Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include "compat.h"
 
 
 
 
  45#include "ctree.h"
  46#include "disk-io.h"
 
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
  51#include "volumes.h"
  52#include "locking.h"
  53#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55/* Mask out flags that are inappropriate for the given type of inode. */
  56static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
 
  57{
  58	if (S_ISDIR(mode))
  59		return flags;
  60	else if (S_ISREG(mode))
  61		return flags & ~FS_DIRSYNC_FL;
  62	else
  63		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
  64}
  65
  66/*
  67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
 
  68 */
  69static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
  70{
  71	unsigned int iflags = 0;
  72
  73	if (flags & BTRFS_INODE_SYNC)
  74		iflags |= FS_SYNC_FL;
  75	if (flags & BTRFS_INODE_IMMUTABLE)
  76		iflags |= FS_IMMUTABLE_FL;
  77	if (flags & BTRFS_INODE_APPEND)
  78		iflags |= FS_APPEND_FL;
  79	if (flags & BTRFS_INODE_NODUMP)
  80		iflags |= FS_NODUMP_FL;
  81	if (flags & BTRFS_INODE_NOATIME)
  82		iflags |= FS_NOATIME_FL;
  83	if (flags & BTRFS_INODE_DIRSYNC)
  84		iflags |= FS_DIRSYNC_FL;
  85	if (flags & BTRFS_INODE_NODATACOW)
  86		iflags |= FS_NOCOW_FL;
  87
  88	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
  89		iflags |= FS_COMPR_FL;
  90	else if (flags & BTRFS_INODE_NOCOMPRESS)
  91		iflags |= FS_NOCOMP_FL;
 
 
  92
  93	return iflags;
  94}
  95
  96/*
  97 * Update inode->i_flags based on the btrfs internal flags.
  98 */
  99void btrfs_update_iflags(struct inode *inode)
 100{
 101	struct btrfs_inode *ip = BTRFS_I(inode);
 102
 103	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
 104
 105	if (ip->flags & BTRFS_INODE_SYNC)
 106		inode->i_flags |= S_SYNC;
 107	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 108		inode->i_flags |= S_IMMUTABLE;
 109	if (ip->flags & BTRFS_INODE_APPEND)
 110		inode->i_flags |= S_APPEND;
 111	if (ip->flags & BTRFS_INODE_NOATIME)
 112		inode->i_flags |= S_NOATIME;
 113	if (ip->flags & BTRFS_INODE_DIRSYNC)
 114		inode->i_flags |= S_DIRSYNC;
 
 
 
 
 115}
 116
 117/*
 118 * Inherit flags from the parent inode.
 119 *
 120 * Unlike extN we don't have any flags we don't want to inherit currently.
 121 */
 122void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 123{
 124	unsigned int flags;
 
 
 
 
 
 125
 126	if (!dir)
 127		return;
 
 128
 129	flags = BTRFS_I(dir)->flags;
 
 130
 131	if (S_ISREG(inode->i_mode))
 132		flags &= ~BTRFS_INODE_DIRSYNC;
 133	else if (!S_ISDIR(inode->i_mode))
 134		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
 
 135
 136	BTRFS_I(inode)->flags = flags;
 137	btrfs_update_iflags(inode);
 138}
 139
 140static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 
 141{
 142	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
 143	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 144
 145	if (copy_to_user(arg, &flags, sizeof(flags)))
 146		return -EFAULT;
 147	return 0;
 148}
 149
 150static int check_flags(unsigned int flags)
 
 
 
 
 151{
 152	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 153		      FS_NOATIME_FL | FS_NODUMP_FL | \
 154		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 155		      FS_NOCOMP_FL | FS_COMPR_FL |
 156		      FS_NOCOW_FL))
 157		return -EOPNOTSUPP;
 158
 159	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 160		return -EINVAL;
 161
 
 162	return 0;
 163}
 164
 165static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 
 166{
 167	struct inode *inode = file->f_path.dentry->d_inode;
 168	struct btrfs_inode *ip = BTRFS_I(inode);
 169	struct btrfs_root *root = ip->root;
 
 170	struct btrfs_trans_handle *trans;
 171	unsigned int flags, oldflags;
 172	int ret;
 
 
 173
 174	if (btrfs_root_readonly(root))
 175		return -EROFS;
 176
 177	if (copy_from_user(&flags, arg, sizeof(flags)))
 178		return -EFAULT;
 179
 180	ret = check_flags(flags);
 
 
 181	if (ret)
 182		return ret;
 183
 184	if (!inode_owner_or_capable(inode))
 185		return -EACCES;
 186
 187	mutex_lock(&inode->i_mutex);
 188
 189	flags = btrfs_mask_flags(inode->i_mode, flags);
 190	oldflags = btrfs_flags_to_ioctl(ip->flags);
 191	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 192		if (!capable(CAP_LINUX_IMMUTABLE)) {
 193			ret = -EPERM;
 194			goto out_unlock;
 195		}
 196	}
 197
 198	ret = mnt_want_write(file->f_path.mnt);
 199	if (ret)
 200		goto out_unlock;
 201
 202	if (flags & FS_SYNC_FL)
 203		ip->flags |= BTRFS_INODE_SYNC;
 
 204	else
 205		ip->flags &= ~BTRFS_INODE_SYNC;
 206	if (flags & FS_IMMUTABLE_FL)
 207		ip->flags |= BTRFS_INODE_IMMUTABLE;
 208	else
 209		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 210	if (flags & FS_APPEND_FL)
 211		ip->flags |= BTRFS_INODE_APPEND;
 212	else
 213		ip->flags &= ~BTRFS_INODE_APPEND;
 214	if (flags & FS_NODUMP_FL)
 215		ip->flags |= BTRFS_INODE_NODUMP;
 216	else
 217		ip->flags &= ~BTRFS_INODE_NODUMP;
 218	if (flags & FS_NOATIME_FL)
 219		ip->flags |= BTRFS_INODE_NOATIME;
 220	else
 221		ip->flags &= ~BTRFS_INODE_NOATIME;
 222	if (flags & FS_DIRSYNC_FL)
 223		ip->flags |= BTRFS_INODE_DIRSYNC;
 224	else
 225		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 226	if (flags & FS_NOCOW_FL)
 227		ip->flags |= BTRFS_INODE_NODATACOW;
 
 
 
 
 
 
 228	else
 229		ip->flags &= ~BTRFS_INODE_NODATACOW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	/*
 232	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 233	 * flag may be changed automatically if compression code won't make
 234	 * things smaller.
 235	 */
 236	if (flags & FS_NOCOMP_FL) {
 237		ip->flags &= ~BTRFS_INODE_COMPRESS;
 238		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 239	} else if (flags & FS_COMPR_FL) {
 240		ip->flags |= BTRFS_INODE_COMPRESS;
 241		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 
 
 
 
 
 
 
 
 242	} else {
 243		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 244	}
 245
 246	trans = btrfs_join_transaction(root);
 247	BUG_ON(IS_ERR(trans));
 
 
 
 
 
 248
 249	ret = btrfs_update_inode(trans, root, inode);
 250	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252	btrfs_update_iflags(inode);
 253	inode->i_ctime = CURRENT_TIME;
 254	btrfs_end_transaction(trans, root);
 
 
 
 255
 256	mnt_drop_write(file->f_path.mnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257
 258	ret = 0;
 259 out_unlock:
 260	mutex_unlock(&inode->i_mutex);
 261	return ret;
 262}
 263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 265{
 266	struct inode *inode = file->f_path.dentry->d_inode;
 267
 268	return put_user(inode->i_generation, arg);
 269}
 270
 271static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 
 272{
 273	struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
 274	struct btrfs_fs_info *fs_info = root->fs_info;
 275	struct btrfs_device *device;
 276	struct request_queue *q;
 277	struct fstrim_range range;
 278	u64 minlen = ULLONG_MAX;
 279	u64 num_devices = 0;
 280	int ret;
 281
 282	if (!capable(CAP_SYS_ADMIN))
 283		return -EPERM;
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	rcu_read_lock();
 286	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 287				dev_list) {
 288		if (!device->bdev)
 289			continue;
 290		q = bdev_get_queue(device->bdev);
 291		if (blk_queue_discard(q)) {
 292			num_devices++;
 293			minlen = min((u64)q->limits.discard_granularity,
 294				     minlen);
 295		}
 296	}
 297	rcu_read_unlock();
 
 298	if (!num_devices)
 299		return -EOPNOTSUPP;
 300
 301	if (copy_from_user(&range, arg, sizeof(range)))
 302		return -EFAULT;
 303
 
 
 
 
 
 
 
 
 304	range.minlen = max(range.minlen, minlen);
 305	ret = btrfs_trim_fs(root, &range);
 306	if (ret < 0)
 307		return ret;
 308
 309	if (copy_to_user(arg, &range, sizeof(range)))
 310		return -EFAULT;
 311
 312	return 0;
 313}
 314
 315static noinline int create_subvol(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 316				  struct dentry *dentry,
 317				  char *name, int namelen,
 318				  u64 *async_transid)
 319{
 
 320	struct btrfs_trans_handle *trans;
 321	struct btrfs_key key;
 322	struct btrfs_root_item root_item;
 323	struct btrfs_inode_item *inode_item;
 324	struct extent_buffer *leaf;
 
 325	struct btrfs_root *new_root;
 326	struct dentry *parent = dentry->d_parent;
 327	struct inode *dir;
 
 328	int ret;
 329	int err;
 
 330	u64 objectid;
 331	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 332	u64 index = 0;
 333
 334	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 
 
 
 
 335	if (ret)
 336		return ret;
 337
 338	dir = parent->d_inode;
 
 
 339
 340	/*
 341	 * 1 - inode item
 342	 * 2 - refs
 343	 * 1 - root item
 344	 * 2 - dir items
 345	 */
 346	trans = btrfs_start_transaction(root, 6);
 347	if (IS_ERR(trans))
 348		return PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349
 350	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
 351				      0, objectid, NULL, 0, 0, 0);
 352	if (IS_ERR(leaf)) {
 353		ret = PTR_ERR(leaf);
 354		goto fail;
 355	}
 356
 357	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 358	btrfs_set_header_bytenr(leaf, leaf->start);
 359	btrfs_set_header_generation(leaf, trans->transid);
 360	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 361	btrfs_set_header_owner(leaf, objectid);
 362
 363	write_extent_buffer(leaf, root->fs_info->fsid,
 364			    (unsigned long)btrfs_header_fsid(leaf),
 365			    BTRFS_FSID_SIZE);
 366	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 367			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
 368			    BTRFS_UUID_SIZE);
 369	btrfs_mark_buffer_dirty(leaf);
 370
 371	inode_item = &root_item.inode;
 372	memset(inode_item, 0, sizeof(*inode_item));
 373	inode_item->generation = cpu_to_le64(1);
 374	inode_item->size = cpu_to_le64(3);
 375	inode_item->nlink = cpu_to_le32(1);
 376	inode_item->nbytes = cpu_to_le64(root->leafsize);
 377	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 378
 379	root_item.flags = 0;
 380	root_item.byte_limit = 0;
 381	inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
 382
 383	btrfs_set_root_bytenr(&root_item, leaf->start);
 384	btrfs_set_root_generation(&root_item, trans->transid);
 385	btrfs_set_root_level(&root_item, 0);
 386	btrfs_set_root_refs(&root_item, 1);
 387	btrfs_set_root_used(&root_item, leaf->len);
 388	btrfs_set_root_last_snapshot(&root_item, 0);
 389
 390	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
 391	root_item.drop_level = 0;
 
 
 
 
 
 
 392
 393	btrfs_tree_unlock(leaf);
 394	free_extent_buffer(leaf);
 395	leaf = NULL;
 396
 397	btrfs_set_root_dirid(&root_item, new_dirid);
 398
 399	key.objectid = objectid;
 400	key.offset = 0;
 401	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 402	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 403				&root_item);
 404	if (ret)
 
 
 
 
 
 
 
 
 
 
 405		goto fail;
 
 
 
 
 406
 407	key.offset = (u64)-1;
 408	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 409	BUG_ON(IS_ERR(new_root));
 
 
 
 
 
 
 
 410
 411	btrfs_record_root_in_trans(trans, new_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
 414	/*
 415	 * insert the directory item
 416	 */
 417	ret = btrfs_set_inode_index(dir, &index);
 418	BUG_ON(ret);
 
 
 
 419
 420	ret = btrfs_insert_dir_item(trans, root,
 421				    name, namelen, dir, &key,
 422				    BTRFS_FT_DIR, index);
 423	if (ret)
 
 424		goto fail;
 
 425
 426	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 427	ret = btrfs_update_inode(trans, root, dir);
 428	BUG_ON(ret);
 
 
 
 429
 430	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 431				 objectid, root->root_key.objectid,
 432				 btrfs_ino(dir), index, name, namelen);
 
 
 
 433
 434	BUG_ON(ret);
 
 
 
 435
 436	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
 437fail:
 438	if (async_transid) {
 439		*async_transid = trans->transid;
 440		err = btrfs_commit_transaction_async(trans, root, 1);
 441	} else {
 442		err = btrfs_commit_transaction(trans, root);
 443	}
 444	if (err && !ret)
 445		ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 446	return ret;
 447}
 448
 449static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
 450			   char *name, int namelen, u64 *async_transid,
 451			   bool readonly)
 452{
 
 453	struct inode *inode;
 454	struct btrfs_pending_snapshot *pending_snapshot;
 455	struct btrfs_trans_handle *trans;
 456	int ret;
 457
 458	if (!root->ref_cows)
 459		return -EINVAL;
 460
 461	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 
 
 
 
 
 
 462	if (!pending_snapshot)
 463		return -ENOMEM;
 464
 465	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466	pending_snapshot->dentry = dentry;
 467	pending_snapshot->root = root;
 468	pending_snapshot->readonly = readonly;
 
 
 469
 470	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
 471	if (IS_ERR(trans)) {
 472		ret = PTR_ERR(trans);
 473		goto fail;
 474	}
 475
 476	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
 477	BUG_ON(ret);
 478
 479	spin_lock(&root->fs_info->trans_lock);
 480	list_add(&pending_snapshot->list,
 481		 &trans->transaction->pending_snapshots);
 482	spin_unlock(&root->fs_info->trans_lock);
 483	if (async_transid) {
 484		*async_transid = trans->transid;
 485		ret = btrfs_commit_transaction_async(trans,
 486				     root->fs_info->extent_root, 1);
 487	} else {
 488		ret = btrfs_commit_transaction(trans,
 489					       root->fs_info->extent_root);
 490	}
 491	BUG_ON(ret);
 492
 493	ret = pending_snapshot->error;
 494	if (ret)
 495		goto fail;
 496
 497	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 498	if (ret)
 499		goto fail;
 500
 501	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
 502	if (IS_ERR(inode)) {
 503		ret = PTR_ERR(inode);
 504		goto fail;
 505	}
 506	BUG_ON(!inode);
 507	d_instantiate(dentry, inode);
 508	ret = 0;
 
 509fail:
 
 
 
 
 
 
 
 
 
 
 510	kfree(pending_snapshot);
 511	return ret;
 512}
 513
 514/*  copy of check_sticky in fs/namei.c()
 515* It's inline, so penalty for filesystems that don't use sticky bit is
 516* minimal.
 517*/
 518static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
 519{
 520	uid_t fsuid = current_fsuid();
 521
 522	if (!(dir->i_mode & S_ISVTX))
 523		return 0;
 524	if (inode->i_uid == fsuid)
 525		return 0;
 526	if (dir->i_uid == fsuid)
 527		return 0;
 528	return !capable(CAP_FOWNER);
 529}
 530
 531/*  copy of may_delete in fs/namei.c()
 532 *	Check whether we can remove a link victim from directory dir, check
 533 *  whether the type of victim is right.
 534 *  1. We can't do it if dir is read-only (done in permission())
 535 *  2. We should have write and exec permissions on dir
 536 *  3. We can't remove anything from append-only dir
 537 *  4. We can't do anything with immutable dir (done in permission())
 538 *  5. If the sticky bit on dir is set we should either
 539 *	a. be owner of dir, or
 540 *	b. be owner of victim, or
 541 *	c. have CAP_FOWNER capability
 542 *  6. If the victim is append-only or immutable we can't do antyhing with
 543 *     links pointing to it.
 544 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 545 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 546 *  9. We can't remove a root or mountpoint.
 547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 548 *     nfs_async_unlink().
 549 */
 550
 551static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
 552{
 553	int error;
 554
 555	if (!victim->d_inode)
 556		return -ENOENT;
 557
 558	BUG_ON(victim->d_parent->d_inode != dir);
 559	audit_inode_child(victim, dir);
 560
 561	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 562	if (error)
 563		return error;
 564	if (IS_APPEND(dir))
 565		return -EPERM;
 566	if (btrfs_check_sticky(dir, victim->d_inode)||
 567		IS_APPEND(victim->d_inode)||
 568	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
 569		return -EPERM;
 570	if (isdir) {
 571		if (!S_ISDIR(victim->d_inode->i_mode))
 572			return -ENOTDIR;
 573		if (IS_ROOT(victim))
 574			return -EBUSY;
 575	} else if (S_ISDIR(victim->d_inode->i_mode))
 576		return -EISDIR;
 577	if (IS_DEADDIR(dir))
 578		return -ENOENT;
 579	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 580		return -EBUSY;
 581	return 0;
 582}
 583
 584/* copy of may_create in fs/namei.c() */
 585static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 586{
 587	if (child->d_inode)
 588		return -EEXIST;
 589	if (IS_DEADDIR(dir))
 590		return -ENOENT;
 591	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 592}
 593
 594/*
 595 * Create a new subvolume below @parent.  This is largely modeled after
 596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 597 * inside this filesystem so it's quite a bit simpler.
 598 */
 599static noinline int btrfs_mksubvol(struct path *parent,
 600				   char *name, int namelen,
 601				   struct btrfs_root *snap_src,
 602				   u64 *async_transid, bool readonly)
 
 603{
 604	struct inode *dir  = parent->dentry->d_inode;
 
 605	struct dentry *dentry;
 606	int error;
 607
 608	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
 
 
 609
 610	dentry = lookup_one_len(name, parent->dentry, namelen);
 611	error = PTR_ERR(dentry);
 612	if (IS_ERR(dentry))
 613		goto out_unlock;
 614
 615	error = -EEXIST;
 616	if (dentry->d_inode)
 617		goto out_dput;
 618
 619	error = mnt_want_write(parent->mnt);
 620	if (error)
 621		goto out_dput;
 622
 623	error = btrfs_may_create(dir, dentry);
 
 
 
 
 
 
 624	if (error)
 625		goto out_drop_write;
 626
 627	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 628
 629	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 630		goto out_up_read;
 631
 632	if (snap_src) {
 633		error = create_snapshot(snap_src, dentry,
 634					name, namelen, async_transid, readonly);
 635	} else {
 636		error = create_subvol(BTRFS_I(dir)->root, dentry,
 637				      name, namelen, async_transid);
 638	}
 639	if (!error)
 640		fsnotify_mkdir(dir, dentry);
 641out_up_read:
 642	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 643out_drop_write:
 644	mnt_drop_write(parent->mnt);
 645out_dput:
 646	dput(dentry);
 647out_unlock:
 648	mutex_unlock(&dir->i_mutex);
 649	return error;
 650}
 651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652/*
 653 * When we're defragging a range, we don't want to kick it off again
 654 * if it is really just waiting for delalloc to send it down.
 655 * If we find a nice big extent or delalloc range for the bytes in the
 656 * file you want to defrag, we return 0 to let you know to skip this
 657 * part of the file
 658 */
 659static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
 660{
 661	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 662	struct extent_map *em = NULL;
 663	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 664	u64 end;
 665
 666	read_lock(&em_tree->lock);
 667	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
 668	read_unlock(&em_tree->lock);
 669
 670	if (em) {
 671		end = extent_map_end(em);
 672		free_extent_map(em);
 673		if (end - offset > thresh)
 674			return 0;
 675	}
 676	/* if we already have a nice delalloc here, just stop */
 677	thresh /= 2;
 678	end = count_range_bits(io_tree, &offset, offset + thresh,
 679			       thresh, EXTENT_DELALLOC, 1);
 680	if (end >= thresh)
 681		return 0;
 682	return 1;
 683}
 684
 685/*
 686 * helper function to walk through a file and find extents
 687 * newer than a specific transid, and smaller than thresh.
 688 *
 689 * This is used by the defragging code to find new and small
 690 * extents
 691 */
 692static int find_new_extents(struct btrfs_root *root,
 693			    struct inode *inode, u64 newer_than,
 694			    u64 *off, int thresh)
 695{
 696	struct btrfs_path *path;
 697	struct btrfs_key min_key;
 698	struct btrfs_key max_key;
 699	struct extent_buffer *leaf;
 700	struct btrfs_file_extent_item *extent;
 701	int type;
 702	int ret;
 703	u64 ino = btrfs_ino(inode);
 704
 705	path = btrfs_alloc_path();
 706	if (!path)
 707		return -ENOMEM;
 708
 709	min_key.objectid = ino;
 710	min_key.type = BTRFS_EXTENT_DATA_KEY;
 711	min_key.offset = *off;
 712
 713	max_key.objectid = ino;
 714	max_key.type = (u8)-1;
 715	max_key.offset = (u64)-1;
 716
 717	path->keep_locks = 1;
 718
 719	while(1) {
 720		ret = btrfs_search_forward(root, &min_key, &max_key,
 721					   path, 0, newer_than);
 722		if (ret != 0)
 723			goto none;
 
 724		if (min_key.objectid != ino)
 725			goto none;
 726		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 727			goto none;
 728
 729		leaf = path->nodes[0];
 730		extent = btrfs_item_ptr(leaf, path->slots[0],
 731					struct btrfs_file_extent_item);
 732
 733		type = btrfs_file_extent_type(leaf, extent);
 734		if (type == BTRFS_FILE_EXTENT_REG &&
 735		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 736		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 737			*off = min_key.offset;
 738			btrfs_free_path(path);
 739			return 0;
 740		}
 741
 
 
 
 
 
 
 742		if (min_key.offset == (u64)-1)
 743			goto none;
 744
 745		min_key.offset++;
 746		btrfs_release_path(path);
 747	}
 748none:
 749	btrfs_free_path(path);
 750	return -ENOENT;
 751}
 752
 753static int should_defrag_range(struct inode *inode, u64 start, u64 len,
 754			       int thresh, u64 *last_len, u64 *skip,
 755			       u64 *defrag_end)
 756{
 757	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 758	struct extent_map *em = NULL;
 759	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 760	int ret = 1;
 761
 762	/*
 763	 * make sure that once we start defragging and extent, we keep on
 764	 * defragging it
 765	 */
 766	if (start < *defrag_end)
 767		return 1;
 768
 769	*skip = 0;
 770
 771	/*
 772	 * hopefully we have this extent in the tree already, try without
 773	 * the full extent lock
 774	 */
 775	read_lock(&em_tree->lock);
 776	em = lookup_extent_mapping(em_tree, start, len);
 777	read_unlock(&em_tree->lock);
 778
 779	if (!em) {
 
 
 
 780		/* get the big lock and read metadata off disk */
 781		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
 782		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
 783		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
 784
 785		if (IS_ERR(em))
 786			return 0;
 787	}
 788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789	/* this will cover holes, and inline extents */
 790	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
 791		ret = 0;
 
 
 792
 
 
 
 
 793	/*
 794	 * we hit a real extent, if it is big don't bother defragging it again
 
 795	 */
 796	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
 
 797		ret = 0;
 798
 799	/*
 800	 * last_len ends up being a counter of how many bytes we've defragged.
 801	 * every time we choose not to defrag an extent, we reset *last_len
 802	 * so that the next tiny extent will force a defrag.
 803	 *
 804	 * The end result of this is that tiny extents before a single big
 805	 * extent will force at least part of that big extent to be defragged.
 806	 */
 807	if (ret) {
 808		*last_len += len;
 809		*defrag_end = extent_map_end(em);
 810	} else {
 811		*last_len = 0;
 812		*skip = extent_map_end(em);
 813		*defrag_end = 0;
 814	}
 815
 816	free_extent_map(em);
 817	return ret;
 818}
 819
 820/*
 821 * it doesn't do much good to defrag one or two pages
 822 * at a time.  This pulls in a nice chunk of pages
 823 * to COW and defrag.
 824 *
 825 * It also makes sure the delalloc code has enough
 826 * dirty data to avoid making new small extents as part
 827 * of the defrag
 828 *
 829 * It's a good idea to start RA on this range
 830 * before calling this.
 831 */
 832static int cluster_pages_for_defrag(struct inode *inode,
 833				    struct page **pages,
 834				    unsigned long start_index,
 835				    int num_pages)
 836{
 837	unsigned long file_end;
 838	u64 isize = i_size_read(inode);
 839	u64 page_start;
 840	u64 page_end;
 
 
 
 841	int ret;
 842	int i;
 843	int i_done;
 844	struct btrfs_ordered_extent *ordered;
 845	struct extent_state *cached_state = NULL;
 
 
 
 846
 847	if (isize == 0)
 
 848		return 0;
 849	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
 850
 851	ret = btrfs_delalloc_reserve_space(inode,
 852					   num_pages << PAGE_CACHE_SHIFT);
 
 
 853	if (ret)
 854		return ret;
 855again:
 856	ret = 0;
 857	i_done = 0;
 
 858
 859	/* step one, lock all the pages */
 860	for (i = 0; i < num_pages; i++) {
 861		struct page *page;
 
 862		page = find_or_create_page(inode->i_mapping,
 863					    start_index + i, GFP_NOFS);
 864		if (!page)
 865			break;
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867		if (!PageUptodate(page)) {
 868			btrfs_readpage(NULL, page);
 869			lock_page(page);
 870			if (!PageUptodate(page)) {
 871				unlock_page(page);
 872				page_cache_release(page);
 873				ret = -EIO;
 874				break;
 875			}
 876		}
 877		isize = i_size_read(inode);
 878		file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
 879		if (!isize || page->index > file_end ||
 880		    page->mapping != inode->i_mapping) {
 881			/* whoops, we blew past eof, skip this page */
 882			unlock_page(page);
 883			page_cache_release(page);
 884			break;
 885		}
 
 886		pages[i] = page;
 887		i_done++;
 888	}
 889	if (!i_done || ret)
 890		goto out;
 891
 892	if (!(inode->i_sb->s_flags & MS_ACTIVE))
 893		goto out;
 894
 895	/*
 896	 * so now we have a nice long stream of locked
 897	 * and up to date pages, lets wait on them
 898	 */
 899	for (i = 0; i < i_done; i++)
 900		wait_on_page_writeback(pages[i]);
 901
 902	page_start = page_offset(pages[0]);
 903	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
 904
 905	lock_extent_bits(&BTRFS_I(inode)->io_tree,
 906			 page_start, page_end - 1, 0, &cached_state,
 907			 GFP_NOFS);
 908	ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
 909	if (ordered &&
 910	    ordered->file_offset + ordered->len > page_start &&
 911	    ordered->file_offset < page_end) {
 912		btrfs_put_ordered_extent(ordered);
 913		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 914				     page_start, page_end - 1,
 915				     &cached_state, GFP_NOFS);
 916		for (i = 0; i < i_done; i++) {
 917			unlock_page(pages[i]);
 918			page_cache_release(pages[i]);
 919		}
 920		btrfs_wait_ordered_range(inode, page_start,
 921					 page_end - page_start);
 922		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923	}
 924	if (ordered)
 925		btrfs_put_ordered_extent(ordered);
 926
 927	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
 928			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
 929			  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
 930			  GFP_NOFS);
 931
 932	if (i_done != num_pages) {
 933		spin_lock(&BTRFS_I(inode)->lock);
 934		BTRFS_I(inode)->outstanding_extents++;
 935		spin_unlock(&BTRFS_I(inode)->lock);
 936		btrfs_delalloc_release_space(inode,
 937				     (num_pages - i_done) << PAGE_CACHE_SHIFT);
 938	}
 939
 940
 941	btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
 942				  &cached_state);
 943
 944	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 945			     page_start, page_end - 1, &cached_state,
 946			     GFP_NOFS);
 947
 948	for (i = 0; i < i_done; i++) {
 949		clear_page_dirty_for_io(pages[i]);
 950		ClearPageChecked(pages[i]);
 951		set_page_extent_mapped(pages[i]);
 952		set_page_dirty(pages[i]);
 953		unlock_page(pages[i]);
 954		page_cache_release(pages[i]);
 955	}
 
 
 956	return i_done;
 
 
 
 
 957out:
 958	for (i = 0; i < i_done; i++) {
 959		unlock_page(pages[i]);
 960		page_cache_release(pages[i]);
 961	}
 962	btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
 
 
 
 963	return ret;
 964
 965}
 966
 967int btrfs_defrag_file(struct inode *inode, struct file *file,
 968		      struct btrfs_ioctl_defrag_range_args *range,
 969		      u64 newer_than, unsigned long max_to_defrag)
 970{
 
 971	struct btrfs_root *root = BTRFS_I(inode)->root;
 972	struct btrfs_super_block *disk_super;
 973	struct file_ra_state *ra = NULL;
 974	unsigned long last_index;
 975	u64 features;
 976	u64 last_len = 0;
 977	u64 skip = 0;
 978	u64 defrag_end = 0;
 979	u64 newer_off = range->start;
 980	int newer_left = 0;
 981	unsigned long i;
 
 982	int ret;
 983	int defrag_count = 0;
 984	int compress_type = BTRFS_COMPRESS_ZLIB;
 985	int extent_thresh = range->extent_thresh;
 986	int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
 987	u64 new_align = ~((u64)128 * 1024 - 1);
 
 988	struct page **pages = NULL;
 
 989
 990	if (extent_thresh == 0)
 991		extent_thresh = 256 * 1024;
 
 
 
