific variations
1403	 * (e.g. l3$ caching on gen7). */
1404	__u32 caching;
1405};
1406
1407#define I915_TILING_NONE	0
1408#define I915_TILING_X		1
1409#define I915_TILING_Y		2
1410#define I915_TILING_LAST	I915_TILING_Y
1411
1412#define I915_BIT_6_SWIZZLE_NONE		0
1413#define I915_BIT_6_SWIZZLE_9		1
1414#define I915_BIT_6_SWIZZLE_9_10		2
1415#define I915_BIT_6_SWIZZLE_9_11		3
1416#define I915_BIT_6_SWIZZLE_9_10_11	4
1417/* Not seen by userland */
1418#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1419/* Seen by userland. */
1420#define I915_BIT_6_SWIZZLE_9_17		6
1421#define I915_BIT_6_SWIZZLE_9_10_17	7
1422
1423struct drm_i915_gem_set_tiling {
1424	/** Handle of the buffer to have its tiling state updated */
1425	__u32 handle;
1426
1427	/**
1428	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1429	 * I915_TILING_Y).
1430	 *
1431	 * This value is to be set on request, and will be updated by the
1432	 * kernel on successful return with the actual chosen tiling layout.
1433	 *
1434	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1435	 * has bit 6 swizzling that can't be managed correctly by GEM.
1436	 *
1437	 * Buffer contents become undefined when changing tiling_mode.
1438	 */
1439	__u32 tiling_mode;
1440
1441	/**
1442	 * Stride in bytes for the object when in I915_TILING_X or
1443	 * I915_TILING_Y.
1444	 */
1445	__u32 stride;
1446
1447	/**
1448	 * Returned address bit 6 swizzling required for CPU access through
1449	 * mmap mapping.
1450	 */
1451	__u32 swizzle_mode;
1452};
1453
1454struct drm_i915_gem_get_tiling {
1455	/** Handle of the buffer to get tiling state for. */
1456	__u32 handle;
1457
1458	/**
1459	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1460	 * I915_TILING_Y).
1461	 */
1462	__u32 tiling_mode;
1463
1464	/**
1465	 * Returned address bit 6 swizzling required for CPU access through
1466	 * mmap mapping.
1467	 */
1468	__u32 swizzle_mode;
1469
1470	/**
1471	 * Returned address bit 6 swizzling required for CPU access through
1472	 * mmap mapping whilst bound.
1473	 */
1474	__u32 phys_swizzle_mode;
1475};
1476
1477struct drm_i915_gem_get_aperture {
1478	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1479	__u64 aper_size;
1480
1481	/**
1482	 * Available space in the aperture used by i915_gem_execbuffer, in
1483	 * bytes
1484	 */
1485	__u64 aper_available_size;
1486};
1487
1488struct drm_i915_get_pipe_from_crtc_id {
1489	/** ID of CRTC being requested **/
1490	__u32 crtc_id;
1491
1492	/** pipe of requested CRTC **/
1493	__u32 pipe;
1494};
1495
1496#define I915_MADV_WILLNEED 0
1497#define I915_MADV_DONTNEED 1
1498#define __I915_MADV_PURGED 2 /* internal state */
1499
1500struct drm_i915_gem_madvise {
1501	/** Handle of the buffer to change the backing store advice */
1502	__u32 handle;
1503
1504	/* Advice: either the buffer will be needed again in the near future,
1505	 *         or wont be and could be discarded under memory pressure.
1506	 */
1507	__u32 madv;
1508
1509	/** Whether the backing store still exists. */
1510	__u32 retained;
1511};
1512
1513/* flags */
1514#define I915_OVERLAY_TYPE_MASK 		0xff
1515#define I915_OVERLAY_YUV_PLANAR 	0x01
1516#define I915_OVERLAY_YUV_PACKED 	0x02
1517#define I915_OVERLAY_RGB		0x03
1518
1519#define I915_OVERLAY_DEPTH_MASK		0xff00
1520#define I915_OVERLAY_RGB24		0x1000
1521#define I915_OVERLAY_RGB16		0x2000
1522#define I915_OVERLAY_RGB15		0x3000
1523#define I915_OVERLAY_YUV422		0x0100
1524#define I915_OVERLAY_YUV411		0x0200
1525#define I915_OVERLAY_YUV420		0x0300
1526#define I915_OVERLAY_YUV410		0x0400
1527
1528#define I915_OVERLAY_SWAP_MASK		0xff0000
1529#define I915_OVERLAY_NO_SWAP		0x000000
1530#define I915_OVERLAY_UV_SWAP		0x010000
1531#define I915_OVERLAY_Y_SWAP		0x020000
1532#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1533
1534#define I915_OVERLAY_FLAGS_MASK		0xff000000
1535#define I915_OVERLAY_ENABLE		0x01000000
1536
1537struct drm_intel_overlay_put_image {
1538	/* various flags and src format description */
1539	__u32 flags;
1540	/* source picture description */
1541	__u32 bo_handle;
1542	/* stride values and offsets are in bytes, buffer relative */
1543	__u16 stride_Y; /* stride for packed formats */
1544	__u16 stride_UV;
1545	__u32 offset_Y; /* offset for packet formats */
1546	__u32 offset_U;
1547	__u32 offset_V;
1548	/* in pixels */
1549	__u16 src_width;
1550	__u16 src_height;
1551	/* to compensate the scaling factors for partially covered surfaces */
1552	__u16 src_scan_width;
1553	__u16 src_scan_height;
1554	/* output crtc description */
1555	__u32 crtc_id;
1556	__u16 dst_x;
1557	__u16 dst_y;
1558	__u16 dst_width;
1559	__u16 dst_height;
1560};
1561
1562/* flags */
1563#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1564#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1565#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1566struct drm_intel_overlay_attrs {
1567	__u32 flags;
1568	__u32 color_key;
1569	__s32 brightness;
1570	__u32 contrast;
1571	__u32 saturation;
1572	__u32 gamma0;
1573	__u32 gamma1;
1574	__u32 gamma2;
1575	__u32 gamma3;
1576	__u32 gamma4;
1577	__u32 gamma5;
1578};
1579
1580/*
1581 * Intel sprite handling
1582 *
1583 * Color keying works with a min/mask/max tuple.  Both source and destination
1584 * color keying is allowed.
