Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <net/dsa.h>
  15#include <net/switchdev.h>
  16
  17#include "ksz9477_reg.h"
  18#include "ksz_common.h"
  19
  20/* Used with variable features to indicate capabilities. */
  21#define GBIT_SUPPORT			BIT(0)
  22#define NEW_XMII			BIT(1)
  23#define IS_9893				BIT(2)
  24
  25static const struct {
  26	int index;
  27	char string[ETH_GSTRING_LEN];
  28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
  29	{ 0x00, "rx_hi" },
  30	{ 0x01, "rx_undersize" },
  31	{ 0x02, "rx_fragments" },
  32	{ 0x03, "rx_oversize" },
  33	{ 0x04, "rx_jabbers" },
  34	{ 0x05, "rx_symbol_err" },
  35	{ 0x06, "rx_crc_err" },
  36	{ 0x07, "rx_align_err" },
  37	{ 0x08, "rx_mac_ctrl" },
  38	{ 0x09, "rx_pause" },
  39	{ 0x0A, "rx_bcast" },
  40	{ 0x0B, "rx_mcast" },
  41	{ 0x0C, "rx_ucast" },
  42	{ 0x0D, "rx_64_or_less" },
  43	{ 0x0E, "rx_65_127" },
  44	{ 0x0F, "rx_128_255" },
  45	{ 0x10, "rx_256_511" },
  46	{ 0x11, "rx_512_1023" },
  47	{ 0x12, "rx_1024_1522" },
  48	{ 0x13, "rx_1523_2000" },
  49	{ 0x14, "rx_2001" },
  50	{ 0x15, "tx_hi" },
  51	{ 0x16, "tx_late_col" },
  52	{ 0x17, "tx_pause" },
  53	{ 0x18, "tx_bcast" },
  54	{ 0x19, "tx_mcast" },
  55	{ 0x1A, "tx_ucast" },
  56	{ 0x1B, "tx_deferred" },
  57	{ 0x1C, "tx_total_col" },
  58	{ 0x1D, "tx_exc_col" },
  59	{ 0x1E, "tx_single_col" },
  60	{ 0x1F, "tx_mult_col" },
  61	{ 0x80, "rx_total" },
  62	{ 0x81, "tx_total" },
  63	{ 0x82, "rx_discards" },
  64	{ 0x83, "tx_discards" },
  65};
  66
  67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  68{
  69	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  70}
  71
  72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  73			 bool set)
  74{
  75	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  76			   bits, set ? bits : 0);
  77}
  78
  79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  80{
  81	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  82}
  83
  84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  85			       u32 bits, bool set)
  86{
  87	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  88			   bits, set ? bits : 0);
  89}
  90
  91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  92{
  93	unsigned int val;
  94
  95	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  96					val, !(val & VLAN_START), 10, 1000);
  97}
  98
  99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
 100				  u32 *vlan_table)
 101{
 102	int ret;
 103
 104	mutex_lock(&dev->vlan_mutex);
 105
 106	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 107	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 108
 109	/* wait to be cleared */
 110	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 111	if (ret) {
 112		dev_dbg(dev->dev, "Failed to read vlan table\n");
 113		goto exit;
 114	}
 115
 116	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 117	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 118	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 119
 120	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 121
 122exit:
 123	mutex_unlock(&dev->vlan_mutex);
 124
 125	return ret;
 126}
 127
 128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
 129				  u32 *vlan_table)
 130{
 131	int ret;
 132
 133	mutex_lock(&dev->vlan_mutex);
 134
 135	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 136	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 137	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 138
 139	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 140	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 141
 142	/* wait to be cleared */
 143	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 144	if (ret) {
 145		dev_dbg(dev->dev, "Failed to write vlan table\n");
 146		goto exit;
 147	}
 148
 149	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 150
 151	/* update vlan cache table */
 152	dev->vlan_cache[vid].table[0] = vlan_table[0];
 153	dev->vlan_cache[vid].table[1] = vlan_table[1];
 154	dev->vlan_cache[vid].table[2] = vlan_table[2];
 155
 156exit:
 157	mutex_unlock(&dev->vlan_mutex);
 158
 159	return ret;
 160}
 161
 162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 163{
 164	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 165	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 166	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 167	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 168}
 169
 170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 171{
 172	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 173	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 174	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 175	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 176}