 992
 993	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
 994		if (range->compress_type > BTRFS_COMPRESS_TYPES)
 995			return -EINVAL;
 996		if (range->compress_type)
 997			compress_type = range->compress_type;
 998	}
 999
1000	if (inode->i_size == 0)
1001		return 0;
1002
1003	/*
1004	 * if we were not given a file, allocate a readahead
1005	 * context
 
1006	 */
1007	if (!file) {
1008		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1009		if (!ra)
1010			return -ENOMEM;
1011		file_ra_state_init(ra, inode->i_mapping);
1012	} else {
1013		ra = &file->f_ra;
1014	}
1015
1016	pages = kmalloc(sizeof(struct page *) * newer_cluster,
1017			GFP_NOFS);
1018	if (!pages) {
1019		ret = -ENOMEM;
1020		goto out_ra;
1021	}
1022
1023	/* find the last page to defrag */
1024	if (range->start + range->len > range->start) {
1025		last_index = min_t(u64, inode->i_size - 1,
1026			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1027	} else {
1028		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1029	}
1030
1031	if (newer_than) {
1032		ret = find_new_extents(root, inode, newer_than,
1033				       &newer_off, 64 * 1024);
1034		if (!ret) {
1035			range->start = newer_off;
1036			/*
1037			 * we always align our defrag to help keep
1038			 * the extents in the file evenly spaced
1039			 */
1040			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1041			newer_left = newer_cluster;
1042		} else
1043			goto out_ra;
1044	} else {
1045		i = range->start >> PAGE_CACHE_SHIFT;
1046	}
1047	if (!max_to_defrag)
1048		max_to_defrag = last_index - 1;
1049
1050	/*
1051	 * make writeback starts from i, so the defrag range can be
1052	 * written sequentially.
1053	 */
1054	if (i < inode->i_mapping->writeback_index)
1055		inode->i_mapping->writeback_index = i;
1056
1057	while (i <= last_index && defrag_count < max_to_defrag &&
1058	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1059		PAGE_CACHE_SHIFT)) {
1060		/*
1061		 * make sure we stop running if someone unmounts
1062		 * the FS
1063		 */
1064		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1065			break;
1066
1067		if (!newer_than &&
1068		    !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1069					PAGE_CACHE_SIZE,
1070					extent_thresh,
1071					&last_len, &skip,
1072					&defrag_end)) {
 
 
 
1073			unsigned long next;
1074			/*
1075			 * the should_defrag function tells us how much to skip
1076			 * bump our counter by the suggested amount
1077			 */
1078			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1079			i = max(i + 1, next);
1080			continue;
1081		}
1082		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1083			BTRFS_I(inode)->force_compress = compress_type;
1084
1085		btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
 
 
 
 
 
 
1086
1087		ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1088		if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089			goto out_ra;
 
1090
1091		defrag_count += ret;
1092		balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1093		i += ret;
1094
1095		if (newer_than) {
1096			if (newer_off == (u64)-1)
1097				break;
1098
 
 
 
1099			newer_off = max(newer_off + 1,
1100					(u64)i << PAGE_CACHE_SHIFT);
1101
1102			ret = find_new_extents(root, inode,
1103					       newer_than, &newer_off,
1104					       64 * 1024);
1105			if (!ret) {
1106				range->start = newer_off;
1107				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1108				newer_left = newer_cluster;
1109			} else {
1110				break;
1111			}
1112		} else {
1113			i++;
 
 
 
 
 
 
1114		}
1115	}
1116
1117	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
 
 
1118		filemap_flush(inode->i_mapping);
1119
1120	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1121		/* the filemap_flush will queue IO into the worker threads, but
1122		 * we have to make sure the IO is actually started and that
1123		 * ordered extents get created before we return
1124		 */
1125		atomic_inc(&root->fs_info->async_submit_draining);
1126		while (atomic_read(&root->fs_info->nr_async_submits) ||
1127		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1128			wait_event(root->fs_info->async_submit_wait,
1129			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1130			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1131		}
1132		atomic_dec(&root->fs_info->async_submit_draining);
1133
1134		mutex_lock(&inode->i_mutex);
1135		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1136		mutex_unlock(&inode->i_mutex);
1137	}
1138
1139	disk_super = &root->fs_info->super_copy;
1140	features = btrfs_super_incompat_flags(disk_super);
1141	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1142		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1143		btrfs_set_super_incompat_flags(disk_super, features);
 
1144	}
1145
1146	if (!file)
1147		kfree(ra);
1148	return defrag_count;
1149
1150out_ra:
 
 
 
 
 
1151	if (!file)
1152		kfree(ra);
1153	kfree(pages);
1154	return ret;
1155}
1156
1157static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158					void __user *arg)
1159{
 
 
1160	u64 new_size;
1161	u64 old_size;
1162	u64 devid = 1;
 
1163	struct btrfs_ioctl_vol_args *vol_args;
1164	struct btrfs_trans_handle *trans;
1165	struct btrfs_device *device = NULL;
1166	char *sizestr;
 
1167	char *devstr = NULL;
1168	int ret = 0;
1169	int mod = 0;
1170
1171	if (root->fs_info->sb->s_flags & MS_RDONLY)
1172		return -EROFS;
1173
1174	if (!capable(CAP_SYS_ADMIN))
1175		return -EPERM;
1176
1177	vol_args = memdup_user(arg, sizeof(*vol_args));
1178	if (IS_ERR(vol_args))
1179		return PTR_ERR(vol_args);
1180
 
 
 
 
 
 
 
 
 
1181	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1182
1183	mutex_lock(&root->fs_info->volume_mutex);
1184	sizestr = vol_args->name;
 
 
 
 
 
 
1185	devstr = strchr(sizestr, ':');
1186	if (devstr) {
1187		char *end;
1188		sizestr = devstr + 1;
1189		*devstr = '\0';
1190		devstr = vol_args->name;
1191		devid = simple_strtoull(devstr, &end, 10);
1192		printk(KERN_INFO "resizing devid %llu\n",
1193		       (unsigned long long)devid);
 
 
 
 
 
1194	}
1195	device = btrfs_find_device(root, devid, NULL, NULL);
 
1196	if (!device) {
1197		printk(KERN_INFO "resizer unable to find device %llu\n",
1198		       (unsigned long long)devid);
1199		ret = -EINVAL;
1200		goto out_unlock;
1201	}
 
 
 
 
 
 
 
 
 
1202	if (!strcmp(sizestr, "max"))
1203		new_size = device->bdev->bd_inode->i_size;
1204	else {
1205		if (sizestr[0] == '-') {
1206			mod = -1;
1207			sizestr++;
1208		} else if (sizestr[0] == '+') {
1209			mod = 1;
1210			sizestr++;
1211		}
1212		new_size = memparse(sizestr, NULL);
1213		if (new_size == 0) {
1214			ret = -EINVAL;
1215			goto out_unlock;
1216		}
1217	}
1218
1219	old_size = device->total_bytes;
 
 
 
 
 
1220
1221	if (mod < 0) {
1222		if (new_size > old_size) {
1223			ret = -EINVAL;
1224			goto out_unlock;
1225		}
1226		new_size = old_size - new_size;
1227	} else if (mod > 0) {
 
 
 
 
1228		new_size = old_size + new_size;
1229	}
1230
1231	if (new_size < 256 * 1024 * 1024) {
1232		ret = -EINVAL;
1233		goto out_unlock;
1234	}
1235	if (new_size > device->bdev->bd_inode->i_size) {
1236		ret = -EFBIG;
1237		goto out_unlock;
1238	}
1239
1240	do_div(new_size, root->sectorsize);
1241	new_size *= root->sectorsize;
1242
1243	printk(KERN_INFO "new size for %s is %llu\n",
1244		device->name, (unsigned long long)new_size);
1245
1246	if (new_size > old_size) {
1247		trans = btrfs_start_transaction(root, 0);
1248		if (IS_ERR(trans)) {
1249			ret = PTR_ERR(trans);
1250			goto out_unlock;
1251		}
1252		ret = btrfs_grow_device(trans, device, new_size);
1253		btrfs_commit_transaction(trans, root);
1254	} else {
1255		ret = btrfs_shrink_device(device, new_size);
1256	}
1257
1258out_unlock:
1259	mutex_unlock(&root->fs_info->volume_mutex);
 
 
 
 
 
 
1260	kfree(vol_args);
 
 
1261	return ret;
1262}
1263
1264static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1265						    char *name,
1266						    unsigned long fd,
1267						    int subvol,
1268						    u64 *transid,
1269						    bool readonly)
1270{
1271	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1272	struct file *src_file;
1273	int namelen;
1274	int ret = 0;
1275
1276	if (root->fs_info->sb->s_flags & MS_RDONLY)
1277		return -EROFS;
 
 
 
 
1278
1279	namelen = strlen(name);
1280	if (strchr(name, '/')) {
1281		ret = -EINVAL;
1282		goto out;
 
 
 
 
 
 
1283	}
1284
1285	if (subvol) {
1286		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1287				     NULL, transid, readonly);
1288	} else {
 
1289		struct inode *src_inode;
1290		src_file = fget(fd);
1291		if (!src_file) {
1292			ret = -EINVAL;
1293			goto out;
1294		}
1295
1296		src_inode = src_file->f_path.dentry->d_inode;
1297		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1298			printk(KERN_INFO "btrfs: Snapshot src from "
1299			       "another FS\n");
1300			ret = -EINVAL;
1301			fput(src_file);
1302			goto out;
 
 
 
 
 
 
 
 
1303		}
1304		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1305				     BTRFS_I(src_inode)->root,
1306				     transid, readonly);
1307		fput(src_file);
1308	}
 
 
1309out:
1310	return ret;
1311}
1312
1313static noinline int btrfs_ioctl_snap_create(struct file *file,
1314					    void __user *arg, int subvol)
1315{
1316	struct btrfs_ioctl_vol_args *vol_args;
1317	int ret;
1318
 
 
 
1319	vol_args = memdup_user(arg, sizeof(*vol_args));
1320	if (IS_ERR(vol_args))
1321		return PTR_ERR(vol_args);
1322	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1323
1324	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1325					      vol_args->fd, subvol,
1326					      NULL, false);
1327
1328	kfree(vol_args);
1329	return ret;
1330}
1331
1332static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1333					       void __user *arg, int subvol)
1334{
1335	struct btrfs_ioctl_vol_args_v2 *vol_args;
1336	int ret;
1337	u64 transid = 0;
1338	u64 *ptr = NULL;
1339	bool readonly = false;
 
 
 
 
1340
1341	vol_args = memdup_user(arg, sizeof(*vol_args));
1342	if (IS_ERR(vol_args))
1343		return PTR_ERR(vol_args);
1344	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1345
1346	if (vol_args->flags &
1347	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1348		ret = -EOPNOTSUPP;
1349		goto out;
1350	}
1351
1352	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1353		ptr = &transid;
1354	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1355		readonly = true;
 
 
1356
1357	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1358					      vol_args->fd, subvol,
1359					      ptr, readonly);
1360
1361	if (ret == 0 && ptr &&
1362	    copy_to_user(arg +
1363			 offsetof(struct btrfs_ioctl_vol_args_v2,
1364				  transid), ptr, sizeof(*ptr)))
1365		ret = -EFAULT;
1366out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367	kfree(vol_args);
1368	return ret;
1369}
1370
1371static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1372						void __user *arg)
1373{
1374	struct inode *inode = fdentry(file)->d_inode;
 
1375	struct btrfs_root *root = BTRFS_I(inode)->root;
1376	int ret = 0;
1377	u64 flags = 0;
1378
1379	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1380		return -EINVAL;
1381
1382	down_read(&root->fs_info->subvol_sem);
1383	if (btrfs_root_readonly(root))
1384		flags |= BTRFS_SUBVOL_RDONLY;
1385	up_read(&root->fs_info->subvol_sem);
1386
1387	if (copy_to_user(arg, &flags, sizeof(flags)))
1388		ret = -EFAULT;
1389
1390	return ret;
1391}
1392
1393static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1394					      void __user *arg)
1395{
1396	struct inode *inode = fdentry(file)->d_inode;
 
1397	struct btrfs_root *root = BTRFS_I(inode)->root;
1398	struct btrfs_trans_handle *trans;
1399	u64 root_flags;
1400	u64 flags;
1401	int ret = 0;
1402
1403	if (root->fs_info->sb->s_flags & MS_RDONLY)
1404		return -EROFS;
1405
1406	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1407		return -EINVAL;
1408
1409	if (copy_from_user(&flags, arg, sizeof(flags)))
1410		return -EFAULT;
 
1411
1412	if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1413		return -EINVAL;
 
 
1414
1415	if (flags & ~BTRFS_SUBVOL_RDONLY)
1416		return -EOPNOTSUPP;
 
 
1417
1418	if (!inode_owner_or_capable(inode))
1419		return -EACCES;
 
 
1420
1421	down_write(&root->fs_info->subvol_sem);
1422
1423	/* nothing to do */
1424	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1425		goto out;
1426
1427	root_flags = btrfs_root_flags(&root->root_item);
1428	if (flags & BTRFS_SUBVOL_RDONLY)
1429		btrfs_set_root_flags(&root->root_item,
1430				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1431	else
1432		btrfs_set_root_flags(&root->root_item,
 
 
 
 
 
 
1433				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
 
 
 
 
 
 
 
 
 
 
1434
1435	trans = btrfs_start_transaction(root, 1);
1436	if (IS_ERR(trans)) {
1437		ret = PTR_ERR(trans);
1438		goto out_reset;
1439	}
1440
1441	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1442				&root->root_key, &root->root_item);
 
 
 
 
 
 
1443
1444	btrfs_commit_transaction(trans, root);
1445out_reset:
1446	if (ret)
1447		btrfs_set_root_flags(&root->root_item, root_flags);
 
 
 
 
1448out:
1449	up_write(&root->fs_info->subvol_sem);
1450	return ret;
1451}
1452
1453/*
1454 * helper to check if the subvolume references other subvolumes
1455 */
1456static noinline int may_destroy_subvol(struct btrfs_root *root)
1457{
1458	struct btrfs_path *path;
1459	struct btrfs_key key;
1460	int ret;
1461
1462	path = btrfs_alloc_path();
1463	if (!path)
1464		return -ENOMEM;
1465
1466	key.objectid = root->root_key.objectid;
1467	key.type = BTRFS_ROOT_REF_KEY;
1468	key.offset = (u64)-1;
1469
1470	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1471				&key, path, 0, 0);
1472	if (ret < 0)
1473		goto out;
1474	BUG_ON(ret == 0);
1475
1476	ret = 0;
1477	if (path->slots[0] > 0) {
1478		path->slots[0]--;
1479		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1480		if (key.objectid == root->root_key.objectid &&
1481		    key.type == BTRFS_ROOT_REF_KEY)
1482			ret = -ENOTEMPTY;
1483	}
1484out:
1485	btrfs_free_path(path);
1486	return ret;
1487}
1488
1489static noinline int key_in_sk(struct btrfs_key *key,
1490			      struct btrfs_ioctl_search_key *sk)
1491{
1492	struct btrfs_key test;
1493	int ret;
1494
1495	test.objectid = sk->min_objectid;
1496	test.type = sk->min_type;
1497	test.offset = sk->min_offset;
1498
1499	ret = btrfs_comp_cpu_keys(key, &test);
1500	if (ret < 0)
1501		return 0;
1502
1503	test.objectid = sk->max_objectid;
1504	test.type = sk->max_type;
1505	test.offset = sk->max_offset;
1506
1507	ret = btrfs_comp_cpu_keys(key, &test);
1508	if (ret > 0)
1509		return 0;
1510	return 1;
1511}
1512
1513static noinline int copy_to_sk(struct btrfs_root *root,
1514			       struct btrfs_path *path,
1515			       struct btrfs_key *key,
1516			       struct btrfs_ioctl_search_key *sk,
1517			       char *buf,
 
1518			       unsigned long *sk_offset,
1519			       int *num_found)
1520{
1521	u64 found_transid;
1522	struct extent_buffer *leaf;
1523	struct btrfs_ioctl_search_header sh;
 
1524	unsigned long item_off;
1525	unsigned long item_len;
1526	int nritems;
1527	int i;
1528	int slot;
1529	int ret = 0;
1530
1531	leaf = path->nodes[0];
1532	slot = path->slots[0];
1533	nritems = btrfs_header_nritems(leaf);
1534
1535	if (btrfs_header_generation(leaf) > sk->max_transid) {
1536		i = nritems;
1537		goto advance_key;
1538	}
1539	found_transid = btrfs_header_generation(leaf);
1540
1541	for (i = slot; i < nritems; i++) {
1542		item_off = btrfs_item_ptr_offset(leaf, i);
1543		item_len = btrfs_item_size_nr(leaf, i);
1544
1545		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546			item_len = 0;
 
 
1547
1548		if (sizeof(sh) + item_len + *sk_offset >
1549		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1550			ret = 1;
1551			goto overflow;
1552		}
1553
1554		btrfs_item_key_to_cpu(leaf, key, i);
1555		if (!key_in_sk(key, sk))
1556			continue;
1557
1558		sh.objectid = key->objectid;
1559		sh.offset = key->offset;
1560		sh.type = key->type;
1561		sh.len = item_len;
1562		sh.transid = found_transid;
1563
1564		/* copy search result header */
1565		memcpy(buf + *sk_offset, &sh, sizeof(sh));
 
 
 
 
 
 
 
 
 
1566		*sk_offset += sizeof(sh);
1567
1568		if (item_len) {
1569			char *p = buf + *sk_offset;
1570			/* copy the item */
1571			read_extent_buffer(leaf, p,
1572					   item_off, item_len);
 
 
 
 
 
 
 
 
1573			*sk_offset += item_len;
1574		}
1575		(*num_found)++;
1576
1577		if (*num_found >= sk->nr_items)
1578			break;
 
 
 
 
 
1579	}
1580advance_key:
1581	ret = 0;
1582	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
 
 
 
 
 
1583		key->offset++;
1584	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1585		key->offset = 0;
1586		key->type++;
1587	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1588		key->offset = 0;
1589		key->type = 0;
1590		key->objectid++;
1591	} else
1592		ret = 1;
1593overflow:
 
 
 
 
 
 
 
 
 
1594	return ret;
1595}
1596
1597static noinline int search_ioctl(struct inode *inode,
1598				 struct btrfs_ioctl_search_args *args)
 
 
1599{
 
1600	struct btrfs_root *root;
1601	struct btrfs_key key;
1602	struct btrfs_key max_key;
1603	struct btrfs_path *path;
1604	struct btrfs_ioctl_search_key *sk = &args->key;
1605	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1606	int ret;
1607	int num_found = 0;
1608	unsigned long sk_offset = 0;
1609
 
 
 
 
 
1610	path = btrfs_alloc_path();
1611	if (!path)
1612		return -ENOMEM;
1613
1614	if (sk->tree_id == 0) {
1615		/* search the root of the inode that was passed */
1616		root = BTRFS_I(inode)->root;
1617	} else {
1618		key.objectid = sk->tree_id;
1619		key.type = BTRFS_ROOT_ITEM_KEY;
1620		key.offset = (u64)-1;
1621		root = btrfs_read_fs_root_no_name(info, &key);
1622		if (IS_ERR(root)) {
1623			printk(KERN_ERR "could not find root %llu\n",
1624			       sk->tree_id);
1625			btrfs_free_path(path);
1626			return -ENOENT;
1627		}
1628	}
1629
1630	key.objectid = sk->min_objectid;
1631	key.type = sk->min_type;
1632	key.offset = sk->min_offset;
1633
1634	max_key.objectid = sk->max_objectid;
1635	max_key.type = sk->max_type;
1636	max_key.offset = sk->max_offset;
1637
1638	path->keep_locks = 1;
1639
1640	while(1) {
1641		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1642					   sk->min_transid);
1643		if (ret != 0) {
1644			if (ret > 0)
1645				ret = 0;
1646			goto err;
1647		}
1648		ret = copy_to_sk(root, path, &key, sk, args->buf,
1649				 &sk_offset, &num_found);
1650		btrfs_release_path(path);
1651		if (ret || num_found >= sk->nr_items)
1652			break;
1653
1654	}
1655	ret = 0;
 
1656err:
1657	sk->nr_items = num_found;
 
1658	btrfs_free_path(path);
1659	return ret;
1660}
1661
1662static noinline int btrfs_ioctl_tree_search(struct file *file,
1663					   void __user *argp)
1664{
1665	 struct btrfs_ioctl_search_args *args;
1666	 struct inode *inode;
1667	 int ret;
 
 
1668
1669	if (!capable(CAP_SYS_ADMIN))
1670		return -EPERM;
1671
1672	args = memdup_user(argp, sizeof(*args));
1673	if (IS_ERR(args))
1674		return PTR_ERR(args);
1675
1676	inode = fdentry(file)->d_inode;
1677	ret = search_ioctl(inode, args);
1678	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
 
 
 
 
 
 
 
 
 
 
 
 
 
1679		ret = -EFAULT;
1680	kfree(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681	return ret;
1682}
1683
1684/*
1685 * Search INODE_REFs to identify path name of 'dirid' directory
1686 * in a 'tree_id' tree. and sets path name to 'name'.
1687 */
1688static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1689				u64 tree_id, u64 dirid, char *name)
1690{
1691	struct btrfs_root *root;
1692	struct btrfs_key key;
1693	char *ptr;
1694	int ret = -1;
1695	int slot;
1696	int len;
1697	int total_len = 0;
1698	struct btrfs_inode_ref *iref;
1699	struct extent_buffer *l;
1700	struct btrfs_path *path;
1701
1702	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1703		name[0]='\0';
1704		return 0;
1705	}
1706
1707	path = btrfs_alloc_path();
1708	if (!path)
1709		return -ENOMEM;
1710
1711	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1712
1713	key.objectid = tree_id;
1714	key.type = BTRFS_ROOT_ITEM_KEY;
1715	key.offset = (u64)-1;
1716	root = btrfs_read_fs_root_no_name(info, &key);
1717	if (IS_ERR(root)) {
1718		printk(KERN_ERR "could not find root %llu\n", tree_id);
1719		ret = -ENOENT;
1720		goto out;
1721	}
1722
1723	key.objectid = dirid;
1724	key.type = BTRFS_INODE_REF_KEY;
1725	key.offset = (u64)-1;
1726
1727	while(1) {
1728		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1729		if (ret < 0)
1730			goto out;
 
 
 
 
 
 
 
 
 
 
1731
1732		l = path->nodes[0];
1733		slot = path->slots[0];
1734		if (ret > 0 && slot > 0)
1735			slot--;
1736		btrfs_item_key_to_cpu(l, &key, slot);
1737
1738		if (ret > 0 && (key.objectid != dirid ||
1739				key.type != BTRFS_INODE_REF_KEY)) {
1740			ret = -ENOENT;
1741			goto out;
1742		}
1743
1744		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1745		len = btrfs_inode_ref_name_len(l, iref);
1746		ptr -= len + 1;
1747		total_len += len + 1;
1748		if (ptr < name)
 
1749			goto out;
 
1750
1751		*(ptr + len) = '/';
1752		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1753
1754		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1755			break;
1756
1757		btrfs_release_path(path);
1758		key.objectid = key.offset;
1759		key.offset = (u64)-1;
1760		dirid = key.objectid;
1761	}
1762	if (ptr < name)
1763		goto out;
1764	memmove(name, ptr, total_len);
1765	name[total_len]='\0';
1766	ret = 0;
1767out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768	btrfs_free_path(path);
1769	return ret;
1770}
1771
1772static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1773					   void __user *argp)
1774{
1775	 struct btrfs_ioctl_ino_lookup_args *args;
1776	 struct inode *inode;
1777	 int ret;
1778
1779	if (!capable(CAP_SYS_ADMIN))
1780		return -EPERM;
1781
1782	args = memdup_user(argp, sizeof(*args));
1783	if (IS_ERR(args))
1784		return PTR_ERR(args);
1785
1786	inode = fdentry(file)->d_inode;
1787
 
 
 
 
1788	if (args->treeid == 0)
1789		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1790
 
 
 
 
 
 
 
 
 
 
1791	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1792					args->treeid, args->objectid,
1793					args->name);
1794
 
1795	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1796		ret = -EFAULT;
1797
1798	kfree(args);
1799	return ret;
1800}
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1803					     void __user *arg)
 
1804{
1805	struct dentry *parent = fdentry(file);
 
1806	struct dentry *dentry;
1807	struct inode *dir = parent->d_inode;
1808	struct inode *inode;
1809	struct btrfs_root *root = BTRFS_I(dir)->root;
1810	struct btrfs_root *dest = NULL;
1811	struct btrfs_ioctl_vol_args *vol_args;
1812	struct btrfs_trans_handle *trans;
1813	int namelen;
1814	int ret;
1815	int err = 0;
 
1816
1817	vol_args = memdup_user(arg, sizeof(*vol_args));
1818	if (IS_ERR(vol_args))
1819		return PTR_ERR(vol_args);
 
1820
1821	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1822	namelen = strlen(vol_args->name);
1823	if (strchr(vol_args->name, '/') ||
1824	    strncmp(vol_args->name, "..", namelen) == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825		err = -EINVAL;
1826		goto out;
1827	}
1828
1829	err = mnt_want_write(file->f_path.mnt);
1830	if (err)
1831		goto out;
 
1832
1833	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1834	dentry = lookup_one_len(vol_args->name, parent, namelen);
 
 
1835	if (IS_ERR(dentry)) {
1836		err = PTR_ERR(dentry);
1837		goto out_unlock_dir;
1838	}
1839
1840	if (!dentry->d_inode) {
1841		err = -ENOENT;
1842		goto out_dput;
1843	}
1844
1845	inode = dentry->d_inode;
1846	dest = BTRFS_I(inode)->root;
1847	if (!capable(CAP_SYS_ADMIN)){
1848		/*
1849		 * Regular user.  Only allow this with a special mount
1850		 * option, when the user has write+exec access to the
1851		 * subvol root, and when rmdir(2) would have been
1852		 * allowed.
1853		 *
1854		 * Note that this is _not_ check that the subvol is
1855		 * empty or doesn't contain data that we wouldn't
1856		 * otherwise be able to delete.
1857		 *
1858		 * Users who want to delete empty subvols should try
1859		 * rmdir(2).
1860		 */
1861		err = -EPERM;
1862		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1863			goto out_dput;
1864
1865		/*
1866		 * Do not allow deletion if the parent dir is the same
1867		 * as the dir to be deleted.  That means the ioctl
1868		 * must be called on the dentry referencing the root
1869		 * of the subvol, not a random directory contained
1870		 * within it.
1871		 */
1872		err = -EINVAL;
1873		if (root == dest)
1874			goto out_dput;
1875
1876		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1877		if (err)
1878			goto out_dput;
1879
1880		/* check if subvolume may be deleted by a non-root user */
1881		err = btrfs_may_delete(dir, dentry, 1);
1882		if (err)
1883			goto out_dput;
1884	}
1885
1886	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1887		err = -EINVAL;
1888		goto out_dput;
1889	}
1890
1891	mutex_lock(&inode->i_mutex);
1892	err = d_invalidate(dentry);
1893	if (err)
1894		goto out_unlock;
1895
1896	down_write(&root->fs_info->subvol_sem);
1897
1898	err = may_destroy_subvol(dest);
1899	if (err)
1900		goto out_up_write;
1901
1902	trans = btrfs_start_transaction(root, 0);
1903	if (IS_ERR(trans)) {
1904		err = PTR_ERR(trans);
1905		goto out_up_write;
1906	}
1907	trans->block_rsv = &root->fs_info->global_block_rsv;
1908
1909	ret = btrfs_unlink_subvol(trans, root, dir,
1910				dest->root_key.objectid,
1911				dentry->d_name.name,
1912				dentry->d_name.len);
1913	BUG_ON(ret);
1914
1915	btrfs_record_root_in_trans(trans, dest);
1916
1917	memset(&dest->root_item.drop_progress, 0,
1918		sizeof(dest->root_item.drop_progress));
1919	dest->root_item.drop_level = 0;
1920	btrfs_set_root_refs(&dest->root_item, 0);
1921
1922	if (!xchg(&dest->orphan_item_inserted, 1)) {
1923		ret = btrfs_insert_orphan_item(trans,
1924					root->fs_info->tree_root,
1925					dest->root_key.objectid);
1926		BUG_ON(ret);
1927	}
1928
1929	ret = btrfs_end_transaction(trans, root);
1930	BUG_ON(ret);
1931	inode->i_flags |= S_DEAD;
1932out_up_write:
1933	up_write(&root->fs_info->subvol_sem);
1934out_unlock:
1935	mutex_unlock(&inode->i_mutex);
1936	if (!err) {
1937		shrink_dcache_sb(root->fs_info->sb);
1938		btrfs_invalidate_inodes(dest);
1939		d_delete(dentry);
1940	}
 
1941out_dput:
1942	dput(dentry);
1943out_unlock_dir:
1944	mutex_unlock(&dir->i_mutex);
1945	mnt_drop_write(file->f_path.mnt);
 
 
 
 
 
 
1946out:
 
1947	kfree(vol_args);
1948	return err;
1949}
1950
1951static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1952{
1953	struct inode *inode = fdentry(file)->d_inode;
1954	struct btrfs_root *root = BTRFS_I(inode)->root;
1955	struct btrfs_ioctl_defrag_range_args *range;
1956	int ret;
1957
1958	if (btrfs_root_readonly(root))
1959		return -EROFS;
1960
1961	ret = mnt_want_write(file->f_path.mnt);
1962	if (ret)
1963		return ret;
1964
 
 
 
 
 
1965	switch (inode->i_mode & S_IFMT) {
1966	case S_IFDIR:
1967		if (!capable(CAP_SYS_ADMIN)) {
1968			ret = -EPERM;
1969			goto out;
1970		}
1971		ret = btrfs_defrag_root(root, 0);
1972		if (ret)
1973			goto out;
1974		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1975		break;
1976	case S_IFREG:
1977		if (!(file->f_mode & FMODE_WRITE)) {
1978			ret = -EINVAL;
 
