Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include "compat.h"
 
 
  45#include "ctree.h"
  46#include "disk-io.h"
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
  51#include "volumes.h"
  52#include "locking.h"
  53#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55/* Mask out flags that are inappropriate for the given type of inode. */
  56static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
  57{
  58	if (S_ISDIR(mode))
  59		return flags;
  60	else if (S_ISREG(mode))
  61		return flags & ~FS_DIRSYNC_FL;
  62	else
  63		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
  64}
  65
  66/*
  67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
  68 */
  69static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
  70{
  71	unsigned int iflags = 0;
  72
  73	if (flags & BTRFS_INODE_SYNC)
  74		iflags |= FS_SYNC_FL;
  75	if (flags & BTRFS_INODE_IMMUTABLE)
  76		iflags |= FS_IMMUTABLE_FL;
  77	if (flags & BTRFS_INODE_APPEND)
  78		iflags |= FS_APPEND_FL;
  79	if (flags & BTRFS_INODE_NODUMP)
  80		iflags |= FS_NODUMP_FL;
  81	if (flags & BTRFS_INODE_NOATIME)
  82		iflags |= FS_NOATIME_FL;
  83	if (flags & BTRFS_INODE_DIRSYNC)
  84		iflags |= FS_DIRSYNC_FL;
  85	if (flags & BTRFS_INODE_NODATACOW)
  86		iflags |= FS_NOCOW_FL;
  87
  88	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
  89		iflags |= FS_COMPR_FL;
  90	else if (flags & BTRFS_INODE_NOCOMPRESS)
  91		iflags |= FS_NOCOMP_FL;
  92
  93	return iflags;
  94}
  95
  96/*
  97 * Update inode->i_flags based on the btrfs internal flags.
  98 */
  99void btrfs_update_iflags(struct inode *inode)
 100{
 101	struct btrfs_inode *ip = BTRFS_I(inode);
 102
 103	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
 104
 105	if (ip->flags & BTRFS_INODE_SYNC)
 106		inode->i_flags |= S_SYNC;
 107	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 108		inode->i_flags |= S_IMMUTABLE;
 109	if (ip->flags & BTRFS_INODE_APPEND)
 110		inode->i_flags |= S_APPEND;
 111	if (ip->flags & BTRFS_INODE_NOATIME)
 112		inode->i_flags |= S_NOATIME;
 113	if (ip->flags & BTRFS_INODE_DIRSYNC)
 114		inode->i_flags |= S_DIRSYNC;
 115}
 116
 117/*
 118 * Inherit flags from the parent inode.
 119 *
 120 * Unlike extN we don't have any flags we don't want to inherit currently.
 121 */
 122void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 123{
 124	unsigned int flags;
 125
 126	if (!dir)
 127		return;
 128
 129	flags = BTRFS_I(dir)->flags;
 130
 131	if (S_ISREG(inode->i_mode))
 132		flags &= ~BTRFS_INODE_DIRSYNC;
 133	else if (!S_ISDIR(inode->i_mode))
 134		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
 
 
 
 
 
 
 
 
 
 135
 136	BTRFS_I(inode)->flags = flags;
 137	btrfs_update_iflags(inode);
 138}
 139
 140static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 141{
 142	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
 143	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 144
 145	if (copy_to_user(arg, &flags, sizeof(flags)))
 146		return -EFAULT;
 147	return 0;
 148}
 149
 150static int check_flags(unsigned int flags)
 151{
 152	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 153		      FS_NOATIME_FL | FS_NODUMP_FL | \
 154		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 155		      FS_NOCOMP_FL | FS_COMPR_FL |
 156		      FS_NOCOW_FL))
 157		return -EOPNOTSUPP;
 158
 159	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 160		return -EINVAL;
 161
 162	return 0;
 163}
 164
 165static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 166{
 167	struct inode *inode = file->f_path.dentry->d_inode;
 168	struct btrfs_inode *ip = BTRFS_I(inode);
 169	struct btrfs_root *root = ip->root;
 170	struct btrfs_trans_handle *trans;
 171	unsigned int flags, oldflags;
 172	int ret;
 
 
 
 
 
 
 173
 174	if (btrfs_root_readonly(root))
 175		return -EROFS;
 176
 177	if (copy_from_user(&flags, arg, sizeof(flags)))
 178		return -EFAULT;
 179
 180	ret = check_flags(flags);
 181	if (ret)
 182		return ret;
 183
 184	if (!inode_owner_or_capable(inode))
 185		return -EACCES;
 
 186
 187	mutex_lock(&inode->i_mutex);
 188
 
 
 
 
 189	flags = btrfs_mask_flags(inode->i_mode, flags);
 190	oldflags = btrfs_flags_to_ioctl(ip->flags);
 191	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 192		if (!capable(CAP_LINUX_IMMUTABLE)) {
 193			ret = -EPERM;
 194			goto out_unlock;
 195		}
 196	}
 197
 198	ret = mnt_want_write(file->f_path.mnt);
 199	if (ret)
 200		goto out_unlock;
 201
 202	if (flags & FS_SYNC_FL)
 203		ip->flags |= BTRFS_INODE_SYNC;
 204	else
 205		ip->flags &= ~BTRFS_INODE_SYNC;
 206	if (flags & FS_IMMUTABLE_FL)
 207		ip->flags |= BTRFS_INODE_IMMUTABLE;
 208	else
 209		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 210	if (flags & FS_APPEND_FL)
 211		ip->flags |= BTRFS_INODE_APPEND;
 212	else
 213		ip->flags &= ~BTRFS_INODE_APPEND;
 214	if (flags & FS_NODUMP_FL)
 215		ip->flags |= BTRFS_INODE_NODUMP;
 216	else
 217		ip->flags &= ~BTRFS_INODE_NODUMP;
 218	if (flags & FS_NOATIME_FL)
 219		ip->flags |= BTRFS_INODE_NOATIME;
 220	else
 221		ip->flags &= ~BTRFS_INODE_NOATIME;
 222	if (flags & FS_DIRSYNC_FL)
 223		ip->flags |= BTRFS_INODE_DIRSYNC;
 224	else
 225		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 226	if (flags & FS_NOCOW_FL)
 227		ip->flags |= BTRFS_INODE_NODATACOW;
 228	else
 229		ip->flags &= ~BTRFS_INODE_NODATACOW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	/*
 232	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 233	 * flag may be changed automatically if compression code won't make
 234	 * things smaller.
 235	 */
 236	if (flags & FS_NOCOMP_FL) {
 237		ip->flags &= ~BTRFS_INODE_COMPRESS;
 238		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 
 
 
 
 239	} else if (flags & FS_COMPR_FL) {
 
 
 240		ip->flags |= BTRFS_INODE_COMPRESS;
 241		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 
 
 
 
 
 
 
 
 
 
 242	} else {
 243		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 244	}
 245
 246	trans = btrfs_join_transaction(root);
 247	BUG_ON(IS_ERR(trans));
 248
 249	ret = btrfs_update_inode(trans, root, inode);
 250	BUG_ON(ret);
 251
 252	btrfs_update_iflags(inode);
 
 253	inode->i_ctime = CURRENT_TIME;
 254	btrfs_end_transaction(trans, root);
 255
 256	mnt_drop_write(file->f_path.mnt);
 
 
 
 
 
 257
 258	ret = 0;
 259 out_unlock:
 260	mutex_unlock(&inode->i_mutex);
 
 261	return ret;
 262}
 263
 264static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 265{
 266	struct inode *inode = file->f_path.dentry->d_inode;
 267
 268	return put_user(inode->i_generation, arg);
 269}
 270
 271static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 272{
 273	struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
 274	struct btrfs_fs_info *fs_info = root->fs_info;
 275	struct btrfs_device *device;
 276	struct request_queue *q;
 277	struct fstrim_range range;
 278	u64 minlen = ULLONG_MAX;
 279	u64 num_devices = 0;
 
 280	int ret;
 281
 282	if (!capable(CAP_SYS_ADMIN))
 283		return -EPERM;
 284
 285	rcu_read_lock();
 286	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 287				dev_list) {
 288		if (!device->bdev)
 289			continue;
 290		q = bdev_get_queue(device->bdev);
 291		if (blk_queue_discard(q)) {
 292			num_devices++;
 293			minlen = min((u64)q->limits.discard_granularity,
 294				     minlen);
 295		}
 296	}
 297	rcu_read_unlock();
 
 298	if (!num_devices)
 299		return -EOPNOTSUPP;
 300
 301	if (copy_from_user(&range, arg, sizeof(range)))
 302		return -EFAULT;
 
 
 
 303
 
 304	range.minlen = max(range.minlen, minlen);
 305	ret = btrfs_trim_fs(root, &range);
 306	if (ret < 0)
 307		return ret;
 308
 309	if (copy_to_user(arg, &range, sizeof(range)))
 310		return -EFAULT;
 311
 312	return 0;
 313}
 314
 315static noinline int create_subvol(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 316				  struct dentry *dentry,
 317				  char *name, int namelen,
 318				  u64 *async_transid)
 
 319{
 320	struct btrfs_trans_handle *trans;
 321	struct btrfs_key key;
 322	struct btrfs_root_item root_item;
 323	struct btrfs_inode_item *inode_item;
 324	struct extent_buffer *leaf;
 
 325	struct btrfs_root *new_root;
 326	struct dentry *parent = dentry->d_parent;
 327	struct inode *dir;
 
 328	int ret;
 329	int err;
 330	u64 objectid;
 331	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 332	u64 index = 0;
 
 
 333
 334	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 335	if (ret)
 336		return ret;
 337
 338	dir = parent->d_inode;
 339
 340	/*
 341	 * 1 - inode item
 342	 * 2 - refs
 343	 * 1 - root item
 344	 * 2 - dir items
 345	 */
 346	trans = btrfs_start_transaction(root, 6);
 347	if (IS_ERR(trans))
 348		return PTR_ERR(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349
 350	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
 351				      0, objectid, NULL, 0, 0, 0);
 352	if (IS_ERR(leaf)) {
 353		ret = PTR_ERR(leaf);
 354		goto fail;
 355	}
 356
 357	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 358	btrfs_set_header_bytenr(leaf, leaf->start);
 359	btrfs_set_header_generation(leaf, trans->transid);
 360	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 361	btrfs_set_header_owner(leaf, objectid);
 362
 363	write_extent_buffer(leaf, root->fs_info->fsid,
 364			    (unsigned long)btrfs_header_fsid(leaf),
 365			    BTRFS_FSID_SIZE);
 366	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 367			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
 368			    BTRFS_UUID_SIZE);
 369	btrfs_mark_buffer_dirty(leaf);
 370
 
 
 371	inode_item = &root_item.inode;
 372	memset(inode_item, 0, sizeof(*inode_item));
 373	inode_item->generation = cpu_to_le64(1);
 374	inode_item->size = cpu_to_le64(3);
 375	inode_item->nlink = cpu_to_le32(1);
 376	inode_item->nbytes = cpu_to_le64(root->leafsize);
 377	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 378
 379	root_item.flags = 0;
 380	root_item.byte_limit = 0;
 381	inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
 382
 383	btrfs_set_root_bytenr(&root_item, leaf->start);
 384	btrfs_set_root_generation(&root_item, trans->transid);
 385	btrfs_set_root_level(&root_item, 0);
 386	btrfs_set_root_refs(&root_item, 1);
 387	btrfs_set_root_used(&root_item, leaf->len);
 388	btrfs_set_root_last_snapshot(&root_item, 0);
 389
 390	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
 391	root_item.drop_level = 0;
 
 
 
 
 
 
 
 392
 393	btrfs_tree_unlock(leaf);
 394	free_extent_buffer(leaf);
 395	leaf = NULL;
 396
 397	btrfs_set_root_dirid(&root_item, new_dirid);
 398
 399	key.objectid = objectid;
 400	key.offset = 0;
 401	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 402	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 403				&root_item);
 404	if (ret)
 405		goto fail;
 406
 407	key.offset = (u64)-1;
 408	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 409	BUG_ON(IS_ERR(new_root));
 
 
 
 
 410
 411	btrfs_record_root_in_trans(trans, new_root);
 412
 413	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
 
 
 
 
 
 
 414	/*
 415	 * insert the directory item
 416	 */
 417	ret = btrfs_set_inode_index(dir, &index);
 418	BUG_ON(ret);
 
 
 
 419
 420	ret = btrfs_insert_dir_item(trans, root,
 421				    name, namelen, dir, &key,
 422				    BTRFS_FT_DIR, index);
 423	if (ret)
 
 424		goto fail;
 
 425
 426	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 427	ret = btrfs_update_inode(trans, root, dir);
 428	BUG_ON(ret);
 429
 430	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 431				 objectid, root->root_key.objectid,
 432				 btrfs_ino(dir), index, name, namelen);
 433
 434	BUG_ON(ret);
 435
 436	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
 
 
 
 
 
 437fail:
 
 
 
 
 438	if (async_transid) {
 439		*async_transid = trans->transid;
 440		err = btrfs_commit_transaction_async(trans, root, 1);
 
 
 441	} else {
 442		err = btrfs_commit_transaction(trans, root);
 443	}
 444	if (err && !ret)
 445		ret = err;
 
 
 
 
 
 
 
 446	return ret;
 447}
 448
 449static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
 450			   char *name, int namelen, u64 *async_transid,
 451			   bool readonly)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452{
 453	struct inode *inode;
 454	struct btrfs_pending_snapshot *pending_snapshot;
 455	struct btrfs_trans_handle *trans;
 456	int ret;
 457
 458	if (!root->ref_cows)
 459		return -EINVAL;
 460
 
 
 
 
 
 
 
 
 
 
 461	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 462	if (!pending_snapshot)
 463		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
 466	pending_snapshot->dentry = dentry;
 467	pending_snapshot->root = root;
 468	pending_snapshot->readonly = readonly;
 
 
 469
 470	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
 471	if (IS_ERR(trans)) {
 472		ret = PTR_ERR(trans);
 473		goto fail;
 474	}
 475
 476	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
 477	BUG_ON(ret);
 478
 479	spin_lock(&root->fs_info->trans_lock);
 480	list_add(&pending_snapshot->list,
 481		 &trans->transaction->pending_snapshots);
 482	spin_unlock(&root->fs_info->trans_lock);
 483	if (async_transid) {
 484		*async_transid = trans->transid;
 485		ret = btrfs_commit_transaction_async(trans,
 486				     root->fs_info->extent_root, 1);
 
 
 487	} else {
 488		ret = btrfs_commit_transaction(trans,
 489					       root->fs_info->extent_root);
 490	}
 491	BUG_ON(ret);
 
 492
 493	ret = pending_snapshot->error;
 494	if (ret)
 495		goto fail;
 496
 497	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 498	if (ret)
 499		goto fail;
 500
 501	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
 502	if (IS_ERR(inode)) {
 503		ret = PTR_ERR(inode);
 504		goto fail;
 505	}
 506	BUG_ON(!inode);
 507	d_instantiate(dentry, inode);
 508	ret = 0;
 509fail:
 
 
 
 
 510	kfree(pending_snapshot);
 
 
 511	return ret;
 512}
 513
 514/*  copy of check_sticky in fs/namei.c()
 515* It's inline, so penalty for filesystems that don't use sticky bit is
 516* minimal.
 517*/
 518static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
 519{
 520	uid_t fsuid = current_fsuid();
 521
 522	if (!(dir->i_mode & S_ISVTX))
 523		return 0;
 524	if (inode->i_uid == fsuid)
 525		return 0;
 526	if (dir->i_uid == fsuid)
 527		return 0;
 528	return !capable(CAP_FOWNER);
 529}
 530
 531/*  copy of may_delete in fs/namei.c()
 532 *	Check whether we can remove a link victim from directory dir, check
 533 *  whether the type of victim is right.
 534 *  1. We can't do it if dir is read-only (done in permission())
 535 *  2. We should have write and exec permissions on dir
 536 *  3. We can't remove anything from append-only dir
 537 *  4. We can't do anything with immutable dir (done in permission())
 538 *  5. If the sticky bit on dir is set we should either
 539 *	a. be owner of dir, or
 540 *	b. be owner of victim, or
 541 *	c. have CAP_FOWNER capability
 542 *  6. If the victim is append-only or immutable we can't do antyhing with
 543 *     links pointing to it.
 544 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 545 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 546 *  9. We can't remove a root or mountpoint.
 547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 548 *     nfs_async_unlink().
 549 */
 550
 551static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
 552{
 553	int error;
 554
 555	if (!victim->d_inode)
 556		return -ENOENT;
 557
 558	BUG_ON(victim->d_parent->d_inode != dir);
 559	audit_inode_child(victim, dir);
 560
 561	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 562	if (error)
 563		return error;
 564	if (IS_APPEND(dir))
 565		return -EPERM;
 566	if (btrfs_check_sticky(dir, victim->d_inode)||
 567		IS_APPEND(victim->d_inode)||
 568	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
 569		return -EPERM;
 570	if (isdir) {
 571		if (!S_ISDIR(victim->d_inode->i_mode))
 572			return -ENOTDIR;
 573		if (IS_ROOT(victim))
 574			return -EBUSY;
 575	} else if (S_ISDIR(victim->d_inode->i_mode))
 576		return -EISDIR;
 577	if (IS_DEADDIR(dir))
 578		return -ENOENT;
 579	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 580		return -EBUSY;
 581	return 0;
 582}
 583
 584/* copy of may_create in fs/namei.c() */
 585static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 586{
 587	if (child->d_inode)
 588		return -EEXIST;
 589	if (IS_DEADDIR(dir))
 590		return -ENOENT;
 591	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 592}
 593
 594/*
 595 * Create a new subvolume below @parent.  This is largely modeled after
 596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 597 * inside this filesystem so it's quite a bit simpler.
 598 */
 599static noinline int btrfs_mksubvol(struct path *parent,
 600				   char *name, int namelen,
 601				   struct btrfs_root *snap_src,
 602				   u64 *async_transid, bool readonly)
 
 603{
 604	struct inode *dir  = parent->dentry->d_inode;
 605	struct dentry *dentry;
 606	int error;
 607
 608	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
 
 
 609
 610	dentry = lookup_one_len(name, parent->dentry, namelen);
 611	error = PTR_ERR(dentry);
 612	if (IS_ERR(dentry))
 613		goto out_unlock;
 614
 615	error = -EEXIST;
 616	if (dentry->d_inode)
 617		goto out_dput;
 618
 619	error = mnt_want_write(parent->mnt);
 620	if (error)
 621		goto out_dput;
 622
 623	error = btrfs_may_create(dir, dentry);
 
 
 
 
 
 
 624	if (error)
 625		goto out_drop_write;
 626
 627	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 628
 629	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 630		goto out_up_read;
 631
 632	if (snap_src) {
 633		error = create_snapshot(snap_src, dentry,
 634					name, namelen, async_transid, readonly);
 635	} else {
 636		error = create_subvol(BTRFS_I(dir)->root, dentry,
 637				      name, namelen, async_transid);
 638	}
 639	if (!error)
 640		fsnotify_mkdir(dir, dentry);
 641out_up_read:
 642	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 643out_drop_write:
 644	mnt_drop_write(parent->mnt);
 645out_dput:
 646	dput(dentry);
 647out_unlock:
 648	mutex_unlock(&dir->i_mutex);
 649	return error;
 650}
 651
 652/*
 653 * When we're defragging a range, we don't want to kick it off again
 654 * if it is really just waiting for delalloc to send it down.
 655 * If we find a nice big extent or delalloc range for the bytes in the
 656 * file you want to defrag, we return 0 to let you know to skip this
 657 * part of the file
 658 */
 659static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
 660{
 661	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 662	struct extent_map *em = NULL;
 663	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 664	u64 end;
 665
 666	read_lock(&em_tree->lock);
 667	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
 668	read_unlock(&em_tree->lock);
 669
 670	if (em) {
 671		end = extent_map_end(em);
 672		free_extent_map(em);
 673		if (end - offset > thresh)
 674			return 0;
 675	}
 676	/* if we already have a nice delalloc here, just stop */
 677	thresh /= 2;
 678	end = count_range_bits(io_tree, &offset, offset + thresh,
 679			       thresh, EXTENT_DELALLOC, 1);
 680	if (end >= thresh)
 681		return 0;
 682	return 1;
 683}
 684
 685/*
 686 * helper function to walk through a file and find extents
 687 * newer than a specific transid, and smaller than thresh.
 688 *
 689 * This is used by the defragging code to find new and small
 690 * extents
 691 */
 692static int find_new_extents(struct btrfs_root *root,
 693			    struct inode *inode, u64 newer_than,
 694			    u64 *off, int thresh)
 695{
 696	struct btrfs_path *path;
 697	struct btrfs_key min_key;
 698	struct btrfs_key max_key;
 699	struct extent_buffer *leaf;
 700	struct btrfs_file_extent_item *extent;
 701	int type;
 702	int ret;
 703	u64 ino = btrfs_ino(inode);
 704
 705	path = btrfs_alloc_path();
 706	if (!path)
 707		return -ENOMEM;
 708
 709	min_key.objectid = ino;
 710	min_key.type = BTRFS_EXTENT_DATA_KEY;
 711	min_key.offset = *off;
 712
 713	max_key.objectid = ino;
 714	max_key.type = (u8)-1;
 715	max_key.offset = (u64)-1;
 716
 717	path->keep_locks = 1;
 718
 719	while(1) {
 720		ret = btrfs_search_forward(root, &min_key, &max_key,
 721					   path, 0, newer_than);
 722		if (ret != 0)
 723			goto none;
 
 
 
 724		if (min_key.objectid != ino)
 725			goto none;
 726		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 727			goto none;
 728
 729		leaf = path->nodes[0];
 730		extent = btrfs_item_ptr(leaf, path->slots[0],
 731					struct btrfs_file_extent_item);
 732
 733		type = btrfs_file_extent_type(leaf, extent);
 734		if (type == BTRFS_FILE_EXTENT_REG &&
 735		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 736		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 737			*off = min_key.offset;
 738			btrfs_free_path(path);
 739			return 0;
 740		}
 741
 
 
 
 
 
 
 742		if (min_key.offset == (u64)-1)
 743			goto none;
 744
 745		min_key.offset++;
 746		btrfs_release_path(path);
 747	}
 748none:
 749	btrfs_free_path(path);
 750	return -ENOENT;
 751}
 752
 753static int should_defrag_range(struct inode *inode, u64 start, u64 len,
 754			       int thresh, u64 *last_len, u64 *skip,
 755			       u64 *defrag_end)
 756{
 757	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 758	struct extent_map *em = NULL;
 759	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 760	int ret = 1;
 761
 762	/*
 763	 * make sure that once we start defragging and extent, we keep on
 764	 * defragging it
 765	 */
 766	if (start < *defrag_end)
 767		return 1;
 768
 769	*skip = 0;
 770
 771	/*
 772	 * hopefully we have this extent in the tree already, try without
 773	 * the full extent lock
 774	 */
 775	read_lock(&em_tree->lock);
 776	em = lookup_extent_mapping(em_tree, start, len);
 777	read_unlock(&em_tree->lock);
 778
 779	if (!em) {
 
 
 
 780		/* get the big lock and read metadata off disk */
 781		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
 782		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
 783		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
 784
 785		if (IS_ERR(em))
 786			return 0;
 787	}
 788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789	/* this will cover holes, and inline extents */
 790	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
 791		ret = 0;
 
 
 
 
 792
 793	/*
 794	 * we hit a real extent, if it is big don't bother defragging it again
 
 795	 */
 796	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
 
 797		ret = 0;
 798
 799	/*
 800	 * last_len ends up being a counter of how many bytes we've defragged.
 801	 * every time we choose not to defrag an extent, we reset *last_len
 802	 * so that the next tiny extent will force a defrag.
 803	 *
 804	 * The end result of this is that tiny extents before a single big
 805	 * extent will force at least part of that big extent to be defragged.
 806	 */
 807	if (ret) {
 808		*last_len += len;
 809		*defrag_end = extent_map_end(em);
 810	} else {
 811		*last_len = 0;
 812		*skip = extent_map_end(em);
 813		*defrag_end = 0;
 814	}
 815
 816	free_extent_map(em);
 817	return ret;
 818}
 819
 820/*
 821 * it doesn't do much good to defrag one or two pages
 822 * at a time.  This pulls in a nice chunk of pages
 823 * to COW and defrag.
 824 *
 825 * It also makes sure the delalloc code has enough
 826 * dirty data to avoid making new small extents as part
 827 * of the defrag
 828 *
 829 * It's a good idea to start RA on this range
 830 * before calling this.
 831 */
 832static int cluster_pages_for_defrag(struct inode *inode,
 833				    struct page **pages,
 834				    unsigned long start_index,
 835				    int num_pages)
 836{
 837	unsigned long file_end;
 838	u64 isize = i_size_read(inode);
 839	u64 page_start;
 840	u64 page_end;
 
 841	int ret;
 842	int i;
 843	int i_done;
 844	struct btrfs_ordered_extent *ordered;
 845	struct extent_state *cached_state = NULL;
 
 
 846
 847	if (isize == 0)
 848		return 0;
 849	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 850
 851	ret = btrfs_delalloc_reserve_space(inode,
 852					   num_pages << PAGE_CACHE_SHIFT);
 853	if (ret)
 854		return ret;
 855again:
 856	ret = 0;
 857	i_done = 0;
 
 858
 859	/* step one, lock all the pages */
 860	for (i = 0; i < num_pages; i++) {
 861		struct page *page;
 
 862		page = find_or_create_page(inode->i_mapping,
 863					    start_index + i, GFP_NOFS);
 864		if (!page)
 865			break;
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867		if (!PageUptodate(page)) {
 868			btrfs_readpage(NULL, page);
 869			lock_page(page);
 870			if (!PageUptodate(page)) {
 871				unlock_page(page);
 872				page_cache_release(page);
 873				ret = -EIO;
 874				break;
 875			}
 876		}
 877		isize = i_size_read(inode);
 878		file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
 879		if (!isize || page->index > file_end ||
 880		    page->mapping != inode->i_mapping) {
 881			/* whoops, we blew past eof, skip this page */
 882			unlock_page(page);
 883			page_cache_release(page);
 884			break;
 885		}
 
 886		pages[i] = page;
 887		i_done++;
 888	}
 889	if (!i_done || ret)
 890		goto out;
 891
 892	if (!(inode->i_sb->s_flags & MS_ACTIVE))
 893		goto out;
 894
 895	/*
 896	 * so now we have a nice long stream of locked
 897	 * and up to date pages, lets wait on them
 898	 */
 899	for (i = 0; i < i_done; i++)
 900		wait_on_page_writeback(pages[i]);
 901
 902	page_start = page_offset(pages[0]);
 903	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
 904
 905	lock_extent_bits(&BTRFS_I(inode)->io_tree,
 906			 page_start, page_end - 1, 0, &cached_state,
 907			 GFP_NOFS);
 908	ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
 909	if (ordered &&
 910	    ordered->file_offset + ordered->len > page_start &&
 911	    ordered->file_offset < page_end) {
 912		btrfs_put_ordered_extent(ordered);
 913		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 914				     page_start, page_end - 1,
 915				     &cached_state, GFP_NOFS);
 916		for (i = 0; i < i_done; i++) {
 917			unlock_page(pages[i]);
 918			page_cache_release(pages[i]);
 919		}
 920		btrfs_wait_ordered_range(inode, page_start,
 921					 page_end - page_start);
 922		goto again;
 923	}
 924	if (ordered)
 925		btrfs_put_ordered_extent(ordered);
 926
 927	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
 928			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
 929			  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
 930			  GFP_NOFS);
 931
 932	if (i_done != num_pages) {
 933		spin_lock(&BTRFS_I(inode)->lock);
 934		BTRFS_I(inode)->outstanding_extents++;
 935		spin_unlock(&BTRFS_I(inode)->lock);
 936		btrfs_delalloc_release_space(inode,
 937				     (num_pages - i_done) << PAGE_CACHE_SHIFT);
 938	}
 939
 940
 941	btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
 942				  &cached_state);
 943
 944	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 945			     page_start, page_end - 1, &cached_state,
 946			     GFP_NOFS);
 947
 948	for (i = 0; i < i_done; i++) {
 949		clear_page_dirty_for_io(pages[i]);
 950		ClearPageChecked(pages[i]);
 951		set_page_extent_mapped(pages[i]);
 952		set_page_dirty(pages[i]);
 953		unlock_page(pages[i]);
 954		page_cache_release(pages[i]);
 955	}
 956	return i_done;
 957out:
 958	for (i = 0; i < i_done; i++) {
 959		unlock_page(pages[i]);
 960		page_cache_release(pages[i]);
 961	}
 962	btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
 963	return ret;
 964
 965}
 966
 967int btrfs_defrag_file(struct inode *inode, struct file *file,
 968		      struct btrfs_ioctl_defrag_range_args *range,
 969		      u64 newer_than, unsigned long max_to_defrag)
 970{
 971	struct btrfs_root *root = BTRFS_I(inode)->root;
 972	struct btrfs_super_block *disk_super;
 973	struct file_ra_state *ra = NULL;
 974	unsigned long last_index;
 975	u64 features;
 976	u64 last_len = 0;
 977	u64 skip = 0;
 978	u64 defrag_end = 0;
 979	u64 newer_off = range->start;
 980	int newer_left = 0;
 981	unsigned long i;
 
 982	int ret;
 983	int defrag_count = 0;
 984	int compress_type = BTRFS_COMPRESS_ZLIB;
 985	int extent_thresh = range->extent_thresh;
 986	int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
 
