Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the
  14 * next paragraph) shall be included in all copies or substantial portions
  15 * of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24 *
  25 */
  26
  27#ifndef _UAPI_I915_DRM_H_
  28#define _UAPI_I915_DRM_H_
  29
  30#include "drm.h"
  31
  32#if defined(__cplusplus)
  33extern "C" {
  34#endif
  35
  36/* Please note that modifications to all structs defined here are
  37 * subject to backwards-compatibility constraints.
  38 */
  39
  40/**
  41 * DOC: uevents generated by i915 on it's device node
  42 *
  43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
  44 *	event from the gpu l3 cache. Additional information supplied is ROW,
  45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
  46 *	track of these events and if a specific cache-line seems to have a
  47 *	persistent error remap it with the l3 remapping tool supplied in
  48 *	intel-gpu-tools.  The value supplied with the event is always 1.
  49 *
  50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
  51 *	hangcheck. The error detection event is a good indicator of when things
  52 *	began to go badly. The value supplied with the event is a 1 upon error
  53 *	detection, and a 0 upon reset completion, signifying no more error
  54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
  55 *	cause the related events to not be seen.
  56 *
  57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
  58 *	GPU. The value supplied with the event is always 1. NOTE: Disable
  59 *	reset via module parameter will cause this event to not be seen.
  60 */
  61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
  62#define I915_ERROR_UEVENT		"ERROR"
  63#define I915_RESET_UEVENT		"RESET"
  64
  65/**
  66 * struct i915_user_extension - Base class for defining a chain of extensions
  67 *
  68 * Many interfaces need to grow over time. In most cases we can simply
  69 * extend the struct and have userspace pass in more data. Another option,
  70 * as demonstrated by Vulkan's approach to providing extensions for forward
  71 * and backward compatibility, is to use a list of optional structs to
  72 * provide those extra details.
  73 *
  74 * The key advantage to using an extension chain is that it allows us to
  75 * redefine the interface more easily than an ever growing struct of
  76 * increasing complexity, and for large parts of that interface to be
  77 * entirely optional. The downside is more pointer chasing; chasing across
  78 * the __user boundary with pointers encapsulated inside u64.
  79 *
  80 * Example chaining:
  81 *
  82 * .. code-block:: C
  83 *
  84 *	struct i915_user_extension ext3 {
  85 *		.next_extension = 0, // end
  86 *		.name = ...,
  87 *	};
  88 *	struct i915_user_extension ext2 {
  89 *		.next_extension = (uintptr_t)&ext3,
  90 *		.name = ...,
  91 *	};
  92 *	struct i915_user_extension ext1 {
  93 *		.next_extension = (uintptr_t)&ext2,
  94 *		.name = ...,
  95 *	};
  96 *
  97 * Typically the struct i915_user_extension would be embedded in some uAPI
  98 * struct, and in this case we would feed it the head of the chain(i.e ext1),
  99 * which would then apply all of the above extensions.
 100 *
 101 */
 102struct i915_user_extension {
 103	/**
 104	 * @next_extension:
 105	 *
 106	 * Pointer to the next struct i915_user_extension, or zero if the end.
 107	 */
 108	__u64 next_extension;
 109	/**
 110	 * @name: Name of the extension.
 111	 *
 112	 * Note that the name here is just some integer.
 113	 *
 114	 * Also note that the name space for this is not global for the whole
 115	 * driver, but rather its scope/meaning is limited to the specific piece
 116	 * of uAPI which has embedded the struct i915_user_extension.
 117	 */
 118	__u32 name;
 119	/**
 120	 * @flags: MBZ
 121	 *
 122	 * All undefined bits must be zero.
 123	 */
 124	__u32 flags;
 125	/**
 126	 * @rsvd: MBZ
 127	 *
 128	 * Reserved for future use; must be zero.
 129	 */
 130	__u32 rsvd[4];
 131};
 132
 133/*
 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the
 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
 136 */
 137enum i915_mocs_table_index {
 138	/*
 139	 * Not cached anywhere, coherency between CPU and GPU accesses is
 140	 * guaranteed.
 141	 */
 142	I915_MOCS_UNCACHED,
 143	/*
 144	 * Cacheability and coherency controlled by the kernel automatically
 145	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
 146	 * usage of the surface (used for display scanout or not).
 147	 */
 148	I915_MOCS_PTE,
 149	/*
 150	 * Cached in all GPU caches available on the platform.
 151	 * Coherency between CPU and GPU accesses to the surface is not
 152	 * guaranteed without extra synchronization.
 153	 */
 154	I915_MOCS_CACHED,
 155};
 156
 157/**
 158 * enum drm_i915_gem_engine_class - uapi engine type enumeration
 159 *
 160 * Different engines serve different roles, and there may be more than one
 161 * engine serving each role.  This enum provides a classification of the role
 162 * of the engine, which may be used when requesting operations to be performed
 163 * on a certain subset of engines, or for providing information about that
 164 * group.
 165 */
 166enum drm_i915_gem_engine_class {
 167	/**
 168	 * @I915_ENGINE_CLASS_RENDER:
 169	 *
 170	 * Render engines support instructions used for 3D, Compute (GPGPU),
 171	 * and programmable media workloads.  These instructions fetch data and
 172	 * dispatch individual work items to threads that operate in parallel.
 173	 * The threads run small programs (called "kernels" or "shaders") on
 174	 * the GPU's execution units (EUs).
 175	 */
 176	I915_ENGINE_CLASS_RENDER	= 0,
 177
 178	/**
 179	 * @I915_ENGINE_CLASS_COPY:
 180	 *
 181	 * Copy engines (also referred to as "blitters") support instructions
 182	 * that move blocks of data from one location in memory to another,
 183	 * or that fill a specified location of memory with fixed data.
 184	 * Copy engines can perform pre-defined logical or bitwise operations
 185	 * on the source, destination, or pattern data.
 186	 */
 187	I915_ENGINE_CLASS_COPY		= 1,
 188
 189	/**
 190	 * @I915_ENGINE_CLASS_VIDEO:
 191	 *
 192	 * Video engines (also referred to as "bit stream decode" (BSD) or
 193	 * "vdbox") support instructions that perform fixed-function media
 194	 * decode and encode.
 195	 */
 196	I915_ENGINE_CLASS_VIDEO		= 2,
 197
 198	/**
 199	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
 200	 *
 201	 * Video enhancement engines (also referred to as "vebox") support
 202	 * instructions related to image enhancement.
 203	 */
 204	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
 205
 206	/**
 207	 * @I915_ENGINE_CLASS_COMPUTE:
 208	 *
 209	 * Compute engines support a subset of the instructions available
 210	 * on render engines:  compute engines support Compute (GPGPU) and
 211	 * programmable media workloads, but do not support the 3D pipeline.
 212	 */
 213	I915_ENGINE_CLASS_COMPUTE	= 4,
 214
 215	/* Values in this enum should be kept compact. */
 216
 217	/**
 218	 * @I915_ENGINE_CLASS_INVALID:
 219	 *
 220	 * Placeholder value to represent an invalid engine class assignment.
 221	 */
 222	I915_ENGINE_CLASS_INVALID	= -1
 223};
 224
 225/**
 226 * struct i915_engine_class_instance - Engine class/instance identifier
 227 *
 228 * There may be more than one engine fulfilling any role within the system.
 229 * Each engine of a class is given a unique instance number and therefore
 230 * any engine can be specified by its class:instance tuplet. APIs that allow
 231 * access to any engine in the system will use struct i915_engine_class_instance
 232 * for this identification.
 233 */
 234struct i915_engine_class_instance {
 235	/**
 236	 * @engine_class:
 237	 *
 238	 * Engine class from enum drm_i915_gem_engine_class
 239	 */
 240	__u16 engine_class;
 241#define I915_ENGINE_CLASS_INVALID_NONE -1
 242#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
 243
 244	/**
 245	 * @engine_instance:
 246	 *
 247	 * Engine instance.
 248	 */
 249	__u16 engine_instance;
 250};
 251
 252/**
 253 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
 254 *
 255 */
 256
 257enum drm_i915_pmu_engine_sample {
 258	I915_SAMPLE_BUSY = 0,
 259	I915_SAMPLE_WAIT = 1,
 260	I915_SAMPLE_SEMA = 2
 261};
 262
 263#define I915_PMU_SAMPLE_BITS (4)
 264#define I915_PMU_SAMPLE_MASK (0xf)
 265#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
 266#define I915_PMU_CLASS_SHIFT \
 267	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
 268
 269#define __I915_PMU_ENGINE(class, instance, sample) \
 270	((class) << I915_PMU_CLASS_SHIFT | \
 271	(instance) << I915_PMU_SAMPLE_BITS | \
 272	(sample))
 273
 274#define I915_PMU_ENGINE_BUSY(class, instance) \
 275	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
 276
 277#define I915_PMU_ENGINE_WAIT(class, instance) \
 278	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
 279
 280#define I915_PMU_ENGINE_SEMA(class, instance) \
 281	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
 282
 283#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
 284
 285#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
 286#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
 287#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
 288#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
 289#define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
 290
 291#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
 292
 293/* Each region is a minimum of 16k, and there are at most 255 of them.
 294 */
 295#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
 296				 * of chars for next/prev indices */
 297#define I915_LOG_MIN_TEX_REGION_SIZE 14
 298
 299typedef struct _drm_i915_init {
 300	enum {
 301		I915_INIT_DMA = 0x01,
 302		I915_CLEANUP_DMA = 0x02,
 303		I915_RESUME_DMA = 0x03
 304	} func;
 305	unsigned int mmio_offset;
 306	int sarea_priv_offset;
 307	unsigned int ring_start;
 308	unsigned int ring_end;
 309	unsigned int ring_size;
 310	unsigned int front_offset;
 311	unsigned int back_offset;
 312	unsigned int depth_offset;
 313	unsigned int w;
 314	unsigned int h;
 315	unsigned int pitch;
 316	unsigned int pitch_bits;
 317	unsigned int back_pitch;
 318	unsigned int depth_pitch;
 319	unsigned int cpp;
 320	unsigned int chipset;
 321} drm_i915_init_t;
 322
 323typedef struct _drm_i915_sarea {
 324	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
 325	int last_upload;	/* last time texture was uploaded */
 326	int last_enqueue;	/* last time a buffer was enqueued */
 327	int last_dispatch;	/* age of the most recently dispatched buffer */
 328	int ctxOwner;		/* last context to upload state */
 329	int texAge;
 330	int pf_enabled;		/* is pageflipping allowed? */
 331	int pf_active;
 332	int pf_current_page;	/* which buffer is being displayed? */
 333	int perf_boxes;		/* performance boxes to be displayed */
 334	int width, height;      /* screen size in pixels */
 335
 336	drm_handle_t front_handle;
 337	int front_offset;
 338	int front_size;
 339
 340	drm_handle_t back_handle;
 341	int back_offset;
 342	int back_size;
 343
 344	drm_handle_t depth_handle;
 345	int depth_offset;
 346	int depth_size;
 347
 348	drm_handle_t tex_handle;
 349	int tex_offset;
 350	int tex_size;
 351	int log_tex_granularity;
 352	int pitch;
 353	int rotation;           /* 0, 90, 180 or 270 */
 354	int rotated_offset;
 355	int rotated_size;
 356	int rotated_pitch;
 357	int virtualX, virtualY;
 358
 359	unsigned int front_tiled;
 360	unsigned int back_tiled;
 361	unsigned int depth_tiled;
 362	unsigned int rotated_tiled;
 363	unsigned int rotated2_tiled;
 364
 365	int pipeA_x;
 366	int pipeA_y;
 367	int pipeA_w;
 368	int pipeA_h;
 369	int pipeB_x;
 370	int pipeB_y;
 371	int pipeB_w;
 372	int pipeB_h;
 373
 374	/* fill out some space for old userspace triple buffer */
 375	drm_handle_t unused_handle;
 376	__u32 unused1, unused2, unused3;
 377
 378	/* buffer object handles for static buffers. May change
 379	 * over the lifetime of the client.
 380	 */
 381	__u32 front_bo_handle;
 382	__u32 back_bo_handle;
 383	__u32 unused_bo_handle;
 384	__u32 depth_bo_handle;
 385
 386} drm_i915_sarea_t;
 387
 388/* due to userspace building against these headers we need some compat here */
 389#define planeA_x pipeA_x
 390#define planeA_y pipeA_y
 391#define planeA_w pipeA_w
 392#define planeA_h pipeA_h
 393#define planeB_x pipeB_x
 394#define planeB_y pipeB_y
 395#define planeB_w pipeB_w
 396#define planeB_h pipeB_h
 397
 398/* Flags for perf_boxes
 399 */
 400#define I915_BOX_RING_EMPTY    0x1
 401#define I915_BOX_FLIP          0x2
 402#define I915_BOX_WAIT          0x4
 403#define I915_BOX_TEXTURE_LOAD  0x8
 404#define I915_BOX_LOST_CONTEXT  0x10
 405
 406/*
 407 * i915 specific ioctls.
