Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_device.h>
 34#include <linux/of_gpio.h>
 35#include <linux/of_net.h>
 36
 37#include "fec.h"
 38
 39/* FEC 1588 register bits */
 40#define FEC_T_CTRL_SLAVE                0x00002000
 41#define FEC_T_CTRL_CAPTURE              0x00000800
 42#define FEC_T_CTRL_RESTART              0x00000200
 43#define FEC_T_CTRL_PERIOD_RST           0x00000030
 44#define FEC_T_CTRL_PERIOD_EN		0x00000010
 45#define FEC_T_CTRL_ENABLE               0x00000001
 46
 47#define FEC_T_INC_MASK                  0x0000007f
 48#define FEC_T_INC_OFFSET                0
 49#define FEC_T_INC_CORR_MASK             0x00007f00
 50#define FEC_T_INC_CORR_OFFSET           8
 51
 52#define FEC_T_CTRL_PINPER		0x00000080
 53#define FEC_T_TF0_MASK			0x00000001
 54#define FEC_T_TF0_OFFSET		0
 55#define FEC_T_TF1_MASK			0x00000002
 56#define FEC_T_TF1_OFFSET		1
 57#define FEC_T_TF2_MASK			0x00000004
 58#define FEC_T_TF2_OFFSET		2
 59#define FEC_T_TF3_MASK			0x00000008
 60#define FEC_T_TF3_OFFSET		3
 61#define FEC_T_TDRE_MASK			0x00000001
 62#define FEC_T_TDRE_OFFSET		0
 63#define FEC_T_TMODE_MASK		0x0000003C
 64#define FEC_T_TMODE_OFFSET		2
 65#define FEC_T_TIE_MASK			0x00000040
 66#define FEC_T_TIE_OFFSET		6
 67#define FEC_T_TF_MASK			0x00000080
 68#define FEC_T_TF_OFFSET			7
 69
 70#define FEC_ATIME_CTRL		0x400
 71#define FEC_ATIME		0x404
 72#define FEC_ATIME_EVT_OFFSET	0x408
 73#define FEC_ATIME_EVT_PERIOD	0x40c
 74#define FEC_ATIME_CORR		0x410
 75#define FEC_ATIME_INC		0x414
 76#define FEC_TS_TIMESTAMP	0x418
 77
 78#define FEC_TGSR		0x604
 79#define FEC_TCSR(n)		(0x608 + n * 0x08)
 80#define FEC_TCCR(n)		(0x60C + n * 0x08)
 81#define MAX_TIMER_CHANNEL	3
 82#define FEC_TMODE_TOGGLE	0x05
 83#define FEC_HIGH_PULSE		0x0F
 84
 85#define FEC_CC_MULT	(1 << 31)
 86#define FEC_COUNTER_PERIOD	(1 << 31)
 87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 88#define FEC_CHANNLE_0		0
 89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 90
 91/**
 92 * fec_ptp_enable_pps
 93 * @fep: the fec_enet_private structure handle
 94 * @enable: enable the channel pps output
 95 *
 96 * This function enble the PPS ouput on the timer channel.
 97 */
 98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 99{
100	unsigned long flags;
101	u32 val, tempval;
102	struct timespec64 ts;
103	u64 ns;
104	val = 0;
105
106	if (fep->pps_enable == enable)
107		return 0;
108
109	fep->pps_channel = DEFAULT_PPS_CHANNEL;
110	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
111
112	spin_lock_irqsave(&fep->tmreg_lock, flags);
113
114	if (enable) {
115		/* clear capture or output compare interrupt status if have.
116		 */
117		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118
119		/* It is recommended to double check the TMODE field in the
120		 * TCSR register to be cleared before the first compare counter
121		 * is written into TCCR register. Just add a double check.
122		 */
123		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124		do {
125			val &= ~(FEC_T_TMODE_MASK);
126			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128		} while (val & FEC_T_TMODE_MASK);
129
130		/* Dummy read counter to update the counter */
131		timecounter_read(&fep->tc);
132		/* We want to find the first compare event in the next
133		 * second point. So we need to know what the ptp time
134		 * is now and how many nanoseconds is ahead to get next second.