 
 
 
 
 
1979			goto out;
1980		}
1981
1982		range = kzalloc(sizeof(*range), GFP_KERNEL);
1983		if (!range) {
1984			ret = -ENOMEM;
1985			goto out;
1986		}
1987
1988		if (argp) {
1989			if (copy_from_user(range, argp,
1990					   sizeof(*range))) {
1991				ret = -EFAULT;
1992				kfree(range);
1993				goto out;
1994			}
1995			/* compression requires us to start the IO */
1996			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1997				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1998				range->extent_thresh = (u32)-1;
1999			}
2000		} else {
2001			/* the rest are all set to zero by kzalloc */
2002			range->len = (u64)-1;
2003		}
2004		ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2005					range, 0, 0);
2006		if (ret > 0)
2007			ret = 0;
2008		kfree(range);
2009		break;
2010	default:
2011		ret = -EINVAL;
2012	}
2013out:
2014	mnt_drop_write(file->f_path.mnt);
2015	return ret;
2016}
2017
2018static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2019{
2020	struct btrfs_ioctl_vol_args *vol_args;
2021	int ret;
2022
2023	if (!capable(CAP_SYS_ADMIN))
2024		return -EPERM;
2025
 
 
 
2026	vol_args = memdup_user(arg, sizeof(*vol_args));
2027	if (IS_ERR(vol_args))
2028		return PTR_ERR(vol_args);
 
 
2029
2030	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2031	ret = btrfs_init_new_device(root, vol_args->name);
 
 
 
2032
2033	kfree(vol_args);
 
 
2034	return ret;
2035}
2036
2037static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2038{
2039	struct btrfs_ioctl_vol_args *vol_args;
 
 
 
 
2040	int ret;
 
2041
2042	if (!capable(CAP_SYS_ADMIN))
2043		return -EPERM;
2044
2045	if (root->fs_info->sb->s_flags & MS_RDONLY)
2046		return -EROFS;
 
2047
2048	vol_args = memdup_user(arg, sizeof(*vol_args));
2049	if (IS_ERR(vol_args))
2050		return PTR_ERR(vol_args);
 
 
2051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2053	ret = btrfs_rm_device(root, vol_args->name);
 
 
 
 
 
 
 
 
 
2054
2055	kfree(vol_args);
 
 
 
 
2056	return ret;
2057}
2058
2059static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
 
2060{
2061	struct btrfs_ioctl_fs_info_args *fi_args;
2062	struct btrfs_device *device;
2063	struct btrfs_device *next;
2064	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2065	int ret = 0;
2066
2067	if (!capable(CAP_SYS_ADMIN))
2068		return -EPERM;
 
2069
2070	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2071	if (!fi_args)
2072		return -ENOMEM;
2073
 
2074	fi_args->num_devices = fs_devices->num_devices;
2075	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2076
2077	mutex_lock(&fs_devices->device_list_mutex);
2078	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2079		if (device->devid > fi_args->max_id)
2080			fi_args->max_id = device->devid;
2081	}
2082	mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083
2084	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2085		ret = -EFAULT;
2086
2087	kfree(fi_args);
2088	return ret;
2089}
2090
2091static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
 
2092{
2093	struct btrfs_ioctl_dev_info_args *di_args;
2094	struct btrfs_device *dev;
2095	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2096	int ret = 0;
2097	char *s_uuid = NULL;
2098	char empty_uuid[BTRFS_UUID_SIZE] = {0};
2099
2100	if (!capable(CAP_SYS_ADMIN))
2101		return -EPERM;
2102
2103	di_args = memdup_user(arg, sizeof(*di_args));
2104	if (IS_ERR(di_args))
2105		return PTR_ERR(di_args);
2106
2107	if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2108		s_uuid = di_args->uuid;
2109
2110	mutex_lock(&fs_devices->device_list_mutex);
2111	dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2112	mutex_unlock(&fs_devices->device_list_mutex);
2113
2114	if (!dev) {
2115		ret = -ENODEV;
2116		goto out;
2117	}
2118
2119	di_args->devid = dev->devid;
2120	di_args->bytes_used = dev->bytes_used;
2121	di_args->total_bytes = dev->total_bytes;
2122	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2123	strncpy(di_args->path, dev->name, sizeof(di_args->path));
 
 
 
 
 
 
2124
2125out:
 
2126	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2127		ret = -EFAULT;
2128
2129	kfree(di_args);
2130	return ret;
2131}
2132
2133static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2134				       u64 off, u64 olen, u64 destoff)
2135{
2136	struct inode *inode = fdentry(file)->d_inode;
2137	struct btrfs_root *root = BTRFS_I(inode)->root;
2138	struct file *src_file;
2139	struct inode *src;
2140	struct btrfs_trans_handle *trans;
2141	struct btrfs_path *path;
2142	struct extent_buffer *leaf;
2143	char *buf;
2144	struct btrfs_key key;
2145	u32 nritems;
2146	int slot;
2147	int ret;
2148	u64 len = olen;
2149	u64 bs = root->fs_info->sb->s_blocksize;
2150	u64 hint_byte;
2151
2152	/*
2153	 * TODO:
2154	 * - split compressed inline extents.  annoying: we need to
2155	 *   decompress into destination's address_space (the file offset
2156	 *   may change, so source mapping won't do), then recompress (or
2157	 *   otherwise reinsert) a subrange.
2158	 * - allow ranges within the same file to be cloned (provided
2159	 *   they don't overlap)?
2160	 */
2161
2162	/* the destination must be opened for writing */
2163	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2164		return -EINVAL;
2165
2166	if (btrfs_root_readonly(root))
2167		return -EROFS;
2168
2169	ret = mnt_want_write(file->f_path.mnt);
2170	if (ret)
2171		return ret;
2172
2173	src_file = fget(srcfd);
2174	if (!src_file) {
2175		ret = -EBADF;
2176		goto out_drop_write;
2177	}
2178
2179	src = src_file->f_dentry->d_inode;
2180
2181	ret = -EINVAL;
2182	if (src == inode)
2183		goto out_fput;
2184
2185	/* the src must be open for reading */
2186	if (!(src_file->f_mode & FMODE_READ))
2187		goto out_fput;
2188
2189	/* don't make the dst file partly checksummed */
2190	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2191	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2192		goto out_fput;
2193
2194	ret = -EISDIR;
2195	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2196		goto out_fput;
2197
2198	ret = -EXDEV;
2199	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2200		goto out_fput;
2201
2202	ret = -ENOMEM;
2203	buf = vmalloc(btrfs_level_size(root, 0));
2204	if (!buf)
2205		goto out_fput;
2206
2207	path = btrfs_alloc_path();
2208	if (!path) {
2209		vfree(buf);
2210		goto out_fput;
2211	}
2212	path->reada = 2;
2213
2214	if (inode < src) {
2215		mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2216		mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2217	} else {
2218		mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2219		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2220	}
2221
2222	/* determine range to clone */
2223	ret = -EINVAL;
2224	if (off + len > src->i_size || off + len < off)
2225		goto out_unlock;
2226	if (len == 0)
2227		olen = len = src->i_size - off;
2228	/* if we extend to eof, continue to block boundary */
2229	if (off + len == src->i_size)
2230		len = ALIGN(src->i_size, bs) - off;
2231
2232	/* verify the end result is block aligned */
2233	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2234	    !IS_ALIGNED(destoff, bs))
2235		goto out_unlock;
2236
2237	if (destoff > inode->i_size) {
2238		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2239		if (ret)
2240			goto out_unlock;
2241	}
2242
2243	/* truncate page cache pages from target inode range */
2244	truncate_inode_pages_range(&inode->i_data, destoff,
2245				   PAGE_CACHE_ALIGN(destoff + len) - 1);
2246
2247	/* do any pending delalloc/csum calc on src, one way or
2248	   another, and lock file content */
2249	while (1) {
2250		struct btrfs_ordered_extent *ordered;
2251		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2252		ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2253		if (!ordered &&
2254		    !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2255				   EXTENT_DELALLOC, 0, NULL))
2256			break;
2257		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2258		if (ordered)
2259			btrfs_put_ordered_extent(ordered);
2260		btrfs_wait_ordered_range(src, off, len);
2261	}
2262
2263	/* clone data */
2264	key.objectid = btrfs_ino(src);
2265	key.type = BTRFS_EXTENT_DATA_KEY;
2266	key.offset = 0;
2267
2268	while (1) {
2269		/*
2270		 * note the key will change type as we walk through the
2271		 * tree.
2272		 */
2273		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2274		if (ret < 0)
2275			goto out;
2276
2277		nritems = btrfs_header_nritems(path->nodes[0]);
2278		if (path->slots[0] >= nritems) {
2279			ret = btrfs_next_leaf(root, path);
2280			if (ret < 0)
2281				goto out;
2282			if (ret > 0)
2283				break;
2284			nritems = btrfs_header_nritems(path->nodes[0]);
2285		}
2286		leaf = path->nodes[0];
2287		slot = path->slots[0];
2288
2289		btrfs_item_key_to_cpu(leaf, &key, slot);
2290		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2291		    key.objectid != btrfs_ino(src))
2292			break;
2293
2294		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2295			struct btrfs_file_extent_item *extent;
2296			int type;
2297			u32 size;
2298			struct btrfs_key new_key;
2299			u64 disko = 0, diskl = 0;
2300			u64 datao = 0, datal = 0;
2301			u8 comp;
2302			u64 endoff;
2303
2304			size = btrfs_item_size_nr(leaf, slot);
2305			read_extent_buffer(leaf, buf,
2306					   btrfs_item_ptr_offset(leaf, slot),
2307					   size);
2308
2309			extent = btrfs_item_ptr(leaf, slot,
2310						struct btrfs_file_extent_item);
2311			comp = btrfs_file_extent_compression(leaf, extent);
2312			type = btrfs_file_extent_type(leaf, extent);
2313			if (type == BTRFS_FILE_EXTENT_REG ||
2314			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2315				disko = btrfs_file_extent_disk_bytenr(leaf,
2316								      extent);
2317				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2318								 extent);
2319				datao = btrfs_file_extent_offset(leaf, extent);
2320				datal = btrfs_file_extent_num_bytes(leaf,
2321								    extent);
2322			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2323				/* take upper bound, may be compressed */
2324				datal = btrfs_file_extent_ram_bytes(leaf,
2325								    extent);
2326			}
2327			btrfs_release_path(path);
2328
2329			if (key.offset + datal <= off ||
2330			    key.offset >= off+len)
2331				goto next;
2332
2333			memcpy(&new_key, &key, sizeof(new_key));
2334			new_key.objectid = btrfs_ino(inode);
2335			if (off <= key.offset)
2336				new_key.offset = key.offset + destoff - off;
2337			else
2338				new_key.offset = destoff;
2339
2340			/*
2341			 * 1 - adjusting old extent (we may have to split it)
2342			 * 1 - add new extent
2343			 * 1 - inode update
2344			 */
2345			trans = btrfs_start_transaction(root, 3);
2346			if (IS_ERR(trans)) {
2347				ret = PTR_ERR(trans);
2348				goto out;
2349			}
2350
2351			if (type == BTRFS_FILE_EXTENT_REG ||
2352			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2353				/*
2354				 *    a  | --- range to clone ---|  b
2355				 * | ------------- extent ------------- |
2356				 */
2357
2358				/* substract range b */
2359				if (key.offset + datal > off + len)
2360					datal = off + len - key.offset;
2361
2362				/* substract range a */
2363				if (off > key.offset) {
2364					datao += off - key.offset;
2365					datal -= off - key.offset;
2366				}
2367
2368				ret = btrfs_drop_extents(trans, inode,
2369							 new_key.offset,
2370							 new_key.offset + datal,
2371							 &hint_byte, 1);
2372				BUG_ON(ret);
2373
2374				ret = btrfs_insert_empty_item(trans, root, path,
2375							      &new_key, size);
2376				BUG_ON(ret);
2377
2378				leaf = path->nodes[0];
2379				slot = path->slots[0];
2380				write_extent_buffer(leaf, buf,
2381					    btrfs_item_ptr_offset(leaf, slot),
2382					    size);
2383
2384				extent = btrfs_item_ptr(leaf, slot,
2385						struct btrfs_file_extent_item);
2386
2387				/* disko == 0 means it's a hole */
2388				if (!disko)
2389					datao = 0;
2390
2391				btrfs_set_file_extent_offset(leaf, extent,
2392							     datao);
2393				btrfs_set_file_extent_num_bytes(leaf, extent,
2394								datal);
2395				if (disko) {
2396					inode_add_bytes(inode, datal);
2397					ret = btrfs_inc_extent_ref(trans, root,
2398							disko, diskl, 0,
2399							root->root_key.objectid,
2400							btrfs_ino(inode),
2401							new_key.offset - datao);
2402					BUG_ON(ret);
2403				}
2404			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2405				u64 skip = 0;
2406				u64 trim = 0;
2407				if (off > key.offset) {
2408					skip = off - key.offset;
2409					new_key.offset += skip;
2410				}
2411
2412				if (key.offset + datal > off+len)
2413					trim = key.offset + datal - (off+len);
2414
2415				if (comp && (skip || trim)) {
2416					ret = -EINVAL;
2417					btrfs_end_transaction(trans, root);
2418					goto out;
2419				}
2420				size -= skip + trim;
2421				datal -= skip + trim;
2422
2423				ret = btrfs_drop_extents(trans, inode,
2424							 new_key.offset,
2425							 new_key.offset + datal,
2426							 &hint_byte, 1);
2427				BUG_ON(ret);
2428
2429				ret = btrfs_insert_empty_item(trans, root, path,
2430							      &new_key, size);
2431				BUG_ON(ret);
2432
2433				if (skip) {
2434					u32 start =
2435					  btrfs_file_extent_calc_inline_size(0);
2436					memmove(buf+start, buf+start+skip,
2437						datal);
2438				}
2439
2440				leaf = path->nodes[0];
2441				slot = path->slots[0];
2442				write_extent_buffer(leaf, buf,
2443					    btrfs_item_ptr_offset(leaf, slot),
2444					    size);
2445				inode_add_bytes(inode, datal);
2446			}
2447
2448			btrfs_mark_buffer_dirty(leaf);
2449			btrfs_release_path(path);
2450
2451			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2452
2453			/*
2454			 * we round up to the block size at eof when
2455			 * determining which extents to clone above,
2456			 * but shouldn't round up the file size
2457			 */
2458			endoff = new_key.offset + datal;
2459			if (endoff > destoff+olen)
2460				endoff = destoff+olen;
2461			if (endoff > inode->i_size)
2462				btrfs_i_size_write(inode, endoff);
2463
2464			ret = btrfs_update_inode(trans, root, inode);
2465			BUG_ON(ret);
2466			btrfs_end_transaction(trans, root);
2467		}
2468next:
2469		btrfs_release_path(path);
2470		key.offset++;
2471	}
2472	ret = 0;
2473out:
2474	btrfs_release_path(path);
2475	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2476out_unlock:
2477	mutex_unlock(&src->i_mutex);
2478	mutex_unlock(&inode->i_mutex);
2479	vfree(buf);
2480	btrfs_free_path(path);
2481out_fput:
2482	fput(src_file);
2483out_drop_write:
2484	mnt_drop_write(file->f_path.mnt);
2485	return ret;
2486}
2487
2488static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2489{
2490	struct btrfs_ioctl_clone_range_args args;
2491
2492	if (copy_from_user(&args, argp, sizeof(args)))
2493		return -EFAULT;
2494	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2495				 args.src_length, args.dest_offset);
2496}
2497
2498/*
2499 * there are many ways the trans_start and trans_end ioctls can lead
2500 * to deadlocks.  They should only be used by applications that
2501 * basically own the machine, and have a very in depth understanding
2502 * of all the possible deadlocks and enospc problems.
2503 */
2504static long btrfs_ioctl_trans_start(struct file *file)
2505{
2506	struct inode *inode = fdentry(file)->d_inode;
2507	struct btrfs_root *root = BTRFS_I(inode)->root;
2508	struct btrfs_trans_handle *trans;
2509	int ret;
2510
2511	ret = -EPERM;
2512	if (!capable(CAP_SYS_ADMIN))
2513		goto out;
2514
2515	ret = -EINPROGRESS;
2516	if (file->private_data)
2517		goto out;
2518
2519	ret = -EROFS;
2520	if (btrfs_root_readonly(root))
2521		goto out;
2522
2523	ret = mnt_want_write(file->f_path.mnt);
2524	if (ret)
2525		goto out;
2526
2527	atomic_inc(&root->fs_info->open_ioctl_trans);
2528
2529	ret = -ENOMEM;
2530	trans = btrfs_start_ioctl_transaction(root);
2531	if (IS_ERR(trans))
2532		goto out_drop;
2533
2534	file->private_data = trans;
2535	return 0;
2536
2537out_drop:
2538	atomic_dec(&root->fs_info->open_ioctl_trans);
2539	mnt_drop_write(file->f_path.mnt);
2540out:
2541	return ret;
2542}
2543
2544static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2545{
2546	struct inode *inode = fdentry(file)->d_inode;
 
2547	struct btrfs_root *root = BTRFS_I(inode)->root;
2548	struct btrfs_root *new_root;
2549	struct btrfs_dir_item *di;
2550	struct btrfs_trans_handle *trans;
2551	struct btrfs_path *path;
2552	struct btrfs_key location;
2553	struct btrfs_disk_key disk_key;
2554	struct btrfs_super_block *disk_super;
2555	u64 features;
2556	u64 objectid = 0;
2557	u64 dir_id;
 
2558
2559	if (!capable(CAP_SYS_ADMIN))
2560		return -EPERM;
2561
2562	if (copy_from_user(&objectid, argp, sizeof(objectid)))
2563		return -EFAULT;
2564
2565	if (!objectid)
2566		objectid = root->root_key.objectid;
2567
2568	location.objectid = objectid;
2569	location.type = BTRFS_ROOT_ITEM_KEY;
2570	location.offset = (u64)-1;
 
2571
2572	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2573	if (IS_ERR(new_root))
2574		return PTR_ERR(new_root);
2575
2576	if (btrfs_root_refs(&new_root->root_item) == 0)
2577		return -ENOENT;
 
 
 
 
 
 
 
2578
2579	path = btrfs_alloc_path();
2580	if (!path)
2581		return -ENOMEM;
2582	path->leave_spinning = 1;
 
2583
2584	trans = btrfs_start_transaction(root, 1);
2585	if (IS_ERR(trans)) {
2586		btrfs_free_path(path);
2587		return PTR_ERR(trans);
2588	}
2589
2590	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2591	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2592				   dir_id, "default", 7, 1);
2593	if (IS_ERR_OR_NULL(di)) {
2594		btrfs_free_path(path);
2595		btrfs_end_transaction(trans, root);
2596		printk(KERN_ERR "Umm, you don't have the default dir item, "
2597		       "this isn't going to work\n");
2598		return -ENOENT;
 
2599	}
2600
2601	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2602	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2603	btrfs_mark_buffer_dirty(path->nodes[0]);
2604	btrfs_free_path(path);
2605
2606	disk_super = &root->fs_info->super_copy;
2607	features = btrfs_super_incompat_flags(disk_super);
2608	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2609		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2610		btrfs_set_super_incompat_flags(disk_super, features);
2611	}
2612	btrfs_end_transaction(trans, root);
2613
2614	return 0;
 
 
 
 
 
 
 
2615}
2616
2617static void get_block_group_info(struct list_head *groups_list,
2618				 struct btrfs_ioctl_space_info *space)
2619{
2620	struct btrfs_block_group_cache *block_group;
2621
2622	space->total_bytes = 0;
2623	space->used_bytes = 0;
2624	space->flags = 0;
2625	list_for_each_entry(block_group, groups_list, list) {
2626		space->flags = block_group->flags;
2627		space->total_bytes += block_group->key.offset;
2628		space->used_bytes +=
2629			btrfs_block_group_used(&block_group->item);
2630	}
2631}
2632
2633long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
 
2634{
2635	struct btrfs_ioctl_space_args space_args;
2636	struct btrfs_ioctl_space_info space;
2637	struct btrfs_ioctl_space_info *dest;
2638	struct btrfs_ioctl_space_info *dest_orig;
2639	struct btrfs_ioctl_space_info __user *user_dest;
2640	struct btrfs_space_info *info;
2641	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2642		       BTRFS_BLOCK_GROUP_SYSTEM,
2643		       BTRFS_BLOCK_GROUP_METADATA,
2644		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
 
 
2645	int num_types = 4;
2646	int alloc_size;
2647	int ret = 0;
2648	u64 slot_count = 0;
2649	int i, c;
2650
2651	if (copy_from_user(&space_args,
2652			   (struct btrfs_ioctl_space_args __user *)arg,
2653			   sizeof(space_args)))
2654		return -EFAULT;
2655
2656	for (i = 0; i < num_types; i++) {
2657		struct btrfs_space_info *tmp;
2658
2659		info = NULL;
2660		rcu_read_lock();
2661		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2662					list) {
2663			if (tmp->flags == types[i]) {
2664				info = tmp;
2665				break;
2666			}
2667		}
2668		rcu_read_unlock();
2669
2670		if (!info)
2671			continue;
2672
2673		down_read(&info->groups_sem);
2674		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2675			if (!list_empty(&info->block_groups[c]))
2676				slot_count++;
2677		}
2678		up_read(&info->groups_sem);
2679	}
2680
 
 
 
 
 
2681	/* space_slots == 0 means they are asking for a count */
2682	if (space_args.space_slots == 0) {
2683		space_args.total_spaces = slot_count;
2684		goto out;
2685	}
2686
2687	slot_count = min_t(u64, space_args.space_slots, slot_count);
2688
2689	alloc_size = sizeof(*dest) * slot_count;
2690
2691	/* we generally have at most 6 or so space infos, one for each raid
2692	 * level.  So, a whole page should be more than enough for everyone
2693	 */
2694	if (alloc_size > PAGE_CACHE_SIZE)
2695		return -ENOMEM;
2696
2697	space_args.total_spaces = 0;
2698	dest = kmalloc(alloc_size, GFP_NOFS);
2699	if (!dest)
2700		return -ENOMEM;
2701	dest_orig = dest;
2702
2703	/* now we have a buffer to copy into */
2704	for (i = 0; i < num_types; i++) {
2705		struct btrfs_space_info *tmp;
2706
2707		if (!slot_count)
2708			break;
2709
2710		info = NULL;
2711		rcu_read_lock();
2712		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2713					list) {
2714			if (tmp->flags == types[i]) {
2715				info = tmp;
2716				break;
2717			}
2718		}
2719		rcu_read_unlock();
2720
2721		if (!info)
2722			continue;
2723		down_read(&info->groups_sem);
2724		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2725			if (!list_empty(&info->block_groups[c])) {
2726				get_block_group_info(&info->block_groups[c],
2727						     &space);
2728				memcpy(dest, &space, sizeof(space));
2729				dest++;
2730				space_args.total_spaces++;
2731				slot_count--;
2732			}
2733			if (!slot_count)
2734				break;
2735		}
2736		up_read(&info->groups_sem);
2737	}
2738
2739	user_dest = (struct btrfs_ioctl_space_info *)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		(arg + sizeof(struct btrfs_ioctl_space_args));
2741
2742	if (copy_to_user(user_dest, dest_orig, alloc_size))
2743		ret = -EFAULT;
2744
2745	kfree(dest_orig);
2746out:
2747	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2748		ret = -EFAULT;
2749
2750	return ret;
2751}
2752
2753/*
2754 * there are many ways the trans_start and trans_end ioctls can lead
2755 * to deadlocks.  They should only be used by applications that
2756 * basically own the machine, and have a very in depth understanding
2757 * of all the possible deadlocks and enospc problems.
2758 */
2759long btrfs_ioctl_trans_end(struct file *file)
2760{
2761	struct inode *inode = fdentry(file)->d_inode;
2762	struct btrfs_root *root = BTRFS_I(inode)->root;
2763	struct btrfs_trans_handle *trans;
2764
2765	trans = file->private_data;
2766	if (!trans)
2767		return -EINVAL;
2768	file->private_data = NULL;
2769
2770	btrfs_end_transaction(trans, root);
2771
2772	atomic_dec(&root->fs_info->open_ioctl_trans);
2773
2774	mnt_drop_write(file->f_path.mnt);
2775	return 0;
2776}
2777
2778static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2779{
2780	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2781	struct btrfs_trans_handle *trans;
2782	u64 transid;
2783	int ret;
2784
2785	trans = btrfs_start_transaction(root, 0);
2786	if (IS_ERR(trans))
2787		return PTR_ERR(trans);
 
 
 
 
 
 
2788	transid = trans->transid;
2789	ret = btrfs_commit_transaction_async(trans, root, 0);
2790	if (ret) {
2791		btrfs_end_transaction(trans, root);
2792		return ret;
2793	}
2794
2795	if (argp)
2796		if (copy_to_user(argp, &transid, sizeof(transid)))
2797			return -EFAULT;
2798	return 0;
2799}
2800
2801static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
 
2802{
2803	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2804	u64 transid;
2805
2806	if (argp) {
2807		if (copy_from_user(&transid, argp, sizeof(transid)))
2808			return -EFAULT;
2809	} else {
2810		transid = 0;  /* current trans */
2811	}
2812	return btrfs_wait_for_commit(root, transid);
2813}
2814
2815static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2816{
2817	int ret;
2818	struct btrfs_ioctl_scrub_args *sa;
 
2819
2820	if (!capable(CAP_SYS_ADMIN))
2821		return -EPERM;
2822
2823	sa = memdup_user(arg, sizeof(*sa));
2824	if (IS_ERR(sa))
2825		return PTR_ERR(sa);
2826
2827	ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2828			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
 
 
 
 
 
 
 
2829
 
 
 
 
 
 
 
 
 
 
 
 
2830	if (copy_to_user(arg, sa, sizeof(*sa)))
2831		ret = -EFAULT;
2832
 
 
 
2833	kfree(sa);
2834	return ret;
2835}
2836
2837static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2838{
2839	if (!capable(CAP_SYS_ADMIN))
2840		return -EPERM;
2841
2842	return btrfs_scrub_cancel(root);
2843}
2844
2845static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2846				       void __user *arg)
2847{
2848	struct btrfs_ioctl_scrub_args *sa;
2849	int ret;
2850
2851	if (!capable(CAP_SYS_ADMIN))
2852		return -EPERM;
2853
2854	sa = memdup_user(arg, sizeof(*sa));
2855	if (IS_ERR(sa))
2856		return PTR_ERR(sa);
2857
2858	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2859
2860	if (copy_to_user(arg, sa, sizeof(*sa)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		ret = -EFAULT;
2862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	kfree(sa);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864	return ret;
2865}
2866
2867long btrfs_ioctl(struct file *file, unsigned int
2868		cmd, unsigned long arg)
2869{
2870	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
 
 
2871	void __user *argp = (void __user *)arg;
2872
2873	switch (cmd) {
2874	case FS_IOC_GETFLAGS:
2875		return btrfs_ioctl_getflags(file, argp);
2876	case FS_IOC_SETFLAGS:
2877		return btrfs_ioctl_setflags(file, argp);
2878	case FS_IOC_GETVERSION:
2879		return btrfs_ioctl_getversion(file, argp);
 
 
 
 
2880	case FITRIM:
2881		return btrfs_ioctl_fitrim(file, argp);
2882	case BTRFS_IOC_SNAP_CREATE:
2883		return btrfs_ioctl_snap_create(file, argp, 0);
2884	case BTRFS_IOC_SNAP_CREATE_V2:
2885		return btrfs_ioctl_snap_create_v2(file, argp, 0);
2886	case BTRFS_IOC_SUBVOL_CREATE:
2887		return btrfs_ioctl_snap_create(file, argp, 1);
 
 
2888	case BTRFS_IOC_SNAP_DESTROY:
2889		return btrfs_ioctl_snap_destroy(file, argp);
 
 
2890	case BTRFS_IOC_SUBVOL_GETFLAGS:
2891		return btrfs_ioctl_subvol_getflags(file, argp);
2892	case BTRFS_IOC_SUBVOL_SETFLAGS:
2893		return btrfs_ioctl_subvol_setflags(file, argp);
2894	case BTRFS_IOC_DEFAULT_SUBVOL:
2895		return btrfs_ioctl_default_subvol(file, argp);
2896	case BTRFS_IOC_DEFRAG:
2897		return btrfs_ioctl_defrag(file, NULL);
2898	case BTRFS_IOC_DEFRAG_RANGE:
2899		return btrfs_ioctl_defrag(file, argp);
2900	case BTRFS_IOC_RESIZE:
2901		return btrfs_ioctl_resize(root, argp);
2902	case BTRFS_IOC_ADD_DEV:
2903		return btrfs_ioctl_add_dev(root, argp);
2904	case BTRFS_IOC_RM_DEV:
2905		return btrfs_ioctl_rm_dev(root, argp);
 
 
2906	case BTRFS_IOC_FS_INFO:
2907		return btrfs_ioctl_fs_info(root, argp);
2908	case BTRFS_IOC_DEV_INFO:
2909		return btrfs_ioctl_dev_info(root, argp);
2910	case BTRFS_IOC_BALANCE:
2911		return btrfs_balance(root->fs_info->dev_root);
2912	case BTRFS_IOC_CLONE:
2913		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2914	case BTRFS_IOC_CLONE_RANGE:
2915		return btrfs_ioctl_clone_range(file, argp);
2916	case BTRFS_IOC_TRANS_START:
2917		return btrfs_ioctl_trans_start(file);
2918	case BTRFS_IOC_TRANS_END:
2919		return btrfs_ioctl_trans_end(file);
2920	case BTRFS_IOC_TREE_SEARCH:
2921		return btrfs_ioctl_tree_search(file, argp);
 