 177
 178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 179{
 180	unsigned int val;
 181
 182	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 183					val, !(val & ALU_START), 10, 1000);
 184}
 185
 186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 187{
 188	unsigned int val;
 189
 190	return regmap_read_poll_timeout(dev->regmap[2],
 191					REG_SW_ALU_STAT_CTRL__4,
 192					val, !(val & ALU_STAT_START),
 193					10, 1000);
 194}
 195
 196static int ksz9477_reset_switch(struct ksz_device *dev)
 197{
 198	u8 data8;
 199	u32 data32;
 200
 201	/* reset switch */
 202	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 203
 204	/* turn off SPI DO Edge select */
 205	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 206			   SPI_AUTO_EDGE_DETECTION, 0);
 207
 208	/* default configuration */
 209	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 210	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 211	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 212	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 213
 214	/* disable interrupts */
 215	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 216	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 217	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 218
 219	/* set broadcast storm protection 10% rate */
 220	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
 221			   BROADCAST_STORM_RATE,
 222			   (BROADCAST_STORM_VALUE *
 223			   BROADCAST_STORM_PROT_RATE) / 100);
 224
 225	if (dev->synclko_125)
 226		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
 227			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
 228
 229	return 0;
 230}
 231
 232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
 233			      u64 *cnt)
 234{
 235	struct ksz_port *p = &dev->ports[port];
 236	unsigned int val;
 237	u32 data;
 238	int ret;
 239
 240	/* retain the flush/freeze bit */
 241	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 242	data |= MIB_COUNTER_READ;
 243	data |= (addr << MIB_COUNTER_INDEX_S);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 245
 246	ret = regmap_read_poll_timeout(dev->regmap[2],
 247			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 248			val, !(val & MIB_COUNTER_READ), 10, 1000);
 249	/* failed to read MIB. get out of loop */
 250	if (ret) {
 251		dev_dbg(dev->dev, "Failed to get MIB\n");
 252		return;
 253	}
 254
 255	/* count resets upon read */
 256	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 257	*cnt += data;
 258}
 259
 260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 261			      u64 *dropped, u64 *cnt)
 262{
 263	addr = ksz9477_mib_names[addr].index;
 264	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 265}
 266
 267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 268{
 269	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 270	struct ksz_port *p = &dev->ports[port];
 271
 272	/* enable/disable the port for flush/freeze function */
 273	mutex_lock(&p->mib.cnt_mutex);
 274	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 275
 276	/* used by MIB counter reading code to know freeze is enabled */
 277	p->freeze = freeze;
 278	mutex_unlock(&p->mib.cnt_mutex);
 279}
 280
 281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 282{
 283	struct ksz_port_mib *mib = &dev->ports[port].mib;
 284
 285	/* flush all enabled port MIB counters */
 286	mutex_lock(&mib->cnt_mutex);
 287	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 288		     MIB_COUNTER_FLUSH_FREEZE);
 289	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 290	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 291	mutex_unlock(&mib->cnt_mutex);
 292
 293	mib->cnt_ptr = 0;
 294	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
 295}
 296
 297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
 298						      int port,
 299						      enum dsa_tag_protocol mp)
 300{
 301	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
 302	struct ksz_device *dev = ds->priv;
 303
 304	if (dev->features & IS_9893)
 305		proto = DSA_TAG_PROTO_KSZ9893;
 306	return proto;
 307}
 308
 309static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
 310{
 311	struct ksz_device *dev = ds->priv;
 312	u16 val = 0xffff;
 313
 314	/* No real PHY after this. Simulate the PHY.
 315	 * A fixed PHY can be setup in the device tree, but this function is
 316	 * still called for that port during initialization.
 317	 * For RGMII PHY there is no way to access it so the fixed PHY should
 318	 * be used.  For SGMII PHY the supporting code will be added later.