135		 * The remaining nanosecond ahead before the next second would be
136		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137		 * to current timer would be next second.
138		 */
139		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
140		tempval |= FEC_T_CTRL_CAPTURE;
141		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
142
143		tempval = readl(fep->hwp + FEC_ATIME);
144		/* Convert the ptp local counter to 1588 timestamp */
145		ns = timecounter_cyc2time(&fep->tc, tempval);
146		ts = ns_to_timespec64(ns);
147
148		/* The tempval is  less than 3 seconds, and  so val is less than
149		 * 4 seconds. No overflow for 32bit calculation.
150		 */
151		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
152
153		/* Need to consider the situation that the current time is
154		 * very close to the second point, which means NSEC_PER_SEC
155		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
156		 * is still running when we calculate the first compare event, it is
157		 * possible that the remaining nanoseonds run out before the compare
158		 * counter is calculated and written into TCCR register. To avoid
159		 * this possibility, we will set the compare event to be the next
160		 * of next second. The current setting is 31-bit timer and wrap
161		 * around over 2 seconds. So it is okay to set the next of next
162		 * seond for the timer.
163		 */
164		val += NSEC_PER_SEC;
165
166		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
167		 * ptp counter, which maybe cause 32-bit wrap. Since the
168		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
169		 * We can ensure the wrap will not cause issue. If the offset
170		 * is bigger than fep->cc.mask would be a error.
171		 */
172		val &= fep->cc.mask;
173		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
174
175		/* Calculate the second the compare event timestamp */
176		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
177
178		/* * Enable compare event when overflow */
179		val = readl(fep->hwp + FEC_ATIME_CTRL);
180		val |= FEC_T_CTRL_PINPER;
181		writel(val, fep->hwp + FEC_ATIME_CTRL);
182
183		/* Compare channel setting. */
184		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
185		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
186		val &= ~(1 << FEC_T_TDRE_OFFSET);
187		val &= ~(FEC_T_TMODE_MASK);
188		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
189		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
190
191		/* Write the second compare event timestamp and calculate
192		 * the third timestamp. Refer the TCCR register detail in the spec.
193		 */
194		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
195		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
196	} else {
197		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
198	}
199
200	fep->pps_enable = enable;
201	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
202
203	return 0;
204}
205
206/**
207 * fec_ptp_read - read raw cycle counter (to be used by time counter)
208 * @cc: the cyclecounter structure
209 *
210 * this function reads the cyclecounter registers and is called by the
211 * cyclecounter structure used to construct a ns counter from the
212 * arbitrary fixed point registers
213 */
214static u64 fec_ptp_read(const struct cyclecounter *cc)
215{
216	struct fec_enet_private *fep =
217		container_of(cc, struct fec_enet_private, cc);
218	u32 tempval;
219
220	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
221	tempval |= FEC_T_CTRL_CAPTURE;
222	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
223
224	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
225		udelay(1);
226
227	return readl(fep->hwp + FEC_ATIME);
228}
229
230/**
231 * fec_ptp_start_cyclecounter - create the cycle counter from hw
232 * @ndev: network device
233 *
234 * this function initializes the timecounter and cyclecounter
235 * structures for use in generated a ns counter from the arbitrary
236 * fixed point cycles registers in the hardware.