1585 *
1586 * Source keying:
1587 * Sprite pixels within the min & max values, masked against the color channels
1588 * specified in the mask field, will be transparent.  All other pixels will
1589 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1590 * and mask fields will be used; ranged compares are not allowed.
1591 *
1592 * Destination keying:
1593 * Primary plane pixels that match the min value, masked against the color
1594 * channels specified in the mask field, will be replaced by corresponding
1595 * pixels from the sprite plane.
1596 *
1597 * Note that source & destination keying are exclusive; only one can be
1598 * active on a given plane.
1599 */
1600
1601#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1602						* flags==0 to disable colorkeying.
1603						*/
1604#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1605#define I915_SET_COLORKEY_SOURCE	(1<<2)
1606struct drm_intel_sprite_colorkey {
1607	__u32 plane_id;
1608	__u32 min_value;
1609	__u32 channel_mask;
1610	__u32 max_value;
1611	__u32 flags;
1612};
1613
1614struct drm_i915_gem_wait {
1615	/** Handle of BO we shall wait on */
1616	__u32 bo_handle;
1617	__u32 flags;
1618	/** Number of nanoseconds to wait, Returns time remaining. */
1619	__s64 timeout_ns;
1620};
1621
1622struct drm_i915_gem_context_create {
1623	__u32 ctx_id; /* output: id of new context*/
1624	__u32 pad;
1625};
1626
1627struct drm_i915_gem_context_create_ext {
1628	__u32 ctx_id; /* output: id of new context*/
1629	__u32 flags;
1630#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1631#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1632#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1633	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1634	__u64 extensions;
1635};
1636
1637struct drm_i915_gem_context_param {
1638	__u32 ctx_id;
1639	__u32 size;
1640	__u64 param;
1641#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1642#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1643#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1644#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1645#define I915_CONTEXT_PARAM_BANNABLE	0x5
1646#define I915_CONTEXT_PARAM_PRIORITY	0x6
1647#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1648#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1649#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1650	/*
1651	 * When using the following param, value should be a pointer to
1652	 * drm_i915_gem_context_param_sseu.
1653	 */
1654#define I915_CONTEXT_PARAM_SSEU		0x7
1655
1656/*
1657 * Not all clients may want to attempt automatic recover of a context after
1658 * a hang (for example, some clients may only submit very small incremental
1659 * batches relying on known logical state of previous batches which will never
1660 * recover correctly and each attempt will hang), and so would prefer that
1661 * the context is forever banned instead.
1662 *
1663 * If set to false (0), after a reset, subsequent (and in flight) rendering
1664 * from this context is discarded, and the client will need to create a new
1665 * context to use instead.
1666 *
1667 * If set to true (1), the kernel will automatically attempt to recover the
1668 * context by skipping the hanging batch and executing the next batch starting
1669 * from the default context state (discarding the incomplete logical context
1670 * state lost due to the reset).
1671 *
1672 * On creation, all new contexts are marked as recoverable.
1673 */
1674#define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1675
1676	/*
1677	 * The id of the associated virtual memory address space (ppGTT) of
1678	 * this context. Can be retrieved and passed to another context
1679	 * (on the same fd) for both to use the same ppGTT and so share
1680	 * address layouts, and avoid reloading the page tables on context
1681	 * switches between themselves.
1682	 *
1683	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1684	 */
1685#define I915_CONTEXT_PARAM_VM		0x9
1686
1687/*
1688 * I915_CONTEXT_PARAM_ENGINES:
1689 *
1690 * Bind this context to operate on this subset of available engines. Henceforth,
1691 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1692 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1693 * and upwards. Slots 0...N are filled in using the specified (class, instance).
1694 * Use
1695 *	engine_class: I915_ENGINE_CLASS_INVALID,
1696 *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1697 * to specify a gap in the array that can be filled in later, e.g. by a
1698 * virtual engine used for load balancing.
1699 *
1700 * Setting the number of engines bound to the context to 0, by passing a zero
1701 * sized argument, will revert back to default settings.
1702 *
1703 * See struct i915_context_param_engines.
