Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/selftests.h>
  42#include <net/tso.h>
  43#include <linux/tcp.h>
  44#include <linux/udp.h>
  45#include <linux/icmp.h>
  46#include <linux/spinlock.h>
  47#include <linux/workqueue.h>
  48#include <linux/bitops.h>
  49#include <linux/io.h>
  50#include <linux/irq.h>
  51#include <linux/clk.h>
  52#include <linux/crc32.h>
  53#include <linux/platform_device.h>
  54#include <linux/mdio.h>
  55#include <linux/phy.h>
  56#include <linux/fec.h>
  57#include <linux/of.h>
  58#include <linux/of_device.h>
  59#include <linux/of_gpio.h>
  60#include <linux/of_mdio.h>
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/prefetch.h>
  66#include <linux/mfd/syscon.h>
  67#include <linux/regmap.h>
  68#include <soc/imx/cpuidle.h>
  69
  70#include <asm/cacheflush.h>
  71
  72#include "fec.h"
  73
  74static void set_multicast_list(struct net_device *ndev);
  75static void fec_enet_itr_coal_init(struct net_device *ndev);
  76
  77#define DRIVER_NAME	"fec"
  78
  79static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  80
  81/* Pause frame feild and FIFO threshold */
  82#define FEC_ENET_FCE	(1 << 5)
  83#define FEC_ENET_RSEM_V	0x84
  84#define FEC_ENET_RSFL_V	16
  85#define FEC_ENET_RAEM_V	0x8
  86#define FEC_ENET_RAFL_V	0x8
  87#define FEC_ENET_OPD_V	0xFFF0
  88#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  89
  90struct fec_devinfo {
  91	u32 quirks;
  92};
  93
  94static const struct fec_devinfo fec_imx25_info = {
  95	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  96		  FEC_QUIRK_HAS_FRREG,
  97};
  98
  99static const struct fec_devinfo fec_imx27_info = {
 100	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
 101};
 102
 103static const struct fec_devinfo fec_imx28_info = {
 104	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 105		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 106		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 107		  FEC_QUIRK_NO_HARD_RESET,
 108};
 109
 110static const struct fec_devinfo fec_imx6q_info = {
 111	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 112		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 113		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 114		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
 115};
 116
 117static const struct fec_devinfo fec_mvf600_info = {
 118	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 119};
 120
 121static const struct fec_devinfo fec_imx6x_info = {
 122	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 123		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 124		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 125		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 126		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 127		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
 128};
 129
 130static const struct fec_devinfo fec_imx6ul_info = {
 131	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 132		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 133		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 134		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 135		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
 136};
 137
 138static struct platform_device_id fec_devtype[] = {
 139	{
 140		/* keep it for coldfire */
 141		.name = DRIVER_NAME,
 142		.driver_data = 0,
 143	}, {
 144		.name = "imx25-fec",
 145		.driver_data = (kernel_ulong_t)&fec_imx25_info,
 146	}, {
 147		.name = "imx27-fec",
 148		.driver_data = (kernel_ulong_t)&fec_imx27_info,
 149	}, {
 150		.name = "imx28-fec",
 151		.driver_data = (kernel_ulong_t)&fec_imx28_info,
 152	}, {
 153		.name = "imx6q-fec",
 154		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
 155	}, {
 156		.name = "mvf600-fec",
 157		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
 158	}, {
 159		.name = "imx6sx-fec",
 160		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
 161	}, {
 162		.name = "imx6ul-fec",
 163		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
 164	}, {
 165		/* sentinel */
 166	}
 167};
 168MODULE_DEVICE_TABLE(platform, fec_devtype);
 169
 170enum imx_fec_type {
 171	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 172	IMX27_FEC,	/* runs on i.mx27/35/51 */
 173	IMX28_FEC,
 174	IMX6Q_FEC,
 175	MVF600_FEC,
 176	IMX6SX_FEC,
 177	IMX6UL_FEC,
 178};
 179
 180static const struct of_device_id fec_dt_ids[] = {
 181	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 182	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 183	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 184	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 185	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 186	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 187	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 188	{ /* sentinel */ }
 189};
 190MODULE_DEVICE_TABLE(of, fec_dt_ids);
 191
 192static unsigned char macaddr[ETH_ALEN];
 193module_param_array(macaddr, byte, NULL, 0);
 194MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 195
 196#if defined(CONFIG_M5272)
 197/*
 198 * Some hardware gets it MAC address out of local flash memory.
 199 * if this is non-zero then assume it is the address to get MAC from.
 200 */
 201#if defined(CONFIG_NETtel)
 202#define	FEC_FLASHMAC	0xf0006006
 203#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 204#define	FEC_FLASHMAC	0xf0006000
 205#elif defined(CONFIG_CANCam)
 206#define	FEC_FLASHMAC	0xf0020000
 207#elif defined (CONFIG_M5272C3)
 208#define	FEC_FLASHMAC	(0xffe04000 + 4)
 209#elif defined(CONFIG_MOD5272)
 210#define FEC_FLASHMAC	0xffc0406b
 211#else
 212#define	FEC_FLASHMAC	0
 213#endif
 214#endif /* CONFIG_M5272 */
 215
 216/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 217 *
 218 * 2048 byte skbufs are allocated. However, alignment requirements
 219 * varies between FEC variants. Worst case is 64, so round down by 64.
 220 */
 221#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 222#define PKT_MINBUF_SIZE		64
 223
 224/* FEC receive acceleration */
 225#define FEC_RACC_IPDIS		(1 << 1)
 226#define FEC_RACC_PRODIS		(1 << 2)
 227#define FEC_RACC_SHIFT16	BIT(7)
 228#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 229
 230/* MIB Control Register */
 231#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 232
 233/*
 234 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 235 * size bits. Other FEC hardware does not, so we need to take that into
 236 * account when setting it.
 237 */
 238#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 239    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 240    defined(CONFIG_ARM64)
 241#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 242#else
 243#define	OPT_FRAME_SIZE	0
 244#endif
 245
 246/* FEC MII MMFR bits definition */
 247#define FEC_MMFR_ST		(1 << 30)
 248#define FEC_MMFR_ST_C45		(0)
 249#define FEC_MMFR_OP_READ	(2 << 28)
 250#define FEC_MMFR_OP_READ_C45	(3 << 28)
 251#define FEC_MMFR_OP_WRITE	(1 << 28)
 252#define FEC_MMFR_OP_ADDR_WRITE	(0)
 253#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 254#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 255#define FEC_MMFR_TA		(2 << 16)
 256#define FEC_MMFR_DATA(v)	(v & 0xffff)
 257/* FEC ECR bits definition */
 258#define FEC_ECR_MAGICEN		(1 << 2)
 259#define FEC_ECR_SLEEP		(1 << 3)
 260
 261#define FEC_MII_TIMEOUT		30000 /* us */
 262
 263/* Transmitter timeout */
 264#define TX_TIMEOUT (2 * HZ)
 265
 266#define FEC_PAUSE_FLAG_AUTONEG	0x1
 267#define FEC_PAUSE_FLAG_ENABLE	0x2
 268#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 269#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 270#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 271
 272#define COPYBREAK_DEFAULT	256
 273
 274/* Max number of allowed TCP segments for software TSO */
 275#define FEC_MAX_TSO_SEGS	100
 276#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 277
 278#define IS_TSO_HEADER(txq, addr) \
 279	((addr >= txq->tso_hdrs_dma) && \
 280	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 281
 282static int mii_cnt;
 283
 284static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 285					     struct bufdesc_prop *bd)
 286{
 287	return (bdp >= bd->last) ? bd->base
 288			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 289}
 290
 291static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 292					     struct bufdesc_prop *bd)
 293{
 294	return (bdp <= bd->base) ? bd->last
 295			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 296}
 297
 298static int fec_enet_get_bd_index(struct bufdesc *bdp,
 299				 struct bufdesc_prop *bd)
 300{
 301	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 302}
 303
 304static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 305{
 306	int entries;
 307
 308	entries = (((const char *)txq->dirty_tx -
 309			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 310
 311	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 312}
 313
 314static void swap_buffer(void *bufaddr, int len)
 315{
 316	int i;
 317	unsigned int *buf = bufaddr;
 318
 319	for (i = 0; i < len; i += 4, buf++)
 320		swab32s(buf);
 321}
 322
 323static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 324{
 325	int i;
 326	unsigned int *src = src_buf;
 327	unsigned int *dst = dst_buf;
 328
 329	for (i = 0; i < len; i += 4, src++, dst++)
 330		*dst = swab32p(src);
 331}
 332
 333static void fec_dump(struct net_device *ndev)
 334{
 335	struct fec_enet_private *fep = netdev_priv(ndev);
 336	struct bufdesc *bdp;
 337	struct fec_enet_priv_tx_q *txq;
 338	int index = 0;
 339
 340	netdev_info(ndev, "TX ring dump\n");
 341	pr_info("Nr     SC     addr       len  SKB\n");
 342
 343	txq = fep->tx_queue[0];
 344	bdp = txq->bd.base;
 345
 346	do {
 347		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 348			index,
 349			bdp == txq->bd.cur ? 'S' : ' ',
 350			bdp == txq->dirty_tx ? 'H' : ' ',
 351			fec16_to_cpu(bdp->cbd_sc),
 352			fec32_to_cpu(bdp->cbd_bufaddr),
 353			fec16_to_cpu(bdp->cbd_datlen),
 354			txq->tx_skbuff[index]);
 355		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 356		index++;
 357	} while (bdp != txq->bd.base);
 358}
 359
 360static inline bool is_ipv4_pkt(struct sk_buff *skb)
 361{
 362	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 363}
 364
 365static int
 366fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 367{
 368	/* Only run for packets requiring a checksum. */
 369	if (skb->ip_summed != CHECKSUM_PARTIAL)
 370		return 0;
 371
 372	if (unlikely(skb_cow_head(skb, 0)))
 373		return -1;
 374
 375	if (is_ipv4_pkt(skb))
 376		ip_hdr(skb)->check = 0;
 377	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 378
 379	return 0;
 380}
 381
 382static struct bufdesc *
 383fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 384			     struct sk_buff *skb,
 385			     struct net_device *ndev)
 386{
 387	struct fec_enet_private *fep = netdev_priv(ndev);
 388	struct bufdesc *bdp = txq->bd.cur;
 389	struct bufdesc_ex *ebdp;
 390	int nr_frags = skb_shinfo(skb)->nr_frags;
 391	int frag, frag_len;
 392	unsigned short status;
 393	unsigned int estatus = 0;
 394	skb_frag_t *this_frag;
 395	unsigned int index;
 396	void *bufaddr;
 397	dma_addr_t addr;
 398	int i;
 399
 400	for (frag = 0; frag < nr_frags; frag++) {
 401		this_frag = &skb_shinfo(skb)->frags[frag];
 402		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 403		ebdp = (struct bufdesc_ex *)bdp;
 404
 405		status = fec16_to_cpu(bdp->cbd_sc);
 406		status &= ~BD_ENET_TX_STATS;
 407		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 408		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 409
 410		/* Handle the last BD specially */
 411		if (frag == nr_frags - 1) {
 412			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 413			if (fep->bufdesc_ex) {
 414				estatus |= BD_ENET_TX_INT;
 415				if (unlikely(skb_shinfo(skb)->tx_flags &
 416					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 417					estatus |= BD_ENET_TX_TS;
 418			}
 419		}
 420
 421		if (fep->bufdesc_ex) {
 422			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 423				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 424			if (skb->ip_summed == CHECKSUM_PARTIAL)
 425				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 426
 427			ebdp->cbd_bdu = 0;
 428			ebdp->cbd_esc = cpu_to_fec32(estatus);
 429		}
 430
 431		bufaddr = skb_frag_address(this_frag);
 432
 433		index = fec_enet_get_bd_index(bdp, &txq->bd);
 434		if (((unsigned long) bufaddr) & fep->tx_align ||
 435			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 436			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 437			bufaddr = txq->tx_bounce[index];
 438
 439			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 440				swap_buffer(bufaddr, frag_len);
 441		}
 442
 443		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 444				      DMA_TO_DEVICE);
 445		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 446			if (net_ratelimit())
 447				netdev_err(ndev, "Tx DMA memory map failed\n");
 448			goto dma_mapping_error;
 449		}
 450
 451		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 452		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 453		/* Make sure the updates to rest of the descriptor are
 454		 * performed before transferring ownership.
 455		 */
 456		wmb();
 457		bdp->cbd_sc = cpu_to_fec16(status);
 458	}
 459
 460	return bdp;
 461dma_mapping_error:
 462	bdp = txq->bd.cur;
 463	for (i = 0; i < frag; i++) {
 464		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 465		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 466				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 467	}
 468	return ERR_PTR(-ENOMEM);
 469}
 470
 471static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 472				   struct sk_buff *skb, struct net_device *ndev)
 473{
 474	struct fec_enet_private *fep = netdev_priv(ndev);
 475	int nr_frags = skb_shinfo(skb)->nr_frags;
 476	struct bufdesc *bdp, *last_bdp;
 477	void *bufaddr;
 478	dma_addr_t addr;
 479	unsigned short status;
 480	unsigned short buflen;
 481	unsigned int estatus = 0;
 482	unsigned int index;
 483	int entries_free;
 484
 485	entries_free = fec_enet_get_free_txdesc_num(txq);
 486	if (entries_free < MAX_SKB_FRAGS + 1) {
 487		dev_kfree_skb_any(skb);
 488		if (net_ratelimit())
 489			netdev_err(ndev, "NOT enough BD for SG!\n");
 490		return NETDEV_TX_OK;
 491	}
 492
 493	/* Protocol checksum off-load for TCP and UDP. */
 494	if (fec_enet_clear_csum(skb, ndev)) {
 495		dev_kfree_skb_any(skb);
 496		return NETDEV_TX_OK;
 497	}
 498
 499	/* Fill in a Tx ring entry */
 500	bdp = txq->bd.cur;
 501	last_bdp = bdp;
 502	status = fec16_to_cpu(bdp->cbd_sc);
 503	status &= ~BD_ENET_TX_STATS;
 504
 505	/* Set buffer length and buffer pointer */
 506	bufaddr = skb->data;
 507	buflen = skb_headlen(skb);
 508
 509	index = fec_enet_get_bd_index(bdp, &txq->bd);
 510	if (((unsigned long) bufaddr) & fep->tx_align ||
 511		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 512		memcpy(txq->tx_bounce[index], skb->data, buflen);
 513		bufaddr = txq->tx_bounce[index];
 514
 515		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 516			swap_buffer(bufaddr, buflen);
 517	}
 518
 519	/* Push the data cache so the CPM does not get stale memory data. */
 520	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 521	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 522		dev_kfree_skb_any(skb);
 523		if (net_ratelimit())
 524			netdev_err(ndev, "Tx DMA memory map failed\n");
 525		return NETDEV_TX_OK;
 526	}
 527
 528	if (nr_frags) {
 529		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 530		if (IS_ERR(last_bdp)) {
 531			dma_unmap_single(&fep->pdev->dev, addr,
 532					 buflen, DMA_TO_DEVICE);
 533			dev_kfree_skb_any(skb);
 534			return NETDEV_TX_OK;
 535		}
 536	} else {
 537		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 538		if (fep->bufdesc_ex) {
 539			estatus = BD_ENET_TX_INT;
 540			if (unlikely(skb_shinfo(skb)->tx_flags &
 541				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 542				estatus |= BD_ENET_TX_TS;
 543		}
 544	}
 545	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 546	bdp->cbd_datlen = cpu_to_fec16(buflen);
 547
 548	if (fep->bufdesc_ex) {
 549
 550		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 551
 552		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 553			fep->hwts_tx_en))
 554			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 555
 556		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 557			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 558
 559		if (skb->ip_summed == CHECKSUM_PARTIAL)
 560			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 561
 562		ebdp->cbd_bdu = 0;
 563		ebdp->cbd_esc = cpu_to_fec32(estatus);
 564	}
 565
 566	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 567	/* Save skb pointer */
 568	txq->tx_skbuff[index] = skb;
 569
 570	/* Make sure the updates to rest of the descriptor are performed before
 571	 * transferring ownership.