 319	 */
 320	if (addr >= dev->phy_port_cnt) {
 321		struct ksz_port *p = &dev->ports[addr];
 322
 323		switch (reg) {
 324		case MII_BMCR:
 325			val = 0x1140;
 326			break;
 327		case MII_BMSR:
 328			val = 0x796d;
 329			break;
 330		case MII_PHYSID1:
 331			val = 0x0022;
 332			break;
 333		case MII_PHYSID2:
 334			val = 0x1631;
 335			break;
 336		case MII_ADVERTISE:
 337			val = 0x05e1;
 338			break;
 339		case MII_LPA:
 340			val = 0xc5e1;
 341			break;
 342		case MII_CTRL1000:
 343			val = 0x0700;
 344			break;
 345		case MII_STAT1000:
 346			if (p->phydev.speed == SPEED_1000)
 347				val = 0x3800;
 348			else
 349				val = 0;
 350			break;
 351		}
 352	} else {
 353		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 354	}
 355
 356	return val;
 357}
 358
 359static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
 360			       u16 val)
 361{
 362	struct ksz_device *dev = ds->priv;
 363
 364	/* No real PHY after this. */
 365	if (addr >= dev->phy_port_cnt)
 366		return 0;
 367
 368	/* No gigabit support.  Do not write to this register. */
 369	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
 370		return 0;
 371	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 372
 373	return 0;
 374}
 375
 376static void ksz9477_get_strings(struct dsa_switch *ds, int port,
 377				u32 stringset, uint8_t *buf)
 378{
 379	int i;
 380
 381	if (stringset != ETH_SS_STATS)
 382		return;
 383
 384	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 385		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
 386		       ETH_GSTRING_LEN);
 387	}
 388}
 389
 390static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
 391				    u8 member)
 392{
 393	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 394	dev->ports[port].member = member;
 395}
 396
 397static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
 398				       u8 state)
 399{
 400	struct ksz_device *dev = ds->priv;
 401	struct ksz_port *p = &dev->ports[port];
 402	u8 data;
 403	int member = -1;
 404	int forward = dev->member;
 405
 406	ksz_pread8(dev, port, P_STP_CTRL, &data);
 407	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 408
 409	switch (state) {
 410	case BR_STATE_DISABLED:
 411		data |= PORT_LEARN_DISABLE;
 412		if (port != dev->cpu_port)
 413			member = 0;
 414		break;
 415	case BR_STATE_LISTENING:
 416		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 417		if (port != dev->cpu_port &&
 418		    p->stp_state == BR_STATE_DISABLED)
 419			member = dev->host_mask | p->vid_member;
 420		break;
 421	case BR_STATE_LEARNING:
 422		data |= PORT_RX_ENABLE;
 423		break;
 424	case BR_STATE_FORWARDING:
 425		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 426
 427		/* This function is also used internally. */
 428		if (port == dev->cpu_port)
 429			break;
 430
 431		member = dev->host_mask | p->vid_member;
 432		mutex_lock(&dev->dev_mutex);
 433
 434		/* Port is a member of a bridge. */
 435		if (dev->br_member & (1 << port)) {
 436			dev->member |= (1 << port);
 437			member = dev->member;
 438		}
 439		mutex_unlock(&dev->dev_mutex);
 440		break;
 441	case BR_STATE_BLOCKING:
 442		data |= PORT_LEARN_DISABLE;
 443		if (port != dev->cpu_port &&
 444		    p->stp_state == BR_STATE_DISABLED)
 445			member = dev->host_mask | p->vid_member;
 446		break;
 447	default:
 448		dev_err(ds->dev, "invalid STP state: %d\n", state);
 449		return;
 450	}
 451
 452	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 453	p->stp_state = state;
 454	mutex_lock(&dev->dev_mutex);
 455	/* Port membership may share register with STP state. */
 456	if (member >= 0 && member != p->member)
 457		ksz9477_cfg_port_member(dev, port, (u8)member);
 458
 459	/* Check if forwarding needs to be updated. */
 460	if (state != BR_STATE_FORWARDING) {
 461		if (dev->br_member & (1 << port))
 462			dev->member &= ~(1 << port);
 463	}
 464
 465	/* When topology has changed the function ksz_update_port_member
 466	 * should be called to modify port forwarding behavior.