1704 *
1705 * Extensions:
1706 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1707 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1708 */
1709#define I915_CONTEXT_PARAM_ENGINES	0xa
1710
1711/*
1712 * I915_CONTEXT_PARAM_PERSISTENCE:
1713 *
1714 * Allow the context and active rendering to survive the process until
1715 * completion. Persistence allows fire-and-forget clients to queue up a
1716 * bunch of work, hand the output over to a display server and then quit.
1717 * If the context is marked as not persistent, upon closing (either via
1718 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1719 * or process termination), the context and any outstanding requests will be
1720 * cancelled (and exported fences for cancelled requests marked as -EIO).
1721 *
1722 * By default, new contexts allow persistence.
1723 */
1724#define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1725
1726/*
1727 * I915_CONTEXT_PARAM_RINGSIZE:
1728 *
1729 * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1730 * applies a limit of how many batches can be queued to HW before the caller
1731 * is blocked due to lack of space for more commands.
1732 *
1733 * Only reliably possible to be set prior to first use, i.e. during
1734 * construction. At any later point, the current execution must be flushed as
1735 * the ring can only be changed while the context is idle. Note, the ringsize
1736 * can be specified as a constructor property, see
1737 * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1738 *
1739 * Only applies to the current set of engine and lost when those engines
1740 * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1741 *
1742 * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1743 * Default is 16 KiB.
1744 */
1745#define I915_CONTEXT_PARAM_RINGSIZE	0xc
1746/* Must be kept compact -- no holes and well documented */
1747
1748	__u64 value;
1749};
1750
1751/*
1752 * Context SSEU programming
1753 *
1754 * It may be necessary for either functional or performance reason to configure
1755 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1756 * Sub-slice/EU).
1757 *
1758 * This is done by configuring SSEU configuration using the below
1759 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1760 * userspace intends to use.
1761 *
1762 * Not all GPUs or engines support this functionality in which case an error
1763 * code -ENODEV will be returned.
1764 *
1765 * Also, flexibility of possible SSEU configuration permutations varies between
1766 * GPU generations and software imposed limitations. Requesting such a
1767 * combination will return an error code of -EINVAL.
1768 *
1769 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1770 * favour of a single global setting.
1771 */
1772struct drm_i915_gem_context_param_sseu {
1773	/*
1774	 * Engine class & instance to be configured or queried.
1775	 */
1776	struct i915_engine_class_instance engine;
1777
1778	/*
1779	 * Unknown flags must be cleared to zero.
1780	 */
1781	__u32 flags;
1782#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1783
1784	/*
1785	 * Mask of slices to enable for the context. Valid values are a subset
1786	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1787	 */
1788	__u64 slice_mask;
1789
1790	/*
1791	 * Mask of subslices to enable for the context. Valid values are a
1792	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1793	 */
1794	__u64 subslice_mask;
1795
1796	/*
1797	 * Minimum/Maximum number of EUs to enable per subslice for the
1798	 * context. min_eus_per_subslice must be inferior or equal to
1799	 * max_eus_per_subslice.
1800	 */
1801	__u16 min_eus_per_subslice;
1802	__u16 max_eus_per_subslice;
1803
1804	/*
1805	 * Unused for now. Must be cleared to zero.
1806	 */
1807	__u32 rsvd;
1808};
1809
1810/*
1811 * i915_context_engines_load_balance:
1812 *
1813 * Enable load balancing across this set of engines.
1814 *
1815 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1816 * used will proxy the execbuffer request onto one of the set of engines
1817 * in such a way as to distribute the load evenly across the set.
1818 *
1819 * The set of engines must be compatible (e.g. the same HW class) as they
1820 * will share the same logical GPU context and ring.
1821 *
1822 * To intermix rendering with the virtual engine and direct rendering onto
1823 * the backing engines (bypassing the load balancing proxy), the context must
1824 * be defined to use a single timeline for all engines.
1825 */
1826struct i915_context_engines_load_balance {
1827	struct i915_user_extension base;
1828
1829	__u16 engine_index;
1830	__u16 num_siblings;
1831	__u32 flags; /* all undefined flags must be zero */
1832
1833	__u64 mbz64; /* reserved for future use; must be zero */
1834
1835	struct i915_engine_class_instance engines[0];
1836} __attribute__((packed));
1837
1838#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1839	struct i915_user_extension base; \
1840	__u16 engine_index; \
1841	__u16 num_siblings; \
1842	__u32 flags; \
1843	__u64 mbz64; \
1844	struct i915_engine_class_instance engines[N__]; \
1845} __attribute__((packed)) name__
1846
1847/*
1848 * i915_context_engines_bond:
1849 *
1850 * Constructed bonded pairs for execution within a virtual engine.
1851 *
1852 * All engines are equal, but some are more equal than others. Given
1853 * the distribution of resources in the HW, it may be preferable to run
1854 * a request on a given subset of engines in parallel to a request on a
1855 * specific engine. We enable this selection of engines within a virtual
1856 * engine by specifying bonding pairs, for any given master engine we will
1857 * only execute on one of the corresponding siblings within the virtual engine.
1858 *
1859 * To execute a request in parallel on the master engine and a sibling requires
1860 * coordination with a I915_EXEC_FENCE_SUBMIT.