237 */
238void fec_ptp_start_cyclecounter(struct net_device *ndev)
239{
240	struct fec_enet_private *fep = netdev_priv(ndev);
241	unsigned long flags;
242	int inc;
243
244	inc = 1000000000 / fep->cycle_speed;
245
246	/* grab the ptp lock */
247	spin_lock_irqsave(&fep->tmreg_lock, flags);
248
249	/* 1ns counter */
250	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
251
252	/* use 31-bit timer counter */
253	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
254
255	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
256		fep->hwp + FEC_ATIME_CTRL);
257
258	memset(&fep->cc, 0, sizeof(fep->cc));
259	fep->cc.read = fec_ptp_read;
260	fep->cc.mask = CLOCKSOURCE_MASK(31);
261	fep->cc.shift = 31;
262	fep->cc.mult = FEC_CC_MULT;
263
264	/* reset the ns time counter */
265	timecounter_init(&fep->tc, &fep->cc, 0);
266
267	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
268}
269
270/**
271 * fec_ptp_adjfreq - adjust ptp cycle frequency
272 * @ptp: the ptp clock structure
273 * @ppb: parts per billion adjustment from base
274 *
275 * Adjust the frequency of the ptp cycle counter by the
276 * indicated ppb from the base frequency.
277 *
278 * Because ENET hardware frequency adjust is complex,
279 * using software method to do that.
280 */
281static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
282{
283	unsigned long flags;
284	int neg_adj = 0;
285	u32 i, tmp;
286	u32 corr_inc, corr_period;
287	u32 corr_ns;
288	u64 lhs, rhs;
289
290	struct fec_enet_private *fep =
291	    container_of(ptp, struct fec_enet_private, ptp_caps);
292
293	if (ppb == 0)
294		return 0;
295
296	if (ppb < 0) {
297		ppb = -ppb;
298		neg_adj = 1;
299	}
300
301	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
302	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
303	 * meet adjustment requirement.
304	 */
305	lhs = NSEC_PER_SEC;
306	rhs = (u64)ppb * (u64)fep->ptp_inc;
307	for (i = 1; i <= fep->ptp_inc; i++) {
308		if (lhs >= rhs) {
309			corr_inc = i;
310			corr_period = div_u64(lhs, rhs);
311			break;
312		}
313		lhs += NSEC_PER_SEC;
314	}
315	/* Not found? Set it to high value - double speed
316	 * correct in every clock step.
317	 */
318	if (i > fep->ptp_inc) {
319		corr_inc = fep->ptp_inc;
320		corr_period = 1;
321	}
322
323	if (neg_adj)
324		corr_ns = fep->ptp_inc - corr_inc;
325	else
326		corr_ns = fep->ptp_inc + corr_inc;
327
328	spin_lock_irqsave(&fep->tmreg_lock, flags);
329
330	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
331	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
332	writel(tmp, fep->hwp + FEC_ATIME_INC);
333	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
334	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
335	/* dummy read to update the timer. */
336	timecounter_read(&fep->tc);
337
338	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
339
340	return 0;
341}
342
343/**
344 * fec_ptp_adjtime
345 * @ptp: the ptp clock structure
346 * @delta: offset to adjust the cycle counter by
347 *
348 * adjust the timer by resetting the timecounter structure.
349 */
350static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
351{
352	struct fec_enet_private *fep =
353	    container_of(ptp, struct fec_enet_private, ptp_caps);
354	unsigned long flags;
355
356	spin_lock_irqsave(&fep->tmreg_lock, flags);
357	timecounter_adjtime(&fep->tc, delta);
358	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
359
360	return 0;
361}
362
363/**
364 * fec_ptp_gettime
365 * @ptp: the ptp clock structure
366 * @ts: timespec structure to hold the current time value
367 *
368 * read the timecounter and return the correct value on ns,
369 * after converting it into a struct timespec.
370 */
371static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
372{
373	struct fec_enet_private *adapter =
374	    container_of(ptp, struct fec_enet_private, ptp_caps);
375	u64 ns;
376	unsigned long flags;
377
378	mutex_lock(&adapter->ptp_clk_mutex);
379	/* Check the ptp clock */
380	if (!adapter->ptp_clk_on) {
381		mutex_unlock(&adapter->ptp_clk_mutex);
382		return -EINVAL;
383	}
384	spin_lock_irqsave(&adapter->tmreg_lock, flags);
385	ns = timecounter_read(&adapter->tc);
386	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
387	mutex_unlock(&adapter->ptp_clk_mutex);
388
389	*ts = ns_to_timespec64(ns);
390
391	return 0;
392}
393
394/**
395 * fec_ptp_settime
396 * @ptp: the ptp clock structure
397 * @ts: the timespec containing the new time for the cycle counter
398 *
399 * reset the timecounter to use a new base value instead of the kernel
400 * wall timer value.