 572	 */
 573	wmb();
 574
 575	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 576	 * it's the last BD of the frame, and to put the CRC on the end.
 577	 */
 578	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 579	bdp->cbd_sc = cpu_to_fec16(status);
 580
 581	/* If this was the last BD in the ring, start at the beginning again. */
 582	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 583
 584	skb_tx_timestamp(skb);
 585
 586	/* Make sure the update to bdp and tx_skbuff are performed before
 587	 * txq->bd.cur.
 588	 */
 589	wmb();
 590	txq->bd.cur = bdp;
 591
 592	/* Trigger transmission start */
 593	writel(0, txq->bd.reg_desc_active);
 594
 595	return 0;
 596}
 597
 598static int
 599fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 600			  struct net_device *ndev,
 601			  struct bufdesc *bdp, int index, char *data,
 602			  int size, bool last_tcp, bool is_last)
 603{
 604	struct fec_enet_private *fep = netdev_priv(ndev);
 605	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 606	unsigned short status;
 607	unsigned int estatus = 0;
 608	dma_addr_t addr;
 609
 610	status = fec16_to_cpu(bdp->cbd_sc);
 611	status &= ~BD_ENET_TX_STATS;
 612
 613	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 614
 615	if (((unsigned long) data) & fep->tx_align ||
 616		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 617		memcpy(txq->tx_bounce[index], data, size);
 618		data = txq->tx_bounce[index];
 619
 620		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 621			swap_buffer(data, size);
 622	}
 623
 624	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 625	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 626		dev_kfree_skb_any(skb);
 627		if (net_ratelimit())
 628			netdev_err(ndev, "Tx DMA memory map failed\n");
 629		return NETDEV_TX_BUSY;
 630	}
 631
 632	bdp->cbd_datlen = cpu_to_fec16(size);
 633	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 634
 635	if (fep->bufdesc_ex) {
 636		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 637			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 638		if (skb->ip_summed == CHECKSUM_PARTIAL)
 639			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 640		ebdp->cbd_bdu = 0;
 641		ebdp->cbd_esc = cpu_to_fec32(estatus);
 642	}
 643
 644	/* Handle the last BD specially */
 645	if (last_tcp)
 646		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 647	if (is_last) {
 648		status |= BD_ENET_TX_INTR;
 649		if (fep->bufdesc_ex)
 650			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 651	}
 652
 653	bdp->cbd_sc = cpu_to_fec16(status);
 654
 655	return 0;
 656}
 657
 658static int
 659fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 660			 struct sk_buff *skb, struct net_device *ndev,
 661			 struct bufdesc *bdp, int index)
 662{
 663	struct fec_enet_private *fep = netdev_priv(ndev);
 664	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 665	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 666	void *bufaddr;
 667	unsigned long dmabuf;
 668	unsigned short status;
 669	unsigned int estatus = 0;
 670
 671	status = fec16_to_cpu(bdp->cbd_sc);
 672	status &= ~BD_ENET_TX_STATS;
 673	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 674
 675	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 676	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 677	if (((unsigned long)bufaddr) & fep->tx_align ||
 678		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 679		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 680		bufaddr = txq->tx_bounce[index];
 681
 682		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 683			swap_buffer(bufaddr, hdr_len);
 684
 685		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 686					hdr_len, DMA_TO_DEVICE);
 687		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 688			dev_kfree_skb_any(skb);
 689			if (net_ratelimit())
 690				netdev_err(ndev, "Tx DMA memory map failed\n");
 691			return NETDEV_TX_BUSY;
 692		}
 693	}
 694
 695	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 696	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 697
 698	if (fep->bufdesc_ex) {
 699		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 700			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 701		if (skb->ip_summed == CHECKSUM_PARTIAL)
 702			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 703		ebdp->cbd_bdu = 0;
 704		ebdp->cbd_esc = cpu_to_fec32(estatus);
 705	}
 706
 707	bdp->cbd_sc = cpu_to_fec16(status);
 708
 709	return 0;
 710}
 711
 712static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 713				   struct sk_buff *skb,
 714				   struct net_device *ndev)
 715{
 716	struct fec_enet_private *fep = netdev_priv(ndev);
 717	int hdr_len, total_len, data_left;
 718	struct bufdesc *bdp = txq->bd.cur;
 719	struct tso_t tso;
 720	unsigned int index = 0;
 721	int ret;
 722
 723	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 724		dev_kfree_skb_any(skb);
 725		if (net_ratelimit())
 726			netdev_err(ndev, "NOT enough BD for TSO!\n");
 727		return NETDEV_TX_OK;
 728	}
 729
 730	/* Protocol checksum off-load for TCP and UDP. */
 731	if (fec_enet_clear_csum(skb, ndev)) {
 732		dev_kfree_skb_any(skb);
 733		return NETDEV_TX_OK;
 734	}
 735
 736	/* Initialize the TSO handler, and prepare the first payload */
 737	hdr_len = tso_start(skb, &tso);
 738
 739	total_len = skb->len - hdr_len;
 740	while (total_len > 0) {
 741		char *hdr;
 742
 743		index = fec_enet_get_bd_index(bdp, &txq->bd);
 744		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 745		total_len -= data_left;
 746
 747		/* prepare packet headers: MAC + IP + TCP */
 748		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 749		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 750		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 751		if (ret)
 752			goto err_release;
 753
 754		while (data_left > 0) {
 755			int size;
 756
 757			size = min_t(int, tso.size, data_left);
 758			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 759			index = fec_enet_get_bd_index(bdp, &txq->bd);
 760			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 761							bdp, index,
 762							tso.data, size,
 763							size == data_left,
 764							total_len == 0);
 765			if (ret)
 766				goto err_release;
 767
 768			data_left -= size;
 769			tso_build_data(skb, &tso, size);
 770		}
 771
 772		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 773	}
 774
 775	/* Save skb pointer */
 776	txq->tx_skbuff[index] = skb;
 777
 778	skb_tx_timestamp(skb);
 779	txq->bd.cur = bdp;
 780
 781	/* Trigger transmission start */
 782	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 783	    !readl(txq->bd.reg_desc_active) ||
 784	    !readl(txq->bd.reg_desc_active) ||
 785	    !readl(txq->bd.reg_desc_active) ||
 786	    !readl(txq->bd.reg_desc_active))
 787		writel(0, txq->bd.reg_desc_active);
 788
 789	return 0;
 790
 791err_release:
 792	/* TODO: Release all used data descriptors for TSO */
 793	return ret;
 794}
 795
 796static netdev_tx_t
 797fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 798{
 799	struct fec_enet_private *fep = netdev_priv(ndev);
 800	int entries_free;
 801	unsigned short queue;
 802	struct fec_enet_priv_tx_q *txq;
 803	struct netdev_queue *nq;
 804	int ret;
 805
 806	queue = skb_get_queue_mapping(skb);
 807	txq = fep->tx_queue[queue];
 808	nq = netdev_get_tx_queue(ndev, queue);
 809
 810	if (skb_is_gso(skb))
 811		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 812	else
 813		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 814	if (ret)
 815		return ret;
 816
 817	entries_free = fec_enet_get_free_txdesc_num(txq);
 818	if (entries_free <= txq->tx_stop_threshold)
 819		netif_tx_stop_queue(nq);
 820
 821	return NETDEV_TX_OK;
 822}
 823
 824/* Init RX & TX buffer descriptors
 825 */
 826static void fec_enet_bd_init(struct net_device *dev)
 827{
 828	struct fec_enet_private *fep = netdev_priv(dev);
 829	struct fec_enet_priv_tx_q *txq;
 830	struct fec_enet_priv_rx_q *rxq;
 831	struct bufdesc *bdp;
 832	unsigned int i;
 833	unsigned int q;
 834
 835	for (q = 0; q < fep->num_rx_queues; q++) {
 836		/* Initialize the receive buffer descriptors. */
 837		rxq = fep->rx_queue[q];
 838		bdp = rxq->bd.base;
 839
 840		for (i = 0; i < rxq->bd.ring_size; i++) {
 841
 842			/* Initialize the BD for every fragment in the page. */
 843			if (bdp->cbd_bufaddr)
 844				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 845			else
 846				bdp->cbd_sc = cpu_to_fec16(0);
 847			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 848		}
 849
 850		/* Set the last buffer to wrap */
 851		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 852		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 853
 854		rxq->bd.cur = rxq->bd.base;
 855	}
 856
 857	for (q = 0; q < fep->num_tx_queues; q++) {
 858		/* ...and the same for transmit */
 859		txq = fep->tx_queue[q];
 860		bdp = txq->bd.base;
 861		txq->bd.cur = bdp;
 862
 863		for (i = 0; i < txq->bd.ring_size; i++) {
 864			/* Initialize the BD for every fragment in the page. */
 865			bdp->cbd_sc = cpu_to_fec16(0);
 866			if (bdp->cbd_bufaddr &&
 867			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 868				dma_unmap_single(&fep->pdev->dev,
 869						 fec32_to_cpu(bdp->cbd_bufaddr),
 870						 fec16_to_cpu(bdp->cbd_datlen),
 871						 DMA_TO_DEVICE);
 872			if (txq->tx_skbuff[i]) {
 873				dev_kfree_skb_any(txq->tx_skbuff[i]);
 874				txq->tx_skbuff[i] = NULL;
 875			}
 876			bdp->cbd_bufaddr = cpu_to_fec32(0);
 877			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 878		}
 879
 880		/* Set the last buffer to wrap */
 881		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 882		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 883		txq->dirty_tx = bdp;
 884	}
 885}
 886
 887static void fec_enet_active_rxring(struct net_device *ndev)
 888{
 889	struct fec_enet_private *fep = netdev_priv(ndev);
 890	int i;
 891
 892	for (i = 0; i < fep->num_rx_queues; i++)
 893		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 894}
 895
 896static void fec_enet_enable_ring(struct net_device *ndev)
 897{
 898	struct fec_enet_private *fep = netdev_priv(ndev);
 899	struct fec_enet_priv_tx_q *txq;
 900	struct fec_enet_priv_rx_q *rxq;
 901	int i;
 902
 903	for (i = 0; i < fep->num_rx_queues; i++) {
 904		rxq = fep->rx_queue[i];
 905		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 906		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 907
 908		/* enable DMA1/2 */
 909		if (i)
 910			writel(RCMR_MATCHEN | RCMR_CMP(i),
 911			       fep->hwp + FEC_RCMR(i));
 912	}
 913
 914	for (i = 0; i < fep->num_tx_queues; i++) {
 915		txq = fep->tx_queue[i];
 916		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 917
 918		/* enable DMA1/2 */
 919		if (i)
 920			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 921			       fep->hwp + FEC_DMA_CFG(i));
 922	}
 923}
 924
 925static void fec_enet_reset_skb(struct net_device *ndev)
 926{
 927	struct fec_enet_private *fep = netdev_priv(ndev);
 928	struct fec_enet_priv_tx_q *txq;
 929	int i, j;
 930
 931	for (i = 0; i < fep->num_tx_queues; i++) {
 932		txq = fep->tx_queue[i];
 933
 934		for (j = 0; j < txq->bd.ring_size; j++) {
 935			if (txq->tx_skbuff[j]) {
 936				dev_kfree_skb_any(txq->tx_skbuff[j]);
 937				txq->tx_skbuff[j] = NULL;
 938			}
 939		}
 940	}
 941}
 942
 943/*
 944 * This function is called to start or restart the FEC during a link
 945 * change, transmit timeout, or to reconfigure the FEC.  The network
 946 * packet processing for this device must be stopped before this call.
 947 */
 948static void
 949fec_restart(struct net_device *ndev)
 950{
 951	struct fec_enet_private *fep = netdev_priv(ndev);
 952	u32 temp_mac[2];
 953	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 954	u32 ecntl = 0x2; /* ETHEREN */
 955
 956	/* Whack a reset.  We should wait for this.
 957	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 958	 * instead of reset MAC itself.
 959	 */
 960	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
 961	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
 962		writel(0, fep->hwp + FEC_ECNTRL);
 963	} else {
 964		writel(1, fep->hwp + FEC_ECNTRL);
 965		udelay(10);
 966	}
 967
 968	/*
 969	 * enet-mac reset will reset mac address registers too,
 970	 * so need to reconfigure it.
 971	 */
 972	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 973	writel((__force u32)cpu_to_be32(temp_mac[0]),
 974	       fep->hwp + FEC_ADDR_LOW);
 975	writel((__force u32)cpu_to_be32(temp_mac[1]),
 976	       fep->hwp + FEC_ADDR_HIGH);
 977
 978	/* Clear any outstanding interrupt, except MDIO. */
 979	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
 980
 981	fec_enet_bd_init(ndev);
 982
 983	fec_enet_enable_ring(ndev);
 984
 985	/* Reset tx SKB buffers. */
 986	fec_enet_reset_skb(ndev);
 987
 988	/* Enable MII mode */
 989	if (fep->full_duplex == DUPLEX_FULL) {
 990		/* FD enable */
 991		writel(0x04, fep->hwp + FEC_X_CNTRL);
 992	} else {
 993		/* No Rcv on Xmit */
 994		rcntl |= 0x02;
 995		writel(0x0, fep->hwp + FEC_X_CNTRL);
 996	}
 997
 998	/* Set MII speed */
 999	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1000
1001#if !defined(CONFIG_M5272)
1002	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1003		u32 val = readl(fep->hwp + FEC_RACC);
1004
1005		/* align IP header */
1006		val |= FEC_RACC_SHIFT16;
1007		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008			/* set RX checksum */
1009			val |= FEC_RACC_OPTIONS;
1010		else
1011			val &= ~FEC_RACC_OPTIONS;
1012		writel(val, fep->hwp + FEC_RACC);
1013		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014	}
1015#endif
1016
1017	/*
1018	 * The phy interface and speed need to get configured
1019	 * differently on enet-mac.