 
2922	case BTRFS_IOC_INO_LOOKUP:
2923		return btrfs_ioctl_ino_lookup(file, argp);
 
 
 
 
 
 
2924	case BTRFS_IOC_SPACE_INFO:
2925		return btrfs_ioctl_space_info(root, argp);
2926	case BTRFS_IOC_SYNC:
2927		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2928		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2929	case BTRFS_IOC_START_SYNC:
2930		return btrfs_ioctl_start_sync(file, argp);
2931	case BTRFS_IOC_WAIT_SYNC:
2932		return btrfs_ioctl_wait_sync(file, argp);
2933	case BTRFS_IOC_SCRUB:
2934		return btrfs_ioctl_scrub(root, argp);
2935	case BTRFS_IOC_SCRUB_CANCEL:
2936		return btrfs_ioctl_scrub_cancel(root, argp);
2937	case BTRFS_IOC_SCRUB_PROGRESS:
2938		return btrfs_ioctl_scrub_progress(root, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939	}
2940
2941	return -ENOTTY;
2942}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
 
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
  17#include <linux/namei.h>
 
  18#include <linux/writeback.h>
 
  19#include <linux/compat.h>
 
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include "ctree.h"
  31#include "disk-io.h"
  32#include "export.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
 
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "locking.h"
  38#include "backref.h"
  39#include "rcu-string.h"
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
  48#include "delalloc-space.h"
  49#include "block-group.h"
  50
  51#ifdef CONFIG_64BIT
  52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  53 * structures are incorrect, as the timespec structure from userspace
  54 * is 4 bytes too small. We define these alternatives here to teach
  55 * the kernel about the 32-bit struct packing.
  56 */
  57struct btrfs_ioctl_timespec_32 {
  58	__u64 sec;
  59	__u32 nsec;
  60} __attribute__ ((__packed__));
  61
  62struct btrfs_ioctl_received_subvol_args_32 {
  63	char	uuid[BTRFS_UUID_SIZE];	/* in */
  64	__u64	stransid;		/* in */
  65	__u64	rtransid;		/* out */
  66	struct btrfs_ioctl_timespec_32 stime; /* in */
  67	struct btrfs_ioctl_timespec_32 rtime; /* out */
  68	__u64	flags;			/* in */
  69	__u64	reserved[16];		/* in */
  70} __attribute__ ((__packed__));
  71
  72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  73				struct btrfs_ioctl_received_subvol_args_32)
  74#endif
  75
  76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  77struct btrfs_ioctl_send_args_32 {
  78	__s64 send_fd;			/* in */
  79	__u64 clone_sources_count;	/* in */
  80	compat_uptr_t clone_sources;	/* in */
  81	__u64 parent_root;		/* in */
  82	__u64 flags;			/* in */
  83	__u64 reserved[4];		/* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  87			       struct btrfs_ioctl_send_args_32)
  88#endif
  89
  90/* Mask out flags that are inappropriate for the given type of inode. */
  91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  92		unsigned int flags)
  93{
  94	if (S_ISDIR(inode->i_mode))
  95		return flags;
  96	else if (S_ISREG(inode->i_mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 104 * ioctl.
 105 */
 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 107{
 108	unsigned int iflags = 0;
 109
 110	if (flags & BTRFS_INODE_SYNC)
 111		iflags |= FS_SYNC_FL;
 112	if (flags & BTRFS_INODE_IMMUTABLE)
 113		iflags |= FS_IMMUTABLE_FL;
 114	if (flags & BTRFS_INODE_APPEND)
 115		iflags |= FS_APPEND_FL;
 116	if (flags & BTRFS_INODE_NODUMP)
 117		iflags |= FS_NODUMP_FL;
 118	if (flags & BTRFS_INODE_NOATIME)
 119		iflags |= FS_NOATIME_FL;
 120	if (flags & BTRFS_INODE_DIRSYNC)
 121		iflags |= FS_DIRSYNC_FL;
 122	if (flags & BTRFS_INODE_NODATACOW)
 123		iflags |= FS_NOCOW_FL;
 124
 125	if (flags & BTRFS_INODE_NOCOMPRESS)
 
 
 126		iflags |= FS_NOCOMP_FL;
 127	else if (flags & BTRFS_INODE_COMPRESS)
 128		iflags |= FS_COMPR_FL;
 129
 130	return iflags;
 131}
 132
 133/*
 134 * Update inode->i_flags based on the btrfs internal flags.
 135 */
 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 137{
 138	struct btrfs_inode *binode = BTRFS_I(inode);
 139	unsigned int new_fl = 0;
 
 140
 141	if (binode->flags & BTRFS_INODE_SYNC)
 142		new_fl |= S_SYNC;
 143	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 144		new_fl |= S_IMMUTABLE;
 145	if (binode->flags & BTRFS_INODE_APPEND)
 146		new_fl |= S_APPEND;
 147	if (binode->flags & BTRFS_INODE_NOATIME)
 148		new_fl |= S_NOATIME;
 149	if (binode->flags & BTRFS_INODE_DIRSYNC)
 150		new_fl |= S_DIRSYNC;
 151
 152	set_mask_bits(&inode->i_flags,
 153		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 154		      new_fl);
 155}
 156
 157/*
 158 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 159 * the old and new flags are not conflicting
 
 160 */
 161static int check_fsflags(unsigned int old_flags, unsigned int flags)
 162{
 163	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 164		      FS_NOATIME_FL | FS_NODUMP_FL | \
 165		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 166		      FS_NOCOMP_FL | FS_COMPR_FL |
 167		      FS_NOCOW_FL))
 168		return -EOPNOTSUPP;
 169
 170	/* COMPR and NOCOMP on new/old are valid */
 171	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 172		return -EINVAL;
 173
 174	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 175		return -EINVAL;
 176
 177	/* NOCOW and compression options are mutually exclusive */
 178	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 179		return -EINVAL;
 180	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 181		return -EINVAL;
 182
 183	return 0;
 
 184}
 185
 186static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 187				    unsigned int flags)
 188{
 189	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 190		return -EPERM;
 191
 
 
 192	return 0;
 193}
 194
 195/*
 196 * Set flags/xflags from the internal inode flags. The remaining items of
 197 * fsxattr are zeroed.
 198 */
 199int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 200{
 201	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 
 
 
 
 
 
 
 
 202
 203	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
 204	return 0;
 205}
 206
 207int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 208		       struct dentry *dentry, struct fileattr *fa)
 209{
 210	struct inode *inode = d_inode(dentry);
 211	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 212	struct btrfs_inode *binode = BTRFS_I(inode);
 213	struct btrfs_root *root = binode->root;
 214	struct btrfs_trans_handle *trans;
 215	unsigned int fsflags, old_fsflags;
 216	int ret;
 217	const char *comp = NULL;
 218	u32 binode_flags;
 219
 220	if (btrfs_root_readonly(root))
 221		return -EROFS;
 222
 223	if (fileattr_has_fsx(fa))
 224		return -EOPNOTSUPP;
 225
 226	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 227	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 228	ret = check_fsflags(old_fsflags, fsflags);
 229	if (ret)
 230		return ret;
 231
 232	ret = check_fsflags_compatible(fs_info, fsflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233	if (ret)
 234		return ret;
 235
 236	binode_flags = binode->flags;
 237	if (fsflags & FS_SYNC_FL)
 238		binode_flags |= BTRFS_INODE_SYNC;
 239	else
 240		binode_flags &= ~BTRFS_INODE_SYNC;
 241	if (fsflags & FS_IMMUTABLE_FL)
 242		binode_flags |= BTRFS_INODE_IMMUTABLE;
 243	else
 244		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 245	if (fsflags & FS_APPEND_FL)
 246		binode_flags |= BTRFS_INODE_APPEND;
 247	else
 248		binode_flags &= ~BTRFS_INODE_APPEND;
 249	if (fsflags & FS_NODUMP_FL)
 250		binode_flags |= BTRFS_INODE_NODUMP;
 251	else
 252		binode_flags &= ~BTRFS_INODE_NODUMP;
 253	if (fsflags & FS_NOATIME_FL)
 254		binode_flags |= BTRFS_INODE_NOATIME;
 255	else
 256		binode_flags &= ~BTRFS_INODE_NOATIME;
 257
 258	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 259	if (!fa->flags_valid) {
 260		/* 1 item for the inode */
 261		trans = btrfs_start_transaction(root, 1);
 262		if (IS_ERR(trans))
 263			return PTR_ERR(trans);
 264		goto update_flags;
 265	}
 266
 267	if (fsflags & FS_DIRSYNC_FL)
 268		binode_flags |= BTRFS_INODE_DIRSYNC;
 269	else
 270		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 271	if (fsflags & FS_NOCOW_FL) {
 272		if (S_ISREG(inode->i_mode)) {
 273			/*
 274			 * It's safe to turn csums off here, no extents exist.
 275			 * Otherwise we want the flag to reflect the real COW
 276			 * status of the file and will not set it.
 277			 */
 278			if (inode->i_size == 0)
 279				binode_flags |= BTRFS_INODE_NODATACOW |
 280						BTRFS_INODE_NODATASUM;
 281		} else {
 282			binode_flags |= BTRFS_INODE_NODATACOW;
 283		}
 284	} else {
 285		/*
 286		 * Revert back under same assumptions as above
 287		 */
 288		if (S_ISREG(inode->i_mode)) {
 289			if (inode->i_size == 0)
 290				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 291						  BTRFS_INODE_NODATASUM);
 292		} else {
 293			binode_flags &= ~BTRFS_INODE_NODATACOW;
 294		}
 295	}
 296
 297	/*
 298	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 299	 * flag may be changed automatically if compression code won't make
 300	 * things smaller.
 301	 */
 302	if (fsflags & FS_NOCOMP_FL) {
 303		binode_flags &= ~BTRFS_INODE_COMPRESS;
 304		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 305	} else if (fsflags & FS_COMPR_FL) {
 306
 307		if (IS_SWAPFILE(inode))
 308			return -ETXTBSY;
 309
 310		binode_flags |= BTRFS_INODE_COMPRESS;
 311		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 312
 313		comp = btrfs_compress_type2str(fs_info->compress_type);
 314		if (!comp || comp[0] == 0)
 315			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 316	} else {
 317		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 318	}
 319
 320	/*
 321	 * 1 for inode item
 322	 * 2 for properties
 323	 */
 324	trans = btrfs_start_transaction(root, 3);
 325	if (IS_ERR(trans))
 326		return PTR_ERR(trans);
 327
 328	if (comp) {
 329		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 330				     strlen(comp), 0);
 331		if (ret) {
 332			btrfs_abort_transaction(trans, ret);
 333			goto out_end_trans;
 334		}
 335	} else {
 336		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 337				     0, 0);
 338		if (ret && ret != -ENODATA) {
 339			btrfs_abort_transaction(trans, ret);
 340			goto out_end_trans;
 341		}
 342	}
 343
 344update_flags:
 345	binode->flags = binode_flags;
 346	btrfs_sync_inode_flags_to_i_flags(inode);
 347	inode_inc_iversion(inode);
 348	inode->i_ctime = current_time(inode);
 349	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 350
 351 out_end_trans:
 352	btrfs_end_transaction(trans);
 353	return ret;
 354}
 355
 356/*
 357 * Start exclusive operation @type, return true on success
 358 */
 359bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 360			enum btrfs_exclusive_operation type)
 361{
 362	bool ret = false;
 363
 364	spin_lock(&fs_info->super_lock);
 365	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 366		fs_info->exclusive_operation = type;
 367		ret = true;
 368	}
 369	spin_unlock(&fs_info->super_lock);
 370
 
 
 
 371	return ret;
 372}
 373
 374/*
 375 * Conditionally allow to enter the exclusive operation in case it's compatible
 376 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 377 * btrfs_exclop_finish.
 378 *
 379 * Compatibility:
 380 * - the same type is already running
 381 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 382 *   must check the condition first that would allow none -> @type
 383 */
 384bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 385				 enum btrfs_exclusive_operation type)
 386{
 387	spin_lock(&fs_info->super_lock);
 388	if (fs_info->exclusive_operation == type)
 389		return true;
 390
 391	spin_unlock(&fs_info->super_lock);
 392	return false;
 393}
 394
 395void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 396{
 397	spin_unlock(&fs_info->super_lock);
 398}
 399
 400void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 401{
 402	spin_lock(&fs_info->super_lock);
 403	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 404	spin_unlock(&fs_info->super_lock);
 405	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 406}
 407
 408static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 409{
 410	struct inode *inode = file_inode(file);
 411
 412	return put_user(inode->i_generation, arg);
 413}
 414
 415static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 416					void __user *arg)
 417{
 
 
 418	struct btrfs_device *device;
 419	struct request_queue *q;
 420	struct fstrim_range range;
 421	u64 minlen = ULLONG_MAX;
 422	u64 num_devices = 0;
 423	int ret;
 424
 425	if (!capable(CAP_SYS_ADMIN))
 426		return -EPERM;
 427
 428	/*
 429	 * btrfs_trim_block_group() depends on space cache, which is not
 430	 * available in zoned filesystem. So, disallow fitrim on a zoned
 431	 * filesystem for now.
 432	 */
 433	if (btrfs_is_zoned(fs_info))
 434		return -EOPNOTSUPP;
 435
 436	/*
 437	 * If the fs is mounted with nologreplay, which requires it to be
 438	 * mounted in RO mode as well, we can not allow discard on free space
 439	 * inside block groups, because log trees refer to extents that are not
 440	 * pinned in a block group's free space cache (pinning the extents is
 441	 * precisely the first phase of replaying a log tree).
 442	 */
 443	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 444		return -EROFS;
 445
 446	rcu_read_lock();
 447	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 448				dev_list) {
 449		if (!device->bdev)
 450			continue;
 451		q = bdev_get_queue(device->bdev);
 452		if (blk_queue_discard(q)) {
 453			num_devices++;
 454			minlen = min_t(u64, q->limits.discard_granularity,
 455				     minlen);
 456		}
 457	}
 458	rcu_read_unlock();
 459
 460	if (!num_devices)
 461		return -EOPNOTSUPP;
 
 462	if (copy_from_user(&range, arg, sizeof(range)))
 463		return -EFAULT;
 464
 465	/*
 466	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 467	 * block group is in the logical address space, which can be any
 468	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 469	 */
 470	if (range.len < fs_info->sb->s_blocksize)
 471		return -EINVAL;
 472
 473	range.minlen = max(range.minlen, minlen);
 474	ret = btrfs_trim_fs(fs_info, &range);
 475	if (ret < 0)
 476		return ret;
 477
 478	if (copy_to_user(arg, &range, sizeof(range)))
 479		return -EFAULT;
 480
 481	return 0;
 482}
 483
 484int __pure btrfs_is_empty_uuid(u8 *uuid)
 485{
 486	int i;
 487
 488	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 489		if (uuid[i])
 490			return 0;
 491	}
 492	return 1;
 493}
 494
 495static noinline int create_subvol(struct inode *dir,
 496				  struct dentry *dentry,
 497				  const char *name, int namelen,
 498				  struct btrfs_qgroup_inherit *inherit)
 499{
 500	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 501	struct btrfs_trans_handle *trans;
 502	struct btrfs_key key;
 503	struct btrfs_root_item *root_item;
 504	struct btrfs_inode_item *inode_item;
 505	struct extent_buffer *leaf;
 506	struct btrfs_root *root = BTRFS_I(dir)->root;
 507	struct btrfs_root *new_root;
 508	struct btrfs_block_rsv block_rsv;
 509	struct timespec64 cur_time = current_time(dir);
 510	struct inode *inode;
 511	int ret;
 512	int err;
 513	dev_t anon_dev = 0;
 514	u64 objectid;
 
 515	u64 index = 0;
 516
 517	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 518	if (!root_item)
 519		return -ENOMEM;
 520
 521	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 522	if (ret)
 523		goto fail_free;
 524
 525	ret = get_anon_bdev(&anon_dev);
 526	if (ret < 0)
 527		goto fail_free;
 528
 529	/*
 530	 * Don't create subvolume whose level is not zero. Or qgroup will be
 531	 * screwed up since it assumes subvolume qgroup's level to be 0.
 
 
 532	 */
 533	if (btrfs_qgroup_level(objectid)) {
 534		ret = -ENOSPC;
 535		goto fail_free;
 536	}
 537
 538	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 539	/*
 540	 * The same as the snapshot creation, please see the comment
 541	 * of create_snapshot().
 542	 */
 543	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 544	if (ret)
 545		goto fail_free;
 546
 547	trans = btrfs_start_transaction(root, 0);
 548	if (IS_ERR(trans)) {
 549		ret = PTR_ERR(trans);
 550		btrfs_subvolume_release_metadata(root, &block_rsv);
 551		goto fail_free;
 552	}
 553	trans->block_rsv = &block_rsv;
 554	trans->bytes_reserved = block_rsv.size;
 555
 556	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 557	if (ret)
 558		goto fail;
 559
 560	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 561				      BTRFS_NESTING_NORMAL);
 562	if (IS_ERR(leaf)) {
 563		ret = PTR_ERR(leaf);
 564		goto fail;
 565	}
 566
 
 
 
 
 
 
 
 
 
 
 
 
 567	btrfs_mark_buffer_dirty(leaf);
 568
 569	inode_item = &root_item->inode;
 570	btrfs_set_stack_inode_generation(inode_item, 1);
 571	btrfs_set_stack_inode_size(inode_item, 3);
 572	btrfs_set_stack_inode_nlink(inode_item, 1);
 573	btrfs_set_stack_inode_nbytes(inode_item,
 574				     fs_info->nodesize);
 575	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 576
 577	btrfs_set_root_flags(root_item, 0);
 578	btrfs_set_root_limit(root_item, 0);
 579	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 580
 581	btrfs_set_root_bytenr(root_item, leaf->start);
 582	btrfs_set_root_generation(root_item, trans->transid);
 583	btrfs_set_root_level(root_item, 0);
 584	btrfs_set_root_refs(root_item, 1);
 585	btrfs_set_root_used(root_item, leaf->len);
 586	btrfs_set_root_last_snapshot(root_item, 0);
 587
 588	btrfs_set_root_generation_v2(root_item,
 589			btrfs_root_generation(root_item));
 590	generate_random_guid(root_item->uuid);
 591	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 592	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 593	root_item->ctime = root_item->otime;
 594	btrfs_set_root_ctransid(root_item, trans->transid);
 595	btrfs_set_root_otransid(root_item, trans->transid);
 596
 597	btrfs_tree_unlock(leaf);
 
 
 598
 599	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 600
 601	key.objectid = objectid;
 602	key.offset = 0;
 603	key.type = BTRFS_ROOT_ITEM_KEY;
 604	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 605				root_item);
 606	if (ret) {
 607		/*
 608		 * Since we don't abort the transaction in this case, free the
 609		 * tree block so that we don't leak space and leave the
 610		 * filesystem in an inconsistent state (an extent item in the
 611		 * extent tree without backreferences). Also no need to have
 612		 * the tree block locked since it is not in any tree at this
 613		 * point, so no other task can find it and use it.
 614		 */
 615		btrfs_free_tree_block(trans, root, leaf, 0, 1);
 616		free_extent_buffer(leaf);
 617		goto fail;
 618	}
 619
 620	free_extent_buffer(leaf);
 621	leaf = NULL;
 622
 623	key.offset = (u64)-1;
 624	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 625	if (IS_ERR(new_root)) {
 626		free_anon_bdev(anon_dev);
 627		ret = PTR_ERR(new_root);
 628		btrfs_abort_transaction(trans, ret);
 629		goto fail;
 630	}
 631	/* Freeing will be done in btrfs_put_root() of new_root */
 632	anon_dev = 0;
 633
 634	ret = btrfs_record_root_in_trans(trans, new_root);
 635	if (ret) {
 636		btrfs_put_root(new_root);
 637		btrfs_abort_transaction(trans, ret);
 638		goto fail;
 639	}
 640
 641	ret = btrfs_create_subvol_root(trans, new_root, root);
 642	btrfs_put_root(new_root);
 643	if (ret) {
 644		/* We potentially lose an unused inode item here */
 645		btrfs_abort_transaction(trans, ret);
 646		goto fail;
 647	}
 648
 
 649	/*
 650	 * insert the directory item
 651	 */
 652	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 653	if (ret) {
 654		btrfs_abort_transaction(trans, ret);
 655		goto fail;
 656	}
 657
 658	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 
 659				    BTRFS_FT_DIR, index);
 660	if (ret) {
 661		btrfs_abort_transaction(trans, ret);
 662		goto fail;
 663	}
 664
 665	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 666	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 667	if (ret) {
 668		btrfs_abort_transaction(trans, ret);
 669		goto fail;
 670	}
 671
 672	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 673				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 674	if (ret) {
 675		btrfs_abort_transaction(trans, ret);
 676		goto fail;
 677	}
 678
 679	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 680				  BTRFS_UUID_KEY_SUBVOL, objectid);
 681	if (ret)
 682		btrfs_abort_transaction(trans, ret);
 683
 
 684fail:
 685	kfree(root_item);
 686	trans->block_rsv = NULL;
 687	trans->bytes_reserved = 0;
 688	btrfs_subvolume_release_metadata(root, &block_rsv);
 689
 690	err = btrfs_commit_transaction(trans);
 691	if (err && !ret)
 692		ret = err;
 693
 694	if (!ret) {
 695		inode = btrfs_lookup_dentry(dir, dentry);
 696		if (IS_ERR(inode))
 697			return PTR_ERR(inode);
 698		d_instantiate(dentry, inode);
 699	}
 700	return ret;
 701
 702fail_free:
 703	if (anon_dev)
 704		free_anon_bdev(anon_dev);
 705	kfree(root_item);
 706	return ret;
 707}
 708
 709static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 710			   struct dentry *dentry, bool readonly,
 711			   struct btrfs_qgroup_inherit *inherit)
 712{
 713	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 714	struct inode *inode;
 715	struct btrfs_pending_snapshot *pending_snapshot;
 716	struct btrfs_trans_handle *trans;
 717	int ret;
 718
 719	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 720		return -EINVAL;
 721
 722	if (atomic_read(&root->nr_swapfiles)) {
 723		btrfs_warn(fs_info,
 724			   "cannot snapshot subvolume with active swapfile");
 725		return -ETXTBSY;
 726	}
 727
 728	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 729	if (!pending_snapshot)
 730		return -ENOMEM;
 731
 732	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 733	if (ret < 0)
 734		goto free_pending;
 735	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 736			GFP_KERNEL);
 737	pending_snapshot->path = btrfs_alloc_path();
 738	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 739		ret = -ENOMEM;
 740		goto free_pending;
 741	}
 742
 743	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 744			     BTRFS_BLOCK_RSV_TEMP);
 745	/*
 746	 * 1 - parent dir inode
 747	 * 2 - dir entries
 748	 * 1 - root item
 749	 * 2 - root ref/backref
 750	 * 1 - root of snapshot
 751	 * 1 - UUID item
 752	 */
 753	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 754					&pending_snapshot->block_rsv, 8,
 755					false);
 756	if (ret)
 757		goto free_pending;
 758
 759	pending_snapshot->dentry = dentry;
 760	pending_snapshot->root = root;
 761	pending_snapshot->readonly = readonly;
 762	pending_snapshot->dir = dir;
 763	pending_snapshot->inherit = inherit;
 764
 765	trans = btrfs_start_transaction(root, 0);
 766	if (IS_ERR(trans)) {
 767		ret = PTR_ERR(trans);
 768		goto fail;
 769	}
 770
 771	spin_lock(&fs_info->trans_lock);
 
 
 
 772	list_add(&pending_snapshot->list,
 773		 &trans->transaction->pending_snapshots);
 774	spin_unlock(&fs_info->trans_lock);
 775
 776	ret = btrfs_commit_transaction(trans);
 777	if (ret)
 778		goto fail;
 
 
 
 
 
 779
 780	ret = pending_snapshot->error;
 781	if (ret)
 782		goto fail;
 783
 784	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 785	if (ret)
 786		goto fail;
 787
 788	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 789	if (IS_ERR(inode)) {
 790		ret = PTR_ERR(inode);
 791		goto fail;
 792	}
 793
 794	d_instantiate(dentry, inode);
 795	ret = 0;
 796	pending_snapshot->anon_dev = 0;
 797fail:
 798	/* Prevent double freeing of anon_dev */
 799	if (ret && pending_snapshot->snap)
 800		pending_snapshot->snap->anon_dev = 0;
 801	btrfs_put_root(pending_snapshot->snap);
 802	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 803free_pending:
 804	if (pending_snapshot->anon_dev)
 805		free_anon_bdev(pending_snapshot->anon_dev);
 806	kfree(pending_snapshot->root_item);
 807	btrfs_free_path(pending_snapshot->path);
 808	kfree(pending_snapshot);
 
 
 
 
 
 
 
 
 
 
 809
 810	return ret;
 
 
 
 
 
 
 811}
 812
 813/*  copy of may_delete in fs/namei.c()
 814 *	Check whether we can remove a link victim from directory dir, check
 815 *  whether the type of victim is right.
 816 *  1. We can't do it if dir is read-only (done in permission())
 817 *  2. We should have write and exec permissions on dir
 818 *  3. We can't remove anything from append-only dir
 819 *  4. We can't do anything with immutable dir (done in permission())
 820 *  5. If the sticky bit on dir is set we should either
 821 *	a. be owner of dir, or
 822 *	b. be owner of victim, or
 823 *	c. have CAP_FOWNER capability
 824 *  6. If the victim is append-only or immutable we can't do anything with
 825 *     links pointing to it.
 826 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 827 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 828 *  9. We can't remove a root or mountpoint.
 829 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 830 *     nfs_async_unlink().
 831 */
 832
 833static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 834{
 835	int error;
 836
 837	if (d_really_is_negative(victim))
 838		return -ENOENT;
 839
 840	BUG_ON(d_inode(victim->d_parent) != dir);
 841	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 842
 843	error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 844	if (error)
 845		return error;
 846	if (IS_APPEND(dir))
 847		return -EPERM;
 848	if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
 849	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 850	    IS_SWAPFILE(d_inode(victim)))
 851		return -EPERM;
 852	if (isdir) {
 853		if (!d_is_dir(victim))
 854			return -ENOTDIR;
 855		if (IS_ROOT(victim))
 856			return -EBUSY;
 857	} else if (d_is_dir(victim))
 858		return -EISDIR;
 859	if (IS_DEADDIR(dir))
 860		return -ENOENT;
 861	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 862		return -EBUSY;
 863	return 0;
 864}
 865
 866/* copy of may_create in fs/namei.c() */
 867static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 868{
 869	if (d_really_is_positive(child))
 870		return -EEXIST;
 871	if (IS_DEADDIR(dir))
 872		return -ENOENT;
 873	return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 874}
 875
 876/*
 877 * Create a new subvolume below @parent.  This is largely modeled after
 878 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 879 * inside this filesystem so it's quite a bit simpler.
 880 */
 881static noinline int btrfs_mksubvol(const struct path *parent,
 882				   const char *name, int namelen,
 883				   struct btrfs_root *snap_src,
 884				   bool readonly,
 885				   struct btrfs_qgroup_inherit *inherit)
 886{
 887	struct inode *dir = d_inode(parent->dentry);
 888	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 889	struct dentry *dentry;
 890	int error;
 891
 892	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 893	if (error == -EINTR)
 894		return error;
 895
 896	dentry = lookup_one_len(name, parent->dentry, namelen);
 897	error = PTR_ERR(dentry);
 898	if (IS_ERR(dentry))
 899		goto out_unlock;
 900
 901	error = btrfs_may_create(dir, dentry);
 
 
 
 
 902	if (error)
 903		goto out_dput;
 904
 905	/*
 906	 * even if this name doesn't exist, we may get hash collisions.
 907	 * check for them now when we can safely fail
 908	 */
 909	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 910					       dir->i_ino, name,
 911					       namelen);
 912	if (error)
 913		goto out_dput;
 914
 915	down_read(&fs_info->subvol_sem);
 916
 917	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 918		goto out_up_read;
 919
 920	if (snap_src)
 921		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 922	else
 923		error = create_subvol(dir, dentry, name, namelen, inherit);
 924
 
 
 925	if (!error)
 926		fsnotify_mkdir(dir, dentry);
 927out_up_read:
 928	up_read(&fs_info->subvol_sem);
 