 467	 */
 468	if (forward != dev->member)
 469		ksz_update_port_member(dev, port);
 470	mutex_unlock(&dev->dev_mutex);
 471}
 472
 473static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 474{
 475	u8 data;
 476
 477	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 478			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 479			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 480
 481	if (port < dev->port_cnt) {
 482		/* flush individual port */
 483		ksz_pread8(dev, port, P_STP_CTRL, &data);
 484		if (!(data & PORT_LEARN_DISABLE))
 485			ksz_pwrite8(dev, port, P_STP_CTRL,
 486				    data | PORT_LEARN_DISABLE);
 487		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 488		ksz_pwrite8(dev, port, P_STP_CTRL, data);
 489	} else {
 490		/* flush all */
 491		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 492	}
 493}
 494
 495static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
 496				       bool flag,
 497				       struct netlink_ext_ack *extack)
 498{
 499	struct ksz_device *dev = ds->priv;
 500
 501	if (flag) {
 502		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 503			     PORT_VLAN_LOOKUP_VID_0, true);
 504		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 505	} else {
 506		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 507		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 508			     PORT_VLAN_LOOKUP_VID_0, false);
 509	}
 510
 511	return 0;
 512}
 513
 514static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
 515				 const struct switchdev_obj_port_vlan *vlan,
 516				 struct netlink_ext_ack *extack)
 517{
 518	struct ksz_device *dev = ds->priv;
 519	u32 vlan_table[3];
 520	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 521	int err;
 522
 523	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
 524	if (err) {
 525		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
 526		return err;
 527	}
 528
 529	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
 530	if (untagged)
 531		vlan_table[1] |= BIT(port);
 532	else
 533		vlan_table[1] &= ~BIT(port);
 534	vlan_table[1] &= ~(BIT(dev->cpu_port));
 535
 536	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 537
 538	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
 539	if (err) {
 540		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
 541		return err;
 542	}
 543
 544	/* change PVID */
 545	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 546		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
 547
 548	return 0;
 549}
 550
 551static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
 552				 const struct switchdev_obj_port_vlan *vlan)
 553{
 554	struct ksz_device *dev = ds->priv;
 555	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 556	u32 vlan_table[3];
 557	u16 pvid;
 558
 559	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 560	pvid = pvid & 0xFFF;
 561
 562	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
 563		dev_dbg(dev->dev, "Failed to get vlan table\n");
 564		return -ETIMEDOUT;
 565	}
 566
 567	vlan_table[2] &= ~BIT(port);
 568
 569	if (pvid == vlan->vid)
 570		pvid = 1;
 571
 572	if (untagged)
 573		vlan_table[1] &= ~BIT(port);
 574
 575	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
 576		dev_dbg(dev->dev, "Failed to set vlan table\n");
 577		return -ETIMEDOUT;
 578	}
 579
 580	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 581
 582	return 0;
 583}
 584
 585static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
 586				const unsigned char *addr, u16 vid)
 587{
 588	struct ksz_device *dev = ds->priv;
 589	u32 alu_table[4];
 590	u32 data;
 591	int ret = 0;
 592
 593	mutex_lock(&dev->alu_mutex);
 594
 595	/* find any entry with mac & vid */
 596	data = vid << ALU_FID_INDEX_S;
 597	data |= ((addr[0] << 8) | addr[1]);
 598	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 599
 600	data = ((addr[2] << 24) | (addr[3] << 16));
 601	data |= ((addr[4] << 8) | addr[5]);
 602	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 603
 604	/* start read operation */
 605	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 606
 607	/* wait to be finished */
 608	ret = ksz9477_wait_alu_ready(dev);
 609	if (ret) {
 610		dev_dbg(dev->dev, "Failed to read ALU\n");
 611		goto exit;
 612	}
 613
 614	/* read ALU entry */