1020	 */
1021	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022		/* Enable flow control and length check */
1023		rcntl |= 0x40000000 | 0x00000020;
1024
1025		/* RGMII, RMII or MII */
1026		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030			rcntl |= (1 << 6);
1031		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032			rcntl |= (1 << 8);
1033		else
1034			rcntl &= ~(1 << 8);
1035
1036		/* 1G, 100M or 10M */
1037		if (ndev->phydev) {
1038			if (ndev->phydev->speed == SPEED_1000)
1039				ecntl |= (1 << 5);
1040			else if (ndev->phydev->speed == SPEED_100)
1041				rcntl &= ~(1 << 9);
1042			else
1043				rcntl |= (1 << 9);
1044		}
1045	} else {
1046#ifdef FEC_MIIGSK_ENR
1047		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048			u32 cfgr;
1049			/* disable the gasket and wait */
1050			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052				udelay(1);
1053
1054			/*
1055			 * configure the gasket:
1056			 *   RMII, 50 MHz, no loopback, no echo
1057			 *   MII, 25 MHz, no loopback, no echo
1058			 */
1059			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064
1065			/* re-enable the gasket */
1066			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067		}
1068#endif
1069	}
1070
1071#if !defined(CONFIG_M5272)
1072	/* enable pause frame*/
1073	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075	     ndev->phydev && ndev->phydev->pause)) {
1076		rcntl |= FEC_ENET_FCE;
1077
1078		/* set FIFO threshold parameter to reduce overrun */
1079		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083
1084		/* OPD */
1085		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086	} else {
1087		rcntl &= ~FEC_ENET_FCE;
1088	}
1089#endif /* !defined(CONFIG_M5272) */
1090
1091	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092
1093	/* Setup multicast filter. */
1094	set_multicast_list(ndev);
1095#ifndef CONFIG_M5272
1096	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098#endif
1099
1100	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101		/* enable ENET endian swap */
1102		ecntl |= (1 << 8);
1103		/* enable ENET store and forward mode */
1104		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105	}
1106
1107	if (fep->bufdesc_ex)
1108		ecntl |= (1 << 4);
1109
1110#ifndef CONFIG_M5272
1111	/* Enable the MIB statistic event counters */
1112	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113#endif
1114
1115	/* And last, enable the transmit and receive processing */
1116	writel(ecntl, fep->hwp + FEC_ECNTRL);
1117	fec_enet_active_rxring(ndev);
1118
1119	if (fep->bufdesc_ex)
1120		fec_ptp_start_cyclecounter(ndev);
1121
1122	/* Enable interrupts we wish to service */
1123	if (fep->link)
1124		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125	else
1126		writel(0, fep->hwp + FEC_IMASK);
1127
1128	/* Init the interrupt coalescing */
1129	fec_enet_itr_coal_init(ndev);
1130
1131}
1132
1133static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134{
1135	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137
1138	if (stop_gpr->gpr) {
1139		if (enabled)
1140			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141					   BIT(stop_gpr->bit),
1142					   BIT(stop_gpr->bit));
1143		else
1144			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145					   BIT(stop_gpr->bit), 0);
1146	} else if (pdata && pdata->sleep_mode_enable) {
1147		pdata->sleep_mode_enable(enabled);
1148	}
1149}
1150
1151static void
1152fec_stop(struct net_device *ndev)
1153{
1154	struct fec_enet_private *fep = netdev_priv(ndev);
1155	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156	u32 val;
1157
1158	/* We cannot expect a graceful transmit stop without link !!! */
1159	if (fep->link) {
1160		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161		udelay(10);
1162		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164	}
1165
1166	/* Whack a reset.  We should wait for this.
1167	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168	 * instead of reset MAC itself.
1169	 */
1170	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1172			writel(0, fep->hwp + FEC_ECNTRL);
1173		} else {
1174			writel(1, fep->hwp + FEC_ECNTRL);
1175			udelay(10);
1176		}
1177		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178	} else {
1179		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180		val = readl(fep->hwp + FEC_ECNTRL);
1181		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182		writel(val, fep->hwp + FEC_ECNTRL);
1183		fec_enet_stop_mode(fep, true);
1184	}
1185	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186
1187	/* We have to keep ENET enabled to have MII interrupt stay working */
1188	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190		writel(2, fep->hwp + FEC_ECNTRL);
1191		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192	}
1193}
1194
1195
1196static void
1197fec_timeout(struct net_device *ndev, unsigned int txqueue)
1198{
1199	struct fec_enet_private *fep = netdev_priv(ndev);
1200
1201	fec_dump(ndev);
1202
1203	ndev->stats.tx_errors++;
1204
1205	schedule_work(&fep->tx_timeout_work);
1206}
1207
1208static void fec_enet_timeout_work(struct work_struct *work)
1209{
1210	struct fec_enet_private *fep =
1211		container_of(work, struct fec_enet_private, tx_timeout_work);
1212	struct net_device *ndev = fep->netdev;
1213
1214	rtnl_lock();
1215	if (netif_device_present(ndev) || netif_running(ndev)) {
1216		napi_disable(&fep->napi);
1217		netif_tx_lock_bh(ndev);
1218		fec_restart(ndev);
1219		netif_tx_wake_all_queues(ndev);
1220		netif_tx_unlock_bh(ndev);
1221		napi_enable(&fep->napi);
1222	}
1223	rtnl_unlock();
1224}
1225
1226static void
1227fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228	struct skb_shared_hwtstamps *hwtstamps)
1229{
1230	unsigned long flags;
1231	u64 ns;
1232
1233	spin_lock_irqsave(&fep->tmreg_lock, flags);
1234	ns = timecounter_cyc2time(&fep->tc, ts);
1235	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236
1237	memset(hwtstamps, 0, sizeof(*hwtstamps));
1238	hwtstamps->hwtstamp = ns_to_ktime(ns);
1239}
1240
1241static void
1242fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243{
1244	struct	fec_enet_private *fep;
1245	struct bufdesc *bdp;
1246	unsigned short status;
1247	struct	sk_buff	*skb;
1248	struct fec_enet_priv_tx_q *txq;
1249	struct netdev_queue *nq;
1250	int	index = 0;
1251	int	entries_free;
1252
1253	fep = netdev_priv(ndev);
1254
1255	txq = fep->tx_queue[queue_id];
1256	/* get next bdp of dirty_tx */
1257	nq = netdev_get_tx_queue(ndev, queue_id);
1258	bdp = txq->dirty_tx;
1259
1260	/* get next bdp of dirty_tx */
1261	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1262
1263	while (bdp != READ_ONCE(txq->bd.cur)) {
1264		/* Order the load of bd.cur and cbd_sc */
1265		rmb();
1266		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1267		if (status & BD_ENET_TX_READY)
1268			break;
1269
1270		index = fec_enet_get_bd_index(bdp, &txq->bd);
1271
1272		skb = txq->tx_skbuff[index];
1273		txq->tx_skbuff[index] = NULL;
1274		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1275			dma_unmap_single(&fep->pdev->dev,
1276					 fec32_to_cpu(bdp->cbd_bufaddr),
1277					 fec16_to_cpu(bdp->cbd_datlen),
1278					 DMA_TO_DEVICE);
1279		bdp->cbd_bufaddr = cpu_to_fec32(0);
1280		if (!skb)
1281			goto skb_done;
1282
1283		/* Check for errors. */
1284		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1285				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1286				   BD_ENET_TX_CSL)) {
1287			ndev->stats.tx_errors++;
1288			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1289				ndev->stats.tx_heartbeat_errors++;
1290			if (status & BD_ENET_TX_LC)  /* Late collision */
1291				ndev->stats.tx_window_errors++;
1292			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1293				ndev->stats.tx_aborted_errors++;
1294			if (status & BD_ENET_TX_UN)  /* Underrun */
1295				ndev->stats.tx_fifo_errors++;
1296			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1297				ndev->stats.tx_carrier_errors++;
1298		} else {
1299			ndev->stats.tx_packets++;
1300			ndev->stats.tx_bytes += skb->len;
1301		}
1302
1303		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1304		 * are to time stamp the packet, so we still need to check time
1305		 * stamping enabled flag.
1306		 */
1307		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1308			     fep->hwts_tx_en) &&
1309		    fep->bufdesc_ex) {
1310			struct skb_shared_hwtstamps shhwtstamps;
1311			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1312
1313			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1314			skb_tstamp_tx(skb, &shhwtstamps);
1315		}
1316
1317		/* Deferred means some collisions occurred during transmit,
1318		 * but we eventually sent the packet OK.
1319		 */
1320		if (status & BD_ENET_TX_DEF)
1321			ndev->stats.collisions++;
1322
1323		/* Free the sk buffer associated with this last transmit */
1324		dev_kfree_skb_any(skb);
1325skb_done:
1326		/* Make sure the update to bdp and tx_skbuff are performed
1327		 * before dirty_tx
1328		 */
1329		wmb();
1330		txq->dirty_tx = bdp;
1331
1332		/* Update pointer to next buffer descriptor to be transmitted */
1333		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1334
1335		/* Since we have freed up a buffer, the ring is no longer full
1336		 */
1337		if (netif_tx_queue_stopped(nq)) {
1338			entries_free = fec_enet_get_free_txdesc_num(txq);
1339			if (entries_free >= txq->tx_wake_threshold)
1340				netif_tx_wake_queue(nq);
1341		}
1342	}
1343
1344	/* ERR006358: Keep the transmitter going */
1345	if (bdp != txq->bd.cur &&
1346	    readl(txq->bd.reg_desc_active) == 0)
1347		writel(0, txq->bd.reg_desc_active);
1348}
1349
1350static void fec_enet_tx(struct net_device *ndev)
1351{
1352	struct fec_enet_private *fep = netdev_priv(ndev);
1353	int i;
1354
1355	/* Make sure that AVB queues are processed first. */
1356	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1357		fec_enet_tx_queue(ndev, i);
1358}
1359
1360static int
1361fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362{
1363	struct  fec_enet_private *fep = netdev_priv(ndev);
1364	int off;
1365
1366	off = ((unsigned long)skb->data) & fep->rx_align;
1367	if (off)
1368		skb_reserve(skb, fep->rx_align + 1 - off);
1369
1370	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372		if (net_ratelimit())
1373			netdev_err(ndev, "Rx DMA memory map failed\n");
1374		return -ENOMEM;
1375	}
1376
1377	return 0;
1378}
1379
1380static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381			       struct bufdesc *bdp, u32 length, bool swap)
1382{
1383	struct  fec_enet_private *fep = netdev_priv(ndev);
1384	struct sk_buff *new_skb;
1385
1386	if (length > fep->rx_copybreak)
1387		return false;
1388
1389	new_skb = netdev_alloc_skb(ndev, length);
1390	if (!new_skb)
1391		return false;
1392
1393	dma_sync_single_for_cpu(&fep->pdev->dev,
1394				fec32_to_cpu(bdp->cbd_bufaddr),
1395				FEC_ENET_RX_FRSIZE - fep->rx_align,
1396				DMA_FROM_DEVICE);
1397	if (!swap)
1398		memcpy(new_skb->data, (*skb)->data, length);
1399	else
1400		swap_buffer2(new_skb->data, (*skb)->data, length);
1401	*skb = new_skb;
1402
1403	return true;
1404}
1405
1406/* During a receive, the bd_rx.cur points to the current incoming buffer.
1407 * When we update through the ring, if the next incoming buffer has
1408 * not been given to the system, we just set the empty indicator,
1409 * effectively tossing the packet.
1410 */
1411static int
1412fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413{
1414	struct fec_enet_private *fep = netdev_priv(ndev);
1415	struct fec_enet_priv_rx_q *rxq;
1416	struct bufdesc *bdp;
1417	unsigned short status;
1418	struct  sk_buff *skb_new = NULL;
1419	struct  sk_buff *skb;
1420	ushort	pkt_len;
1421	__u8 *data;
1422	int	pkt_received = 0;
1423	struct	bufdesc_ex *ebdp = NULL;
1424	bool	vlan_packet_rcvd = false;
1425	u16	vlan_tag;
1426	int	index = 0;
1427	bool	is_copybreak;
1428	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429
1430#ifdef CONFIG_M532x
1431	flush_cache_all();
1432#endif
1433	rxq = fep->rx_queue[queue_id];
1434
1435	/* First, grab all of the stats for the incoming packet.
1436	 * These get messed up if we get called due to a busy condition.
1437	 */
1438	bdp = rxq->bd.cur;
1439
1440	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1441
1442		if (pkt_received >= budget)
1443			break;
1444		pkt_received++;
1445
1446		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1447
1448		/* Check for errors. */
1449		status ^= BD_ENET_RX_LAST;
1450		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1451			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1452			   BD_ENET_RX_CL)) {
1453			ndev->stats.rx_errors++;
1454			if (status & BD_ENET_RX_OV) {
1455				/* FIFO overrun */
1456				ndev->stats.rx_fifo_errors++;
1457				goto rx_processing_done;
1458			}
1459			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1460						| BD_ENET_RX_LAST)) {
1461				/* Frame too long or too short. */
1462				ndev->stats.rx_length_errors++;
1463				if (status & BD_ENET_RX_LAST)
1464					netdev_err(ndev, "rcv is not +last\n");
1465			}
1466			if (status & BD_ENET_RX_CR)	/* CRC Error */
1467				ndev->stats.rx_crc_errors++;
1468			/* Report late collisions as a frame error. */
1469			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1470				ndev->stats.rx_frame_errors++;
1471			goto rx_processing_done;
1472		}
1473
1474		/* Process the incoming frame. */
1475		ndev->stats.rx_packets++;
1476		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1477		ndev->stats.rx_bytes += pkt_len;
1478
1479		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1480		skb = rxq->rx_skbuff[index];
1481
1482		/* The packet length includes FCS, but we don't want to
1483		 * include that when passing upstream as it messes up
1484		 * bridging applications.