 
 929out_dput:
 930	dput(dentry);
 931out_unlock:
 932	btrfs_inode_unlock(dir, 0);
 933	return error;
 934}
 935
 936static noinline int btrfs_mksnapshot(const struct path *parent,
 937				   const char *name, int namelen,
 938				   struct btrfs_root *root,
 939				   bool readonly,
 940				   struct btrfs_qgroup_inherit *inherit)
 941{
 942	int ret;
 943	bool snapshot_force_cow = false;
 944
 945	/*
 946	 * Force new buffered writes to reserve space even when NOCOW is
 947	 * possible. This is to avoid later writeback (running dealloc) to
 948	 * fallback to COW mode and unexpectedly fail with ENOSPC.
 949	 */
 950	btrfs_drew_read_lock(&root->snapshot_lock);
 951
 952	ret = btrfs_start_delalloc_snapshot(root, false);
 953	if (ret)
 954		goto out;
 955
 956	/*
 957	 * All previous writes have started writeback in NOCOW mode, so now
 958	 * we force future writes to fallback to COW mode during snapshot
 959	 * creation.
 960	 */
 961	atomic_inc(&root->snapshot_force_cow);
 962	snapshot_force_cow = true;
 963
 964	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 965
 966	ret = btrfs_mksubvol(parent, name, namelen,
 967			     root, readonly, inherit);
 968out:
 969	if (snapshot_force_cow)
 970		atomic_dec(&root->snapshot_force_cow);
 971	btrfs_drew_read_unlock(&root->snapshot_lock);
 972	return ret;
 973}
 974
 975/*
 976 * When we're defragging a range, we don't want to kick it off again
 977 * if it is really just waiting for delalloc to send it down.
 978 * If we find a nice big extent or delalloc range for the bytes in the
 979 * file you want to defrag, we return 0 to let you know to skip this
 980 * part of the file
 981 */
 982static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 983{
 984	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 985	struct extent_map *em = NULL;
 986	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 987	u64 end;
 988
 989	read_lock(&em_tree->lock);
 990	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
 991	read_unlock(&em_tree->lock);
 992
 993	if (em) {
 994		end = extent_map_end(em);
 995		free_extent_map(em);
 996		if (end - offset > thresh)
 997			return 0;
 998	}
 999	/* if we already have a nice delalloc here, just stop */
1000	thresh /= 2;
1001	end = count_range_bits(io_tree, &offset, offset + thresh,
1002			       thresh, EXTENT_DELALLOC, 1);
1003	if (end >= thresh)
1004		return 0;
1005	return 1;
1006}
1007
1008/*
1009 * helper function to walk through a file and find extents
1010 * newer than a specific transid, and smaller than thresh.
1011 *
1012 * This is used by the defragging code to find new and small
1013 * extents
1014 */
1015static int find_new_extents(struct btrfs_root *root,
1016			    struct inode *inode, u64 newer_than,
1017			    u64 *off, u32 thresh)
1018{
1019	struct btrfs_path *path;
1020	struct btrfs_key min_key;
 
1021	struct extent_buffer *leaf;
1022	struct btrfs_file_extent_item *extent;
1023	int type;
1024	int ret;
1025	u64 ino = btrfs_ino(BTRFS_I(inode));
1026
1027	path = btrfs_alloc_path();
1028	if (!path)
1029		return -ENOMEM;
1030
1031	min_key.objectid = ino;
1032	min_key.type = BTRFS_EXTENT_DATA_KEY;
1033	min_key.offset = *off;
1034
1035	while (1) {
1036		ret = btrfs_search_forward(root, &min_key, path, newer_than);
 
 
 
 
 
 
 
1037		if (ret != 0)
1038			goto none;
1039process_slot:
1040		if (min_key.objectid != ino)
1041			goto none;
1042		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1043			goto none;
1044
1045		leaf = path->nodes[0];
1046		extent = btrfs_item_ptr(leaf, path->slots[0],
1047					struct btrfs_file_extent_item);
1048
1049		type = btrfs_file_extent_type(leaf, extent);
1050		if (type == BTRFS_FILE_EXTENT_REG &&
1051		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1052		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1053			*off = min_key.offset;
1054			btrfs_free_path(path);
1055			return 0;
1056		}
1057
1058		path->slots[0]++;
1059		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1060			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1061			goto process_slot;
1062		}
1063
1064		if (min_key.offset == (u64)-1)
1065			goto none;
1066
1067		min_key.offset++;
1068		btrfs_release_path(path);
1069	}
1070none:
1071	btrfs_free_path(path);
1072	return -ENOENT;
1073}
1074
1075static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
 
 
1076{
 
 
1077	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1078	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1079	struct extent_map *em;
1080	u64 len = PAGE_SIZE;
 
 
 
 
 
 
 
1081
1082	/*
1083	 * hopefully we have this extent in the tree already, try without
1084	 * the full extent lock
1085	 */
1086	read_lock(&em_tree->lock);
1087	em = lookup_extent_mapping(em_tree, start, len);
1088	read_unlock(&em_tree->lock);
1089
1090	if (!em) {
1091		struct extent_state *cached = NULL;
1092		u64 end = start + len - 1;
1093
1094		/* get the big lock and read metadata off disk */
1095		lock_extent_bits(io_tree, start, end, &cached);
1096		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1097		unlock_extent_cached(io_tree, start, end, &cached);
1098
1099		if (IS_ERR(em))
1100			return NULL;
1101	}
1102
1103	return em;
1104}
1105
1106static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1107{
1108	struct extent_map *next;
1109	bool ret = true;
1110
1111	/* this is the last extent */
1112	if (em->start + em->len >= i_size_read(inode))
1113		return false;
1114
1115	next = defrag_lookup_extent(inode, em->start + em->len);
1116	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1117		ret = false;
1118	else if ((em->block_start + em->block_len == next->block_start) &&
1119		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1120		ret = false;
1121
1122	free_extent_map(next);
1123	return ret;
1124}
1125
1126static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1127			       u64 *last_len, u64 *skip, u64 *defrag_end,
1128			       int compress)
1129{
1130	struct extent_map *em;
1131	int ret = 1;
1132	bool next_mergeable = true;
1133	bool prev_mergeable = true;
1134
1135	/*
1136	 * make sure that once we start defragging an extent, we keep on
1137	 * defragging it
1138	 */
1139	if (start < *defrag_end)
1140		return 1;
1141
1142	*skip = 0;
1143
1144	em = defrag_lookup_extent(inode, start);
1145	if (!em)
1146		return 0;
1147
1148	/* this will cover holes, and inline extents */
1149	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1150		ret = 0;
1151		goto out;
1152	}
1153
1154	if (!*defrag_end)
1155		prev_mergeable = false;
1156
1157	next_mergeable = defrag_check_next_extent(inode, em);
1158	/*
1159	 * we hit a real extent, if it is big or the next extent is not a
1160	 * real extent, don't bother defragging it
1161	 */
1162	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1163	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1164		ret = 0;
1165out:
1166	/*
1167	 * last_len ends up being a counter of how many bytes we've defragged.
1168	 * every time we choose not to defrag an extent, we reset *last_len
1169	 * so that the next tiny extent will force a defrag.
1170	 *
1171	 * The end result of this is that tiny extents before a single big
1172	 * extent will force at least part of that big extent to be defragged.
1173	 */
1174	if (ret) {
 
1175		*defrag_end = extent_map_end(em);
1176	} else {
1177		*last_len = 0;
1178		*skip = extent_map_end(em);
1179		*defrag_end = 0;
1180	}
1181
1182	free_extent_map(em);
1183	return ret;
1184}
1185
1186/*
1187 * it doesn't do much good to defrag one or two pages
1188 * at a time.  This pulls in a nice chunk of pages
1189 * to COW and defrag.
1190 *
1191 * It also makes sure the delalloc code has enough
1192 * dirty data to avoid making new small extents as part
1193 * of the defrag
1194 *
1195 * It's a good idea to start RA on this range
1196 * before calling this.
1197 */
1198static int cluster_pages_for_defrag(struct inode *inode,
1199				    struct page **pages,
1200				    unsigned long start_index,
1201				    unsigned long num_pages)
1202{
1203	unsigned long file_end;
1204	u64 isize = i_size_read(inode);
1205	u64 page_start;
1206	u64 page_end;
1207	u64 page_cnt;
1208	u64 start = (u64)start_index << PAGE_SHIFT;
1209	u64 search_start;
1210	int ret;
1211	int i;
1212	int i_done;
1213	struct btrfs_ordered_extent *ordered;
1214	struct extent_state *cached_state = NULL;
1215	struct extent_io_tree *tree;
1216	struct extent_changeset *data_reserved = NULL;
1217	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1218
1219	file_end = (isize - 1) >> PAGE_SHIFT;
1220	if (!isize || start_index > file_end)
1221		return 0;
 
1222
1223	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1224
1225	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1226			start, page_cnt << PAGE_SHIFT);
1227	if (ret)
1228		return ret;
 
 
1229	i_done = 0;
1230	tree = &BTRFS_I(inode)->io_tree;
1231
1232	/* step one, lock all the pages */
1233	for (i = 0; i < page_cnt; i++) {
1234		struct page *page;
1235again:
1236		page = find_or_create_page(inode->i_mapping,
1237					   start_index + i, mask);
1238		if (!page)
1239			break;
1240
1241		ret = set_page_extent_mapped(page);
1242		if (ret < 0) {
1243			unlock_page(page);
1244			put_page(page);
1245			break;
1246		}
1247
1248		page_start = page_offset(page);
1249		page_end = page_start + PAGE_SIZE - 1;
1250		while (1) {
1251			lock_extent_bits(tree, page_start, page_end,
1252					 &cached_state);
1253			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1254							      page_start);
1255			unlock_extent_cached(tree, page_start, page_end,
1256					     &cached_state);
1257			if (!ordered)
1258				break;
1259
1260			unlock_page(page);
1261			btrfs_start_ordered_extent(ordered, 1);
1262			btrfs_put_ordered_extent(ordered);
1263			lock_page(page);
1264			/*
1265			 * we unlocked the page above, so we need check if
1266			 * it was released or not.
1267			 */
1268			if (page->mapping != inode->i_mapping) {
1269				unlock_page(page);
1270				put_page(page);
1271				goto again;
1272			}
1273		}
1274
1275		if (!PageUptodate(page)) {
1276			btrfs_readpage(NULL, page);
1277			lock_page(page);
1278			if (!PageUptodate(page)) {
1279				unlock_page(page);
1280				put_page(page);
1281				ret = -EIO;
1282				break;
1283			}
1284		}
1285
1286		if (page->mapping != inode->i_mapping) {
 
 
 
1287			unlock_page(page);
1288			put_page(page);
1289			goto again;
1290		}
1291
1292		pages[i] = page;
1293		i_done++;
1294	}
1295	if (!i_done || ret)
1296		goto out;
1297
1298	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1299		goto out;
1300
1301	/*
1302	 * so now we have a nice long stream of locked
1303	 * and up to date pages, lets wait on them
1304	 */
1305	for (i = 0; i < i_done; i++)
1306		wait_on_page_writeback(pages[i]);
1307
1308	page_start = page_offset(pages[0]);
1309	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1310
1311	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1312			 page_start, page_end - 1, &cached_state);
1313
1314	/*
1315	 * When defragmenting we skip ranges that have holes or inline extents,
1316	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1317	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1318	 * before locking the inode and then, if it should, we trigger a sync
1319	 * page cache readahead - we lock the inode only after that to avoid
1320	 * blocking for too long other tasks that possibly want to operate on
1321	 * other file ranges. But before we were able to get the inode lock,
1322	 * some other task may have punched a hole in the range, or we may have
1323	 * now an inline extent, in which case we should not defrag. So check
1324	 * for that here, where we have the inode and the range locked, and bail
1325	 * out if that happened.
1326	 */
1327	search_start = page_start;
1328	while (search_start < page_end) {
1329		struct extent_map *em;
1330
1331		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1332				      page_end - search_start);
1333		if (IS_ERR(em)) {
1334			ret = PTR_ERR(em);
1335			goto out_unlock_range;
1336		}
1337		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1338			free_extent_map(em);
1339			/* Ok, 0 means we did not defrag anything */
1340			ret = 0;
1341			goto out_unlock_range;
1342		}
1343		search_start = extent_map_end(em);
1344		free_extent_map(em);
1345	}
 
 
1346
1347	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1348			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1349			  EXTENT_DEFRAG, 0, 0, &cached_state);
 
1350
1351	if (i_done != page_cnt) {
1352		spin_lock(&BTRFS_I(inode)->lock);
1353		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1354		spin_unlock(&BTRFS_I(inode)->lock);
1355		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1356				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1357	}
1358
1359
1360	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1361			  &cached_state);
1362
1363	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1364			     page_start, page_end - 1, &cached_state);
 
1365
1366	for (i = 0; i < i_done; i++) {
1367		clear_page_dirty_for_io(pages[i]);
1368		ClearPageChecked(pages[i]);
 
1369		set_page_dirty(pages[i]);
1370		unlock_page(pages[i]);
1371		put_page(pages[i]);
1372	}
1373	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1374	extent_changeset_free(data_reserved);
1375	return i_done;
1376
1377out_unlock_range:
1378	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379			     page_start, page_end - 1, &cached_state);
1380out:
1381	for (i = 0; i < i_done; i++) {
1382		unlock_page(pages[i]);
1383		put_page(pages[i]);
1384	}
1385	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1386			start, page_cnt << PAGE_SHIFT, true);
1387	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1388	extent_changeset_free(data_reserved);
1389	return ret;
1390
1391}
1392
1393int btrfs_defrag_file(struct inode *inode, struct file *file,
1394		      struct btrfs_ioctl_defrag_range_args *range,
1395		      u64 newer_than, unsigned long max_to_defrag)
1396{
1397	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398	struct btrfs_root *root = BTRFS_I(inode)->root;
 
1399	struct file_ra_state *ra = NULL;
1400	unsigned long last_index;
1401	u64 isize = i_size_read(inode);
1402	u64 last_len = 0;
1403	u64 skip = 0;
1404	u64 defrag_end = 0;
1405	u64 newer_off = range->start;
 
1406	unsigned long i;
1407	unsigned long ra_index = 0;
1408	int ret;
1409	int defrag_count = 0;
1410	int compress_type = BTRFS_COMPRESS_ZLIB;
1411	u32 extent_thresh = range->extent_thresh;
1412	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1413	unsigned long cluster = max_cluster;
1414	u64 new_align = ~((u64)SZ_128K - 1);
1415	struct page **pages = NULL;
1416	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1417
1418	if (isize == 0)
1419		return 0;
1420
1421	if (range->start >= isize)
1422		return -EINVAL;
1423
1424	if (do_compress) {
1425		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1426			return -EINVAL;
1427		if (range->compress_type)
1428			compress_type = range->compress_type;
1429	}
1430
1431	if (extent_thresh == 0)
1432		extent_thresh = SZ_256K;
1433
1434	/*
1435	 * If we were not given a file, allocate a readahead context. As
1436	 * readahead is just an optimization, defrag will work without it so
1437	 * we don't error out.
1438	 */
1439	if (!file) {
1440		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1441		if (ra)
1442			file_ra_state_init(ra, inode->i_mapping);
 
1443	} else {
1444		ra = &file->f_ra;
1445	}
1446
1447	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
 
1448	if (!pages) {
1449		ret = -ENOMEM;
1450		goto out_ra;
1451	}
1452
1453	/* find the last page to defrag */
1454	if (range->start + range->len > range->start) {
1455		last_index = min_t(u64, isize - 1,
1456			 range->start + range->len - 1) >> PAGE_SHIFT;
1457	} else {
1458		last_index = (isize - 1) >> PAGE_SHIFT;
1459	}
1460
1461	if (newer_than) {
1462		ret = find_new_extents(root, inode, newer_than,
1463				       &newer_off, SZ_64K);
1464		if (!ret) {
1465			range->start = newer_off;
1466			/*
1467			 * we always align our defrag to help keep
1468			 * the extents in the file evenly spaced
1469			 */
1470			i = (newer_off & new_align) >> PAGE_SHIFT;
 
1471		} else
1472			goto out_ra;
1473	} else {
1474		i = range->start >> PAGE_SHIFT;
1475	}
1476	if (!max_to_defrag)
1477		max_to_defrag = last_index - i + 1;
1478
1479	/*
1480	 * make writeback starts from i, so the defrag range can be
1481	 * written sequentially.
1482	 */
1483	if (i < inode->i_mapping->writeback_index)
1484		inode->i_mapping->writeback_index = i;
1485
1486	while (i <= last_index && defrag_count < max_to_defrag &&
1487	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
 
1488		/*
1489		 * make sure we stop running if someone unmounts
1490		 * the FS
1491		 */
1492		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1493			break;
1494
1495		if (btrfs_defrag_cancelled(fs_info)) {
1496			btrfs_debug(fs_info, "defrag_file cancelled");
1497			ret = -EAGAIN;
1498			goto error;
1499		}
1500
1501		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1502					 extent_thresh, &last_len, &skip,
1503					 &defrag_end, do_compress)){
1504			unsigned long next;
1505			/*
1506			 * the should_defrag function tells us how much to skip
1507			 * bump our counter by the suggested amount
1508			 */
1509			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1510			i = max(i + 1, next);
1511			continue;
1512		}
 
 
1513
1514		if (!newer_than) {
1515			cluster = (PAGE_ALIGN(defrag_end) >>
1516				   PAGE_SHIFT) - i;
1517			cluster = min(cluster, max_cluster);
1518		} else {
1519			cluster = max_cluster;
1520		}
1521
1522		if (i + cluster > ra_index) {
1523			ra_index = max(i, ra_index);
1524			if (ra)
1525				page_cache_sync_readahead(inode->i_mapping, ra,
1526						file, ra_index, cluster);
1527			ra_index += cluster;
1528		}
1529
1530		btrfs_inode_lock(inode, 0);
1531		if (IS_SWAPFILE(inode)) {
1532			ret = -ETXTBSY;
1533		} else {
1534			if (do_compress)
1535				BTRFS_I(inode)->defrag_compress = compress_type;
1536			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1537		}
1538		if (ret < 0) {
1539			btrfs_inode_unlock(inode, 0);
1540			goto out_ra;
1541		}
1542
1543		defrag_count += ret;
1544		balance_dirty_pages_ratelimited(inode->i_mapping);
1545		btrfs_inode_unlock(inode, 0);
1546
1547		if (newer_than) {
1548			if (newer_off == (u64)-1)
1549				break;
1550
1551			if (ret > 0)
1552				i += ret;
1553
1554			newer_off = max(newer_off + 1,
1555					(u64)i << PAGE_SHIFT);
1556
1557			ret = find_new_extents(root, inode, newer_than,
1558					       &newer_off, SZ_64K);
 
1559			if (!ret) {
1560				range->start = newer_off;
1561				i = (newer_off & new_align) >> PAGE_SHIFT;
 
1562			} else {
1563				break;
1564			}
1565		} else {
1566			if (ret > 0) {
1567				i += ret;
1568				last_len += ret << PAGE_SHIFT;
1569			} else {
1570				i++;
1571				last_len = 0;
1572			}
1573		}
1574	}
1575
1576	ret = defrag_count;
1577error:
1578	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1579		filemap_flush(inode->i_mapping);
1580		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1581			     &BTRFS_I(inode)->runtime_flags))
1582			filemap_flush(inode->i_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583	}
1584
 
 
1585	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1586		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1587	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1588		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1589	}
1590
 
 
 
 
1591out_ra:
1592	if (do_compress) {
1593		btrfs_inode_lock(inode, 0);
1594		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1595		btrfs_inode_unlock(inode, 0);
1596	}
1597	if (!file)
1598		kfree(ra);
1599	kfree(pages);
1600	return ret;
1601}
1602
1603/*
1604 * Try to start exclusive operation @type or cancel it if it's running.
1605 *
1606 * Return:
1607 *   0        - normal mode, newly claimed op started
1608 *  >0        - normal mode, something else is running,
1609 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1610 * ECANCELED  - cancel mode, successful cancel
1611 * ENOTCONN   - cancel mode, operation not running anymore
1612 */
1613static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1614			enum btrfs_exclusive_operation type, bool cancel)
1615{
1616	if (!cancel) {
1617		/* Start normal op */
1618		if (!btrfs_exclop_start(fs_info, type))
1619			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620		/* Exclusive operation is now claimed */
1621		return 0;
1622	}
1623
1624	/* Cancel running op */
1625	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1626		/*
1627		 * This blocks any exclop finish from setting it to NONE, so we
1628		 * request cancellation. Either it runs and we will wait for it,
1629		 * or it has finished and no waiting will happen.
1630		 */
1631		atomic_inc(&fs_info->reloc_cancel_req);
1632		btrfs_exclop_start_unlock(fs_info);
1633
1634		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1635			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1636				    TASK_INTERRUPTIBLE);
1637
1638		return -ECANCELED;
1639	}
1640
1641	/* Something else is running or none */
1642	return -ENOTCONN;
1643}
1644
1645static noinline int btrfs_ioctl_resize(struct file *file,
1646					void __user *arg)
1647{
1648	struct inode *inode = file_inode(file);
1649	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1650	u64 new_size;
1651	u64 old_size;
1652	u64 devid = 1;
1653	struct btrfs_root *root = BTRFS_I(inode)->root;
1654	struct btrfs_ioctl_vol_args *vol_args;
1655	struct btrfs_trans_handle *trans;
1656	struct btrfs_device *device = NULL;
1657	char *sizestr;
1658	char *retptr;
1659	char *devstr = NULL;
1660	int ret = 0;
1661	int mod = 0;
1662	bool cancel;
 
 
1663
1664	if (!capable(CAP_SYS_ADMIN))
1665		return -EPERM;
1666
1667	ret = mnt_want_write_file(file);
1668	if (ret)
1669		return ret;
1670
1671	/*
1672	 * Read the arguments before checking exclusivity to be able to
1673	 * distinguish regular resize and cancel
1674	 */
1675	vol_args = memdup_user(arg, sizeof(*vol_args));
1676	if (IS_ERR(vol_args)) {
1677		ret = PTR_ERR(vol_args);
1678		goto out_drop;
1679	}
1680	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
1681	sizestr = vol_args->name;
1682	cancel = (strcmp("cancel", sizestr) == 0);
1683	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1684	if (ret)
1685		goto out_free;
1686	/* Exclusive operation is now claimed */
1687
1688	devstr = strchr(sizestr, ':');
1689	if (devstr) {
 
1690		sizestr = devstr + 1;
1691		*devstr = '\0';
1692		devstr = vol_args->name;
1693		ret = kstrtoull(devstr, 10, &devid);
1694		if (ret)
1695			goto out_finish;
1696		if (!devid) {
1697			ret = -EINVAL;
1698			goto out_finish;
1699		}
1700		btrfs_info(fs_info, "resizing devid %llu", devid);
1701	}
1702
1703	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1704	if (!device) {
1705		btrfs_info(fs_info, "resizer unable to find device %llu",
1706			   devid);
1707		ret = -ENODEV;
1708		goto out_finish;
1709	}
1710
1711	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1712		btrfs_info(fs_info,
1713			   "resizer unable to apply on readonly device %llu",
1714		       devid);
1715		ret = -EPERM;
1716		goto out_finish;
1717	}
1718
1719	if (!strcmp(sizestr, "max"))
1720		new_size = device->bdev->bd_inode->i_size;
1721	else {
1722		if (sizestr[0] == '-') {
1723			mod = -1;
1724			sizestr++;
1725		} else if (sizestr[0] == '+') {
1726			mod = 1;
1727			sizestr++;
1728		}
1729		new_size = memparse(sizestr, &retptr);
1730		if (*retptr != '\0' || new_size == 0) {
1731			ret = -EINVAL;
1732			goto out_finish;
1733		}
1734	}
1735
1736	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1737		ret = -EPERM;
1738		goto out_finish;
1739	}
1740
1741	old_size = btrfs_device_get_total_bytes(device);
1742
1743	if (mod < 0) {
1744		if (new_size > old_size) {
1745			ret = -EINVAL;
1746			goto out_finish;
1747		}
1748		new_size = old_size - new_size;
1749	} else if (mod > 0) {
1750		if (new_size > ULLONG_MAX - old_size) {
1751			ret = -ERANGE;
1752			goto out_finish;
1753		}
1754		new_size = old_size + new_size;
1755	}
1756
1757	if (new_size < SZ_256M) {
1758		ret = -EINVAL;
1759		goto out_finish;
1760	}
1761	if (new_size > device->bdev->bd_inode->i_size) {
1762		ret = -EFBIG;
1763		goto out_finish;
1764	}
1765
1766	new_size = round_down(new_size, fs_info->sectorsize);
 
 
 
 
1767
1768	if (new_size > old_size) {
1769		trans = btrfs_start_transaction(root, 0);
1770		if (IS_ERR(trans)) {
1771			ret = PTR_ERR(trans);
1772			goto out_finish;
1773		}
1774		ret = btrfs_grow_device(trans, device, new_size);
1775		btrfs_commit_transaction(trans);
1776	} else if (new_size < old_size) {
1777		ret = btrfs_shrink_device(device, new_size);
1778	} /* equal, nothing need to do */
1779
1780	if (ret == 0 && new_size != old_size)
1781		btrfs_info_in_rcu(fs_info,
1782			"resize device %s (devid %llu) from %llu to %llu",
1783			rcu_str_deref(device->name), device->devid,
1784			old_size, new_size);
1785out_finish:
1786	btrfs_exclop_finish(fs_info);
1787out_free:
1788	kfree(vol_args);
1789out_drop:
1790	mnt_drop_write_file(file);
1791	return ret;
1792}
1793
1794static noinline int __btrfs_ioctl_snap_create(struct file *file,
1795				const char *name, unsigned long fd, int subvol,
1796				bool readonly,
1797				struct btrfs_qgroup_inherit *inherit)
 
 
1798{
 
 
1799	int namelen;
1800	int ret = 0;
1801
1802	if (!S_ISDIR(file_inode(file)->i_mode))
1803		return -ENOTDIR;
1804
1805	ret = mnt_want_write_file(file);
1806	if (ret)
1807		goto out;
1808
1809	namelen = strlen(name);
1810	if (strchr(name, '/')) {
1811		ret = -EINVAL;
1812		goto out_drop_write;
1813	}
1814
1815	if (name[0] == '.' &&
1816	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1817		ret = -EEXIST;
1818		goto out_drop_write;
1819	}
1820
1821	if (subvol) {
1822		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1823				     NULL, readonly, inherit);
1824	} else {
1825		struct fd src = fdget(fd);
1826		struct inode *src_inode;
1827		if (!src.file) {
 
1828			ret = -EINVAL;
1829			goto out_drop_write;
1830		}
1831
1832		src_inode = file_inode(src.file);
1833		if (src_inode->i_sb != file_inode(file)->i_sb) {
1834			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1835				   "Snapshot src from another FS");
1836			ret = -EXDEV;
1837		} else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1838			/*
1839			 * Subvolume creation is not restricted, but snapshots
1840			 * are limited to own subvolumes only
1841			 */
1842			ret = -EPERM;
1843		} else {
1844			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1845					     BTRFS_I(src_inode)->root,
1846					     readonly, inherit);
1847		}
1848		fdput(src);
 
 
 
1849	}
1850out_drop_write:
1851	mnt_drop_write_file(file);
1852out:
1853	return ret;
1854}
1855
1856static noinline int btrfs_ioctl_snap_create(struct file *file,
1857					    void __user *arg, int subvol)
1858{
1859	struct btrfs_ioctl_vol_args *vol_args;
1860	int ret;
1861
1862	if (!S_ISDIR(file_inode(file)->i_mode))
1863		return -ENOTDIR;
1864
1865	vol_args = memdup_user(arg, sizeof(*vol_args));
1866	if (IS_ERR(vol_args))
1867		return PTR_ERR(vol_args);
1868	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1869
1870	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1871					subvol, false, NULL);
 
1872
1873	kfree(vol_args);
1874	return ret;
1875}
1876
1877static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1878					       void __user *arg, int subvol)
1879{
1880	struct btrfs_ioctl_vol_args_v2 *vol_args;
1881	int ret;
 
 
1882	bool readonly = false;
1883	struct btrfs_qgroup_inherit *inherit = NULL;
1884
1885	if (!S_ISDIR(file_inode(file)->i_mode))
1886		return -ENOTDIR;
1887
1888	vol_args = memdup_user(arg, sizeof(*vol_args));
1889	if (IS_ERR(vol_args))
1890		return PTR_ERR(vol_args);
1891	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1892
1893	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
 
1894		ret = -EOPNOTSUPP;
1895		goto free_args;
1896	}
1897
 
 
1898	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1899		readonly = true;
1900	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1901		u64 nums;
1902
1903		if (vol_args->size < sizeof(*inherit) ||
1904		    vol_args->size > PAGE_SIZE) {
1905			ret = -EINVAL;
1906			goto free_args;
1907		}
1908		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1909		if (IS_ERR(inherit)) {
1910			ret = PTR_ERR(inherit);
1911			goto free_args;
1912		}
1913
1914		if (inherit->num_qgroups > PAGE_SIZE ||
1915		    inherit->num_ref_copies > PAGE_SIZE ||
1916		    inherit->num_excl_copies > PAGE_SIZE) {
1917			ret = -EINVAL;
1918			goto free_inherit;
1919		}
1920
1921		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1922		       2 * inherit->num_excl_copies;
1923		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1924			ret = -EINVAL;
1925			goto free_inherit;
1926		}
1927	}
1928
1929	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1930					subvol, readonly, inherit);
1931	if (ret)
1932		goto free_inherit;
1933free_inherit:
1934	kfree(inherit);
1935free_args:
1936	kfree(vol_args);
1937	return ret;
1938}
1939
1940static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1941						void __user *arg)
1942{
1943	struct inode *inode = file_inode(file);
1944	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1945	struct btrfs_root *root = BTRFS_I(inode)->root;
1946	int ret = 0;
1947	u64 flags = 0;
1948
1949	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1950		return -EINVAL;
1951
1952	down_read(&fs_info->subvol_sem);
1953	if (btrfs_root_readonly(root))
1954		flags |= BTRFS_SUBVOL_RDONLY;
1955	up_read(&fs_info->subvol_sem);
1956
1957	if (copy_to_user(arg, &flags, sizeof(flags)))
1958		ret = -EFAULT;
1959
1960	return ret;
1961}
1962
1963static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1964					      void __user *arg)
1965{
1966	struct inode *inode = file_inode(file);
1967	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1968	struct btrfs_root *root = BTRFS_I(inode)->root;
1969	struct btrfs_trans_handle *trans;
1970	u64 root_flags;
1971	u64 flags;
1972	int ret = 0;
1973
1974	if (!inode_owner_or_capable(&init_user_ns, inode))
1975		return -EPERM;
 
 
 