 408 *
 409 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 410 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 411 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 412 */
 413#define DRM_I915_INIT		0x00
 414#define DRM_I915_FLUSH		0x01
 415#define DRM_I915_FLIP		0x02
 416#define DRM_I915_BATCHBUFFER	0x03
 417#define DRM_I915_IRQ_EMIT	0x04
 418#define DRM_I915_IRQ_WAIT	0x05
 419#define DRM_I915_GETPARAM	0x06
 420#define DRM_I915_SETPARAM	0x07
 421#define DRM_I915_ALLOC		0x08
 422#define DRM_I915_FREE		0x09
 423#define DRM_I915_INIT_HEAP	0x0a
 424#define DRM_I915_CMDBUFFER	0x0b
 425#define DRM_I915_DESTROY_HEAP	0x0c
 426#define DRM_I915_SET_VBLANK_PIPE	0x0d
 427#define DRM_I915_GET_VBLANK_PIPE	0x0e
 428#define DRM_I915_VBLANK_SWAP	0x0f
 429#define DRM_I915_HWS_ADDR	0x11
 430#define DRM_I915_GEM_INIT	0x13
 431#define DRM_I915_GEM_EXECBUFFER	0x14
 432#define DRM_I915_GEM_PIN	0x15
 433#define DRM_I915_GEM_UNPIN	0x16
 434#define DRM_I915_GEM_BUSY	0x17
 435#define DRM_I915_GEM_THROTTLE	0x18
 436#define DRM_I915_GEM_ENTERVT	0x19
 437#define DRM_I915_GEM_LEAVEVT	0x1a
 438#define DRM_I915_GEM_CREATE	0x1b
 439#define DRM_I915_GEM_PREAD	0x1c
 440#define DRM_I915_GEM_PWRITE	0x1d
 441#define DRM_I915_GEM_MMAP	0x1e
 442#define DRM_I915_GEM_SET_DOMAIN	0x1f
 443#define DRM_I915_GEM_SW_FINISH	0x20
 444#define DRM_I915_GEM_SET_TILING	0x21
 445#define DRM_I915_GEM_GET_TILING	0x22
 446#define DRM_I915_GEM_GET_APERTURE 0x23
 447#define DRM_I915_GEM_MMAP_GTT	0x24
 448#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
 449#define DRM_I915_GEM_MADVISE	0x26
 450#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
 451#define DRM_I915_OVERLAY_ATTRS	0x28
 452#define DRM_I915_GEM_EXECBUFFER2	0x29
 453#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
 454#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
 455#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
 456#define DRM_I915_GEM_WAIT	0x2c
 457#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
 458#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
 459#define DRM_I915_GEM_SET_CACHING	0x2f
 460#define DRM_I915_GEM_GET_CACHING	0x30
 461#define DRM_I915_REG_READ		0x31
 462#define DRM_I915_GET_RESET_STATS	0x32
 463#define DRM_I915_GEM_USERPTR		0x33
 464#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
 465#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
 466#define DRM_I915_PERF_OPEN		0x36
 467#define DRM_I915_PERF_ADD_CONFIG	0x37
 468#define DRM_I915_PERF_REMOVE_CONFIG	0x38
 469#define DRM_I915_QUERY			0x39
 470#define DRM_I915_GEM_VM_CREATE		0x3a
 471#define DRM_I915_GEM_VM_DESTROY		0x3b
 472#define DRM_I915_GEM_CREATE_EXT		0x3c
 473/* Must be kept compact -- no holes */
 474
 475#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
 476#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
 477#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
 478#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
 479#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
 480#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
 481#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
 482#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
 483#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
 484#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
 485#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
 486#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
 487#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
 488#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 489#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
 490#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
 491#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
 492#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
 493#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
 494#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
 495#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
 496#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
 497#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
 498#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
 499#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
 500#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
 501#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
 502#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
 503#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
 504#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
 505#define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
 506#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
 507#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
 508#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
 509#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
 510#define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
 511#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
 512#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
 513#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
 514#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
 515#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
 516#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
 517#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
 518#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
 519#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
 520#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 521#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
 522#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
 523#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
 524#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
 525#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
 526#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
 527#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
 528#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
 529#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
 530#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
 531#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
 532#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
 533#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
 534#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
 535#define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
 536#define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
 537
 538/* Allow drivers to submit batchbuffers directly to hardware, relying
 539 * on the security mechanisms provided by hardware.
 540 */
 541typedef struct drm_i915_batchbuffer {
 542	int start;		/* agp offset */
 543	int used;		/* nr bytes in use */
 544	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 545	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 546	int num_cliprects;	/* mulitpass with multiple cliprects? */
 547	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 548} drm_i915_batchbuffer_t;
 549
 550/* As above, but pass a pointer to userspace buffer which can be
 551 * validated by the kernel prior to sending to hardware.
 552 */
 553typedef struct _drm_i915_cmdbuffer {
 554	char __user *buf;	/* pointer to userspace command buffer */
 555	int sz;			/* nr bytes in buf */
 556	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
 557	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
 558	int num_cliprects;	/* mulitpass with multiple cliprects? */
 559	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
 560} drm_i915_cmdbuffer_t;
 561
 562/* Userspace can request & wait on irq's:
 563 */
 564typedef struct drm_i915_irq_emit {
 565	int __user *irq_seq;
 566} drm_i915_irq_emit_t;
 567
 568typedef struct drm_i915_irq_wait {
 569	int irq_seq;
 570} drm_i915_irq_wait_t;
 571
 572/*
 573 * Different modes of per-process Graphics Translation Table,
 574 * see I915_PARAM_HAS_ALIASING_PPGTT
 575 */
 576#define I915_GEM_PPGTT_NONE	0
 577#define I915_GEM_PPGTT_ALIASING	1
 578#define I915_GEM_PPGTT_FULL	2
 579
 580/* Ioctl to query kernel params:
 581 */
 582#define I915_PARAM_IRQ_ACTIVE            1
 583#define I915_PARAM_ALLOW_BATCHBUFFER     2
 584#define I915_PARAM_LAST_DISPATCH         3
 585#define I915_PARAM_CHIPSET_ID            4
 586#define I915_PARAM_HAS_GEM               5
 587#define I915_PARAM_NUM_FENCES_AVAIL      6
 588#define I915_PARAM_HAS_OVERLAY           7
 589#define I915_PARAM_HAS_PAGEFLIPPING	 8
 590#define I915_PARAM_HAS_EXECBUF2          9
 591#define I915_PARAM_HAS_BSD		 10
 592#define I915_PARAM_HAS_BLT		 11
 593#define I915_PARAM_HAS_RELAXED_FENCING	 12
 594#define I915_PARAM_HAS_COHERENT_RINGS	 13
 595#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
 596#define I915_PARAM_HAS_RELAXED_DELTA	 15
 597#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
 598#define I915_PARAM_HAS_LLC     	 	 17
 599#define I915_PARAM_HAS_ALIASING_PPGTT	 18
 600#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
 601#define I915_PARAM_HAS_SEMAPHORES	 20
 602#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
 603#define I915_PARAM_HAS_VEBOX		 22
 604#define I915_PARAM_HAS_SECURE_BATCHES	 23
 605#define I915_PARAM_HAS_PINNED_BATCHES	 24
 606#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
 607#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
 608#define I915_PARAM_HAS_WT     	 	 27
 609#define I915_PARAM_CMD_PARSER_VERSION	 28
 610#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
 611#define I915_PARAM_MMAP_VERSION          30
 612#define I915_PARAM_HAS_BSD2		 31
 613#define I915_PARAM_REVISION              32
 614#define I915_PARAM_SUBSLICE_TOTAL	 33
 615#define I915_PARAM_EU_TOTAL		 34
 616#define I915_PARAM_HAS_GPU_RESET	 35
 617#define I915_PARAM_HAS_RESOURCE_STREAMER 36
 618#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
 619#define I915_PARAM_HAS_POOLED_EU	 38
 620#define I915_PARAM_MIN_EU_IN_POOL	 39
 621#define I915_PARAM_MMAP_GTT_VERSION	 40
 622
 623/*
 624 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
 625 * priorities and the driver will attempt to execute batches in priority order.
 626 * The param returns a capability bitmask, nonzero implies that the scheduler
 627 * is enabled, with different features present according to the mask.
 628 *
 629 * The initial priority for each batch is supplied by the context and is
 630 * controlled via I915_CONTEXT_PARAM_PRIORITY.
 631 */
 632#define I915_PARAM_HAS_SCHEDULER	 41
 633#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
 634#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
 635#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
 636#define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
 637#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
 638/*
 639 * Indicates the 2k user priority levels are statically mapped into 3 buckets as
 640 * follows:
 641 *
 642 * -1k to -1	Low priority
 643 * 0		Normal priority
 644 * 1 to 1k	Highest priority
 645 */
 646#define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
 647
 648/*
 649 * Query the status of HuC load.
 650 *
 651 * The query can fail in the following scenarios with the listed error codes:
 652 *  -ENODEV if HuC is not present on this platform,
 653 *  -EOPNOTSUPP if HuC firmware usage is disabled,
 654 *  -ENOPKG if HuC firmware fetch failed,
 655 *  -ENOEXEC if HuC firmware is invalid or mismatched,
 656 *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
 657 *  -EIO if the FW transfer or the FW authentication failed.
 658 *
 659 * If the IOCTL is successful, the returned parameter will be set to one of the
 660 * following values:
 661 *  * 0 if HuC firmware load is not complete,
 662 *  * 1 if HuC firmware is authenticated and running.
 663 */
 664#define I915_PARAM_HUC_STATUS		 42
 665
 666/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
 667 * synchronisation with implicit fencing on individual objects.
 668 * See EXEC_OBJECT_ASYNC.
 669 */
 670#define I915_PARAM_HAS_EXEC_ASYNC	 43
 671
 672/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
 673 * both being able to pass in a sync_file fd to wait upon before executing,
 674 * and being able to return a new sync_file fd that is signaled when the
 675 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
 676 */
 677#define I915_PARAM_HAS_EXEC_FENCE	 44
 678
 679/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
 680 * user specified bufffers for post-mortem debugging of GPU hangs. See
 681 * EXEC_OBJECT_CAPTURE.
 682 */
 683#define I915_PARAM_HAS_EXEC_CAPTURE	 45
 684
 685#define I915_PARAM_SLICE_MASK		 46
 686
 687/* Assuming it's uniform for each slice, this queries the mask of subslices
 688 * per-slice for this system.
 689 */
 690#define I915_PARAM_SUBSLICE_MASK	 47
 691
 692/*
 693 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
 694 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
 695 */
 696#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
 697
 698/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 699 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
 700 */
 701#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
 702
 703/*
 704 * Query whether every context (both per-file default and user created) is
 705 * isolated (insofar as HW supports). If this parameter is not true, then
 706 * freshly created contexts may inherit values from an existing context,
 707 * rather than default HW values. If true, it also ensures (insofar as HW
 708 * supports) that all state set by this context will not leak to any other
 709 * context.
 710 *
 711 * As not every engine across every gen support contexts, the returned
 712 * value reports the support of context isolation for individual engines by
 713 * returning a bitmask of each engine class set to true if that class supports
 714 * isolation.
 715 */
 716#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
 717
 718/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
 719 * registers. This used to be fixed per platform but from CNL onwards, this
 720 * might vary depending on the parts.
 721 */
 722#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
 723
 724/*
 725 * Once upon a time we supposed that writes through the GGTT would be
 726 * immediately in physical memory (once flushed out of the CPU path). However,
 727 * on a few different processors and chipsets, this is not necessarily the case
 728 * as the writes appear to be buffered internally. Thus a read of the backing
 729 * storage (physical memory) via a different path (with different physical tags
 730 * to the indirect write via the GGTT) will see stale values from before
 731 * the GGTT write. Inside the kernel, we can for the most part keep track of
 732 * the different read/write domains in use (e.g. set-domain), but the assumption
 733 * of coherency is baked into the ABI, hence reporting its true state in this
 734 * parameter.
 735 *
 736 * Reports true when writes via mmap_gtt are immediately visible following an
 737 * lfence to flush the WCB.
 738 *
 739 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
 740 * internal buffer and are _not_ immediately visible to third parties accessing
 741 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
 742 * communications channel when reporting false is strongly disadvised.
 743 */
 744#define I915_PARAM_MMAP_GTT_COHERENT	52
 745
 746/*
 747 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
 748 * execution through use of explicit fence support.
 749 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
 750 */
 751#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
 752
 753/*
 754 * Revision of the i915-perf uAPI. The value returned helps determine what
 755 * i915-perf features are available. See drm_i915_perf_property_id.
 756 */
 757#define I915_PARAM_PERF_REVISION	54
 758
 759/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
 760 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
 761 * I915_EXEC_USE_EXTENSIONS.
 762 */
 763#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
 764
 765/* Query if the kernel supports the I915_USERPTR_PROBE flag. */
 766#define I915_PARAM_HAS_USERPTR_PROBE 56
 767
 768/*
 769 * Frequency of the timestamps in OA reports. This used to be the same as the CS
 770 * timestamp frequency, but differs on some platforms.
 771 */
 772#define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
 773
 774/* Must be kept compact -- no holes and well documented */
 775
 776/**
 777 * struct drm_i915_getparam - Driver parameter query structure.
 778 */
 779struct drm_i915_getparam {
 780	/** @param: Driver parameter to query. */
 781	__s32 param;
 782
 783	/**
 784	 * @value: Address of memory where queried value should be put.
 785	 *
 786	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
 787	 * compat32 code. Don't repeat this mistake.
 788	 */
 789	int __user *value;
 790};
 791
 792/**
 793 * typedef drm_i915_getparam_t - Driver parameter query structure.
 794 * See struct drm_i915_getparam.
 795 */
 796typedef struct drm_i915_getparam drm_i915_getparam_t;
 797
 798/* Ioctl to set kernel params:
 799 */
 800#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
 801#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
 802#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
 803#define I915_SETPARAM_NUM_USED_FENCES                     4
 804/* Must be kept compact -- no holes */
 805
 806typedef struct drm_i915_setparam {
 807	int param;
 808	int value;
 809} drm_i915_setparam_t;
 810
 811/* A memory manager for regions of shared memory:
 812 */
 813#define I915_MEM_REGION_AGP 1
 814
 815typedef struct drm_i915_mem_alloc {
 816	int region;
 817	int alignment;
 818	int size;
 819	int __user *region_offset;	/* offset from start of fb or agp */
 820} drm_i915_mem_alloc_t;
 821
 822typedef struct drm_i915_mem_free {
 823	int region;
 824	int region_offset;
 825} drm_i915_mem_free_t;
 826
 827typedef struct drm_i915_mem_init_heap {
 828	int region;
 829	int size;
 830	int start;
 831} drm_i915_mem_init_heap_t;
 832
 833/* Allow memory manager to be torn down and re-initialized (eg on
 834 * rotate):
 835 */
 836typedef struct drm_i915_mem_destroy_heap {
 837	int region;
 838} drm_i915_mem_destroy_heap_t;
 839
 840/* Allow X server to configure which pipes to monitor for vblank signals
 841 */
 842#define	DRM_I915_VBLANK_PIPE_A	1
 843#define	DRM_I915_VBLANK_PIPE_B	2
 844
 845typedef struct drm_i915_vblank_pipe {
 846	int pipe;
 847} drm_i915_vblank_pipe_t;
 848
 849/* Schedule buffer swap at given vertical blank:
 850 */
 851typedef struct drm_i915_vblank_swap {
 852	drm_drawable_t drawable;
 853	enum drm_vblank_seq_type seqtype;
 854	unsigned int sequence;
 855} drm_i915_vblank_swap_t;
 856
 857typedef struct drm_i915_hws_addr {
 858	__u64 addr;
 859} drm_i915_hws_addr_t;
 860
 861struct drm_i915_gem_init {
 862	/**
 863	 * Beginning offset in the GTT to be managed by the DRM memory
 864	 * manager.
 865	 */
 866	__u64 gtt_start;
 867	/**
 868	 * Ending offset in the GTT to be managed by the DRM memory
 869	 * manager.
 870	 */
 871	__u64 gtt_end;
 872};
 873
 874struct drm_i915_gem_create {
 875	/**
 876	 * Requested size for the object.
 877	 *
 878	 * The (page-aligned) allocated size for the object will be returned.
 879	 */
 880	__u64 size;
 881	/**
 882	 * Returned handle for the object.
 883	 *
 884	 * Object handles are nonzero.
 885	 */
 886	__u32 handle;
 887	__u32 pad;
 888};
 889
 890struct drm_i915_gem_pread {
 891	/** Handle for the object being read. */
 892	__u32 handle;
 893	__u32 pad;
 894	/** Offset into the object to read from */
 895	__u64 offset;
 896	/** Length of data to read */
 897	__u64 size;
 898	/**
 899	 * Pointer to write the data into.
 900	 *
 901	 * This is a fixed-size type for 32/64 compatibility.