1861 */
1862struct i915_context_engines_bond {
1863	struct i915_user_extension base;
1864
1865	struct i915_engine_class_instance master;
1866
1867	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1868	__u16 num_bonds;
1869
1870	__u64 flags; /* all undefined flags must be zero */
1871	__u64 mbz64[4]; /* reserved for future use; must be zero */
1872
1873	struct i915_engine_class_instance engines[0];
1874} __attribute__((packed));
1875
1876#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1877	struct i915_user_extension base; \
1878	struct i915_engine_class_instance master; \
1879	__u16 virtual_index; \
1880	__u16 num_bonds; \
1881	__u64 flags; \
1882	__u64 mbz64[4]; \
1883	struct i915_engine_class_instance engines[N__]; \
1884} __attribute__((packed)) name__
1885
1886struct i915_context_param_engines {
1887	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1888#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1889#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1890	struct i915_engine_class_instance engines[0];
1891} __attribute__((packed));
1892
1893#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1894	__u64 extensions; \
1895	struct i915_engine_class_instance engines[N__]; \
1896} __attribute__((packed)) name__
1897
1898struct drm_i915_gem_context_create_ext_setparam {
1899#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1900	struct i915_user_extension base;
1901	struct drm_i915_gem_context_param param;
1902};
1903
1904struct drm_i915_gem_context_create_ext_clone {
1905#define I915_CONTEXT_CREATE_EXT_CLONE 1
1906	struct i915_user_extension base;
1907	__u32 clone_id;
1908	__u32 flags;
1909#define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1910#define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1911#define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1912#define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1913#define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1914#define I915_CONTEXT_CLONE_VM		(1u << 5)
1915#define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1916	__u64 rsvd;
1917};
1918
1919struct drm_i915_gem_context_destroy {
1920	__u32 ctx_id;
1921	__u32 pad;
1922};
1923
1924/*
1925 * DRM_I915_GEM_VM_CREATE -
1926 *
1927 * Create a new virtual memory address space (ppGTT) for use within a context
1928 * on the same file. Extensions can be provided to configure exactly how the
1929 * address space is setup upon creation.
1930 *
1931 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1932 * returned in the outparam @id.
1933 *
1934 * No flags are defined, with all bits reserved and must be zero.
1935 *
1936 * An extension chain maybe provided, starting with @extensions, and terminated
1937 * by the @next_extension being 0. Currently, no extensions are defined.
1938 *
1939 * DRM_I915_GEM_VM_DESTROY -
1940 *
1941 * Destroys a previously created VM id, specified in @id.
1942 *
1943 * No extensions or flags are allowed currently, and so must be zero.
1944 */
1945struct drm_i915_gem_vm_control {
1946	__u64 extensions;
1947	__u32 flags;
1948	__u32 vm_id;
1949};
1950
1951struct drm_i915_reg_read {
1952	/*
1953	 * Register offset.
1954	 * For 64bit wide registers where the upper 32bits don't immediately
1955	 * follow the lower 32bits, the offset of the lower 32bits must
1956	 * be specified
1957	 */
1958	__u64 offset;
1959#define I915_REG_READ_8B_WA (1ul << 0)
1960
1961	__u64 val; /* Return value */
1962};
1963
1964/* Known registers:
1965 *
1966 * Render engine timestamp - 0x2358 + 64bit - gen7+
1967 * - Note this register returns an invalid value if using the default
1968 *   single instruction 8byte read, in order to workaround that pass
1969 *   flag I915_REG_READ_8B_WA in offset field.
1970 *
1971 */
1972
1973struct drm_i915_reset_stats {
1974	__u32 ctx_id;
1975	__u32 flags;
1976
1977	/* All resets since boot/module reload, for all contexts */
1978	__u32 reset_count;
1979
1980	/* Number of batches lost when active in GPU, for this context */
1981	__u32 batch_active;
1982
1983	/* Number of batches lost pending for execution, for this context */
1984	__u32 batch_pending;
1985
1986	__u32 pad;
1987};
1988
1989struct drm_i915_gem_userptr {
1990	__u64 user_ptr;
1991	__u64 user_size;
1992	__u32 flags;
1993#define I915_USERPTR_READ_ONLY 0x1
1994#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1995	/**
1996	 * Returned handle for the object.
1997	 *
1998	 * Object handles are nonzero.
1999	 */
2000	__u32 handle;
2001};
2002
2003enum drm_i915_oa_format {
2004	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2005	I915_OA_FORMAT_A29,	    /* HSW only */
2006	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2007	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2008	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2009	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2010	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2011
2012	/* Gen8+ */
2013	I915_OA_FORMAT_A12,
2014	I915_OA_FORMAT_A12_B8_C8,
2015	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2016
2017	I915_OA_FORMAT_MAX	    /* non-ABI */
2018};
2019
2020enum drm_i915_perf_property_id {
2021	/**
2022	 * Open the stream for a specific context handle (as used with
2023	 * execbuffer2). A stream opened for a specific context this way
2024	 * won't typically require root privileges.
2025	 *
2026	 * This property is available in perf revision 1.
2027	 */
2028	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2029
2030	/**
2031	 * A value of 1 requests the inclusion of raw OA unit reports as
2032	 * part of stream samples.
2033	 *
2034	 * This property is available in perf revision 1.
2035	 */
2036	DRM_I915_PERF_PROP_SAMPLE_OA,
2037
2038	/**
2039	 * The value specifies which set of OA unit metrics should be
2040	 * configured, defining the contents of any OA unit reports.