401 */
402static int fec_ptp_settime(struct ptp_clock_info *ptp,
403			   const struct timespec64 *ts)
404{
405	struct fec_enet_private *fep =
406	    container_of(ptp, struct fec_enet_private, ptp_caps);
407
408	u64 ns;
409	unsigned long flags;
410	u32 counter;
411
412	mutex_lock(&fep->ptp_clk_mutex);
413	/* Check the ptp clock */
414	if (!fep->ptp_clk_on) {
415		mutex_unlock(&fep->ptp_clk_mutex);
416		return -EINVAL;
417	}
418
419	ns = timespec64_to_ns(ts);
420	/* Get the timer value based on timestamp.
421	 * Update the counter with the masked value.
422	 */
423	counter = ns & fep->cc.mask;
424
425	spin_lock_irqsave(&fep->tmreg_lock, flags);
426	writel(counter, fep->hwp + FEC_ATIME);
427	timecounter_init(&fep->tc, &fep->cc, ns);
428	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
429	mutex_unlock(&fep->ptp_clk_mutex);
430	return 0;
431}
432
433/**
434 * fec_ptp_enable
435 * @ptp: the ptp clock structure
436 * @rq: the requested feature to change
437 * @on: whether to enable or disable the feature
438 *
439 */
440static int fec_ptp_enable(struct ptp_clock_info *ptp,
441			  struct ptp_clock_request *rq, int on)
442{
443	struct fec_enet_private *fep =
444	    container_of(ptp, struct fec_enet_private, ptp_caps);
445	int ret = 0;
446
447	if (rq->type == PTP_CLK_REQ_PPS) {
448		ret = fec_ptp_enable_pps(fep, on);
449
450		return ret;
451	}
452	return -EOPNOTSUPP;
453}
454
455/**
456 * fec_ptp_disable_hwts - disable hardware time stamping
457 * @ndev: pointer to net_device
458 */
459void fec_ptp_disable_hwts(struct net_device *ndev)
460{
461	struct fec_enet_private *fep = netdev_priv(ndev);
462
463	fep->hwts_tx_en = 0;
464	fep->hwts_rx_en = 0;
465}
466
467int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
468{
469	struct fec_enet_private *fep = netdev_priv(ndev);
470
471	struct hwtstamp_config config;
472
473	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
474		return -EFAULT;
475
476	/* reserved for future extensions */
477	if (config.flags)
478		return -EINVAL;
479
480	switch (config.tx_type) {
481	case HWTSTAMP_TX_OFF:
482		fep->hwts_tx_en = 0;
483		break;
484	case HWTSTAMP_TX_ON:
485		fep->hwts_tx_en = 1;
486		break;
487	default:
488		return -ERANGE;
489	}
490
491	switch (config.rx_filter) {
492	case HWTSTAMP_FILTER_NONE:
493		fep->hwts_rx_en = 0;
494		break;
495
496	default:
497		fep->hwts_rx_en = 1;
498		config.rx_filter = HWTSTAMP_FILTER_ALL;
499		break;
500	}
501
502	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
503	    -EFAULT : 0;
504}
505
506int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
507{
508	struct fec_enet_private *fep = netdev_priv(ndev);
509	struct hwtstamp_config config;
510
511	config.flags = 0;
512	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
513	config.rx_filter = (fep->hwts_rx_en ?