 987	u64 new_align = ~((u64)128 * 1024 - 1);
 988	struct page **pages = NULL;
 989
 990	if (extent_thresh == 0)
 991		extent_thresh = 256 * 1024;
 
 
 
 992
 993	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
 994		if (range->compress_type > BTRFS_COMPRESS_TYPES)
 995			return -EINVAL;
 996		if (range->compress_type)
 997			compress_type = range->compress_type;
 998	}
 999
1000	if (inode->i_size == 0)
1001		return 0;
1002
1003	/*
1004	 * if we were not given a file, allocate a readahead
1005	 * context
1006	 */
1007	if (!file) {
1008		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1009		if (!ra)
1010			return -ENOMEM;
1011		file_ra_state_init(ra, inode->i_mapping);
1012	} else {
1013		ra = &file->f_ra;
1014	}
1015
1016	pages = kmalloc(sizeof(struct page *) * newer_cluster,
1017			GFP_NOFS);
1018	if (!pages) {
1019		ret = -ENOMEM;
1020		goto out_ra;
1021	}
1022
1023	/* find the last page to defrag */
1024	if (range->start + range->len > range->start) {
1025		last_index = min_t(u64, inode->i_size - 1,
1026			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1027	} else {
1028		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1029	}
1030
1031	if (newer_than) {
1032		ret = find_new_extents(root, inode, newer_than,
1033				       &newer_off, 64 * 1024);
1034		if (!ret) {
1035			range->start = newer_off;
1036			/*
1037			 * we always align our defrag to help keep
1038			 * the extents in the file evenly spaced
1039			 */
1040			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1041			newer_left = newer_cluster;
1042		} else
1043			goto out_ra;
1044	} else {
1045		i = range->start >> PAGE_CACHE_SHIFT;
1046	}
1047	if (!max_to_defrag)
1048		max_to_defrag = last_index - 1;
1049
1050	/*
1051	 * make writeback starts from i, so the defrag range can be
1052	 * written sequentially.
1053	 */
1054	if (i < inode->i_mapping->writeback_index)
1055		inode->i_mapping->writeback_index = i;
1056
1057	while (i <= last_index && defrag_count < max_to_defrag &&
1058	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1059		PAGE_CACHE_SHIFT)) {
1060		/*
1061		 * make sure we stop running if someone unmounts
1062		 * the FS
1063		 */
1064		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1065			break;
1066
1067		if (!newer_than &&
1068		    !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1069					PAGE_CACHE_SIZE,
1070					extent_thresh,
1071					&last_len, &skip,
1072					&defrag_end)) {
 
 
 
 
1073			unsigned long next;
1074			/*
1075			 * the should_defrag function tells us how much to skip
1076			 * bump our counter by the suggested amount
1077			 */
1078			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1079			i = max(i + 1, next);
1080			continue;
1081		}
1082		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1083			BTRFS_I(inode)->force_compress = compress_type;
1084
1085		btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087		ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1088		if (ret < 0)
 
 
 
 
1089			goto out_ra;
 
1090
1091		defrag_count += ret;
1092		balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1093		i += ret;
1094
1095		if (newer_than) {
1096			if (newer_off == (u64)-1)
1097				break;
1098
 
 
 
1099			newer_off = max(newer_off + 1,
1100					(u64)i << PAGE_CACHE_SHIFT);
1101
1102			ret = find_new_extents(root, inode,
1103					       newer_than, &newer_off,
1104					       64 * 1024);
1105			if (!ret) {
1106				range->start = newer_off;
1107				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1108				newer_left = newer_cluster;
1109			} else {
1110				break;
1111			}
1112		} else {
1113			i++;
 
 
 
 
 
 
1114		}
1115	}
1116
1117	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1118		filemap_flush(inode->i_mapping);
 
 
 
 
1119
1120	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1121		/* the filemap_flush will queue IO into the worker threads, but
1122		 * we have to make sure the IO is actually started and that
1123		 * ordered extents get created before we return
1124		 */
1125		atomic_inc(&root->fs_info->async_submit_draining);
1126		while (atomic_read(&root->fs_info->nr_async_submits) ||
1127		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1128			wait_event(root->fs_info->async_submit_wait,
1129			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1130			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1131		}
1132		atomic_dec(&root->fs_info->async_submit_draining);
1133
1134		mutex_lock(&inode->i_mutex);
1135		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1136		mutex_unlock(&inode->i_mutex);
1137	}
1138
1139	disk_super = &root->fs_info->super_copy;
1140	features = btrfs_super_incompat_flags(disk_super);
1141	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1142		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1143		btrfs_set_super_incompat_flags(disk_super, features);
1144	}
1145
1146	if (!file)
1147		kfree(ra);
1148	return defrag_count;
1149
1150out_ra:
 
 
 
 
 
1151	if (!file)
1152		kfree(ra);
1153	kfree(pages);
1154	return ret;
1155}
1156
1157static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1158					void __user *arg)
1159{
1160	u64 new_size;
1161	u64 old_size;
1162	u64 devid = 1;
 
1163	struct btrfs_ioctl_vol_args *vol_args;
1164	struct btrfs_trans_handle *trans;
1165	struct btrfs_device *device = NULL;
1166	char *sizestr;
 
1167	char *devstr = NULL;
1168	int ret = 0;
1169	int mod = 0;
1170
1171	if (root->fs_info->sb->s_flags & MS_RDONLY)
1172		return -EROFS;
1173
1174	if (!capable(CAP_SYS_ADMIN))
1175		return -EPERM;
1176
 
 
 
 
 
 
 
 
 
 
 
1177	vol_args = memdup_user(arg, sizeof(*vol_args));
1178	if (IS_ERR(vol_args))
1179		return PTR_ERR(vol_args);
 
 
1180
1181	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1182
1183	mutex_lock(&root->fs_info->volume_mutex);
1184	sizestr = vol_args->name;
1185	devstr = strchr(sizestr, ':');
1186	if (devstr) {
1187		char *end;
1188		sizestr = devstr + 1;
1189		*devstr = '\0';
1190		devstr = vol_args->name;
1191		devid = simple_strtoull(devstr, &end, 10);
1192		printk(KERN_INFO "resizing devid %llu\n",
1193		       (unsigned long long)devid);
 
 
 
1194	}
1195	device = btrfs_find_device(root, devid, NULL, NULL);
 
1196	if (!device) {
1197		printk(KERN_INFO "resizer unable to find device %llu\n",
1198		       (unsigned long long)devid);
1199		ret = -EINVAL;
1200		goto out_unlock;
 
 
 
 
 
 
 
 
1201	}
 
1202	if (!strcmp(sizestr, "max"))
1203		new_size = device->bdev->bd_inode->i_size;
1204	else {
1205		if (sizestr[0] == '-') {
1206			mod = -1;
1207			sizestr++;
1208		} else if (sizestr[0] == '+') {
1209			mod = 1;
1210			sizestr++;
1211		}
1212		new_size = memparse(sizestr, NULL);
1213		if (new_size == 0) {
1214			ret = -EINVAL;
1215			goto out_unlock;
1216		}
1217	}
1218
 
 
 
 
 
1219	old_size = device->total_bytes;
1220
1221	if (mod < 0) {
1222		if (new_size > old_size) {
1223			ret = -EINVAL;
1224			goto out_unlock;
1225		}
1226		new_size = old_size - new_size;
1227	} else if (mod > 0) {
 
 
 
 
1228		new_size = old_size + new_size;
1229	}
1230
1231	if (new_size < 256 * 1024 * 1024) {
1232		ret = -EINVAL;
1233		goto out_unlock;
1234	}
1235	if (new_size > device->bdev->bd_inode->i_size) {
1236		ret = -EFBIG;
1237		goto out_unlock;
1238	}
1239
1240	do_div(new_size, root->sectorsize);
1241	new_size *= root->sectorsize;
1242
1243	printk(KERN_INFO "new size for %s is %llu\n",
1244		device->name, (unsigned long long)new_size);
1245
1246	if (new_size > old_size) {
1247		trans = btrfs_start_transaction(root, 0);
1248		if (IS_ERR(trans)) {
1249			ret = PTR_ERR(trans);
1250			goto out_unlock;
1251		}
1252		ret = btrfs_grow_device(trans, device, new_size);
1253		btrfs_commit_transaction(trans, root);
1254	} else {
1255		ret = btrfs_shrink_device(device, new_size);
1256	}
1257
1258out_unlock:
1259	mutex_unlock(&root->fs_info->volume_mutex);
1260	kfree(vol_args);
 
 
 
 
1261	return ret;
1262}
1263
1264static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1265						    char *name,
1266						    unsigned long fd,
1267						    int subvol,
1268						    u64 *transid,
1269						    bool readonly)
1270{
1271	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1272	struct file *src_file;
1273	int namelen;
1274	int ret = 0;
1275
1276	if (root->fs_info->sb->s_flags & MS_RDONLY)
1277		return -EROFS;
 
1278
1279	namelen = strlen(name);
1280	if (strchr(name, '/')) {
1281		ret = -EINVAL;
1282		goto out;
 
 
 
 
 
 
1283	}
1284
1285	if (subvol) {
1286		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1287				     NULL, transid, readonly);
1288	} else {
 
1289		struct inode *src_inode;
1290		src_file = fget(fd);
1291		if (!src_file) {
1292			ret = -EINVAL;
1293			goto out;
1294		}
1295
1296		src_inode = src_file->f_path.dentry->d_inode;
1297		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1298			printk(KERN_INFO "btrfs: Snapshot src from "
1299			       "another FS\n");
1300			ret = -EINVAL;
1301			fput(src_file);
1302			goto out;
 
 
 
 
 
 
 
 
1303		}
1304		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1305				     BTRFS_I(src_inode)->root,
1306				     transid, readonly);
1307		fput(src_file);
1308	}
 
 
1309out:
1310	return ret;
1311}
1312
1313static noinline int btrfs_ioctl_snap_create(struct file *file,
1314					    void __user *arg, int subvol)
1315{
1316	struct btrfs_ioctl_vol_args *vol_args;
1317	int ret;
1318
1319	vol_args = memdup_user(arg, sizeof(*vol_args));
1320	if (IS_ERR(vol_args))
1321		return PTR_ERR(vol_args);
1322	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1323
1324	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1325					      vol_args->fd, subvol,
1326					      NULL, false);
1327
1328	kfree(vol_args);
1329	return ret;
1330}
1331
1332static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1333					       void __user *arg, int subvol)
1334{
1335	struct btrfs_ioctl_vol_args_v2 *vol_args;
1336	int ret;
1337	u64 transid = 0;
1338	u64 *ptr = NULL;
1339	bool readonly = false;
 
1340
1341	vol_args = memdup_user(arg, sizeof(*vol_args));
1342	if (IS_ERR(vol_args))
1343		return PTR_ERR(vol_args);
1344	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1345
1346	if (vol_args->flags &
1347	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
 
1348		ret = -EOPNOTSUPP;
1349		goto out;
1350	}
1351
1352	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1353		ptr = &transid;
1354	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1355		readonly = true;
 
 
 
 
 
 
 
 
 
 
 
1356
1357	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1358					      vol_args->fd, subvol,
1359					      ptr, readonly);
1360
1361	if (ret == 0 && ptr &&
1362	    copy_to_user(arg +
1363			 offsetof(struct btrfs_ioctl_vol_args_v2,
1364				  transid), ptr, sizeof(*ptr)))
1365		ret = -EFAULT;
1366out:
1367	kfree(vol_args);
 
1368	return ret;
1369}
1370
1371static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1372						void __user *arg)
1373{
1374	struct inode *inode = fdentry(file)->d_inode;
1375	struct btrfs_root *root = BTRFS_I(inode)->root;
1376	int ret = 0;
1377	u64 flags = 0;
1378
1379	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1380		return -EINVAL;
1381
1382	down_read(&root->fs_info->subvol_sem);
1383	if (btrfs_root_readonly(root))
1384		flags |= BTRFS_SUBVOL_RDONLY;
1385	up_read(&root->fs_info->subvol_sem);
1386
1387	if (copy_to_user(arg, &flags, sizeof(flags)))
1388		ret = -EFAULT;
1389
1390	return ret;
1391}
1392
1393static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1394					      void __user *arg)
1395{
1396	struct inode *inode = fdentry(file)->d_inode;
1397	struct btrfs_root *root = BTRFS_I(inode)->root;
1398	struct btrfs_trans_handle *trans;
1399	u64 root_flags;
1400	u64 flags;
1401	int ret = 0;
1402
1403	if (root->fs_info->sb->s_flags & MS_RDONLY)
1404		return -EROFS;
1405
1406	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1407		return -EINVAL;
 
1408
1409	if (copy_from_user(&flags, arg, sizeof(flags)))
1410		return -EFAULT;
 
 
1411
1412	if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1413		return -EINVAL;
 
 
1414
1415	if (flags & ~BTRFS_SUBVOL_RDONLY)
1416		return -EOPNOTSUPP;
 
 
1417
1418	if (!inode_owner_or_capable(inode))
1419		return -EACCES;
 
 
1420
1421	down_write(&root->fs_info->subvol_sem);
1422
1423	/* nothing to do */
1424	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1425		goto out;
1426
1427	root_flags = btrfs_root_flags(&root->root_item);
1428	if (flags & BTRFS_SUBVOL_RDONLY)
1429		btrfs_set_root_flags(&root->root_item,
1430				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1431	else
1432		btrfs_set_root_flags(&root->root_item,
 
 
 
 
 
 
1433				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
 
 
 
 
 
 
 
 
 
 
1434
1435	trans = btrfs_start_transaction(root, 1);
1436	if (IS_ERR(trans)) {
1437		ret = PTR_ERR(trans);
1438		goto out_reset;
1439	}
1440
1441	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1442				&root->root_key, &root->root_item);
1443
1444	btrfs_commit_transaction(trans, root);
1445out_reset:
1446	if (ret)
1447		btrfs_set_root_flags(&root->root_item, root_flags);
1448out:
1449	up_write(&root->fs_info->subvol_sem);
 
 
 
1450	return ret;
1451}
1452
1453/*
1454 * helper to check if the subvolume references other subvolumes
1455 */
1456static noinline int may_destroy_subvol(struct btrfs_root *root)
1457{
1458	struct btrfs_path *path;
 
1459	struct btrfs_key key;
 
1460	int ret;
1461
1462	path = btrfs_alloc_path();
1463	if (!path)
1464		return -ENOMEM;
1465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466	key.objectid = root->root_key.objectid;
1467	key.type = BTRFS_ROOT_REF_KEY;
1468	key.offset = (u64)-1;
1469
1470	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1471				&key, path, 0, 0);
1472	if (ret < 0)
1473		goto out;
1474	BUG_ON(ret == 0);
1475
1476	ret = 0;
1477	if (path->slots[0] > 0) {
1478		path->slots[0]--;
1479		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1480		if (key.objectid == root->root_key.objectid &&
1481		    key.type == BTRFS_ROOT_REF_KEY)
1482			ret = -ENOTEMPTY;
1483	}
1484out:
1485	btrfs_free_path(path);
1486	return ret;
1487}
1488
1489static noinline int key_in_sk(struct btrfs_key *key,
1490			      struct btrfs_ioctl_search_key *sk)
1491{
1492	struct btrfs_key test;
1493	int ret;
1494
1495	test.objectid = sk->min_objectid;
1496	test.type = sk->min_type;
1497	test.offset = sk->min_offset;
1498
1499	ret = btrfs_comp_cpu_keys(key, &test);
1500	if (ret < 0)
1501		return 0;
1502
1503	test.objectid = sk->max_objectid;
1504	test.type = sk->max_type;
1505	test.offset = sk->max_offset;
1506
1507	ret = btrfs_comp_cpu_keys(key, &test);
1508	if (ret > 0)
1509		return 0;
1510	return 1;
1511}
1512
1513static noinline int copy_to_sk(struct btrfs_root *root,
1514			       struct btrfs_path *path,
1515			       struct btrfs_key *key,
1516			       struct btrfs_ioctl_search_key *sk,
1517			       char *buf,
1518			       unsigned long *sk_offset,
1519			       int *num_found)
1520{
1521	u64 found_transid;
1522	struct extent_buffer *leaf;
1523	struct btrfs_ioctl_search_header sh;
1524	unsigned long item_off;
1525	unsigned long item_len;
1526	int nritems;
1527	int i;
1528	int slot;
1529	int ret = 0;
1530
1531	leaf = path->nodes[0];
1532	slot = path->slots[0];
1533	nritems = btrfs_header_nritems(leaf);
1534
1535	if (btrfs_header_generation(leaf) > sk->max_transid) {
1536		i = nritems;
1537		goto advance_key;
1538	}
1539	found_transid = btrfs_header_generation(leaf);
1540
1541	for (i = slot; i < nritems; i++) {
1542		item_off = btrfs_item_ptr_offset(leaf, i);
1543		item_len = btrfs_item_size_nr(leaf, i);
1544
1545		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
 
 
 
 
1546			item_len = 0;
1547
1548		if (sizeof(sh) + item_len + *sk_offset >
1549		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1550			ret = 1;
1551			goto overflow;
1552		}
1553
1554		btrfs_item_key_to_cpu(leaf, key, i);
1555		if (!key_in_sk(key, sk))
1556			continue;
1557
1558		sh.objectid = key->objectid;
1559		sh.offset = key->offset;
1560		sh.type = key->type;
1561		sh.len = item_len;
1562		sh.transid = found_transid;
1563
1564		/* copy search result header */
1565		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1566		*sk_offset += sizeof(sh);
1567
1568		if (item_len) {
1569			char *p = buf + *sk_offset;
1570			/* copy the item */
1571			read_extent_buffer(leaf, p,
1572					   item_off, item_len);
1573			*sk_offset += item_len;
1574		}
1575		(*num_found)++;
1576
1577		if (*num_found >= sk->nr_items)
1578			break;
1579	}
1580advance_key:
1581	ret = 0;
1582	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1583		key->offset++;
1584	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1585		key->offset = 0;
1586		key->type++;
1587	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1588		key->offset = 0;
1589		key->type = 0;
1590		key->objectid++;
1591	} else
1592		ret = 1;
1593overflow:
1594	return ret;
1595}
1596
1597static noinline int search_ioctl(struct inode *inode,
1598				 struct btrfs_ioctl_search_args *args)
1599{
1600	struct btrfs_root *root;
1601	struct btrfs_key key;
1602	struct btrfs_key max_key;
1603	struct btrfs_path *path;
1604	struct btrfs_ioctl_search_key *sk = &args->key;
1605	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1606	int ret;
1607	int num_found = 0;
1608	unsigned long sk_offset = 0;
1609
1610	path = btrfs_alloc_path();
1611	if (!path)
1612		return -ENOMEM;
1613
1614	if (sk->tree_id == 0) {
1615		/* search the root of the inode that was passed */
1616		root = BTRFS_I(inode)->root;
1617	} else {
1618		key.objectid = sk->tree_id;
1619		key.type = BTRFS_ROOT_ITEM_KEY;
1620		key.offset = (u64)-1;
1621		root = btrfs_read_fs_root_no_name(info, &key);
1622		if (IS_ERR(root)) {
1623			printk(KERN_ERR "could not find root %llu\n",
1624			       sk->tree_id);
1625			btrfs_free_path(path);
1626			return -ENOENT;
1627		}
1628	}
1629
1630	key.objectid = sk->min_objectid;
1631	key.type = sk->min_type;
1632	key.offset = sk->min_offset;
1633
1634	max_key.objectid = sk->max_objectid;
1635	max_key.type = sk->max_type;
1636	max_key.offset = sk->max_offset;
1637
1638	path->keep_locks = 1;
1639
1640	while(1) {
1641		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1642					   sk->min_transid);
1643		if (ret != 0) {
1644			if (ret > 0)
1645				ret = 0;
1646			goto err;
1647		}
1648		ret = copy_to_sk(root, path, &key, sk, args->buf,
1649				 &sk_offset, &num_found);
1650		btrfs_release_path(path);
1651		if (ret || num_found >= sk->nr_items)
1652			break;
1653
1654	}
1655	ret = 0;
1656err:
1657	sk->nr_items = num_found;
1658	btrfs_free_path(path);
1659	return ret;
1660}
1661
1662static noinline int btrfs_ioctl_tree_search(struct file *file,
1663					   void __user *argp)
1664{
1665	 struct btrfs_ioctl_search_args *args;
1666	 struct inode *inode;
1667	 int ret;
1668
1669	if (!capable(CAP_SYS_ADMIN))
1670		return -EPERM;
1671
1672	args = memdup_user(argp, sizeof(*args));
1673	if (IS_ERR(args))
1674		return PTR_ERR(args);
1675
1676	inode = fdentry(file)->d_inode;
1677	ret = search_ioctl(inode, args);
1678	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1679		ret = -EFAULT;
1680	kfree(args);
1681	return ret;
1682}
1683
1684/*
1685 * Search INODE_REFs to identify path name of 'dirid' directory
1686 * in a 'tree_id' tree. and sets path name to 'name'.
1687 */
1688static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1689				u64 tree_id, u64 dirid, char *name)
1690{
1691	struct btrfs_root *root;
1692	struct btrfs_key key;
1693	char *ptr;
1694	int ret = -1;
1695	int slot;
1696	int len;
1697	int total_len = 0;
1698	struct btrfs_inode_ref *iref;
1699	struct extent_buffer *l;
1700	struct btrfs_path *path;
1701
1702	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1703		name[0]='\0';
1704		return 0;
1705	}
1706
1707	path = btrfs_alloc_path();
1708	if (!path)
1709		return -ENOMEM;
1710
1711	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1712
1713	key.objectid = tree_id;
1714	key.type = BTRFS_ROOT_ITEM_KEY;
1715	key.offset = (u64)-1;
1716	root = btrfs_read_fs_root_no_name(info, &key);
1717	if (IS_ERR(root)) {
1718		printk(KERN_ERR "could not find root %llu\n", tree_id);
1719		ret = -ENOENT;
1720		goto out;
1721	}
1722
1723	key.objectid = dirid;
1724	key.type = BTRFS_INODE_REF_KEY;
1725	key.offset = (u64)-1;
1726
1727	while(1) {
1728		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1729		if (ret < 0)
1730			goto out;
 
 
 
 
 
 
 
 
 
 
1731
1732		l = path->nodes[0];
1733		slot = path->slots[0];
1734		if (ret > 0 && slot > 0)
1735			slot--;
1736		btrfs_item_key_to_cpu(l, &key, slot);
1737
1738		if (ret > 0 && (key.objectid != dirid ||
1739				key.type != BTRFS_INODE_REF_KEY)) {
1740			ret = -ENOENT;
1741			goto out;
1742		}
1743
1744		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1745		len = btrfs_inode_ref_name_len(l, iref);
1746		ptr -= len + 1;
1747		total_len += len + 1;
1748		if (ptr < name)
 
1749			goto out;
 
1750
1751		*(ptr + len) = '/';
1752		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1753
1754		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1755			break;
1756
1757		btrfs_release_path(path);
1758		key.objectid = key.offset;
1759		key.offset = (u64)-1;
1760		dirid = key.objectid;
1761	}
1762	if (ptr < name)
1763		goto out;
1764	memmove(name, ptr, total_len);
1765	name[total_len]='\0';
1766	ret = 0;
1767out:
1768	btrfs_free_path(path);
1769	return ret;
1770}
1771
1772static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1773					   void __user *argp)
1774{
1775	 struct btrfs_ioctl_ino_lookup_args *args;
1776	 struct inode *inode;
1777	 int ret;
1778
1779	if (!capable(CAP_SYS_ADMIN))
1780		return -EPERM;
1781
1782	args = memdup_user(argp, sizeof(*args));
1783	if (IS_ERR(args))
1784		return PTR_ERR(args);
1785
1786	inode = fdentry(file)->d_inode;
1787
1788	if (args->treeid == 0)
1789		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1790
1791	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1792					args->treeid, args->objectid,
1793					args->name);
1794
1795	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1796		ret = -EFAULT;
1797
1798	kfree(args);
1799	return ret;
1800}
1801
1802static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1803					     void __user *arg)
1804{
1805	struct dentry *parent = fdentry(file);
1806	struct dentry *dentry;
1807	struct inode *dir = parent->d_inode;
1808	struct inode *inode;
1809	struct btrfs_root *root = BTRFS_I(dir)->root;
1810	struct btrfs_root *dest = NULL;
1811	struct btrfs_ioctl_vol_args *vol_args;
1812	struct btrfs_trans_handle *trans;
 
 
1813	int namelen;
1814	int ret;
1815	int err = 0;
1816
1817	vol_args = memdup_user(arg, sizeof(*vol_args));
1818	if (IS_ERR(vol_args))
1819		return PTR_ERR(vol_args);
1820
1821	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1822	namelen = strlen(vol_args->name);
1823	if (strchr(vol_args->name, '/') ||
1824	    strncmp(vol_args->name, "..", namelen) == 0) {
1825		err = -EINVAL;
1826		goto out;
1827	}
1828
1829	err = mnt_want_write(file->f_path.mnt);
1830	if (err)
1831		goto out;
1832
1833	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
 
 
1834	dentry = lookup_one_len(vol_args->name, parent, namelen);
1835	if (IS_ERR(dentry)) {
1836		err = PTR_ERR(dentry);
1837		goto out_unlock_dir;
1838	}
1839
1840	if (!dentry->d_inode) {
1841		err = -ENOENT;
1842		goto out_dput;
1843	}
1844
1845	inode = dentry->d_inode;
1846	dest = BTRFS_I(inode)->root;
1847	if (!capable(CAP_SYS_ADMIN)){
1848		/*
1849		 * Regular user.  Only allow this with a special mount
1850		 * option, when the user has write+exec access to the
1851		 * subvol root, and when rmdir(2) would have been
1852		 * allowed.
1853		 *
1854		 * Note that this is _not_ check that the subvol is
1855		 * empty or doesn't contain data that we wouldn't
1856		 * otherwise be able to delete.
1857		 *
1858		 * Users who want to delete empty subvols should try
1859		 * rmdir(2).
1860		 */
1861		err = -EPERM;
1862		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1863			goto out_dput;
1864
1865		/*
1866		 * Do not allow deletion if the parent dir is the same
1867		 * as the dir to be deleted.  That means the ioctl
1868		 * must be called on the dentry referencing the root
1869		 * of the subvol, not a random directory contained
1870		 * within it.
1871		 */
1872		err = -EINVAL;
1873		if (root == dest)
1874			goto out_dput;
1875
1876		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1877		if (err)
1878			goto out_dput;
1879
1880		/* check if subvolume may be deleted by a non-root user */
1881		err = btrfs_may_delete(dir, dentry, 1);
1882		if (err)
1883			goto out_dput;
1884	}
1885
 
 
 
 
 
1886	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1887		err = -EINVAL;
1888		goto out_dput;
1889	}
1890
1891	mutex_lock(&inode->i_mutex);
1892	err = d_invalidate(dentry);
1893	if (err)
1894		goto out_unlock;
1895
1896	down_write(&root->fs_info->subvol_sem);
1897
1898	err = may_destroy_subvol(dest);
1899	if (err)
1900		goto out_up_write;
1901
 
 
 
 
 
 
 
 
 
 
1902	trans = btrfs_start_transaction(root, 0);
1903	if (IS_ERR(trans)) {
1904		err = PTR_ERR(trans);
1905		goto out_up_write;
1906	}
1907	trans->block_rsv = &root->fs_info->global_block_rsv;
 
1908
1909	ret = btrfs_unlink_subvol(trans, root, dir,
1910				dest->root_key.objectid,
1911				dentry->d_name.name,
1912				dentry->d_name.len);
1913	BUG_ON(ret);
 
 
 
 
1914
1915	btrfs_record_root_in_trans(trans, dest);
1916
1917	memset(&dest->root_item.drop_progress, 0,
1918		sizeof(dest->root_item.drop_progress));
1919	dest->root_item.drop_level = 0;
1920	btrfs_set_root_refs(&dest->root_item, 0);
1921
1922	if (!xchg(&dest->orphan_item_inserted, 1)) {
1923		ret = btrfs_insert_orphan_item(trans,
1924					root->fs_info->tree_root,
1925					dest->root_key.objectid);
1926		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927	}
1928
 
 
 
1929	ret = btrfs_end_transaction(trans, root);
1930	BUG_ON(ret);
 
1931	inode->i_flags |= S_DEAD;
 
 
1932out_up_write:
1933	up_write(&root->fs_info->subvol_sem);
1934out_unlock:
1935	mutex_unlock(&inode->i_mutex);
1936	if (!err) {
1937		shrink_dcache_sb(root->fs_info->sb);
1938		btrfs_invalidate_inodes(dest);
1939		d_delete(dentry);
 
 
 
 
 
 
1940	}
1941out_dput:
1942	dput(dentry);
1943out_unlock_dir:
1944	mutex_unlock(&dir->i_mutex);
1945	mnt_drop_write(file->f_path.mnt);
 
1946out:
1947	kfree(vol_args);
1948	return err;
1949}
1950
1951static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1952{
1953	struct inode *inode = fdentry(file)->d_inode;
1954	struct btrfs_root *root = BTRFS_I(inode)->root;
1955	struct btrfs_ioctl_defrag_range_args *range;
1956	int ret;
1957
1958	if (btrfs_root_readonly(root))
1959		return -EROFS;
1960
1961	ret = mnt_want_write(file->f_path.mnt);
1962	if (ret)
1963		return ret;
1964
 
 
 
 
 