1485		 */
1486		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1487						  need_swap);
1488		if (!is_copybreak) {
1489			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1490			if (unlikely(!skb_new)) {
1491				ndev->stats.rx_dropped++;
1492				goto rx_processing_done;
1493			}
1494			dma_unmap_single(&fep->pdev->dev,
1495					 fec32_to_cpu(bdp->cbd_bufaddr),
1496					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1497					 DMA_FROM_DEVICE);
1498		}
1499
1500		prefetch(skb->data - NET_IP_ALIGN);
1501		skb_put(skb, pkt_len - 4);
1502		data = skb->data;
1503
1504		if (!is_copybreak && need_swap)
1505			swap_buffer(data, pkt_len);
1506
1507#if !defined(CONFIG_M5272)
1508		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1509			data = skb_pull_inline(skb, 2);
1510#endif
1511
1512		/* Extract the enhanced buffer descriptor */
1513		ebdp = NULL;
1514		if (fep->bufdesc_ex)
1515			ebdp = (struct bufdesc_ex *)bdp;
1516
1517		/* If this is a VLAN packet remove the VLAN Tag */
1518		vlan_packet_rcvd = false;
1519		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1520		    fep->bufdesc_ex &&
1521		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1522			/* Push and remove the vlan tag */
1523			struct vlan_hdr *vlan_header =
1524					(struct vlan_hdr *) (data + ETH_HLEN);
1525			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1526
1527			vlan_packet_rcvd = true;
1528
1529			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1530			skb_pull(skb, VLAN_HLEN);
1531		}
1532
1533		skb->protocol = eth_type_trans(skb, ndev);
1534
1535		/* Get receive timestamp from the skb */
1536		if (fep->hwts_rx_en && fep->bufdesc_ex)
1537			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1538					  skb_hwtstamps(skb));
1539
1540		if (fep->bufdesc_ex &&
1541		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1542			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1543				/* don't check it */
1544				skb->ip_summed = CHECKSUM_UNNECESSARY;
1545			} else {
1546				skb_checksum_none_assert(skb);
1547			}
1548		}
1549
1550		/* Handle received VLAN packets */
1551		if (vlan_packet_rcvd)
1552			__vlan_hwaccel_put_tag(skb,
1553					       htons(ETH_P_8021Q),
1554					       vlan_tag);
1555
1556		skb_record_rx_queue(skb, queue_id);
1557		napi_gro_receive(&fep->napi, skb);
1558
1559		if (is_copybreak) {
1560			dma_sync_single_for_device(&fep->pdev->dev,
1561						   fec32_to_cpu(bdp->cbd_bufaddr),
1562						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1563						   DMA_FROM_DEVICE);
1564		} else {
1565			rxq->rx_skbuff[index] = skb_new;
1566			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567		}
1568
1569rx_processing_done:
1570		/* Clear the status flags for this buffer */
1571		status &= ~BD_ENET_RX_STATS;
1572
1573		/* Mark the buffer empty */
1574		status |= BD_ENET_RX_EMPTY;
1575
1576		if (fep->bufdesc_ex) {
1577			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578
1579			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580			ebdp->cbd_prot = 0;
1581			ebdp->cbd_bdu = 0;
1582		}
1583		/* Make sure the updates to rest of the descriptor are
1584		 * performed before transferring ownership.
1585		 */
1586		wmb();
1587		bdp->cbd_sc = cpu_to_fec16(status);
1588
1589		/* Update BD pointer to next entry */
1590		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591
1592		/* Doing this here will keep the FEC running while we process
1593		 * incoming frames.  On a heavily loaded network, we should be
1594		 * able to keep up at the expense of system resources.
1595		 */
1596		writel(0, rxq->bd.reg_desc_active);
1597	}
1598	rxq->bd.cur = bdp;
1599	return pkt_received;
1600}
1601
1602static int fec_enet_rx(struct net_device *ndev, int budget)
1603{
1604	struct fec_enet_private *fep = netdev_priv(ndev);
1605	int i, done = 0;
1606
1607	/* Make sure that AVB queues are processed first. */
1608	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1609		done += fec_enet_rx_queue(ndev, budget - done, i);
1610
1611	return done;
1612}
1613
1614static bool fec_enet_collect_events(struct fec_enet_private *fep)
1615{
1616	uint int_events;
1617
1618	int_events = readl(fep->hwp + FEC_IEVENT);
1619
1620	/* Don't clear MDIO events, we poll for those */
1621	int_events &= ~FEC_ENET_MII;
1622
1623	writel(int_events, fep->hwp + FEC_IEVENT);
1624
1625	return int_events != 0;
1626}
1627
1628static irqreturn_t
1629fec_enet_interrupt(int irq, void *dev_id)
1630{
1631	struct net_device *ndev = dev_id;
1632	struct fec_enet_private *fep = netdev_priv(ndev);
1633	irqreturn_t ret = IRQ_NONE;
1634
1635	if (fec_enet_collect_events(fep) && fep->link) {
1636		ret = IRQ_HANDLED;
1637
1638		if (napi_schedule_prep(&fep->napi)) {
1639			/* Disable interrupts */
1640			writel(0, fep->hwp + FEC_IMASK);
1641			__napi_schedule(&fep->napi);
1642		}
1643	}
1644
1645	return ret;
1646}
1647
1648static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1649{
1650	struct net_device *ndev = napi->dev;
1651	struct fec_enet_private *fep = netdev_priv(ndev);
1652	int done = 0;
1653
1654	do {
1655		done += fec_enet_rx(ndev, budget - done);
1656		fec_enet_tx(ndev);
1657	} while ((done < budget) && fec_enet_collect_events(fep));
1658
1659	if (done < budget) {
1660		napi_complete_done(napi, done);
1661		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1662	}
1663
1664	return done;
1665}
1666
1667/* ------------------------------------------------------------------------- */
1668static int fec_get_mac(struct net_device *ndev)
1669{
1670	struct fec_enet_private *fep = netdev_priv(ndev);
1671	unsigned char *iap, tmpaddr[ETH_ALEN];
1672	int ret;
1673
1674	/*
1675	 * try to get mac address in following order:
1676	 *
1677	 * 1) module parameter via kernel command line in form
1678	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1679	 */
1680	iap = macaddr;
1681
1682	/*
1683	 * 2) from device tree data
1684	 */
1685	if (!is_valid_ether_addr(iap)) {
1686		struct device_node *np = fep->pdev->dev.of_node;
1687		if (np) {
1688			ret = of_get_mac_address(np, tmpaddr);
1689			if (!ret)
1690				iap = tmpaddr;
1691			else if (ret == -EPROBE_DEFER)
1692				return ret;
1693		}
1694	}
1695
1696	/*
1697	 * 3) from flash or fuse (via platform data)
1698	 */
1699	if (!is_valid_ether_addr(iap)) {
1700#ifdef CONFIG_M5272
1701		if (FEC_FLASHMAC)
1702			iap = (unsigned char *)FEC_FLASHMAC;
1703#else
1704		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1705
1706		if (pdata)
1707			iap = (unsigned char *)&pdata->mac;
1708#endif
1709	}
1710
1711	/*
1712	 * 4) FEC mac registers set by bootloader
1713	 */
1714	if (!is_valid_ether_addr(iap)) {
1715		*((__be32 *) &tmpaddr[0]) =
1716			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1717		*((__be16 *) &tmpaddr[4]) =
1718			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1719		iap = &tmpaddr[0];
1720	}
1721
1722	/*
1723	 * 5) random mac address
1724	 */
1725	if (!is_valid_ether_addr(iap)) {
1726		/* Report it and use a random ethernet address instead */
1727		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1728		eth_hw_addr_random(ndev);
1729		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1730			 ndev->dev_addr);
1731		return 0;
1732	}
1733
1734	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1735
1736	/* Adjust MAC if using macaddr */
1737	if (iap == macaddr)
1738		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1739
1740	return 0;
1741}
1742
1743/* ------------------------------------------------------------------------- */
1744
1745/*
1746 * Phy section
1747 */
1748static void fec_enet_adjust_link(struct net_device *ndev)
1749{
1750	struct fec_enet_private *fep = netdev_priv(ndev);
1751	struct phy_device *phy_dev = ndev->phydev;
1752	int status_change = 0;
1753
1754	/*
1755	 * If the netdev is down, or is going down, we're not interested
1756	 * in link state events, so just mark our idea of the link as down
1757	 * and ignore the event.
1758	 */
1759	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1760		fep->link = 0;
1761	} else if (phy_dev->link) {
1762		if (!fep->link) {
1763			fep->link = phy_dev->link;
1764			status_change = 1;
1765		}
1766
1767		if (fep->full_duplex != phy_dev->duplex) {
1768			fep->full_duplex = phy_dev->duplex;
1769			status_change = 1;
1770		}
1771
1772		if (phy_dev->speed != fep->speed) {
1773			fep->speed = phy_dev->speed;
1774			status_change = 1;
1775		}
1776
1777		/* if any of the above changed restart the FEC */
1778		if (status_change) {
1779			napi_disable(&fep->napi);
1780			netif_tx_lock_bh(ndev);
1781			fec_restart(ndev);
1782			netif_tx_wake_all_queues(ndev);
1783			netif_tx_unlock_bh(ndev);
1784			napi_enable(&fep->napi);
1785		}
1786	} else {
1787		if (fep->link) {
1788			napi_disable(&fep->napi);
1789			netif_tx_lock_bh(ndev);
1790			fec_stop(ndev);
1791			netif_tx_unlock_bh(ndev);
1792			napi_enable(&fep->napi);
1793			fep->link = phy_dev->link;
1794			status_change = 1;
1795		}
1796	}
1797
1798	if (status_change)
1799		phy_print_status(phy_dev);
1800}
1801
1802static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1803{
1804	uint ievent;
1805	int ret;
1806
1807	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1808					ievent & FEC_ENET_MII, 2, 30000);
1809
1810	if (!ret)
1811		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1812
1813	return ret;
1814}
1815
1816static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1817{
1818	struct fec_enet_private *fep = bus->priv;
1819	struct device *dev = &fep->pdev->dev;
1820	int ret = 0, frame_start, frame_addr, frame_op;
1821	bool is_c45 = !!(regnum & MII_ADDR_C45);
1822
1823	ret = pm_runtime_resume_and_get(dev);
1824	if (ret < 0)
1825		return ret;
1826
1827	if (is_c45) {
1828		frame_start = FEC_MMFR_ST_C45;
1829
1830		/* write address */
1831		frame_addr = (regnum >> 16);
1832		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1833		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1834		       FEC_MMFR_TA | (regnum & 0xFFFF),
1835		       fep->hwp + FEC_MII_DATA);
1836
1837		/* wait for end of transfer */
1838		ret = fec_enet_mdio_wait(fep);
1839		if (ret) {
1840			netdev_err(fep->netdev, "MDIO address write timeout\n");
1841			goto out;
1842		}
1843
1844		frame_op = FEC_MMFR_OP_READ_C45;
1845
1846	} else {
1847		/* C22 read */
1848		frame_op = FEC_MMFR_OP_READ;
1849		frame_start = FEC_MMFR_ST;
1850		frame_addr = regnum;
1851	}
1852
1853	/* start a read op */
1854	writel(frame_start | frame_op |
1855		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1856		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1857
1858	/* wait for end of transfer */
1859	ret = fec_enet_mdio_wait(fep);
1860	if (ret) {
1861		netdev_err(fep->netdev, "MDIO read timeout\n");
1862		goto out;
1863	}
1864
1865	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1866
1867out:
1868	pm_runtime_mark_last_busy(dev);
1869	pm_runtime_put_autosuspend(dev);
1870
1871	return ret;
1872}
1873
1874static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1875			   u16 value)
1876{
1877	struct fec_enet_private *fep = bus->priv;
1878	struct device *dev = &fep->pdev->dev;
1879	int ret, frame_start, frame_addr;
1880	bool is_c45 = !!(regnum & MII_ADDR_C45);
1881
1882	ret = pm_runtime_resume_and_get(dev);
1883	if (ret < 0)
1884		return ret;
1885
1886	if (is_c45) {
1887		frame_start = FEC_MMFR_ST_C45;
1888
1889		/* write address */
1890		frame_addr = (regnum >> 16);
1891		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1892		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1893		       FEC_MMFR_TA | (regnum & 0xFFFF),
1894		       fep->hwp + FEC_MII_DATA);
1895
1896		/* wait for end of transfer */
1897		ret = fec_enet_mdio_wait(fep);
1898		if (ret) {
1899			netdev_err(fep->netdev, "MDIO address write timeout\n");
1900			goto out;
1901		}
1902	} else {
1903		/* C22 write */
1904		frame_start = FEC_MMFR_ST;
1905		frame_addr = regnum;
1906	}
1907
1908	/* start a write op */
1909	writel(frame_start | FEC_MMFR_OP_WRITE |
1910		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1911		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1912		fep->hwp + FEC_MII_DATA);
1913
1914	/* wait for end of transfer */
1915	ret = fec_enet_mdio_wait(fep);
1916	if (ret)
1917		netdev_err(fep->netdev, "MDIO write timeout\n");
1918
1919out:
1920	pm_runtime_mark_last_busy(dev);
1921	pm_runtime_put_autosuspend(dev);
1922
1923	return ret;
1924}
1925
1926static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1927{
1928	struct fec_enet_private *fep = netdev_priv(ndev);
1929	struct phy_device *phy_dev = ndev->phydev;
1930
1931	if (phy_dev) {
1932		phy_reset_after_clk_enable(phy_dev);
1933	} else if (fep->phy_node) {
1934		/*
1935		 * If the PHY still is not bound to the MAC, but there is
1936		 * OF PHY node and a matching PHY device instance already,
1937		 * use the OF PHY node to obtain the PHY device instance,
1938		 * and then use that PHY device instance when triggering
1939		 * the PHY reset.