 615	ksz9477_read_table(dev, alu_table);
 616
 617	/* update ALU entry */
 618	alu_table[0] = ALU_V_STATIC_VALID;
 619	alu_table[1] |= BIT(port);
 620	if (vid)
 621		alu_table[1] |= ALU_V_USE_FID;
 622	alu_table[2] = (vid << ALU_V_FID_S);
 623	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 624	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 625	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 626
 627	ksz9477_write_table(dev, alu_table);
 628
 629	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 630
 631	/* wait to be finished */
 632	ret = ksz9477_wait_alu_ready(dev);
 633	if (ret)
 634		dev_dbg(dev->dev, "Failed to write ALU\n");
 635
 636exit:
 637	mutex_unlock(&dev->alu_mutex);
 638
 639	return ret;
 640}
 641
 642static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
 643				const unsigned char *addr, u16 vid)
 644{
 645	struct ksz_device *dev = ds->priv;
 646	u32 alu_table[4];
 647	u32 data;
 648	int ret = 0;
 649
 650	mutex_lock(&dev->alu_mutex);
 651
 652	/* read any entry with mac & vid */
 653	data = vid << ALU_FID_INDEX_S;
 654	data |= ((addr[0] << 8) | addr[1]);
 655	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 656
 657	data = ((addr[2] << 24) | (addr[3] << 16));
 658	data |= ((addr[4] << 8) | addr[5]);
 659	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 660
 661	/* start read operation */
 662	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 663
 664	/* wait to be finished */
 665	ret = ksz9477_wait_alu_ready(dev);
 666	if (ret) {
 667		dev_dbg(dev->dev, "Failed to read ALU\n");
 668		goto exit;
 669	}
 670
 671	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 672	if (alu_table[0] & ALU_V_STATIC_VALID) {
 673		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 674		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 675		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 676
 677		/* clear forwarding port */
 678		alu_table[2] &= ~BIT(port);
 679
 680		/* if there is no port to forward, clear table */
 681		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 682			alu_table[0] = 0;
 683			alu_table[1] = 0;
 684			alu_table[2] = 0;
 685			alu_table[3] = 0;
 686		}
 687	} else {
 688		alu_table[0] = 0;
 689		alu_table[1] = 0;
 690		alu_table[2] = 0;
 691		alu_table[3] = 0;
 692	}
 693
 694	ksz9477_write_table(dev, alu_table);
 695
 696	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 697
 698	/* wait to be finished */
 699	ret = ksz9477_wait_alu_ready(dev);
 700	if (ret)
 701		dev_dbg(dev->dev, "Failed to write ALU\n");
 702
 703exit:
 704	mutex_unlock(&dev->alu_mutex);
 705
 706	return ret;
 707}
 708
 709static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 710{
 711	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 712	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 713	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 714	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 715			ALU_V_PRIO_AGE_CNT_M;
 716	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 717
 718	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 719	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 720	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 721
 722	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 723
 724	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 725	alu->mac[1] = alu_table[2] & 0xFF;
 726	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 727	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 728	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 729	alu->mac[5] = alu_table[3] & 0xFF;
 730}
 731
 732static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
 733				 dsa_fdb_dump_cb_t *cb, void *data)
 734{
 735	struct ksz_device *dev = ds->priv;
 736	int ret = 0;
 737	u32 ksz_data;
 738	u32 alu_table[4];
 739	struct alu_struct alu;
 740	int timeout;
 741
 742	mutex_lock(&dev->alu_mutex);
 743
 744	/* start ALU search */
 745	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 746
 747	do {
 748		timeout = 1000;
 749		do {
 750			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 751			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 752				break;
 753			usleep_range(1, 10);
 754		} while (timeout-- > 0);
 755
 756		if (!timeout) {
 757			dev_dbg(dev->dev, "Failed to search ALU\n");