1965	switch (inode->i_mode & S_IFMT) {
1966	case S_IFDIR:
1967		if (!capable(CAP_SYS_ADMIN)) {
1968			ret = -EPERM;
1969			goto out;
1970		}
1971		ret = btrfs_defrag_root(root, 0);
1972		if (ret)
1973			goto out;
1974		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1975		break;
1976	case S_IFREG:
1977		if (!(file->f_mode & FMODE_WRITE)) {
1978			ret = -EINVAL;
1979			goto out;
1980		}
1981
1982		range = kzalloc(sizeof(*range), GFP_KERNEL);
1983		if (!range) {
1984			ret = -ENOMEM;
1985			goto out;
1986		}
1987
1988		if (argp) {
1989			if (copy_from_user(range, argp,
1990					   sizeof(*range))) {
1991				ret = -EFAULT;
1992				kfree(range);
1993				goto out;
1994			}
1995			/* compression requires us to start the IO */
1996			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1997				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1998				range->extent_thresh = (u32)-1;
1999			}
2000		} else {
2001			/* the rest are all set to zero by kzalloc */
2002			range->len = (u64)-1;
2003		}
2004		ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2005					range, 0, 0);
2006		if (ret > 0)
2007			ret = 0;
2008		kfree(range);
2009		break;
2010	default:
2011		ret = -EINVAL;
2012	}
2013out:
2014	mnt_drop_write(file->f_path.mnt);
2015	return ret;
2016}
2017
2018static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2019{
2020	struct btrfs_ioctl_vol_args *vol_args;
2021	int ret;
2022
2023	if (!capable(CAP_SYS_ADMIN))
2024		return -EPERM;
2025
 
 
 
 
 
 
2026	vol_args = memdup_user(arg, sizeof(*vol_args));
2027	if (IS_ERR(vol_args))
2028		return PTR_ERR(vol_args);
 
 
2029
2030	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2031	ret = btrfs_init_new_device(root, vol_args->name);
2032
2033	kfree(vol_args);
 
 
 
2034	return ret;
2035}
2036
2037static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2038{
 
2039	struct btrfs_ioctl_vol_args *vol_args;
2040	int ret;
2041
2042	if (!capable(CAP_SYS_ADMIN))
2043		return -EPERM;
2044
2045	if (root->fs_info->sb->s_flags & MS_RDONLY)
2046		return -EROFS;
 
2047
2048	vol_args = memdup_user(arg, sizeof(*vol_args));
2049	if (IS_ERR(vol_args))
2050		return PTR_ERR(vol_args);
 
 
2051
2052	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
 
 
 
2053	ret = btrfs_rm_device(root, vol_args->name);
 
 
2054
 
2055	kfree(vol_args);
 
2056	return ret;
2057}
2058
2059static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2060{
2061	struct btrfs_ioctl_fs_info_args *fi_args;
2062	struct btrfs_device *device;
2063	struct btrfs_device *next;
2064	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2065	int ret = 0;
2066
2067	if (!capable(CAP_SYS_ADMIN))
2068		return -EPERM;
2069
2070	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2071	if (!fi_args)
2072		return -ENOMEM;
2073
 
2074	fi_args->num_devices = fs_devices->num_devices;
2075	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2076
2077	mutex_lock(&fs_devices->device_list_mutex);
2078	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2079		if (device->devid > fi_args->max_id)
2080			fi_args->max_id = device->devid;
2081	}
2082	mutex_unlock(&fs_devices->device_list_mutex);
2083
2084	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2085		ret = -EFAULT;
2086
2087	kfree(fi_args);
2088	return ret;
2089}
2090
2091static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2092{
2093	struct btrfs_ioctl_dev_info_args *di_args;
2094	struct btrfs_device *dev;
2095	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2096	int ret = 0;
2097	char *s_uuid = NULL;
2098	char empty_uuid[BTRFS_UUID_SIZE] = {0};
2099
2100	if (!capable(CAP_SYS_ADMIN))
2101		return -EPERM;
2102
2103	di_args = memdup_user(arg, sizeof(*di_args));
2104	if (IS_ERR(di_args))
2105		return PTR_ERR(di_args);
2106
2107	if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2108		s_uuid = di_args->uuid;
2109
2110	mutex_lock(&fs_devices->device_list_mutex);
2111	dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2112	mutex_unlock(&fs_devices->device_list_mutex);
2113
2114	if (!dev) {
2115		ret = -ENODEV;
2116		goto out;
2117	}
2118
2119	di_args->devid = dev->devid;
2120	di_args->bytes_used = dev->bytes_used;
2121	di_args->total_bytes = dev->total_bytes;
2122	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2123	strncpy(di_args->path, dev->name, sizeof(di_args->path));
 
 
 
 
 
 
 
 
 
 
2124
2125out:
 
2126	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2127		ret = -EFAULT;
2128
2129	kfree(di_args);
2130	return ret;
2131}
2132
2133static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2134				       u64 off, u64 olen, u64 destoff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135{
2136	struct inode *inode = fdentry(file)->d_inode;
2137	struct btrfs_root *root = BTRFS_I(inode)->root;
2138	struct file *src_file;
2139	struct inode *src;
2140	struct btrfs_trans_handle *trans;
2141	struct btrfs_path *path;
2142	struct extent_buffer *leaf;
2143	char *buf;
2144	struct btrfs_key key;
2145	u32 nritems;
2146	int slot;
2147	int ret;
2148	u64 len = olen;
2149	u64 bs = root->fs_info->sb->s_blocksize;
2150	u64 hint_byte;
2151
2152	/*
2153	 * TODO:
2154	 * - split compressed inline extents.  annoying: we need to
2155	 *   decompress into destination's address_space (the file offset
2156	 *   may change, so source mapping won't do), then recompress (or
2157	 *   otherwise reinsert) a subrange.
2158	 * - allow ranges within the same file to be cloned (provided
2159	 *   they don't overlap)?
2160	 */
2161
2162	/* the destination must be opened for writing */
2163	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2164		return -EINVAL;
2165
2166	if (btrfs_root_readonly(root))
2167		return -EROFS;
2168
2169	ret = mnt_want_write(file->f_path.mnt);
2170	if (ret)
2171		return ret;
2172
2173	src_file = fget(srcfd);
2174	if (!src_file) {
2175		ret = -EBADF;
2176		goto out_drop_write;
 
 
 
 
 
2177	}
2178
2179	src = src_file->f_dentry->d_inode;
 
 
2180
2181	ret = -EINVAL;
2182	if (src == inode)
2183		goto out_fput;
2184
2185	/* the src must be open for reading */
2186	if (!(src_file->f_mode & FMODE_READ))
2187		goto out_fput;
2188
2189	/* don't make the dst file partly checksummed */
2190	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2191	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2192		goto out_fput;
2193
2194	ret = -EISDIR;
2195	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2196		goto out_fput;
 
 
 
 
 
 
 
 
 
 
 
2197
2198	ret = -EXDEV;
2199	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2200		goto out_fput;
2201
2202	ret = -ENOMEM;
2203	buf = vmalloc(btrfs_level_size(root, 0));
2204	if (!buf)
2205		goto out_fput;
2206
2207	path = btrfs_alloc_path();
2208	if (!path) {
2209		vfree(buf);
2210		goto out_fput;
2211	}
2212	path->reada = 2;
2213
2214	if (inode < src) {
2215		mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2216		mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2217	} else {
2218		mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2219		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
 
2220	}
2221
2222	/* determine range to clone */
2223	ret = -EINVAL;
2224	if (off + len > src->i_size || off + len < off)
2225		goto out_unlock;
2226	if (len == 0)
2227		olen = len = src->i_size - off;
2228	/* if we extend to eof, continue to block boundary */
2229	if (off + len == src->i_size)
2230		len = ALIGN(src->i_size, bs) - off;
2231
2232	/* verify the end result is block aligned */
2233	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2234	    !IS_ALIGNED(destoff, bs))
2235		goto out_unlock;
 
 
 
2236
2237	if (destoff > inode->i_size) {
2238		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2239		if (ret)
2240			goto out_unlock;
 
 
 
 
2241	}
2242
2243	/* truncate page cache pages from target inode range */
2244	truncate_inode_pages_range(&inode->i_data, destoff,
2245				   PAGE_CACHE_ALIGN(destoff + len) - 1);
2246
2247	/* do any pending delalloc/csum calc on src, one way or
2248	   another, and lock file content */
2249	while (1) {
2250		struct btrfs_ordered_extent *ordered;
2251		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2252		ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2253		if (!ordered &&
2254		    !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2255				   EXTENT_DELALLOC, 0, NULL))
2256			break;
2257		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2258		if (ordered)
2259			btrfs_put_ordered_extent(ordered);
2260		btrfs_wait_ordered_range(src, off, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261	}
2262
 
2263	/* clone data */
2264	key.objectid = btrfs_ino(src);
2265	key.type = BTRFS_EXTENT_DATA_KEY;
2266	key.offset = 0;
2267
2268	while (1) {
2269		/*
2270		 * note the key will change type as we walk through the
2271		 * tree.
2272		 */
2273		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
 
2274		if (ret < 0)
2275			goto out;
2276
2277		nritems = btrfs_header_nritems(path->nodes[0]);
 
2278		if (path->slots[0] >= nritems) {
2279			ret = btrfs_next_leaf(root, path);
2280			if (ret < 0)
2281				goto out;
2282			if (ret > 0)
2283				break;
2284			nritems = btrfs_header_nritems(path->nodes[0]);
2285		}
2286		leaf = path->nodes[0];
2287		slot = path->slots[0];
2288
2289		btrfs_item_key_to_cpu(leaf, &key, slot);
2290		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2291		    key.objectid != btrfs_ino(src))
2292			break;
2293
2294		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2295			struct btrfs_file_extent_item *extent;
2296			int type;
2297			u32 size;
2298			struct btrfs_key new_key;
2299			u64 disko = 0, diskl = 0;
2300			u64 datao = 0, datal = 0;
2301			u8 comp;
2302			u64 endoff;
2303
2304			size = btrfs_item_size_nr(leaf, slot);
2305			read_extent_buffer(leaf, buf,
2306					   btrfs_item_ptr_offset(leaf, slot),
2307					   size);
2308
2309			extent = btrfs_item_ptr(leaf, slot,
2310						struct btrfs_file_extent_item);
2311			comp = btrfs_file_extent_compression(leaf, extent);
2312			type = btrfs_file_extent_type(leaf, extent);
2313			if (type == BTRFS_FILE_EXTENT_REG ||
2314			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2315				disko = btrfs_file_extent_disk_bytenr(leaf,
2316								      extent);
2317				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2318								 extent);
2319				datao = btrfs_file_extent_offset(leaf, extent);
2320				datal = btrfs_file_extent_num_bytes(leaf,
2321								    extent);
2322			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2323				/* take upper bound, may be compressed */
2324				datal = btrfs_file_extent_ram_bytes(leaf,
2325								    extent);
2326			}
2327			btrfs_release_path(path);
2328
2329			if (key.offset + datal <= off ||
2330			    key.offset >= off+len)
2331				goto next;
 
 
 
 
 
 
 
 
 
 
2332
2333			memcpy(&new_key, &key, sizeof(new_key));
2334			new_key.objectid = btrfs_ino(inode);
2335			if (off <= key.offset)
2336				new_key.offset = key.offset + destoff - off;
2337			else
2338				new_key.offset = destoff;
2339
2340			/*
2341			 * 1 - adjusting old extent (we may have to split it)
2342			 * 1 - add new extent
2343			 * 1 - inode update
2344			 */
2345			trans = btrfs_start_transaction(root, 3);
2346			if (IS_ERR(trans)) {
2347				ret = PTR_ERR(trans);
2348				goto out;
2349			}
2350
2351			if (type == BTRFS_FILE_EXTENT_REG ||
2352			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2353				/*
2354				 *    a  | --- range to clone ---|  b
2355				 * | ------------- extent ------------- |
2356				 */
2357
2358				/* substract range b */
2359				if (key.offset + datal > off + len)
2360					datal = off + len - key.offset;
2361
2362				/* substract range a */
2363				if (off > key.offset) {
2364					datao += off - key.offset;
2365					datal -= off - key.offset;
2366				}
2367
2368				ret = btrfs_drop_extents(trans, inode,
2369							 new_key.offset,
2370							 new_key.offset + datal,
2371							 &hint_byte, 1);
2372				BUG_ON(ret);
 
 
 
 
 
 
2373
2374				ret = btrfs_insert_empty_item(trans, root, path,
2375							      &new_key, size);
2376				BUG_ON(ret);
 
 
 
 
 
2377
2378				leaf = path->nodes[0];
2379				slot = path->slots[0];
2380				write_extent_buffer(leaf, buf,
2381					    btrfs_item_ptr_offset(leaf, slot),
2382					    size);
2383
2384				extent = btrfs_item_ptr(leaf, slot,
2385						struct btrfs_file_extent_item);
2386
2387				/* disko == 0 means it's a hole */
2388				if (!disko)
2389					datao = 0;
2390
2391				btrfs_set_file_extent_offset(leaf, extent,
2392							     datao);
2393				btrfs_set_file_extent_num_bytes(leaf, extent,
2394								datal);
2395				if (disko) {
2396					inode_add_bytes(inode, datal);
2397					ret = btrfs_inc_extent_ref(trans, root,
2398							disko, diskl, 0,
2399							root->root_key.objectid,
2400							btrfs_ino(inode),
2401							new_key.offset - datao);
2402					BUG_ON(ret);
 
 
 
 
 
 
 
 
 
2403				}
2404			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2405				u64 skip = 0;
2406				u64 trim = 0;
 
 
2407				if (off > key.offset) {
2408					skip = off - key.offset;
2409					new_key.offset += skip;
2410				}
2411
2412				if (key.offset + datal > off+len)
2413					trim = key.offset + datal - (off+len);
2414
2415				if (comp && (skip || trim)) {
2416					ret = -EINVAL;
2417					btrfs_end_transaction(trans, root);
2418					goto out;
2419				}
2420				size -= skip + trim;
2421				datal -= skip + trim;
2422
2423				ret = btrfs_drop_extents(trans, inode,
 
 
2424							 new_key.offset,
2425							 new_key.offset + datal,
2426							 &hint_byte, 1);
2427				BUG_ON(ret);
 
 
 
 
 
 
2428
2429				ret = btrfs_insert_empty_item(trans, root, path,
2430							      &new_key, size);
2431				BUG_ON(ret);
 
 
 
 
 
2432
2433				if (skip) {
2434					u32 start =
2435					  btrfs_file_extent_calc_inline_size(0);
2436					memmove(buf+start, buf+start+skip,
2437						datal);
2438				}
2439
2440				leaf = path->nodes[0];
2441				slot = path->slots[0];
2442				write_extent_buffer(leaf, buf,
2443					    btrfs_item_ptr_offset(leaf, slot),
2444					    size);
2445				inode_add_bytes(inode, datal);
2446			}
2447
2448			btrfs_mark_buffer_dirty(leaf);
2449			btrfs_release_path(path);
2450
 
2451			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2452
2453			/*
2454			 * we round up to the block size at eof when
2455			 * determining which extents to clone above,
2456			 * but shouldn't round up the file size
2457			 */
2458			endoff = new_key.offset + datal;
2459			if (endoff > destoff+olen)
2460				endoff = destoff+olen;
2461			if (endoff > inode->i_size)
2462				btrfs_i_size_write(inode, endoff);
2463
2464			ret = btrfs_update_inode(trans, root, inode);
2465			BUG_ON(ret);
2466			btrfs_end_transaction(trans, root);
 
 
 
 
2467		}
2468next:
2469		btrfs_release_path(path);
2470		key.offset++;
2471	}
2472	ret = 0;
 
2473out:
2474	btrfs_release_path(path);
2475	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2476out_unlock:
2477	mutex_unlock(&src->i_mutex);
2478	mutex_unlock(&inode->i_mutex);
2479	vfree(buf);
2480	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481out_fput:
2482	fput(src_file);
2483out_drop_write:
2484	mnt_drop_write(file->f_path.mnt);
2485	return ret;
2486}
2487
2488static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2489{
2490	struct btrfs_ioctl_clone_range_args args;
2491
2492	if (copy_from_user(&args, argp, sizeof(args)))
2493		return -EFAULT;
2494	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2495				 args.src_length, args.dest_offset);
2496}
2497
2498/*
2499 * there are many ways the trans_start and trans_end ioctls can lead
2500 * to deadlocks.  They should only be used by applications that
2501 * basically own the machine, and have a very in depth understanding
2502 * of all the possible deadlocks and enospc problems.
2503 */
2504static long btrfs_ioctl_trans_start(struct file *file)
2505{
2506	struct inode *inode = fdentry(file)->d_inode;
2507	struct btrfs_root *root = BTRFS_I(inode)->root;
2508	struct btrfs_trans_handle *trans;
2509	int ret;
2510
2511	ret = -EPERM;
2512	if (!capable(CAP_SYS_ADMIN))
2513		goto out;
2514
2515	ret = -EINPROGRESS;
2516	if (file->private_data)
2517		goto out;
2518
2519	ret = -EROFS;
2520	if (btrfs_root_readonly(root))
2521		goto out;
2522
2523	ret = mnt_want_write(file->f_path.mnt);
2524	if (ret)
2525		goto out;
2526
2527	atomic_inc(&root->fs_info->open_ioctl_trans);
2528
2529	ret = -ENOMEM;
2530	trans = btrfs_start_ioctl_transaction(root);
2531	if (IS_ERR(trans))
2532		goto out_drop;
2533
2534	file->private_data = trans;
2535	return 0;
2536
2537out_drop:
2538	atomic_dec(&root->fs_info->open_ioctl_trans);
2539	mnt_drop_write(file->f_path.mnt);
2540out:
2541	return ret;
2542}
2543
2544static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2545{
2546	struct inode *inode = fdentry(file)->d_inode;
2547	struct btrfs_root *root = BTRFS_I(inode)->root;
2548	struct btrfs_root *new_root;
2549	struct btrfs_dir_item *di;
2550	struct btrfs_trans_handle *trans;
2551	struct btrfs_path *path;
2552	struct btrfs_key location;
2553	struct btrfs_disk_key disk_key;
2554	struct btrfs_super_block *disk_super;
2555	u64 features;
2556	u64 objectid = 0;
2557	u64 dir_id;
 
2558
2559	if (!capable(CAP_SYS_ADMIN))
2560		return -EPERM;
2561
2562	if (copy_from_user(&objectid, argp, sizeof(objectid)))
2563		return -EFAULT;
 
 
 
 
 
 
2564
2565	if (!objectid)
2566		objectid = root->root_key.objectid;
2567
2568	location.objectid = objectid;
2569	location.type = BTRFS_ROOT_ITEM_KEY;
2570	location.offset = (u64)-1;
2571
2572	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2573	if (IS_ERR(new_root))
2574		return PTR_ERR(new_root);
2575
2576	if (btrfs_root_refs(&new_root->root_item) == 0)
2577		return -ENOENT;
2578
2579	path = btrfs_alloc_path();
2580	if (!path)
2581		return -ENOMEM;
 
 
2582	path->leave_spinning = 1;
2583
2584	trans = btrfs_start_transaction(root, 1);
2585	if (IS_ERR(trans)) {
2586		btrfs_free_path(path);
2587		return PTR_ERR(trans);
 
2588	}
2589
2590	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2591	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2592				   dir_id, "default", 7, 1);
2593	if (IS_ERR_OR_NULL(di)) {
2594		btrfs_free_path(path);
2595		btrfs_end_transaction(trans, root);
2596		printk(KERN_ERR "Umm, you don't have the default dir item, "
2597		       "this isn't going to work\n");
2598		return -ENOENT;
 
2599	}
2600
2601	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2602	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2603	btrfs_mark_buffer_dirty(path->nodes[0]);
2604	btrfs_free_path(path);
2605
2606	disk_super = &root->fs_info->super_copy;
2607	features = btrfs_super_incompat_flags(disk_super);
2608	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2609		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2610		btrfs_set_super_incompat_flags(disk_super, features);
2611	}
2612	btrfs_end_transaction(trans, root);
2613
2614	return 0;
 
2615}
2616
2617static void get_block_group_info(struct list_head *groups_list,
2618				 struct btrfs_ioctl_space_info *space)
2619{
2620	struct btrfs_block_group_cache *block_group;
2621
2622	space->total_bytes = 0;
2623	space->used_bytes = 0;
2624	space->flags = 0;
2625	list_for_each_entry(block_group, groups_list, list) {
2626		space->flags = block_group->flags;
2627		space->total_bytes += block_group->key.offset;
2628		space->used_bytes +=
2629			btrfs_block_group_used(&block_group->item);
2630	}
2631}
2632
2633long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2634{
2635	struct btrfs_ioctl_space_args space_args;
2636	struct btrfs_ioctl_space_info space;
2637	struct btrfs_ioctl_space_info *dest;
2638	struct btrfs_ioctl_space_info *dest_orig;
2639	struct btrfs_ioctl_space_info __user *user_dest;
2640	struct btrfs_space_info *info;
2641	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2642		       BTRFS_BLOCK_GROUP_SYSTEM,
2643		       BTRFS_BLOCK_GROUP_METADATA,
2644		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2645	int num_types = 4;
2646	int alloc_size;
2647	int ret = 0;
2648	u64 slot_count = 0;
2649	int i, c;
2650
2651	if (copy_from_user(&space_args,
2652			   (struct btrfs_ioctl_space_args __user *)arg,
2653			   sizeof(space_args)))
2654		return -EFAULT;
2655
2656	for (i = 0; i < num_types; i++) {
2657		struct btrfs_space_info *tmp;
2658
2659		info = NULL;
2660		rcu_read_lock();
2661		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2662					list) {
2663			if (tmp->flags == types[i]) {
2664				info = tmp;
2665				break;
2666			}
2667		}
2668		rcu_read_unlock();
2669
2670		if (!info)
2671			continue;
2672
2673		down_read(&info->groups_sem);
2674		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2675			if (!list_empty(&info->block_groups[c]))
2676				slot_count++;
2677		}
2678		up_read(&info->groups_sem);
2679	}
2680
 
 
 
 
 
2681	/* space_slots == 0 means they are asking for a count */
2682	if (space_args.space_slots == 0) {
2683		space_args.total_spaces = slot_count;
2684		goto out;
2685	}
2686
2687	slot_count = min_t(u64, space_args.space_slots, slot_count);
2688
2689	alloc_size = sizeof(*dest) * slot_count;
2690
2691	/* we generally have at most 6 or so space infos, one for each raid
2692	 * level.  So, a whole page should be more than enough for everyone
2693	 */
2694	if (alloc_size > PAGE_CACHE_SIZE)
2695		return -ENOMEM;
2696
2697	space_args.total_spaces = 0;
2698	dest = kmalloc(alloc_size, GFP_NOFS);
2699	if (!dest)
2700		return -ENOMEM;
2701	dest_orig = dest;
2702
2703	/* now we have a buffer to copy into */
2704	for (i = 0; i < num_types; i++) {
2705		struct btrfs_space_info *tmp;
2706
2707		if (!slot_count)
2708			break;
2709
2710		info = NULL;
2711		rcu_read_lock();
2712		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2713					list) {
2714			if (tmp->flags == types[i]) {
2715				info = tmp;
2716				break;
2717			}
2718		}
2719		rcu_read_unlock();
2720
2721		if (!info)
2722			continue;
2723		down_read(&info->groups_sem);
2724		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2725			if (!list_empty(&info->block_groups[c])) {
2726				get_block_group_info(&info->block_groups[c],
2727						     &space);
2728				memcpy(dest, &space, sizeof(space));
2729				dest++;
2730				space_args.total_spaces++;
2731				slot_count--;
2732			}
2733			if (!slot_count)
2734				break;
2735		}
2736		up_read(&info->groups_sem);
2737	}
2738
2739	user_dest = (struct btrfs_ioctl_space_info *)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		(arg + sizeof(struct btrfs_ioctl_space_args));
2741
2742	if (copy_to_user(user_dest, dest_orig, alloc_size))
2743		ret = -EFAULT;
2744
2745	kfree(dest_orig);
2746out:
2747	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2748		ret = -EFAULT;
2749
2750	return ret;
2751}
2752
2753/*
2754 * there are many ways the trans_start and trans_end ioctls can lead
2755 * to deadlocks.  They should only be used by applications that
2756 * basically own the machine, and have a very in depth understanding
2757 * of all the possible deadlocks and enospc problems.
2758 */
2759long btrfs_ioctl_trans_end(struct file *file)
2760{
2761	struct inode *inode = fdentry(file)->d_inode;
2762	struct btrfs_root *root = BTRFS_I(inode)->root;
2763	struct btrfs_trans_handle *trans;
2764
2765	trans = file->private_data;
2766	if (!trans)
2767		return -EINVAL;
2768	file->private_data = NULL;
2769
2770	btrfs_end_transaction(trans, root);
2771
2772	atomic_dec(&root->fs_info->open_ioctl_trans);
2773
2774	mnt_drop_write(file->f_path.mnt);
2775	return 0;
2776}
2777
2778static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
 
2779{
2780	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2781	struct btrfs_trans_handle *trans;
2782	u64 transid;
2783	int ret;
2784
2785	trans = btrfs_start_transaction(root, 0);
2786	if (IS_ERR(trans))
2787		return PTR_ERR(trans);
 
 
 
 
 
 
2788	transid = trans->transid;
2789	ret = btrfs_commit_transaction_async(trans, root, 0);
2790	if (ret) {
2791		btrfs_end_transaction(trans, root);
2792		return ret;
2793	}
2794
2795	if (argp)
2796		if (copy_to_user(argp, &transid, sizeof(transid)))
2797			return -EFAULT;
2798	return 0;
2799}
2800
2801static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
 
2802{
2803	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2804	u64 transid;
2805
2806	if (argp) {
2807		if (copy_from_user(&transid, argp, sizeof(transid)))
2808			return -EFAULT;
2809	} else {
2810		transid = 0;  /* current trans */
2811	}
2812	return btrfs_wait_for_commit(root, transid);
2813}
2814
2815static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2816{
2817	int ret;
2818	struct btrfs_ioctl_scrub_args *sa;
 
2819
2820	if (!capable(CAP_SYS_ADMIN))
2821		return -EPERM;
2822
2823	sa = memdup_user(arg, sizeof(*sa));
2824	if (IS_ERR(sa))
2825		return PTR_ERR(sa);
2826
2827	ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2828			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
 
 
 
 
 
 
 
2829
2830	if (copy_to_user(arg, sa, sizeof(*sa)))
2831		ret = -EFAULT;
2832
 
 
 
2833	kfree(sa);
2834	return ret;
2835}
2836
2837static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2838{
2839	if (!capable(CAP_SYS_ADMIN))
2840		return -EPERM;
2841
2842	return btrfs_scrub_cancel(root);
2843}
2844
2845static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2846				       void __user *arg)
2847{
2848	struct btrfs_ioctl_scrub_args *sa;
2849	int ret;
2850
2851	if (!capable(CAP_SYS_ADMIN))
2852		return -EPERM;
2853
2854	sa = memdup_user(arg, sizeof(*sa));
2855	if (IS_ERR(sa))
2856		return PTR_ERR(sa);
2857
2858	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2859
2860	if (copy_to_user(arg, sa, sizeof(*sa)))
2861		ret = -EFAULT;
2862
2863	kfree(sa);
2864	return ret;
2865}
2866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2867long btrfs_ioctl(struct file *file, unsigned int
2868		cmd, unsigned long arg)
2869{
2870	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2871	void __user *argp = (void __user *)arg;
2872
2873	switch (cmd) {
2874	case FS_IOC_GETFLAGS:
2875		return btrfs_ioctl_getflags(file, argp);
2876	case FS_IOC_SETFLAGS:
2877		return btrfs_ioctl_setflags(file, argp);
2878	case FS_IOC_GETVERSION:
2879		return btrfs_ioctl_getversion(file, argp);
2880	case FITRIM:
2881		return btrfs_ioctl_fitrim(file, argp);
2882	case BTRFS_IOC_SNAP_CREATE:
2883		return btrfs_ioctl_snap_create(file, argp, 0);
2884	case BTRFS_IOC_SNAP_CREATE_V2:
2885		return btrfs_ioctl_snap_create_v2(file, argp, 0);
2886	case BTRFS_IOC_SUBVOL_CREATE:
2887		return btrfs_ioctl_snap_create(file, argp, 1);
 
 
2888	case BTRFS_IOC_SNAP_DESTROY:
2889		return btrfs_ioctl_snap_destroy(file, argp);
2890	case BTRFS_IOC_SUBVOL_GETFLAGS:
2891		return btrfs_ioctl_subvol_getflags(file, argp);
2892	case BTRFS_IOC_SUBVOL_SETFLAGS:
2893		return btrfs_ioctl_subvol_setflags(file, argp);
2894	case BTRFS_IOC_DEFAULT_SUBVOL:
2895		return btrfs_ioctl_default_subvol(file, argp);
2896	case BTRFS_IOC_DEFRAG:
2897		return btrfs_ioctl_defrag(file, NULL);
2898	case BTRFS_IOC_DEFRAG_RANGE:
2899		return btrfs_ioctl_defrag(file, argp);
2900	case BTRFS_IOC_RESIZE:
2901		return btrfs_ioctl_resize(root, argp);
2902	case BTRFS_IOC_ADD_DEV:
2903		return btrfs_ioctl_add_dev(root, argp);
2904	case BTRFS_IOC_RM_DEV:
2905		return btrfs_ioctl_rm_dev(root, argp);
2906	case BTRFS_IOC_FS_INFO:
2907		return btrfs_ioctl_fs_info(root, argp);
2908	case BTRFS_IOC_DEV_INFO:
2909		return btrfs_ioctl_dev_info(root, argp);
2910	case BTRFS_IOC_BALANCE:
2911		return btrfs_balance(root->fs_info->dev_root);
2912	case BTRFS_IOC_CLONE:
2913		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2914	case BTRFS_IOC_CLONE_RANGE:
2915		return btrfs_ioctl_clone_range(file, argp);
2916	case BTRFS_IOC_TRANS_START:
2917		return btrfs_ioctl_trans_start(file);
2918	case BTRFS_IOC_TRANS_END:
2919		return btrfs_ioctl_trans_end(file);
2920	case BTRFS_IOC_TREE_SEARCH:
2921		return btrfs_ioctl_tree_search(file, argp);
2922	case BTRFS_IOC_INO_LOOKUP:
2923		return btrfs_ioctl_ino_lookup(file, argp);
 