1940		 */
1941		phy_dev = of_phy_find_device(fep->phy_node);
1942		phy_reset_after_clk_enable(phy_dev);
1943		put_device(&phy_dev->mdio.dev);
1944	}
1945}
1946
1947static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1948{
1949	struct fec_enet_private *fep = netdev_priv(ndev);
1950	int ret;
1951
1952	if (enable) {
1953		ret = clk_prepare_enable(fep->clk_enet_out);
1954		if (ret)
1955			return ret;
1956
1957		if (fep->clk_ptp) {
1958			mutex_lock(&fep->ptp_clk_mutex);
1959			ret = clk_prepare_enable(fep->clk_ptp);
1960			if (ret) {
1961				mutex_unlock(&fep->ptp_clk_mutex);
1962				goto failed_clk_ptp;
1963			} else {
1964				fep->ptp_clk_on = true;
1965			}
1966			mutex_unlock(&fep->ptp_clk_mutex);
1967		}
1968
1969		ret = clk_prepare_enable(fep->clk_ref);
1970		if (ret)
1971			goto failed_clk_ref;
1972
1973		fec_enet_phy_reset_after_clk_enable(ndev);
1974	} else {
1975		clk_disable_unprepare(fep->clk_enet_out);
1976		if (fep->clk_ptp) {
1977			mutex_lock(&fep->ptp_clk_mutex);
1978			clk_disable_unprepare(fep->clk_ptp);
1979			fep->ptp_clk_on = false;
1980			mutex_unlock(&fep->ptp_clk_mutex);
1981		}
1982		clk_disable_unprepare(fep->clk_ref);
1983	}
1984
1985	return 0;
1986
1987failed_clk_ref:
1988	if (fep->clk_ptp) {
1989		mutex_lock(&fep->ptp_clk_mutex);
1990		clk_disable_unprepare(fep->clk_ptp);
1991		fep->ptp_clk_on = false;
1992		mutex_unlock(&fep->ptp_clk_mutex);
1993	}
1994failed_clk_ptp:
1995	clk_disable_unprepare(fep->clk_enet_out);
1996
1997	return ret;
1998}
1999
2000static int fec_enet_mii_probe(struct net_device *ndev)
2001{
2002	struct fec_enet_private *fep = netdev_priv(ndev);
2003	struct phy_device *phy_dev = NULL;
2004	char mdio_bus_id[MII_BUS_ID_SIZE];
2005	char phy_name[MII_BUS_ID_SIZE + 3];
2006	int phy_id;
2007	int dev_id = fep->dev_id;
2008
2009	if (fep->phy_node) {
2010		phy_dev = of_phy_connect(ndev, fep->phy_node,
2011					 &fec_enet_adjust_link, 0,
2012					 fep->phy_interface);
2013		if (!phy_dev) {
2014			netdev_err(ndev, "Unable to connect to phy\n");
2015			return -ENODEV;
2016		}
2017	} else {
2018		/* check for attached phy */
2019		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2020			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2021				continue;
2022			if (dev_id--)
2023				continue;
2024			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2025			break;
2026		}
2027
2028		if (phy_id >= PHY_MAX_ADDR) {
2029			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2030			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2031			phy_id = 0;
2032		}
2033
2034		snprintf(phy_name, sizeof(phy_name),
2035			 PHY_ID_FMT, mdio_bus_id, phy_id);
2036		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2037				      fep->phy_interface);
2038	}
2039
2040	if (IS_ERR(phy_dev)) {
2041		netdev_err(ndev, "could not attach to PHY\n");
2042		return PTR_ERR(phy_dev);
2043	}
2044
2045	/* mask with MAC supported features */
2046	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2047		phy_set_max_speed(phy_dev, 1000);
2048		phy_remove_link_mode(phy_dev,
2049				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2050#if !defined(CONFIG_M5272)
2051		phy_support_sym_pause(phy_dev);
2052#endif
2053	}
2054	else
2055		phy_set_max_speed(phy_dev, 100);
2056
2057	fep->link = 0;
2058	fep->full_duplex = 0;
2059
2060	phy_dev->mac_managed_pm = 1;
2061
2062	phy_attached_info(phy_dev);
2063
2064	return 0;
2065}
2066
2067static int fec_enet_mii_init(struct platform_device *pdev)
2068{
2069	static struct mii_bus *fec0_mii_bus;
2070	struct net_device *ndev = platform_get_drvdata(pdev);
2071	struct fec_enet_private *fep = netdev_priv(ndev);
2072	bool suppress_preamble = false;
2073	struct device_node *node;
2074	int err = -ENXIO;
2075	u32 mii_speed, holdtime;
2076	u32 bus_freq;
2077
2078	/*
2079	 * The i.MX28 dual fec interfaces are not equal.
2080	 * Here are the differences:
2081	 *
2082	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2083	 *  - fec0 acts as the 1588 time master while fec1 is slave
2084	 *  - external phys can only be configured by fec0
2085	 *
2086	 * That is to say fec1 can not work independently. It only works
2087	 * when fec0 is working. The reason behind this design is that the
2088	 * second interface is added primarily for Switch mode.
2089	 *
2090	 * Because of the last point above, both phys are attached on fec0
2091	 * mdio interface in board design, and need to be configured by
2092	 * fec0 mii_bus.
2093	 */
2094	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2095		/* fec1 uses fec0 mii_bus */
2096		if (mii_cnt && fec0_mii_bus) {
2097			fep->mii_bus = fec0_mii_bus;
2098			mii_cnt++;
2099			return 0;
2100		}
2101		return -ENOENT;
2102	}
2103
2104	bus_freq = 2500000; /* 2.5MHz by default */
2105	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2106	if (node) {
2107		of_property_read_u32(node, "clock-frequency", &bus_freq);
2108		suppress_preamble = of_property_read_bool(node,
2109							  "suppress-preamble");
2110	}
2111
2112	/*
2113	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2114	 *
2115	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2116	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2117	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2118	 * document.
2119	 */
2120	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2121	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2122		mii_speed--;
2123	if (mii_speed > 63) {
2124		dev_err(&pdev->dev,
2125			"fec clock (%lu) too fast to get right mii speed\n",
2126			clk_get_rate(fep->clk_ipg));
2127		err = -EINVAL;
2128		goto err_out;
2129	}
2130
2131	/*
2132	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2133	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2134	 * versions are RAZ there, so just ignore the difference and write the
2135	 * register always.
2136	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2137	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2138	 * output.
2139	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2140	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2141	 * holdtime cannot result in a value greater than 3.
2142	 */
2143	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2144
2145	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2146
2147	if (suppress_preamble)
2148		fep->phy_speed |= BIT(7);
2149
2150	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2151		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2152		 * MII event generation condition:
2153		 * - writing MSCR:
2154		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2155		 *	  mscr_reg_data_in[7:0] != 0
2156		 * - writing MMFR:
2157		 *	- mscr[7:0]_not_zero
2158		 */
2159		writel(0, fep->hwp + FEC_MII_DATA);
2160	}
2161
2162	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2163
2164	/* Clear any pending transaction complete indication */
2165	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2166
2167	fep->mii_bus = mdiobus_alloc();
2168	if (fep->mii_bus == NULL) {
2169		err = -ENOMEM;
2170		goto err_out;
2171	}
2172
2173	fep->mii_bus->name = "fec_enet_mii_bus";
2174	fep->mii_bus->read = fec_enet_mdio_read;
2175	fep->mii_bus->write = fec_enet_mdio_write;
2176	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2177		pdev->name, fep->dev_id + 1);
2178	fep->mii_bus->priv = fep;
2179	fep->mii_bus->parent = &pdev->dev;
2180
2181	err = of_mdiobus_register(fep->mii_bus, node);
2182	if (err)
2183		goto err_out_free_mdiobus;
2184	of_node_put(node);
2185
2186	mii_cnt++;
2187
2188	/* save fec0 mii_bus */
2189	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2190		fec0_mii_bus = fep->mii_bus;
2191
2192	return 0;
2193
2194err_out_free_mdiobus:
2195	mdiobus_free(fep->mii_bus);
2196err_out:
2197	of_node_put(node);
2198	return err;
2199}
2200
2201static void fec_enet_mii_remove(struct fec_enet_private *fep)
2202{
2203	if (--mii_cnt == 0) {
2204		mdiobus_unregister(fep->mii_bus);
2205		mdiobus_free(fep->mii_bus);
2206	}
2207}
2208
2209static void fec_enet_get_drvinfo(struct net_device *ndev,
2210				 struct ethtool_drvinfo *info)
2211{
2212	struct fec_enet_private *fep = netdev_priv(ndev);
2213
2214	strlcpy(info->driver, fep->pdev->dev.driver->name,
2215		sizeof(info->driver));
2216	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2217}
2218
2219static int fec_enet_get_regs_len(struct net_device *ndev)
2220{
2221	struct fec_enet_private *fep = netdev_priv(ndev);
2222	struct resource *r;
2223	int s = 0;
2224
2225	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2226	if (r)
2227		s = resource_size(r);
2228
2229	return s;
2230}
2231
2232/* List of registers that can be safety be read to dump them with ethtool */
2233#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2234	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2235	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2236static __u32 fec_enet_register_version = 2;
2237static u32 fec_enet_register_offset[] = {
2238	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2239	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2240	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2241	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2242	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2243	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2244	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2245	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2246	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2247	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2248	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2249	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2250	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2251	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2252	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2253	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2254	RMON_T_P_GTE2048, RMON_T_OCTETS,
2255	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2256	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2257	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2258	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2259	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2260	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2261	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2262	RMON_R_P_GTE2048, RMON_R_OCTETS,
2263	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2264	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2265};
2266#else
2267static __u32 fec_enet_register_version = 1;
2268static u32 fec_enet_register_offset[] = {
2269	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2270	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2271	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2272	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2273	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2274	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2275	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2276	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2277	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2278};
2279#endif
2280
2281static void fec_enet_get_regs(struct net_device *ndev,
2282			      struct ethtool_regs *regs, void *regbuf)
2283{
2284	struct fec_enet_private *fep = netdev_priv(ndev);
2285	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2286	struct device *dev = &fep->pdev->dev;
2287	u32 *buf = (u32 *)regbuf;
2288	u32 i, off;
2289	int ret;
2290
2291	ret = pm_runtime_resume_and_get(dev);
2292	if (ret < 0)
2293		return;
2294
2295	regs->version = fec_enet_register_version;
2296
2297	memset(buf, 0, regs->len);
2298
2299	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2300		off = fec_enet_register_offset[i];
2301
2302		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2303		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2304			continue;
2305
2306		off >>= 2;
2307		buf[off] = readl(&theregs[off]);
2308	}
2309
2310	pm_runtime_mark_last_busy(dev);
2311	pm_runtime_put_autosuspend(dev);
2312}
2313
2314static int fec_enet_get_ts_info(struct net_device *ndev,
2315				struct ethtool_ts_info *info)
2316{
2317	struct fec_enet_private *fep = netdev_priv(ndev);
2318
2319	if (fep->bufdesc_ex) {
2320
2321		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2322					SOF_TIMESTAMPING_RX_SOFTWARE |
2323					SOF_TIMESTAMPING_SOFTWARE |
2324					SOF_TIMESTAMPING_TX_HARDWARE |
2325					SOF_TIMESTAMPING_RX_HARDWARE |
2326					SOF_TIMESTAMPING_RAW_HARDWARE;
2327		if (fep->ptp_clock)
2328			info->phc_index = ptp_clock_index(fep->ptp_clock);
2329		else
2330			info->phc_index = -1;
2331
2332		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2333				 (1 << HWTSTAMP_TX_ON);
2334
2335		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2336				   (1 << HWTSTAMP_FILTER_ALL);
2337		return 0;
2338	} else {
2339		return ethtool_op_get_ts_info(ndev, info);
2340	}
2341}
2342
2343#if !defined(CONFIG_M5272)
2344
2345static void fec_enet_get_pauseparam(struct net_device *ndev,
2346				    struct ethtool_pauseparam *pause)
2347{
2348	struct fec_enet_private *fep = netdev_priv(ndev);
2349
2350	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2351	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2352	pause->rx_pause = pause->tx_pause;
2353}
2354
2355static int fec_enet_set_pauseparam(struct net_device *ndev,
2356				   struct ethtool_pauseparam *pause)
2357{
2358	struct fec_enet_private *fep = netdev_priv(ndev);
2359
2360	if (!ndev->phydev)
2361		return -ENODEV;
2362
2363	if (pause->tx_pause != pause->rx_pause) {
2364		netdev_info(ndev,
2365			"hardware only support enable/disable both tx and rx");
2366		return -EINVAL;
2367	}
2368
2369	fep->pause_flag = 0;
2370
2371	/* tx pause must be same as rx pause */
2372	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2373	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2374
2375	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2376			  pause->autoneg);
2377
2378	if (pause->autoneg) {
2379		if (netif_running(ndev))
2380			fec_stop(ndev);
2381		phy_start_aneg(ndev->phydev);
2382	}
2383	if (netif_running(ndev)) {
2384		napi_disable(&fep->napi);
2385		netif_tx_lock_bh(ndev);
2386		fec_restart(ndev);
2387		netif_tx_wake_all_queues(ndev);
2388		netif_tx_unlock_bh(ndev);
2389		napi_enable(&fep->napi);
2390	}
2391
2392	return 0;
2393}
2394
2395static const struct fec_stat {
2396	char name[ETH_GSTRING_LEN];
2397	u16 offset;
2398} fec_stats[] = {
2399	/* RMON TX */
2400	{ "tx_dropped", RMON_T_DROP },
2401	{ "tx_packets", RMON_T_PACKETS },
2402	{ "tx_broadcast", RMON_T_BC_PKT },
2403	{ "tx_multicast", RMON_T_MC_PKT },
2404	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2405	{ "tx_undersize", RMON_T_UNDERSIZE },
2406	{ "tx_oversize", RMON_T_OVERSIZE },
2407	{ "tx_fragment", RMON_T_FRAG },
2408	{ "tx_jabber", RMON_T_JAB },
2409	{ "tx_collision", RMON_T_COL },
2410	{ "tx_64byte", RMON_T_P64 },
2411	{ "tx_65to127byte", RMON_T_P65TO127 },
2412	{ "tx_128to255byte", RMON_T_P128TO255 },
2413	{ "tx_256to511byte", RMON_T_P256TO511 },
2414	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2415	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2416	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2417	{ "tx_octets", RMON_T_OCTETS },
2418
2419	/* IEEE TX */
2420	{ "IEEE_tx_drop", IEEE_T_DROP },
2421	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2422	{ "IEEE_tx_1col", IEEE_T_1COL },
2423	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2424	{ "IEEE_tx_def", IEEE_T_DEF },
2425	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2426	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2427	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2428	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2429	{ "IEEE_tx_sqe", IEEE_T_SQE },
2430	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2431	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2432
2433	/* RMON RX */
2434	{ "rx_packets", RMON_R_PACKETS },
2435	{ "rx_broadcast", RMON_R_BC_PKT },
2436	{ "rx_multicast", RMON_R_MC_PKT },
2437	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2438	{ "rx_undersize", RMON_R_UNDERSIZE },
2439	{ "rx_oversize", RMON_R_OVERSIZE },
2440	{ "rx_fragment", RMON_R_FRAG },
2441	{ "rx_jabber", RMON_R_JAB },
2442	{ "rx_64byte", RMON_R_P64 },
2443	{ "rx_65to127byte", RMON_R_P65TO127 },
2444	{ "rx_128to255byte", RMON_R_P128TO255 },
2445	{ "rx_256to511byte", RMON_R_P256TO511 },
2446	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2447	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2448	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2449	{ "rx_octets", RMON_R_OCTETS },
2450
2451	/* IEEE RX */
2452	{ "IEEE_rx_drop", IEEE_R_DROP },
2453	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2454	{ "IEEE_rx_crc", IEEE_R_CRC },
2455	{ "IEEE_rx_align", IEEE_R_ALIGN },
2456	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2457	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2458	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2459};
2460
2461#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2462
2463static void fec_enet_update_ethtool_stats(struct net_device *dev)
2464{
2465	struct fec_enet_private *fep = netdev_priv(dev);
2466	int i;
2467
2468	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2469		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2470}
2471
2472static void fec_enet_get_ethtool_stats(struct net_device *dev,
2473				       struct ethtool_stats *stats, u64 *data)
2474{
2475	struct fec_enet_private *fep = netdev_priv(dev);
2476
2477	if (netif_running(dev))
2478		fec_enet_update_ethtool_stats(dev);
2479
2480	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2481}
2482
2483static void fec_enet_get_strings(struct net_device *netdev,
2484	u32 stringset, u8 *data)
2485{
2486	int i;
2487	switch (stringset) {
2488	case ETH_SS_STATS:
2489		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2490			memcpy(data + i * ETH_GSTRING_LEN,
2491				fec_stats[i].name, ETH_GSTRING_LEN);
2492		break;
2493	case ETH_SS_TEST:
2494		net_selftest_get_strings(data);
2495		break;
2496	}
2497}
2498
2499static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2500{
2501	switch (sset) {
2502	case ETH_SS_STATS:
2503		return ARRAY_SIZE(fec_stats);
2504	case ETH_SS_TEST:
2505		return net_selftest_get_count();
2506	default:
2507		return -EOPNOTSUPP;
2508	}
2509}
2510
2511static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2512{
2513	struct fec_enet_private *fep = netdev_priv(dev);
2514	int i;
2515
2516	/* Disable MIB statistics counters */
2517	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2518
2519	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2520		writel(0, fep->hwp + fec_stats[i].offset);
2521
2522	/* Don't disable MIB statistics counters */
2523	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2524}
2525
2526#else	/* !defined(CONFIG_M5272) */
2527#define FEC_STATS_SIZE	0
2528static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2529{
2530}
2531
2532static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2533{
2534}
2535#endif /* !defined(CONFIG_M5272) */
2536
2537/* ITR clock source is enet system clock (clk_ahb).