2041	 *
2042	 * This property is available in perf revision 1.
2043	 */
2044	DRM_I915_PERF_PROP_OA_METRICS_SET,
2045
2046	/**
2047	 * The value specifies the size and layout of OA unit reports.
2048	 *
2049	 * This property is available in perf revision 1.
2050	 */
2051	DRM_I915_PERF_PROP_OA_FORMAT,
2052
2053	/**
2054	 * Specifying this property implicitly requests periodic OA unit
2055	 * sampling and (at least on Haswell) the sampling frequency is derived
2056	 * from this exponent as follows:
2057	 *
2058	 *   80ns * 2^(period_exponent + 1)
2059	 *
2060	 * This property is available in perf revision 1.
2061	 */
2062	DRM_I915_PERF_PROP_OA_EXPONENT,
2063
2064	/**
2065	 * Specifying this property is only valid when specify a context to
2066	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2067	 * will hold preemption of the particular context we want to gather
2068	 * performance data about. The execbuf2 submissions must include a
2069	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2070	 *
2071	 * This property is available in perf revision 3.
2072	 */
2073	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2074
2075	/**
2076	 * Specifying this pins all contexts to the specified SSEU power
2077	 * configuration for the duration of the recording.
2078	 *
2079	 * This parameter's value is a pointer to a struct
2080	 * drm_i915_gem_context_param_sseu.
2081	 *
2082	 * This property is available in perf revision 4.
2083	 */
2084	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2085
2086	/**
2087	 * This optional parameter specifies the timer interval in nanoseconds
2088	 * at which the i915 driver will check the OA buffer for available data.
2089	 * Minimum allowed value is 100 microseconds. A default value is used by
2090	 * the driver if this parameter is not specified. Note that larger timer
2091	 * values will reduce cpu consumption during OA perf captures. However,
2092	 * excessively large values would potentially result in OA buffer
2093	 * overwrites as captures reach end of the OA buffer.
2094	 *
2095	 * This property is available in perf revision 5.
2096	 */
2097	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2098
2099	DRM_I915_PERF_PROP_MAX /* non-ABI */
2100};
2101
2102struct drm_i915_perf_open_param {
2103	__u32 flags;
2104#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2105#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2106#define I915_PERF_FLAG_DISABLED		(1<<2)
2107
2108	/** The number of u64 (id, value) pairs */
2109	__u32 num_properties;
2110
2111	/**
2112	 * Pointer to array of u64 (id, value) pairs configuring the stream
2113	 * to open.
2114	 */
2115	__u64 properties_ptr;
2116};
2117
2118/*
2119 * Enable data capture for a stream that was either opened in a disabled state
2120 * via I915_PERF_FLAG_DISABLED or was later disabled via
2121 * I915_PERF_IOCTL_DISABLE.
2122 *
2123 * It is intended to be cheaper to disable and enable a stream than it may be
2124 * to close and re-open a stream with the same configuration.
2125 *
2126 * It's undefined whether any pending data for the stream will be lost.
2127 *
2128 * This ioctl is available in perf revision 1.
2129 */
2130#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2131
2132/*
2133 * Disable data capture for a stream.
2134 *
2135 * It is an error to try and read a stream that is disabled.
2136 *
2137 * This ioctl is available in perf revision 1.
2138 */
2139#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2140
2141/*
2142 * Change metrics_set captured by a stream.
2143 *
2144 * If the stream is bound to a specific context, the configuration change
2145 * will performed inline with that context such that it takes effect before
2146 * the next execbuf submission.
2147 *
2148 * Returns the previously bound metrics set id, or a negative error code.
2149 *
2150 * This ioctl is available in perf revision 2.
2151 */
2152#define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2153
2154/*
2155 * Common to all i915 perf records
2156 */
2157struct drm_i915_perf_record_header {
2158	__u32 type;
2159	__u16 pad;
2160	__u16 size;
2161};
2162
2163enum drm_i915_perf_record_type {
2164
2165	/**
2166	 * Samples are the work horse record type whose contents are extensible
2167	 * and defined when opening an i915 perf stream based on the given
2168	 * properties.
2169	 *
2170	 * Boolean properties following the naming convention
2171	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2172	 * every sample.
2173	 *
2174	 * The order of these sample properties given by userspace has no
2175	 * affect on the ordering of data within a sample. The order is
2176	 * documented here.
2177	 *
2178	 * struct {
2179	 *     struct drm_i915_perf_record_header header;
2180	 *
2181	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2182	 * };
2183	 */
2184	DRM_I915_PERF_RECORD_SAMPLE = 1,
2185
2186	/*
2187	 * Indicates that one or more OA reports were not written by the
2188	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2189	 * command collides with periodic sampling - which would be more likely
2190	 * at higher sampling frequencies.
2191	 */
2192	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2193
2194	/**
2195	 * An error occurred that resulted in all pending OA reports being lost.
2196	 */
2197	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2198
2199	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2200};
2201
2202/*
2203 * Structure to upload perf dynamic configuration into the kernel.