 902	 */
 903	__u64 data_ptr;
 904};
 905
 906struct drm_i915_gem_pwrite {
 907	/** Handle for the object being written to. */
 908	__u32 handle;
 909	__u32 pad;
 910	/** Offset into the object to write to */
 911	__u64 offset;
 912	/** Length of data to write */
 913	__u64 size;
 914	/**
 915	 * Pointer to read the data from.
 916	 *
 917	 * This is a fixed-size type for 32/64 compatibility.
 918	 */
 919	__u64 data_ptr;
 920};
 921
 922struct drm_i915_gem_mmap {
 923	/** Handle for the object being mapped. */
 924	__u32 handle;
 925	__u32 pad;
 926	/** Offset in the object to map. */
 927	__u64 offset;
 928	/**
 929	 * Length of data to map.
 930	 *
 931	 * The value will be page-aligned.
 932	 */
 933	__u64 size;
 934	/**
 935	 * Returned pointer the data was mapped at.
 936	 *
 937	 * This is a fixed-size type for 32/64 compatibility.
 938	 */
 939	__u64 addr_ptr;
 940
 941	/**
 942	 * Flags for extended behaviour.
 943	 *
 944	 * Added in version 2.
 945	 */
 946	__u64 flags;
 947#define I915_MMAP_WC 0x1
 948};
 949
 950struct drm_i915_gem_mmap_gtt {
 951	/** Handle for the object being mapped. */
 952	__u32 handle;
 953	__u32 pad;
 954	/**
 955	 * Fake offset to use for subsequent mmap call
 956	 *
 957	 * This is a fixed-size type for 32/64 compatibility.
 958	 */
 959	__u64 offset;
 960};
 961
 962/**
 963 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
 964 *
 965 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
 966 * and is used to retrieve the fake offset to mmap an object specified by &handle.
 967 *
 968 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
 969 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
 970 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
 971 */
 972struct drm_i915_gem_mmap_offset {
 973	/** @handle: Handle for the object being mapped. */
 974	__u32 handle;
 975	/** @pad: Must be zero */
 976	__u32 pad;
 977	/**
 978	 * @offset: The fake offset to use for subsequent mmap call
 979	 *
 980	 * This is a fixed-size type for 32/64 compatibility.
 981	 */
 982	__u64 offset;
 983
 984	/**
 985	 * @flags: Flags for extended behaviour.
 986	 *
 987	 * It is mandatory that one of the `MMAP_OFFSET` types
 988	 * should be included:
 989	 *
 990	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
 991	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
 992	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
 993	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
 994	 *
 995	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
 996	 * type. On devices without local memory, this caching mode is invalid.
 997	 *
 998	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
 999	 * be used, depending on the object placement on creation. WB will be used
1000	 * when the object can only exist in system memory, WC otherwise.
1001	 */
1002	__u64 flags;
1003
1004#define I915_MMAP_OFFSET_GTT	0
1005#define I915_MMAP_OFFSET_WC	1
1006#define I915_MMAP_OFFSET_WB	2
1007#define I915_MMAP_OFFSET_UC	3
1008#define I915_MMAP_OFFSET_FIXED	4
1009
1010	/**
1011	 * @extensions: Zero-terminated chain of extensions.
1012	 *
1013	 * No current extensions defined; mbz.
1014	 */
1015	__u64 extensions;
1016};
1017
1018/**
1019 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1020 * preparation for accessing the pages via some CPU domain.
1021 *
1022 * Specifying a new write or read domain will flush the object out of the
1023 * previous domain(if required), before then updating the objects domain
1024 * tracking with the new domain.
1025 *
1026 * Note this might involve waiting for the object first if it is still active on
1027 * the GPU.
1028 *
1029 * Supported values for @read_domains and @write_domain:
1030 *
1031 *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1032 *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1033 *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1034 *
1035 * All other domains are rejected.
1036 *
1037 * Note that for discrete, starting from DG1, this is no longer supported, and
1038 * is instead rejected. On such platforms the CPU domain is effectively static,
1039 * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1040 * which can't be set explicitly and instead depends on the object placements,
1041 * as per the below.
1042 *
1043 * Implicit caching rules, starting from DG1:
1044 *
1045 *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1046 *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1047 *	  mapped as write-combined only.
1048 *
1049 *	- Everything else is always allocated and mapped as write-back, with the
1050 *	  guarantee that everything is also coherent with the GPU.
1051 *
1052 * Note that this is likely to change in the future again, where we might need
1053 * more flexibility on future devices, so making this all explicit as part of a
1054 * new &drm_i915_gem_create_ext extension is probable.
1055 */
1056struct drm_i915_gem_set_domain {
1057	/** @handle: Handle for the object. */
1058	__u32 handle;
1059
1060	/** @read_domains: New read domains. */
1061	__u32 read_domains;
1062
1063	/**
1064	 * @write_domain: New write domain.
1065	 *
1066	 * Note that having something in the write domain implies it's in the
1067	 * read domain, and only that read domain.
1068	 */
1069	__u32 write_domain;
1070};
1071
1072struct drm_i915_gem_sw_finish {
1073	/** Handle for the object */
1074	__u32 handle;
1075};
1076
1077struct drm_i915_gem_relocation_entry {
1078	/**
1079	 * Handle of the buffer being pointed to by this relocation entry.
1080	 *
1081	 * It's appealing to make this be an index into the mm_validate_entry
1082	 * list to refer to the buffer, but this allows the driver to create
1083	 * a relocation list for state buffers and not re-write it per
1084	 * exec using the buffer.
1085	 */
1086	__u32 target_handle;
1087
1088	/**
1089	 * Value to be added to the offset of the target buffer to make up
1090	 * the relocation entry.
1091	 */
1092	__u32 delta;
1093
1094	/** Offset in the buffer the relocation entry will be written into */
1095	__u64 offset;
1096
1097	/**
1098	 * Offset value of the target buffer that the relocation entry was last
1099	 * written as.
1100	 *
1101	 * If the buffer has the same offset as last time, we can skip syncing
1102	 * and writing the relocation.  This value is written back out by
1103	 * the execbuffer ioctl when the relocation is written.
1104	 */
1105	__u64 presumed_offset;
1106
1107	/**
1108	 * Target memory domains read by this operation.
1109	 */
1110	__u32 read_domains;
1111
1112	/**
1113	 * Target memory domains written by this operation.
1114	 *
1115	 * Note that only one domain may be written by the whole
1116	 * execbuffer operation, so that where there are conflicts,
1117	 * the application will get -EINVAL back.
1118	 */
1119	__u32 write_domain;
1120};
1121
1122/** @{
1123 * Intel memory domains
1124 *
1125 * Most of these just align with the various caches in
1126 * the system and are used to flush and invalidate as
1127 * objects end up cached in different domains.
1128 */
1129/** CPU cache */
1130#define I915_GEM_DOMAIN_CPU		0x00000001
1131/** Render cache, used by 2D and 3D drawing */
1132#define I915_GEM_DOMAIN_RENDER		0x00000002
1133/** Sampler cache, used by texture engine */
1134#define I915_GEM_DOMAIN_SAMPLER		0x00000004
1135/** Command queue, used to load batch buffers */
1136#define I915_GEM_DOMAIN_COMMAND		0x00000008
1137/** Instruction cache, used by shader programs */
1138#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1139/** Vertex address cache */
1140#define I915_GEM_DOMAIN_VERTEX		0x00000020
1141/** GTT domain - aperture and scanout */
1142#define I915_GEM_DOMAIN_GTT		0x00000040
1143/** WC domain - uncached access */
1144#define I915_GEM_DOMAIN_WC		0x00000080
1145/** @} */
1146
1147struct drm_i915_gem_exec_object {
1148	/**
1149	 * User's handle for a buffer to be bound into the GTT for this
1150	 * operation.
1151	 */
1152	__u32 handle;
1153
1154	/** Number of relocations to be performed on this buffer */
1155	__u32 relocation_count;
1156	/**
1157	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1158	 * the relocations to be performed in this buffer.
1159	 */
1160	__u64 relocs_ptr;
1161
1162	/** Required alignment in graphics aperture */
1163	__u64 alignment;
1164
1165	/**
1166	 * Returned value of the updated offset of the object, for future
1167	 * presumed_offset writes.
1168	 */
1169	__u64 offset;
1170};
1171
1172/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1173struct drm_i915_gem_execbuffer {
1174	/**
1175	 * List of buffers to be validated with their relocations to be
1176	 * performend on them.
1177	 *
1178	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1179	 *
1180	 * These buffers must be listed in an order such that all relocations
1181	 * a buffer is performing refer to buffers that have already appeared
1182	 * in the validate list.
1183	 */
1184	__u64 buffers_ptr;
1185	__u32 buffer_count;
1186
1187	/** Offset in the batchbuffer to start execution from. */
1188	__u32 batch_start_offset;
1189	/** Bytes used in batchbuffer from batch_start_offset */
1190	__u32 batch_len;
1191	__u32 DR1;
1192	__u32 DR4;
1193	__u32 num_cliprects;
1194	/** This is a struct drm_clip_rect *cliprects */
1195	__u64 cliprects_ptr;
1196};
1197
1198struct drm_i915_gem_exec_object2 {
1199	/**
1200	 * User's handle for a buffer to be bound into the GTT for this
1201	 * operation.
1202	 */
1203	__u32 handle;
1204
1205	/** Number of relocations to be performed on this buffer */
1206	__u32 relocation_count;
1207	/**
1208	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1209	 * the relocations to be performed in this buffer.
1210	 */
1211	__u64 relocs_ptr;
1212
1213	/** Required alignment in graphics aperture */
1214	__u64 alignment;
1215
1216	/**
1217	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1218	 * the user with the GTT offset at which this object will be pinned.
1219	 *
1220	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1221	 * presumed_offset of the object.
1222	 *
1223	 * During execbuffer2 the kernel populates it with the value of the
1224	 * current GTT offset of the object, for future presumed_offset writes.
1225	 *
1226	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1227	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1228	 * minimum page sizes, like DG2.
1229	 */
1230	__u64 offset;
1231
1232#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1233#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1234#define EXEC_OBJECT_WRITE		 (1<<2)
1235#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1236#define EXEC_OBJECT_PINNED		 (1<<4)
1237#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1238/* The kernel implicitly tracks GPU activity on all GEM objects, and
1239 * synchronises operations with outstanding rendering. This includes
1240 * rendering on other devices if exported via dma-buf. However, sometimes
1241 * this tracking is too coarse and the user knows better. For example,
1242 * if the object is split into non-overlapping ranges shared between different
1243 * clients or engines (i.e. suballocating objects), the implicit tracking
1244 * by kernel assumes that each operation affects the whole object rather
1245 * than an individual range, causing needless synchronisation between clients.
1246 * The kernel will also forgo any CPU cache flushes prior to rendering from
1247 * the object as the client is expected to be also handling such domain
1248 * tracking.
1249 *
1250 * The kernel maintains the implicit tracking in order to manage resources
1251 * used by the GPU - this flag only disables the synchronisation prior to
1252 * rendering with this object in this execbuf.
1253 *
1254 * Opting out of implicit synhronisation requires the user to do its own
1255 * explicit tracking to avoid rendering corruption. See, for example,
1256 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1257 */
1258#define EXEC_OBJECT_ASYNC		(1<<6)
1259/* Request that the contents of this execobject be copied into the error
1260 * state upon a GPU hang involving this batch for post-mortem debugging.
1261 * These buffers are recorded in no particular order as "user" in
1262 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1263 * if the kernel supports this flag.
1264 */
1265#define EXEC_OBJECT_CAPTURE		(1<<7)
1266/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1267#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1268	__u64 flags;
1269
1270	union {
1271		__u64 rsvd1;
1272		__u64 pad_to_size;
1273	};
1274	__u64 rsvd2;
1275};
1276
1277/**
1278 * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1279 * ioctl.
1280 *
1281 * The request will wait for input fence to signal before submission.
1282 *
1283 * The returned output fence will be signaled after the completion of the
1284 * request.
1285 */
1286struct drm_i915_gem_exec_fence {
1287	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1288	__u32 handle;
1289
1290	/**
1291	 * @flags: Supported flags are:
1292	 *
1293	 * I915_EXEC_FENCE_WAIT:
1294	 * Wait for the input fence before request submission.
1295	 *
1296	 * I915_EXEC_FENCE_SIGNAL:
1297	 * Return request completion fence as output
1298	 */
1299	__u32 flags;
1300#define I915_EXEC_FENCE_WAIT            (1<<0)
1301#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1302#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1303};
1304
1305/**
1306 * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1307 * for execbuf ioctl.
1308 *
1309 * This structure describes an array of drm_syncobj and associated points for
1310 * timeline variants of drm_syncobj. It is invalid to append this structure to
1311 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1312 */
1313struct drm_i915_gem_execbuffer_ext_timeline_fences {
1314#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1315	/** @base: Extension link. See struct i915_user_extension. */
1316	struct i915_user_extension base;
1317
1318	/**
1319	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1320	 * arrays.
1321	 */
1322	__u64 fence_count;
1323
1324	/**
1325	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1326	 * of length @fence_count.
1327	 */
1328	__u64 handles_ptr;
1329
1330	/**
1331	 * @values_ptr: Pointer to an array of u64 values of length
1332	 * @fence_count.
1333	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1334	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1335	 * binary one.
1336	 */
1337	__u64 values_ptr;
1338};
1339
1340/**
1341 * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1342 * ioctl.
1343 */
1344struct drm_i915_gem_execbuffer2 {
1345	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1346	__u64 buffers_ptr;
1347
1348	/** @buffer_count: Number of elements in @buffers_ptr array */
1349	__u32 buffer_count;
1350
1351	/**
1352	 * @batch_start_offset: Offset in the batchbuffer to start execution
1353	 * from.
1354	 */
1355	__u32 batch_start_offset;
1356
1357	/**
1358	 * @batch_len: Length in bytes of the batch buffer, starting from the
1359	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1360	 * object size.
1361	 */
1362	__u32 batch_len;
1363
1364	/** @DR1: deprecated */
1365	__u32 DR1;
1366
1367	/** @DR4: deprecated */
1368	__u32 DR4;
1369
1370	/** @num_cliprects: See @cliprects_ptr */
1371	__u32 num_cliprects;
1372
1373	/**
1374	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1375	 *
1376	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1377	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1378	 *
1379	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1380	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1381	 * array.
1382	 *
1383	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1384	 * single &i915_user_extension and num_cliprects is 0.
1385	 */
1386	__u64 cliprects_ptr;
1387
1388	/** @flags: Execbuf flags */
1389	__u64 flags;
1390#define I915_EXEC_RING_MASK              (0x3f)
1391#define I915_EXEC_DEFAULT                (0<<0)
1392#define I915_EXEC_RENDER                 (1<<0)
1393#define I915_EXEC_BSD                    (2<<0)
1394#define I915_EXEC_BLT                    (3<<0)
1395#define I915_EXEC_VEBOX                  (4<<0)
1396
1397/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1398 * Gen6+ only supports relative addressing to dynamic state (default) and
1399 * absolute addressing.