2538 * TCTT unit is cycle_ns * 64 cycle
2539 * So, the ICTT value = X us / (cycle_ns * 64)
2540 */
2541static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2542{
2543	struct fec_enet_private *fep = netdev_priv(ndev);
2544
2545	return us * (fep->itr_clk_rate / 64000) / 1000;
2546}
2547
2548/* Set threshold for interrupt coalescing */
2549static void fec_enet_itr_coal_set(struct net_device *ndev)
2550{
2551	struct fec_enet_private *fep = netdev_priv(ndev);
2552	int rx_itr, tx_itr;
2553
2554	/* Must be greater than zero to avoid unpredictable behavior */
2555	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2556	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2557		return;
2558
2559	/* Select enet system clock as Interrupt Coalescing
2560	 * timer Clock Source
2561	 */
2562	rx_itr = FEC_ITR_CLK_SEL;
2563	tx_itr = FEC_ITR_CLK_SEL;
2564
2565	/* set ICFT and ICTT */
2566	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2567	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2568	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2569	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2570
2571	rx_itr |= FEC_ITR_EN;
2572	tx_itr |= FEC_ITR_EN;
2573
2574	writel(tx_itr, fep->hwp + FEC_TXIC0);
2575	writel(rx_itr, fep->hwp + FEC_RXIC0);
2576	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2577		writel(tx_itr, fep->hwp + FEC_TXIC1);
2578		writel(rx_itr, fep->hwp + FEC_RXIC1);
2579		writel(tx_itr, fep->hwp + FEC_TXIC2);
2580		writel(rx_itr, fep->hwp + FEC_RXIC2);
2581	}
2582}
2583
2584static int
2585fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2586{
2587	struct fec_enet_private *fep = netdev_priv(ndev);
2588
2589	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2590		return -EOPNOTSUPP;
2591
2592	ec->rx_coalesce_usecs = fep->rx_time_itr;
2593	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2594
2595	ec->tx_coalesce_usecs = fep->tx_time_itr;
2596	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2597
2598	return 0;
2599}
2600
2601static int
2602fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2603{
2604	struct fec_enet_private *fep = netdev_priv(ndev);
2605	struct device *dev = &fep->pdev->dev;
2606	unsigned int cycle;
2607
2608	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2609		return -EOPNOTSUPP;
2610
2611	if (ec->rx_max_coalesced_frames > 255) {
2612		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2613		return -EINVAL;
2614	}
2615
2616	if (ec->tx_max_coalesced_frames > 255) {
2617		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2618		return -EINVAL;
2619	}
2620
2621	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2622	if (cycle > 0xFFFF) {
2623		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2624		return -EINVAL;
2625	}
2626
2627	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2628	if (cycle > 0xFFFF) {
2629		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2630		return -EINVAL;
2631	}
2632
2633	fep->rx_time_itr = ec->rx_coalesce_usecs;
2634	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2635
2636	fep->tx_time_itr = ec->tx_coalesce_usecs;
2637	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2638
2639	fec_enet_itr_coal_set(ndev);
2640
2641	return 0;
2642}
2643
2644static void fec_enet_itr_coal_init(struct net_device *ndev)
2645{
2646	struct ethtool_coalesce ec;
2647
2648	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2649	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2650
2651	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2652	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2653
2654	fec_enet_set_coalesce(ndev, &ec);
2655}
2656
2657static int fec_enet_get_tunable(struct net_device *netdev,
2658				const struct ethtool_tunable *tuna,
2659				void *data)
2660{
2661	struct fec_enet_private *fep = netdev_priv(netdev);
2662	int ret = 0;
2663
2664	switch (tuna->id) {
2665	case ETHTOOL_RX_COPYBREAK:
2666		*(u32 *)data = fep->rx_copybreak;
2667		break;
2668	default:
2669		ret = -EINVAL;
2670		break;
2671	}
2672
2673	return ret;
2674}
2675
2676static int fec_enet_set_tunable(struct net_device *netdev,
2677				const struct ethtool_tunable *tuna,
2678				const void *data)
2679{
2680	struct fec_enet_private *fep = netdev_priv(netdev);
2681	int ret = 0;
2682
2683	switch (tuna->id) {
2684	case ETHTOOL_RX_COPYBREAK:
2685		fep->rx_copybreak = *(u32 *)data;
2686		break;
2687	default:
2688		ret = -EINVAL;
2689		break;
2690	}
2691
2692	return ret;
2693}
2694
2695static void
2696fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2697{
2698	struct fec_enet_private *fep = netdev_priv(ndev);
2699
2700	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2701		wol->supported = WAKE_MAGIC;
2702		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2703	} else {
2704		wol->supported = wol->wolopts = 0;
2705	}
2706}
2707
2708static int
2709fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2710{
2711	struct fec_enet_private *fep = netdev_priv(ndev);
2712
2713	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2714		return -EINVAL;
2715
2716	if (wol->wolopts & ~WAKE_MAGIC)
2717		return -EINVAL;
2718
2719	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2720	if (device_may_wakeup(&ndev->dev)) {
2721		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2722		if (fep->irq[0] > 0)
2723			enable_irq_wake(fep->irq[0]);
2724	} else {
2725		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2726		if (fep->irq[0] > 0)
2727			disable_irq_wake(fep->irq[0]);
2728	}
2729
2730	return 0;
2731}
2732
2733static const struct ethtool_ops fec_enet_ethtool_ops = {
2734	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2735				     ETHTOOL_COALESCE_MAX_FRAMES,
2736	.get_drvinfo		= fec_enet_get_drvinfo,
2737	.get_regs_len		= fec_enet_get_regs_len,
2738	.get_regs		= fec_enet_get_regs,
2739	.nway_reset		= phy_ethtool_nway_reset,
2740	.get_link		= ethtool_op_get_link,
2741	.get_coalesce		= fec_enet_get_coalesce,
2742	.set_coalesce		= fec_enet_set_coalesce,
2743#ifndef CONFIG_M5272
2744	.get_pauseparam		= fec_enet_get_pauseparam,
2745	.set_pauseparam		= fec_enet_set_pauseparam,
2746	.get_strings		= fec_enet_get_strings,
2747	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2748	.get_sset_count		= fec_enet_get_sset_count,
2749#endif
2750	.get_ts_info		= fec_enet_get_ts_info,
2751	.get_tunable		= fec_enet_get_tunable,
2752	.set_tunable		= fec_enet_set_tunable,
2753	.get_wol		= fec_enet_get_wol,
2754	.set_wol		= fec_enet_set_wol,
2755	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2756	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2757	.self_test		= net_selftest,
2758};
2759
2760static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2761{
2762	struct fec_enet_private *fep = netdev_priv(ndev);
2763	struct phy_device *phydev = ndev->phydev;
2764
2765	if (!netif_running(ndev))
2766		return -EINVAL;
2767
2768	if (!phydev)
2769		return -ENODEV;
2770
2771	if (fep->bufdesc_ex) {
2772		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2773
2774		if (cmd == SIOCSHWTSTAMP) {
2775			if (use_fec_hwts)
2776				return fec_ptp_set(ndev, rq);
2777			fec_ptp_disable_hwts(ndev);
2778		} else if (cmd == SIOCGHWTSTAMP) {
2779			if (use_fec_hwts)
2780				return fec_ptp_get(ndev, rq);
2781		}
2782	}
2783
2784	return phy_mii_ioctl(phydev, rq, cmd);
2785}
2786
2787static void fec_enet_free_buffers(struct net_device *ndev)
2788{
2789	struct fec_enet_private *fep = netdev_priv(ndev);
2790	unsigned int i;
2791	struct sk_buff *skb;
2792	struct bufdesc	*bdp;
2793	struct fec_enet_priv_tx_q *txq;
2794	struct fec_enet_priv_rx_q *rxq;
2795	unsigned int q;
2796
2797	for (q = 0; q < fep->num_rx_queues; q++) {
2798		rxq = fep->rx_queue[q];
2799		bdp = rxq->bd.base;
2800		for (i = 0; i < rxq->bd.ring_size; i++) {
2801			skb = rxq->rx_skbuff[i];
2802			rxq->rx_skbuff[i] = NULL;
2803			if (skb) {
2804				dma_unmap_single(&fep->pdev->dev,
2805						 fec32_to_cpu(bdp->cbd_bufaddr),
2806						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2807						 DMA_FROM_DEVICE);
2808				dev_kfree_skb(skb);
2809			}
2810			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2811		}
2812	}
2813
2814	for (q = 0; q < fep->num_tx_queues; q++) {
2815		txq = fep->tx_queue[q];
2816		for (i = 0; i < txq->bd.ring_size; i++) {
2817			kfree(txq->tx_bounce[i]);
2818			txq->tx_bounce[i] = NULL;
2819			skb = txq->tx_skbuff[i];
2820			txq->tx_skbuff[i] = NULL;
2821			dev_kfree_skb(skb);
2822		}
2823	}
2824}
2825
2826static void fec_enet_free_queue(struct net_device *ndev)
2827{
2828	struct fec_enet_private *fep = netdev_priv(ndev);
2829	int i;
2830	struct fec_enet_priv_tx_q *txq;
2831
2832	for (i = 0; i < fep->num_tx_queues; i++)
2833		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2834			txq = fep->tx_queue[i];
2835			dma_free_coherent(&fep->pdev->dev,
2836					  txq->bd.ring_size * TSO_HEADER_SIZE,
2837					  txq->tso_hdrs,
2838					  txq->tso_hdrs_dma);
2839		}
2840
2841	for (i = 0; i < fep->num_rx_queues; i++)
2842		kfree(fep->rx_queue[i]);
2843	for (i = 0; i < fep->num_tx_queues; i++)
2844		kfree(fep->tx_queue[i]);
2845}
2846
2847static int fec_enet_alloc_queue(struct net_device *ndev)
2848{
2849	struct fec_enet_private *fep = netdev_priv(ndev);
2850	int i;
2851	int ret = 0;
2852	struct fec_enet_priv_tx_q *txq;
2853
2854	for (i = 0; i < fep->num_tx_queues; i++) {
2855		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2856		if (!txq) {
2857			ret = -ENOMEM;
2858			goto alloc_failed;
2859		}
2860
2861		fep->tx_queue[i] = txq;
2862		txq->bd.ring_size = TX_RING_SIZE;
2863		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2864
2865		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2866		txq->tx_wake_threshold =
2867			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2868
2869		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2870					txq->bd.ring_size * TSO_HEADER_SIZE,
2871					&txq->tso_hdrs_dma,
2872					GFP_KERNEL);
2873		if (!txq->tso_hdrs) {
2874			ret = -ENOMEM;
2875			goto alloc_failed;
2876		}
2877	}
2878
2879	for (i = 0; i < fep->num_rx_queues; i++) {
2880		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2881					   GFP_KERNEL);
2882		if (!fep->rx_queue[i]) {
2883			ret = -ENOMEM;
2884			goto alloc_failed;
2885		}
2886
2887		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2888		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2889	}
2890	return ret;
2891
2892alloc_failed:
2893	fec_enet_free_queue(ndev);
2894	return ret;
2895}
2896
2897static int
2898fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2899{
2900	struct fec_enet_private *fep = netdev_priv(ndev);
2901	unsigned int i;
2902	struct sk_buff *skb;
2903	struct bufdesc	*bdp;
2904	struct fec_enet_priv_rx_q *rxq;
2905
2906	rxq = fep->rx_queue[queue];
2907	bdp = rxq->bd.base;
2908	for (i = 0; i < rxq->bd.ring_size; i++) {
2909		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2910		if (!skb)
2911			goto err_alloc;
2912
2913		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2914			dev_kfree_skb(skb);
2915			goto err_alloc;
2916		}
2917
2918		rxq->rx_skbuff[i] = skb;
2919		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2920
2921		if (fep->bufdesc_ex) {
2922			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2923			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2924		}
2925
2926		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2927	}
2928
2929	/* Set the last buffer to wrap. */
2930	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2931	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2932	return 0;
2933
2934 err_alloc:
2935	fec_enet_free_buffers(ndev);
2936	return -ENOMEM;
2937}
2938
2939static int
2940fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2941{
2942	struct fec_enet_private *fep = netdev_priv(ndev);
2943	unsigned int i;
2944	struct bufdesc  *bdp;
2945	struct fec_enet_priv_tx_q *txq;
2946
2947	txq = fep->tx_queue[queue];
2948	bdp = txq->bd.base;
2949	for (i = 0; i < txq->bd.ring_size; i++) {
2950		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2951		if (!txq->tx_bounce[i])
2952			goto err_alloc;
2953
2954		bdp->cbd_sc = cpu_to_fec16(0);
2955		bdp->cbd_bufaddr = cpu_to_fec32(0);
2956
2957		if (fep->bufdesc_ex) {
2958			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2959			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2960		}
2961
2962		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2963	}
2964
2965	/* Set the last buffer to wrap. */
2966	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2967	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2968
2969	return 0;
2970
2971 err_alloc:
2972	fec_enet_free_buffers(ndev);
2973	return -ENOMEM;
2974}
2975
2976static int fec_enet_alloc_buffers(struct net_device *ndev)
2977{
2978	struct fec_enet_private *fep = netdev_priv(ndev);
2979	unsigned int i;
2980
2981	for (i = 0; i < fep->num_rx_queues; i++)
2982		if (fec_enet_alloc_rxq_buffers(ndev, i))
2983			return -ENOMEM;
2984
2985	for (i = 0; i < fep->num_tx_queues; i++)
2986		if (fec_enet_alloc_txq_buffers(ndev, i))
2987			return -ENOMEM;
2988	return 0;
2989}
2990
2991static int
2992fec_enet_open(struct net_device *ndev)
2993{
2994	struct fec_enet_private *fep = netdev_priv(ndev);
2995	int ret;
2996	bool reset_again;
2997
2998	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
2999	if (ret < 0)
3000		return ret;
3001
3002	pinctrl_pm_select_default_state(&fep->pdev->dev);
3003	ret = fec_enet_clk_enable(ndev, true);
3004	if (ret)
3005		goto clk_enable;
3006
3007	/* During the first fec_enet_open call the PHY isn't probed at this
3008	 * point. Therefore the phy_reset_after_clk_enable() call within
3009	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3010	 * sure the PHY is working correctly we check if we need to reset again
3011	 * later when the PHY is probed
3012	 */
3013	if (ndev->phydev && ndev->phydev->drv)
3014		reset_again = false;
3015	else
3016		reset_again = true;
3017
3018	/* I should reset the ring buffers here, but I don't yet know
3019	 * a simple way to do that.