 758			ret = -ETIMEDOUT;
 759			goto exit;
 760		}
 761
 762		/* read ALU table */
 763		ksz9477_read_table(dev, alu_table);
 764
 765		ksz9477_convert_alu(&alu, alu_table);
 766
 767		if (alu.port_forward & BIT(port)) {
 768			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 769			if (ret)
 770				goto exit;
 771		}
 772	} while (ksz_data & ALU_START);
 773
 774exit:
 775
 776	/* stop ALU search */
 777	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 778
 779	mutex_unlock(&dev->alu_mutex);
 780
 781	return ret;
 782}
 783
 784static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
 785				const struct switchdev_obj_port_mdb *mdb)
 786{
 787	struct ksz_device *dev = ds->priv;
 788	u32 static_table[4];
 789	u32 data;
 790	int index;
 791	u32 mac_hi, mac_lo;
 792	int err = 0;
 793
 794	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 795	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 796	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 797
 798	mutex_lock(&dev->alu_mutex);
 799
 800	for (index = 0; index < dev->num_statics; index++) {
 801		/* find empty slot first */
 802		data = (index << ALU_STAT_INDEX_S) |
 803			ALU_STAT_READ | ALU_STAT_START;
 804		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 805
 806		/* wait to be finished */
 807		err = ksz9477_wait_alu_sta_ready(dev);
 808		if (err) {
 809			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 810			goto exit;
 811		}
 812
 813		/* read ALU static table */
 814		ksz9477_read_table(dev, static_table);
 815
 816		if (static_table[0] & ALU_V_STATIC_VALID) {
 817			/* check this has same vid & mac address */
 818			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 819			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 820			    static_table[3] == mac_lo) {
 821				/* found matching one */
 822				break;
 823			}
 824		} else {
 825			/* found empty one */
 826			break;
 827		}
 828	}
 829
 830	/* no available entry */
 831	if (index == dev->num_statics) {
 832		err = -ENOSPC;
 833		goto exit;
 834	}
 835
 836	/* add entry */
 837	static_table[0] = ALU_V_STATIC_VALID;
 838	static_table[1] |= BIT(port);
 839	if (mdb->vid)
 840		static_table[1] |= ALU_V_USE_FID;
 841	static_table[2] = (mdb->vid << ALU_V_FID_S);
 842	static_table[2] |= mac_hi;
 843	static_table[3] = mac_lo;
 844
 845	ksz9477_write_table(dev, static_table);
 846
 847	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 848	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 849
 850	/* wait to be finished */
 851	if (ksz9477_wait_alu_sta_ready(dev))
 852		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 853
 854exit:
 855	mutex_unlock(&dev->alu_mutex);
 856	return err;
 857}
 858
 859static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
 860				const struct switchdev_obj_port_mdb *mdb)
 861{
 862	struct ksz_device *dev = ds->priv;
 863	u32 static_table[4];
 864	u32 data;
 865	int index;
 866	int ret = 0;
 867	u32 mac_hi, mac_lo;
 868
 869	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 870	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 871	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 872
 873	mutex_lock(&dev->alu_mutex);
 874
 875	for (index = 0; index < dev->num_statics; index++) {
 876		/* find empty slot first */
 877		data = (index << ALU_STAT_INDEX_S) |
 878			ALU_STAT_READ | ALU_STAT_START;
 879		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 880
 881		/* wait to be finished */
 882		ret = ksz9477_wait_alu_sta_ready(dev);
 883		if (ret) {
 884			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 885			goto exit;
 886		}
 887
 888		/* read ALU static table */
 889		ksz9477_read_table(dev, static_table);
 890
 891		if (static_table[0] & ALU_V_STATIC_VALID) {
 892			/* check this has same vid & mac address */
 893
 894			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 895			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 896			    static_table[3] == mac_lo) {
 897				/* found matching one */
 898				break;
 899			}
 900		}
 901	}
 902
 903	/* no available entry */
 904	if (index == dev->num_statics)
 905		goto exit;
 906
 907	/* clear port */
 908	static_table[1] &= ~BIT(port);
 909
 910	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 911		/* delete entry */