 
 
 
2924	case BTRFS_IOC_SPACE_INFO:
2925		return btrfs_ioctl_space_info(root, argp);
2926	case BTRFS_IOC_SYNC:
2927		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2928		return 0;
 
 
 
 
 
 
2929	case BTRFS_IOC_START_SYNC:
2930		return btrfs_ioctl_start_sync(file, argp);
2931	case BTRFS_IOC_WAIT_SYNC:
2932		return btrfs_ioctl_wait_sync(file, argp);
2933	case BTRFS_IOC_SCRUB:
2934		return btrfs_ioctl_scrub(root, argp);
2935	case BTRFS_IOC_SCRUB_CANCEL:
2936		return btrfs_ioctl_scrub_cancel(root, argp);
2937	case BTRFS_IOC_SCRUB_PROGRESS:
2938		return btrfs_ioctl_scrub_progress(root, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939	}
2940
2941	return -ENOTTY;
2942}
v3.15
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include <linux/uuid.h>
  45#include <linux/btrfs.h>
  46#include <linux/uaccess.h>
  47#include "ctree.h"
  48#include "disk-io.h"
  49#include "transaction.h"
  50#include "btrfs_inode.h"
 
  51#include "print-tree.h"
  52#include "volumes.h"
  53#include "locking.h"
  54#include "inode-map.h"
  55#include "backref.h"
  56#include "rcu-string.h"
  57#include "send.h"
  58#include "dev-replace.h"
  59#include "props.h"
  60#include "sysfs.h"
  61
  62#ifdef CONFIG_64BIT
  63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  64 * structures are incorrect, as the timespec structure from userspace
  65 * is 4 bytes too small. We define these alternatives here to teach
  66 * the kernel about the 32-bit struct packing.
  67 */
  68struct btrfs_ioctl_timespec_32 {
  69	__u64 sec;
  70	__u32 nsec;
  71} __attribute__ ((__packed__));
  72
  73struct btrfs_ioctl_received_subvol_args_32 {
  74	char	uuid[BTRFS_UUID_SIZE];	/* in */
  75	__u64	stransid;		/* in */
  76	__u64	rtransid;		/* out */
  77	struct btrfs_ioctl_timespec_32 stime; /* in */
  78	struct btrfs_ioctl_timespec_32 rtime; /* out */
  79	__u64	flags;			/* in */
  80	__u64	reserved[16];		/* in */
  81} __attribute__ ((__packed__));
  82
  83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  84				struct btrfs_ioctl_received_subvol_args_32)
  85#endif
  86
  87
  88static int btrfs_clone(struct inode *src, struct inode *inode,
  89		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
  90
  91/* Mask out flags that are inappropriate for the given type of inode. */
  92static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
  93{
  94	if (S_ISDIR(mode))
  95		return flags;
  96	else if (S_ISREG(mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
 104 */
 105static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
 106{
 107	unsigned int iflags = 0;
 108
 109	if (flags & BTRFS_INODE_SYNC)
 110		iflags |= FS_SYNC_FL;
 111	if (flags & BTRFS_INODE_IMMUTABLE)
 112		iflags |= FS_IMMUTABLE_FL;
 113	if (flags & BTRFS_INODE_APPEND)
 114		iflags |= FS_APPEND_FL;
 115	if (flags & BTRFS_INODE_NODUMP)
 116		iflags |= FS_NODUMP_FL;
 117	if (flags & BTRFS_INODE_NOATIME)
 118		iflags |= FS_NOATIME_FL;
 119	if (flags & BTRFS_INODE_DIRSYNC)
 120		iflags |= FS_DIRSYNC_FL;
 121	if (flags & BTRFS_INODE_NODATACOW)
 122		iflags |= FS_NOCOW_FL;
 123
 124	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
 125		iflags |= FS_COMPR_FL;
 126	else if (flags & BTRFS_INODE_NOCOMPRESS)
 127		iflags |= FS_NOCOMP_FL;
 128
 129	return iflags;
 130}
 131
 132/*
 133 * Update inode->i_flags based on the btrfs internal flags.
 134 */
 135void btrfs_update_iflags(struct inode *inode)
 136{
 137	struct btrfs_inode *ip = BTRFS_I(inode);
 138
 139	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
 140
 141	if (ip->flags & BTRFS_INODE_SYNC)
 142		inode->i_flags |= S_SYNC;
 143	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 144		inode->i_flags |= S_IMMUTABLE;
 145	if (ip->flags & BTRFS_INODE_APPEND)
 146		inode->i_flags |= S_APPEND;
 147	if (ip->flags & BTRFS_INODE_NOATIME)
 148		inode->i_flags |= S_NOATIME;
 149	if (ip->flags & BTRFS_INODE_DIRSYNC)
 150		inode->i_flags |= S_DIRSYNC;
 151}
 152
 153/*
 154 * Inherit flags from the parent inode.
 155 *
 156 * Currently only the compression flags and the cow flags are inherited.
 157 */
 158void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 159{
 160	unsigned int flags;
 161
 162	if (!dir)
 163		return;
 164
 165	flags = BTRFS_I(dir)->flags;
 166
 167	if (flags & BTRFS_INODE_NOCOMPRESS) {
 168		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
 169		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 170	} else if (flags & BTRFS_INODE_COMPRESS) {
 171		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
 172		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
 173	}
 174
 175	if (flags & BTRFS_INODE_NODATACOW) {
 176		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
 177		if (S_ISREG(inode->i_mode))
 178			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 179	}
 180
 
 181	btrfs_update_iflags(inode);
 182}
 183
 184static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 185{
 186	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
 187	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 188
 189	if (copy_to_user(arg, &flags, sizeof(flags)))
 190		return -EFAULT;
 191	return 0;
 192}
 193
 194static int check_flags(unsigned int flags)
 195{
 196	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 197		      FS_NOATIME_FL | FS_NODUMP_FL | \
 198		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 199		      FS_NOCOMP_FL | FS_COMPR_FL |
 200		      FS_NOCOW_FL))
 201		return -EOPNOTSUPP;
 202
 203	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 204		return -EINVAL;
 205
 206	return 0;
 207}
 208
 209static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 210{
 211	struct inode *inode = file_inode(file);
 212	struct btrfs_inode *ip = BTRFS_I(inode);
 213	struct btrfs_root *root = ip->root;
 214	struct btrfs_trans_handle *trans;
 215	unsigned int flags, oldflags;
 216	int ret;
 217	u64 ip_oldflags;
 218	unsigned int i_oldflags;
 219	umode_t mode;
 220
 221	if (!inode_owner_or_capable(inode))
 222		return -EPERM;
 223
 224	if (btrfs_root_readonly(root))
 225		return -EROFS;
 226
 227	if (copy_from_user(&flags, arg, sizeof(flags)))
 228		return -EFAULT;
 229
 230	ret = check_flags(flags);
 231	if (ret)
 232		return ret;
 233
 234	ret = mnt_want_write_file(file);
 235	if (ret)
 236		return ret;
 237
 238	mutex_lock(&inode->i_mutex);
 239
 240	ip_oldflags = ip->flags;
 241	i_oldflags = inode->i_flags;
 242	mode = inode->i_mode;
 243
 244	flags = btrfs_mask_flags(inode->i_mode, flags);
 245	oldflags = btrfs_flags_to_ioctl(ip->flags);
 246	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 247		if (!capable(CAP_LINUX_IMMUTABLE)) {
 248			ret = -EPERM;
 249			goto out_unlock;
 250		}
 251	}
 252
 
 
 
 
 253	if (flags & FS_SYNC_FL)
 254		ip->flags |= BTRFS_INODE_SYNC;
 255	else
 256		ip->flags &= ~BTRFS_INODE_SYNC;
 257	if (flags & FS_IMMUTABLE_FL)
 258		ip->flags |= BTRFS_INODE_IMMUTABLE;
 259	else
 260		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 261	if (flags & FS_APPEND_FL)
 262		ip->flags |= BTRFS_INODE_APPEND;
 263	else
 264		ip->flags &= ~BTRFS_INODE_APPEND;
 265	if (flags & FS_NODUMP_FL)
 266		ip->flags |= BTRFS_INODE_NODUMP;
 267	else
 268		ip->flags &= ~BTRFS_INODE_NODUMP;
 269	if (flags & FS_NOATIME_FL)
 270		ip->flags |= BTRFS_INODE_NOATIME;
 271	else
 272		ip->flags &= ~BTRFS_INODE_NOATIME;
 273	if (flags & FS_DIRSYNC_FL)
 274		ip->flags |= BTRFS_INODE_DIRSYNC;
 275	else
 276		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 277	if (flags & FS_NOCOW_FL) {
 278		if (S_ISREG(mode)) {
 279			/*
 280			 * It's safe to turn csums off here, no extents exist.
 281			 * Otherwise we want the flag to reflect the real COW
 282			 * status of the file and will not set it.
 283			 */
 284			if (inode->i_size == 0)
 285				ip->flags |= BTRFS_INODE_NODATACOW
 286					   | BTRFS_INODE_NODATASUM;
 287		} else {
 288			ip->flags |= BTRFS_INODE_NODATACOW;
 289		}
 290	} else {
 291		/*
 292		 * Revert back under same assuptions as above
 293		 */
 294		if (S_ISREG(mode)) {
 295			if (inode->i_size == 0)
 296				ip->flags &= ~(BTRFS_INODE_NODATACOW
 297				             | BTRFS_INODE_NODATASUM);
 298		} else {
 299			ip->flags &= ~BTRFS_INODE_NODATACOW;
 300		}
 301	}
 302
 303	/*
 304	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 305	 * flag may be changed automatically if compression code won't make
 306	 * things smaller.
 307	 */
 308	if (flags & FS_NOCOMP_FL) {
 309		ip->flags &= ~BTRFS_INODE_COMPRESS;
 310		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 311
 312		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 313		if (ret && ret != -ENODATA)
 314			goto out_drop;
 315	} else if (flags & FS_COMPR_FL) {
 316		const char *comp;
 317
 318		ip->flags |= BTRFS_INODE_COMPRESS;
 319		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 320
 321		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
 322			comp = "lzo";
 323		else
 324			comp = "zlib";
 325		ret = btrfs_set_prop(inode, "btrfs.compression",
 326				     comp, strlen(comp), 0);
 327		if (ret)
 328			goto out_drop;
 329
 330	} else {
 331		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 332	}
 333
 334	trans = btrfs_start_transaction(root, 1);
 335	if (IS_ERR(trans)) {
 336		ret = PTR_ERR(trans);
 337		goto out_drop;
 338	}
 339
 340	btrfs_update_iflags(inode);
 341	inode_inc_iversion(inode);
 342	inode->i_ctime = CURRENT_TIME;
 343	ret = btrfs_update_inode(trans, root, inode);
 344
 345	btrfs_end_transaction(trans, root);
 346 out_drop:
 347	if (ret) {
 348		ip->flags = ip_oldflags;
 349		inode->i_flags = i_oldflags;
 350	}
 351
 
 352 out_unlock:
 353	mutex_unlock(&inode->i_mutex);
 354	mnt_drop_write_file(file);
 355	return ret;
 356}
 357
 358static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 359{
 360	struct inode *inode = file_inode(file);
 361
 362	return put_user(inode->i_generation, arg);
 363}
 364
 365static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 366{
 367	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
 
 368	struct btrfs_device *device;
 369	struct request_queue *q;
 370	struct fstrim_range range;
 371	u64 minlen = ULLONG_MAX;
 372	u64 num_devices = 0;
 373	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 374	int ret;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EPERM;
 378
 379	rcu_read_lock();
 380	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 381				dev_list) {
 382		if (!device->bdev)
 383			continue;
 384		q = bdev_get_queue(device->bdev);
 385		if (blk_queue_discard(q)) {
 386			num_devices++;
 387			minlen = min((u64)q->limits.discard_granularity,
 388				     minlen);
 389		}
 390	}
 391	rcu_read_unlock();
 392
 393	if (!num_devices)
 394		return -EOPNOTSUPP;
 
 395	if (copy_from_user(&range, arg, sizeof(range)))
 396		return -EFAULT;
 397	if (range.start > total_bytes ||
 398	    range.len < fs_info->sb->s_blocksize)
 399		return -EINVAL;
 400
 401	range.len = min(range.len, total_bytes - range.start);
 402	range.minlen = max(range.minlen, minlen);
 403	ret = btrfs_trim_fs(fs_info->tree_root, &range);
 404	if (ret < 0)
 405		return ret;
 406
 407	if (copy_to_user(arg, &range, sizeof(range)))
 408		return -EFAULT;
 409
 410	return 0;
 411}
 412
 413int btrfs_is_empty_uuid(u8 *uuid)
 414{
 415	int i;
 416
 417	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 418		if (uuid[i])
 419			return 0;
 420	}
 421	return 1;
 422}
 423
 424static noinline int create_subvol(struct inode *dir,
 425				  struct dentry *dentry,
 426				  char *name, int namelen,
 427				  u64 *async_transid,
 428				  struct btrfs_qgroup_inherit *inherit)
 429{
 430	struct btrfs_trans_handle *trans;
 431	struct btrfs_key key;
 432	struct btrfs_root_item root_item;
 433	struct btrfs_inode_item *inode_item;
 434	struct extent_buffer *leaf;
 435	struct btrfs_root *root = BTRFS_I(dir)->root;
 436	struct btrfs_root *new_root;
 437	struct btrfs_block_rsv block_rsv;
 438	struct timespec cur_time = CURRENT_TIME;
 439	struct inode *inode;
 440	int ret;
 441	int err;
 442	u64 objectid;
 443	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 444	u64 index = 0;
 445	u64 qgroup_reserved;
 446	uuid_le new_uuid;
 447
 448	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 449	if (ret)
 450		return ret;
 451
 452	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 
 453	/*
 454	 * The same as the snapshot creation, please see the comment
 455	 * of create_snapshot().
 
 
 456	 */
 457	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 458					       8, &qgroup_reserved, false);
 459	if (ret)
 460		return ret;
 461
 462	trans = btrfs_start_transaction(root, 0);
 463	if (IS_ERR(trans)) {
 464		ret = PTR_ERR(trans);
 465		btrfs_subvolume_release_metadata(root, &block_rsv,
 466						 qgroup_reserved);
 467		return ret;
 468	}
 469	trans->block_rsv = &block_rsv;
 470	trans->bytes_reserved = block_rsv.size;
 471
 472	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
 473	if (ret)
 474		goto fail;
 475
 476	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
 477				      0, objectid, NULL, 0, 0, 0);
 478	if (IS_ERR(leaf)) {
 479		ret = PTR_ERR(leaf);
 480		goto fail;
 481	}
 482
 483	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 484	btrfs_set_header_bytenr(leaf, leaf->start);
 485	btrfs_set_header_generation(leaf, trans->transid);
 486	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 487	btrfs_set_header_owner(leaf, objectid);
 488
 489	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
 
 490			    BTRFS_FSID_SIZE);
 491	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 492			    btrfs_header_chunk_tree_uuid(leaf),
 493			    BTRFS_UUID_SIZE);
 494	btrfs_mark_buffer_dirty(leaf);
 495
 496	memset(&root_item, 0, sizeof(root_item));
 497
 498	inode_item = &root_item.inode;
 499	btrfs_set_stack_inode_generation(inode_item, 1);
 500	btrfs_set_stack_inode_size(inode_item, 3);
 501	btrfs_set_stack_inode_nlink(inode_item, 1);
 502	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
 503	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 504
 505	btrfs_set_root_flags(&root_item, 0);
 506	btrfs_set_root_limit(&root_item, 0);
 507	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 
 508
 509	btrfs_set_root_bytenr(&root_item, leaf->start);
 510	btrfs_set_root_generation(&root_item, trans->transid);
 511	btrfs_set_root_level(&root_item, 0);
 512	btrfs_set_root_refs(&root_item, 1);
 513	btrfs_set_root_used(&root_item, leaf->len);
 514	btrfs_set_root_last_snapshot(&root_item, 0);
 515
 516	btrfs_set_root_generation_v2(&root_item,
 517			btrfs_root_generation(&root_item));
 518	uuid_le_gen(&new_uuid);
 519	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
 520	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
 521	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
 522	root_item.ctime = root_item.otime;
 523	btrfs_set_root_ctransid(&root_item, trans->transid);
 524	btrfs_set_root_otransid(&root_item, trans->transid);
 525
 526	btrfs_tree_unlock(leaf);
 527	free_extent_buffer(leaf);
 528	leaf = NULL;
 529
 530	btrfs_set_root_dirid(&root_item, new_dirid);
 531
 532	key.objectid = objectid;
 533	key.offset = 0;
 534	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 535	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 536				&root_item);
 537	if (ret)
 538		goto fail;
 539
 540	key.offset = (u64)-1;
 541	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 542	if (IS_ERR(new_root)) {
 543		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
 544		ret = PTR_ERR(new_root);
 545		goto fail;
 546	}
 547
 548	btrfs_record_root_in_trans(trans, new_root);
 549
 550	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 551	if (ret) {
 552		/* We potentially lose an unused inode item here */
 553		btrfs_abort_transaction(trans, root, ret);
 554		goto fail;
 555	}
 556
 557	/*
 558	 * insert the directory item
 559	 */
 560	ret = btrfs_set_inode_index(dir, &index);
 561	if (ret) {
 562		btrfs_abort_transaction(trans, root, ret);
 563		goto fail;
 564	}
 565
 566	ret = btrfs_insert_dir_item(trans, root,
 567				    name, namelen, dir, &key,
 568				    BTRFS_FT_DIR, index);
 569	if (ret) {
 570		btrfs_abort_transaction(trans, root, ret);
 571		goto fail;
 572	}
 573
 574	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 575	ret = btrfs_update_inode(trans, root, dir);
 576	BUG_ON(ret);
 577
 578	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 579				 objectid, root->root_key.objectid,
 580				 btrfs_ino(dir), index, name, namelen);
 
 581	BUG_ON(ret);
 582
 583	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
 584				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
 585				  objectid);
 586	if (ret)
 587		btrfs_abort_transaction(trans, root, ret);
 588
 589fail:
 590	trans->block_rsv = NULL;
 591	trans->bytes_reserved = 0;
 592	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
 593
 594	if (async_transid) {
 595		*async_transid = trans->transid;
 596		err = btrfs_commit_transaction_async(trans, root, 1);
 597		if (err)
 598			err = btrfs_commit_transaction(trans, root);
 599	} else {
 600		err = btrfs_commit_transaction(trans, root);
 601	}
 602	if (err && !ret)
 603		ret = err;
 604
 605	if (!ret) {
 606		inode = btrfs_lookup_dentry(dir, dentry);
 607		if (IS_ERR(inode))
 608			return PTR_ERR(inode);
 609		d_instantiate(dentry, inode);
 610	}
 611	return ret;
 612}
 613
 614static void btrfs_wait_nocow_write(struct btrfs_root *root)
 615{
 616	s64 writers;
 617	DEFINE_WAIT(wait);
 618
 619	do {
 620		prepare_to_wait(&root->subv_writers->wait, &wait,
 621				TASK_UNINTERRUPTIBLE);
 622
 623		writers = percpu_counter_sum(&root->subv_writers->counter);
 624		if (writers)
 625			schedule();
 626
 627		finish_wait(&root->subv_writers->wait, &wait);
 628	} while (writers);
 629}
 630
 631static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 632			   struct dentry *dentry, char *name, int namelen,
 633			   u64 *async_transid, bool readonly,
 634			   struct btrfs_qgroup_inherit *inherit)
 635{
 636	struct inode *inode;
 637	struct btrfs_pending_snapshot *pending_snapshot;
 638	struct btrfs_trans_handle *trans;
 639	int ret;
 640
 641	if (!root->ref_cows)
 642		return -EINVAL;
 643
 644	atomic_inc(&root->will_be_snapshoted);
 645	smp_mb__after_atomic_inc();
 646	btrfs_wait_nocow_write(root);
 647
 648	ret = btrfs_start_delalloc_inodes(root, 0);
 649	if (ret)
 650		goto out;
 651
 652	btrfs_wait_ordered_extents(root, -1);
 653
 654	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 655	if (!pending_snapshot) {
 656		ret = -ENOMEM;
 657		goto out;
 658	}
 659
 660	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 661			     BTRFS_BLOCK_RSV_TEMP);
 662	/*
 663	 * 1 - parent dir inode
 664	 * 2 - dir entries
 665	 * 1 - root item
 666	 * 2 - root ref/backref
 667	 * 1 - root of snapshot
 668	 * 1 - UUID item
 669	 */
 670	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 671					&pending_snapshot->block_rsv, 8,
 672					&pending_snapshot->qgroup_reserved,
 673					false);
 674	if (ret)
 675		goto free;
 676
 
 677	pending_snapshot->dentry = dentry;
 678	pending_snapshot->root = root;
 679	pending_snapshot->readonly = readonly;
 680	pending_snapshot->dir = dir;
 681	pending_snapshot->inherit = inherit;
 682
 683	trans = btrfs_start_transaction(root, 0);
 684	if (IS_ERR(trans)) {
 685		ret = PTR_ERR(trans);
 686		goto fail;
 687	}
 688
 
 
 
 689	spin_lock(&root->fs_info->trans_lock);
 690	list_add(&pending_snapshot->list,
 691		 &trans->transaction->pending_snapshots);
 692	spin_unlock(&root->fs_info->trans_lock);
 693	if (async_transid) {
 694		*async_transid = trans->transid;
 695		ret = btrfs_commit_transaction_async(trans,
 696				     root->fs_info->extent_root, 1);
 697		if (ret)
 698			ret = btrfs_commit_transaction(trans, root);
 699	} else {
 700		ret = btrfs_commit_transaction(trans,
 701					       root->fs_info->extent_root);
 702	}
 703	if (ret)
 704		goto fail;
 705
 706	ret = pending_snapshot->error;
 707	if (ret)
 708		goto fail;
 709
 710	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 711	if (ret)
 712		goto fail;
 713
 714	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
 715	if (IS_ERR(inode)) {
 716		ret = PTR_ERR(inode);
 717		goto fail;
 718	}
 719
 720	d_instantiate(dentry, inode);
 721	ret = 0;
 722fail:
 723	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
 724					 &pending_snapshot->block_rsv,
 725					 pending_snapshot->qgroup_reserved);
 726free:
 727	kfree(pending_snapshot);
 728out:
 729	atomic_dec(&root->will_be_snapshoted);
 730	return ret;
 731}
 732
 733/*  copy of check_sticky in fs/namei.c()
 734* It's inline, so penalty for filesystems that don't use sticky bit is
 735* minimal.
 736*/
 737static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
 738{
 739	kuid_t fsuid = current_fsuid();
 740
 741	if (!(dir->i_mode & S_ISVTX))
 742		return 0;
 743	if (uid_eq(inode->i_uid, fsuid))
 744		return 0;
 745	if (uid_eq(dir->i_uid, fsuid))
 746		return 0;
 747	return !capable(CAP_FOWNER);
 748}
 749
 750/*  copy of may_delete in fs/namei.c()
 751 *	Check whether we can remove a link victim from directory dir, check
 752 *  whether the type of victim is right.
 753 *  1. We can't do it if dir is read-only (done in permission())
 754 *  2. We should have write and exec permissions on dir
 755 *  3. We can't remove anything from append-only dir
 756 *  4. We can't do anything with immutable dir (done in permission())
 757 *  5. If the sticky bit on dir is set we should either
 758 *	a. be owner of dir, or
 759 *	b. be owner of victim, or
 760 *	c. have CAP_FOWNER capability
 761 *  6. If the victim is append-only or immutable we can't do antyhing with
 762 *     links pointing to it.
 763 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 764 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 765 *  9. We can't remove a root or mountpoint.
 766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 767 *     nfs_async_unlink().
 768 */
 769
 770static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 771{
 772	int error;
 773
 774	if (!victim->d_inode)
 775		return -ENOENT;
 776
 777	BUG_ON(victim->d_parent->d_inode != dir);
 778	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 779
 780	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 781	if (error)
 782		return error;
 783	if (IS_APPEND(dir))
 784		return -EPERM;
 785	if (btrfs_check_sticky(dir, victim->d_inode)||
 786		IS_APPEND(victim->d_inode)||
 787	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
 788		return -EPERM;
 789	if (isdir) {
 790		if (!S_ISDIR(victim->d_inode->i_mode))
 791			return -ENOTDIR;
 792		if (IS_ROOT(victim))
 793			return -EBUSY;
 794	} else if (S_ISDIR(victim->d_inode->i_mode))
 795		return -EISDIR;
 796	if (IS_DEADDIR(dir))
 797		return -ENOENT;
 798	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 799		return -EBUSY;
 800	return 0;
 801}
 802
 803/* copy of may_create in fs/namei.c() */
 804static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 805{
 806	if (child->d_inode)
 807		return -EEXIST;
 808	if (IS_DEADDIR(dir))
 809		return -ENOENT;
 810	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 811}
 812
 813/*
 814 * Create a new subvolume below @parent.  This is largely modeled after
 815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 816 * inside this filesystem so it's quite a bit simpler.
 817 */
 818static noinline int btrfs_mksubvol(struct path *parent,
 819				   char *name, int namelen,
 820				   struct btrfs_root *snap_src,
 821				   u64 *async_transid, bool readonly,
 822				   struct btrfs_qgroup_inherit *inherit)
 823{
 824	struct inode *dir  = parent->dentry->d_inode;
 825	struct dentry *dentry;
 826	int error;
 827
 828	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
 829	if (error == -EINTR)
 830		return error;
 831
 832	dentry = lookup_one_len(name, parent->dentry, namelen);
 833	error = PTR_ERR(dentry);
 834	if (IS_ERR(dentry))
 835		goto out_unlock;
 836
 837	error = -EEXIST;
 838	if (dentry->d_inode)
 839		goto out_dput;
 840
 841	error = btrfs_may_create(dir, dentry);
 842	if (error)
 843		goto out_dput;
 844
 845	/*
 846	 * even if this name doesn't exist, we may get hash collisions.
 847	 * check for them now when we can safely fail
 848	 */
 849	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 850					       dir->i_ino, name,
 851					       namelen);
 852	if (error)
 853		goto out_dput;
 854
 855	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 856
 857	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 858		goto out_up_read;
 859
 860	if (snap_src) {
 861		error = create_snapshot(snap_src, dir, dentry, name, namelen,
 862					async_transid, readonly, inherit);
 863	} else {
 864		error = create_subvol(dir, dentry, name, namelen,
 865				      async_transid, inherit);
 866	}
 867	if (!error)
 868		fsnotify_mkdir(dir, dentry);
 869out_up_read:
 870	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 
 
 871out_dput:
 872	dput(dentry);
 873out_unlock:
 874	mutex_unlock(&dir->i_mutex);
 875	return error;
 876}
 877
 878/*
 879 * When we're defragging a range, we don't want to kick it off again
 880 * if it is really just waiting for delalloc to send it down.
 881 * If we find a nice big extent or delalloc range for the bytes in the
 882 * file you want to defrag, we return 0 to let you know to skip this
 883 * part of the file
 884 */
 885static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
 886{
 887	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 888	struct extent_map *em = NULL;
 889	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 890	u64 end;
 891
 892	read_lock(&em_tree->lock);
 893	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
 894	read_unlock(&em_tree->lock);
 895
 896	if (em) {
 897		end = extent_map_end(em);
 898		free_extent_map(em);
 899		if (end - offset > thresh)
 900			return 0;
 901	}
 902	/* if we already have a nice delalloc here, just stop */
 903	thresh /= 2;
 904	end = count_range_bits(io_tree, &offset, offset + thresh,
 905			       thresh, EXTENT_DELALLOC, 1);
 906	if (end >= thresh)
 907		return 0;
 908	return 1;
 909}
 910
 911/*
 912 * helper function to walk through a file and find extents
 913 * newer than a specific transid, and smaller than thresh.
 914 *
 915 * This is used by the defragging code to find new and small
 916 * extents
 917 */
 918static int find_new_extents(struct btrfs_root *root,
 919			    struct inode *inode, u64 newer_than,
 920			    u64 *off, int thresh)
 921{
 922	struct btrfs_path *path;
 923	struct btrfs_key min_key;
 
 924	struct extent_buffer *leaf;
 925	struct btrfs_file_extent_item *extent;
 926	int type;
 927	int ret;
 928	u64 ino = btrfs_ino(inode);
 929
 930	path = btrfs_alloc_path();
 931	if (!path)
 932		return -ENOMEM;
 933
 934	min_key.objectid = ino;
 935	min_key.type = BTRFS_EXTENT_DATA_KEY;
 936	min_key.offset = *off;
 937
 938	while (1) {
 939		path->keep_locks = 1;
 940		ret = btrfs_search_forward(root, &min_key, path, newer_than);
 