2204 */
2205struct drm_i915_perf_oa_config {
2206	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2207	char uuid[36];
2208
2209	__u32 n_mux_regs;
2210	__u32 n_boolean_regs;
2211	__u32 n_flex_regs;
2212
2213	/*
2214	 * These fields are pointers to tuples of u32 values (register address,
2215	 * value). For example the expected length of the buffer pointed by
2216	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2217	 */
2218	__u64 mux_regs_ptr;
2219	__u64 boolean_regs_ptr;
2220	__u64 flex_regs_ptr;
2221};
2222
2223/**
2224 * struct drm_i915_query_item - An individual query for the kernel to process.
2225 *
2226 * The behaviour is determined by the @query_id. Note that exactly what
2227 * @data_ptr is also depends on the specific @query_id.
2228 */
2229struct drm_i915_query_item {
2230	/** @query_id: The id for this query */
2231	__u64 query_id;
2232#define DRM_I915_QUERY_TOPOLOGY_INFO    1
2233#define DRM_I915_QUERY_ENGINE_INFO	2
2234#define DRM_I915_QUERY_PERF_CONFIG      3
2235#define DRM_I915_QUERY_MEMORY_REGIONS   4
2236/* Must be kept compact -- no holes and well documented */
2237
2238	/**
2239	 * @length:
2240	 *
2241	 * When set to zero by userspace, this is filled with the size of the
2242	 * data to be written at the @data_ptr pointer. The kernel sets this
2243	 * value to a negative value to signal an error on a particular query
2244	 * item.
2245	 */
2246	__s32 length;
2247
2248	/**
2249	 * @flags:
2250	 *
2251	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2252	 *
2253	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2254	 * following:
2255	 *
2256	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2257	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2258	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2259	 */
2260	__u32 flags;
2261#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2262#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2263#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2264
2265	/**
2266	 * @data_ptr:
2267	 *
2268	 * Data will be written at the location pointed by @data_ptr when the
2269	 * value of @length matches the length of the data to be written by the
2270	 * kernel.
2271	 */
2272	__u64 data_ptr;
2273};
2274
2275/**
2276 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2277 * kernel to fill out.
2278 *
2279 * Note that this is generally a two step process for each struct
2280 * drm_i915_query_item in the array:
2281 *
2282 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2283 *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2284 *    kernel will then fill in the size, in bytes, which tells userspace how
2285 *    memory it needs to allocate for the blob(say for an array of properties).
2286 *
2287 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2288 *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2289 *    the &drm_i915_query_item.length should still be the same as what the
2290 *    kernel previously set. At this point the kernel can fill in the blob.
2291 *
2292 * Note that for some query items it can make sense for userspace to just pass
2293 * in a buffer/blob equal to or larger than the required size. In this case only
2294 * a single ioctl call is needed. For some smaller query items this can work
2295 * quite well.
2296 *
2297 */
2298struct drm_i915_query {
2299	/** @num_items: The number of elements in the @items_ptr array */
2300	__u32 num_items;
2301
2302	/**
2303	 * @flags: Unused for now. Must be cleared to zero.
2304	 */
2305	__u32 flags;
2306
2307	/**
2308	 * @items_ptr:
2309	 *
2310	 * Pointer to an array of struct drm_i915_query_item. The number of
2311	 * array elements is @num_items.
2312	 */
2313	__u64 items_ptr;
2314};
2315
2316/*
2317 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2318 *
2319 * data: contains the 3 pieces of information :
2320 *
2321 * - the slice mask with one bit per slice telling whether a slice is
2322 *   available. The availability of slice X can be queried with the following
2323 *   formula :
2324 *
2325 *           (data[X / 8] >> (X % 8)) & 1
2326 *
2327 * - the subslice mask for each slice with one bit per subslice telling
2328 *   whether a subslice is available. Gen12 has dual-subslices, which are
2329 *   similar to two gen11 subslices. For gen12, this array represents dual-
2330 *   subslices. The availability of subslice Y in slice X can be queried
2331 *   with the following formula :
2332 *
2333 *           (data[subslice_offset +
2334 *                 X * subslice_stride +
2335 *                 Y / 8] >> (Y % 8)) & 1
2336 *
2337 * - the EU mask for each subslice in each slice with one bit per EU telling
2338 *   whether an EU is available. The availability of EU Z in subslice Y in
2339 *   slice X can be queried with the following formula :
2340 *
2341 *           (data[eu_offset +
2342 *                 (X * max_subslices + Y) * eu_stride +
2343 *                 Z / 8] >> (Z % 8)) & 1
2344 */
2345struct drm_i915_query_topology_info {
2346	/*
2347	 * Unused for now. Must be cleared to zero.
2348	 */
2349	__u16 flags;
2350
2351	__u16 max_slices;
2352	__u16 max_subslices;
2353	__u16 max_eus_per_subslice;
2354
2355	/*
2356	 * Offset in data[] at which the subslice masks are stored.
2357	 */
2358	__u16 subslice_offset;
2359
2360	/*
2361	 * Stride at which each of the subslice masks for each slice are
2362	 * stored.
2363	 */
2364	__u16 subslice_stride;
2365
2366	/*
2367	 * Offset in data[] at which the EU masks are stored.
2368	 */
2369	__u16 eu_offset;
2370
2371	/*
2372	 * Stride at which each of the EU masks for each subslice are stored.
2373	 */
2374	__u16 eu_stride;
2375
2376	__u8 data[];
2377};
2378
2379/**
2380 * struct drm_i915_engine_info
2381 *
2382 * Describes one engine and it's capabilities as known to the driver.