1400 *
1401 * These flags are ignored for the BSD and BLT rings.
1402 */
1403#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1404#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1405#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1406#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1407
1408/** Resets the SO write offset registers for transform feedback on gen7. */
1409#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1410
1411/** Request a privileged ("secure") batch buffer. Note only available for
1412 * DRM_ROOT_ONLY | DRM_MASTER processes.
1413 */
1414#define I915_EXEC_SECURE		(1<<9)
1415
1416/** Inform the kernel that the batch is and will always be pinned. This
1417 * negates the requirement for a workaround to be performed to avoid
1418 * an incoherent CS (such as can be found on 830/845). If this flag is
1419 * not passed, the kernel will endeavour to make sure the batch is
1420 * coherent with the CS before execution. If this flag is passed,
1421 * userspace assumes the responsibility for ensuring the same.
1422 */
1423#define I915_EXEC_IS_PINNED		(1<<10)
1424
1425/** Provide a hint to the kernel that the command stream and auxiliary
1426 * state buffers already holds the correct presumed addresses and so the
1427 * relocation process may be skipped if no buffers need to be moved in
1428 * preparation for the execbuffer.
1429 */
1430#define I915_EXEC_NO_RELOC		(1<<11)
1431
1432/** Use the reloc.handle as an index into the exec object array rather
1433 * than as the per-file handle.
1434 */
1435#define I915_EXEC_HANDLE_LUT		(1<<12)
1436
1437/** Used for switching BSD rings on the platforms with two BSD rings */
1438#define I915_EXEC_BSD_SHIFT	 (13)
1439#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1440/* default ping-pong mode */
1441#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1442#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1443#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1444
1445/** Tell the kernel that the batchbuffer is processed by
1446 *  the resource streamer.
1447 */
1448#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1449
1450/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1451 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1452 * the batch.
1453 *
1454 * Returns -EINVAL if the sync_file fd cannot be found.
1455 */
1456#define I915_EXEC_FENCE_IN		(1<<16)
1457
1458/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1459 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1460 * to the caller, and it should be close() after use. (The fd is a regular
1461 * file descriptor and will be cleaned up on process termination. It holds
1462 * a reference to the request, but nothing else.)
1463 *
1464 * The sync_file fd can be combined with other sync_file and passed either
1465 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1466 * will only occur after this request completes), or to other devices.
1467 *
1468 * Using I915_EXEC_FENCE_OUT requires use of
1469 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1470 * back to userspace. Failure to do so will cause the out-fence to always
1471 * be reported as zero, and the real fence fd to be leaked.
1472 */
1473#define I915_EXEC_FENCE_OUT		(1<<17)
1474
1475/*
1476 * Traditionally the execbuf ioctl has only considered the final element in
1477 * the execobject[] to be the executable batch. Often though, the client
1478 * will known the batch object prior to construction and being able to place
1479 * it into the execobject[] array first can simplify the relocation tracking.
1480 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1481 * execobject[] as the * batch instead (the default is to use the last
1482 * element).
1483 */
1484#define I915_EXEC_BATCH_FIRST		(1<<18)
1485
1486/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1487 * define an array of i915_gem_exec_fence structures which specify a set of
1488 * dma fences to wait upon or signal.
1489 */
1490#define I915_EXEC_FENCE_ARRAY   (1<<19)
1491
1492/*
1493 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1494 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1495 * the batch.
1496 *
1497 * Returns -EINVAL if the sync_file fd cannot be found.
1498 */
1499#define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1500
1501/*
1502 * Setting I915_EXEC_USE_EXTENSIONS implies that
1503 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1504 * list of i915_user_extension. Each i915_user_extension node is the base of a
1505 * larger structure. The list of supported structures are listed in the
1506 * drm_i915_gem_execbuffer_ext enum.
1507 */
1508#define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1509#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1510
1511	/** @rsvd1: Context id */
1512	__u64 rsvd1;
1513
1514	/**
1515	 * @rsvd2: in and out sync_file file descriptors.
1516	 *
1517	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1518	 * lower 32 bits of this field will have the in sync_file fd (input).
1519	 *
1520	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1521	 * field will have the out sync_file fd (output).
1522	 */
1523	__u64 rsvd2;
1524};
1525
1526#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1527#define i915_execbuffer2_set_context_id(eb2, context) \
1528	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1529#define i915_execbuffer2_get_context_id(eb2) \
1530	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1531
1532struct drm_i915_gem_pin {
1533	/** Handle of the buffer to be pinned. */
1534	__u32 handle;
1535	__u32 pad;
1536
1537	/** alignment required within the aperture */
1538	__u64 alignment;
1539
1540	/** Returned GTT offset of the buffer. */
1541	__u64 offset;
1542};
1543
1544struct drm_i915_gem_unpin {
1545	/** Handle of the buffer to be unpinned. */
1546	__u32 handle;
1547	__u32 pad;
1548};
1549
1550struct drm_i915_gem_busy {
1551	/** Handle of the buffer to check for busy */
1552	__u32 handle;
1553
1554	/** Return busy status
1555	 *
1556	 * A return of 0 implies that the object is idle (after
1557	 * having flushed any pending activity), and a non-zero return that
1558	 * the object is still in-flight on the GPU. (The GPU has not yet
1559	 * signaled completion for all pending requests that reference the
1560	 * object.) An object is guaranteed to become idle eventually (so
1561	 * long as no new GPU commands are executed upon it). Due to the
1562	 * asynchronous nature of the hardware, an object reported
1563	 * as busy may become idle before the ioctl is completed.
1564	 *
1565	 * Furthermore, if the object is busy, which engine is busy is only
1566	 * provided as a guide and only indirectly by reporting its class
1567	 * (there may be more than one engine in each class). There are race
1568	 * conditions which prevent the report of which engines are busy from
1569	 * being always accurate.  However, the converse is not true. If the
1570	 * object is idle, the result of the ioctl, that all engines are idle,
1571	 * is accurate.
1572	 *
1573	 * The returned dword is split into two fields to indicate both
1574	 * the engine classess on which the object is being read, and the
1575	 * engine class on which it is currently being written (if any).
1576	 *
1577	 * The low word (bits 0:15) indicate if the object is being written
1578	 * to by any engine (there can only be one, as the GEM implicit
1579	 * synchronisation rules force writes to be serialised). Only the
1580	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1581	 * 1 not 0 etc) for the last write is reported.
1582	 *
1583	 * The high word (bits 16:31) are a bitmask of which engines classes
1584	 * are currently reading from the object. Multiple engines may be
1585	 * reading from the object simultaneously.
1586	 *
1587	 * The value of each engine class is the same as specified in the
1588	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1589	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1590	 * Some hardware may have parallel execution engines, e.g. multiple
1591	 * media engines, which are mapped to the same class identifier and so
1592	 * are not separately reported for busyness.
1593	 *
1594	 * Caveat emptor:
1595	 * Only the boolean result of this query is reliable; that is whether
1596	 * the object is idle or busy. The report of which engines are busy
1597	 * should be only used as a heuristic.
1598	 */
1599	__u32 busy;
1600};
1601
1602/**
1603 * struct drm_i915_gem_caching - Set or get the caching for given object
1604 * handle.
1605 *
1606 * Allow userspace to control the GTT caching bits for a given object when the
1607 * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1608 * ppGTT support, or if the object is used for scanout). Note that this might
1609 * require unbinding the object from the GTT first, if its current caching value
1610 * doesn't match.
1611 *
1612 * Note that this all changes on discrete platforms, starting from DG1, the
1613 * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1614 * caching attributes(WB vs WC) will become an immutable creation time property
1615 * for the object, along with the GTT caching level. For now we don't expose any
1616 * new uAPI for this, instead on DG1 this is all implicit, although this largely
1617 * shouldn't matter since DG1 is coherent by default(without any way of
1618 * controlling it).
1619 *
1620 * Implicit caching rules, starting from DG1:
1621 *
1622 *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1623 *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1624 *       mapped as write-combined only.
1625 *
1626 *     - Everything else is always allocated and mapped as write-back, with the
1627 *       guarantee that everything is also coherent with the GPU.
1628 *
1629 * Note that this is likely to change in the future again, where we might need
1630 * more flexibility on future devices, so making this all explicit as part of a
1631 * new &drm_i915_gem_create_ext extension is probable.
1632 *
1633 * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1634 * caching attributes for the pages might be required(and is expensive) if we
1635 * need to then CPU map the pages later with different caching attributes. This
1636 * inconsistent caching behaviour, while supported on x86, is not universally
1637 * supported on other architectures. So for simplicity we opt for setting
1638 * everything at creation time, whilst also making it immutable, on discrete
1639 * platforms.
1640 */
1641struct drm_i915_gem_caching {
1642	/**
1643	 * @handle: Handle of the buffer to set/get the caching level.
1644	 */
1645	__u32 handle;
1646
1647	/**
1648	 * @caching: The GTT caching level to apply or possible return value.
1649	 *
1650	 * The supported @caching values:
1651	 *
1652	 * I915_CACHING_NONE:
1653	 *
1654	 * GPU access is not coherent with CPU caches.  Default for machines
1655	 * without an LLC. This means manual flushing might be needed, if we
1656	 * want GPU access to be coherent.
1657	 *
1658	 * I915_CACHING_CACHED:
1659	 *
1660	 * GPU access is coherent with CPU caches and furthermore the data is
1661	 * cached in last-level caches shared between CPU cores and the GPU GT.
1662	 *
1663	 * I915_CACHING_DISPLAY:
1664	 *
1665	 * Special GPU caching mode which is coherent with the scanout engines.
1666	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1667	 * special cache mode (like write-through or gfdt flushing) is
1668	 * available. The kernel automatically sets this mode when using a
1669	 * buffer as a scanout target.  Userspace can manually set this mode to
1670	 * avoid a costly stall and clflush in the hotpath of drawing the first
1671	 * frame.
1672	 */
1673#define I915_CACHING_NONE		0
1674#define I915_CACHING_CACHED		1
1675#define I915_CACHING_DISPLAY		2
1676	__u32 caching;
1677};
1678
1679#define I915_TILING_NONE	0
1680#define I915_TILING_X		1
1681#define I915_TILING_Y		2
1682/*
1683 * Do not add new tiling types here.  The I915_TILING_* values are for
1684 * de-tiling fence registers that no longer exist on modern platforms.  Although
1685 * the hardware may support new types of tiling in general (e.g., Tile4), we
1686 * do not need to add them to the uapi that is specific to now-defunct ioctls.
1687 */
1688#define I915_TILING_LAST	I915_TILING_Y
1689
1690#define I915_BIT_6_SWIZZLE_NONE		0
1691#define I915_BIT_6_SWIZZLE_9		1
1692#define I915_BIT_6_SWIZZLE_9_10		2
1693#define I915_BIT_6_SWIZZLE_9_11		3
1694#define I915_BIT_6_SWIZZLE_9_10_11	4
1695/* Not seen by userland */
1696#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1697/* Seen by userland. */
1698#define I915_BIT_6_SWIZZLE_9_17		6
1699#define I915_BIT_6_SWIZZLE_9_10_17	7
1700
1701struct drm_i915_gem_set_tiling {
1702	/** Handle of the buffer to have its tiling state updated */
1703	__u32 handle;
1704
1705	/**
1706	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1707	 * I915_TILING_Y).
1708	 *
1709	 * This value is to be set on request, and will be updated by the
1710	 * kernel on successful return with the actual chosen tiling layout.
1711	 *
1712	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1713	 * has bit 6 swizzling that can't be managed correctly by GEM.
1714	 *
1715	 * Buffer contents become undefined when changing tiling_mode.
1716	 */
1717	__u32 tiling_mode;
1718
1719	/**
1720	 * Stride in bytes for the object when in I915_TILING_X or
1721	 * I915_TILING_Y.
1722	 */
1723	__u32 stride;
1724
1725	/**
1726	 * Returned address bit 6 swizzling required for CPU access through
1727	 * mmap mapping.
1728	 */
1729	__u32 swizzle_mode;
1730};
1731
1732struct drm_i915_gem_get_tiling {
1733	/** Handle of the buffer to get tiling state for. */
1734	__u32 handle;
1735
1736	/**
1737	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1738	 * I915_TILING_Y).
1739	 */
1740	__u32 tiling_mode;
1741
1742	/**
1743	 * Returned address bit 6 swizzling required for CPU access through
1744	 * mmap mapping.
1745	 */
1746	__u32 swizzle_mode;
1747
1748	/**
1749	 * Returned address bit 6 swizzling required for CPU access through
1750	 * mmap mapping whilst bound.
1751	 */
1752	__u32 phys_swizzle_mode;
1753};
1754
1755struct drm_i915_gem_get_aperture {
1756	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1757	__u64 aper_size;
1758
1759	/**
1760	 * Available space in the aperture used by i915_gem_execbuffer, in
1761	 * bytes
1762	 */
1763	__u64 aper_available_size;
1764};
1765
1766struct drm_i915_get_pipe_from_crtc_id {
1767	/** ID of CRTC being requested **/
1768	__u32 crtc_id;
1769
1770	/** pipe of requested CRTC **/
1771	__u32 pipe;
1772};
1773
1774#define I915_MADV_WILLNEED 0
1775#define I915_MADV_DONTNEED 1
1776#define __I915_MADV_PURGED 2 /* internal state */
1777
1778struct drm_i915_gem_madvise {
1779	/** Handle of the buffer to change the backing store advice */
1780	__u32 handle;
1781
1782	/* Advice: either the buffer will be needed again in the near future,
1783	 *         or wont be and could be discarded under memory pressure.