514			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
515
516	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
517		-EFAULT : 0;
518}
519
520/*
521 * fec_time_keep - call timecounter_read every second to avoid timer overrun
522 *                 because ENET just support 32bit counter, will timeout in 4s
523 */
524static void fec_time_keep(struct work_struct *work)
525{
526	struct delayed_work *dwork = to_delayed_work(work);
527	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
528	unsigned long flags;
529
530	mutex_lock(&fep->ptp_clk_mutex);
531	if (fep->ptp_clk_on) {
532		spin_lock_irqsave(&fep->tmreg_lock, flags);
533		timecounter_read(&fep->tc);
534		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
535	}
536	mutex_unlock(&fep->ptp_clk_mutex);
537
538	schedule_delayed_work(&fep->time_keep, HZ);
539}
540
541/* This function checks the pps event and reloads the timer compare counter. */
542static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
543{
544	struct net_device *ndev = dev_id;
545	struct fec_enet_private *fep = netdev_priv(ndev);
546	u32 val;
547	u8 channel = fep->pps_channel;
548	struct ptp_clock_event event;
549
550	val = readl(fep->hwp + FEC_TCSR(channel));
551	if (val & FEC_T_TF_MASK) {
552		/* Write the next next compare(not the next according the spec)
553		 * value to the register
554		 */
555		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
556		do {
557			writel(val, fep->hwp + FEC_TCSR(channel));
558		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
559
560		/* Update the counter; */
561		fep->next_counter = (fep->next_counter + fep->reload_period) &
562				fep->cc.mask;
563
564		event.type = PTP_CLOCK_PPS;
565		ptp_clock_event(fep->ptp_clock, &event);
566		return IRQ_HANDLED;
567	}
568
569	return IRQ_NONE;
570}
571
572/**
573 * fec_ptp_init
574 * @pdev: The FEC network adapter
575 * @irq_idx: the interrupt index
576 *
577 * This function performs the required steps for enabling ptp
578 * support. If ptp support has already been loaded it simply calls the
579 * cyclecounter init routine and exits.
580 */
581
582void fec_ptp_init(struct platform_device *pdev, int irq_idx)
583{
584	struct net_device *ndev = platform_get_drvdata(pdev);
585	struct fec_enet_private *fep = netdev_priv(ndev);
586	int irq;
587	int ret;
588
589	fep->ptp_caps.owner = THIS_MODULE;
590	strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
591
592	fep->ptp_caps.max_adj = 250000000;
593	fep->ptp_caps.n_alarm = 0;
594	fep->ptp_caps.n_ext_ts = 0;
595	fep->ptp_caps.n_per_out = 0;
596	fep->ptp_caps.n_pins = 0;
597	fep->ptp_caps.pps = 1;
598	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
599	fep->ptp_caps.adjtime = fec_ptp_adjtime;
600	fep->ptp_caps.gettime64 = fec_ptp_gettime;
601	fep->ptp_caps.settime64 = fec_ptp_settime;
602	fep->ptp_caps.enable = fec_ptp_enable;
603
604	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
605	if (!fep->cycle_speed) {
606		fep->cycle_speed = NSEC_PER_SEC;
607		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
608	}
609	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
610
611	spin_lock_init(&fep->tmreg_lock);
612
613	fec_ptp_start_cyclecounter(ndev);
614
615	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
616
617	irq = platform_get_irq_byname_optional(pdev, "pps");
618	if (irq < 0)
619		irq = platform_get_irq_optional(pdev, irq_idx);
620	/* Failure to get an irq is not fatal,
621	 * only the PTP_CLOCK_PPS clock events should stop
622	 */
623	if (irq >= 0) {
624		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
625				       0, pdev->name, ndev);
626		if (ret < 0)
627			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
628				 ret);
629	}
630
631	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
632	if (IS_ERR(fep->ptp_clock)) {
633		fep->ptp_clock = NULL;
634		dev_err(&pdev->dev, "ptp_clock_register failed\n");
635	}
636
637	schedule_delayed_work(&fep->time_keep, HZ);
638}
639
640void fec_ptp_stop(struct platform_device *pdev)
641{
642	struct net_device *ndev = platform_get_drvdata(pdev);
643	struct fec_enet_private *fep = netdev_priv(ndev);
644
645	cancel_delayed_work_sync(&fep->time_keep);
646	if (fep->ptp_clock)
647		ptp_clock_unregister(fep->ptp_clock);
648}