 
 
 
 
 
 941		if (ret != 0)
 942			goto none;
 943		path->keep_locks = 0;
 944		btrfs_unlock_up_safe(path, 1);
 945process_slot:
 946		if (min_key.objectid != ino)
 947			goto none;
 948		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 949			goto none;
 950
 951		leaf = path->nodes[0];
 952		extent = btrfs_item_ptr(leaf, path->slots[0],
 953					struct btrfs_file_extent_item);
 954
 955		type = btrfs_file_extent_type(leaf, extent);
 956		if (type == BTRFS_FILE_EXTENT_REG &&
 957		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 958		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 959			*off = min_key.offset;
 960			btrfs_free_path(path);
 961			return 0;
 962		}
 963
 964		path->slots[0]++;
 965		if (path->slots[0] < btrfs_header_nritems(leaf)) {
 966			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
 967			goto process_slot;
 968		}
 969
 970		if (min_key.offset == (u64)-1)
 971			goto none;
 972
 973		min_key.offset++;
 974		btrfs_release_path(path);
 975	}
 976none:
 977	btrfs_free_path(path);
 978	return -ENOENT;
 979}
 980
 981static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
 
 
 982{
 
 
 983	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 984	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 985	struct extent_map *em;
 986	u64 len = PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 987
 988	/*
 989	 * hopefully we have this extent in the tree already, try without
 990	 * the full extent lock
 991	 */
 992	read_lock(&em_tree->lock);
 993	em = lookup_extent_mapping(em_tree, start, len);
 994	read_unlock(&em_tree->lock);
 995
 996	if (!em) {
 997		struct extent_state *cached = NULL;
 998		u64 end = start + len - 1;
 999
1000		/* get the big lock and read metadata off disk */
1001		lock_extent_bits(io_tree, start, end, 0, &cached);
1002		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005		if (IS_ERR(em))
1006			return NULL;
1007	}
1008
1009	return em;
1010}
1011
1012static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013{
1014	struct extent_map *next;
1015	bool ret = true;
1016
1017	/* this is the last extent */
1018	if (em->start + em->len >= i_size_read(inode))
1019		return false;
1020
1021	next = defrag_lookup_extent(inode, em->start + em->len);
1022	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023	    (em->block_start + em->block_len == next->block_start))
1024		ret = false;
1025
1026	free_extent_map(next);
1027	return ret;
1028}
1029
1030static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031			       u64 *last_len, u64 *skip, u64 *defrag_end,
1032			       int compress)
1033{
1034	struct extent_map *em;
1035	int ret = 1;
1036	bool next_mergeable = true;
1037
1038	/*
1039	 * make sure that once we start defragging an extent, we keep on
1040	 * defragging it
1041	 */
1042	if (start < *defrag_end)
1043		return 1;
1044
1045	*skip = 0;
1046
1047	em = defrag_lookup_extent(inode, start);
1048	if (!em)
1049		return 0;
1050
1051	/* this will cover holes, and inline extents */
1052	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053		ret = 0;
1054		goto out;
1055	}
1056
1057	next_mergeable = defrag_check_next_extent(inode, em);
1058
1059	/*
1060	 * we hit a real extent, if it is big or the next extent is not a
1061	 * real extent, don't bother defragging it
1062	 */
1063	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064	    (em->len >= thresh || !next_mergeable))
1065		ret = 0;
1066out:
1067	/*
1068	 * last_len ends up being a counter of how many bytes we've defragged.
1069	 * every time we choose not to defrag an extent, we reset *last_len
1070	 * so that the next tiny extent will force a defrag.
1071	 *
1072	 * The end result of this is that tiny extents before a single big
1073	 * extent will force at least part of that big extent to be defragged.
1074	 */
1075	if (ret) {
 
1076		*defrag_end = extent_map_end(em);
1077	} else {
1078		*last_len = 0;
1079		*skip = extent_map_end(em);
1080		*defrag_end = 0;
1081	}
1082
1083	free_extent_map(em);
1084	return ret;
1085}
1086
1087/*
1088 * it doesn't do much good to defrag one or two pages
1089 * at a time.  This pulls in a nice chunk of pages
1090 * to COW and defrag.
1091 *
1092 * It also makes sure the delalloc code has enough
1093 * dirty data to avoid making new small extents as part
1094 * of the defrag
1095 *
1096 * It's a good idea to start RA on this range
1097 * before calling this.
1098 */
1099static int cluster_pages_for_defrag(struct inode *inode,
1100				    struct page **pages,
1101				    unsigned long start_index,
1102				    unsigned long num_pages)
1103{
1104	unsigned long file_end;
1105	u64 isize = i_size_read(inode);
1106	u64 page_start;
1107	u64 page_end;
1108	u64 page_cnt;
1109	int ret;
1110	int i;
1111	int i_done;
1112	struct btrfs_ordered_extent *ordered;
1113	struct extent_state *cached_state = NULL;
1114	struct extent_io_tree *tree;
1115	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116
 
 
1117	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118	if (!isize || start_index > file_end)
1119		return 0;
1120
1121	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122
1123	ret = btrfs_delalloc_reserve_space(inode,
1124					   page_cnt << PAGE_CACHE_SHIFT);
1125	if (ret)
1126		return ret;
 
 
1127	i_done = 0;
1128	tree = &BTRFS_I(inode)->io_tree;
1129
1130	/* step one, lock all the pages */
1131	for (i = 0; i < page_cnt; i++) {
1132		struct page *page;
1133again:
1134		page = find_or_create_page(inode->i_mapping,
1135					   start_index + i, mask);
1136		if (!page)
1137			break;
1138
1139		page_start = page_offset(page);
1140		page_end = page_start + PAGE_CACHE_SIZE - 1;
1141		while (1) {
1142			lock_extent_bits(tree, page_start, page_end,
1143					 0, &cached_state);
1144			ordered = btrfs_lookup_ordered_extent(inode,
1145							      page_start);
1146			unlock_extent_cached(tree, page_start, page_end,
1147					     &cached_state, GFP_NOFS);
1148			if (!ordered)
1149				break;
1150
1151			unlock_page(page);
1152			btrfs_start_ordered_extent(inode, ordered, 1);
1153			btrfs_put_ordered_extent(ordered);
1154			lock_page(page);
1155			/*
1156			 * we unlocked the page above, so we need check if
1157			 * it was released or not.
1158			 */
1159			if (page->mapping != inode->i_mapping) {
1160				unlock_page(page);
1161				page_cache_release(page);
1162				goto again;
1163			}
1164		}
1165
1166		if (!PageUptodate(page)) {
1167			btrfs_readpage(NULL, page);
1168			lock_page(page);
1169			if (!PageUptodate(page)) {
1170				unlock_page(page);
1171				page_cache_release(page);
1172				ret = -EIO;
1173				break;
1174			}
1175		}
1176
1177		if (page->mapping != inode->i_mapping) {
 
 
 
1178			unlock_page(page);
1179			page_cache_release(page);
1180			goto again;
1181		}
1182
1183		pages[i] = page;
1184		i_done++;
1185	}
1186	if (!i_done || ret)
1187		goto out;
1188
1189	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190		goto out;
1191
1192	/*
1193	 * so now we have a nice long stream of locked
1194	 * and up to date pages, lets wait on them
1195	 */
1196	for (i = 0; i < i_done; i++)
1197		wait_on_page_writeback(pages[i]);
1198
1199	page_start = page_offset(pages[0]);
1200	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201
1202	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203			 page_start, page_end - 1, 0, &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207			  &cached_state, GFP_NOFS);
1208
1209	if (i_done != page_cnt) {
1210		spin_lock(&BTRFS_I(inode)->lock);
1211		BTRFS_I(inode)->outstanding_extents++;
1212		spin_unlock(&BTRFS_I(inode)->lock);
1213		btrfs_delalloc_release_space(inode,
1214				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215	}
1216
1217
1218	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219			  &cached_state, GFP_NOFS);
1220
1221	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222			     page_start, page_end - 1, &cached_state,
1223			     GFP_NOFS);
1224
1225	for (i = 0; i < i_done; i++) {
1226		clear_page_dirty_for_io(pages[i]);
1227		ClearPageChecked(pages[i]);
1228		set_page_extent_mapped(pages[i]);
1229		set_page_dirty(pages[i]);
1230		unlock_page(pages[i]);
1231		page_cache_release(pages[i]);
1232	}
1233	return i_done;
1234out:
1235	for (i = 0; i < i_done; i++) {
1236		unlock_page(pages[i]);
1237		page_cache_release(pages[i]);
1238	}
1239	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240	return ret;
1241
1242}
1243
1244int btrfs_defrag_file(struct inode *inode, struct file *file,
1245		      struct btrfs_ioctl_defrag_range_args *range,
1246		      u64 newer_than, unsigned long max_to_defrag)
1247{
1248	struct btrfs_root *root = BTRFS_I(inode)->root;
 
1249	struct file_ra_state *ra = NULL;
1250	unsigned long last_index;
1251	u64 isize = i_size_read(inode);
1252	u64 last_len = 0;
1253	u64 skip = 0;
1254	u64 defrag_end = 0;
1255	u64 newer_off = range->start;
 
1256	unsigned long i;
1257	unsigned long ra_index = 0;
1258	int ret;
1259	int defrag_count = 0;
1260	int compress_type = BTRFS_COMPRESS_ZLIB;
1261	int extent_thresh = range->extent_thresh;
1262	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263	unsigned long cluster = max_cluster;
1264	u64 new_align = ~((u64)128 * 1024 - 1);
1265	struct page **pages = NULL;
1266
1267	if (isize == 0)
1268		return 0;
1269
1270	if (range->start >= isize)
1271		return -EINVAL;
1272
1273	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275			return -EINVAL;
1276		if (range->compress_type)
1277			compress_type = range->compress_type;
1278	}
1279
1280	if (extent_thresh == 0)
1281		extent_thresh = 256 * 1024;
1282
1283	/*
1284	 * if we were not given a file, allocate a readahead
1285	 * context
1286	 */
1287	if (!file) {
1288		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289		if (!ra)
1290			return -ENOMEM;
1291		file_ra_state_init(ra, inode->i_mapping);
1292	} else {
1293		ra = &file->f_ra;
1294	}
1295
1296	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297			GFP_NOFS);
1298	if (!pages) {
1299		ret = -ENOMEM;
1300		goto out_ra;
1301	}
1302
1303	/* find the last page to defrag */
1304	if (range->start + range->len > range->start) {
1305		last_index = min_t(u64, isize - 1,
1306			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307	} else {
1308		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309	}
1310
1311	if (newer_than) {
1312		ret = find_new_extents(root, inode, newer_than,
1313				       &newer_off, 64 * 1024);
1314		if (!ret) {
1315			range->start = newer_off;
1316			/*
1317			 * we always align our defrag to help keep
1318			 * the extents in the file evenly spaced
1319			 */
1320			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
 
1321		} else
1322			goto out_ra;
1323	} else {
1324		i = range->start >> PAGE_CACHE_SHIFT;
1325	}
1326	if (!max_to_defrag)
1327		max_to_defrag = last_index + 1;
1328
1329	/*
1330	 * make writeback starts from i, so the defrag range can be
1331	 * written sequentially.
1332	 */
1333	if (i < inode->i_mapping->writeback_index)
1334		inode->i_mapping->writeback_index = i;
1335
1336	while (i <= last_index && defrag_count < max_to_defrag &&
1337	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338		PAGE_CACHE_SHIFT)) {
1339		/*
1340		 * make sure we stop running if someone unmounts
1341		 * the FS
1342		 */
1343		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344			break;
1345
1346		if (btrfs_defrag_cancelled(root->fs_info)) {
1347			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348			ret = -EAGAIN;
1349			break;
1350		}
1351
1352		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353					 extent_thresh, &last_len, &skip,
1354					 &defrag_end, range->flags &
1355					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356			unsigned long next;
1357			/*
1358			 * the should_defrag function tells us how much to skip
1359			 * bump our counter by the suggested amount
1360			 */
1361			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362			i = max(i + 1, next);
1363			continue;
1364		}
 
 
1365
1366		if (!newer_than) {
1367			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368				   PAGE_CACHE_SHIFT) - i;
1369			cluster = min(cluster, max_cluster);
1370		} else {
1371			cluster = max_cluster;
1372		}
1373
1374		if (i + cluster > ra_index) {
1375			ra_index = max(i, ra_index);
1376			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377				       cluster);
1378			ra_index += max_cluster;
1379		}
1380
1381		mutex_lock(&inode->i_mutex);
1382		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383			BTRFS_I(inode)->force_compress = compress_type;
1384		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385		if (ret < 0) {
1386			mutex_unlock(&inode->i_mutex);
1387			goto out_ra;
1388		}
1389
1390		defrag_count += ret;
1391		balance_dirty_pages_ratelimited(inode->i_mapping);
1392		mutex_unlock(&inode->i_mutex);
1393
1394		if (newer_than) {
1395			if (newer_off == (u64)-1)
1396				break;
1397
1398			if (ret > 0)
1399				i += ret;
1400
1401			newer_off = max(newer_off + 1,
1402					(u64)i << PAGE_CACHE_SHIFT);
1403
1404			ret = find_new_extents(root, inode,
1405					       newer_than, &newer_off,
1406					       64 * 1024);
1407			if (!ret) {
1408				range->start = newer_off;
1409				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
 
1410			} else {
1411				break;
1412			}
1413		} else {
1414			if (ret > 0) {
1415				i += ret;
1416				last_len += ret << PAGE_CACHE_SHIFT;
1417			} else {
1418				i++;
1419				last_len = 0;
1420			}
1421		}
1422	}
1423
1424	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425		filemap_flush(inode->i_mapping);
1426		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427			     &BTRFS_I(inode)->runtime_flags))
1428			filemap_flush(inode->i_mapping);
1429	}
1430
1431	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432		/* the filemap_flush will queue IO into the worker threads, but
1433		 * we have to make sure the IO is actually started and that
1434		 * ordered extents get created before we return
1435		 */
1436		atomic_inc(&root->fs_info->async_submit_draining);
1437		while (atomic_read(&root->fs_info->nr_async_submits) ||
1438		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1439			wait_event(root->fs_info->async_submit_wait,
1440			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442		}
1443		atomic_dec(&root->fs_info->async_submit_draining);
 
 
 
 
1444	}
1445
 
 
1446	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
 
1448	}
1449
1450	ret = defrag_count;
 
 
1451
1452out_ra:
1453	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454		mutex_lock(&inode->i_mutex);
1455		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456		mutex_unlock(&inode->i_mutex);
1457	}
1458	if (!file)
1459		kfree(ra);
1460	kfree(pages);
1461	return ret;
1462}
1463
1464static noinline int btrfs_ioctl_resize(struct file *file,
1465					void __user *arg)
1466{
1467	u64 new_size;
1468	u64 old_size;
1469	u64 devid = 1;
1470	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471	struct btrfs_ioctl_vol_args *vol_args;
1472	struct btrfs_trans_handle *trans;
1473	struct btrfs_device *device = NULL;
1474	char *sizestr;
1475	char *retptr;
1476	char *devstr = NULL;
1477	int ret = 0;
1478	int mod = 0;
1479
 
 
 
1480	if (!capable(CAP_SYS_ADMIN))
1481		return -EPERM;
1482
1483	ret = mnt_want_write_file(file);
1484	if (ret)
1485		return ret;
1486
1487	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488			1)) {
1489		mnt_drop_write_file(file);
1490		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491	}
1492
1493	mutex_lock(&root->fs_info->volume_mutex);
1494	vol_args = memdup_user(arg, sizeof(*vol_args));
1495	if (IS_ERR(vol_args)) {
1496		ret = PTR_ERR(vol_args);
1497		goto out;
1498	}
1499
1500	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501
 
1502	sizestr = vol_args->name;
1503	devstr = strchr(sizestr, ':');
1504	if (devstr) {
1505		char *end;
1506		sizestr = devstr + 1;
1507		*devstr = '\0';
1508		devstr = vol_args->name;
1509		devid = simple_strtoull(devstr, &end, 10);
1510		if (!devid) {
1511			ret = -EINVAL;
1512			goto out_free;
1513		}
1514		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1515	}
1516
1517	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518	if (!device) {
1519		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1520		       devid);
1521		ret = -ENODEV;
1522		goto out_free;
1523	}
1524
1525	if (!device->writeable) {
1526		btrfs_info(root->fs_info,
1527			   "resizer unable to apply on readonly device %llu",
1528		       devid);
1529		ret = -EPERM;
1530		goto out_free;
1531	}
1532
1533	if (!strcmp(sizestr, "max"))
1534		new_size = device->bdev->bd_inode->i_size;
1535	else {
1536		if (sizestr[0] == '-') {
1537			mod = -1;
1538			sizestr++;
1539		} else if (sizestr[0] == '+') {
1540			mod = 1;
1541			sizestr++;
1542		}
1543		new_size = memparse(sizestr, &retptr);
1544		if (*retptr != '\0' || new_size == 0) {
1545			ret = -EINVAL;
1546			goto out_free;
1547		}
1548	}
1549
1550	if (device->is_tgtdev_for_dev_replace) {
1551		ret = -EPERM;
1552		goto out_free;
1553	}
1554
1555	old_size = device->total_bytes;
1556
1557	if (mod < 0) {
1558		if (new_size > old_size) {
1559			ret = -EINVAL;
1560			goto out_free;
1561		}
1562		new_size = old_size - new_size;
1563	} else if (mod > 0) {
1564		if (new_size > ULLONG_MAX - old_size) {
1565			ret = -EINVAL;
1566			goto out_free;
1567		}
1568		new_size = old_size + new_size;
1569	}
1570
1571	if (new_size < 256 * 1024 * 1024) {
1572		ret = -EINVAL;
1573		goto out_free;
1574	}
1575	if (new_size > device->bdev->bd_inode->i_size) {
1576		ret = -EFBIG;
1577		goto out_free;
1578	}
1579
1580	do_div(new_size, root->sectorsize);
1581	new_size *= root->sectorsize;
1582
1583	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1584		      rcu_str_deref(device->name), new_size);
1585
1586	if (new_size > old_size) {
1587		trans = btrfs_start_transaction(root, 0);
1588		if (IS_ERR(trans)) {
1589			ret = PTR_ERR(trans);
1590			goto out_free;
1591		}
1592		ret = btrfs_grow_device(trans, device, new_size);
1593		btrfs_commit_transaction(trans, root);
1594	} else if (new_size < old_size) {
1595		ret = btrfs_shrink_device(device, new_size);
1596	} /* equal, nothing need to do */
1597
1598out_free:
 
1599	kfree(vol_args);
1600out:
1601	mutex_unlock(&root->fs_info->volume_mutex);
1602	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1603	mnt_drop_write_file(file);
1604	return ret;
1605}
1606
1607static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1608				char *name, unsigned long fd, int subvol,
1609				u64 *transid, bool readonly,
1610				struct btrfs_qgroup_inherit *inherit)
 
 
1611{
 
 
1612	int namelen;
1613	int ret = 0;
1614
1615	ret = mnt_want_write_file(file);
1616	if (ret)
1617		goto out;
1618
1619	namelen = strlen(name);
1620	if (strchr(name, '/')) {
1621		ret = -EINVAL;
1622		goto out_drop_write;
1623	}
1624
1625	if (name[0] == '.' &&
1626	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627		ret = -EEXIST;
1628		goto out_drop_write;
1629	}
1630
1631	if (subvol) {
1632		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1633				     NULL, transid, readonly, inherit);
1634	} else {
1635		struct fd src = fdget(fd);
1636		struct inode *src_inode;
1637		if (!src.file) {
 
1638			ret = -EINVAL;
1639			goto out_drop_write;
1640		}
1641
1642		src_inode = file_inode(src.file);
1643		if (src_inode->i_sb != file_inode(file)->i_sb) {
1644			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1645				   "Snapshot src from another FS");
1646			ret = -EXDEV;
1647		} else if (!inode_owner_or_capable(src_inode)) {
1648			/*
1649			 * Subvolume creation is not restricted, but snapshots
1650			 * are limited to own subvolumes only
1651			 */
1652			ret = -EPERM;
1653		} else {
1654			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655					     BTRFS_I(src_inode)->root,
1656					     transid, readonly, inherit);
1657		}
1658		fdput(src);
 
 
 
1659	}
1660out_drop_write:
1661	mnt_drop_write_file(file);
1662out:
1663	return ret;
1664}
1665
1666static noinline int btrfs_ioctl_snap_create(struct file *file,
1667					    void __user *arg, int subvol)
1668{
1669	struct btrfs_ioctl_vol_args *vol_args;
1670	int ret;
1671
1672	vol_args = memdup_user(arg, sizeof(*vol_args));
1673	if (IS_ERR(vol_args))
1674		return PTR_ERR(vol_args);
1675	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676
1677	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1678					      vol_args->fd, subvol,
1679					      NULL, false, NULL);
1680
1681	kfree(vol_args);
1682	return ret;
1683}
1684
1685static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1686					       void __user *arg, int subvol)
1687{
1688	struct btrfs_ioctl_vol_args_v2 *vol_args;
1689	int ret;
1690	u64 transid = 0;
1691	u64 *ptr = NULL;
1692	bool readonly = false;
1693	struct btrfs_qgroup_inherit *inherit = NULL;
1694
1695	vol_args = memdup_user(arg, sizeof(*vol_args));
1696	if (IS_ERR(vol_args))
1697		return PTR_ERR(vol_args);
1698	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700	if (vol_args->flags &
1701	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703		ret = -EOPNOTSUPP;
1704		goto out;
1705	}
1706
1707	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708		ptr = &transid;
1709	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710		readonly = true;
1711	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712		if (vol_args->size > PAGE_CACHE_SIZE) {
1713			ret = -EINVAL;
1714			goto out;
1715		}
1716		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717		if (IS_ERR(inherit)) {
1718			ret = PTR_ERR(inherit);
1719			goto out;
1720		}
1721	}
1722
1723	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724					      vol_args->fd, subvol, ptr,
1725					      readonly, inherit);
1726
1727	if (ret == 0 && ptr &&
1728	    copy_to_user(arg +
1729			 offsetof(struct btrfs_ioctl_vol_args_v2,
1730				  transid), ptr, sizeof(*ptr)))
1731		ret = -EFAULT;
1732out:
1733	kfree(vol_args);
1734	kfree(inherit);
1735	return ret;
1736}
1737
1738static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1739						void __user *arg)
1740{
1741	struct inode *inode = file_inode(file);
1742	struct btrfs_root *root = BTRFS_I(inode)->root;
1743	int ret = 0;
1744	u64 flags = 0;
1745
1746	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1747		return -EINVAL;
1748
1749	down_read(&root->fs_info->subvol_sem);
1750	if (btrfs_root_readonly(root))
1751		flags |= BTRFS_SUBVOL_RDONLY;
1752	up_read(&root->fs_info->subvol_sem);
1753
1754	if (copy_to_user(arg, &flags, sizeof(flags)))
1755		ret = -EFAULT;
1756
1757	return ret;
1758}
1759
1760static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1761					      void __user *arg)
1762{
1763	struct inode *inode = file_inode(file);
1764	struct btrfs_root *root = BTRFS_I(inode)->root;
1765	struct btrfs_trans_handle *trans;
1766	u64 root_flags;
1767	u64 flags;
1768	int ret = 0;
1769
1770	if (!inode_owner_or_capable(inode))
1771		return -EPERM;
1772
1773	ret = mnt_want_write_file(file);
1774	if (ret)
1775		goto out;
1776
1777	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1778		ret = -EINVAL;
1779		goto out_drop_write;
1780	}
1781
1782	if (copy_from_user(&flags, arg, sizeof(flags))) {
1783		ret = -EFAULT;
1784		goto out_drop_write;
1785	}
1786
1787	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1788		ret = -EINVAL;
1789		goto out_drop_write;
1790	}
1791
1792	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1793		ret = -EOPNOTSUPP;
1794		goto out_drop_write;
1795	}
1796
1797	down_write(&root->fs_info->subvol_sem);
1798
1799	/* nothing to do */
1800	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1801		goto out_drop_sem;
1802
1803	root_flags = btrfs_root_flags(&root->root_item);
1804	if (flags & BTRFS_SUBVOL_RDONLY) {
1805		btrfs_set_root_flags(&root->root_item,
1806				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1807	} else {
1808		/*
1809		 * Block RO -> RW transition if this subvolume is involved in
1810		 * send
1811		 */
1812		spin_lock(&root->root_item_lock);
1813		if (root->send_in_progress == 0) {
1814			btrfs_set_root_flags(&root->root_item,
1815				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1816			spin_unlock(&root->root_item_lock);
1817		} else {
1818			spin_unlock(&root->root_item_lock);
1819			btrfs_warn(root->fs_info,
1820			"Attempt to set subvolume %llu read-write during send",
1821					root->root_key.objectid);
1822			ret = -EPERM;
1823			goto out_drop_sem;
1824		}
1825	}
1826
1827	trans = btrfs_start_transaction(root, 1);
1828	if (IS_ERR(trans)) {
1829		ret = PTR_ERR(trans);
1830		goto out_reset;
1831	}
1832
1833	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1834				&root->root_key, &root->root_item);
1835
1836	btrfs_commit_transaction(trans, root);
1837out_reset:
1838	if (ret)
1839		btrfs_set_root_flags(&root->root_item, root_flags);
1840out_drop_sem:
1841	up_write(&root->fs_info->subvol_sem);
1842out_drop_write:
1843	mnt_drop_write_file(file);
1844out:
1845	return ret;
1846}
1847
1848/*
1849 * helper to check if the subvolume references other subvolumes
1850 */
1851static noinline int may_destroy_subvol(struct btrfs_root *root)
1852{
1853	struct btrfs_path *path;
1854	struct btrfs_dir_item *di;
1855	struct btrfs_key key;
1856	u64 dir_id;
1857	int ret;
1858
1859	path = btrfs_alloc_path();
1860	if (!path)
1861		return -ENOMEM;
1862
1863	/* Make sure this root isn't set as the default subvol */
1864	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1865	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1866				   dir_id, "default", 7, 0);
1867	if (di && !IS_ERR(di)) {
1868		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1869		if (key.objectid == root->root_key.objectid) {
1870			ret = -EPERM;
1871			btrfs_err(root->fs_info, "deleting default subvolume "
1872				  "%llu is not allowed", key.objectid);
1873			goto out;
1874		}
1875		btrfs_release_path(path);
1876	}
1877
1878	key.objectid = root->root_key.objectid;
1879	key.type = BTRFS_ROOT_REF_KEY;
1880	key.offset = (u64)-1;
1881
1882	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1883				&key, path, 0, 0);
1884	if (ret < 0)
1885		goto out;
1886	BUG_ON(ret == 0);
1887
1888	ret = 0;
1889	if (path->slots[0] > 0) {
1890		path->slots[0]--;
1891		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1892		if (key.objectid == root->root_key.objectid &&
1893		    key.type == BTRFS_ROOT_REF_KEY)
1894			ret = -ENOTEMPTY;
1895	}
1896out:
1897	btrfs_free_path(path);
1898	return ret;
1899}
1900
1901static noinline int key_in_sk(struct btrfs_key *key,
1902			      struct btrfs_ioctl_search_key *sk)
1903{
1904	struct btrfs_key test;
1905	int ret;
1906
1907	test.objectid = sk->min_objectid;
1908	test.type = sk->min_type;
1909	test.offset = sk->min_offset;
1910
1911	ret = btrfs_comp_cpu_keys(key, &test);
1912	if (ret < 0)
1913		return 0;
1914
1915	test.objectid = sk->max_objectid;
1916	test.type = sk->max_type;
1917	test.offset = sk->max_offset;
1918
1919	ret = btrfs_comp_cpu_keys(key, &test);
1920	if (ret > 0)
1921		return 0;
1922	return 1;
1923}
1924
1925static noinline int copy_to_sk(struct btrfs_root *root,
1926			       struct btrfs_path *path,
1927			       struct btrfs_key *key,
1928			       struct btrfs_ioctl_search_key *sk,
1929			       char *buf,
1930			       unsigned long *sk_offset,
1931			       int *num_found)
1932{
1933	u64 found_transid;
1934	struct extent_buffer *leaf;
1935	struct btrfs_ioctl_search_header sh;
1936	unsigned long item_off;
1937	unsigned long item_len;
1938	int nritems;
1939	int i;
1940	int slot;
1941	int ret = 0;
1942
1943	leaf = path->nodes[0];
1944	slot = path->slots[0];
1945	nritems = btrfs_header_nritems(leaf);
1946
1947	if (btrfs_header_generation(leaf) > sk->max_transid) {
1948		i = nritems;
1949		goto advance_key;
1950	}
1951	found_transid = btrfs_header_generation(leaf);
1952
1953	for (i = slot; i < nritems; i++) {
1954		item_off = btrfs_item_ptr_offset(leaf, i);
1955		item_len = btrfs_item_size_nr(leaf, i);
1956
1957		btrfs_item_key_to_cpu(leaf, key, i);
1958		if (!key_in_sk(key, sk))
1959			continue;
1960
1961		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1962			item_len = 0;
1963
1964		if (sizeof(sh) + item_len + *sk_offset >
1965		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1966			ret = 1;
1967			goto overflow;
1968		}
1969
 
 
 