1976
1977	ret = mnt_want_write_file(file);
1978	if (ret)
1979		goto out;
1980
1981	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1982		ret = -EINVAL;
1983		goto out_drop_write;
1984	}
1985
1986	if (copy_from_user(&flags, arg, sizeof(flags))) {
1987		ret = -EFAULT;
1988		goto out_drop_write;
1989	}
1990
1991	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1992		ret = -EOPNOTSUPP;
1993		goto out_drop_write;
1994	}
1995
1996	down_write(&fs_info->subvol_sem);
1997
1998	/* nothing to do */
1999	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2000		goto out_drop_sem;
2001
2002	root_flags = btrfs_root_flags(&root->root_item);
2003	if (flags & BTRFS_SUBVOL_RDONLY) {
2004		btrfs_set_root_flags(&root->root_item,
2005				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2006	} else {
2007		/*
2008		 * Block RO -> RW transition if this subvolume is involved in
2009		 * send
2010		 */
2011		spin_lock(&root->root_item_lock);
2012		if (root->send_in_progress == 0) {
2013			btrfs_set_root_flags(&root->root_item,
2014				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2015			spin_unlock(&root->root_item_lock);
2016		} else {
2017			spin_unlock(&root->root_item_lock);
2018			btrfs_warn(fs_info,
2019				   "Attempt to set subvolume %llu read-write during send",
2020				   root->root_key.objectid);
2021			ret = -EPERM;
2022			goto out_drop_sem;
2023		}
2024	}
2025
2026	trans = btrfs_start_transaction(root, 1);
2027	if (IS_ERR(trans)) {
2028		ret = PTR_ERR(trans);
2029		goto out_reset;
2030	}
2031
2032	ret = btrfs_update_root(trans, fs_info->tree_root,
2033				&root->root_key, &root->root_item);
2034	if (ret < 0) {
2035		btrfs_end_transaction(trans);
2036		goto out_reset;
2037	}
2038
2039	ret = btrfs_commit_transaction(trans);
2040
 
2041out_reset:
2042	if (ret)
2043		btrfs_set_root_flags(&root->root_item, root_flags);
2044out_drop_sem:
2045	up_write(&fs_info->subvol_sem);
2046out_drop_write:
2047	mnt_drop_write_file(file);
2048out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	return ret;
2050}
2051
2052static noinline int key_in_sk(struct btrfs_key *key,
2053			      struct btrfs_ioctl_search_key *sk)
2054{
2055	struct btrfs_key test;
2056	int ret;
2057
2058	test.objectid = sk->min_objectid;
2059	test.type = sk->min_type;
2060	test.offset = sk->min_offset;
2061
2062	ret = btrfs_comp_cpu_keys(key, &test);
2063	if (ret < 0)
2064		return 0;
2065
2066	test.objectid = sk->max_objectid;
2067	test.type = sk->max_type;
2068	test.offset = sk->max_offset;
2069
2070	ret = btrfs_comp_cpu_keys(key, &test);
2071	if (ret > 0)
2072		return 0;
2073	return 1;
2074}
2075
2076static noinline int copy_to_sk(struct btrfs_path *path,
 
2077			       struct btrfs_key *key,
2078			       struct btrfs_ioctl_search_key *sk,
2079			       size_t *buf_size,
2080			       char __user *ubuf,
2081			       unsigned long *sk_offset,
2082			       int *num_found)
2083{
2084	u64 found_transid;
2085	struct extent_buffer *leaf;
2086	struct btrfs_ioctl_search_header sh;
2087	struct btrfs_key test;
2088	unsigned long item_off;
2089	unsigned long item_len;
2090	int nritems;
2091	int i;
2092	int slot;
2093	int ret = 0;
2094
2095	leaf = path->nodes[0];
2096	slot = path->slots[0];
2097	nritems = btrfs_header_nritems(leaf);
2098
2099	if (btrfs_header_generation(leaf) > sk->max_transid) {
2100		i = nritems;
2101		goto advance_key;
2102	}
2103	found_transid = btrfs_header_generation(leaf);
2104
2105	for (i = slot; i < nritems; i++) {
2106		item_off = btrfs_item_ptr_offset(leaf, i);
2107		item_len = btrfs_item_size_nr(leaf, i);
2108
2109		btrfs_item_key_to_cpu(leaf, key, i);
2110		if (!key_in_sk(key, sk))
2111			continue;
2112
2113		if (sizeof(sh) + item_len > *buf_size) {
2114			if (*num_found) {
2115				ret = 1;
2116				goto out;
2117			}
2118
2119			/*
2120			 * return one empty item back for v1, which does not
2121			 * handle -EOVERFLOW
2122			 */
2123
2124			*buf_size = sizeof(sh) + item_len;
2125			item_len = 0;
2126			ret = -EOVERFLOW;
2127		}
2128
2129		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
 
2130			ret = 1;
2131			goto out;
2132		}
2133
 
 
 
 
2134		sh.objectid = key->objectid;
2135		sh.offset = key->offset;
2136		sh.type = key->type;
2137		sh.len = item_len;
2138		sh.transid = found_transid;
2139
2140		/*
2141		 * Copy search result header. If we fault then loop again so we
2142		 * can fault in the pages and -EFAULT there if there's a
2143		 * problem. Otherwise we'll fault and then copy the buffer in
2144		 * properly this next time through
2145		 */
2146		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2147			ret = 0;
2148			goto out;
2149		}
2150
2151		*sk_offset += sizeof(sh);
2152
2153		if (item_len) {
2154			char __user *up = ubuf + *sk_offset;
2155			/*
2156			 * Copy the item, same behavior as above, but reset the
2157			 * * sk_offset so we copy the full thing again.
2158			 */
2159			if (read_extent_buffer_to_user_nofault(leaf, up,
2160						item_off, item_len)) {
2161				ret = 0;
2162				*sk_offset -= sizeof(sh);
2163				goto out;
2164			}
2165
2166			*sk_offset += item_len;
2167		}
2168		(*num_found)++;
2169
2170		if (ret) /* -EOVERFLOW from above */
2171			goto out;
2172
2173		if (*num_found >= sk->nr_items) {
2174			ret = 1;
2175			goto out;
2176		}
2177	}
2178advance_key:
2179	ret = 0;
2180	test.objectid = sk->max_objectid;
2181	test.type = sk->max_type;
2182	test.offset = sk->max_offset;
2183	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2184		ret = 1;
2185	else if (key->offset < (u64)-1)
2186		key->offset++;
2187	else if (key->type < (u8)-1) {
2188		key->offset = 0;
2189		key->type++;
2190	} else if (key->objectid < (u64)-1) {
2191		key->offset = 0;
2192		key->type = 0;
2193		key->objectid++;
2194	} else
2195		ret = 1;
2196out:
2197	/*
2198	 *  0: all items from this leaf copied, continue with next
2199	 *  1: * more items can be copied, but unused buffer is too small
2200	 *     * all items were found
2201	 *     Either way, it will stops the loop which iterates to the next
2202	 *     leaf
2203	 *  -EOVERFLOW: item was to large for buffer
2204	 *  -EFAULT: could not copy extent buffer back to userspace
2205	 */
2206	return ret;
2207}
2208
2209static noinline int search_ioctl(struct inode *inode,
2210				 struct btrfs_ioctl_search_key *sk,
2211				 size_t *buf_size,
2212				 char __user *ubuf)
2213{
2214	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2215	struct btrfs_root *root;
2216	struct btrfs_key key;
 
2217	struct btrfs_path *path;
 
 
2218	int ret;
2219	int num_found = 0;
2220	unsigned long sk_offset = 0;
2221
2222	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2223		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2224		return -EOVERFLOW;
2225	}
2226
2227	path = btrfs_alloc_path();
2228	if (!path)
2229		return -ENOMEM;
2230
2231	if (sk->tree_id == 0) {
2232		/* search the root of the inode that was passed */
2233		root = btrfs_grab_root(BTRFS_I(inode)->root);
2234	} else {
2235		root = btrfs_get_fs_root(info, sk->tree_id, true);
 
 
 
2236		if (IS_ERR(root)) {
 
 
2237			btrfs_free_path(path);
2238			return PTR_ERR(root);
2239		}
2240	}
2241
2242	key.objectid = sk->min_objectid;
2243	key.type = sk->min_type;
2244	key.offset = sk->min_offset;
2245
2246	while (1) {
2247		ret = fault_in_pages_writeable(ubuf + sk_offset,
2248					       *buf_size - sk_offset);
2249		if (ret)
2250			break;
2251
2252		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
 
 
2253		if (ret != 0) {
2254			if (ret > 0)
2255				ret = 0;
2256			goto err;
2257		}
2258		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2259				 &sk_offset, &num_found);
2260		btrfs_release_path(path);
2261		if (ret)
2262			break;
2263
2264	}
2265	if (ret > 0)
2266		ret = 0;
2267err:
2268	sk->nr_items = num_found;
2269	btrfs_put_root(root);
2270	btrfs_free_path(path);
2271	return ret;
2272}
2273
2274static noinline int btrfs_ioctl_tree_search(struct file *file,
2275					   void __user *argp)
2276{
2277	struct btrfs_ioctl_search_args __user *uargs;
2278	struct btrfs_ioctl_search_key sk;
2279	struct inode *inode;
2280	int ret;
2281	size_t buf_size;
2282
2283	if (!capable(CAP_SYS_ADMIN))
2284		return -EPERM;
2285
2286	uargs = (struct btrfs_ioctl_search_args __user *)argp;
 
 
2287
2288	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2289		return -EFAULT;
2290
2291	buf_size = sizeof(uargs->buf);
2292
2293	inode = file_inode(file);
2294	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2295
2296	/*
2297	 * In the origin implementation an overflow is handled by returning a
2298	 * search header with a len of zero, so reset ret.
2299	 */
2300	if (ret == -EOVERFLOW)
2301		ret = 0;
2302
2303	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2304		ret = -EFAULT;
2305	return ret;
2306}
2307
2308static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2309					       void __user *argp)
2310{
2311	struct btrfs_ioctl_search_args_v2 __user *uarg;
2312	struct btrfs_ioctl_search_args_v2 args;
2313	struct inode *inode;
2314	int ret;
2315	size_t buf_size;
2316	const size_t buf_limit = SZ_16M;
2317
2318	if (!capable(CAP_SYS_ADMIN))
2319		return -EPERM;
2320
2321	/* copy search header and buffer size */
2322	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2323	if (copy_from_user(&args, uarg, sizeof(args)))
2324		return -EFAULT;
2325
2326	buf_size = args.buf_size;
2327
2328	/* limit result size to 16MB */
2329	if (buf_size > buf_limit)
2330		buf_size = buf_limit;
2331
2332	inode = file_inode(file);
2333	ret = search_ioctl(inode, &args.key, &buf_size,
2334			   (char __user *)(&uarg->buf[0]));
2335	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2336		ret = -EFAULT;
2337	else if (ret == -EOVERFLOW &&
2338		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2339		ret = -EFAULT;
2340
2341	return ret;
2342}
2343
2344/*
2345 * Search INODE_REFs to identify path name of 'dirid' directory
2346 * in a 'tree_id' tree. and sets path name to 'name'.
2347 */
2348static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2349				u64 tree_id, u64 dirid, char *name)
2350{
2351	struct btrfs_root *root;
2352	struct btrfs_key key;
2353	char *ptr;
2354	int ret = -1;
2355	int slot;
2356	int len;
2357	int total_len = 0;
2358	struct btrfs_inode_ref *iref;
2359	struct extent_buffer *l;
2360	struct btrfs_path *path;
2361
2362	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2363		name[0]='\0';
2364		return 0;
2365	}
2366
2367	path = btrfs_alloc_path();
2368	if (!path)
2369		return -ENOMEM;
2370
2371	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2372
2373	root = btrfs_get_fs_root(info, tree_id, true);
 
 
 
2374	if (IS_ERR(root)) {
2375		ret = PTR_ERR(root);
2376		root = NULL;
2377		goto out;
2378	}
2379
2380	key.objectid = dirid;
2381	key.type = BTRFS_INODE_REF_KEY;
2382	key.offset = (u64)-1;
2383
2384	while (1) {
2385		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2386		if (ret < 0)
2387			goto out;
2388		else if (ret > 0) {
2389			ret = btrfs_previous_item(root, path, dirid,
2390						  BTRFS_INODE_REF_KEY);
2391			if (ret < 0)
2392				goto out;
2393			else if (ret > 0) {
2394				ret = -ENOENT;
2395				goto out;
2396			}
2397		}
2398
2399		l = path->nodes[0];
2400		slot = path->slots[0];
 
 
2401		btrfs_item_key_to_cpu(l, &key, slot);
2402
 
 
 
 
 
 
2403		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2404		len = btrfs_inode_ref_name_len(l, iref);
2405		ptr -= len + 1;
2406		total_len += len + 1;
2407		if (ptr < name) {
2408			ret = -ENAMETOOLONG;
2409			goto out;
2410		}
2411
2412		*(ptr + len) = '/';
2413		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2414
2415		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2416			break;
2417
2418		btrfs_release_path(path);
2419		key.objectid = key.offset;
2420		key.offset = (u64)-1;
2421		dirid = key.objectid;
2422	}
 
 
2423	memmove(name, ptr, total_len);
2424	name[total_len] = '\0';
2425	ret = 0;
2426out:
2427	btrfs_put_root(root);
2428	btrfs_free_path(path);
2429	return ret;
2430}
2431
2432static int btrfs_search_path_in_tree_user(struct inode *inode,
2433				struct btrfs_ioctl_ino_lookup_user_args *args)
2434{
2435	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2436	struct super_block *sb = inode->i_sb;
2437	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2438	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2439	u64 dirid = args->dirid;
2440	unsigned long item_off;
2441	unsigned long item_len;
2442	struct btrfs_inode_ref *iref;
2443	struct btrfs_root_ref *rref;
2444	struct btrfs_root *root = NULL;
2445	struct btrfs_path *path;
2446	struct btrfs_key key, key2;
2447	struct extent_buffer *leaf;
2448	struct inode *temp_inode;
2449	char *ptr;
2450	int slot;
2451	int len;
2452	int total_len = 0;
2453	int ret;
2454
2455	path = btrfs_alloc_path();
2456	if (!path)
2457		return -ENOMEM;
2458
2459	/*
2460	 * If the bottom subvolume does not exist directly under upper_limit,
2461	 * construct the path in from the bottom up.
2462	 */
2463	if (dirid != upper_limit.objectid) {
2464		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2465
2466		root = btrfs_get_fs_root(fs_info, treeid, true);
2467		if (IS_ERR(root)) {
2468			ret = PTR_ERR(root);
2469			goto out;
2470		}
2471
2472		key.objectid = dirid;
2473		key.type = BTRFS_INODE_REF_KEY;
2474		key.offset = (u64)-1;
2475		while (1) {
2476			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2477			if (ret < 0) {
2478				goto out_put;
2479			} else if (ret > 0) {
2480				ret = btrfs_previous_item(root, path, dirid,
2481							  BTRFS_INODE_REF_KEY);
2482				if (ret < 0) {
2483					goto out_put;
2484				} else if (ret > 0) {
2485					ret = -ENOENT;
2486					goto out_put;
2487				}
2488			}
2489
2490			leaf = path->nodes[0];
2491			slot = path->slots[0];
2492			btrfs_item_key_to_cpu(leaf, &key, slot);
2493
2494			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2495			len = btrfs_inode_ref_name_len(leaf, iref);
2496			ptr -= len + 1;
2497			total_len += len + 1;
2498			if (ptr < args->path) {
2499				ret = -ENAMETOOLONG;
2500				goto out_put;
2501			}
2502
2503			*(ptr + len) = '/';
2504			read_extent_buffer(leaf, ptr,
2505					(unsigned long)(iref + 1), len);
2506
2507			/* Check the read+exec permission of this directory */
2508			ret = btrfs_previous_item(root, path, dirid,
2509						  BTRFS_INODE_ITEM_KEY);
2510			if (ret < 0) {
2511				goto out_put;
2512			} else if (ret > 0) {
2513				ret = -ENOENT;
2514				goto out_put;
2515			}
2516
2517			leaf = path->nodes[0];
2518			slot = path->slots[0];
2519			btrfs_item_key_to_cpu(leaf, &key2, slot);
2520			if (key2.objectid != dirid) {
2521				ret = -ENOENT;
2522				goto out_put;
2523			}
2524
2525			temp_inode = btrfs_iget(sb, key2.objectid, root);
2526			if (IS_ERR(temp_inode)) {
2527				ret = PTR_ERR(temp_inode);
2528				goto out_put;
2529			}
2530			ret = inode_permission(&init_user_ns, temp_inode,
2531					       MAY_READ | MAY_EXEC);
2532			iput(temp_inode);
2533			if (ret) {
2534				ret = -EACCES;
2535				goto out_put;
2536			}
2537
2538			if (key.offset == upper_limit.objectid)
2539				break;
2540			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2541				ret = -EACCES;
2542				goto out_put;
2543			}
2544
2545			btrfs_release_path(path);
2546			key.objectid = key.offset;
2547			key.offset = (u64)-1;
2548			dirid = key.objectid;
2549		}
2550
2551		memmove(args->path, ptr, total_len);
2552		args->path[total_len] = '\0';
2553		btrfs_put_root(root);
2554		root = NULL;
2555		btrfs_release_path(path);
2556	}
2557
2558	/* Get the bottom subvolume's name from ROOT_REF */
2559	key.objectid = treeid;
2560	key.type = BTRFS_ROOT_REF_KEY;
2561	key.offset = args->treeid;
2562	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2563	if (ret < 0) {
2564		goto out;
2565	} else if (ret > 0) {
2566		ret = -ENOENT;
2567		goto out;
2568	}
2569
2570	leaf = path->nodes[0];
2571	slot = path->slots[0];
2572	btrfs_item_key_to_cpu(leaf, &key, slot);
2573
2574	item_off = btrfs_item_ptr_offset(leaf, slot);
2575	item_len = btrfs_item_size_nr(leaf, slot);
2576	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2577	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2578	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2579		ret = -EINVAL;
2580		goto out;
2581	}
2582
2583	/* Copy subvolume's name */
2584	item_off += sizeof(struct btrfs_root_ref);
2585	item_len -= sizeof(struct btrfs_root_ref);
2586	read_extent_buffer(leaf, args->name, item_off, item_len);
2587	args->name[item_len] = 0;
2588
2589out_put:
2590	btrfs_put_root(root);
2591out:
2592	btrfs_free_path(path);
2593	return ret;
2594}
2595
2596static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2597					   void __user *argp)
2598{
2599	struct btrfs_ioctl_ino_lookup_args *args;
2600	struct inode *inode;
2601	int ret = 0;
 
 
 
2602
2603	args = memdup_user(argp, sizeof(*args));
2604	if (IS_ERR(args))
2605		return PTR_ERR(args);
2606
2607	inode = file_inode(file);
2608
2609	/*
2610	 * Unprivileged query to obtain the containing subvolume root id. The
2611	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2612	 */
2613	if (args->treeid == 0)
2614		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2615
2616	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2617		args->name[0] = 0;
2618		goto out;
2619	}
2620
2621	if (!capable(CAP_SYS_ADMIN)) {
2622		ret = -EPERM;
2623		goto out;
2624	}
2625
2626	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2627					args->treeid, args->objectid,
2628					args->name);
2629
2630out:
2631	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2632		ret = -EFAULT;
2633
2634	kfree(args);
2635	return ret;
2636}
2637
2638/*
2639 * Version of ino_lookup ioctl (unprivileged)
2640 *
2641 * The main differences from ino_lookup ioctl are:
2642 *
2643 *   1. Read + Exec permission will be checked using inode_permission() during
2644 *      path construction. -EACCES will be returned in case of failure.
2645 *   2. Path construction will be stopped at the inode number which corresponds
2646 *      to the fd with which this ioctl is called. If constructed path does not
2647 *      exist under fd's inode, -EACCES will be returned.
2648 *   3. The name of bottom subvolume is also searched and filled.
2649 */
2650static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2651{
2652	struct btrfs_ioctl_ino_lookup_user_args *args;
2653	struct inode *inode;
2654	int ret;
2655
2656	args = memdup_user(argp, sizeof(*args));
2657	if (IS_ERR(args))
2658		return PTR_ERR(args);
2659
2660	inode = file_inode(file);
2661
2662	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2663	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2664		/*
2665		 * The subvolume does not exist under fd with which this is
2666		 * called
2667		 */
2668		kfree(args);
2669		return -EACCES;
2670	}
2671
2672	ret = btrfs_search_path_in_tree_user(inode, args);
2673
2674	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2675		ret = -EFAULT;
2676
2677	kfree(args);
2678	return ret;
2679}
2680
2681/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2682static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2683{
2684	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2685	struct btrfs_fs_info *fs_info;
2686	struct btrfs_root *root;
2687	struct btrfs_path *path;
2688	struct btrfs_key key;
2689	struct btrfs_root_item *root_item;
2690	struct btrfs_root_ref *rref;
2691	struct extent_buffer *leaf;
2692	unsigned long item_off;
2693	unsigned long item_len;
2694	struct inode *inode;
2695	int slot;
2696	int ret = 0;
2697
2698	path = btrfs_alloc_path();
2699	if (!path)
2700		return -ENOMEM;
2701
2702	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2703	if (!subvol_info) {
2704		btrfs_free_path(path);
2705		return -ENOMEM;
2706	}
2707
2708	inode = file_inode(file);
2709	fs_info = BTRFS_I(inode)->root->fs_info;
2710
2711	/* Get root_item of inode's subvolume */
2712	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2713	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2714	if (IS_ERR(root)) {
2715		ret = PTR_ERR(root);
2716		goto out_free;
2717	}
2718	root_item = &root->root_item;
2719
2720	subvol_info->treeid = key.objectid;
2721
2722	subvol_info->generation = btrfs_root_generation(root_item);
2723	subvol_info->flags = btrfs_root_flags(root_item);
2724
2725	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2726	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2727						    BTRFS_UUID_SIZE);
2728	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2729						    BTRFS_UUID_SIZE);
2730
2731	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2732	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2733	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2734
2735	subvol_info->otransid = btrfs_root_otransid(root_item);
2736	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2737	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2738
2739	subvol_info->stransid = btrfs_root_stransid(root_item);
2740	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2741	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2742
2743	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2744	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2745	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2746
2747	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2748		/* Search root tree for ROOT_BACKREF of this subvolume */
2749		key.type = BTRFS_ROOT_BACKREF_KEY;
2750		key.offset = 0;
2751		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2752		if (ret < 0) {
2753			goto out;
2754		} else if (path->slots[0] >=
2755			   btrfs_header_nritems(path->nodes[0])) {
2756			ret = btrfs_next_leaf(fs_info->tree_root, path);
2757			if (ret < 0) {
2758				goto out;
2759			} else if (ret > 0) {
2760				ret = -EUCLEAN;
2761				goto out;
2762			}
2763		}
2764
2765		leaf = path->nodes[0];
2766		slot = path->slots[0];
2767		btrfs_item_key_to_cpu(leaf, &key, slot);
2768		if (key.objectid == subvol_info->treeid &&
2769		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2770			subvol_info->parent_id = key.offset;
2771
2772			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2773			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2774
2775			item_off = btrfs_item_ptr_offset(leaf, slot)
2776					+ sizeof(struct btrfs_root_ref);
2777			item_len = btrfs_item_size_nr(leaf, slot)
2778					- sizeof(struct btrfs_root_ref);
2779			read_extent_buffer(leaf, subvol_info->name,
2780					   item_off, item_len);
2781		} else {
2782			ret = -ENOENT;
2783			goto out;
2784		}
2785	}
2786
2787	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2788		ret = -EFAULT;
2789
2790out:
2791	btrfs_put_root(root);
2792out_free:
2793	btrfs_free_path(path);
2794	kfree(subvol_info);
2795	return ret;
2796}
2797
2798/*
2799 * Return ROOT_REF information of the subvolume containing this inode
2800 * except the subvolume name.
2801 */
2802static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2803{
2804	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2805	struct btrfs_root_ref *rref;
2806	struct btrfs_root *root;
2807	struct btrfs_path *path;
2808	struct btrfs_key key;
2809	struct extent_buffer *leaf;
2810	struct inode *inode;
2811	u64 objectid;
2812	int slot;
2813	int ret;
2814	u8 found;
2815
2816	path = btrfs_alloc_path();
2817	if (!path)
2818		return -ENOMEM;
2819
2820	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2821	if (IS_ERR(rootrefs)) {
2822		btrfs_free_path(path);
2823		return PTR_ERR(rootrefs);
2824	}
2825
2826	inode = file_inode(file);
2827	root = BTRFS_I(inode)->root->fs_info->tree_root;
2828	objectid = BTRFS_I(inode)->root->root_key.objectid;
2829
2830	key.objectid = objectid;
2831	key.type = BTRFS_ROOT_REF_KEY;
2832	key.offset = rootrefs->min_treeid;
2833	found = 0;
2834
2835	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2836	if (ret < 0) {
2837		goto out;
2838	} else if (path->slots[0] >=
2839		   btrfs_header_nritems(path->nodes[0])) {
2840		ret = btrfs_next_leaf(root, path);
2841		if (ret < 0) {
2842			goto out;
2843		} else if (ret > 0) {
2844			ret = -EUCLEAN;
2845			goto out;
2846		}
2847	}
2848	while (1) {
2849		leaf = path->nodes[0];
2850		slot = path->slots[0];
2851
2852		btrfs_item_key_to_cpu(leaf, &key, slot);
2853		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2854			ret = 0;
2855			goto out;
2856		}
2857
2858		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2859			ret = -EOVERFLOW;
2860			goto out;
2861		}
2862
2863		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2864		rootrefs->rootref[found].treeid = key.offset;
2865		rootrefs->rootref[found].dirid =
2866				  btrfs_root_ref_dirid(leaf, rref);
2867		found++;
2868
2869		ret = btrfs_next_item(root, path);
2870		if (ret < 0) {
2871			goto out;
2872		} else if (ret > 0) {
2873			ret = -EUCLEAN;
2874			goto out;
2875		}
2876	}
2877
2878out:
2879	if (!ret || ret == -EOVERFLOW) {
2880		rootrefs->num_items = found;
2881		/* update min_treeid for next search */
2882		if (found)
2883			rootrefs->min_treeid =
2884				rootrefs->rootref[found - 1].treeid + 1;
2885		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2886			ret = -EFAULT;
2887	}
2888
2889	kfree(rootrefs);
2890	btrfs_free_path(path);
2891
2892	return ret;
2893}
2894
2895static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2896					     void __user *arg,
2897					     bool destroy_v2)
2898{
2899	struct dentry *parent = file->f_path.dentry;
2900	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2901	struct dentry *dentry;
2902	struct inode *dir = d_inode(parent);
2903	struct inode *inode;
2904	struct btrfs_root *root = BTRFS_I(dir)->root;
2905	struct btrfs_root *dest = NULL;
2906	struct btrfs_ioctl_vol_args *vol_args = NULL;
2907	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2908	char *subvol_name, *subvol_name_ptr = NULL;
2909	int subvol_namelen;
2910	int err = 0;
2911	bool destroy_parent = false;
2912
2913	if (destroy_v2) {
2914		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2915		if (IS_ERR(vol_args2))
2916			return PTR_ERR(vol_args2);
2917
2918		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2919			err = -EOPNOTSUPP;
2920			goto out;
2921		}
2922
2923		/*
2924		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2925		 * name, same as v1 currently does.
2926		 */
2927		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2928			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2929			subvol_name = vol_args2->name;
2930
2931			err = mnt_want_write_file(file);
2932			if (err)
2933				goto out;
2934		} else {
2935			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2936				err = -EINVAL;
2937				goto out;
2938			}
2939
2940			err = mnt_want_write_file(file);
2941			if (err)
2942				goto out;
2943
2944			dentry = btrfs_get_dentry(fs_info->sb,
2945					BTRFS_FIRST_FREE_OBJECTID,
2946					vol_args2->subvolid, 0, 0);
2947			if (IS_ERR(dentry)) {
2948				err = PTR_ERR(dentry);
2949				goto out_drop_write;
2950			}
2951
2952			/*
2953			 * Change the default parent since the subvolume being
2954			 * deleted can be outside of the current mount point.
2955			 */
2956			parent = btrfs_get_parent(dentry);
2957
2958			/*
2959			 * At this point dentry->d_name can point to '/' if the
2960			 * subvolume we want to destroy is outsite of the
2961			 * current mount point, so we need to release the
2962			 * current dentry and execute the lookup to return a new
2963			 * one with ->d_name pointing to the
2964			 * <mount point>/subvol_name.
2965			 */
2966			dput(dentry);
2967			if (IS_ERR(parent)) {
2968				err = PTR_ERR(parent);
2969				goto out_drop_write;
2970			}
2971			dir = d_inode(parent);
2972
2973			/*
2974			 * If v2 was used with SPEC_BY_ID, a new parent was
2975			 * allocated since the subvolume can be outside of the
2976			 * current mount point. Later on we need to release this
2977			 * new parent dentry.
2978			 */
2979			destroy_parent = true;
2980
2981			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2982						fs_info, vol_args2->subvolid);
2983			if (IS_ERR(subvol_name_ptr)) {
2984				err = PTR_ERR(subvol_name_ptr);
2985				goto free_parent;
2986			}
2987			/* subvol_name_ptr is already nul terminated */
2988			subvol_name = (char *)kbasename(subvol_name_ptr);
2989		}
2990	} else {
2991		vol_args = memdup_user(arg, sizeof(*vol_args));
2992		if (IS_ERR(vol_args))
2993			return PTR_ERR(vol_args);
2994
2995		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2996		subvol_name = vol_args->name;
2997
2998		err = mnt_want_write_file(file);
2999		if (err)
3000			goto out;
3001	}
3002
3003	subvol_namelen = strlen(subvol_name);
3004
3005	if (strchr(subvol_name, '/') ||
3006	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3007		err = -EINVAL;
3008		goto free_subvol_name;
3009	}
3010
3011	if (!S_ISDIR(dir->i_mode)) {
3012		err = -ENOTDIR;
3013		goto free_subvol_name;
3014	}
3015
3016	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3017	if (err == -EINTR)
3018		goto free_subvol_name;
3019	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3020	if (IS_ERR(dentry)) {
3021		err = PTR_ERR(dentry);
3022		goto out_unlock_dir;
3023	}
3024
3025	if (d_really_is_negative(dentry)) {
3026		err = -ENOENT;
3027		goto out_dput;
3028	}
3029
3030	inode = d_inode(dentry);
3031	dest = BTRFS_I(inode)->root;
3032	if (!capable(CAP_SYS_ADMIN)) {
3033		/*
3034		 * Regular user.  Only allow this with a special mount
3035		 * option, when the user has write+exec access to the
3036		 * subvol root, and when rmdir(2) would have been
3037		 * allowed.
3038		 *
3039		 * Note that this is _not_ check that the subvol is
3040		 * empty or doesn't contain data that we wouldn't
3041		 * otherwise be able to delete.
3042		 *
3043		 * Users who want to delete empty subvols should try
3044		 * rmdir(2).
3045		 */
3046		err = -EPERM;
3047		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3048			goto out_dput;
3049
3050		/*
3051		 * Do not allow deletion if the parent dir is the same
3052		 * as the dir to be deleted.  That means the ioctl
3053		 * must be called on the dentry referencing the root
3054		 * of the subvol, not a random directory contained
3055		 * within it.
3056		 */
3057		err = -EINVAL;
3058		if (root == dest)
3059			goto out_dput;
3060
3061		err = inode_permission(&init_user_ns, inode,
3062				       MAY_WRITE | MAY_EXEC);
 