2383 */
2384struct drm_i915_engine_info {
2385	/** @engine: Engine class and instance. */
2386	struct i915_engine_class_instance engine;
2387
2388	/** @rsvd0: Reserved field. */
2389	__u32 rsvd0;
2390
2391	/** @flags: Engine flags. */
2392	__u64 flags;
2393
2394	/** @capabilities: Capabilities of this engine. */
2395	__u64 capabilities;
2396#define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2397#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2398
2399	/** @rsvd1: Reserved fields. */
2400	__u64 rsvd1[4];
2401};
2402
2403/**
2404 * struct drm_i915_query_engine_info
2405 *
2406 * Engine info query enumerates all engines known to the driver by filling in
2407 * an array of struct drm_i915_engine_info structures.
2408 */
2409struct drm_i915_query_engine_info {
2410	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2411	__u32 num_engines;
2412
2413	/** @rsvd: MBZ */
2414	__u32 rsvd[3];
2415
2416	/** @engines: Marker for drm_i915_engine_info structures. */
2417	struct drm_i915_engine_info engines[];
2418};
2419
2420/*
2421 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2422 */
2423struct drm_i915_query_perf_config {
2424	union {
2425		/*
2426		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2427		 * this fields to the number of configurations available.
2428		 */
2429		__u64 n_configs;
2430
2431		/*
2432		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2433		 * i915 will use the value in this field as configuration
2434		 * identifier to decide what data to write into config_ptr.
2435		 */
2436		__u64 config;
2437
2438		/*
2439		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2440		 * i915 will use the value in this field as configuration
2441		 * identifier to decide what data to write into config_ptr.
2442		 *
2443		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2444		 */
2445		char uuid[36];
2446	};
2447
2448	/*
2449	 * Unused for now. Must be cleared to zero.
2450	 */
2451	__u32 flags;
2452
2453	/*
2454	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2455	 * write an array of __u64 of configuration identifiers.
2456	 *
2457	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2458	 * write a struct drm_i915_perf_oa_config. If the following fields of
2459	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2460	 * the associated pointers the values of submitted when the
2461	 * configuration was created :
2462	 *
2463	 *         - n_mux_regs
2464	 *         - n_boolean_regs
2465	 *         - n_flex_regs
2466	 */
2467	__u8 data[];
2468};
2469
2470/**
2471 * enum drm_i915_gem_memory_class - Supported memory classes
2472 */
2473enum drm_i915_gem_memory_class {
2474	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
2475	I915_MEMORY_CLASS_SYSTEM = 0,
2476	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
2477	I915_MEMORY_CLASS_DEVICE,
2478};
2479
2480/**
2481 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
2482 */
2483struct drm_i915_gem_memory_class_instance {
2484	/** @memory_class: See enum drm_i915_gem_memory_class */
2485	__u16 memory_class;
2486
2487	/** @memory_instance: Which instance */
2488	__u16 memory_instance;
2489};
2490
2491/**
2492 * struct drm_i915_memory_region_info - Describes one region as known to the
2493 * driver.
2494 *
2495 * Note that we reserve some stuff here for potential future work. As an example
2496 * we might want expose the capabilities for a given region, which could include
2497 * things like if the region is CPU mappable/accessible, what are the supported
2498 * mapping types etc.
2499 *
2500 * Note that to extend struct drm_i915_memory_region_info and struct
2501 * drm_i915_query_memory_regions in the future the plan is to do the following:
2502 *
2503 * .. code-block:: C
2504 *
2505 *	struct drm_i915_memory_region_info {
2506 *		struct drm_i915_gem_memory_class_instance region;
2507 *		union {
2508 *			__u32 rsvd0;
2509 *			__u32 new_thing1;
2510 *		};
2511 *		...
2512 *		union {
2513 *			__u64 rsvd1[8];
2514 *			struct {
2515 *				__u64 new_thing2;
2516 *				__u64 new_thing3;
2517 *				...
2518 *			};
2519 *		};
2520 *	};
2521 *
2522 * With this things should remain source compatible between versions for
2523 * userspace, even as we add new fields.
2524 *
2525 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
2526 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
2527 * at &drm_i915_query_item.query_id.
2528 */
2529struct drm_i915_memory_region_info {
2530	/** @region: The class:instance pair encoding */
2531	struct drm_i915_gem_memory_class_instance region;
2532
2533	/** @rsvd0: MBZ */
2534	__u32 rsvd0;
2535
2536	/** @probed_size: Memory probed by the driver (-1 = unknown) */
2537	__u64 probed_size;
2538
2539	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
2540	__u64 unallocated_size;
2541
2542	/** @rsvd1: MBZ */
2543	__u64 rsvd1[8];
2544};
2545
2546/**
2547 * struct drm_i915_query_memory_regions
2548 *
2549 * The region info query enumerates all regions known to the driver by filling
2550 * in an array of struct drm_i915_memory_region_info structures.