 
1970		sh.objectid = key->objectid;
1971		sh.offset = key->offset;
1972		sh.type = key->type;
1973		sh.len = item_len;
1974		sh.transid = found_transid;
1975
1976		/* copy search result header */
1977		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1978		*sk_offset += sizeof(sh);
1979
1980		if (item_len) {
1981			char *p = buf + *sk_offset;
1982			/* copy the item */
1983			read_extent_buffer(leaf, p,
1984					   item_off, item_len);
1985			*sk_offset += item_len;
1986		}
1987		(*num_found)++;
1988
1989		if (*num_found >= sk->nr_items)
1990			break;
1991	}
1992advance_key:
1993	ret = 0;
1994	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1995		key->offset++;
1996	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1997		key->offset = 0;
1998		key->type++;
1999	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2000		key->offset = 0;
2001		key->type = 0;
2002		key->objectid++;
2003	} else
2004		ret = 1;
2005overflow:
2006	return ret;
2007}
2008
2009static noinline int search_ioctl(struct inode *inode,
2010				 struct btrfs_ioctl_search_args *args)
2011{
2012	struct btrfs_root *root;
2013	struct btrfs_key key;
 
2014	struct btrfs_path *path;
2015	struct btrfs_ioctl_search_key *sk = &args->key;
2016	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2017	int ret;
2018	int num_found = 0;
2019	unsigned long sk_offset = 0;
2020
2021	path = btrfs_alloc_path();
2022	if (!path)
2023		return -ENOMEM;
2024
2025	if (sk->tree_id == 0) {
2026		/* search the root of the inode that was passed */
2027		root = BTRFS_I(inode)->root;
2028	} else {
2029		key.objectid = sk->tree_id;
2030		key.type = BTRFS_ROOT_ITEM_KEY;
2031		key.offset = (u64)-1;
2032		root = btrfs_read_fs_root_no_name(info, &key);
2033		if (IS_ERR(root)) {
2034			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2035			       sk->tree_id);
2036			btrfs_free_path(path);
2037			return -ENOENT;
2038		}
2039	}
2040
2041	key.objectid = sk->min_objectid;
2042	key.type = sk->min_type;
2043	key.offset = sk->min_offset;
2044
 
 
 
 
2045	path->keep_locks = 1;
2046
2047	while (1) {
2048		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
 
2049		if (ret != 0) {
2050			if (ret > 0)
2051				ret = 0;
2052			goto err;
2053		}
2054		ret = copy_to_sk(root, path, &key, sk, args->buf,
2055				 &sk_offset, &num_found);
2056		btrfs_release_path(path);
2057		if (ret || num_found >= sk->nr_items)
2058			break;
2059
2060	}
2061	ret = 0;
2062err:
2063	sk->nr_items = num_found;
2064	btrfs_free_path(path);
2065	return ret;
2066}
2067
2068static noinline int btrfs_ioctl_tree_search(struct file *file,
2069					   void __user *argp)
2070{
2071	 struct btrfs_ioctl_search_args *args;
2072	 struct inode *inode;
2073	 int ret;
2074
2075	if (!capable(CAP_SYS_ADMIN))
2076		return -EPERM;
2077
2078	args = memdup_user(argp, sizeof(*args));
2079	if (IS_ERR(args))
2080		return PTR_ERR(args);
2081
2082	inode = file_inode(file);
2083	ret = search_ioctl(inode, args);
2084	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2085		ret = -EFAULT;
2086	kfree(args);
2087	return ret;
2088}
2089
2090/*
2091 * Search INODE_REFs to identify path name of 'dirid' directory
2092 * in a 'tree_id' tree. and sets path name to 'name'.
2093 */
2094static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2095				u64 tree_id, u64 dirid, char *name)
2096{
2097	struct btrfs_root *root;
2098	struct btrfs_key key;
2099	char *ptr;
2100	int ret = -1;
2101	int slot;
2102	int len;
2103	int total_len = 0;
2104	struct btrfs_inode_ref *iref;
2105	struct extent_buffer *l;
2106	struct btrfs_path *path;
2107
2108	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2109		name[0]='\0';
2110		return 0;
2111	}
2112
2113	path = btrfs_alloc_path();
2114	if (!path)
2115		return -ENOMEM;
2116
2117	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2118
2119	key.objectid = tree_id;
2120	key.type = BTRFS_ROOT_ITEM_KEY;
2121	key.offset = (u64)-1;
2122	root = btrfs_read_fs_root_no_name(info, &key);
2123	if (IS_ERR(root)) {
2124		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2125		ret = -ENOENT;
2126		goto out;
2127	}
2128
2129	key.objectid = dirid;
2130	key.type = BTRFS_INODE_REF_KEY;
2131	key.offset = (u64)-1;
2132
2133	while (1) {
2134		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2135		if (ret < 0)
2136			goto out;
2137		else if (ret > 0) {
2138			ret = btrfs_previous_item(root, path, dirid,
2139						  BTRFS_INODE_REF_KEY);
2140			if (ret < 0)
2141				goto out;
2142			else if (ret > 0) {
2143				ret = -ENOENT;
2144				goto out;
2145			}
2146		}
2147
2148		l = path->nodes[0];
2149		slot = path->slots[0];
 
 
2150		btrfs_item_key_to_cpu(l, &key, slot);
2151
 
 
 
 
 
 
2152		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2153		len = btrfs_inode_ref_name_len(l, iref);
2154		ptr -= len + 1;
2155		total_len += len + 1;
2156		if (ptr < name) {
2157			ret = -ENAMETOOLONG;
2158			goto out;
2159		}
2160
2161		*(ptr + len) = '/';
2162		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2163
2164		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2165			break;
2166
2167		btrfs_release_path(path);
2168		key.objectid = key.offset;
2169		key.offset = (u64)-1;
2170		dirid = key.objectid;
2171	}
 
 
2172	memmove(name, ptr, total_len);
2173	name[total_len] = '\0';
2174	ret = 0;
2175out:
2176	btrfs_free_path(path);
2177	return ret;
2178}
2179
2180static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2181					   void __user *argp)
2182{
2183	 struct btrfs_ioctl_ino_lookup_args *args;
2184	 struct inode *inode;
2185	 int ret;
2186
2187	if (!capable(CAP_SYS_ADMIN))
2188		return -EPERM;
2189
2190	args = memdup_user(argp, sizeof(*args));
2191	if (IS_ERR(args))
2192		return PTR_ERR(args);
2193
2194	inode = file_inode(file);
2195
2196	if (args->treeid == 0)
2197		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2198
2199	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2200					args->treeid, args->objectid,
2201					args->name);
2202
2203	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2204		ret = -EFAULT;
2205
2206	kfree(args);
2207	return ret;
2208}
2209
2210static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2211					     void __user *arg)
2212{
2213	struct dentry *parent = file->f_path.dentry;
2214	struct dentry *dentry;
2215	struct inode *dir = parent->d_inode;
2216	struct inode *inode;
2217	struct btrfs_root *root = BTRFS_I(dir)->root;
2218	struct btrfs_root *dest = NULL;
2219	struct btrfs_ioctl_vol_args *vol_args;
2220	struct btrfs_trans_handle *trans;
2221	struct btrfs_block_rsv block_rsv;
2222	u64 qgroup_reserved;
2223	int namelen;
2224	int ret;
2225	int err = 0;
2226
2227	vol_args = memdup_user(arg, sizeof(*vol_args));
2228	if (IS_ERR(vol_args))
2229		return PTR_ERR(vol_args);
2230
2231	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2232	namelen = strlen(vol_args->name);
2233	if (strchr(vol_args->name, '/') ||
2234	    strncmp(vol_args->name, "..", namelen) == 0) {
2235		err = -EINVAL;
2236		goto out;
2237	}
2238
2239	err = mnt_want_write_file(file);
2240	if (err)
2241		goto out;
2242
2243	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2244	if (err == -EINTR)
2245		goto out_drop_write;
2246	dentry = lookup_one_len(vol_args->name, parent, namelen);
2247	if (IS_ERR(dentry)) {
2248		err = PTR_ERR(dentry);
2249		goto out_unlock_dir;
2250	}
2251
2252	if (!dentry->d_inode) {
2253		err = -ENOENT;
2254		goto out_dput;
2255	}
2256
2257	inode = dentry->d_inode;
2258	dest = BTRFS_I(inode)->root;
2259	if (!capable(CAP_SYS_ADMIN)) {
2260		/*
2261		 * Regular user.  Only allow this with a special mount
2262		 * option, when the user has write+exec access to the
2263		 * subvol root, and when rmdir(2) would have been
2264		 * allowed.
2265		 *
2266		 * Note that this is _not_ check that the subvol is
2267		 * empty or doesn't contain data that we wouldn't
2268		 * otherwise be able to delete.
2269		 *
2270		 * Users who want to delete empty subvols should try
2271		 * rmdir(2).
2272		 */
2273		err = -EPERM;
2274		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2275			goto out_dput;
2276
2277		/*
2278		 * Do not allow deletion if the parent dir is the same
2279		 * as the dir to be deleted.  That means the ioctl
2280		 * must be called on the dentry referencing the root
2281		 * of the subvol, not a random directory contained
2282		 * within it.
2283		 */
2284		err = -EINVAL;
2285		if (root == dest)
2286			goto out_dput;
2287
2288		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2289		if (err)
2290			goto out_dput;
 
 
 
 
 
2291	}
2292
2293	/* check if subvolume may be deleted by a user */
2294	err = btrfs_may_delete(dir, dentry, 1);
2295	if (err)
2296		goto out_dput;
2297
2298	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2299		err = -EINVAL;
2300		goto out_dput;
2301	}
2302
2303	mutex_lock(&inode->i_mutex);
2304	err = d_invalidate(dentry);
2305	if (err)
2306		goto out_unlock;
2307
2308	down_write(&root->fs_info->subvol_sem);
2309
2310	err = may_destroy_subvol(dest);
2311	if (err)
2312		goto out_up_write;
2313
2314	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2315	/*
2316	 * One for dir inode, two for dir entries, two for root
2317	 * ref/backref.
2318	 */
2319	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2320					       5, &qgroup_reserved, true);
2321	if (err)
2322		goto out_up_write;
2323
2324	trans = btrfs_start_transaction(root, 0);
2325	if (IS_ERR(trans)) {
2326		err = PTR_ERR(trans);
2327		goto out_release;
2328	}
2329	trans->block_rsv = &block_rsv;
2330	trans->bytes_reserved = block_rsv.size;
2331
2332	ret = btrfs_unlink_subvol(trans, root, dir,
2333				dest->root_key.objectid,
2334				dentry->d_name.name,
2335				dentry->d_name.len);
2336	if (ret) {
2337		err = ret;
2338		btrfs_abort_transaction(trans, root, ret);
2339		goto out_end_trans;
2340	}
2341
2342	btrfs_record_root_in_trans(trans, dest);
2343
2344	memset(&dest->root_item.drop_progress, 0,
2345		sizeof(dest->root_item.drop_progress));
2346	dest->root_item.drop_level = 0;
2347	btrfs_set_root_refs(&dest->root_item, 0);
2348
2349	if (!xchg(&dest->orphan_item_inserted, 1)) {
2350		ret = btrfs_insert_orphan_item(trans,
2351					root->fs_info->tree_root,
2352					dest->root_key.objectid);
2353		if (ret) {
2354			btrfs_abort_transaction(trans, root, ret);
2355			err = ret;
2356			goto out_end_trans;
2357		}
2358	}
2359
2360	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2361				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2362				  dest->root_key.objectid);
2363	if (ret && ret != -ENOENT) {
2364		btrfs_abort_transaction(trans, root, ret);
2365		err = ret;
2366		goto out_end_trans;
2367	}
2368	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2369		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2370					  dest->root_item.received_uuid,
2371					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2372					  dest->root_key.objectid);
2373		if (ret && ret != -ENOENT) {
2374			btrfs_abort_transaction(trans, root, ret);
2375			err = ret;
2376			goto out_end_trans;
2377		}
2378	}
2379
2380out_end_trans:
2381	trans->block_rsv = NULL;
2382	trans->bytes_reserved = 0;
2383	ret = btrfs_end_transaction(trans, root);
2384	if (ret && !err)
2385		err = ret;
2386	inode->i_flags |= S_DEAD;
2387out_release:
2388	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2389out_up_write:
2390	up_write(&root->fs_info->subvol_sem);
2391out_unlock:
2392	mutex_unlock(&inode->i_mutex);
2393	if (!err) {
2394		shrink_dcache_sb(root->fs_info->sb);
2395		btrfs_invalidate_inodes(dest);
2396		d_delete(dentry);
2397
2398		/* the last ref */
2399		if (dest->cache_inode) {
2400			iput(dest->cache_inode);
2401			dest->cache_inode = NULL;
2402		}
2403	}
2404out_dput:
2405	dput(dentry);
2406out_unlock_dir:
2407	mutex_unlock(&dir->i_mutex);
2408out_drop_write:
2409	mnt_drop_write_file(file);
2410out:
2411	kfree(vol_args);
2412	return err;
2413}
2414
2415static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2416{
2417	struct inode *inode = file_inode(file);
2418	struct btrfs_root *root = BTRFS_I(inode)->root;
2419	struct btrfs_ioctl_defrag_range_args *range;
2420	int ret;
2421
2422	ret = mnt_want_write_file(file);
 
 
 
2423	if (ret)
2424		return ret;
2425
2426	if (btrfs_root_readonly(root)) {
2427		ret = -EROFS;
2428		goto out;
2429	}
2430
2431	switch (inode->i_mode & S_IFMT) {
2432	case S_IFDIR:
2433		if (!capable(CAP_SYS_ADMIN)) {
2434			ret = -EPERM;
2435			goto out;
2436		}
2437		ret = btrfs_defrag_root(root);
2438		if (ret)
2439			goto out;
2440		ret = btrfs_defrag_root(root->fs_info->extent_root);
2441		break;
2442	case S_IFREG:
2443		if (!(file->f_mode & FMODE_WRITE)) {
2444			ret = -EINVAL;
2445			goto out;
2446		}
2447
2448		range = kzalloc(sizeof(*range), GFP_KERNEL);
2449		if (!range) {
2450			ret = -ENOMEM;
2451			goto out;
2452		}
2453
2454		if (argp) {
2455			if (copy_from_user(range, argp,
2456					   sizeof(*range))) {
2457				ret = -EFAULT;
2458				kfree(range);
2459				goto out;
2460			}
2461			/* compression requires us to start the IO */
2462			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2463				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2464				range->extent_thresh = (u32)-1;
2465			}
2466		} else {
2467			/* the rest are all set to zero by kzalloc */
2468			range->len = (u64)-1;
2469		}
2470		ret = btrfs_defrag_file(file_inode(file), file,
2471					range, 0, 0);
2472		if (ret > 0)
2473			ret = 0;
2474		kfree(range);
2475		break;
2476	default:
2477		ret = -EINVAL;
2478	}
2479out:
2480	mnt_drop_write_file(file);
2481	return ret;
2482}
2483
2484static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2485{
2486	struct btrfs_ioctl_vol_args *vol_args;
2487	int ret;
2488
2489	if (!capable(CAP_SYS_ADMIN))
2490		return -EPERM;
2491
2492	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2493			1)) {
2494		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2495	}
2496
2497	mutex_lock(&root->fs_info->volume_mutex);
2498	vol_args = memdup_user(arg, sizeof(*vol_args));
2499	if (IS_ERR(vol_args)) {
2500		ret = PTR_ERR(vol_args);
2501		goto out;
2502	}
2503
2504	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2505	ret = btrfs_init_new_device(root, vol_args->name);
2506
2507	kfree(vol_args);
2508out:
2509	mutex_unlock(&root->fs_info->volume_mutex);
2510	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2511	return ret;
2512}
2513
2514static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2515{
2516	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2517	struct btrfs_ioctl_vol_args *vol_args;
2518	int ret;
2519
2520	if (!capable(CAP_SYS_ADMIN))
2521		return -EPERM;
2522
2523	ret = mnt_want_write_file(file);
2524	if (ret)
2525		return ret;
2526
2527	vol_args = memdup_user(arg, sizeof(*vol_args));
2528	if (IS_ERR(vol_args)) {
2529		ret = PTR_ERR(vol_args);
2530		goto out;
2531	}
2532
2533	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2534
2535	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2536			1)) {
2537		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2538		goto out;
2539	}
2540
2541	mutex_lock(&root->fs_info->volume_mutex);
2542	ret = btrfs_rm_device(root, vol_args->name);
2543	mutex_unlock(&root->fs_info->volume_mutex);
2544	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2545
2546out:
2547	kfree(vol_args);
2548	mnt_drop_write_file(file);
2549	return ret;
2550}
2551
2552static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2553{
2554	struct btrfs_ioctl_fs_info_args *fi_args;
2555	struct btrfs_device *device;
2556	struct btrfs_device *next;
2557	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2558	int ret = 0;
2559
2560	if (!capable(CAP_SYS_ADMIN))
2561		return -EPERM;
2562
2563	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2564	if (!fi_args)
2565		return -ENOMEM;
2566
2567	mutex_lock(&fs_devices->device_list_mutex);
2568	fi_args->num_devices = fs_devices->num_devices;
2569	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2570
 
2571	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2572		if (device->devid > fi_args->max_id)
2573			fi_args->max_id = device->devid;
2574	}
2575	mutex_unlock(&fs_devices->device_list_mutex);
2576
2577	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2578		ret = -EFAULT;
2579
2580	kfree(fi_args);
2581	return ret;
2582}
2583
2584static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2585{
2586	struct btrfs_ioctl_dev_info_args *di_args;
2587	struct btrfs_device *dev;
2588	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2589	int ret = 0;
2590	char *s_uuid = NULL;
 
2591
2592	if (!capable(CAP_SYS_ADMIN))
2593		return -EPERM;
2594
2595	di_args = memdup_user(arg, sizeof(*di_args));
2596	if (IS_ERR(di_args))
2597		return PTR_ERR(di_args);
2598
2599	if (!btrfs_is_empty_uuid(di_args->uuid))
2600		s_uuid = di_args->uuid;
2601
2602	mutex_lock(&fs_devices->device_list_mutex);
2603	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
 
2604
2605	if (!dev) {
2606		ret = -ENODEV;
2607		goto out;
2608	}
2609
2610	di_args->devid = dev->devid;
2611	di_args->bytes_used = dev->bytes_used;
2612	di_args->total_bytes = dev->total_bytes;
2613	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2614	if (dev->name) {
2615		struct rcu_string *name;
2616
2617		rcu_read_lock();
2618		name = rcu_dereference(dev->name);
2619		strncpy(di_args->path, name->str, sizeof(di_args->path));
2620		rcu_read_unlock();
2621		di_args->path[sizeof(di_args->path) - 1] = 0;
2622	} else {
2623		di_args->path[0] = '\0';
2624	}
2625
2626out:
2627	mutex_unlock(&fs_devices->device_list_mutex);
2628	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2629		ret = -EFAULT;
2630
2631	kfree(di_args);
2632	return ret;
2633}
2634
2635static struct page *extent_same_get_page(struct inode *inode, u64 off)
2636{
2637	struct page *page;
2638	pgoff_t index;
2639	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2640
2641	index = off >> PAGE_CACHE_SHIFT;
2642
2643	page = grab_cache_page(inode->i_mapping, index);
2644	if (!page)
2645		return NULL;
2646
2647	if (!PageUptodate(page)) {
2648		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2649						 0))
2650			return NULL;
2651		lock_page(page);
2652		if (!PageUptodate(page)) {
2653			unlock_page(page);
2654			page_cache_release(page);
2655			return NULL;
2656		}
2657	}
2658	unlock_page(page);
2659
2660	return page;
2661}
2662
2663static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2664{
2665	/* do any pending delalloc/csum calc on src, one way or
2666	   another, and lock file content */
2667	while (1) {
2668		struct btrfs_ordered_extent *ordered;
2669		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2670		ordered = btrfs_lookup_first_ordered_extent(inode,
2671							    off + len - 1);
2672		if (!ordered &&
2673		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2674				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2675			break;
2676		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2677		if (ordered)
2678			btrfs_put_ordered_extent(ordered);
2679		btrfs_wait_ordered_range(inode, off, len);
2680	}
2681}
2682
2683static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2684				struct inode *inode2, u64 loff2, u64 len)
2685{
2686	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2687	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2688
2689	mutex_unlock(&inode1->i_mutex);
2690	mutex_unlock(&inode2->i_mutex);
2691}
2692
2693static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2694			      struct inode *inode2, u64 loff2, u64 len)
2695{
2696	if (inode1 < inode2) {
2697		swap(inode1, inode2);
2698		swap(loff1, loff2);
2699	}
2700
2701	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2702	lock_extent_range(inode1, loff1, len);
2703	if (inode1 != inode2) {
2704		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2705		lock_extent_range(inode2, loff2, len);
2706	}
2707}
2708
2709static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2710			  u64 dst_loff, u64 len)
2711{
2712	int ret = 0;
2713	struct page *src_page, *dst_page;
2714	unsigned int cmp_len = PAGE_CACHE_SIZE;
2715	void *addr, *dst_addr;
2716
2717	while (len) {
2718		if (len < PAGE_CACHE_SIZE)
2719			cmp_len = len;
2720
2721		src_page = extent_same_get_page(src, loff);
2722		if (!src_page)
2723			return -EINVAL;
2724		dst_page = extent_same_get_page(dst, dst_loff);
2725		if (!dst_page) {
2726			page_cache_release(src_page);
2727			return -EINVAL;
2728		}
2729		addr = kmap_atomic(src_page);
2730		dst_addr = kmap_atomic(dst_page);
2731
2732		flush_dcache_page(src_page);
2733		flush_dcache_page(dst_page);
2734
2735		if (memcmp(addr, dst_addr, cmp_len))
2736			ret = BTRFS_SAME_DATA_DIFFERS;
2737
2738		kunmap_atomic(addr);
2739		kunmap_atomic(dst_addr);
2740		page_cache_release(src_page);
2741		page_cache_release(dst_page);
2742
2743		if (ret)
2744			break;
2745
2746		loff += cmp_len;
2747		dst_loff += cmp_len;
2748		len -= cmp_len;
2749	}
2750
2751	return ret;
2752}
2753
2754static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2755{
2756	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2757
2758	if (off + len > inode->i_size || off + len < off)
2759		return -EINVAL;
2760	/* Check that we are block aligned - btrfs_clone() requires this */
2761	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2762		return -EINVAL;
2763
2764	return 0;
2765}
2766
2767static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2768			     struct inode *dst, u64 dst_loff)
2769{
 
 
 
 
 
 
 
 
 
 
 
2770	int ret;
 
 
 
2771
2772	/*
2773	 * btrfs_clone() can't handle extents in the same file
2774	 * yet. Once that works, we can drop this check and replace it
2775	 * with a check for the same inode, but overlapping extents.
 
 
 
 
2776	 */
2777	if (src == dst)
 
 
2778		return -EINVAL;
2779
2780	btrfs_double_lock(src, loff, dst, dst_loff, len);
 
2781
2782	ret = extent_same_check_offsets(src, loff, len);
2783	if (ret)
2784		goto out_unlock;
2785
2786	ret = extent_same_check_offsets(dst, dst_loff, len);
2787	if (ret)
2788		goto out_unlock;
2789
2790	/* don't make the dst file partly checksummed */
2791	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2792	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2793		ret = -EINVAL;
2794		goto out_unlock;
2795	}
2796
2797	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2798	if (ret == 0)
2799		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2800
2801out_unlock:
2802	btrfs_double_unlock(src, loff, dst, dst_loff, len);
 
2803
2804	return ret;
2805}
 
2806
2807#define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
 
 
 
2808
2809static long btrfs_ioctl_file_extent_same(struct file *file,
2810			struct btrfs_ioctl_same_args __user *argp)
2811{
2812	struct btrfs_ioctl_same_args *same;
2813	struct btrfs_ioctl_same_extent_info *info;
2814	struct inode *src = file_inode(file);
2815	u64 off;
2816	u64 len;
2817	int i;
2818	int ret;
2819	unsigned long size;
2820	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2821	bool is_admin = capable(CAP_SYS_ADMIN);
2822	u16 count;
2823
2824	if (!(file->f_mode & FMODE_READ))
2825		return -EINVAL;
 
2826
2827	ret = mnt_want_write_file(file);
2828	if (ret)
2829		return ret;
 
2830
2831	if (get_user(count, &argp->dest_count)) {
2832		ret = -EFAULT;
2833		goto out;
 
2834	}
 
2835
2836	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2837
2838	same = memdup_user(argp, size);
2839
2840	if (IS_ERR(same)) {
2841		ret = PTR_ERR(same);
2842		goto out;
2843	}
2844
2845	off = same->logical_offset;
2846	len = same->length;
 
 
 
 
 
 
 
2847
2848	/*
2849	 * Limit the total length we will dedupe for each operation.
2850	 * This is intended to bound the total time spent in this
2851	 * ioctl to something sane.
2852	 */
2853	if (len > BTRFS_MAX_DEDUPE_LEN)
2854		len = BTRFS_MAX_DEDUPE_LEN;
2855
2856	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2857		/*
2858		 * Btrfs does not support blocksize < page_size. As a
2859		 * result, btrfs_cmp_data() won't correctly handle
2860		 * this situation without an update.
2861		 */
2862		ret = -EINVAL;
2863		goto out;
2864	}
2865
2866	ret = -EISDIR;
2867	if (S_ISDIR(src->i_mode))
2868		goto out;
2869
2870	ret = -EACCES;
2871	if (!S_ISREG(src->i_mode))
2872		goto out;
2873
2874	/* pre-format output fields to sane values */
2875	for (i = 0; i < count; i++) {
2876		same->info[i].bytes_deduped = 0ULL;
2877		same->info[i].status = 0;
2878	}
2879
2880	for (i = 0, info = same->info; i < count; i++, info++) {
2881		struct inode *dst;
2882		struct fd dst_file = fdget(info->fd);
2883		if (!dst_file.file) {
2884			info->status = -EBADF;
2885			continue;
2886		}
2887		dst = file_inode(dst_file.file);
2888
2889		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2890			info->status = -EINVAL;
2891		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2892			info->status = -EXDEV;
2893		} else if (S_ISDIR(dst->i_mode)) {
2894			info->status = -EISDIR;
2895		} else if (!S_ISREG(dst->i_mode)) {
2896			info->status = -EACCES;
2897		} else {
2898			info->status = btrfs_extent_same(src, off, len, dst,
2899							info->logical_offset);
2900			if (info->status == 0)
2901				info->bytes_deduped += len;
2902		}
2903		fdput(dst_file);
2904	}
2905
2906	ret = copy_to_user(argp, same, size);
2907	if (ret)
2908		ret = -EFAULT;
2909
2910out:
2911	mnt_drop_write_file(file);
2912	return ret;
2913}
2914
2915/**
2916 * btrfs_clone() - clone a range from inode file to another
2917 *
2918 * @src: Inode to clone from
2919 * @inode: Inode to clone to
2920 * @off: Offset within source to start clone from
2921 * @olen: Original length, passed by user, of range to clone
2922 * @olen_aligned: Block-aligned value of olen, extent_same uses
2923 *               identical values here
2924 * @destoff: Offset within @inode to start clone
2925 */
2926static int btrfs_clone(struct inode *src, struct inode *inode,
2927		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2928{
2929	struct btrfs_root *root = BTRFS_I(inode)->root;
2930	struct btrfs_path *path = NULL;
2931	struct extent_buffer *leaf;
2932	struct btrfs_trans_handle *trans;
2933	char *buf = NULL;
2934	struct btrfs_key key;
2935	u32 nritems;
2936	int slot;
2937	int ret;
2938	u64 len = olen_aligned;
2939
2940	ret = -ENOMEM;
2941	buf = vmalloc(btrfs_level_size(root, 0));
2942	if (!buf)
2943		return ret;
2944
2945	path = btrfs_alloc_path();
2946	if (!path) {
2947		vfree(buf);
2948		return ret;
2949	}
2950
2951	path->reada = 2;
2952	/* clone data */
2953	key.objectid = btrfs_ino(src);
2954	key.type = BTRFS_EXTENT_DATA_KEY;
2955	key.offset = 0;
2956
2957	while (1) {
2958		/*
2959		 * note the key will change type as we walk through the
2960		 * tree.
2961		 */
2962		path->leave_spinning = 1;
2963		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2964				0, 0);
2965		if (ret < 0)
2966			goto out;
2967
2968		nritems = btrfs_header_nritems(path->nodes[0]);
2969process_slot:
2970		if (path->slots[0] >= nritems) {
2971			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2972			if (ret < 0)
2973				goto out;
2974			if (ret > 0)
2975				break;
2976			nritems = btrfs_header_nritems(path->nodes[0]);
2977		}
2978		leaf = path->nodes[0];
2979		slot = path->slots[0];
2980
2981		btrfs_item_key_to_cpu(leaf, &key, slot);
2982		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2983		    key.objectid != btrfs_ino(src))
2984			break;
2985
2986		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2987			struct btrfs_file_extent_item *extent;
2988			int type;
2989			u32 size;
2990			struct btrfs_key new_key;
2991			u64 disko = 0, diskl = 0;
2992			u64 datao = 0, datal = 0;
2993			u8 comp;
2994			u64 endoff;
2995
 
 
 
 
 