3020	 */
3021
3022	ret = fec_enet_alloc_buffers(ndev);
3023	if (ret)
3024		goto err_enet_alloc;
3025
3026	/* Init MAC prior to mii bus probe */
3027	fec_restart(ndev);
3028
3029	/* Call phy_reset_after_clk_enable() again if it failed during
3030	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3031	 */
3032	if (reset_again)
3033		fec_enet_phy_reset_after_clk_enable(ndev);
3034
3035	/* Probe and connect to PHY when open the interface */
3036	ret = fec_enet_mii_probe(ndev);
3037	if (ret)
3038		goto err_enet_mii_probe;
3039
3040	if (fep->quirks & FEC_QUIRK_ERR006687)
3041		imx6q_cpuidle_fec_irqs_used();
3042
3043	napi_enable(&fep->napi);
3044	phy_start(ndev->phydev);
3045	netif_tx_start_all_queues(ndev);
3046
3047	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3048				 FEC_WOL_FLAG_ENABLE);
3049
3050	return 0;
3051
3052err_enet_mii_probe:
3053	fec_enet_free_buffers(ndev);
3054err_enet_alloc:
3055	fec_enet_clk_enable(ndev, false);
3056clk_enable:
3057	pm_runtime_mark_last_busy(&fep->pdev->dev);
3058	pm_runtime_put_autosuspend(&fep->pdev->dev);
3059	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3060	return ret;
3061}
3062
3063static int
3064fec_enet_close(struct net_device *ndev)
3065{
3066	struct fec_enet_private *fep = netdev_priv(ndev);
3067
3068	phy_stop(ndev->phydev);
3069
3070	if (netif_device_present(ndev)) {
3071		napi_disable(&fep->napi);
3072		netif_tx_disable(ndev);
3073		fec_stop(ndev);
3074	}
3075
3076	phy_disconnect(ndev->phydev);
3077
3078	if (fep->quirks & FEC_QUIRK_ERR006687)
3079		imx6q_cpuidle_fec_irqs_unused();
3080
3081	fec_enet_update_ethtool_stats(ndev);
3082
3083	fec_enet_clk_enable(ndev, false);
3084	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3085	pm_runtime_mark_last_busy(&fep->pdev->dev);
3086	pm_runtime_put_autosuspend(&fep->pdev->dev);
3087
3088	fec_enet_free_buffers(ndev);
3089
3090	return 0;
3091}
3092
3093/* Set or clear the multicast filter for this adaptor.
3094 * Skeleton taken from sunlance driver.
3095 * The CPM Ethernet implementation allows Multicast as well as individual
3096 * MAC address filtering.  Some of the drivers check to make sure it is
3097 * a group multicast address, and discard those that are not.  I guess I
3098 * will do the same for now, but just remove the test if you want
3099 * individual filtering as well (do the upper net layers want or support
3100 * this kind of feature?).
3101 */
3102
3103#define FEC_HASH_BITS	6		/* #bits in hash */
3104
3105static void set_multicast_list(struct net_device *ndev)
3106{
3107	struct fec_enet_private *fep = netdev_priv(ndev);
3108	struct netdev_hw_addr *ha;
3109	unsigned int crc, tmp;
3110	unsigned char hash;
3111	unsigned int hash_high = 0, hash_low = 0;
3112
3113	if (ndev->flags & IFF_PROMISC) {
3114		tmp = readl(fep->hwp + FEC_R_CNTRL);
3115		tmp |= 0x8;
3116		writel(tmp, fep->hwp + FEC_R_CNTRL);
3117		return;
3118	}
3119
3120	tmp = readl(fep->hwp + FEC_R_CNTRL);
3121	tmp &= ~0x8;
3122	writel(tmp, fep->hwp + FEC_R_CNTRL);
3123
3124	if (ndev->flags & IFF_ALLMULTI) {
3125		/* Catch all multicast addresses, so set the
3126		 * filter to all 1's
3127		 */
3128		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3129		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3130
3131		return;
3132	}
3133
3134	/* Add the addresses in hash register */
3135	netdev_for_each_mc_addr(ha, ndev) {
3136		/* calculate crc32 value of mac address */
3137		crc = ether_crc_le(ndev->addr_len, ha->addr);
3138
3139		/* only upper 6 bits (FEC_HASH_BITS) are used
3140		 * which point to specific bit in the hash registers
3141		 */
3142		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3143
3144		if (hash > 31)
3145			hash_high |= 1 << (hash - 32);
3146		else
3147			hash_low |= 1 << hash;
3148	}
3149
3150	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3151	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3152}
3153
3154/* Set a MAC change in hardware. */
3155static int
3156fec_set_mac_address(struct net_device *ndev, void *p)
3157{
3158	struct fec_enet_private *fep = netdev_priv(ndev);
3159	struct sockaddr *addr = p;
3160
3161	if (addr) {
3162		if (!is_valid_ether_addr(addr->sa_data))
3163			return -EADDRNOTAVAIL;
3164		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3165	}
3166
3167	/* Add netif status check here to avoid system hang in below case:
3168	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3169	 * After ethx down, fec all clocks are gated off and then register
3170	 * access causes system hang.
3171	 */
3172	if (!netif_running(ndev))
3173		return 0;
3174
3175	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3176		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3177		fep->hwp + FEC_ADDR_LOW);
3178	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3179		fep->hwp + FEC_ADDR_HIGH);
3180	return 0;
3181}
3182
3183#ifdef CONFIG_NET_POLL_CONTROLLER
3184/**
3185 * fec_poll_controller - FEC Poll controller function
3186 * @dev: The FEC network adapter
3187 *
3188 * Polled functionality used by netconsole and others in non interrupt mode
3189 *
3190 */
3191static void fec_poll_controller(struct net_device *dev)
3192{
3193	int i;
3194	struct fec_enet_private *fep = netdev_priv(dev);
3195
3196	for (i = 0; i < FEC_IRQ_NUM; i++) {
3197		if (fep->irq[i] > 0) {
3198			disable_irq(fep->irq[i]);
3199			fec_enet_interrupt(fep->irq[i], dev);
3200			enable_irq(fep->irq[i]);
3201		}
3202	}
3203}
3204#endif
3205
3206static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3207	netdev_features_t features)
3208{
3209	struct fec_enet_private *fep = netdev_priv(netdev);
3210	netdev_features_t changed = features ^ netdev->features;
3211
3212	netdev->features = features;
3213
3214	/* Receive checksum has been changed */
3215	if (changed & NETIF_F_RXCSUM) {
3216		if (features & NETIF_F_RXCSUM)
3217			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3218		else
3219			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3220	}
3221}
3222
3223static int fec_set_features(struct net_device *netdev,
3224	netdev_features_t features)
3225{
3226	struct fec_enet_private *fep = netdev_priv(netdev);
3227	netdev_features_t changed = features ^ netdev->features;
3228
3229	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3230		napi_disable(&fep->napi);
3231		netif_tx_lock_bh(netdev);
3232		fec_stop(netdev);
3233		fec_enet_set_netdev_features(netdev, features);
3234		fec_restart(netdev);
3235		netif_tx_wake_all_queues(netdev);
3236		netif_tx_unlock_bh(netdev);
3237		napi_enable(&fep->napi);
3238	} else {
3239		fec_enet_set_netdev_features(netdev, features);
3240	}
3241
3242	return 0;
3243}
3244
3245static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3246{
3247	struct vlan_ethhdr *vhdr;
3248	unsigned short vlan_TCI = 0;
3249
3250	if (skb->protocol == htons(ETH_P_ALL)) {
3251		vhdr = (struct vlan_ethhdr *)(skb->data);
3252		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3253	}
3254
3255	return vlan_TCI;
3256}
3257
3258static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3259				 struct net_device *sb_dev)
3260{
3261	struct fec_enet_private *fep = netdev_priv(ndev);
3262	u16 vlan_tag;
3263
3264	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3265		return netdev_pick_tx(ndev, skb, NULL);
3266
3267	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3268	if (!vlan_tag)
3269		return vlan_tag;
3270
3271	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3272}
3273
3274static const struct net_device_ops fec_netdev_ops = {
3275	.ndo_open		= fec_enet_open,
3276	.ndo_stop		= fec_enet_close,
3277	.ndo_start_xmit		= fec_enet_start_xmit,
3278	.ndo_select_queue       = fec_enet_select_queue,
3279	.ndo_set_rx_mode	= set_multicast_list,
3280	.ndo_validate_addr	= eth_validate_addr,
3281	.ndo_tx_timeout		= fec_timeout,
3282	.ndo_set_mac_address	= fec_set_mac_address,
3283	.ndo_do_ioctl		= fec_enet_ioctl,
3284#ifdef CONFIG_NET_POLL_CONTROLLER
3285	.ndo_poll_controller	= fec_poll_controller,
3286#endif
3287	.ndo_set_features	= fec_set_features,
3288};
3289
3290static const unsigned short offset_des_active_rxq[] = {
3291	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3292};
3293
3294static const unsigned short offset_des_active_txq[] = {
3295	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3296};
3297
3298 /*
3299  * XXX:  We need to clean up on failure exits here.
3300  *
3301  */
3302static int fec_enet_init(struct net_device *ndev)
3303{
3304	struct fec_enet_private *fep = netdev_priv(ndev);
3305	struct bufdesc *cbd_base;
3306	dma_addr_t bd_dma;
3307	int bd_size;
3308	unsigned int i;
3309	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3310			sizeof(struct bufdesc);
3311	unsigned dsize_log2 = __fls(dsize);
3312	int ret;
3313
3314	WARN_ON(dsize != (1 << dsize_log2));
3315#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3316	fep->rx_align = 0xf;
3317	fep->tx_align = 0xf;
3318#else
3319	fep->rx_align = 0x3;
3320	fep->tx_align = 0x3;
3321#endif
3322
3323	/* Check mask of the streaming and coherent API */
3324	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3325	if (ret < 0) {
3326		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3327		return ret;
3328	}
3329
3330	ret = fec_enet_alloc_queue(ndev);
3331	if (ret)
3332		return ret;
3333
3334	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3335
3336	/* Allocate memory for buffer descriptors. */
3337	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3338				       GFP_KERNEL);
3339	if (!cbd_base) {
3340		ret = -ENOMEM;
3341		goto free_queue_mem;
3342	}
3343
3344	/* Get the Ethernet address */
3345	ret = fec_get_mac(ndev);
3346	if (ret)
3347		goto free_queue_mem;
3348
3349	/* make sure MAC we just acquired is programmed into the hw */
3350	fec_set_mac_address(ndev, NULL);
3351
3352	/* Set receive and transmit descriptor base. */
3353	for (i = 0; i < fep->num_rx_queues; i++) {
3354		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3355		unsigned size = dsize * rxq->bd.ring_size;
3356
3357		rxq->bd.qid = i;
3358		rxq->bd.base = cbd_base;
3359		rxq->bd.cur = cbd_base;
3360		rxq->bd.dma = bd_dma;
3361		rxq->bd.dsize = dsize;
3362		rxq->bd.dsize_log2 = dsize_log2;
3363		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3364		bd_dma += size;
3365		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3366		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3367	}
3368
3369	for (i = 0; i < fep->num_tx_queues; i++) {
3370		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3371		unsigned size = dsize * txq->bd.ring_size;
3372
3373		txq->bd.qid = i;
3374		txq->bd.base = cbd_base;
3375		txq->bd.cur = cbd_base;
3376		txq->bd.dma = bd_dma;
3377		txq->bd.dsize = dsize;
3378		txq->bd.dsize_log2 = dsize_log2;
3379		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3380		bd_dma += size;
3381		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3382		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3383	}
3384
3385
3386	/* The FEC Ethernet specific entries in the device structure */
3387	ndev->watchdog_timeo = TX_TIMEOUT;
3388	ndev->netdev_ops = &fec_netdev_ops;
3389	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3390
3391	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3392	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3393
3394	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3395		/* enable hw VLAN support */
3396		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3397
3398	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3399		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3400
3401		/* enable hw accelerator */
3402		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3403				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3404		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3405	}
3406
3407	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3408		fep->tx_align = 0;
3409		fep->rx_align = 0x3f;
3410	}
3411
3412	ndev->hw_features = ndev->features;
3413
3414	fec_restart(ndev);
3415
3416	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3417		fec_enet_clear_ethtool_stats(ndev);
3418	else
3419		fec_enet_update_ethtool_stats(ndev);
3420
3421	return 0;
3422
3423free_queue_mem:
3424	fec_enet_free_queue(ndev);
3425	return ret;
3426}
3427
3428#ifdef CONFIG_OF
3429static int fec_reset_phy(struct platform_device *pdev)
3430{
3431	int err, phy_reset;
3432	bool active_high = false;
3433	int msec = 1, phy_post_delay = 0;
3434	struct device_node *np = pdev->dev.of_node;
3435
3436	if (!np)
3437		return 0;
3438
3439	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3440	/* A sane reset duration should not be longer than 1s */
3441	if (!err && msec > 1000)
3442		msec = 1;
3443
3444	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3445	if (phy_reset == -EPROBE_DEFER)
3446		return phy_reset;
3447	else if (!gpio_is_valid(phy_reset))
3448		return 0;
3449
3450	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3451	/* valid reset duration should be less than 1s */
3452	if (!err && phy_post_delay > 1000)
3453		return -EINVAL;
3454
3455	active_high = of_property_read_bool(np, "phy-reset-active-high");
3456
3457	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3458			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3459			"phy-reset");
3460	if (err) {
3461		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3462		return err;
3463	}
3464
3465	if (msec > 20)
3466		msleep(msec);
3467	else
3468		usleep_range(msec * 1000, msec * 1000 + 1000);
3469
3470	gpio_set_value_cansleep(phy_reset, !active_high);
3471
3472	if (!phy_post_delay)
3473		return 0;
3474
3475	if (phy_post_delay > 20)
3476		msleep(phy_post_delay);
3477	else
3478		usleep_range(phy_post_delay * 1000,
3479			     phy_post_delay * 1000 + 1000);
3480
3481	return 0;
3482}
3483#else /* CONFIG_OF */
3484static int fec_reset_phy(struct platform_device *pdev)
3485{
3486	/*
3487	 * In case of platform probe, the reset has been done
3488	 * by machine code.