 
 
 
3063		if (err)
3064			goto out_dput;
3065	}
3066
3067	/* check if subvolume may be deleted by a user */
3068	err = btrfs_may_delete(dir, dentry, 1);
 
 
 
 
 
3069	if (err)
3070		goto out_dput;
 
 
 
 
 
 
3071
3072	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3073		err = -EINVAL;
3074		goto out_dput;
 
3075	}
 
3076
3077	btrfs_inode_lock(inode, 0);
3078	err = btrfs_delete_subvolume(dir, dentry);
3079	btrfs_inode_unlock(inode, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080	if (!err) {
3081		fsnotify_rmdir(dir, dentry);
 
3082		d_delete(dentry);
3083	}
3084
3085out_dput:
3086	dput(dentry);
3087out_unlock_dir:
3088	btrfs_inode_unlock(dir, 0);
3089free_subvol_name:
3090	kfree(subvol_name_ptr);
3091free_parent:
3092	if (destroy_parent)
3093		dput(parent);
3094out_drop_write:
3095	mnt_drop_write_file(file);
3096out:
3097	kfree(vol_args2);
3098	kfree(vol_args);
3099	return err;
3100}
3101
3102static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3103{
3104	struct inode *inode = file_inode(file);
3105	struct btrfs_root *root = BTRFS_I(inode)->root;
3106	struct btrfs_ioctl_defrag_range_args *range;
3107	int ret;
3108
3109	ret = mnt_want_write_file(file);
 
 
 
3110	if (ret)
3111		return ret;
3112
3113	if (btrfs_root_readonly(root)) {
3114		ret = -EROFS;
3115		goto out;
3116	}
3117
3118	switch (inode->i_mode & S_IFMT) {
3119	case S_IFDIR:
3120		if (!capable(CAP_SYS_ADMIN)) {
3121			ret = -EPERM;
3122			goto out;
3123		}
3124		ret = btrfs_defrag_root(root);
 
 
 
3125		break;
3126	case S_IFREG:
3127		/*
3128		 * Note that this does not check the file descriptor for write
3129		 * access. This prevents defragmenting executables that are
3130		 * running and allows defrag on files open in read-only mode.
3131		 */
3132		if (!capable(CAP_SYS_ADMIN) &&
3133		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3134			ret = -EPERM;
3135			goto out;
3136		}
3137
3138		range = kzalloc(sizeof(*range), GFP_KERNEL);
3139		if (!range) {
3140			ret = -ENOMEM;
3141			goto out;
3142		}
3143
3144		if (argp) {
3145			if (copy_from_user(range, argp,
3146					   sizeof(*range))) {
3147				ret = -EFAULT;
3148				kfree(range);
3149				goto out;
3150			}
3151			/* compression requires us to start the IO */
3152			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3153				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3154				range->extent_thresh = (u32)-1;
3155			}
3156		} else {
3157			/* the rest are all set to zero by kzalloc */
3158			range->len = (u64)-1;
3159		}
3160		ret = btrfs_defrag_file(file_inode(file), file,
3161					range, BTRFS_OLDEST_GENERATION, 0);
3162		if (ret > 0)
3163			ret = 0;
3164		kfree(range);
3165		break;
3166	default:
3167		ret = -EINVAL;
3168	}
3169out:
3170	mnt_drop_write_file(file);
3171	return ret;
3172}
3173
3174static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3175{
3176	struct btrfs_ioctl_vol_args *vol_args;
3177	int ret;
3178
3179	if (!capable(CAP_SYS_ADMIN))
3180		return -EPERM;
3181
3182	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3183		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3184
3185	vol_args = memdup_user(arg, sizeof(*vol_args));
3186	if (IS_ERR(vol_args)) {
3187		ret = PTR_ERR(vol_args);
3188		goto out;
3189	}
3190
3191	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3192	ret = btrfs_init_new_device(fs_info, vol_args->name);
3193
3194	if (!ret)
3195		btrfs_info(fs_info, "disk added %s", vol_args->name);
3196
3197	kfree(vol_args);
3198out:
3199	btrfs_exclop_finish(fs_info);
3200	return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3204{
3205	struct inode *inode = file_inode(file);
3206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207	struct btrfs_ioctl_vol_args_v2 *vol_args;
3208	struct block_device *bdev = NULL;
3209	fmode_t mode;
3210	int ret;
3211	bool cancel = false;
3212
3213	if (!capable(CAP_SYS_ADMIN))
3214		return -EPERM;
3215
3216	ret = mnt_want_write_file(file);
3217	if (ret)
3218		return ret;
3219
3220	vol_args = memdup_user(arg, sizeof(*vol_args));
3221	if (IS_ERR(vol_args)) {
3222		ret = PTR_ERR(vol_args);
3223		goto err_drop;
3224	}
3225
3226	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3227		ret = -EOPNOTSUPP;
3228		goto out;
3229	}
3230	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3231	if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3232	    strcmp("cancel", vol_args->name) == 0)
3233		cancel = true;
3234
3235	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3236					   cancel);
3237	if (ret)
3238		goto out;
3239	/* Exclusive operation is now claimed */
3240
3241	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3242		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3243	else
3244		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3245
3246	btrfs_exclop_finish(fs_info);
3247
3248	if (!ret) {
3249		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3250			btrfs_info(fs_info, "device deleted: id %llu",
3251					vol_args->devid);
3252		else
3253			btrfs_info(fs_info, "device deleted: %s",
3254					vol_args->name);
3255	}
3256out:
3257	kfree(vol_args);
3258err_drop:
3259	mnt_drop_write_file(file);
3260	if (bdev)
3261		blkdev_put(bdev, mode);
3262	return ret;
3263}
3264
3265static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3266{
3267	struct inode *inode = file_inode(file);
3268	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269	struct btrfs_ioctl_vol_args *vol_args;
3270	struct block_device *bdev = NULL;
3271	fmode_t mode;
3272	int ret;
3273	bool cancel;
3274
3275	if (!capable(CAP_SYS_ADMIN))
3276		return -EPERM;
3277
3278	ret = mnt_want_write_file(file);
3279	if (ret)
3280		return ret;
3281
3282	vol_args = memdup_user(arg, sizeof(*vol_args));
3283	if (IS_ERR(vol_args)) {
3284		ret = PTR_ERR(vol_args);
3285		goto out_drop_write;
3286	}
3287	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3288	cancel = (strcmp("cancel", vol_args->name) == 0);
3289
3290	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3291					   cancel);
3292	if (ret == 0) {
3293		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3294		if (!ret)
3295			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3296		btrfs_exclop_finish(fs_info);
3297	}
3298
3299	kfree(vol_args);
3300out_drop_write:
3301	mnt_drop_write_file(file);
3302	if (bdev)
3303		blkdev_put(bdev, mode);
3304	return ret;
3305}
3306
3307static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3308				void __user *arg)
3309{
3310	struct btrfs_ioctl_fs_info_args *fi_args;
3311	struct btrfs_device *device;
3312	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3313	u64 flags_in;
3314	int ret = 0;
3315
3316	fi_args = memdup_user(arg, sizeof(*fi_args));
3317	if (IS_ERR(fi_args))
3318		return PTR_ERR(fi_args);
3319
3320	flags_in = fi_args->flags;
3321	memset(fi_args, 0, sizeof(*fi_args));
 
3322
3323	rcu_read_lock();
3324	fi_args->num_devices = fs_devices->num_devices;
 
3325
3326	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
 
3327		if (device->devid > fi_args->max_id)
3328			fi_args->max_id = device->devid;
3329	}
3330	rcu_read_unlock();
3331
3332	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3333	fi_args->nodesize = fs_info->nodesize;
3334	fi_args->sectorsize = fs_info->sectorsize;
3335	fi_args->clone_alignment = fs_info->sectorsize;
3336
3337	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3338		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3339		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3340		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3341	}
3342
3343	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3344		fi_args->generation = fs_info->generation;
3345		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3346	}
3347
3348	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3349		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3350		       sizeof(fi_args->metadata_uuid));
3351		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3352	}
3353
3354	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3355		ret = -EFAULT;
3356
3357	kfree(fi_args);
3358	return ret;
3359}
3360
3361static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3362				 void __user *arg)
3363{
3364	struct btrfs_ioctl_dev_info_args *di_args;
3365	struct btrfs_device *dev;
 
3366	int ret = 0;
3367	char *s_uuid = NULL;
 
 
 
 
3368
3369	di_args = memdup_user(arg, sizeof(*di_args));
3370	if (IS_ERR(di_args))
3371		return PTR_ERR(di_args);
3372
3373	if (!btrfs_is_empty_uuid(di_args->uuid))
3374		s_uuid = di_args->uuid;
3375
3376	rcu_read_lock();
3377	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3378				NULL);
3379
3380	if (!dev) {
3381		ret = -ENODEV;
3382		goto out;
3383	}
3384
3385	di_args->devid = dev->devid;
3386	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3387	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3388	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3389	if (dev->name) {
3390		strncpy(di_args->path, rcu_str_deref(dev->name),
3391				sizeof(di_args->path) - 1);
3392		di_args->path[sizeof(di_args->path) - 1] = 0;
3393	} else {
3394		di_args->path[0] = '\0';
3395	}
3396
3397out:
3398	rcu_read_unlock();
3399	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3400		ret = -EFAULT;
3401
3402	kfree(di_args);
3403	return ret;
3404}
3405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408	struct inode *inode = file_inode(file);
3409	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3410	struct btrfs_root *root = BTRFS_I(inode)->root;
3411	struct btrfs_root *new_root;
3412	struct btrfs_dir_item *di;
3413	struct btrfs_trans_handle *trans;
3414	struct btrfs_path *path = NULL;
 
3415	struct btrfs_disk_key disk_key;
 
 
3416	u64 objectid = 0;
3417	u64 dir_id;
3418	int ret;
3419
3420	if (!capable(CAP_SYS_ADMIN))
3421		return -EPERM;
3422
3423	ret = mnt_want_write_file(file);
3424	if (ret)
3425		return ret;
 
 
3426
3427	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432	if (!objectid)
3433		objectid = BTRFS_FS_TREE_OBJECTID;
 
3434
3435	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3436	if (IS_ERR(new_root)) {
3437		ret = PTR_ERR(new_root);
3438		goto out;
3439	}
3440	if (!is_fstree(new_root->root_key.objectid)) {
3441		ret = -ENOENT;
3442		goto out_free;
3443	}
3444
3445	path = btrfs_alloc_path();
3446	if (!path) {
3447		ret = -ENOMEM;
3448		goto out_free;
3449	}
3450
3451	trans = btrfs_start_transaction(root, 1);
3452	if (IS_ERR(trans)) {
3453		ret = PTR_ERR(trans);
3454		goto out_free;
3455	}
3456
3457	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3458	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3459				   dir_id, "default", 7, 1);
3460	if (IS_ERR_OR_NULL(di)) {
3461		btrfs_release_path(path);
3462		btrfs_end_transaction(trans);
3463		btrfs_err(fs_info,
3464			  "Umm, you don't have the default diritem, this isn't going to work");
3465		ret = -ENOENT;
3466		goto out_free;
3467	}
3468
3469	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3470	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3471	btrfs_mark_buffer_dirty(path->nodes[0]);
3472	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3473
3474	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3475	btrfs_end_transaction(trans);
3476out_free:
3477	btrfs_put_root(new_root);
3478	btrfs_free_path(path);
3479out:
3480	mnt_drop_write_file(file);
3481	return ret;
3482}
3483
3484static void get_block_group_info(struct list_head *groups_list,
3485				 struct btrfs_ioctl_space_info *space)
3486{
3487	struct btrfs_block_group *block_group;
3488
3489	space->total_bytes = 0;
3490	space->used_bytes = 0;
3491	space->flags = 0;
3492	list_for_each_entry(block_group, groups_list, list) {
3493		space->flags = block_group->flags;
3494		space->total_bytes += block_group->length;
3495		space->used_bytes += block_group->used;
 
3496	}
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3500				   void __user *arg)
3501{
3502	struct btrfs_ioctl_space_args space_args;
3503	struct btrfs_ioctl_space_info space;
3504	struct btrfs_ioctl_space_info *dest;
3505	struct btrfs_ioctl_space_info *dest_orig;
3506	struct btrfs_ioctl_space_info __user *user_dest;
3507	struct btrfs_space_info *info;
3508	static const u64 types[] = {
3509		BTRFS_BLOCK_GROUP_DATA,
3510		BTRFS_BLOCK_GROUP_SYSTEM,
3511		BTRFS_BLOCK_GROUP_METADATA,
3512		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3513	};
3514	int num_types = 4;
3515	int alloc_size;
3516	int ret = 0;
3517	u64 slot_count = 0;
3518	int i, c;
3519
3520	if (copy_from_user(&space_args,
3521			   (struct btrfs_ioctl_space_args __user *)arg,
3522			   sizeof(space_args)))
3523		return -EFAULT;
3524
3525	for (i = 0; i < num_types; i++) {
3526		struct btrfs_space_info *tmp;
3527
3528		info = NULL;
3529		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3530			if (tmp->flags == types[i]) {
3531				info = tmp;
3532				break;
3533			}
3534		}
 
3535
3536		if (!info)
3537			continue;
3538
3539		down_read(&info->groups_sem);
3540		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541			if (!list_empty(&info->block_groups[c]))
3542				slot_count++;
3543		}
3544		up_read(&info->groups_sem);
3545	}
3546
3547	/*
3548	 * Global block reserve, exported as a space_info
3549	 */
3550	slot_count++;
3551
3552	/* space_slots == 0 means they are asking for a count */
3553	if (space_args.space_slots == 0) {
3554		space_args.total_spaces = slot_count;
3555		goto out;
3556	}
3557
3558	slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560	alloc_size = sizeof(*dest) * slot_count;
3561
3562	/* we generally have at most 6 or so space infos, one for each raid
3563	 * level.  So, a whole page should be more than enough for everyone
3564	 */
3565	if (alloc_size > PAGE_SIZE)
3566		return -ENOMEM;
3567
3568	space_args.total_spaces = 0;
3569	dest = kmalloc(alloc_size, GFP_KERNEL);
3570	if (!dest)
3571		return -ENOMEM;
3572	dest_orig = dest;
3573
3574	/* now we have a buffer to copy into */
3575	for (i = 0; i < num_types; i++) {
3576		struct btrfs_space_info *tmp;
3577
3578		if (!slot_count)
3579			break;
3580
3581		info = NULL;
3582		list_for_each_entry(tmp, &fs_info->space_info, list) {
 
 
3583			if (tmp->flags == types[i]) {
3584				info = tmp;
3585				break;
3586			}
3587		}
 
3588
3589		if (!info)
3590			continue;
3591		down_read(&info->groups_sem);
3592		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3593			if (!list_empty(&info->block_groups[c])) {
3594				get_block_group_info(&info->block_groups[c],
3595						     &space);
3596				memcpy(dest, &space, sizeof(space));
3597				dest++;
3598				space_args.total_spaces++;
3599				slot_count--;
3600			}
3601			if (!slot_count)
3602				break;
3603		}
3604		up_read(&info->groups_sem);
3605	}
3606
3607	/*
3608	 * Add global block reserve
3609	 */
3610	if (slot_count) {
3611		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3612
3613		spin_lock(&block_rsv->lock);
3614		space.total_bytes = block_rsv->size;
3615		space.used_bytes = block_rsv->size - block_rsv->reserved;
3616		spin_unlock(&block_rsv->lock);
3617		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3618		memcpy(dest, &space, sizeof(space));
3619		space_args.total_spaces++;
3620	}
3621
3622	user_dest = (struct btrfs_ioctl_space_info __user *)
3623		(arg + sizeof(struct btrfs_ioctl_space_args));
3624
3625	if (copy_to_user(user_dest, dest_orig, alloc_size))
3626		ret = -EFAULT;
3627
3628	kfree(dest_orig);
3629out:
3630	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3631		ret = -EFAULT;
3632
3633	return ret;
3634}
3635
3636static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3637					    void __user *argp)
 
 
 
 
 
3638{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3639	struct btrfs_trans_handle *trans;
3640	u64 transid;
3641	int ret;
3642
3643	trans = btrfs_attach_transaction_barrier(root);
3644	if (IS_ERR(trans)) {
3645		if (PTR_ERR(trans) != -ENOENT)
3646			return PTR_ERR(trans);
3647
3648		/* No running transaction, don't bother */
3649		transid = root->fs_info->last_trans_committed;
3650		goto out;
3651	}
3652	transid = trans->transid;
3653	ret = btrfs_commit_transaction_async(trans);
3654	if (ret) {
3655		btrfs_end_transaction(trans);
3656		return ret;
3657	}
3658out:
3659	if (argp)
3660		if (copy_to_user(argp, &transid, sizeof(transid)))
3661			return -EFAULT;
3662	return 0;
3663}
3664
3665static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3666					   void __user *argp)
3667{
 