2551 *
2552 * Example for getting the list of supported regions:
2553 *
2554 * .. code-block:: C
2555 *
2556 *	struct drm_i915_query_memory_regions *info;
2557 *	struct drm_i915_query_item item = {
2558 *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
2559 *	};
2560 *	struct drm_i915_query query = {
2561 *		.num_items = 1,
2562 *		.items_ptr = (uintptr_t)&item,
2563 *	};
2564 *	int err, i;
2565 *
2566 *	// First query the size of the blob we need, this needs to be large
2567 *	// enough to hold our array of regions. The kernel will fill out the
2568 *	// item.length for us, which is the number of bytes we need.
2569 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2570 *	if (err) ...
2571 *
2572 *	info = calloc(1, item.length);
2573 *	// Now that we allocated the required number of bytes, we call the ioctl
2574 *	// again, this time with the data_ptr pointing to our newly allocated
2575 *	// blob, which the kernel can then populate with the all the region info.
2576 *	item.data_ptr = (uintptr_t)&info,
2577 *
2578 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2579 *	if (err) ...
2580 *
2581 *	// We can now access each region in the array
2582 *	for (i = 0; i < info->num_regions; i++) {
2583 *		struct drm_i915_memory_region_info mr = info->regions[i];
2584 *		u16 class = mr.region.class;
2585 *		u16 instance = mr.region.instance;
2586 *
2587 *		....
2588 *	}
2589 *
2590 *	free(info);
2591 */
2592struct drm_i915_query_memory_regions {
2593	/** @num_regions: Number of supported regions */
2594	__u32 num_regions;
2595
2596	/** @rsvd: MBZ */
2597	__u32 rsvd[3];
2598
2599	/** @regions: Info about each supported region */
2600	struct drm_i915_memory_region_info regions[];
2601};
2602
2603/**
2604 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
2605 * extension support using struct i915_user_extension.
2606 *
2607 * Note that in the future we want to have our buffer flags here, at least for
2608 * the stuff that is immutable. Previously we would have two ioctls, one to
2609 * create the object with gem_create, and another to apply various parameters,
2610 * however this creates some ambiguity for the params which are considered
2611 * immutable. Also in general we're phasing out the various SET/GET ioctls.
2612 */
2613struct drm_i915_gem_create_ext {
2614	/**
2615	 * @size: Requested size for the object.
2616	 *
2617	 * The (page-aligned) allocated size for the object will be returned.
2618	 *
2619	 * Note that for some devices we have might have further minimum
2620	 * page-size restrictions(larger than 4K), like for device local-memory.
2621	 * However in general the final size here should always reflect any
2622	 * rounding up, if for example using the I915_GEM_CREATE_EXT_MEMORY_REGIONS
2623	 * extension to place the object in device local-memory.
2624	 */
2625	__u64 size;
2626	/**
2627	 * @handle: Returned handle for the object.
2628	 *
2629	 * Object handles are nonzero.
2630	 */
2631	__u32 handle;
2632	/** @flags: MBZ */
2633	__u32 flags;
2634	/**
2635	 * @extensions: The chain of extensions to apply to this object.
2636	 *
2637	 * This will be useful in the future when we need to support several
2638	 * different extensions, and we need to apply more than one when
2639	 * creating the object. See struct i915_user_extension.
2640	 *
2641	 * If we don't supply any extensions then we get the same old gem_create
2642	 * behaviour.
2643	 *
2644	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
2645	 * struct drm_i915_gem_create_ext_memory_regions.
2646	 */
2647#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
2648	__u64 extensions;
2649};
2650
2651/**
2652 * struct drm_i915_gem_create_ext_memory_regions - The
2653 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
2654 *
2655 * Set the object with the desired set of placements/regions in priority
2656 * order. Each entry must be unique and supported by the device.
2657 *
2658 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
2659 * an equivalent layout of class:instance pair encodings. See struct
2660 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
2661 * query the supported regions for a device.
2662 *
2663 * As an example, on discrete devices, if we wish to set the placement as
2664 * device local-memory we can do something like:
2665 *
2666 * .. code-block:: C
2667 *
2668 *	struct drm_i915_gem_memory_class_instance region_lmem = {
2669 *              .memory_class = I915_MEMORY_CLASS_DEVICE,
2670 *              .memory_instance = 0,
2671 *      };
2672 *      struct drm_i915_gem_create_ext_memory_regions regions = {
2673 *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
2674 *              .regions = (uintptr_t)&region_lmem,
2675 *              .num_regions = 1,
2676 *      };
2677 *      struct drm_i915_gem_create_ext create_ext = {
2678 *              .size = 16 * PAGE_SIZE,
2679 *              .extensions = (uintptr_t)&regions,
2680 *      };
2681 *
2682 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
2683 *      if (err) ...
2684 *
2685 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
2686 * along with the final object size in &drm_i915_gem_create_ext.size, which
2687 * should account for any rounding up, if required.
2688 */
2689struct drm_i915_gem_create_ext_memory_regions {
2690	/** @base: Extension link. See struct i915_user_extension. */
2691	struct i915_user_extension base;
2692
2693	/** @pad: MBZ */
2694	__u32 pad;
2695	/** @num_regions: Number of elements in the @regions array. */
2696	__u32 num_regions;
2697	/**
2698	 * @regions: The regions/placements array.
2699	 *
2700	 * An array of struct drm_i915_gem_memory_class_instance.
2701	 */
2702	__u64 regions;
2703};
2704
2705#if defined(__cplusplus)
2706}
2707#endif
2708
2709#endif /* _UAPI_I915_DRM_H_ */