3489	 */
3490	return 0;
3491}
3492#endif /* CONFIG_OF */
3493
3494static void
3495fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3496{
3497	struct device_node *np = pdev->dev.of_node;
3498
3499	*num_tx = *num_rx = 1;
3500
3501	if (!np || !of_device_is_available(np))
3502		return;
3503
3504	/* parse the num of tx and rx queues */
3505	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3506
3507	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3508
3509	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3510		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3511			 *num_tx);
3512		*num_tx = 1;
3513		return;
3514	}
3515
3516	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3517		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3518			 *num_rx);
3519		*num_rx = 1;
3520		return;
3521	}
3522
3523}
3524
3525static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3526{
3527	int irq_cnt = platform_irq_count(pdev);
3528
3529	if (irq_cnt > FEC_IRQ_NUM)
3530		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3531	else if (irq_cnt == 2)
3532		irq_cnt = 1;	/* last for pps */
3533	else if (irq_cnt <= 0)
3534		irq_cnt = 1;	/* At least 1 irq is needed */
3535	return irq_cnt;
3536}
3537
3538static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3539				   struct device_node *np)
3540{
3541	struct device_node *gpr_np;
3542	u32 out_val[3];
3543	int ret = 0;
3544
3545	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3546	if (!gpr_np)
3547		return 0;
3548
3549	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3550					 ARRAY_SIZE(out_val));
3551	if (ret) {
3552		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3553		return ret;
3554	}
3555
3556	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3557	if (IS_ERR(fep->stop_gpr.gpr)) {
3558		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3559		ret = PTR_ERR(fep->stop_gpr.gpr);
3560		fep->stop_gpr.gpr = NULL;
3561		goto out;
3562	}
3563
3564	fep->stop_gpr.reg = out_val[1];
3565	fep->stop_gpr.bit = out_val[2];
3566
3567out:
3568	of_node_put(gpr_np);
3569
3570	return ret;
3571}
3572
3573static int
3574fec_probe(struct platform_device *pdev)
3575{
3576	struct fec_enet_private *fep;
3577	struct fec_platform_data *pdata;
3578	phy_interface_t interface;
3579	struct net_device *ndev;
3580	int i, irq, ret = 0;
3581	const struct of_device_id *of_id;
3582	static int dev_id;
3583	struct device_node *np = pdev->dev.of_node, *phy_node;
3584	int num_tx_qs;
3585	int num_rx_qs;
3586	char irq_name[8];
3587	int irq_cnt;
3588	struct fec_devinfo *dev_info;
3589
3590	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3591
3592	/* Init network device */
3593	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3594				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3595	if (!ndev)
3596		return -ENOMEM;
3597
3598	SET_NETDEV_DEV(ndev, &pdev->dev);
3599
3600	/* setup board info structure */
3601	fep = netdev_priv(ndev);
3602
3603	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3604	if (of_id)
3605		pdev->id_entry = of_id->data;
3606	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3607	if (dev_info)
3608		fep->quirks = dev_info->quirks;
3609
3610	fep->netdev = ndev;
3611	fep->num_rx_queues = num_rx_qs;
3612	fep->num_tx_queues = num_tx_qs;
3613
3614#if !defined(CONFIG_M5272)
3615	/* default enable pause frame auto negotiation */
3616	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3617		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3618#endif
3619
3620	/* Select default pin state */
3621	pinctrl_pm_select_default_state(&pdev->dev);
3622
3623	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3624	if (IS_ERR(fep->hwp)) {
3625		ret = PTR_ERR(fep->hwp);
3626		goto failed_ioremap;
3627	}
3628
3629	fep->pdev = pdev;
3630	fep->dev_id = dev_id++;
3631
3632	platform_set_drvdata(pdev, ndev);
3633
3634	if ((of_machine_is_compatible("fsl,imx6q") ||
3635	     of_machine_is_compatible("fsl,imx6dl")) &&
3636	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3637		fep->quirks |= FEC_QUIRK_ERR006687;
3638
3639	if (of_get_property(np, "fsl,magic-packet", NULL))
3640		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3641
3642	ret = fec_enet_init_stop_mode(fep, np);
3643	if (ret)
3644		goto failed_stop_mode;
3645
3646	phy_node = of_parse_phandle(np, "phy-handle", 0);
3647	if (!phy_node && of_phy_is_fixed_link(np)) {
3648		ret = of_phy_register_fixed_link(np);
3649		if (ret < 0) {
3650			dev_err(&pdev->dev,
3651				"broken fixed-link specification\n");
3652			goto failed_phy;
3653		}
3654		phy_node = of_node_get(np);
3655	}
3656	fep->phy_node = phy_node;
3657
3658	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3659	if (ret) {
3660		pdata = dev_get_platdata(&pdev->dev);
3661		if (pdata)
3662			fep->phy_interface = pdata->phy;
3663		else
3664			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3665	} else {
3666		fep->phy_interface = interface;
3667	}
3668
3669	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3670	if (IS_ERR(fep->clk_ipg)) {
3671		ret = PTR_ERR(fep->clk_ipg);
3672		goto failed_clk;
3673	}
3674
3675	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3676	if (IS_ERR(fep->clk_ahb)) {
3677		ret = PTR_ERR(fep->clk_ahb);
3678		goto failed_clk;
3679	}
3680
3681	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3682
3683	/* enet_out is optional, depends on board */
3684	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3685	if (IS_ERR(fep->clk_enet_out))
3686		fep->clk_enet_out = NULL;
3687
3688	fep->ptp_clk_on = false;
3689	mutex_init(&fep->ptp_clk_mutex);
3690
3691	/* clk_ref is optional, depends on board */
3692	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3693	if (IS_ERR(fep->clk_ref))
3694		fep->clk_ref = NULL;
3695
3696	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3697	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3698	if (IS_ERR(fep->clk_ptp)) {
3699		fep->clk_ptp = NULL;
3700		fep->bufdesc_ex = false;
3701	}
3702
3703	ret = fec_enet_clk_enable(ndev, true);
3704	if (ret)
3705		goto failed_clk;
3706
3707	ret = clk_prepare_enable(fep->clk_ipg);
3708	if (ret)
3709		goto failed_clk_ipg;
3710	ret = clk_prepare_enable(fep->clk_ahb);
3711	if (ret)
3712		goto failed_clk_ahb;
3713
3714	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3715	if (!IS_ERR(fep->reg_phy)) {
3716		ret = regulator_enable(fep->reg_phy);
3717		if (ret) {
3718			dev_err(&pdev->dev,
3719				"Failed to enable phy regulator: %d\n", ret);
3720			goto failed_regulator;
3721		}
3722	} else {
3723		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3724			ret = -EPROBE_DEFER;
3725			goto failed_regulator;
3726		}
3727		fep->reg_phy = NULL;
3728	}
3729
3730	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3731	pm_runtime_use_autosuspend(&pdev->dev);
3732	pm_runtime_get_noresume(&pdev->dev);
3733	pm_runtime_set_active(&pdev->dev);
3734	pm_runtime_enable(&pdev->dev);
3735
3736	ret = fec_reset_phy(pdev);
3737	if (ret)
3738		goto failed_reset;
3739
3740	irq_cnt = fec_enet_get_irq_cnt(pdev);
3741	if (fep->bufdesc_ex)
3742		fec_ptp_init(pdev, irq_cnt);
3743
3744	ret = fec_enet_init(ndev);
3745	if (ret)
3746		goto failed_init;
3747
3748	for (i = 0; i < irq_cnt; i++) {
3749		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3750		irq = platform_get_irq_byname_optional(pdev, irq_name);
3751		if (irq < 0)
3752			irq = platform_get_irq(pdev, i);
3753		if (irq < 0) {
3754			ret = irq;
3755			goto failed_irq;
3756		}
3757		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3758				       0, pdev->name, ndev);
3759		if (ret)
3760			goto failed_irq;
3761
3762		fep->irq[i] = irq;
3763	}
3764
3765	ret = fec_enet_mii_init(pdev);
3766	if (ret)
3767		goto failed_mii_init;
3768
3769	/* Carrier starts down, phylib will bring it up */
3770	netif_carrier_off(ndev);
3771	fec_enet_clk_enable(ndev, false);
3772	pinctrl_pm_select_sleep_state(&pdev->dev);
3773
3774	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3775
3776	ret = register_netdev(ndev);
3777	if (ret)
3778		goto failed_register;
3779
3780	device_init_wakeup(&ndev->dev, fep->wol_flag &
3781			   FEC_WOL_HAS_MAGIC_PACKET);
3782
3783	if (fep->bufdesc_ex && fep->ptp_clock)
3784		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3785
3786	fep->rx_copybreak = COPYBREAK_DEFAULT;
3787	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3788
3789	pm_runtime_mark_last_busy(&pdev->dev);
3790	pm_runtime_put_autosuspend(&pdev->dev);
3791
3792	return 0;
3793
3794failed_register:
3795	fec_enet_mii_remove(fep);
3796failed_mii_init:
3797failed_irq:
3798failed_init:
3799	fec_ptp_stop(pdev);
3800failed_reset:
3801	pm_runtime_put_noidle(&pdev->dev);
3802	pm_runtime_disable(&pdev->dev);
3803	if (fep->reg_phy)
3804		regulator_disable(fep->reg_phy);
3805failed_regulator:
3806	clk_disable_unprepare(fep->clk_ahb);
3807failed_clk_ahb:
3808	clk_disable_unprepare(fep->clk_ipg);
3809failed_clk_ipg:
3810	fec_enet_clk_enable(ndev, false);
3811failed_clk:
3812	if (of_phy_is_fixed_link(np))
3813		of_phy_deregister_fixed_link(np);
3814	of_node_put(phy_node);
3815failed_stop_mode:
3816failed_phy:
3817	dev_id--;
3818failed_ioremap:
3819	free_netdev(ndev);
3820
3821	return ret;
3822}
3823
3824static int
3825fec_drv_remove(struct platform_device *pdev)
3826{
3827	struct net_device *ndev = platform_get_drvdata(pdev);
3828	struct fec_enet_private *fep = netdev_priv(ndev);
3829	struct device_node *np = pdev->dev.of_node;
3830	int ret;
3831
3832	ret = pm_runtime_resume_and_get(&pdev->dev);
3833	if (ret < 0)
3834		return ret;
3835
3836	cancel_work_sync(&fep->tx_timeout_work);
3837	fec_ptp_stop(pdev);
3838	unregister_netdev(ndev);
3839	fec_enet_mii_remove(fep);
3840	if (fep->reg_phy)
3841		regulator_disable(fep->reg_phy);
3842
3843	if (of_phy_is_fixed_link(np))
3844		of_phy_deregister_fixed_link(np);
3845	of_node_put(fep->phy_node);
3846
3847	clk_disable_unprepare(fep->clk_ahb);
3848	clk_disable_unprepare(fep->clk_ipg);
3849	pm_runtime_put_noidle(&pdev->dev);
3850	pm_runtime_disable(&pdev->dev);
3851
3852	free_netdev(ndev);
3853	return 0;
3854}
3855
3856static int __maybe_unused fec_suspend(struct device *dev)
3857{
3858	struct net_device *ndev = dev_get_drvdata(dev);
3859	struct fec_enet_private *fep = netdev_priv(ndev);
3860
3861	rtnl_lock();
3862	if (netif_running(ndev)) {
3863		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3864			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3865		phy_stop(ndev->phydev);
3866		napi_disable(&fep->napi);
3867		netif_tx_lock_bh(ndev);
3868		netif_device_detach(ndev);
3869		netif_tx_unlock_bh(ndev);
3870		fec_stop(ndev);
3871		fec_enet_clk_enable(ndev, false);
3872		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3873			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3874	}
3875	rtnl_unlock();
3876
3877	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3878		regulator_disable(fep->reg_phy);
3879
3880	/* SOC supply clock to phy, when clock is disabled, phy link down
3881	 * SOC control phy regulator, when regulator is disabled, phy link down
3882	 */
3883	if (fep->clk_enet_out || fep->reg_phy)
3884		fep->link = 0;
3885
3886	return 0;
3887}
3888
3889static int __maybe_unused fec_resume(struct device *dev)
3890{
3891	struct net_device *ndev = dev_get_drvdata(dev);
3892	struct fec_enet_private *fep = netdev_priv(ndev);
3893	int ret;
3894	int val;
3895
3896	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3897		ret = regulator_enable(fep->reg_phy);
3898		if (ret)
3899			return ret;
3900	}
3901
3902	rtnl_lock();
3903	if (netif_running(ndev)) {
3904		ret = fec_enet_clk_enable(ndev, true);
3905		if (ret) {
3906			rtnl_unlock();
3907			goto failed_clk;
3908		}
3909		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3910			fec_enet_stop_mode(fep, false);
3911
3912			val = readl(fep->hwp + FEC_ECNTRL);
3913			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3914			writel(val, fep->hwp + FEC_ECNTRL);
3915			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3916		} else {
3917			pinctrl_pm_select_default_state(&fep->pdev->dev);
3918		}
3919		fec_restart(ndev);
3920		netif_tx_lock_bh(ndev);
3921		netif_device_attach(ndev);
3922		netif_tx_unlock_bh(ndev);
3923		napi_enable(&fep->napi);
3924		phy_init_hw(ndev->phydev);
3925		phy_start(ndev->phydev);
3926	}
3927	rtnl_unlock();
3928
3929	return 0;
3930
3931failed_clk:
3932	if (fep->reg_phy)
3933		regulator_disable(fep->reg_phy);
3934	return ret;
3935}
3936
3937static int __maybe_unused fec_runtime_suspend(struct device *dev)
3938{
3939	struct net_device *ndev = dev_get_drvdata(dev);
3940	struct fec_enet_private *fep = netdev_priv(ndev);
3941
3942	clk_disable_unprepare(fep->clk_ahb);
3943	clk_disable_unprepare(fep->clk_ipg);
3944
3945	return 0;
3946}
3947
3948static int __maybe_unused fec_runtime_resume(struct device *dev)
3949{
3950	struct net_device *ndev = dev_get_drvdata(dev);
3951	struct fec_enet_private *fep = netdev_priv(ndev);
3952	int ret;
3953
3954	ret = clk_prepare_enable(fep->clk_ahb);
3955	if (ret)
3956		return ret;
3957	ret = clk_prepare_enable(fep->clk_ipg);
3958	if (ret)
3959		goto failed_clk_ipg;
3960
3961	return 0;
3962
3963failed_clk_ipg:
3964	clk_disable_unprepare(fep->clk_ahb);
3965	return ret;
3966}
3967
3968static const struct dev_pm_ops fec_pm_ops = {
3969	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3970	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3971};
3972
3973static struct platform_driver fec_driver = {
3974	.driver	= {
3975		.name	= DRIVER_NAME,
3976		.pm	= &fec_pm_ops,
3977		.of_match_table = fec_dt_ids,
3978		.suppress_bind_attrs = true,
3979	},
3980	.id_table = fec_devtype,
3981	.probe	= fec_probe,
3982	.remove	= fec_drv_remove,
3983};
3984
3985module_platform_driver(fec_driver);
3986
3987MODULE_ALIAS("platform:"DRIVER_NAME);
3988MODULE_LICENSE("GPL");