1784	 */
1785	__u32 madv;
1786
1787	/** Whether the backing store still exists. */
1788	__u32 retained;
1789};
1790
1791/* flags */
1792#define I915_OVERLAY_TYPE_MASK 		0xff
1793#define I915_OVERLAY_YUV_PLANAR 	0x01
1794#define I915_OVERLAY_YUV_PACKED 	0x02
1795#define I915_OVERLAY_RGB		0x03
1796
1797#define I915_OVERLAY_DEPTH_MASK		0xff00
1798#define I915_OVERLAY_RGB24		0x1000
1799#define I915_OVERLAY_RGB16		0x2000
1800#define I915_OVERLAY_RGB15		0x3000
1801#define I915_OVERLAY_YUV422		0x0100
1802#define I915_OVERLAY_YUV411		0x0200
1803#define I915_OVERLAY_YUV420		0x0300
1804#define I915_OVERLAY_YUV410		0x0400
1805
1806#define I915_OVERLAY_SWAP_MASK		0xff0000
1807#define I915_OVERLAY_NO_SWAP		0x000000
1808#define I915_OVERLAY_UV_SWAP		0x010000
1809#define I915_OVERLAY_Y_SWAP		0x020000
1810#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1811
1812#define I915_OVERLAY_FLAGS_MASK		0xff000000
1813#define I915_OVERLAY_ENABLE		0x01000000
1814
1815struct drm_intel_overlay_put_image {
1816	/* various flags and src format description */
1817	__u32 flags;
1818	/* source picture description */
1819	__u32 bo_handle;
1820	/* stride values and offsets are in bytes, buffer relative */
1821	__u16 stride_Y; /* stride for packed formats */
1822	__u16 stride_UV;
1823	__u32 offset_Y; /* offset for packet formats */
1824	__u32 offset_U;
1825	__u32 offset_V;
1826	/* in pixels */
1827	__u16 src_width;
1828	__u16 src_height;
1829	/* to compensate the scaling factors for partially covered surfaces */
1830	__u16 src_scan_width;
1831	__u16 src_scan_height;
1832	/* output crtc description */
1833	__u32 crtc_id;
1834	__u16 dst_x;
1835	__u16 dst_y;
1836	__u16 dst_width;
1837	__u16 dst_height;
1838};
1839
1840/* flags */
1841#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1842#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1843#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1844struct drm_intel_overlay_attrs {
1845	__u32 flags;
1846	__u32 color_key;
1847	__s32 brightness;
1848	__u32 contrast;
1849	__u32 saturation;
1850	__u32 gamma0;
1851	__u32 gamma1;
1852	__u32 gamma2;
1853	__u32 gamma3;
1854	__u32 gamma4;
1855	__u32 gamma5;
1856};
1857
1858/*
1859 * Intel sprite handling
1860 *
1861 * Color keying works with a min/mask/max tuple.  Both source and destination
1862 * color keying is allowed.
1863 *
1864 * Source keying:
1865 * Sprite pixels within the min & max values, masked against the color channels
1866 * specified in the mask field, will be transparent.  All other pixels will
1867 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1868 * and mask fields will be used; ranged compares are not allowed.
1869 *
1870 * Destination keying:
1871 * Primary plane pixels that match the min value, masked against the color
1872 * channels specified in the mask field, will be replaced by corresponding
1873 * pixels from the sprite plane.
1874 *
1875 * Note that source & destination keying are exclusive; only one can be
1876 * active on a given plane.
1877 */
1878
1879#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1880						* flags==0 to disable colorkeying.
1881						*/
1882#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1883#define I915_SET_COLORKEY_SOURCE	(1<<2)
1884struct drm_intel_sprite_colorkey {
1885	__u32 plane_id;
1886	__u32 min_value;
1887	__u32 channel_mask;
1888	__u32 max_value;
1889	__u32 flags;
1890};
1891
1892struct drm_i915_gem_wait {
1893	/** Handle of BO we shall wait on */
1894	__u32 bo_handle;
1895	__u32 flags;
1896	/** Number of nanoseconds to wait, Returns time remaining. */
1897	__s64 timeout_ns;
1898};
1899
1900struct drm_i915_gem_context_create {
1901	__u32 ctx_id; /* output: id of new context*/
1902	__u32 pad;
1903};
1904
1905/**
1906 * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1907 */
1908struct drm_i915_gem_context_create_ext {
1909	/** @ctx_id: Id of the created context (output) */
1910	__u32 ctx_id;
1911
1912	/**
1913	 * @flags: Supported flags are:
1914	 *
1915	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1916	 *
1917	 * Extensions may be appended to this structure and driver must check
1918	 * for those. See @extensions.
1919	 *
1920	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1921	 *
1922	 * Created context will have single timeline.
1923	 */
1924	__u32 flags;
1925#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1926#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1927#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1928	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1929
1930	/**
1931	 * @extensions: Zero-terminated chain of extensions.
1932	 *
1933	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1934	 * Context parameter to set or query during context creation.
1935	 * See struct drm_i915_gem_context_create_ext_setparam.
1936	 *
1937	 * I915_CONTEXT_CREATE_EXT_CLONE:
1938	 * This extension has been removed. On the off chance someone somewhere
1939	 * has attempted to use it, never re-use this extension number.
1940	 */
1941	__u64 extensions;
1942#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1943#define I915_CONTEXT_CREATE_EXT_CLONE 1
1944};
1945
1946/**
1947 * struct drm_i915_gem_context_param - Context parameter to set or query.
1948 */
1949struct drm_i915_gem_context_param {
1950	/** @ctx_id: Context id */
1951	__u32 ctx_id;
1952
1953	/** @size: Size of the parameter @value */
1954	__u32 size;
1955
1956	/** @param: Parameter to set or query */
1957	__u64 param;
1958#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1959/* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1960 * someone somewhere has attempted to use it, never re-use this context
1961 * param number.
1962 */
1963#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1964#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1965#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1966#define I915_CONTEXT_PARAM_BANNABLE	0x5
1967#define I915_CONTEXT_PARAM_PRIORITY	0x6
1968#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1969#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1970#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1971	/*
1972	 * When using the following param, value should be a pointer to
1973	 * drm_i915_gem_context_param_sseu.
1974	 */
1975#define I915_CONTEXT_PARAM_SSEU		0x7
1976
1977/*
1978 * Not all clients may want to attempt automatic recover of a context after
1979 * a hang (for example, some clients may only submit very small incremental
1980 * batches relying on known logical state of previous batches which will never
1981 * recover correctly and each attempt will hang), and so would prefer that
1982 * the context is forever banned instead.
1983 *
1984 * If set to false (0), after a reset, subsequent (and in flight) rendering
1985 * from this context is discarded, and the client will need to create a new
1986 * context to use instead.
1987 *
1988 * If set to true (1), the kernel will automatically attempt to recover the
1989 * context by skipping the hanging batch and executing the next batch starting
1990 * from the default context state (discarding the incomplete logical context
1991 * state lost due to the reset).
1992 *
1993 * On creation, all new contexts are marked as recoverable.
1994 */
1995#define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1996
1997	/*
1998	 * The id of the associated virtual memory address space (ppGTT) of
1999	 * this context. Can be retrieved and passed to another context
2000	 * (on the same fd) for both to use the same ppGTT and so share
2001	 * address layouts, and avoid reloading the page tables on context
2002	 * switches between themselves.
2003	 *
2004	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2005	 */
2006#define I915_CONTEXT_PARAM_VM		0x9
2007
2008/*
2009 * I915_CONTEXT_PARAM_ENGINES:
2010 *
2011 * Bind this context to operate on this subset of available engines. Henceforth,
2012 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2013 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2014 * and upwards. Slots 0...N are filled in using the specified (class, instance).
2015 * Use
2016 *	engine_class: I915_ENGINE_CLASS_INVALID,
2017 *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2018 * to specify a gap in the array that can be filled in later, e.g. by a
2019 * virtual engine used for load balancing.
2020 *
2021 * Setting the number of engines bound to the context to 0, by passing a zero
2022 * sized argument, will revert back to default settings.
2023 *
2024 * See struct i915_context_param_engines.
2025 *
2026 * Extensions:
2027 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2028 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2029 *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2030 */
2031#define I915_CONTEXT_PARAM_ENGINES	0xa
2032
2033/*
2034 * I915_CONTEXT_PARAM_PERSISTENCE:
2035 *
2036 * Allow the context and active rendering to survive the process until
2037 * completion. Persistence allows fire-and-forget clients to queue up a
2038 * bunch of work, hand the output over to a display server and then quit.
2039 * If the context is marked as not persistent, upon closing (either via
2040 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2041 * or process termination), the context and any outstanding requests will be
2042 * cancelled (and exported fences for cancelled requests marked as -EIO).
2043 *
2044 * By default, new contexts allow persistence.
2045 */
2046#define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2047
2048/* This API has been removed.  On the off chance someone somewhere has
2049 * attempted to use it, never re-use this context param number.
2050 */
2051#define I915_CONTEXT_PARAM_RINGSIZE	0xc
2052
2053/*
2054 * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2055 *
2056 * Mark that the context makes use of protected content, which will result
2057 * in the context being invalidated when the protected content session is.
2058 * Given that the protected content session is killed on suspend, the device
2059 * is kept awake for the lifetime of a protected context, so the user should
2060 * make sure to dispose of them once done.
2061 * This flag can only be set at context creation time and, when set to true,
2062 * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2063 * to false. This flag can't be set to true in conjunction with setting the
2064 * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2065 *
2066 * .. code-block:: C
2067 *
2068 *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2069 *		.base = {
2070 *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2071 *		},
2072 *		.param = {
2073 *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2074 *			.value = 1,
2075 *		}
2076 *	};
2077 *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2078 *		.base = {
2079 *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2080 *			.next_extension = to_user_pointer(&p_protected),
2081 *		},
2082 *		.param = {
2083 *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2084 *			.value = 0,
2085 *		}
2086 *	};
2087 *	struct drm_i915_gem_context_create_ext create = {
2088 *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2089 *		.extensions = to_user_pointer(&p_norecover);
2090 *	};
2091 *
2092 *	ctx_id = gem_context_create_ext(drm_fd, &create);
2093 *
2094 * In addition to the normal failure cases, setting this flag during context
2095 * creation can result in the following errors:
2096 *
2097 * -ENODEV: feature not available
2098 * -EPERM: trying to mark a recoverable or not bannable context as protected
2099 */
2100#define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2101/* Must be kept compact -- no holes and well documented */
2102
2103	/** @value: Context parameter value to be set or queried */
2104	__u64 value;
2105};
2106
2107/*
2108 * Context SSEU programming
2109 *
2110 * It may be necessary for either functional or performance reason to configure
2111 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2112 * Sub-slice/EU).
2113 *
2114 * This is done by configuring SSEU configuration using the below
2115 * @struct drm_i915_gem_context_param_sseu for every supported engine which
2116 * userspace intends to use.
2117 *
2118 * Not all GPUs or engines support this functionality in which case an error
2119 * code -ENODEV will be returned.
2120 *
2121 * Also, flexibility of possible SSEU configuration permutations varies between
2122 * GPU generations and software imposed limitations. Requesting such a
2123 * combination will return an error code of -EINVAL.
2124 *
2125 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2126 * favour of a single global setting.
2127 */
2128struct drm_i915_gem_context_param_sseu {
2129	/*
2130	 * Engine class & instance to be configured or queried.
2131	 */
2132	struct i915_engine_class_instance engine;
2133
2134	/*
2135	 * Unknown flags must be cleared to zero.
2136	 */
2137	__u32 flags;
2138#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2139
2140	/*
2141	 * Mask of slices to enable for the context. Valid values are a subset
2142	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2143	 */
2144	__u64 slice_mask;
2145
2146	/*
2147	 * Mask of subslices to enable for the context. Valid values are a
2148	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2149	 */
2150	__u64 subslice_mask;
2151
2152	/*
2153	 * Minimum/Maximum number of EUs to enable per subslice for the
2154	 * context. min_eus_per_subslice must be inferior or equal to
2155	 * max_eus_per_subslice.
2156	 */
2157	__u16 min_eus_per_subslice;
2158	__u16 max_eus_per_subslice;
2159
2160	/*
2161	 * Unused for now. Must be cleared to zero.
2162	 */
2163	__u32 rsvd;
2164};
2165
2166/**
2167 * DOC: Virtual Engine uAPI
2168 *
2169 * Virtual engine is a concept where userspace is able to configure a set of
2170 * physical engines, submit a batch buffer, and let the driver execute it on any
2171 * engine from the set as it sees fit.
2172 *
2173 * This is primarily useful on parts which have multiple instances of a same
2174 * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2175 *
2176 * For instance userspace can enumerate all engines of a certain class using the
2177 * previously described `Engine Discovery uAPI`_. After that userspace can
2178 * create a GEM context with a placeholder slot for the virtual engine (using
2179 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2180 * and instance respectively) and finally using the
2181 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2182 * the same reserved slot.
2183 *
2184 * Example of creating a virtual engine and submitting a batch buffer to it:
2185 *
2186 * .. code-block:: C
2187 *
2188 * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2189 * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2190 * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2191 * 		.num_siblings = 2,
2192 * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2193 * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2194 * 	};
2195 * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2196 * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2197 * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2198 * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2199 * 	};
2200 * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2201 * 		.base = {
2202 * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2203 * 		},
2204 * 		.param = {
2205 * 			.param = I915_CONTEXT_PARAM_ENGINES,
2206 * 			.value = to_user_pointer(&engines),
2207 * 			.size = sizeof(engines),
2208 * 		},
2209 * 	};
2210 * 	struct drm_i915_gem_context_create_ext create = {
2211 * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2212 * 		.extensions = to_user_pointer(&p_engines);
2213 * 	};
2214 *
2215 * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2216 *
2217 * 	// Now we have created a GEM context with its engine map containing a
2218 * 	// single virtual engine. Submissions to this slot can go either to
2219 * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2220 * 	// the driver. The load balancing is dynamic from one batch buffer to
2221 * 	// another and transparent to userspace.
2222 *
2223 * 	...
2224 * 	execbuf.rsvd1 = ctx_id;
2225 * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2226 * 	gem_execbuf(drm_fd, &execbuf);
2227 */
2228
2229/*
2230 * i915_context_engines_load_balance:
2231 *
2232 * Enable load balancing across this set of engines.
2233 *
2234 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2235 * used will proxy the execbuffer request onto one of the set of engines
2236 * in such a way as to distribute the load evenly across the set.
2237 *
2238 * The set of engines must be compatible (e.g. the same HW class) as they
2239 * will share the same logical GPU context and ring.
2240 *
2241 * To intermix rendering with the virtual engine and direct rendering onto
2242 * the backing engines (bypassing the load balancing proxy), the context must
2243 * be defined to use a single timeline for all engines.
2244 */
2245struct i915_context_engines_load_balance {
2246	struct i915_user_extension base;
2247
2248	__u16 engine_index;
2249	__u16 num_siblings;
2250	__u32 flags; /* all undefined flags must be zero */
2251
2252	__u64 mbz64; /* reserved for future use; must be zero */
2253
2254	struct i915_engine_class_instance engines[];
2255} __attribute__((packed));
2256
2257#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2258	struct i915_user_extension base; \
2259	__u16 engine_index; \
2260	__u16 num_siblings; \
2261	__u32 flags; \
2262	__u64 mbz64; \
2263	struct i915_engine_class_instance engines[N__]; \
2264} __attribute__((packed)) name__
2265
2266/*
2267 * i915_context_engines_bond:
2268 *
2269 * Constructed bonded pairs for execution within a virtual engine.
2270 *
2271 * All engines are equal, but some are more equal than others. Given
2272 * the distribution of resources in the HW, it may be preferable to run
2273 * a request on a given subset of engines in parallel to a request on a
2274 * specific engine. We enable this selection of engines within a virtual
2275 * engine by specifying bonding pairs, for any given master engine we will
2276 * only execute on one of the corresponding siblings within the virtual engine.
2277 *
2278 * To execute a request in parallel on the master engine and a sibling requires
2279 * coordination with a I915_EXEC_FENCE_SUBMIT.