3668	u64 transid;
3669
3670	if (argp) {
3671		if (copy_from_user(&transid, argp, sizeof(transid)))
3672			return -EFAULT;
3673	} else {
3674		transid = 0;  /* current trans */
3675	}
3676	return btrfs_wait_for_commit(fs_info, transid);
3677}
3678
3679static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3680{
3681	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3682	struct btrfs_ioctl_scrub_args *sa;
3683	int ret;
3684
3685	if (!capable(CAP_SYS_ADMIN))
3686		return -EPERM;
3687
3688	sa = memdup_user(arg, sizeof(*sa));
3689	if (IS_ERR(sa))
3690		return PTR_ERR(sa);
3691
3692	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3693		ret = mnt_want_write_file(file);
3694		if (ret)
3695			goto out;
3696	}
3697
3698	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3699			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3700			      0);
3701
3702	/*
3703	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3704	 * error. This is important as it allows user space to know how much
3705	 * progress scrub has done. For example, if scrub is canceled we get
3706	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3707	 * space. Later user space can inspect the progress from the structure
3708	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3709	 * previously (btrfs-progs does this).
3710	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3711	 * then return -EFAULT to signal the structure was not copied or it may
3712	 * be corrupt and unreliable due to a partial copy.
3713	 */
3714	if (copy_to_user(arg, sa, sizeof(*sa)))
3715		ret = -EFAULT;
3716
3717	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3718		mnt_drop_write_file(file);
3719out:
3720	kfree(sa);
3721	return ret;
3722}
3723
3724static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3725{
3726	if (!capable(CAP_SYS_ADMIN))
3727		return -EPERM;
3728
3729	return btrfs_scrub_cancel(fs_info);
3730}
3731
3732static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3733				       void __user *arg)
3734{
3735	struct btrfs_ioctl_scrub_args *sa;
3736	int ret;
3737
3738	if (!capable(CAP_SYS_ADMIN))
3739		return -EPERM;
3740
3741	sa = memdup_user(arg, sizeof(*sa));
3742	if (IS_ERR(sa))
3743		return PTR_ERR(sa);
3744
3745	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3746
3747	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3748		ret = -EFAULT;
3749
3750	kfree(sa);
3751	return ret;
3752}
3753
3754static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3755				      void __user *arg)
3756{
3757	struct btrfs_ioctl_get_dev_stats *sa;
3758	int ret;
3759
3760	sa = memdup_user(arg, sizeof(*sa));
3761	if (IS_ERR(sa))
3762		return PTR_ERR(sa);
3763
3764	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3765		kfree(sa);
3766		return -EPERM;
3767	}
3768
3769	ret = btrfs_get_dev_stats(fs_info, sa);
3770
3771	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3772		ret = -EFAULT;
3773
3774	kfree(sa);
3775	return ret;
3776}
3777
3778static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3779				    void __user *arg)
3780{
3781	struct btrfs_ioctl_dev_replace_args *p;
3782	int ret;
3783
3784	if (!capable(CAP_SYS_ADMIN))
3785		return -EPERM;
3786
3787	p = memdup_user(arg, sizeof(*p));
3788	if (IS_ERR(p))
3789		return PTR_ERR(p);
3790
3791	switch (p->cmd) {
3792	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3793		if (sb_rdonly(fs_info->sb)) {
3794			ret = -EROFS;
3795			goto out;
3796		}
3797		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3798			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3799		} else {
3800			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3801			btrfs_exclop_finish(fs_info);
3802		}
3803		break;
3804	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3805		btrfs_dev_replace_status(fs_info, p);
3806		ret = 0;
3807		break;
3808	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3809		p->result = btrfs_dev_replace_cancel(fs_info);
3810		ret = 0;
3811		break;
3812	default:
3813		ret = -EINVAL;
3814		break;
3815	}
3816
3817	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3818		ret = -EFAULT;
3819out:
3820	kfree(p);
3821	return ret;
3822}
3823
3824static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3825{
3826	int ret = 0;
3827	int i;
3828	u64 rel_ptr;
3829	int size;
3830	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3831	struct inode_fs_paths *ipath = NULL;
3832	struct btrfs_path *path;
3833
3834	if (!capable(CAP_DAC_READ_SEARCH))
3835		return -EPERM;
3836
3837	path = btrfs_alloc_path();
3838	if (!path) {
3839		ret = -ENOMEM;
3840		goto out;
3841	}
3842
3843	ipa = memdup_user(arg, sizeof(*ipa));
3844	if (IS_ERR(ipa)) {
3845		ret = PTR_ERR(ipa);
3846		ipa = NULL;
3847		goto out;
3848	}
3849
3850	size = min_t(u32, ipa->size, 4096);
3851	ipath = init_ipath(size, root, path);
3852	if (IS_ERR(ipath)) {
3853		ret = PTR_ERR(ipath);
3854		ipath = NULL;
3855		goto out;
3856	}
3857
3858	ret = paths_from_inode(ipa->inum, ipath);
3859	if (ret < 0)
3860		goto out;
3861
3862	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3863		rel_ptr = ipath->fspath->val[i] -
3864			  (u64)(unsigned long)ipath->fspath->val;
3865		ipath->fspath->val[i] = rel_ptr;
3866	}
3867
3868	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3869			   ipath->fspath, size);
3870	if (ret) {
3871		ret = -EFAULT;
3872		goto out;
3873	}
3874
3875out:
3876	btrfs_free_path(path);
3877	free_ipath(ipath);
3878	kfree(ipa);
3879
3880	return ret;
3881}
3882
3883static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3884{
3885	struct btrfs_data_container *inodes = ctx;
3886	const size_t c = 3 * sizeof(u64);
3887
3888	if (inodes->bytes_left >= c) {
3889		inodes->bytes_left -= c;
3890		inodes->val[inodes->elem_cnt] = inum;
3891		inodes->val[inodes->elem_cnt + 1] = offset;
3892		inodes->val[inodes->elem_cnt + 2] = root;
3893		inodes->elem_cnt += 3;
3894	} else {
3895		inodes->bytes_missing += c - inodes->bytes_left;
3896		inodes->bytes_left = 0;
3897		inodes->elem_missed += 3;
3898	}
3899
3900	return 0;
3901}
3902
3903static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3904					void __user *arg, int version)
3905{
3906	int ret = 0;
3907	int size;
3908	struct btrfs_ioctl_logical_ino_args *loi;
3909	struct btrfs_data_container *inodes = NULL;
3910	struct btrfs_path *path = NULL;
3911	bool ignore_offset;
3912
3913	if (!capable(CAP_SYS_ADMIN))
3914		return -EPERM;
3915
3916	loi = memdup_user(arg, sizeof(*loi));
3917	if (IS_ERR(loi))
3918		return PTR_ERR(loi);
3919
3920	if (version == 1) {
3921		ignore_offset = false;
3922		size = min_t(u32, loi->size, SZ_64K);
3923	} else {
3924		/* All reserved bits must be 0 for now */
3925		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3926			ret = -EINVAL;
3927			goto out_loi;
3928		}
3929		/* Only accept flags we have defined so far */
3930		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3931			ret = -EINVAL;
3932			goto out_loi;
3933		}
3934		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3935		size = min_t(u32, loi->size, SZ_16M);
3936	}
3937
3938	path = btrfs_alloc_path();
3939	if (!path) {
3940		ret = -ENOMEM;
3941		goto out;
3942	}
3943
3944	inodes = init_data_container(size);
3945	if (IS_ERR(inodes)) {
3946		ret = PTR_ERR(inodes);
3947		inodes = NULL;
3948		goto out;
3949	}
3950
3951	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3952					  build_ino_list, inodes, ignore_offset);
3953	if (ret == -EINVAL)
3954		ret = -ENOENT;
3955	if (ret < 0)
3956		goto out;
3957
3958	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3959			   size);
3960	if (ret)
3961		ret = -EFAULT;
3962
3963out:
3964	btrfs_free_path(path);
3965	kvfree(inodes);
3966out_loi:
3967	kfree(loi);
3968
3969	return ret;
3970}
3971
3972void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3973			       struct btrfs_ioctl_balance_args *bargs)
3974{
3975	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976
3977	bargs->flags = bctl->flags;
3978
3979	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3980		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3981	if (atomic_read(&fs_info->balance_pause_req))
3982		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3983	if (atomic_read(&fs_info->balance_cancel_req))
3984		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3985
3986	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3987	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3988	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3989
3990	spin_lock(&fs_info->balance_lock);
3991	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3992	spin_unlock(&fs_info->balance_lock);
3993}
3994
3995static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3996{
3997	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3998	struct btrfs_fs_info *fs_info = root->fs_info;
3999	struct btrfs_ioctl_balance_args *bargs;
4000	struct btrfs_balance_control *bctl;
4001	bool need_unlock; /* for mut. excl. ops lock */
4002	int ret;
4003
4004	if (!capable(CAP_SYS_ADMIN))
4005		return -EPERM;
4006
4007	ret = mnt_want_write_file(file);
4008	if (ret)
4009		return ret;
4010
4011again:
4012	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4013		mutex_lock(&fs_info->balance_mutex);
4014		need_unlock = true;
4015		goto locked;
4016	}
4017
4018	/*
4019	 * mut. excl. ops lock is locked.  Three possibilities:
4020	 *   (1) some other op is running
4021	 *   (2) balance is running
4022	 *   (3) balance is paused -- special case (think resume)
4023	 */
4024	mutex_lock(&fs_info->balance_mutex);
4025	if (fs_info->balance_ctl) {
4026		/* this is either (2) or (3) */
4027		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4028			mutex_unlock(&fs_info->balance_mutex);
4029			/*
4030			 * Lock released to allow other waiters to continue,
4031			 * we'll reexamine the status again.
4032			 */
4033			mutex_lock(&fs_info->balance_mutex);
4034
4035			if (fs_info->balance_ctl &&
4036			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4037				/* this is (3) */
4038				need_unlock = false;
4039				goto locked;
4040			}
4041
4042			mutex_unlock(&fs_info->balance_mutex);
4043			goto again;
4044		} else {
4045			/* this is (2) */
4046			mutex_unlock(&fs_info->balance_mutex);
4047			ret = -EINPROGRESS;
4048			goto out;
4049		}
4050	} else {
4051		/* this is (1) */
4052		mutex_unlock(&fs_info->balance_mutex);
4053		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4054		goto out;
4055	}
4056
4057locked:
4058
4059	if (arg) {
4060		bargs = memdup_user(arg, sizeof(*bargs));
4061		if (IS_ERR(bargs)) {
4062			ret = PTR_ERR(bargs);
4063			goto out_unlock;
4064		}
4065
4066		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4067			if (!fs_info->balance_ctl) {
4068				ret = -ENOTCONN;
4069				goto out_bargs;
4070			}
4071
4072			bctl = fs_info->balance_ctl;
4073			spin_lock(&fs_info->balance_lock);
4074			bctl->flags |= BTRFS_BALANCE_RESUME;
4075			spin_unlock(&fs_info->balance_lock);
4076
4077			goto do_balance;
4078		}
4079	} else {
4080		bargs = NULL;
4081	}
4082
4083	if (fs_info->balance_ctl) {
4084		ret = -EINPROGRESS;
4085		goto out_bargs;
4086	}
4087
4088	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4089	if (!bctl) {
4090		ret = -ENOMEM;
4091		goto out_bargs;
4092	}
4093
4094	if (arg) {
4095		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4096		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4097		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4098
4099		bctl->flags = bargs->flags;
4100	} else {
4101		/* balance everything - no filters */
4102		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4103	}
4104
4105	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4106		ret = -EINVAL;
4107		goto out_bctl;
4108	}
4109
4110do_balance:
4111	/*
4112	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4113	 * bctl is freed in reset_balance_state, or, if restriper was paused
4114	 * all the way until unmount, in free_fs_info.  The flag should be
4115	 * cleared after reset_balance_state.
4116	 */
4117	need_unlock = false;
4118
4119	ret = btrfs_balance(fs_info, bctl, bargs);
4120	bctl = NULL;
4121
4122	if ((ret == 0 || ret == -ECANCELED) && arg) {
4123		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4124			ret = -EFAULT;
4125	}
4126
4127out_bctl:
4128	kfree(bctl);
4129out_bargs:
4130	kfree(bargs);
4131out_unlock:
4132	mutex_unlock(&fs_info->balance_mutex);
4133	if (need_unlock)
4134		btrfs_exclop_finish(fs_info);
4135out:
4136	mnt_drop_write_file(file);
4137	return ret;
4138}
4139
4140static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4141{
4142	if (!capable(CAP_SYS_ADMIN))
4143		return -EPERM;
4144
4145	switch (cmd) {
4146	case BTRFS_BALANCE_CTL_PAUSE:
4147		return btrfs_pause_balance(fs_info);
4148	case BTRFS_BALANCE_CTL_CANCEL:
4149		return btrfs_cancel_balance(fs_info);
4150	}
4151
4152	return -EINVAL;
4153}
4154
4155static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4156					 void __user *arg)
4157{
4158	struct btrfs_ioctl_balance_args *bargs;
4159	int ret = 0;
4160
4161	if (!capable(CAP_SYS_ADMIN))
4162		return -EPERM;
4163
4164	mutex_lock(&fs_info->balance_mutex);
4165	if (!fs_info->balance_ctl) {
4166		ret = -ENOTCONN;
4167		goto out;
4168	}
4169
4170	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4171	if (!bargs) {
4172		ret = -ENOMEM;
4173		goto out;
4174	}
4175
4176	btrfs_update_ioctl_balance_args(fs_info, bargs);
4177
4178	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4179		ret = -EFAULT;
4180
4181	kfree(bargs);
4182out:
4183	mutex_unlock(&fs_info->balance_mutex);
4184	return ret;
4185}
4186
4187static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4188{
4189	struct inode *inode = file_inode(file);
4190	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4191	struct btrfs_ioctl_quota_ctl_args *sa;
4192	int ret;
4193
4194	if (!capable(CAP_SYS_ADMIN))
4195		return -EPERM;
4196
4197	ret = mnt_want_write_file(file);
4198	if (ret)
4199		return ret;
4200
4201	sa = memdup_user(arg, sizeof(*sa));
4202	if (IS_ERR(sa)) {
4203		ret = PTR_ERR(sa);
4204		goto drop_write;
4205	}
4206
4207	down_write(&fs_info->subvol_sem);
4208
4209	switch (sa->cmd) {
4210	case BTRFS_QUOTA_CTL_ENABLE:
4211		ret = btrfs_quota_enable(fs_info);
4212		break;
4213	case BTRFS_QUOTA_CTL_DISABLE:
4214		ret = btrfs_quota_disable(fs_info);
4215		break;
4216	default:
4217		ret = -EINVAL;
4218		break;
4219	}
4220
4221	kfree(sa);
4222	up_write(&fs_info->subvol_sem);
4223drop_write:
4224	mnt_drop_write_file(file);
4225	return ret;
4226}
4227
4228static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4229{
4230	struct inode *inode = file_inode(file);
4231	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4232	struct btrfs_root *root = BTRFS_I(inode)->root;
4233	struct btrfs_ioctl_qgroup_assign_args *sa;
4234	struct btrfs_trans_handle *trans;
4235	int ret;
4236	int err;
4237
4238	if (!capable(CAP_SYS_ADMIN))
4239		return -EPERM;
4240
4241	ret = mnt_want_write_file(file);
4242	if (ret)
4243		return ret;
4244
4245	sa = memdup_user(arg, sizeof(*sa));
4246	if (IS_ERR(sa)) {
4247		ret = PTR_ERR(sa);
4248		goto drop_write;
4249	}
4250
4251	trans = btrfs_join_transaction(root);
4252	if (IS_ERR(trans)) {
4253		ret = PTR_ERR(trans);
4254		goto out;
4255	}
4256
4257	if (sa->assign) {
4258		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4259	} else {
4260		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4261	}
4262
4263	/* update qgroup status and info */
4264	err = btrfs_run_qgroups(trans);
4265	if (err < 0)
4266		btrfs_handle_fs_error(fs_info, err,
4267				      "failed to update qgroup status and info");
4268	err = btrfs_end_transaction(trans);
4269	if (err && !ret)
4270		ret = err;
4271
4272out:
4273	kfree(sa);
4274drop_write:
4275	mnt_drop_write_file(file);
4276	return ret;
4277}
4278
4279static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4280{
4281	struct inode *inode = file_inode(file);
4282	struct btrfs_root *root = BTRFS_I(inode)->root;
4283	struct btrfs_ioctl_qgroup_create_args *sa;
4284	struct btrfs_trans_handle *trans;
4285	int ret;
4286	int err;
4287
4288	if (!capable(CAP_SYS_ADMIN))
4289		return -EPERM;
4290
4291	ret = mnt_want_write_file(file);
4292	if (ret)
4293		return ret;
4294
4295	sa = memdup_user(arg, sizeof(*sa));
4296	if (IS_ERR(sa)) {
4297		ret = PTR_ERR(sa);
4298		goto drop_write;
4299	}
4300
4301	if (!sa->qgroupid) {
4302		ret = -EINVAL;
4303		goto out;
4304	}
4305
4306	trans = btrfs_join_transaction(root);
4307	if (IS_ERR(trans)) {
4308		ret = PTR_ERR(trans);
4309		goto out;
4310	}
4311
4312	if (sa->create) {
4313		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4314	} else {
4315		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4316	}
4317
4318	err = btrfs_end_transaction(trans);
4319	if (err && !ret)
4320		ret = err;
4321
4322out:
4323	kfree(sa);
4324drop_write:
4325	mnt_drop_write_file(file);
4326	return ret;
4327}
4328
4329static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4330{
4331	struct inode *inode = file_inode(file);
4332	struct btrfs_root *root = BTRFS_I(inode)->root;
4333	struct btrfs_ioctl_qgroup_limit_args *sa;
4334	struct btrfs_trans_handle *trans;
4335	int ret;
4336	int err;
4337	u64 qgroupid;
4338
4339	if (!capable(CAP_SYS_ADMIN))
4340		return -EPERM;
4341
4342	ret = mnt_want_write_file(file);
4343	if (ret)
4344		return ret;
4345
4346	sa = memdup_user(arg, sizeof(*sa));
4347	if (IS_ERR(sa)) {
4348		ret = PTR_ERR(sa);
4349		goto drop_write;
4350	}
4351
4352	trans = btrfs_join_transaction(root);
4353	if (IS_ERR(trans)) {
4354		ret = PTR_ERR(trans);
4355		goto out;
4356	}
4357
4358	qgroupid = sa->qgroupid;
4359	if (!qgroupid) {
4360		/* take the current subvol as qgroup */
4361		qgroupid = root->root_key.objectid;
4362	}
4363
4364	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4365
4366	err = btrfs_end_transaction(trans);
4367	if (err && !ret)
4368		ret = err;
4369
4370out:
4371	kfree(sa);
4372drop_write:
4373	mnt_drop_write_file(file);
4374	return ret;
4375}
4376
4377static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4378{
4379	struct inode *inode = file_inode(file);
4380	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4381	struct btrfs_ioctl_quota_rescan_args *qsa;
4382	int ret;
4383
4384	if (!capable(CAP_SYS_ADMIN))
4385		return -EPERM;
4386
4387	ret = mnt_want_write_file(file);
4388	if (ret)
4389		return ret;
4390
4391	qsa = memdup_user(arg, sizeof(*qsa));
4392	if (IS_ERR(qsa)) {
4393		ret = PTR_ERR(qsa);
4394		goto drop_write;
4395	}
4396
4397	if (qsa->flags) {
4398		ret = -EINVAL;
4399		goto out;
4400	}
4401
4402	ret = btrfs_qgroup_rescan(fs_info);
4403
4404out:
4405	kfree(qsa);
4406drop_write:
4407	mnt_drop_write_file(file);
4408	return ret;
4409}
4410
4411static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4412						void __user *arg)
4413{
4414	struct btrfs_ioctl_quota_rescan_args *qsa;
4415	int ret = 0;
4416
4417	if (!capable(CAP_SYS_ADMIN))
4418		return -EPERM;
4419
4420	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4421	if (!qsa)
4422		return -ENOMEM;
4423
4424	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4425		qsa->flags = 1;
4426		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4427	}
4428
4429	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4430		ret = -EFAULT;
4431
4432	kfree(qsa);
4433	return ret;
4434}
4435
4436static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4437						void __user *arg)
4438{
4439	if (!capable(CAP_SYS_ADMIN))
4440		return -EPERM;
4441
4442	return btrfs_qgroup_wait_for_completion(fs_info, true);
4443}
4444
4445static long _btrfs_ioctl_set_received_subvol(struct file *file,
4446					    struct btrfs_ioctl_received_subvol_args *sa)
4447{
4448	struct inode *inode = file_inode(file);
4449	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4450	struct btrfs_root *root = BTRFS_I(inode)->root;
4451	struct btrfs_root_item *root_item = &root->root_item;
4452	struct btrfs_trans_handle *trans;
4453	struct timespec64 ct = current_time(inode);
4454	int ret = 0;
4455	int received_uuid_changed;
4456
4457	if (!inode_owner_or_capable(&init_user_ns, inode))
4458		return -EPERM;
4459
4460	ret = mnt_want_write_file(file);
4461	if (ret < 0)
4462		return ret;
4463
4464	down_write(&fs_info->subvol_sem);
4465
4466	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4467		ret = -EINVAL;
4468		goto out;
4469	}
4470
4471	if (btrfs_root_readonly(root)) {
4472		ret = -EROFS;
4473		goto out;
4474	}
4475
4476	/*
4477	 * 1 - root item
4478	 * 2 - uuid items (received uuid + subvol uuid)
4479	 */
4480	trans = btrfs_start_transaction(root, 3);
4481	if (IS_ERR(trans)) {
4482		ret = PTR_ERR(trans);
4483		trans = NULL;
4484		goto out;
4485	}
4486
4487	sa->rtransid = trans->transid;
4488	sa->rtime.sec = ct.tv_sec;
4489	sa->rtime.nsec = ct.tv_nsec;
4490
4491	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4492				       BTRFS_UUID_SIZE);
4493	if (received_uuid_changed &&
4494	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4495		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4496					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497					  root->root_key.objectid);
4498		if (ret && ret != -ENOENT) {
4499		        btrfs_abort_transaction(trans, ret);
4500		        btrfs_end_transaction(trans);
4501		        goto out;
4502		}
4503	}
4504	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4505	btrfs_set_root_stransid(root_item, sa->stransid);
4506	btrfs_set_root_rtransid(root_item, sa->rtransid);
4507	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4508	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4509	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4510	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4511
4512	ret = btrfs_update_root(trans, fs_info->tree_root,
4513				&root->root_key, &root->root_item);
4514	if (ret < 0) {
4515		btrfs_end_transaction(trans);
4516		goto out;
4517	}
4518	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4519		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4520					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4521					  root->root_key.objectid);
4522		if (ret < 0 && ret != -EEXIST) {
4523			btrfs_abort_transaction(trans, ret);
4524			btrfs_end_transaction(trans);
4525			goto out;
4526		}
4527	}
4528	ret = btrfs_commit_transaction(trans);
4529out:
4530	up_write(&fs_info->subvol_sem);
4531	mnt_drop_write_file(file);
4532	return ret;
4533}
4534
4535#ifdef CONFIG_64BIT
4536static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4537						void __user *arg)
4538{
4539	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4540	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4541	int ret = 0;
4542
4543	args32 = memdup_user(arg, sizeof(*args32));
4544	if (IS_ERR(args32))
4545		return PTR_ERR(args32);
4546
4547	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4548	if (!args64) {
4549		ret = -ENOMEM;
4550		goto out;
4551	}
4552
4553	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4554	args64->stransid = args32->stransid;
4555	args64->rtransid = args32->rtransid;
4556	args64->stime.sec = args32->stime.sec;
4557	args64->stime.nsec = args32->stime.nsec;
4558	args64->rtime.sec = args32->rtime.sec;
4559	args64->rtime.nsec = args32->rtime.nsec;
4560	args64->flags = args32->flags;
4561
4562	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4563	if (ret)
4564		goto out;
4565
4566	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4567	args32->stransid = args64->stransid;
4568	args32->rtransid = args64->rtransid;
4569	args32->stime.sec = args64->stime.sec;
4570	args32->stime.nsec = args64->stime.nsec;
4571	args32->rtime.sec = args64->rtime.sec;
4572	args32->rtime.nsec = args64->rtime.nsec;
4573	args32->flags = args64->flags;
4574
4575	ret = copy_to_user(arg, args32, sizeof(*args32));
4576	if (ret)
4577		ret = -EFAULT;
4578
4579out:
4580	kfree(args32);
4581	kfree(args64);
4582	return ret;
4583}
4584#endif
4585
4586static long btrfs_ioctl_set_received_subvol(struct file *file,
4587					    void __user *arg)
4588{
4589	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4590	int ret = 0;
4591
4592	sa = memdup_user(arg, sizeof(*sa));
4593	if (IS_ERR(sa))
4594		return PTR_ERR(sa);
4595
4596	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4597
4598	if (ret)
4599		goto out;
4600
4601	ret = copy_to_user(arg, sa, sizeof(*sa));
4602	if (ret)
4603		ret = -EFAULT;
4604
4605out:
4606	kfree(sa);
4607	return ret;
4608}
4609
4610static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4611					void __user *arg)
4612{
4613	size_t len;
4614	int ret;
4615	char label[BTRFS_LABEL_SIZE];
4616
4617	spin_lock(&fs_info->super_lock);
4618	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4619	spin_unlock(&fs_info->super_lock);
4620
4621	len = strnlen(label, BTRFS_LABEL_SIZE);
4622
4623	if (len == BTRFS_LABEL_SIZE) {
4624		btrfs_warn(fs_info,
4625			   "label is too long, return the first %zu bytes",
4626			   --len);
4627	}
4628
4629	ret = copy_to_user(arg, label, len);
4630
4631	return ret ? -EFAULT : 0;
4632}
4633
4634static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4635{
4636	struct inode *inode = file_inode(file);
4637	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4638	struct btrfs_root *root = BTRFS_I(inode)->root;
4639	struct btrfs_super_block *super_block = fs_info->super_copy;
4640	struct btrfs_trans_handle *trans;
4641	char label[BTRFS_LABEL_SIZE];
4642	int ret;
4643
4644	if (!capable(CAP_SYS_ADMIN))
4645		return -EPERM;
4646
4647	if (copy_from_user(label, arg, sizeof(label)))
4648		return -EFAULT;
4649
4650	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4651		btrfs_err(fs_info,
4652			  "unable to set label with more than %d bytes",
4653			  BTRFS_LABEL_SIZE - 1);
4654		return -EINVAL;
4655	}
4656
4657	ret = mnt_want_write_file(file);
4658	if (ret)
4659		return ret;
4660
4661	trans = btrfs_start_transaction(root, 0);
4662	if (IS_ERR(trans)) {
4663		ret = PTR_ERR(trans);
4664		goto out_unlock;
4665	}
4666
4667	spin_lock(&fs_info->super_lock);
4668	strcpy(super_block->label, label);
4669	spin_unlock(&fs_info->super_lock);
4670	ret = btrfs_commit_transaction(trans);
4671
4672out_unlock:
4673	mnt_drop_write_file(file);
4674	return ret;
4675}
4676
4677#define INIT_FEATURE_FLAGS(suffix) \
4678	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4679	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4680	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4681
4682int btrfs_ioctl_get_supported_features(void __user *arg)
4683{
4684	static const struct btrfs_ioctl_feature_flags features[3] = {
4685		INIT_FEATURE_FLAGS(SUPP),
4686		INIT_FEATURE_FLAGS(SAFE_SET),
4687		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4688	};
4689
4690	if (copy_to_user(arg, &features, sizeof(features)))
4691		return -EFAULT;
4692
4693	return 0;
4694}
4695
4696static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4697					void __user *arg)
4698{
4699	struct btrfs_super_block *super_block = fs_info->super_copy;
4700	struct btrfs_ioctl_feature_flags features;
4701
4702	features.compat_flags = btrfs_super_compat_flags(super_block);
4703	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4704	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4705
4706	if (copy_to_user(arg, &features, sizeof(features)))
4707		return -EFAULT;
4708
4709	return 0;
4710}
4711
4712static int check_feature_bits(struct btrfs_fs_info *fs_info,
4713			      enum btrfs_feature_set set,
4714			      u64 change_mask, u64 flags, u64 supported_flags,
4715			      u64 safe_set, u64 safe_clear)
4716{
4717	const char *type = btrfs_feature_set_name(set);
4718	char *names;
4719	u64 disallowed, unsupported;
4720	u64 set_mask = flags & change_mask;
4721	u64 clear_mask = ~flags & change_mask;
4722
4723	unsupported = set_mask & ~supported_flags;
4724	if (unsupported) {
4725		names = btrfs_printable_features(set, unsupported);
4726		if (names) {
4727			btrfs_warn(fs_info,
4728				   "this kernel does not support the %s feature bit%s",
4729				   names, strchr(names, ',') ? "s" : "");
4730			kfree(names);
4731		} else
4732			btrfs_warn(fs_info,
4733				   "this kernel does not support %s bits 0x%llx",
4734				   type, unsupported);
4735		return -EOPNOTSUPP;
4736	}
4737
4738	disallowed = set_mask & ~safe_set;
4739	if (disallowed) {
4740		names = btrfs_printable_features(set, disallowed);
4741		if (names) {
4742			btrfs_warn(fs_info,
4743				   "can't set the %s feature bit%s while mounted",
4744				   names, strchr(names, ',') ? "s" : "");
4745			kfree(names);
4746		} else
4747			btrfs_warn(fs_info,
4748				   "can't set %s bits 0x%llx while mounted",
4749				   type, disallowed);
4750		return -EPERM;
4751	}
4752
4753	disallowed = clear_mask & ~safe_clear;
4754	if (disallowed) {
4755		names = btrfs_printable_features(set, disallowed);
4756		if (names) {
4757			btrfs_warn(fs_info,
4758				   "can't clear the %s feature bit%s while mounted",
4759				   names, strchr(names, ',') ? "s" : "");
4760			kfree(names);
4761		} else
4762			btrfs_warn(fs_info,
4763				   "can't clear %s bits 0x%llx while mounted",
4764				   type, disallowed);
4765		return -EPERM;
4766	}
4767
4768	return 0;
4769}
4770
4771#define check_feature(fs_info, change_mask, flags, mask_base)	\
4772check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4773		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4774		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4775		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4776
4777static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4778{
4779	struct inode *inode = file_inode(file);
4780	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4781	struct btrfs_root *root = BTRFS_I(inode)->root;
4782	struct btrfs_super_block *super_block = fs_info->super_copy;
4783	struct btrfs_ioctl_feature_flags flags[2];
4784	struct btrfs_trans_handle *trans;
4785	u64 newflags;
4786	int ret;
4787
4788	if (!capable(CAP_SYS_ADMIN))
4789		return -EPERM;
4790
4791	if (copy_from_user(flags, arg, sizeof(flags)))
4792		return -EFAULT;
4793
4794	/* Nothing to do */
4795	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4796	    !flags[0].incompat_flags)
4797		return 0;
4798
4799	ret = check_feature(fs_info, flags[0].compat_flags,
4800			    flags[1].compat_flags, COMPAT);
4801	if (ret)
4802		return ret;
4803
4804	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4805			    flags[1].compat_ro_flags, COMPAT_RO);
4806	if (ret)
4807		return ret;
4808
4809	ret = check_feature(fs_info, flags[0].incompat_flags,
4810			    flags[1].incompat_flags, INCOMPAT);
4811	if (ret)
4812		return ret;
4813
4814	ret = mnt_want_write_file(file);
4815	if (ret)
4816		return ret;
4817
4818	trans = btrfs_start_transaction(root, 0);
4819	if (IS_ERR(trans)) {
4820		ret = PTR_ERR(trans);
4821		goto out_drop_write;
4822	}
4823
4824	spin_lock(&fs_info->super_lock);
4825	newflags = btrfs_super_compat_flags(super_block);
4826	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4827	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4828	btrfs_set_super_compat_flags(super_block, newflags);
4829
4830	newflags = btrfs_super_compat_ro_flags(super_block);
4831	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4832	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4833	btrfs_set_super_compat_ro_flags(super_block, newflags);
4834
4835	newflags = btrfs_super_incompat_flags(super_block);
4836	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4837	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4838	btrfs_set_super_incompat_flags(super_block, newflags);
4839	spin_unlock(&fs_info->super_lock);
4840
4841	ret = btrfs_commit_transaction(trans);
4842out_drop_write:
4843	mnt_drop_write_file(file);
4844
4845	return ret;
4846}
4847
4848static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4849{
4850	struct btrfs_ioctl_send_args *arg;
4851	int ret;
4852
4853	if (compat) {
4854#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4855		struct btrfs_ioctl_send_args_32 args32;
4856
4857		ret = copy_from_user(&args32, argp, sizeof(args32));
4858		if (ret)
4859			return -EFAULT;
4860		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4861		if (!arg)
4862			return -ENOMEM;
4863		arg->send_fd = args32.send_fd;
4864		arg->clone_sources_count = args32.clone_sources_count;
4865		arg->clone_sources = compat_ptr(args32.clone_sources);
4866		arg->parent_root = args32.parent_root;
4867		arg->flags = args32.flags;
4868		memcpy(arg->reserved, args32.reserved,
4869		       sizeof(args32.reserved));
4870#else
4871		return -ENOTTY;
4872#endif
4873	} else {
4874		arg = memdup_user(argp, sizeof(*arg));
4875		if (IS_ERR(arg))
4876			return PTR_ERR(arg);
4877	}
4878	ret = btrfs_ioctl_send(file, arg);
4879	kfree(arg);
4880	return ret;
4881}
4882
4883long btrfs_ioctl(struct file *file, unsigned int
4884		cmd, unsigned long arg)
4885{
4886	struct inode *inode = file_inode(file);
4887	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888	struct btrfs_root *root = BTRFS_I(inode)->root;
4889	void __user *argp = (void __user *)arg;
4890
4891	switch (cmd) {
 
 
 
 
4892	case FS_IOC_GETVERSION:
4893		return btrfs_ioctl_getversion(file, argp);
4894	case FS_IOC_GETFSLABEL:
4895		return btrfs_ioctl_get_fslabel(fs_info, argp);
4896	case FS_IOC_SETFSLABEL:
4897		return btrfs_ioctl_set_fslabel(file, argp);
4898	case FITRIM:
4899		return btrfs_ioctl_fitrim(fs_info, argp);
4900	case BTRFS_IOC_SNAP_CREATE:
4901		return btrfs_ioctl_snap_create(file, argp, 0);
4902	case BTRFS_IOC_SNAP_CREATE_V2:
4903		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4904	case BTRFS_IOC_SUBVOL_CREATE:
4905		return btrfs_ioctl_snap_create(file, argp, 1);
4906	case BTRFS_IOC_SUBVOL_CREATE_V2:
4907		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4908	case BTRFS_IOC_SNAP_DESTROY:
4909		return btrfs_ioctl_snap_destroy(file, argp, false);
4910	case BTRFS_IOC_SNAP_DESTROY_V2:
4911		return btrfs_ioctl_snap_destroy(file, argp, true);
4912	case BTRFS_IOC_SUBVOL_GETFLAGS:
4913		return btrfs_ioctl_subvol_getflags(file, argp);
4914	case BTRFS_IOC_SUBVOL_SETFLAGS:
4915		return btrfs_ioctl_subvol_setflags(file, argp);
4916	case BTRFS_IOC_DEFAULT_SUBVOL:
4917		return btrfs_ioctl_default_subvol(file, argp);
4918	case BTRFS_IOC_DEFRAG:
4919		return btrfs_ioctl_defrag(file, NULL);
4920	case BTRFS_IOC_DEFRAG_RANGE:
4921		return btrfs_ioctl_defrag(file, argp);
4922	case BTRFS_IOC_RESIZE:
4923		return btrfs_ioctl_resize(file, argp);
4924	case BTRFS_IOC_ADD_DEV:
4925		return btrfs_ioctl_add_dev(fs_info, argp);
4926	case BTRFS_IOC_RM_DEV:
4927		return btrfs_ioctl_rm_dev(file, argp);
4928	case BTRFS_IOC_RM_DEV_V2:
4929		return btrfs_ioctl_rm_dev_v2(file, argp);
4930	case BTRFS_IOC_FS_INFO:
4931		return btrfs_ioctl_fs_info(fs_info, argp);
4932	case BTRFS_IOC_DEV_INFO:
4933		return btrfs_ioctl_dev_info(fs_info, argp);
4934	case BTRFS_IOC_BALANCE:
4935		return btrfs_ioctl_balance(file, NULL);
 
 
 
 
 
 
 
 
4936	case BTRFS_IOC_TREE_SEARCH:
4937		return btrfs_ioctl_tree_search(file, argp);
4938	case BTRFS_IOC_TREE_SEARCH_V2:
4939		return btrfs_ioctl_tree_search_v2(file, argp);
4940	case BTRFS_IOC_INO_LOOKUP:
4941		return btrfs_ioctl_ino_lookup(file, argp);
4942	case BTRFS_IOC_INO_PATHS:
4943		return btrfs_ioctl_ino_to_path(root, argp);
4944	case BTRFS_IOC_LOGICAL_INO:
4945		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4946	case BTRFS_IOC_LOGICAL_INO_V2:
4947		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4948	case BTRFS_IOC_SPACE_INFO:
4949		return btrfs_ioctl_space_info(fs_info, argp);
4950	case BTRFS_IOC_SYNC: {
4951		int ret;
4952
4953		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4954		if (ret)
4955			return ret;
4956		ret = btrfs_sync_fs(inode->i_sb, 1);
4957		/*
4958		 * The transaction thread may want to do more work,
4959		 * namely it pokes the cleaner kthread that will start
4960		 * processing uncleaned subvols.
4961		 */
4962		wake_up_process(fs_info->transaction_kthread);
4963		return ret;
4964	}
4965	case BTRFS_IOC_START_SYNC:
4966		return btrfs_ioctl_start_sync(root, argp);
4967	case BTRFS_IOC_WAIT_SYNC:
4968		return btrfs_ioctl_wait_sync(fs_info, argp);
4969	case BTRFS_IOC_SCRUB:
4970		return btrfs_ioctl_scrub(file, argp);
4971	case BTRFS_IOC_SCRUB_CANCEL:
4972		return btrfs_ioctl_scrub_cancel(fs_info);
4973	case BTRFS_IOC_SCRUB_PROGRESS:
4974		return btrfs_ioctl_scrub_progress(fs_info, argp);
4975	case BTRFS_IOC_BALANCE_V2:
4976		return btrfs_ioctl_balance(file, argp);
4977	case BTRFS_IOC_BALANCE_CTL:
4978		return btrfs_ioctl_balance_ctl(fs_info, arg);
4979	case BTRFS_IOC_BALANCE_PROGRESS:
4980		return btrfs_ioctl_balance_progress(fs_info, argp);
4981	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4982		return btrfs_ioctl_set_received_subvol(file, argp);
4983#ifdef CONFIG_64BIT
4984	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4985		return btrfs_ioctl_set_received_subvol_32(file, argp);
4986#endif
4987	case BTRFS_IOC_SEND:
4988		return _btrfs_ioctl_send(file, argp, false);
4989#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4990	case BTRFS_IOC_SEND_32:
4991		return _btrfs_ioctl_send(file, argp, true);
4992#endif
4993	case BTRFS_IOC_GET_DEV_STATS:
4994		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4995	case BTRFS_IOC_QUOTA_CTL:
4996		return btrfs_ioctl_quota_ctl(file, argp);
4997	case BTRFS_IOC_QGROUP_ASSIGN:
4998		return btrfs_ioctl_qgroup_assign(file, argp);
4999	case BTRFS_IOC_QGROUP_CREATE:
5000		return btrfs_ioctl_qgroup_create(file, argp);
5001	case BTRFS_IOC_QGROUP_LIMIT:
5002		return btrfs_ioctl_qgroup_limit(file, argp);
5003	case BTRFS_IOC_QUOTA_RESCAN:
5004		return btrfs_ioctl_quota_rescan(file, argp);
5005	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5006		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5007	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5008		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5009	case BTRFS_IOC_DEV_REPLACE:
5010		return btrfs_ioctl_dev_replace(fs_info, argp);
5011	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5012		return btrfs_ioctl_get_supported_features(argp);
5013	case BTRFS_IOC_GET_FEATURES:
5014		return btrfs_ioctl_get_features(fs_info, argp);
5015	case BTRFS_IOC_SET_FEATURES:
5016		return btrfs_ioctl_set_features(file, argp);
5017	case BTRFS_IOC_GET_SUBVOL_INFO:
5018		return btrfs_ioctl_get_subvol_info(file, argp);
5019	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5020		return btrfs_ioctl_get_subvol_rootref(file, argp);
5021	case BTRFS_IOC_INO_LOOKUP_USER:
5022		return btrfs_ioctl_ino_lookup_user(file, argp);
5023	}
5024
5025	return -ENOTTY;
5026}
5027
5028#ifdef CONFIG_COMPAT
5029long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5030{
5031	/*
5032	 * These all access 32-bit values anyway so no further
5033	 * handling is necessary.
5034	 */
5035	switch (cmd) {
5036	case FS_IOC32_GETVERSION:
5037		cmd = FS_IOC_GETVERSION;
5038		break;
5039	}
5040
5041	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5042}
5043#endif