2996			extent = btrfs_item_ptr(leaf, slot,
2997						struct btrfs_file_extent_item);
2998			comp = btrfs_file_extent_compression(leaf, extent);
2999			type = btrfs_file_extent_type(leaf, extent);
3000			if (type == BTRFS_FILE_EXTENT_REG ||
3001			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3002				disko = btrfs_file_extent_disk_bytenr(leaf,
3003								      extent);
3004				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3005								 extent);
3006				datao = btrfs_file_extent_offset(leaf, extent);
3007				datal = btrfs_file_extent_num_bytes(leaf,
3008								    extent);
3009			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3010				/* take upper bound, may be compressed */
3011				datal = btrfs_file_extent_ram_bytes(leaf,
3012								    extent);
3013			}
 
3014
3015			if (key.offset + datal <= off ||
3016			    key.offset >= off + len - 1) {
3017				path->slots[0]++;
3018				goto process_slot;
3019			}
3020
3021			size = btrfs_item_size_nr(leaf, slot);
3022			read_extent_buffer(leaf, buf,
3023					   btrfs_item_ptr_offset(leaf, slot),
3024					   size);
3025
3026			btrfs_release_path(path);
3027			path->leave_spinning = 0;
3028
3029			memcpy(&new_key, &key, sizeof(new_key));
3030			new_key.objectid = btrfs_ino(inode);
3031			if (off <= key.offset)
3032				new_key.offset = key.offset + destoff - off;
3033			else
3034				new_key.offset = destoff;
3035
3036			/*
3037			 * 1 - adjusting old extent (we may have to split it)
3038			 * 1 - add new extent
3039			 * 1 - inode update
3040			 */
3041			trans = btrfs_start_transaction(root, 3);
3042			if (IS_ERR(trans)) {
3043				ret = PTR_ERR(trans);
3044				goto out;
3045			}
3046
3047			if (type == BTRFS_FILE_EXTENT_REG ||
3048			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3049				/*
3050				 *    a  | --- range to clone ---|  b
3051				 * | ------------- extent ------------- |
3052				 */
3053
3054				/* substract range b */
3055				if (key.offset + datal > off + len)
3056					datal = off + len - key.offset;
3057
3058				/* substract range a */
3059				if (off > key.offset) {
3060					datao += off - key.offset;
3061					datal -= off - key.offset;
3062				}
3063
3064				ret = btrfs_drop_extents(trans, root, inode,
3065							 new_key.offset,
3066							 new_key.offset + datal,
3067							 1);
3068				if (ret) {
3069					if (ret != -EOPNOTSUPP)
3070						btrfs_abort_transaction(trans,
3071								root, ret);
3072					btrfs_end_transaction(trans, root);
3073					goto out;
3074				}
3075
3076				ret = btrfs_insert_empty_item(trans, root, path,
3077							      &new_key, size);
3078				if (ret) {
3079					btrfs_abort_transaction(trans, root,
3080								ret);
3081					btrfs_end_transaction(trans, root);
3082					goto out;
3083				}
3084
3085				leaf = path->nodes[0];
3086				slot = path->slots[0];
3087				write_extent_buffer(leaf, buf,
3088					    btrfs_item_ptr_offset(leaf, slot),
3089					    size);
3090
3091				extent = btrfs_item_ptr(leaf, slot,
3092						struct btrfs_file_extent_item);
3093
3094				/* disko == 0 means it's a hole */
3095				if (!disko)
3096					datao = 0;
3097
3098				btrfs_set_file_extent_offset(leaf, extent,
3099							     datao);
3100				btrfs_set_file_extent_num_bytes(leaf, extent,
3101								datal);
3102				if (disko) {
3103					inode_add_bytes(inode, datal);
3104					ret = btrfs_inc_extent_ref(trans, root,
3105							disko, diskl, 0,
3106							root->root_key.objectid,
3107							btrfs_ino(inode),
3108							new_key.offset - datao,
3109							0);
3110					if (ret) {
3111						btrfs_abort_transaction(trans,
3112									root,
3113									ret);
3114						btrfs_end_transaction(trans,
3115								      root);
3116						goto out;
3117
3118					}
3119				}
3120			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3121				u64 skip = 0;
3122				u64 trim = 0;
3123				u64 aligned_end = 0;
3124
3125				if (off > key.offset) {
3126					skip = off - key.offset;
3127					new_key.offset += skip;
3128				}
3129
3130				if (key.offset + datal > off + len)
3131					trim = key.offset + datal - (off + len);
3132
3133				if (comp && (skip || trim)) {
3134					ret = -EINVAL;
3135					btrfs_end_transaction(trans, root);
3136					goto out;
3137				}
3138				size -= skip + trim;
3139				datal -= skip + trim;
3140
3141				aligned_end = ALIGN(new_key.offset + datal,
3142						    root->sectorsize);
3143				ret = btrfs_drop_extents(trans, root, inode,
3144							 new_key.offset,
3145							 aligned_end,
3146							 1);
3147				if (ret) {
3148					if (ret != -EOPNOTSUPP)
3149						btrfs_abort_transaction(trans,
3150							root, ret);
3151					btrfs_end_transaction(trans, root);
3152					goto out;
3153				}
3154
3155				ret = btrfs_insert_empty_item(trans, root, path,
3156							      &new_key, size);
3157				if (ret) {
3158					btrfs_abort_transaction(trans, root,
3159								ret);
3160					btrfs_end_transaction(trans, root);
3161					goto out;
3162				}
3163
3164				if (skip) {
3165					u32 start =
3166					  btrfs_file_extent_calc_inline_size(0);
3167					memmove(buf+start, buf+start+skip,
3168						datal);
3169				}
3170
3171				leaf = path->nodes[0];
3172				slot = path->slots[0];
3173				write_extent_buffer(leaf, buf,
3174					    btrfs_item_ptr_offset(leaf, slot),
3175					    size);
3176				inode_add_bytes(inode, datal);
3177			}
3178
3179			btrfs_mark_buffer_dirty(leaf);
3180			btrfs_release_path(path);
3181
3182			inode_inc_iversion(inode);
3183			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3184
3185			/*
3186			 * we round up to the block size at eof when
3187			 * determining which extents to clone above,
3188			 * but shouldn't round up the file size
3189			 */
3190			endoff = new_key.offset + datal;
3191			if (endoff > destoff+olen)
3192				endoff = destoff+olen;
3193			if (endoff > inode->i_size)
3194				btrfs_i_size_write(inode, endoff);
3195
3196			ret = btrfs_update_inode(trans, root, inode);
3197			if (ret) {
3198				btrfs_abort_transaction(trans, root, ret);
3199				btrfs_end_transaction(trans, root);
3200				goto out;
3201			}
3202			ret = btrfs_end_transaction(trans, root);
3203		}
 
3204		btrfs_release_path(path);
3205		key.offset++;
3206	}
3207	ret = 0;
3208
3209out:
3210	btrfs_release_path(path);
 
 
 
 
 
3211	btrfs_free_path(path);
3212	vfree(buf);
3213	return ret;
3214}
3215
3216static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3217				       u64 off, u64 olen, u64 destoff)
3218{
3219	struct inode *inode = file_inode(file);
3220	struct btrfs_root *root = BTRFS_I(inode)->root;
3221	struct fd src_file;
3222	struct inode *src;
3223	int ret;
3224	u64 len = olen;
3225	u64 bs = root->fs_info->sb->s_blocksize;
3226	int same_inode = 0;
3227
3228	/*
3229	 * TODO:
3230	 * - split compressed inline extents.  annoying: we need to
3231	 *   decompress into destination's address_space (the file offset
3232	 *   may change, so source mapping won't do), then recompress (or
3233	 *   otherwise reinsert) a subrange.
3234	 *
3235	 * - split destination inode's inline extents.  The inline extents can
3236	 *   be either compressed or non-compressed.
3237	 */
3238
3239	/* the destination must be opened for writing */
3240	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3241		return -EINVAL;
3242
3243	if (btrfs_root_readonly(root))
3244		return -EROFS;
3245
3246	ret = mnt_want_write_file(file);
3247	if (ret)
3248		return ret;
3249
3250	src_file = fdget(srcfd);
3251	if (!src_file.file) {
3252		ret = -EBADF;
3253		goto out_drop_write;
3254	}
3255
3256	ret = -EXDEV;
3257	if (src_file.file->f_path.mnt != file->f_path.mnt)
3258		goto out_fput;
3259
3260	src = file_inode(src_file.file);
3261
3262	ret = -EINVAL;
3263	if (src == inode)
3264		same_inode = 1;
3265
3266	/* the src must be open for reading */
3267	if (!(src_file.file->f_mode & FMODE_READ))
3268		goto out_fput;
3269
3270	/* don't make the dst file partly checksummed */
3271	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3272	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3273		goto out_fput;
3274
3275	ret = -EISDIR;
3276	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3277		goto out_fput;
3278
3279	ret = -EXDEV;
3280	if (src->i_sb != inode->i_sb)
3281		goto out_fput;
3282
3283	if (!same_inode) {
3284		if (inode < src) {
3285			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3286			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3287		} else {
3288			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3289			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3290		}
3291	} else {
3292		mutex_lock(&src->i_mutex);
3293	}
3294
3295	/* determine range to clone */
3296	ret = -EINVAL;
3297	if (off + len > src->i_size || off + len < off)
3298		goto out_unlock;
3299	if (len == 0)
3300		olen = len = src->i_size - off;
3301	/* if we extend to eof, continue to block boundary */
3302	if (off + len == src->i_size)
3303		len = ALIGN(src->i_size, bs) - off;
3304
3305	/* verify the end result is block aligned */
3306	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3307	    !IS_ALIGNED(destoff, bs))
3308		goto out_unlock;
3309
3310	/* verify if ranges are overlapped within the same file */
3311	if (same_inode) {
3312		if (destoff + len > off && destoff < off + len)
3313			goto out_unlock;
3314	}
3315
3316	if (destoff > inode->i_size) {
3317		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3318		if (ret)
3319			goto out_unlock;
3320	}
3321
3322	/* truncate page cache pages from target inode range */
3323	truncate_inode_pages_range(&inode->i_data, destoff,
3324				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3325
3326	lock_extent_range(src, off, len);
3327
3328	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3329
3330	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3331out_unlock:
3332	if (!same_inode) {
3333		if (inode < src) {
3334			mutex_unlock(&src->i_mutex);
3335			mutex_unlock(&inode->i_mutex);
3336		} else {
3337			mutex_unlock(&inode->i_mutex);
3338			mutex_unlock(&src->i_mutex);
3339		}
3340	} else {
3341		mutex_unlock(&src->i_mutex);
3342	}
3343out_fput:
3344	fdput(src_file);
3345out_drop_write:
3346	mnt_drop_write_file(file);
3347	return ret;
3348}
3349
3350static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3351{
3352	struct btrfs_ioctl_clone_range_args args;
3353
3354	if (copy_from_user(&args, argp, sizeof(args)))
3355		return -EFAULT;
3356	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3357				 args.src_length, args.dest_offset);
3358}
3359
3360/*
3361 * there are many ways the trans_start and trans_end ioctls can lead
3362 * to deadlocks.  They should only be used by applications that
3363 * basically own the machine, and have a very in depth understanding
3364 * of all the possible deadlocks and enospc problems.
3365 */
3366static long btrfs_ioctl_trans_start(struct file *file)
3367{
3368	struct inode *inode = file_inode(file);
3369	struct btrfs_root *root = BTRFS_I(inode)->root;
3370	struct btrfs_trans_handle *trans;
3371	int ret;
3372
3373	ret = -EPERM;
3374	if (!capable(CAP_SYS_ADMIN))
3375		goto out;
3376
3377	ret = -EINPROGRESS;
3378	if (file->private_data)
3379		goto out;
3380
3381	ret = -EROFS;
3382	if (btrfs_root_readonly(root))
3383		goto out;
3384
3385	ret = mnt_want_write_file(file);
3386	if (ret)
3387		goto out;
3388
3389	atomic_inc(&root->fs_info->open_ioctl_trans);
3390
3391	ret = -ENOMEM;
3392	trans = btrfs_start_ioctl_transaction(root);
3393	if (IS_ERR(trans))
3394		goto out_drop;
3395
3396	file->private_data = trans;
3397	return 0;
3398
3399out_drop:
3400	atomic_dec(&root->fs_info->open_ioctl_trans);
3401	mnt_drop_write_file(file);
3402out:
3403	return ret;
3404}
3405
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408	struct inode *inode = file_inode(file);
3409	struct btrfs_root *root = BTRFS_I(inode)->root;
3410	struct btrfs_root *new_root;
3411	struct btrfs_dir_item *di;
3412	struct btrfs_trans_handle *trans;
3413	struct btrfs_path *path;
3414	struct btrfs_key location;
3415	struct btrfs_disk_key disk_key;
 
 
3416	u64 objectid = 0;
3417	u64 dir_id;
3418	int ret;
3419
3420	if (!capable(CAP_SYS_ADMIN))
3421		return -EPERM;
3422
3423	ret = mnt_want_write_file(file);
3424	if (ret)
3425		return ret;
3426
3427	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432	if (!objectid)
3433		objectid = BTRFS_FS_TREE_OBJECTID;
3434
3435	location.objectid = objectid;
3436	location.type = BTRFS_ROOT_ITEM_KEY;
3437	location.offset = (u64)-1;
3438
3439	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3440	if (IS_ERR(new_root)) {
3441		ret = PTR_ERR(new_root);
3442		goto out;
3443	}
 
3444
3445	path = btrfs_alloc_path();
3446	if (!path) {
3447		ret = -ENOMEM;
3448		goto out;
3449	}
3450	path->leave_spinning = 1;
3451
3452	trans = btrfs_start_transaction(root, 1);
3453	if (IS_ERR(trans)) {
3454		btrfs_free_path(path);
3455		ret = PTR_ERR(trans);
3456		goto out;
3457	}
3458
3459	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3460	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3461				   dir_id, "default", 7, 1);
3462	if (IS_ERR_OR_NULL(di)) {
3463		btrfs_free_path(path);
3464		btrfs_end_transaction(trans, root);
3465		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3466			   "item, this isn't going to work");
3467		ret = -ENOENT;
3468		goto out;
3469	}
3470
3471	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3472	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3473	btrfs_mark_buffer_dirty(path->nodes[0]);
3474	btrfs_free_path(path);
3475
3476	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
 
 
 
 
 
3477	btrfs_end_transaction(trans, root);
3478out:
3479	mnt_drop_write_file(file);
3480	return ret;
3481}
3482
3483void btrfs_get_block_group_info(struct list_head *groups_list,
3484				struct btrfs_ioctl_space_info *space)
3485{
3486	struct btrfs_block_group_cache *block_group;
3487
3488	space->total_bytes = 0;
3489	space->used_bytes = 0;
3490	space->flags = 0;
3491	list_for_each_entry(block_group, groups_list, list) {
3492		space->flags = block_group->flags;
3493		space->total_bytes += block_group->key.offset;
3494		space->used_bytes +=
3495			btrfs_block_group_used(&block_group->item);
3496	}
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3500{
3501	struct btrfs_ioctl_space_args space_args;
3502	struct btrfs_ioctl_space_info space;
3503	struct btrfs_ioctl_space_info *dest;
3504	struct btrfs_ioctl_space_info *dest_orig;
3505	struct btrfs_ioctl_space_info __user *user_dest;
3506	struct btrfs_space_info *info;
3507	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3508		       BTRFS_BLOCK_GROUP_SYSTEM,
3509		       BTRFS_BLOCK_GROUP_METADATA,
3510		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3511	int num_types = 4;
3512	int alloc_size;
3513	int ret = 0;
3514	u64 slot_count = 0;
3515	int i, c;
3516
3517	if (copy_from_user(&space_args,
3518			   (struct btrfs_ioctl_space_args __user *)arg,
3519			   sizeof(space_args)))
3520		return -EFAULT;
3521
3522	for (i = 0; i < num_types; i++) {
3523		struct btrfs_space_info *tmp;
3524
3525		info = NULL;
3526		rcu_read_lock();
3527		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3528					list) {
3529			if (tmp->flags == types[i]) {
3530				info = tmp;
3531				break;
3532			}
3533		}
3534		rcu_read_unlock();
3535
3536		if (!info)
3537			continue;
3538
3539		down_read(&info->groups_sem);
3540		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541			if (!list_empty(&info->block_groups[c]))
3542				slot_count++;
3543		}
3544		up_read(&info->groups_sem);
3545	}
3546
3547	/*
3548	 * Global block reserve, exported as a space_info
3549	 */
3550	slot_count++;
3551
3552	/* space_slots == 0 means they are asking for a count */
3553	if (space_args.space_slots == 0) {
3554		space_args.total_spaces = slot_count;
3555		goto out;
3556	}
3557
3558	slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560	alloc_size = sizeof(*dest) * slot_count;
3561
3562	/* we generally have at most 6 or so space infos, one for each raid
3563	 * level.  So, a whole page should be more than enough for everyone
3564	 */
3565	if (alloc_size > PAGE_CACHE_SIZE)
3566		return -ENOMEM;
3567
3568	space_args.total_spaces = 0;
3569	dest = kmalloc(alloc_size, GFP_NOFS);
3570	if (!dest)
3571		return -ENOMEM;
3572	dest_orig = dest;
3573
3574	/* now we have a buffer to copy into */
3575	for (i = 0; i < num_types; i++) {
3576		struct btrfs_space_info *tmp;
3577
3578		if (!slot_count)
3579			break;
3580
3581		info = NULL;
3582		rcu_read_lock();
3583		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3584					list) {
3585			if (tmp->flags == types[i]) {
3586				info = tmp;
3587				break;
3588			}
3589		}
3590		rcu_read_unlock();
3591
3592		if (!info)
3593			continue;
3594		down_read(&info->groups_sem);
3595		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3596			if (!list_empty(&info->block_groups[c])) {
3597				btrfs_get_block_group_info(
3598					&info->block_groups[c], &space);
3599				memcpy(dest, &space, sizeof(space));
3600				dest++;
3601				space_args.total_spaces++;
3602				slot_count--;
3603			}
3604			if (!slot_count)
3605				break;
3606		}
3607		up_read(&info->groups_sem);
3608	}
3609
3610	/*
3611	 * Add global block reserve
3612	 */
3613	if (slot_count) {
3614		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3615
3616		spin_lock(&block_rsv->lock);
3617		space.total_bytes = block_rsv->size;
3618		space.used_bytes = block_rsv->size - block_rsv->reserved;
3619		spin_unlock(&block_rsv->lock);
3620		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3621		memcpy(dest, &space, sizeof(space));
3622		space_args.total_spaces++;
3623	}
3624
3625	user_dest = (struct btrfs_ioctl_space_info __user *)
3626		(arg + sizeof(struct btrfs_ioctl_space_args));
3627
3628	if (copy_to_user(user_dest, dest_orig, alloc_size))
3629		ret = -EFAULT;
3630
3631	kfree(dest_orig);
3632out:
3633	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3634		ret = -EFAULT;
3635
3636	return ret;
3637}
3638
3639/*
3640 * there are many ways the trans_start and trans_end ioctls can lead
3641 * to deadlocks.  They should only be used by applications that
3642 * basically own the machine, and have a very in depth understanding
3643 * of all the possible deadlocks and enospc problems.
3644 */
3645long btrfs_ioctl_trans_end(struct file *file)
3646{
3647	struct inode *inode = file_inode(file);
3648	struct btrfs_root *root = BTRFS_I(inode)->root;
3649	struct btrfs_trans_handle *trans;
3650
3651	trans = file->private_data;
3652	if (!trans)
3653		return -EINVAL;
3654	file->private_data = NULL;
3655
3656	btrfs_end_transaction(trans, root);
3657
3658	atomic_dec(&root->fs_info->open_ioctl_trans);
3659
3660	mnt_drop_write_file(file);
3661	return 0;
3662}
3663
3664static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3665					    void __user *argp)
3666{
 
3667	struct btrfs_trans_handle *trans;
3668	u64 transid;
3669	int ret;
3670
3671	trans = btrfs_attach_transaction_barrier(root);
3672	if (IS_ERR(trans)) {
3673		if (PTR_ERR(trans) != -ENOENT)
3674			return PTR_ERR(trans);
3675
3676		/* No running transaction, don't bother */
3677		transid = root->fs_info->last_trans_committed;
3678		goto out;
3679	}
3680	transid = trans->transid;
3681	ret = btrfs_commit_transaction_async(trans, root, 0);
3682	if (ret) {
3683		btrfs_end_transaction(trans, root);
3684		return ret;
3685	}
3686out:
3687	if (argp)
3688		if (copy_to_user(argp, &transid, sizeof(transid)))
3689			return -EFAULT;
3690	return 0;
3691}
3692
3693static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3694					   void __user *argp)
3695{
 