2280 */
2281struct i915_context_engines_bond {
2282	struct i915_user_extension base;
2283
2284	struct i915_engine_class_instance master;
2285
2286	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2287	__u16 num_bonds;
2288
2289	__u64 flags; /* all undefined flags must be zero */
2290	__u64 mbz64[4]; /* reserved for future use; must be zero */
2291
2292	struct i915_engine_class_instance engines[];
2293} __attribute__((packed));
2294
2295#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2296	struct i915_user_extension base; \
2297	struct i915_engine_class_instance master; \
2298	__u16 virtual_index; \
2299	__u16 num_bonds; \
2300	__u64 flags; \
2301	__u64 mbz64[4]; \
2302	struct i915_engine_class_instance engines[N__]; \
2303} __attribute__((packed)) name__
2304
2305/**
2306 * struct i915_context_engines_parallel_submit - Configure engine for
2307 * parallel submission.
2308 *
2309 * Setup a slot in the context engine map to allow multiple BBs to be submitted
2310 * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2311 * in parallel. Multiple hardware contexts are created internally in the i915 to
2312 * run these BBs. Once a slot is configured for N BBs only N BBs can be
2313 * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2314 * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2315 * many BBs there are based on the slot's configuration. The N BBs are the last
2316 * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2317 *
2318 * The default placement behavior is to create implicit bonds between each
2319 * context if each context maps to more than 1 physical engine (e.g. context is
2320 * a virtual engine). Also we only allow contexts of same engine class and these
2321 * contexts must be in logically contiguous order. Examples of the placement
2322 * behavior are described below. Lastly, the default is to not allow BBs to be
2323 * preempted mid-batch. Rather insert coordinated preemption points on all
2324 * hardware contexts between each set of BBs. Flags could be added in the future
2325 * to change both of these default behaviors.
2326 *
2327 * Returns -EINVAL if hardware context placement configuration is invalid or if
2328 * the placement configuration isn't supported on the platform / submission
2329 * interface.
2330 * Returns -ENODEV if extension isn't supported on the platform / submission
2331 * interface.
2332 *
2333 * .. code-block:: none
2334 *
2335 *	Examples syntax:
2336 *	CS[X] = generic engine of same class, logical instance X
2337 *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2338 *
2339 *	Example 1 pseudo code:
2340 *	set_engines(INVALID)
2341 *	set_parallel(engine_index=0, width=2, num_siblings=1,
2342 *		     engines=CS[0],CS[1])
2343 *
2344 *	Results in the following valid placement:
2345 *	CS[0], CS[1]
2346 *
2347 *	Example 2 pseudo code:
2348 *	set_engines(INVALID)
2349 *	set_parallel(engine_index=0, width=2, num_siblings=2,
2350 *		     engines=CS[0],CS[2],CS[1],CS[3])
2351 *
2352 *	Results in the following valid placements:
2353 *	CS[0], CS[1]
2354 *	CS[2], CS[3]
2355 *
2356 *	This can be thought of as two virtual engines, each containing two
2357 *	engines thereby making a 2D array. However, there are bonds tying the
2358 *	entries together and placing restrictions on how they can be scheduled.
2359 *	Specifically, the scheduler can choose only vertical columns from the 2D
2360 *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2361 *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2362 *	versa. Same for CS[2] requires also using CS[3].
2363 *	VE[0] = CS[0], CS[2]
2364 *	VE[1] = CS[1], CS[3]
2365 *
2366 *	Example 3 pseudo code:
2367 *	set_engines(INVALID)
2368 *	set_parallel(engine_index=0, width=2, num_siblings=2,
2369 *		     engines=CS[0],CS[1],CS[1],CS[3])
2370 *
2371 *	Results in the following valid and invalid placements:
2372 *	CS[0], CS[1]
2373 *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2374 */
2375struct i915_context_engines_parallel_submit {
2376	/**
2377	 * @base: base user extension.
2378	 */
2379	struct i915_user_extension base;
2380
2381	/**
2382	 * @engine_index: slot for parallel engine
2383	 */
2384	__u16 engine_index;
2385
2386	/**
2387	 * @width: number of contexts per parallel engine or in other words the
2388	 * number of batches in each submission
2389	 */
2390	__u16 width;
2391
2392	/**
2393	 * @num_siblings: number of siblings per context or in other words the
2394	 * number of possible placements for each submission
2395	 */
2396	__u16 num_siblings;
2397
2398	/**
2399	 * @mbz16: reserved for future use; must be zero
2400	 */
2401	__u16 mbz16;
2402
2403	/**
2404	 * @flags: all undefined flags must be zero, currently not defined flags
2405	 */
2406	__u64 flags;
2407
2408	/**
2409	 * @mbz64: reserved for future use; must be zero
2410	 */
2411	__u64 mbz64[3];
2412
2413	/**
2414	 * @engines: 2-d array of engine instances to configure parallel engine
2415	 *
2416	 * length = width (i) * num_siblings (j)
2417	 * index = j + i * num_siblings
2418	 */
2419	struct i915_engine_class_instance engines[];
2420
2421} __packed;
2422
2423#define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2424	struct i915_user_extension base; \
2425	__u16 engine_index; \
2426	__u16 width; \
2427	__u16 num_siblings; \
2428	__u16 mbz16; \
2429	__u64 flags; \
2430	__u64 mbz64[3]; \
2431	struct i915_engine_class_instance engines[N__]; \
2432} __attribute__((packed)) name__
2433
2434/**
2435 * DOC: Context Engine Map uAPI
2436 *
2437 * Context engine map is a new way of addressing engines when submitting batch-
2438 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2439 * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2440 *
2441 * To use it created GEM contexts need to be configured with a list of engines
2442 * the user is intending to submit to. This is accomplished using the
2443 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2444 * i915_context_param_engines`.
2445 *
2446 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2447 * configured map.
2448 *
2449 * Example of creating such context and submitting against it:
2450 *
2451 * .. code-block:: C
2452 *
2453 * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2454 * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2455 * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2456 * 	};
2457 * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2458 * 		.base = {
2459 * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2460 * 		},
2461 * 		.param = {
2462 * 			.param = I915_CONTEXT_PARAM_ENGINES,
2463 * 			.value = to_user_pointer(&engines),
2464 * 			.size = sizeof(engines),
2465 * 		},
2466 * 	};
2467 * 	struct drm_i915_gem_context_create_ext create = {
2468 * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2469 * 		.extensions = to_user_pointer(&p_engines);
2470 * 	};
2471 *
2472 * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2473 *
2474 * 	// We have now created a GEM context with two engines in the map:
2475 * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2476 * 	// will not be accessible from this context.
2477 *
2478 * 	...
2479 * 	execbuf.rsvd1 = ctx_id;
2480 * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2481 * 	gem_execbuf(drm_fd, &execbuf);
2482 *
2483 * 	...
2484 * 	execbuf.rsvd1 = ctx_id;
2485 * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2486 * 	gem_execbuf(drm_fd, &execbuf);
2487 */
2488
2489struct i915_context_param_engines {
2490	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2491#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2492#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2493#define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2494	struct i915_engine_class_instance engines[0];
2495} __attribute__((packed));
2496
2497#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2498	__u64 extensions; \
2499	struct i915_engine_class_instance engines[N__]; \
2500} __attribute__((packed)) name__
2501
2502/**
2503 * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2504 * to set or query during context creation.
2505 */
2506struct drm_i915_gem_context_create_ext_setparam {
2507	/** @base: Extension link. See struct i915_user_extension. */
2508	struct i915_user_extension base;
2509
2510	/**
2511	 * @param: Context parameter to set or query.
2512	 * See struct drm_i915_gem_context_param.
2513	 */
2514	struct drm_i915_gem_context_param param;
2515};
2516
2517struct drm_i915_gem_context_destroy {
2518	__u32 ctx_id;
2519	__u32 pad;
2520};
2521
2522/**
2523 * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2524 *
2525 * DRM_I915_GEM_VM_CREATE -
2526 *
2527 * Create a new virtual memory address space (ppGTT) for use within a context
2528 * on the same file. Extensions can be provided to configure exactly how the
2529 * address space is setup upon creation.
2530 *
2531 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2532 * returned in the outparam @id.
2533 *
2534 * An extension chain maybe provided, starting with @extensions, and terminated
2535 * by the @next_extension being 0. Currently, no extensions are defined.
2536 *
2537 * DRM_I915_GEM_VM_DESTROY -
2538 *
2539 * Destroys a previously created VM id, specified in @vm_id.
2540 *
2541 * No extensions or flags are allowed currently, and so must be zero.
2542 */
2543struct drm_i915_gem_vm_control {
2544	/** @extensions: Zero-terminated chain of extensions. */
2545	__u64 extensions;
2546
2547	/** @flags: reserved for future usage, currently MBZ */
2548	__u32 flags;
2549
2550	/** @vm_id: Id of the VM created or to be destroyed */
2551	__u32 vm_id;
2552};
2553
2554struct drm_i915_reg_read {
2555	/*
2556	 * Register offset.
2557	 * For 64bit wide registers where the upper 32bits don't immediately
2558	 * follow the lower 32bits, the offset of the lower 32bits must
2559	 * be specified
2560	 */
2561	__u64 offset;
2562#define I915_REG_READ_8B_WA (1ul << 0)
2563
2564	__u64 val; /* Return value */
2565};
2566
2567/* Known registers:
2568 *
2569 * Render engine timestamp - 0x2358 + 64bit - gen7+
2570 * - Note this register returns an invalid value if using the default
2571 *   single instruction 8byte read, in order to workaround that pass
2572 *   flag I915_REG_READ_8B_WA in offset field.
2573 *
2574 */
2575
2576struct drm_i915_reset_stats {
2577	__u32 ctx_id;
2578	__u32 flags;
2579
2580	/* All resets since boot/module reload, for all contexts */
2581	__u32 reset_count;
2582
2583	/* Number of batches lost when active in GPU, for this context */
2584	__u32 batch_active;
2585
2586	/* Number of batches lost pending for execution, for this context */
2587	__u32 batch_pending;
2588
2589	__u32 pad;
2590};
2591
2592/**
2593 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2594 *
2595 * Userptr objects have several restrictions on what ioctls can be used with the
2596 * object handle.
2597 */
2598struct drm_i915_gem_userptr {
2599	/**
2600	 * @user_ptr: The pointer to the allocated memory.
2601	 *
2602	 * Needs to be aligned to PAGE_SIZE.
2603	 */
2604	__u64 user_ptr;
2605
2606	/**
2607	 * @user_size:
2608	 *
2609	 * The size in bytes for the allocated memory. This will also become the
2610	 * object size.
2611	 *
2612	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2613	 * or larger.
2614	 */
2615	__u64 user_size;
2616
2617	/**
2618	 * @flags:
2619	 *
2620	 * Supported flags:
2621	 *
2622	 * I915_USERPTR_READ_ONLY:
2623	 *
2624	 * Mark the object as readonly, this also means GPU access can only be
2625	 * readonly. This is only supported on HW which supports readonly access
2626	 * through the GTT. If the HW can't support readonly access, an error is
2627	 * returned.
2628	 *
2629	 * I915_USERPTR_PROBE:
2630	 *
2631	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2632	 * indeed pointing to normal memory and that the range is also valid.
2633	 * For example if some garbage address is given to the kernel, then this
2634	 * should complain.
2635	 *
2636	 * Returns -EFAULT if the probe failed.
2637	 *
2638	 * Note that this doesn't populate the backing pages, and also doesn't
2639	 * guarantee that the object will remain valid when the object is
2640	 * eventually used.
2641	 *
2642	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2643	 * returns a non-zero value.
2644	 *
2645	 * I915_USERPTR_UNSYNCHRONIZED:
2646	 *
2647	 * NOT USED. Setting this flag will result in an error.
2648	 */
2649	__u32 flags;
2650#define I915_USERPTR_READ_ONLY 0x1
2651#define I915_USERPTR_PROBE 0x2
2652#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2653	/**
2654	 * @handle: Returned handle for the object.
2655	 *
2656	 * Object handles are nonzero.
2657	 */
2658	__u32 handle;
2659};
2660
2661enum drm_i915_oa_format {
2662	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2663	I915_OA_FORMAT_A29,	    /* HSW only */
2664	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2665	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2666	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2667	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2668	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2669
2670	/* Gen8+ */
2671	I915_OA_FORMAT_A12,
2672	I915_OA_FORMAT_A12_B8_C8,
2673	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2674
2675	/* DG2 */
2676	I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2677	I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2678
2679	I915_OA_FORMAT_MAX	    /* non-ABI */
2680};
2681
2682enum drm_i915_perf_property_id {
2683	/**
2684	 * Open the stream for a specific context handle (as used with
2685	 * execbuffer2). A stream opened for a specific context this way
2686	 * won't typically require root privileges.
2687	 *
2688	 * This property is available in perf revision 1.
2689	 */
2690	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2691
2692	/**
2693	 * A value of 1 requests the inclusion of raw OA unit reports as
2694	 * part of stream samples.
2695	 *
2696	 * This property is available in perf revision 1.
2697	 */
2698	DRM_I915_PERF_PROP_SAMPLE_OA,
2699
2700	/**
2701	 * The value specifies which set of OA unit metrics should be
2702	 * configured, defining the contents of any OA unit reports.
2703	 *
2704	 * This property is available in perf revision 1.
2705	 */
2706	DRM_I915_PERF_PROP_OA_METRICS_SET,
2707
2708	/**
2709	 * The value specifies the size and layout of OA unit reports.
2710	 *
2711	 * This property is available in perf revision 1.
2712	 */
2713	DRM_I915_PERF_PROP_OA_FORMAT,
2714
2715	/**
2716	 * Specifying this property implicitly requests periodic OA unit
2717	 * sampling and (at least on Haswell) the sampling frequency is derived
2718	 * from this exponent as follows:
2719	 *
2720	 *   80ns * 2^(period_exponent + 1)
2721	 *
2722	 * This property is available in perf revision 1.
2723	 */
2724	DRM_I915_PERF_PROP_OA_EXPONENT,
2725
2726	/**
2727	 * Specifying this property is only valid when specify a context to
2728	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2729	 * will hold preemption of the particular context we want to gather
2730	 * performance data about. The execbuf2 submissions must include a
2731	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2732	 *
2733	 * This property is available in perf revision 3.
2734	 */
2735	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2736
2737	/**
2738	 * Specifying this pins all contexts to the specified SSEU power
2739	 * configuration for the duration of the recording.
2740	 *
2741	 * This parameter's value is a pointer to a struct
2742	 * drm_i915_gem_context_param_sseu.
2743	 *
2744	 * This property is available in perf revision 4.
2745	 */
2746	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2747
2748	/**
2749	 * This optional parameter specifies the timer interval in nanoseconds
2750	 * at which the i915 driver will check the OA buffer for available data.
2751	 * Minimum allowed value is 100 microseconds. A default value is used by
2752	 * the driver if this parameter is not specified. Note that larger timer
2753	 * values will reduce cpu consumption during OA perf captures. However,
2754	 * excessively large values would potentially result in OA buffer
2755	 * overwrites as captures reach end of the OA buffer.
2756	 *
2757	 * This property is available in perf revision 5.