3696	u64 transid;
3697
3698	if (argp) {
3699		if (copy_from_user(&transid, argp, sizeof(transid)))
3700			return -EFAULT;
3701	} else {
3702		transid = 0;  /* current trans */
3703	}
3704	return btrfs_wait_for_commit(root, transid);
3705}
3706
3707static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3708{
3709	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3710	struct btrfs_ioctl_scrub_args *sa;
3711	int ret;
3712
3713	if (!capable(CAP_SYS_ADMIN))
3714		return -EPERM;
3715
3716	sa = memdup_user(arg, sizeof(*sa));
3717	if (IS_ERR(sa))
3718		return PTR_ERR(sa);
3719
3720	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3721		ret = mnt_want_write_file(file);
3722		if (ret)
3723			goto out;
3724	}
3725
3726	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3727			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3728			      0);
3729
3730	if (copy_to_user(arg, sa, sizeof(*sa)))
3731		ret = -EFAULT;
3732
3733	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3734		mnt_drop_write_file(file);
3735out:
3736	kfree(sa);
3737	return ret;
3738}
3739
3740static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3741{
3742	if (!capable(CAP_SYS_ADMIN))
3743		return -EPERM;
3744
3745	return btrfs_scrub_cancel(root->fs_info);
3746}
3747
3748static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3749				       void __user *arg)
3750{
3751	struct btrfs_ioctl_scrub_args *sa;
3752	int ret;
3753
3754	if (!capable(CAP_SYS_ADMIN))
3755		return -EPERM;
3756
3757	sa = memdup_user(arg, sizeof(*sa));
3758	if (IS_ERR(sa))
3759		return PTR_ERR(sa);
3760
3761	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3762
3763	if (copy_to_user(arg, sa, sizeof(*sa)))
3764		ret = -EFAULT;
3765
3766	kfree(sa);
3767	return ret;
3768}
3769
3770static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3771				      void __user *arg)
3772{
3773	struct btrfs_ioctl_get_dev_stats *sa;
3774	int ret;
3775
3776	sa = memdup_user(arg, sizeof(*sa));
3777	if (IS_ERR(sa))
3778		return PTR_ERR(sa);
3779
3780	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3781		kfree(sa);
3782		return -EPERM;
3783	}
3784
3785	ret = btrfs_get_dev_stats(root, sa);
3786
3787	if (copy_to_user(arg, sa, sizeof(*sa)))
3788		ret = -EFAULT;
3789
3790	kfree(sa);
3791	return ret;
3792}
3793
3794static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3795{
3796	struct btrfs_ioctl_dev_replace_args *p;
3797	int ret;
3798
3799	if (!capable(CAP_SYS_ADMIN))
3800		return -EPERM;
3801
3802	p = memdup_user(arg, sizeof(*p));
3803	if (IS_ERR(p))
3804		return PTR_ERR(p);
3805
3806	switch (p->cmd) {
3807	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3808		if (root->fs_info->sb->s_flags & MS_RDONLY) {
3809			ret = -EROFS;
3810			goto out;
3811		}
3812		if (atomic_xchg(
3813			&root->fs_info->mutually_exclusive_operation_running,
3814			1)) {
3815			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3816		} else {
3817			ret = btrfs_dev_replace_start(root, p);
3818			atomic_set(
3819			 &root->fs_info->mutually_exclusive_operation_running,
3820			 0);
3821		}
3822		break;
3823	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3824		btrfs_dev_replace_status(root->fs_info, p);
3825		ret = 0;
3826		break;
3827	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3828		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3829		break;
3830	default:
3831		ret = -EINVAL;
3832		break;
3833	}
3834
3835	if (copy_to_user(arg, p, sizeof(*p)))
3836		ret = -EFAULT;
3837out:
3838	kfree(p);
3839	return ret;
3840}
3841
3842static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843{
3844	int ret = 0;
3845	int i;
3846	u64 rel_ptr;
3847	int size;
3848	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849	struct inode_fs_paths *ipath = NULL;
3850	struct btrfs_path *path;
3851
3852	if (!capable(CAP_DAC_READ_SEARCH))
3853		return -EPERM;
3854
3855	path = btrfs_alloc_path();
3856	if (!path) {
3857		ret = -ENOMEM;
3858		goto out;
3859	}
3860
3861	ipa = memdup_user(arg, sizeof(*ipa));
3862	if (IS_ERR(ipa)) {
3863		ret = PTR_ERR(ipa);
3864		ipa = NULL;
3865		goto out;
3866	}
3867
3868	size = min_t(u32, ipa->size, 4096);
3869	ipath = init_ipath(size, root, path);
3870	if (IS_ERR(ipath)) {
3871		ret = PTR_ERR(ipath);
3872		ipath = NULL;
3873		goto out;
3874	}
3875
3876	ret = paths_from_inode(ipa->inum, ipath);
3877	if (ret < 0)
3878		goto out;
3879
3880	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881		rel_ptr = ipath->fspath->val[i] -
3882			  (u64)(unsigned long)ipath->fspath->val;
3883		ipath->fspath->val[i] = rel_ptr;
3884	}
3885
3886	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3887			   (void *)(unsigned long)ipath->fspath, size);
3888	if (ret) {
3889		ret = -EFAULT;
3890		goto out;
3891	}
3892
3893out:
3894	btrfs_free_path(path);
3895	free_ipath(ipath);
3896	kfree(ipa);
3897
3898	return ret;
3899}
3900
3901static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902{
3903	struct btrfs_data_container *inodes = ctx;
3904	const size_t c = 3 * sizeof(u64);
3905
3906	if (inodes->bytes_left >= c) {
3907		inodes->bytes_left -= c;
3908		inodes->val[inodes->elem_cnt] = inum;
3909		inodes->val[inodes->elem_cnt + 1] = offset;
3910		inodes->val[inodes->elem_cnt + 2] = root;
3911		inodes->elem_cnt += 3;
3912	} else {
3913		inodes->bytes_missing += c - inodes->bytes_left;
3914		inodes->bytes_left = 0;
3915		inodes->elem_missed += 3;
3916	}
3917
3918	return 0;
3919}
3920
3921static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3922					void __user *arg)
3923{
3924	int ret = 0;
3925	int size;
3926	struct btrfs_ioctl_logical_ino_args *loi;
3927	struct btrfs_data_container *inodes = NULL;
3928	struct btrfs_path *path = NULL;
3929
3930	if (!capable(CAP_SYS_ADMIN))
3931		return -EPERM;
3932
3933	loi = memdup_user(arg, sizeof(*loi));
3934	if (IS_ERR(loi)) {
3935		ret = PTR_ERR(loi);
3936		loi = NULL;
3937		goto out;
3938	}
3939
3940	path = btrfs_alloc_path();
3941	if (!path) {
3942		ret = -ENOMEM;
3943		goto out;
3944	}
3945
3946	size = min_t(u32, loi->size, 64 * 1024);
3947	inodes = init_data_container(size);
3948	if (IS_ERR(inodes)) {
3949		ret = PTR_ERR(inodes);
3950		inodes = NULL;
3951		goto out;
3952	}
3953
3954	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3955					  build_ino_list, inodes);
3956	if (ret == -EINVAL)
3957		ret = -ENOENT;
3958	if (ret < 0)
3959		goto out;
3960
3961	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3962			   (void *)(unsigned long)inodes, size);
3963	if (ret)
3964		ret = -EFAULT;
3965
3966out:
3967	btrfs_free_path(path);
3968	vfree(inodes);
3969	kfree(loi);
3970
3971	return ret;
3972}
3973
3974void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3975			       struct btrfs_ioctl_balance_args *bargs)
3976{
3977	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3978
3979	bargs->flags = bctl->flags;
3980
3981	if (atomic_read(&fs_info->balance_running))
3982		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3983	if (atomic_read(&fs_info->balance_pause_req))
3984		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3985	if (atomic_read(&fs_info->balance_cancel_req))
3986		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3987
3988	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3989	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3990	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3991
3992	if (lock) {
3993		spin_lock(&fs_info->balance_lock);
3994		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3995		spin_unlock(&fs_info->balance_lock);
3996	} else {
3997		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3998	}
3999}
4000
4001static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4002{
4003	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4004	struct btrfs_fs_info *fs_info = root->fs_info;
4005	struct btrfs_ioctl_balance_args *bargs;
4006	struct btrfs_balance_control *bctl;
4007	bool need_unlock; /* for mut. excl. ops lock */
4008	int ret;
4009
4010	if (!capable(CAP_SYS_ADMIN))
4011		return -EPERM;
4012
4013	ret = mnt_want_write_file(file);
4014	if (ret)
4015		return ret;
4016
4017again:
4018	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4019		mutex_lock(&fs_info->volume_mutex);
4020		mutex_lock(&fs_info->balance_mutex);
4021		need_unlock = true;
4022		goto locked;
4023	}
4024
4025	/*
4026	 * mut. excl. ops lock is locked.  Three possibilites:
4027	 *   (1) some other op is running
4028	 *   (2) balance is running
4029	 *   (3) balance is paused -- special case (think resume)
4030	 */
4031	mutex_lock(&fs_info->balance_mutex);
4032	if (fs_info->balance_ctl) {
4033		/* this is either (2) or (3) */
4034		if (!atomic_read(&fs_info->balance_running)) {
4035			mutex_unlock(&fs_info->balance_mutex);
4036			if (!mutex_trylock(&fs_info->volume_mutex))
4037				goto again;
4038			mutex_lock(&fs_info->balance_mutex);
4039
4040			if (fs_info->balance_ctl &&
4041			    !atomic_read(&fs_info->balance_running)) {
4042				/* this is (3) */
4043				need_unlock = false;
4044				goto locked;
4045			}
4046
4047			mutex_unlock(&fs_info->balance_mutex);
4048			mutex_unlock(&fs_info->volume_mutex);
4049			goto again;
4050		} else {
4051			/* this is (2) */
4052			mutex_unlock(&fs_info->balance_mutex);
4053			ret = -EINPROGRESS;
4054			goto out;
4055		}
4056	} else {
4057		/* this is (1) */
4058		mutex_unlock(&fs_info->balance_mutex);
4059		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4060		goto out;
4061	}
4062
4063locked:
4064	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4065
4066	if (arg) {
4067		bargs = memdup_user(arg, sizeof(*bargs));
4068		if (IS_ERR(bargs)) {
4069			ret = PTR_ERR(bargs);
4070			goto out_unlock;
4071		}
4072
4073		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4074			if (!fs_info->balance_ctl) {
4075				ret = -ENOTCONN;
4076				goto out_bargs;
4077			}
4078
4079			bctl = fs_info->balance_ctl;
4080			spin_lock(&fs_info->balance_lock);
4081			bctl->flags |= BTRFS_BALANCE_RESUME;
4082			spin_unlock(&fs_info->balance_lock);
4083
4084			goto do_balance;
4085		}
4086	} else {
4087		bargs = NULL;
4088	}
4089
4090	if (fs_info->balance_ctl) {
4091		ret = -EINPROGRESS;
4092		goto out_bargs;
4093	}
4094
4095	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4096	if (!bctl) {
4097		ret = -ENOMEM;
4098		goto out_bargs;
4099	}
4100
4101	bctl->fs_info = fs_info;
4102	if (arg) {
4103		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4104		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4105		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4106
4107		bctl->flags = bargs->flags;
4108	} else {
4109		/* balance everything - no filters */
4110		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4111	}
4112
4113do_balance:
4114	/*
4115	 * Ownership of bctl and mutually_exclusive_operation_running
4116	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4117	 * or, if restriper was paused all the way until unmount, in
4118	 * free_fs_info.  mutually_exclusive_operation_running is
4119	 * cleared in __cancel_balance.
4120	 */
4121	need_unlock = false;
4122
4123	ret = btrfs_balance(bctl, bargs);
4124
4125	if (arg) {
4126		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4127			ret = -EFAULT;
4128	}
4129
4130out_bargs:
4131	kfree(bargs);
4132out_unlock:
4133	mutex_unlock(&fs_info->balance_mutex);
4134	mutex_unlock(&fs_info->volume_mutex);
4135	if (need_unlock)
4136		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4137out:
4138	mnt_drop_write_file(file);
4139	return ret;
4140}
4141
4142static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4143{
4144	if (!capable(CAP_SYS_ADMIN))
4145		return -EPERM;
4146
4147	switch (cmd) {
4148	case BTRFS_BALANCE_CTL_PAUSE:
4149		return btrfs_pause_balance(root->fs_info);
4150	case BTRFS_BALANCE_CTL_CANCEL:
4151		return btrfs_cancel_balance(root->fs_info);
4152	}
4153
4154	return -EINVAL;
4155}
4156
4157static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4158					 void __user *arg)
4159{
4160	struct btrfs_fs_info *fs_info = root->fs_info;
4161	struct btrfs_ioctl_balance_args *bargs;
4162	int ret = 0;
4163
4164	if (!capable(CAP_SYS_ADMIN))
4165		return -EPERM;
4166
4167	mutex_lock(&fs_info->balance_mutex);
4168	if (!fs_info->balance_ctl) {
4169		ret = -ENOTCONN;
4170		goto out;
4171	}
4172
4173	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4174	if (!bargs) {
4175		ret = -ENOMEM;
4176		goto out;
4177	}
4178
4179	update_ioctl_balance_args(fs_info, 1, bargs);
4180
4181	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4182		ret = -EFAULT;
4183
4184	kfree(bargs);
4185out:
4186	mutex_unlock(&fs_info->balance_mutex);
4187	return ret;
4188}
4189
4190static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4191{
4192	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4193	struct btrfs_ioctl_quota_ctl_args *sa;
4194	struct btrfs_trans_handle *trans = NULL;
4195	int ret;
4196	int err;
4197
4198	if (!capable(CAP_SYS_ADMIN))
4199		return -EPERM;
4200
4201	ret = mnt_want_write_file(file);
4202	if (ret)
4203		return ret;
4204
4205	sa = memdup_user(arg, sizeof(*sa));
4206	if (IS_ERR(sa)) {
4207		ret = PTR_ERR(sa);
4208		goto drop_write;
4209	}
4210
4211	down_write(&root->fs_info->subvol_sem);
4212	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4213	if (IS_ERR(trans)) {
4214		ret = PTR_ERR(trans);
4215		goto out;
4216	}
4217
4218	switch (sa->cmd) {
4219	case BTRFS_QUOTA_CTL_ENABLE:
4220		ret = btrfs_quota_enable(trans, root->fs_info);
4221		break;
4222	case BTRFS_QUOTA_CTL_DISABLE:
4223		ret = btrfs_quota_disable(trans, root->fs_info);
4224		break;
4225	default:
4226		ret = -EINVAL;
4227		break;
4228	}
4229
4230	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4231	if (err && !ret)
4232		ret = err;
4233out:
4234	kfree(sa);
4235	up_write(&root->fs_info->subvol_sem);
4236drop_write:
4237	mnt_drop_write_file(file);
4238	return ret;
4239}
4240
4241static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4242{
4243	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4244	struct btrfs_ioctl_qgroup_assign_args *sa;
4245	struct btrfs_trans_handle *trans;
4246	int ret;
4247	int err;
4248
4249	if (!capable(CAP_SYS_ADMIN))
4250		return -EPERM;
4251
4252	ret = mnt_want_write_file(file);
4253	if (ret)
4254		return ret;
4255
4256	sa = memdup_user(arg, sizeof(*sa));
4257	if (IS_ERR(sa)) {
4258		ret = PTR_ERR(sa);
4259		goto drop_write;
4260	}
4261
4262	trans = btrfs_join_transaction(root);
4263	if (IS_ERR(trans)) {
4264		ret = PTR_ERR(trans);
4265		goto out;
4266	}
4267
4268	/* FIXME: check if the IDs really exist */
4269	if (sa->assign) {
4270		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4271						sa->src, sa->dst);
4272	} else {
4273		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4274						sa->src, sa->dst);
4275	}
4276
4277	err = btrfs_end_transaction(trans, root);
4278	if (err && !ret)
4279		ret = err;
4280
4281out:
4282	kfree(sa);
4283drop_write:
4284	mnt_drop_write_file(file);
4285	return ret;
4286}
4287
4288static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4289{
4290	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291	struct btrfs_ioctl_qgroup_create_args *sa;
4292	struct btrfs_trans_handle *trans;
4293	int ret;
4294	int err;
4295
4296	if (!capable(CAP_SYS_ADMIN))
4297		return -EPERM;
4298
4299	ret = mnt_want_write_file(file);
4300	if (ret)
4301		return ret;
4302
4303	sa = memdup_user(arg, sizeof(*sa));
4304	if (IS_ERR(sa)) {
4305		ret = PTR_ERR(sa);
4306		goto drop_write;
4307	}
4308
4309	if (!sa->qgroupid) {
4310		ret = -EINVAL;
4311		goto out;
4312	}
4313
4314	trans = btrfs_join_transaction(root);
4315	if (IS_ERR(trans)) {
4316		ret = PTR_ERR(trans);
4317		goto out;
4318	}
4319
4320	/* FIXME: check if the IDs really exist */
4321	if (sa->create) {
4322		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4323					  NULL);
4324	} else {
4325		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4326	}
4327
4328	err = btrfs_end_transaction(trans, root);
4329	if (err && !ret)
4330		ret = err;
4331
4332out:
4333	kfree(sa);
4334drop_write:
4335	mnt_drop_write_file(file);
4336	return ret;
4337}
4338
4339static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4340{
4341	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4342	struct btrfs_ioctl_qgroup_limit_args *sa;
4343	struct btrfs_trans_handle *trans;
4344	int ret;
4345	int err;
4346	u64 qgroupid;
4347
4348	if (!capable(CAP_SYS_ADMIN))
4349		return -EPERM;
4350
4351	ret = mnt_want_write_file(file);
4352	if (ret)
4353		return ret;
4354
4355	sa = memdup_user(arg, sizeof(*sa));
4356	if (IS_ERR(sa)) {
4357		ret = PTR_ERR(sa);
4358		goto drop_write;
4359	}
4360
4361	trans = btrfs_join_transaction(root);
4362	if (IS_ERR(trans)) {
4363		ret = PTR_ERR(trans);
4364		goto out;
4365	}
4366
4367	qgroupid = sa->qgroupid;
4368	if (!qgroupid) {
4369		/* take the current subvol as qgroup */
4370		qgroupid = root->root_key.objectid;
4371	}
4372
4373	/* FIXME: check if the IDs really exist */
4374	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4375
4376	err = btrfs_end_transaction(trans, root);
4377	if (err && !ret)
4378		ret = err;
4379
4380out:
4381	kfree(sa);
4382drop_write:
4383	mnt_drop_write_file(file);
4384	return ret;
4385}
4386
4387static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4388{
4389	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4390	struct btrfs_ioctl_quota_rescan_args *qsa;
4391	int ret;
4392
4393	if (!capable(CAP_SYS_ADMIN))
4394		return -EPERM;
4395
4396	ret = mnt_want_write_file(file);
4397	if (ret)
4398		return ret;
4399
4400	qsa = memdup_user(arg, sizeof(*qsa));
4401	if (IS_ERR(qsa)) {
4402		ret = PTR_ERR(qsa);
4403		goto drop_write;
4404	}
4405
4406	if (qsa->flags) {
4407		ret = -EINVAL;
4408		goto out;
4409	}
4410
4411	ret = btrfs_qgroup_rescan(root->fs_info);
4412
4413out:
4414	kfree(qsa);
4415drop_write:
4416	mnt_drop_write_file(file);
4417	return ret;
4418}
4419
4420static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4421{
4422	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4423	struct btrfs_ioctl_quota_rescan_args *qsa;
4424	int ret = 0;
4425
4426	if (!capable(CAP_SYS_ADMIN))
4427		return -EPERM;
4428
4429	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4430	if (!qsa)
4431		return -ENOMEM;
4432
4433	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4434		qsa->flags = 1;
4435		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4436	}
4437
4438	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4439		ret = -EFAULT;
4440
4441	kfree(qsa);
4442	return ret;
4443}
4444
4445static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4446{
4447	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4448
4449	if (!capable(CAP_SYS_ADMIN))
4450		return -EPERM;
4451
4452	return btrfs_qgroup_wait_for_completion(root->fs_info);
4453}
4454
4455static long _btrfs_ioctl_set_received_subvol(struct file *file,
4456					    struct btrfs_ioctl_received_subvol_args *sa)
4457{
4458	struct inode *inode = file_inode(file);
4459	struct btrfs_root *root = BTRFS_I(inode)->root;
4460	struct btrfs_root_item *root_item = &root->root_item;
4461	struct btrfs_trans_handle *trans;
4462	struct timespec ct = CURRENT_TIME;
4463	int ret = 0;
4464	int received_uuid_changed;
4465
4466	if (!inode_owner_or_capable(inode))
4467		return -EPERM;
4468
4469	ret = mnt_want_write_file(file);
4470	if (ret < 0)
4471		return ret;
4472
4473	down_write(&root->fs_info->subvol_sem);
4474
4475	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4476		ret = -EINVAL;
4477		goto out;
4478	}
4479
4480	if (btrfs_root_readonly(root)) {
4481		ret = -EROFS;
4482		goto out;
4483	}
4484
4485	/*
4486	 * 1 - root item
4487	 * 2 - uuid items (received uuid + subvol uuid)
4488	 */
4489	trans = btrfs_start_transaction(root, 3);
4490	if (IS_ERR(trans)) {
4491		ret = PTR_ERR(trans);
4492		trans = NULL;
4493		goto out;
4494	}
4495
4496	sa->rtransid = trans->transid;
4497	sa->rtime.sec = ct.tv_sec;
4498	sa->rtime.nsec = ct.tv_nsec;
4499
4500	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4501				       BTRFS_UUID_SIZE);
4502	if (received_uuid_changed &&
4503	    !btrfs_is_empty_uuid(root_item->received_uuid))
4504		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4505				    root_item->received_uuid,
4506				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507				    root->root_key.objectid);
4508	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4509	btrfs_set_root_stransid(root_item, sa->stransid);
4510	btrfs_set_root_rtransid(root_item, sa->rtransid);
4511	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4512	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4513	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4514	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4515
4516	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4517				&root->root_key, &root->root_item);
4518	if (ret < 0) {
4519		btrfs_end_transaction(trans, root);
4520		goto out;
4521	}
4522	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4523		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4524					  sa->uuid,
4525					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4526					  root->root_key.objectid);
4527		if (ret < 0 && ret != -EEXIST) {
4528			btrfs_abort_transaction(trans, root, ret);
4529			goto out;
4530		}
4531	}
4532	ret = btrfs_commit_transaction(trans, root);
4533	if (ret < 0) {
4534		btrfs_abort_transaction(trans, root, ret);
4535		goto out;
4536	}
4537
4538out:
4539	up_write(&root->fs_info->subvol_sem);
4540	mnt_drop_write_file(file);
4541	return ret;
4542}
4543
4544#ifdef CONFIG_64BIT
4545static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4546						void __user *arg)
4547{
4548	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4549	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4550	int ret = 0;
4551
4552	args32 = memdup_user(arg, sizeof(*args32));
4553	if (IS_ERR(args32)) {
4554		ret = PTR_ERR(args32);
4555		args32 = NULL;
4556		goto out;
4557	}
4558
4559	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4560	if (!args64) {
4561		ret = -ENOMEM;
4562		goto out;
4563	}
4564
4565	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4566	args64->stransid = args32->stransid;
4567	args64->rtransid = args32->rtransid;
4568	args64->stime.sec = args32->stime.sec;
4569	args64->stime.nsec = args32->stime.nsec;
4570	args64->rtime.sec = args32->rtime.sec;
4571	args64->rtime.nsec = args32->rtime.nsec;
4572	args64->flags = args32->flags;
4573
4574	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4575	if (ret)
4576		goto out;
4577
4578	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4579	args32->stransid = args64->stransid;
4580	args32->rtransid = args64->rtransid;
4581	args32->stime.sec = args64->stime.sec;
4582	args32->stime.nsec = args64->stime.nsec;
4583	args32->rtime.sec = args64->rtime.sec;
4584	args32->rtime.nsec = args64->rtime.nsec;
4585	args32->flags = args64->flags;
4586
4587	ret = copy_to_user(arg, args32, sizeof(*args32));
4588	if (ret)
4589		ret = -EFAULT;
4590
4591out:
4592	kfree(args32);
4593	kfree(args64);
4594	return ret;
4595}
4596#endif
4597
4598static long btrfs_ioctl_set_received_subvol(struct file *file,
4599					    void __user *arg)
4600{
4601	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4602	int ret = 0;
4603
4604	sa = memdup_user(arg, sizeof(*sa));
4605	if (IS_ERR(sa)) {
4606		ret = PTR_ERR(sa);
4607		sa = NULL;
4608		goto out;
4609	}
4610
4611	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4612
4613	if (ret)
4614		goto out;
4615
4616	ret = copy_to_user(arg, sa, sizeof(*sa));
4617	if (ret)
4618		ret = -EFAULT;
4619
4620out:
4621	kfree(sa);
4622	return ret;
4623}
4624
4625static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4626{
4627	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4628	size_t len;
4629	int ret;
4630	char label[BTRFS_LABEL_SIZE];
4631
4632	spin_lock(&root->fs_info->super_lock);
4633	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4634	spin_unlock(&root->fs_info->super_lock);
4635
4636	len = strnlen(label, BTRFS_LABEL_SIZE);
4637
4638	if (len == BTRFS_LABEL_SIZE) {
4639		btrfs_warn(root->fs_info,
4640			"label is too long, return the first %zu bytes", --len);
4641	}
4642
4643	ret = copy_to_user(arg, label, len);
4644
4645	return ret ? -EFAULT : 0;
4646}
4647
4648static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649{
4650	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4651	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4652	struct btrfs_trans_handle *trans;
4653	char label[BTRFS_LABEL_SIZE];
4654	int ret;
4655
4656	if (!capable(CAP_SYS_ADMIN))
4657		return -EPERM;
4658
4659	if (copy_from_user(label, arg, sizeof(label)))
4660		return -EFAULT;
4661
4662	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4663		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4664		       BTRFS_LABEL_SIZE - 1);
4665		return -EINVAL;
4666	}
4667
4668	ret = mnt_want_write_file(file);
4669	if (ret)
4670		return ret;
4671
4672	trans = btrfs_start_transaction(root, 0);
4673	if (IS_ERR(trans)) {
4674		ret = PTR_ERR(trans);
4675		goto out_unlock;
4676	}
4677
4678	spin_lock(&root->fs_info->super_lock);
4679	strcpy(super_block->label, label);
4680	spin_unlock(&root->fs_info->super_lock);
4681	ret = btrfs_commit_transaction(trans, root);
4682
4683out_unlock:
4684	mnt_drop_write_file(file);
4685	return ret;
4686}
4687
4688#define INIT_FEATURE_FLAGS(suffix) \
4689	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4690	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4691	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4692
4693static int btrfs_ioctl_get_supported_features(struct file *file,
4694					      void __user *arg)
4695{
4696	static struct btrfs_ioctl_feature_flags features[3] = {
4697		INIT_FEATURE_FLAGS(SUPP),
4698		INIT_FEATURE_FLAGS(SAFE_SET),
4699		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4700	};
4701
4702	if (copy_to_user(arg, &features, sizeof(features)))
4703		return -EFAULT;
4704
4705	return 0;
4706}
4707
4708static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4709{
4710	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4711	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4712	struct btrfs_ioctl_feature_flags features;
4713
4714	features.compat_flags = btrfs_super_compat_flags(super_block);
4715	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4716	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4717
4718	if (copy_to_user(arg, &features, sizeof(features)))
4719		return -EFAULT;
4720
4721	return 0;
4722}
4723
4724static int check_feature_bits(struct btrfs_root *root,
4725			      enum btrfs_feature_set set,
4726			      u64 change_mask, u64 flags, u64 supported_flags,
4727			      u64 safe_set, u64 safe_clear)
4728{
4729	const char *type = btrfs_feature_set_names[set];
4730	char *names;
4731	u64 disallowed, unsupported;
4732	u64 set_mask = flags & change_mask;
4733	u64 clear_mask = ~flags & change_mask;
4734
4735	unsupported = set_mask & ~supported_flags;
4736	if (unsupported) {
4737		names = btrfs_printable_features(set, unsupported);
4738		if (names) {
4739			btrfs_warn(root->fs_info,
4740			   "this kernel does not support the %s feature bit%s",
4741			   names, strchr(names, ',') ? "s" : "");
4742			kfree(names);
4743		} else
4744			btrfs_warn(root->fs_info,
4745			   "this kernel does not support %s bits 0x%llx",
4746			   type, unsupported);
4747		return -EOPNOTSUPP;
4748	}
4749
4750	disallowed = set_mask & ~safe_set;
4751	if (disallowed) {
4752		names = btrfs_printable_features(set, disallowed);
4753		if (names) {
4754			btrfs_warn(root->fs_info,
4755			   "can't set the %s feature bit%s while mounted",
4756			   names, strchr(names, ',') ? "s" : "");
4757			kfree(names);
4758		} else
4759			btrfs_warn(root->fs_info,
4760			   "can't set %s bits 0x%llx while mounted",
4761			   type, disallowed);
4762		return -EPERM;
4763	}
4764
4765	disallowed = clear_mask & ~safe_clear;
4766	if (disallowed) {
4767		names = btrfs_printable_features(set, disallowed);
4768		if (names) {
4769			btrfs_warn(root->fs_info,
4770			   "can't clear the %s feature bit%s while mounted",
4771			   names, strchr(names, ',') ? "s" : "");
4772			kfree(names);
4773		} else
4774			btrfs_warn(root->fs_info,
4775			   "can't clear %s bits 0x%llx while mounted",
4776			   type, disallowed);
4777		return -EPERM;
4778	}
4779
4780	return 0;
4781}
4782
4783#define check_feature(root, change_mask, flags, mask_base)	\
4784check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
4785		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4786		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4787		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4788
4789static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4790{
4791	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4792	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4793	struct btrfs_ioctl_feature_flags flags[2];
4794	struct btrfs_trans_handle *trans;
4795	u64 newflags;
4796	int ret;
4797
4798	if (!capable(CAP_SYS_ADMIN))
4799		return -EPERM;
4800
4801	if (copy_from_user(flags, arg, sizeof(flags)))
4802		return -EFAULT;
4803
4804	/* Nothing to do */
4805	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4806	    !flags[0].incompat_flags)
4807		return 0;
4808
4809	ret = check_feature(root, flags[0].compat_flags,
4810			    flags[1].compat_flags, COMPAT);
4811	if (ret)
4812		return ret;
4813
4814	ret = check_feature(root, flags[0].compat_ro_flags,
4815			    flags[1].compat_ro_flags, COMPAT_RO);
4816	if (ret)
4817		return ret;
4818
4819	ret = check_feature(root, flags[0].incompat_flags,
4820			    flags[1].incompat_flags, INCOMPAT);
4821	if (ret)
4822		return ret;
4823
4824	trans = btrfs_start_transaction(root, 0);
4825	if (IS_ERR(trans))
4826		return PTR_ERR(trans);
4827
4828	spin_lock(&root->fs_info->super_lock);
4829	newflags = btrfs_super_compat_flags(super_block);
4830	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4831	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4832	btrfs_set_super_compat_flags(super_block, newflags);
4833
4834	newflags = btrfs_super_compat_ro_flags(super_block);
4835	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4836	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4837	btrfs_set_super_compat_ro_flags(super_block, newflags);
4838
4839	newflags = btrfs_super_incompat_flags(super_block);
4840	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4841	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4842	btrfs_set_super_incompat_flags(super_block, newflags);
4843	spin_unlock(&root->fs_info->super_lock);
4844
4845	return btrfs_commit_transaction(trans, root);
4846}
4847
4848long btrfs_ioctl(struct file *file, unsigned int
4849		cmd, unsigned long arg)
4850{
4851	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4852	void __user *argp = (void __user *)arg;
4853
4854	switch (cmd) {
4855	case FS_IOC_GETFLAGS:
4856		return btrfs_ioctl_getflags(file, argp);
4857	case FS_IOC_SETFLAGS:
4858		return btrfs_ioctl_setflags(file, argp);
4859	case FS_IOC_GETVERSION:
4860		return btrfs_ioctl_getversion(file, argp);
4861	case FITRIM:
4862		return btrfs_ioctl_fitrim(file, argp);
4863	case BTRFS_IOC_SNAP_CREATE:
4864		return btrfs_ioctl_snap_create(file, argp, 0);
4865	case BTRFS_IOC_SNAP_CREATE_V2:
4866		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4867	case BTRFS_IOC_SUBVOL_CREATE:
4868		return btrfs_ioctl_snap_create(file, argp, 1);
4869	case BTRFS_IOC_SUBVOL_CREATE_V2:
4870		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4871	case BTRFS_IOC_SNAP_DESTROY:
4872		return btrfs_ioctl_snap_destroy(file, argp);
4873	case BTRFS_IOC_SUBVOL_GETFLAGS:
4874		return btrfs_ioctl_subvol_getflags(file, argp);
4875	case BTRFS_IOC_SUBVOL_SETFLAGS:
4876		return btrfs_ioctl_subvol_setflags(file, argp);
4877	case BTRFS_IOC_DEFAULT_SUBVOL:
4878		return btrfs_ioctl_default_subvol(file, argp);
4879	case BTRFS_IOC_DEFRAG:
4880		return btrfs_ioctl_defrag(file, NULL);
4881	case BTRFS_IOC_DEFRAG_RANGE:
4882		return btrfs_ioctl_defrag(file, argp);
4883	case BTRFS_IOC_RESIZE:
4884		return btrfs_ioctl_resize(file, argp);
4885	case BTRFS_IOC_ADD_DEV:
4886		return btrfs_ioctl_add_dev(root, argp);
4887	case BTRFS_IOC_RM_DEV:
4888		return btrfs_ioctl_rm_dev(file, argp);
4889	case BTRFS_IOC_FS_INFO:
4890		return btrfs_ioctl_fs_info(root, argp);
4891	case BTRFS_IOC_DEV_INFO:
4892		return btrfs_ioctl_dev_info(root, argp);
4893	case BTRFS_IOC_BALANCE:
4894		return btrfs_ioctl_balance(file, NULL);
4895	case BTRFS_IOC_CLONE:
4896		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4897	case BTRFS_IOC_CLONE_RANGE:
4898		return btrfs_ioctl_clone_range(file, argp);
4899	case BTRFS_IOC_TRANS_START:
4900		return btrfs_ioctl_trans_start(file);
4901	case BTRFS_IOC_TRANS_END:
4902		return btrfs_ioctl_trans_end(file);
4903	case BTRFS_IOC_TREE_SEARCH:
4904		return btrfs_ioctl_tree_search(file, argp);
4905	case BTRFS_IOC_INO_LOOKUP:
4906		return btrfs_ioctl_ino_lookup(file, argp);
4907	case BTRFS_IOC_INO_PATHS:
4908		return btrfs_ioctl_ino_to_path(root, argp);
4909	case BTRFS_IOC_LOGICAL_INO:
4910		return btrfs_ioctl_logical_to_ino(root, argp);
4911	case BTRFS_IOC_SPACE_INFO:
4912		return btrfs_ioctl_space_info(root, argp);
4913	case BTRFS_IOC_SYNC: {
4914		int ret;
4915
4916		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4917		if (ret)
4918			return ret;
4919		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4920		return ret;
4921	}
4922	case BTRFS_IOC_START_SYNC:
4923		return btrfs_ioctl_start_sync(root, argp);
4924	case BTRFS_IOC_WAIT_SYNC:
4925		return btrfs_ioctl_wait_sync(root, argp);
4926	case BTRFS_IOC_SCRUB:
4927		return btrfs_ioctl_scrub(file, argp);
4928	case BTRFS_IOC_SCRUB_CANCEL:
4929		return btrfs_ioctl_scrub_cancel(root, argp);
4930	case BTRFS_IOC_SCRUB_PROGRESS:
4931		return btrfs_ioctl_scrub_progress(root, argp);
4932	case BTRFS_IOC_BALANCE_V2:
4933		return btrfs_ioctl_balance(file, argp);
4934	case BTRFS_IOC_BALANCE_CTL:
4935		return btrfs_ioctl_balance_ctl(root, arg);
4936	case BTRFS_IOC_BALANCE_PROGRESS:
4937		return btrfs_ioctl_balance_progress(root, argp);
4938	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4939		return btrfs_ioctl_set_received_subvol(file, argp);
4940#ifdef CONFIG_64BIT
4941	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4942		return btrfs_ioctl_set_received_subvol_32(file, argp);
4943#endif
4944	case BTRFS_IOC_SEND:
4945		return btrfs_ioctl_send(file, argp);
4946	case BTRFS_IOC_GET_DEV_STATS:
4947		return btrfs_ioctl_get_dev_stats(root, argp);
4948	case BTRFS_IOC_QUOTA_CTL:
4949		return btrfs_ioctl_quota_ctl(file, argp);
4950	case BTRFS_IOC_QGROUP_ASSIGN:
4951		return btrfs_ioctl_qgroup_assign(file, argp);
4952	case BTRFS_IOC_QGROUP_CREATE:
4953		return btrfs_ioctl_qgroup_create(file, argp);
4954	case BTRFS_IOC_QGROUP_LIMIT:
4955		return btrfs_ioctl_qgroup_limit(file, argp);
4956	case BTRFS_IOC_QUOTA_RESCAN:
4957		return btrfs_ioctl_quota_rescan(file, argp);
4958	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4959		return btrfs_ioctl_quota_rescan_status(file, argp);
4960	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4961		return btrfs_ioctl_quota_rescan_wait(file, argp);
4962	case BTRFS_IOC_DEV_REPLACE:
4963		return btrfs_ioctl_dev_replace(root, argp);
4964	case BTRFS_IOC_GET_FSLABEL:
4965		return btrfs_ioctl_get_fslabel(file, argp);
4966	case BTRFS_IOC_SET_FSLABEL:
4967		return btrfs_ioctl_set_fslabel(file, argp);
4968	case BTRFS_IOC_FILE_EXTENT_SAME:
4969		return btrfs_ioctl_file_extent_same(file, argp);
4970	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4971		return btrfs_ioctl_get_supported_features(file, argp);
4972	case BTRFS_IOC_GET_FEATURES:
4973		return btrfs_ioctl_get_features(file, argp);
4974	case BTRFS_IOC_SET_FEATURES:
4975		return btrfs_ioctl_set_features(file, argp);
4976	}
4977
4978	return -ENOTTY;
4979}