2758	 */
2759	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2760
2761	DRM_I915_PERF_PROP_MAX /* non-ABI */
2762};
2763
2764struct drm_i915_perf_open_param {
2765	__u32 flags;
2766#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2767#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2768#define I915_PERF_FLAG_DISABLED		(1<<2)
2769
2770	/** The number of u64 (id, value) pairs */
2771	__u32 num_properties;
2772
2773	/**
2774	 * Pointer to array of u64 (id, value) pairs configuring the stream
2775	 * to open.
2776	 */
2777	__u64 properties_ptr;
2778};
2779
2780/*
2781 * Enable data capture for a stream that was either opened in a disabled state
2782 * via I915_PERF_FLAG_DISABLED or was later disabled via
2783 * I915_PERF_IOCTL_DISABLE.
2784 *
2785 * It is intended to be cheaper to disable and enable a stream than it may be
2786 * to close and re-open a stream with the same configuration.
2787 *
2788 * It's undefined whether any pending data for the stream will be lost.
2789 *
2790 * This ioctl is available in perf revision 1.
2791 */
2792#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2793
2794/*
2795 * Disable data capture for a stream.
2796 *
2797 * It is an error to try and read a stream that is disabled.
2798 *
2799 * This ioctl is available in perf revision 1.
2800 */
2801#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2802
2803/*
2804 * Change metrics_set captured by a stream.
2805 *
2806 * If the stream is bound to a specific context, the configuration change
2807 * will performed inline with that context such that it takes effect before
2808 * the next execbuf submission.
2809 *
2810 * Returns the previously bound metrics set id, or a negative error code.
2811 *
2812 * This ioctl is available in perf revision 2.
2813 */
2814#define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2815
2816/*
2817 * Common to all i915 perf records
2818 */
2819struct drm_i915_perf_record_header {
2820	__u32 type;
2821	__u16 pad;
2822	__u16 size;
2823};
2824
2825enum drm_i915_perf_record_type {
2826
2827	/**
2828	 * Samples are the work horse record type whose contents are extensible
2829	 * and defined when opening an i915 perf stream based on the given
2830	 * properties.
2831	 *
2832	 * Boolean properties following the naming convention
2833	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2834	 * every sample.
2835	 *
2836	 * The order of these sample properties given by userspace has no
2837	 * affect on the ordering of data within a sample. The order is
2838	 * documented here.
2839	 *
2840	 * struct {
2841	 *     struct drm_i915_perf_record_header header;
2842	 *
2843	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2844	 * };
2845	 */
2846	DRM_I915_PERF_RECORD_SAMPLE = 1,
2847
2848	/*
2849	 * Indicates that one or more OA reports were not written by the
2850	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2851	 * command collides with periodic sampling - which would be more likely
2852	 * at higher sampling frequencies.
2853	 */
2854	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2855
2856	/**
2857	 * An error occurred that resulted in all pending OA reports being lost.
2858	 */
2859	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2860
2861	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2862};
2863
2864/**
2865 * struct drm_i915_perf_oa_config
2866 *
2867 * Structure to upload perf dynamic configuration into the kernel.
2868 */
2869struct drm_i915_perf_oa_config {
2870	/**
2871	 * @uuid:
2872	 *
2873	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2874	 */
2875	char uuid[36];
2876
2877	/**
2878	 * @n_mux_regs:
2879	 *
2880	 * Number of mux regs in &mux_regs_ptr.
2881	 */
2882	__u32 n_mux_regs;
2883
2884	/**
2885	 * @n_boolean_regs:
2886	 *
2887	 * Number of boolean regs in &boolean_regs_ptr.
2888	 */
2889	__u32 n_boolean_regs;
2890
2891	/**
2892	 * @n_flex_regs:
2893	 *
2894	 * Number of flex regs in &flex_regs_ptr.
2895	 */
2896	__u32 n_flex_regs;
2897
2898	/**
2899	 * @mux_regs_ptr:
2900	 *
2901	 * Pointer to tuples of u32 values (register address, value) for mux
2902	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2903	 * &n_mux_regs).
2904	 */
2905	__u64 mux_regs_ptr;
2906
2907	/**
2908	 * @boolean_regs_ptr:
2909	 *
2910	 * Pointer to tuples of u32 values (register address, value) for mux
2911	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2912	 * &n_boolean_regs).
2913	 */
2914	__u64 boolean_regs_ptr;
2915
2916	/**
2917	 * @flex_regs_ptr:
2918	 *
2919	 * Pointer to tuples of u32 values (register address, value) for mux
2920	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2921	 * &n_flex_regs).
2922	 */
2923	__u64 flex_regs_ptr;
2924};
2925
2926/**
2927 * struct drm_i915_query_item - An individual query for the kernel to process.
2928 *
2929 * The behaviour is determined by the @query_id. Note that exactly what
2930 * @data_ptr is also depends on the specific @query_id.
2931 */
2932struct drm_i915_query_item {
2933	/**
2934	 * @query_id:
2935	 *
2936	 * The id for this query.  Currently accepted query IDs are:
2937	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2938	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2939	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2940	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2941	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2942	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2943	 */
2944	__u64 query_id;
2945#define DRM_I915_QUERY_TOPOLOGY_INFO		1
2946#define DRM_I915_QUERY_ENGINE_INFO		2
2947#define DRM_I915_QUERY_PERF_CONFIG		3
2948#define DRM_I915_QUERY_MEMORY_REGIONS		4
2949#define DRM_I915_QUERY_HWCONFIG_BLOB		5
2950#define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2951/* Must be kept compact -- no holes and well documented */
2952
2953	/**
2954	 * @length:
2955	 *
2956	 * When set to zero by userspace, this is filled with the size of the
2957	 * data to be written at the @data_ptr pointer. The kernel sets this
2958	 * value to a negative value to signal an error on a particular query
2959	 * item.
2960	 */
2961	__s32 length;
2962
2963	/**
2964	 * @flags:
2965	 *
2966	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2967	 *
2968	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2969	 * following:
2970	 *
2971	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2972	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2973	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2974	 *
2975	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2976	 * a struct i915_engine_class_instance that references a render engine.
2977	 */
2978	__u32 flags;
2979#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2980#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2981#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2982
2983	/**
2984	 * @data_ptr:
2985	 *
2986	 * Data will be written at the location pointed by @data_ptr when the
2987	 * value of @length matches the length of the data to be written by the
2988	 * kernel.
2989	 */
2990	__u64 data_ptr;
2991};
2992
2993/**
2994 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2995 * kernel to fill out.
2996 *
2997 * Note that this is generally a two step process for each struct
2998 * drm_i915_query_item in the array:
2999 *
3000 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3001 *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3002 *    kernel will then fill in the size, in bytes, which tells userspace how
3003 *    memory it needs to allocate for the blob(say for an array of properties).
3004 *
3005 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3006 *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3007 *    the &drm_i915_query_item.length should still be the same as what the
3008 *    kernel previously set. At this point the kernel can fill in the blob.
3009 *
3010 * Note that for some query items it can make sense for userspace to just pass
3011 * in a buffer/blob equal to or larger than the required size. In this case only
3012 * a single ioctl call is needed. For some smaller query items this can work
3013 * quite well.
3014 *
3015 */
3016struct drm_i915_query {
3017	/** @num_items: The number of elements in the @items_ptr array */
3018	__u32 num_items;
3019
3020	/**
3021	 * @flags: Unused for now. Must be cleared to zero.
3022	 */
3023	__u32 flags;
3024
3025	/**
3026	 * @items_ptr:
3027	 *
3028	 * Pointer to an array of struct drm_i915_query_item. The number of
3029	 * array elements is @num_items.
3030	 */
3031	__u64 items_ptr;
3032};
3033
3034/**
3035 * struct drm_i915_query_topology_info
3036 *
3037 * Describes slice/subslice/EU information queried by
3038 * %DRM_I915_QUERY_TOPOLOGY_INFO
3039 */
3040struct drm_i915_query_topology_info {
3041	/**
3042	 * @flags:
3043	 *
3044	 * Unused for now. Must be cleared to zero.
3045	 */
3046	__u16 flags;
3047
3048	/**
3049	 * @max_slices:
3050	 *
3051	 * The number of bits used to express the slice mask.
3052	 */
3053	__u16 max_slices;
3054
3055	/**
3056	 * @max_subslices:
3057	 *
3058	 * The number of bits used to express the subslice mask.
3059	 */
3060	__u16 max_subslices;
3061
3062	/**
3063	 * @max_eus_per_subslice:
3064	 *
3065	 * The number of bits in the EU mask that correspond to a single
3066	 * subslice's EUs.
3067	 */
3068	__u16 max_eus_per_subslice;
3069
3070	/**
3071	 * @subslice_offset:
3072	 *
3073	 * Offset in data[] at which the subslice masks are stored.
3074	 */
3075	__u16 subslice_offset;
3076
3077	/**
3078	 * @subslice_stride:
3079	 *
3080	 * Stride at which each of the subslice masks for each slice are
3081	 * stored.
3082	 */
3083	__u16 subslice_stride;
3084
3085	/**
3086	 * @eu_offset:
3087	 *
3088	 * Offset in data[] at which the EU masks are stored.
3089	 */
3090	__u16 eu_offset;
3091
3092	/**
3093	 * @eu_stride:
3094	 *
3095	 * Stride at which each of the EU masks for each subslice are stored.
3096	 */
3097	__u16 eu_stride;
3098
3099	/**
3100	 * @data:
3101	 *
3102	 * Contains 3 pieces of information :
3103	 *
3104	 * - The slice mask with one bit per slice telling whether a slice is
3105	 *   available. The availability of slice X can be queried with the
3106	 *   following formula :
3107	 *
3108	 *   .. code:: c
3109	 *
3110	 *      (data[X / 8] >> (X % 8)) & 1
3111	 *
3112	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3113	 *   traditional slices so i915 will always report a single slice
3114	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3115	 *   subslices.  I.e., the mask here does not reflect any of the newer
3116	 *   hardware concepts such as "gslices" or "cslices" since userspace
3117	 *   is capable of inferring those from the subslice mask.
3118	 *
3119	 * - The subslice mask for each slice with one bit per subslice telling
3120	 *   whether a subslice is available.  Starting with Gen12 we use the
3121	 *   term "subslice" to refer to what the hardware documentation
3122	 *   describes as a "dual-subslices."  The availability of subslice Y
3123	 *   in slice X can be queried with the following formula :
3124	 *
3125	 *   .. code:: c
3126	 *
3127	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3128	 *
3129	 * - The EU mask for each subslice in each slice, with one bit per EU
3130	 *   telling whether an EU is available. The availability of EU Z in
3131	 *   subslice Y in slice X can be queried with the following formula :
3132	 *
3133	 *   .. code:: c
3134	 *
3135	 *      (data[eu_offset +
3136	 *            (X * max_subslices + Y) * eu_stride +
3137	 *            Z / 8
3138	 *       ] >> (Z % 8)) & 1
3139	 */
3140	__u8 data[];
3141};
3142
3143/**
3144 * DOC: Engine Discovery uAPI
3145 *
3146 * Engine discovery uAPI is a way of enumerating physical engines present in a
3147 * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3148 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3149 * `I915_PARAM_HAS_BLT`.
3150 *
3151 * The need for this interface came starting with Icelake and newer GPUs, which
3152 * started to establish a pattern of having multiple engines of a same class,
3153 * where not all instances were always completely functionally equivalent.
3154 *
3155 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3156 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3157 *
3158 * Example for getting the list of engines:
3159 *
3160 * .. code-block:: C
3161 *
3162 * 	struct drm_i915_query_engine_info *info;
3163 * 	struct drm_i915_query_item item = {
3164 * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3165 * 	};
3166 * 	struct drm_i915_query query = {
3167 * 		.num_items = 1,
3168 * 		.items_ptr = (uintptr_t)&item,
3169 * 	};
3170 * 	int err, i;
3171 *
3172 * 	// First query the size of the blob we need, this needs to be large
3173 * 	// enough to hold our array of engines. The kernel will fill out the
3174 * 	// item.length for us, which is the number of bytes we need.
3175 * 	//
3176 * 	// Alternatively a large buffer can be allocated straight away enabling
3177 * 	// querying in one pass, in which case item.length should contain the
3178 * 	// length of the provided buffer.
3179 * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3180 * 	if (err) ...
3181 *
3182 * 	info = calloc(1, item.length);
3183 * 	// Now that we allocated the required number of bytes, we call the ioctl
3184 * 	// again, this time with the data_ptr pointing to our newly allocated
3185 * 	// blob, which the kernel can then populate with info on all engines.
3186 * 	item.data_ptr = (uintptr_t)&info,
3187 *
3188 * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3189 * 	if (err) ...
3190 *
3191 * 	// We can now access each engine in the array
3192 * 	for (i = 0; i < info->num_engines; i++) {
3193 * 		struct drm_i915_engine_info einfo = info->engines[i];
3194 * 		u16 class = einfo.engine.class;
3195 * 		u16 instance = einfo.engine.instance;
3196 * 		....
3197 * 	}
3198 *
3199 * 	free(info);
3200 *
3201 * Each of the enumerated engines, apart from being defined by its class and
3202 * instance (see `struct i915_engine_class_instance`), also can have flags and
3203 * capabilities defined as documented in i915_drm.h.
3204 *
3205 * For instance video engines which support HEVC encoding will have the
3206 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3207 *
3208 * Engine discovery only fully comes to its own when combined with the new way
3209 * of addressing engines when submitting batch buffers using contexts with
3210 * engine maps configured.
3211 */
3212
3213/**
3214 * struct drm_i915_engine_info
3215 *
3216 * Describes one engine and it's capabilities as known to the driver.
3217 */
3218struct drm_i915_engine_info {
3219	/** @engine: Engine class and instance. */
3220	struct i915_engine_class_instance engine;
3221
3222	/** @rsvd0: Reserved field. */
3223	__u32 rsvd0;
3224
3225	/** @flags: Engine flags. */
3226	__u64 flags;
3227#define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3228
3229	/** @capabilities: Capabilities of this engine. */
3230	__u64 capabilities;
3231#define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3232#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3233
3234	/** @logical_instance: Logical instance of engine */
3235	__u16 logical_instance;
3236
3237	/** @rsvd1: Reserved fields. */
3238	__u16 rsvd1[3];
3239	/** @rsvd2: Reserved fields. */
3240	__u64 rsvd2[3];
3241};
3242
3243/**
3244 * struct drm_i915_query_engine_info
3245 *
3246 * Engine info query enumerates all engines known to the driver by filling in
3247 * an array of struct drm_i915_engine_info structures.
3248 */
3249struct drm_i915_query_engine_info {
3250	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3251	__u32 num_engines;
3252
3253	/** @rsvd: MBZ */
3254	__u32 rsvd[3];
3255
3256	/** @engines: Marker for drm_i915_engine_info structures. */
3257	struct drm_i915_engine_info engines[];
3258};
3259
3260/**
3261 * struct drm_i915_query_perf_config
3262 *
3263 * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3264 * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3265 */
3266struct drm_i915_query_perf_config {
3267	union {
3268		/**
3269		 * @n_configs:
3270		 *
3271		 * When &drm_i915_query_item.flags ==
3272		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3273		 * the number of configurations available.
3274		 */
3275		__u64 n_configs;
3276
3277		/**
3278		 * @config:
3279		 *
3280		 * When &drm_i915_query_item.flags ==
3281		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3282		 * value in this field as configuration identifier to decide
3283		 * what data to write into config_ptr.
3284		 */
3285		__u64 config;
3286
3287		/**
3288		 * @uuid:
3289		 *
3290		 * When &drm_i915_query_item.flags ==
3291		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3292		 * value in this field as configuration identifier to decide
3293		 * what data to write into config_ptr.
3294		 *
3295		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3296		 */
3297		char uuid[36];
3298	};
3299
3300	/**
3301	 * @flags:
3302	 *
3303	 * Unused for now. Must be cleared to zero.
3304	 */
3305	__u32 flags;
3306
3307	/**
3308	 * @data:
3309	 *
3310	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3311	 * i915 will write an array of __u64 of configuration identifiers.
3312	 *
3313	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3314	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3315	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3316	 * write into the associated pointers the values of submitted when the
3317	 * configuration was created :
3318	 *
3319	 *  - &drm_i915_perf_oa_config.n_mux_regs
3320	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3321	 *  - &drm_i915_perf_oa_config.n_flex_regs
3322	 */
3323	__u8 data[];
3324};
3325
3326/**
3327 * enum drm_i915_gem_memory_class - Supported memory classes
3328 */
3329enum drm_i915_gem_memory_class {
3330	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3331	I915_MEMORY_CLASS_SYSTEM = 0,
3332	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3333	I915_MEMORY_CLASS_DEVICE,
3334};
3335
3336/**
3337 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3338 */
3339struct drm_i915_gem_memory_class_instance {
3340	/** @memory_class: See enum drm_i915_gem_memory_class */
3341	__u16 memory_class;
3342
3343	/** @memory_instance: Which instance */
3344	__u16 memory_instance;
3345};
3346
3347/**
3348 * struct drm_i915_memory_region_info - Describes one region as known to the
3349 * driver.
3350 *
3351 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3352 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3353 * at &drm_i915_query_item.query_id.
3354 */
3355struct drm_i915_memory_region_info {
3356	/** @region: The class:instance pair encoding */
3357	struct drm_i915_gem_memory_class_instance region;
3358
3359	/** @rsvd0: MBZ */
3360	__u32 rsvd0;
3361
3362	/**
3363	 * @probed_size: Memory probed by the driver
3364	 *
3365	 * Note that it should not be possible to ever encounter a zero value
3366	 * here, also note that no current region type will ever return -1 here.
3367	 * Although for future region types, this might be a possibility. The
3368	 * same applies to the other size fields.
3369	 */
3370	__u64 probed_size;
3371
3372	/**
3373	 * @unallocated_size: Estimate of memory remaining
3374	 *
3375	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3376	 * Without this (or if this is an older kernel) the value here will
3377	 * always equal the @probed_size. Note this is only currently tracked
3378	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3379	 * will always equal the @probed_size).
3380	 */
3381	__u64 unallocated_size;
3382
3383	union {
3384		/** @rsvd1: MBZ */
3385		__u64 rsvd1[8];
3386		struct {
3387			/**
3388			 * @probed_cpu_visible_size: Memory probed by the driver
3389			 * that is CPU accessible.
3390			 *
3391			 * This will be always be <= @probed_size, and the
3392			 * remainder (if there is any) will not be CPU
3393			 * accessible.
3394			 *
3395			 * On systems without small BAR, the @probed_size will
3396			 * always equal the @probed_cpu_visible_size, since all
3397			 * of it will be CPU accessible.
3398			 *
3399			 * Note this is only tracked for
3400			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3401			 * value here will always equal the @probed_size).
3402			 *
3403			 * Note that if the value returned here is zero, then
3404			 * this must be an old kernel which lacks the relevant
3405			 * small-bar uAPI support (including
3406			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3407			 * such systems we should never actually end up with a
3408			 * small BAR configuration, assuming we are able to load
3409			 * the kernel module. Hence it should be safe to treat
3410			 * this the same as when @probed_cpu_visible_size ==
3411			 * @probed_size.
3412			 */
3413			__u64 probed_cpu_visible_size;
3414
3415			/**
3416			 * @unallocated_cpu_visible_size: Estimate of CPU
3417			 * visible memory remaining.
3418			 *
3419			 * Note this is only tracked for
3420			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3421			 * value here will always equal the
3422			 * @probed_cpu_visible_size).
3423			 *
3424			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3425			 * accounting.  Without this the value here will always
3426			 * equal the @probed_cpu_visible_size. Note this is only
3427			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3428			 * regions (for other types the value here will also
3429			 * always equal the @probed_cpu_visible_size).
3430			 *
3431			 * If this is an older kernel the value here will be
3432			 * zero, see also @probed_cpu_visible_size.
3433			 */
3434			__u64 unallocated_cpu_visible_size;
3435		};
3436	};
3437};
3438
3439/**
3440 * struct drm_i915_query_memory_regions
3441 *
3442 * The region info query enumerates all regions known to the driver by filling
3443 * in an array of struct drm_i915_memory_region_info structures.
3444 *
3445 * Example for getting the list of supported regions:
3446 *
3447 * .. code-block:: C
3448 *
3449 *	struct drm_i915_query_memory_regions *info;
3450 *	struct drm_i915_query_item item = {
3451 *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3452 *	};
3453 *	struct drm_i915_query query = {
3454 *		.num_items = 1,
3455 *		.items_ptr = (uintptr_t)&item,
3456 *	};
3457 *	int err, i;
3458 *
3459 *	// First query the size of the blob we need, this needs to be large
3460 *	// enough to hold our array of regions. The kernel will fill out the
3461 *	// item.length for us, which is the number of bytes we need.
3462 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3463 *	if (err) ...
3464 *
3465 *	info = calloc(1, item.length);
3466 *	// Now that we allocated the required number of bytes, we call the ioctl
3467 *	// again, this time with the data_ptr pointing to our newly allocated
3468 *	// blob, which the kernel can then populate with the all the region info.
3469 *	item.data_ptr = (uintptr_t)&info,
3470 *
3471 *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3472 *	if (err) ...
3473 *
3474 *	// We can now access each region in the array
3475 *	for (i = 0; i < info->num_regions; i++) {
3476 *		struct drm_i915_memory_region_info mr = info->regions[i];
3477 *		u16 class = mr.region.class;
3478 *		u16 instance = mr.region.instance;
3479 *
3480 *		....
3481 *	}
3482 *
3483 *	free(info);
3484 */
3485struct drm_i915_query_memory_regions {
3486	/** @num_regions: Number of supported regions */
3487	__u32 num_regions;
3488
3489	/** @rsvd: MBZ */
3490	__u32 rsvd[3];
3491
3492	/** @regions: Info about each supported region */
3493	struct drm_i915_memory_region_info regions[];
3494};
3495
3496/**
3497 * DOC: GuC HWCONFIG blob uAPI
3498 *
3499 * The GuC produces a blob with information about the current device.
3500 * i915 reads this blob from GuC and makes it available via this uAPI.
3501 *
3502 * The format and meaning of the blob content are documented in the
3503 * Programmer's Reference Manual.
3504 */
3505
3506/**
3507 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3508 * extension support using struct i915_user_extension.
3509 *
3510 * Note that new buffer flags should be added here, at least for the stuff that
3511 * is immutable. Previously we would have two ioctls, one to create the object
3512 * with gem_create, and another to apply various parameters, however this
3513 * creates some ambiguity for the params which are considered immutable. Also in
3514 * general we're phasing out the various SET/GET ioctls.
3515 */
3516struct drm_i915_gem_create_ext {
3517	/**
3518	 * @size: Requested size for the object.
3519	 *
3520	 * The (page-aligned) allocated size for the object will be returned.
3521	 *
3522	 * On platforms like DG2/ATS the kernel will always use 64K or larger
3523	 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3524	 * minimum of 64K GTT alignment for such objects.
3525	 *
3526	 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3527	 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3528	 * where we had the following complications:
3529	 *
3530	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3531	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3532	 *   PDE is forbidden by the hardware.
3533	 *
3534	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3535	 *   objects.
3536	 *
3537	 * However on actual production HW this was completely changed to now
3538	 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3539	 * more flexible than the above. With this the 2M restriction was
3540	 * dropped where we now only require 64K.
3541	 */
3542	__u64 size;
3543
3544	/**
3545	 * @handle: Returned handle for the object.
3546	 *
3547	 * Object handles are nonzero.
3548	 */
3549	__u32 handle;
3550
3551	/**
3552	 * @flags: Optional flags.
3553	 *
3554	 * Supported values:
3555	 *
3556	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3557	 * the object will need to be accessed via the CPU.
3558	 *
3559	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3560	 * strictly required on configurations where some subset of the device
3561	 * memory is directly visible/mappable through the CPU (which we also
3562	 * call small BAR), like on some DG2+ systems. Note that this is quite
3563	 * undesirable, but due to various factors like the client CPU, BIOS etc
3564	 * it's something we can expect to see in the wild. See
3565	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3566	 * determine if this system applies.
3567	 *
3568	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3569	 * ensure the kernel can always spill the allocation to system memory,
3570	 * if the object can't be allocated in the mappable part of
3571	 * I915_MEMORY_CLASS_DEVICE.
3572	 *
3573	 * Also note that since the kernel only supports flat-CCS on objects
3574	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3575	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3576	 * flat-CCS.
3577	 *
3578	 * Without this hint, the kernel will assume that non-mappable
3579	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3580	 * kernel can still migrate the object to the mappable part, as a last
3581	 * resort, if userspace ever CPU faults this object, but this might be
3582	 * expensive, and so ideally should be avoided.
3583	 *
3584	 * On older kernels which lack the relevant small-bar uAPI support (see
3585	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3586	 * usage of the flag will result in an error, but it should NEVER be
3587	 * possible to end up with a small BAR configuration, assuming we can
3588	 * also successfully load the i915 kernel module. In such cases the
3589	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3590	 * such there are zero restrictions on where the object can be placed.
3591	 */
3592#define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3593	__u32 flags;
3594
3595	/**
3596	 * @extensions: The chain of extensions to apply to this object.
3597	 *
3598	 * This will be useful in the future when we need to support several
3599	 * different extensions, and we need to apply more than one when
3600	 * creating the object. See struct i915_user_extension.
3601	 *
3602	 * If we don't supply any extensions then we get the same old gem_create
3603	 * behaviour.
3604	 *
3605	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3606	 * struct drm_i915_gem_create_ext_memory_regions.
3607	 *
3608	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3609	 * struct drm_i915_gem_create_ext_protected_content.
3610	 */
3611#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3612#define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3613	__u64 extensions;
3614};
3615
3616/**
3617 * struct drm_i915_gem_create_ext_memory_regions - The
3618 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3619 *
3620 * Set the object with the desired set of placements/regions in priority
3621 * order. Each entry must be unique and supported by the device.
3622 *
3623 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3624 * an equivalent layout of class:instance pair encodings. See struct
3625 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3626 * query the supported regions for a device.
3627 *
3628 * As an example, on discrete devices, if we wish to set the placement as
3629 * device local-memory we can do something like:
3630 *
3631 * .. code-block:: C
3632 *
3633 *	struct drm_i915_gem_memory_class_instance region_lmem = {
3634 *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3635 *              .memory_instance = 0,
3636 *      };
3637 *      struct drm_i915_gem_create_ext_memory_regions regions = {
3638 *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3639 *              .regions = (uintptr_t)&region_lmem,
3640 *              .num_regions = 1,
3641 *      };
3642 *      struct drm_i915_gem_create_ext create_ext = {
3643 *              .size = 16 * PAGE_SIZE,
3644 *              .extensions = (uintptr_t)&regions,
3645 *      };
3646 *
3647 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3648 *      if (err) ...
3649 *
3650 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3651 * along with the final object size in &drm_i915_gem_create_ext.size, which
3652 * should account for any rounding up, if required.
3653 *
3654 * Note that userspace has no means of knowing the current backing region
3655 * for objects where @num_regions is larger than one. The kernel will only
3656 * ensure that the priority order of the @regions array is honoured, either
3657 * when initially placing the object, or when moving memory around due to
3658 * memory pressure
3659 *
3660 * On Flat-CCS capable HW, compression is supported for the objects residing
3661 * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3662 * memory class in @regions and migrated (by i915, due to memory
3663 * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3664 * decompress the content. But i915 doesn't have the required information to
3665 * decompress the userspace compressed objects.
3666 *
3667 * So i915 supports Flat-CCS, on the objects which can reside only on
3668 * I915_MEMORY_CLASS_DEVICE regions.
3669 */
3670struct drm_i915_gem_create_ext_memory_regions {
3671	/** @base: Extension link. See struct i915_user_extension. */
3672	struct i915_user_extension base;
3673
3674	/** @pad: MBZ */
3675	__u32 pad;
3676	/** @num_regions: Number of elements in the @regions array. */
3677	__u32 num_regions;
3678	/**
3679	 * @regions: The regions/placements array.
3680	 *
3681	 * An array of struct drm_i915_gem_memory_class_instance.
3682	 */
3683	__u64 regions;
3684};
3685
3686/**
3687 * struct drm_i915_gem_create_ext_protected_content - The
3688 * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3689 *
3690 * If this extension is provided, buffer contents are expected to be protected
3691 * by PXP encryption and require decryption for scan out and processing. This
3692 * is only possible on platforms that have PXP enabled, on all other scenarios
3693 * using this extension will cause the ioctl to fail and return -ENODEV. The
3694 * flags parameter is reserved for future expansion and must currently be set
3695 * to zero.
3696 *
3697 * The buffer contents are considered invalid after a PXP session teardown.
3698 *
3699 * The encryption is guaranteed to be processed correctly only if the object
3700 * is submitted with a context created using the
3701 * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3702 * at submission time on the validity of the objects involved.
3703 *
3704 * Below is an example on how to create a protected object:
3705 *
3706 * .. code-block:: C
3707 *
3708 *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3709 *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3710 *              .flags = 0,
3711 *      };
3712 *      struct drm_i915_gem_create_ext create_ext = {
3713 *              .size = PAGE_SIZE,
3714 *              .extensions = (uintptr_t)&protected_ext,
3715 *      };
3716 *
3717 *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3718 *      if (err) ...
3719 */
3720struct drm_i915_gem_create_ext_protected_content {
3721	/** @base: Extension link. See struct i915_user_extension. */
3722	struct i915_user_extension base;
3723	/** @flags: reserved for future usage, currently MBZ */
3724	__u32 flags;
3725};
3726
3727/* ID of the protected content session managed by i915 when PXP is active */
3728#define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3729
3730#if defined(__cplusplus)
3731}
3732#endif
3733
3734#endif /* _UAPI_I915_DRM_H_ */