 912		static_table[0] = 0;
 913		static_table[1] = 0;
 914		static_table[2] = 0;
 915		static_table[3] = 0;
 916	}
 917
 918	ksz9477_write_table(dev, static_table);
 919
 920	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 921	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 922
 923	/* wait to be finished */
 924	ret = ksz9477_wait_alu_sta_ready(dev);
 925	if (ret)
 926		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 927
 928exit:
 929	mutex_unlock(&dev->alu_mutex);
 930
 931	return ret;
 932}
 933
 934static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
 935				   struct dsa_mall_mirror_tc_entry *mirror,
 936				   bool ingress)
 937{
 938	struct ksz_device *dev = ds->priv;
 939
 940	if (ingress)
 941		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 942	else
 943		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 944
 945	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
 946
 947	/* configure mirror port */
 948	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 949		     PORT_MIRROR_SNIFFER, true);
 950
 951	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 952
 953	return 0;
 954}
 955
 956static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
 957				    struct dsa_mall_mirror_tc_entry *mirror)
 958{
 959	struct ksz_device *dev = ds->priv;
 960	u8 data;
 961
 962	if (mirror->ingress)
 963		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 964	else
 965		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 966
 967	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
 968
 969	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
 970		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 971			     PORT_MIRROR_SNIFFER, false);
 972}
 973
 974static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
 975{
 976	bool gbit;
 977
 978	if (dev->features & NEW_XMII)
 979		gbit = !(data & PORT_MII_NOT_1GBIT);
 980	else
 981		gbit = !!(data & PORT_MII_1000MBIT_S1);
 982	return gbit;
 983}
 984
 985static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
 986{
 987	if (dev->features & NEW_XMII) {
 988		if (gbit)
 989			*data &= ~PORT_MII_NOT_1GBIT;
 990		else
 991			*data |= PORT_MII_NOT_1GBIT;
 992	} else {
 993		if (gbit)
 994			*data |= PORT_MII_1000MBIT_S1;
 995		else
 996			*data &= ~PORT_MII_1000MBIT_S1;
 997	}
 998}
 999
1000static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1001{
1002	int mode;
1003
1004	if (dev->features & NEW_XMII) {
1005		switch (data & PORT_MII_SEL_M) {
1006		case PORT_MII_SEL:
1007			mode = 0;
1008			break;
1009		case PORT_RMII_SEL:
1010			mode = 1;
1011			break;
1012		case PORT_GMII_SEL:
1013			mode = 2;
1014			break;
1015		default:
1016			mode = 3;
1017		}
1018	} else {
1019		switch (data & PORT_MII_SEL_M) {
1020		case PORT_MII_SEL_S1:
1021			mode = 0;
1022			break;
1023		case PORT_RMII_SEL_S1:
1024			mode = 1;
1025			break;
1026		case PORT_GMII_SEL_S1:
1027			mode = 2;
1028			break;
1029		default:
1030			mode = 3;
1031		}
1032	}
1033	return mode;
1034}
1035
1036static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1037{
1038	u8 xmii;
1039
1040	if (dev->features & NEW_XMII) {
1041		switch (mode) {
1042		case 0:
1043			xmii = PORT_MII_SEL;
1044			break;
1045		case 1:
1046			xmii = PORT_RMII_SEL;
1047			break;
1048		case 2:
1049			xmii = PORT_GMII_SEL;
1050			break;
1051		default:
1052			xmii = PORT_RGMII_SEL;
1053			break;
1054		}
1055	} else {
1056		switch (mode) {
1057		case 0:
1058			xmii = PORT_MII_SEL_S1;
1059			break;
1060		case 1:
1061			xmii = PORT_RMII_SEL_S1;
1062			break;
1063		case 2:
1064			xmii = PORT_GMII_SEL_S1;
1065			break;
1066		default:
1067			xmii = PORT_RGMII_SEL_S1;
1068			break;
1069		}
1070	}
1071	*data &= ~PORT_MII_SEL_M;
1072	*data |= xmii;
1073}
1074
1075static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1076{
1077	phy_interface_t interface;
1078	bool gbit;
1079	int mode;
1080	u8 data8;
1081
1082	if (port < dev->phy_port_cnt)
1083		return PHY_INTERFACE_MODE_NA;
1084	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1085	gbit = ksz9477_get_gbit(dev, data8);
1086	mode = ksz9477_get_xmii(dev, data8);
1087	switch (mode) {
1088	case 2:
1089		interface = PHY_INTERFACE_MODE_GMII;
1090		if (gbit)
1091			break;
1092		fallthrough;
1093	case 0:
1094		interface = PHY_INTERFACE_MODE_MII;
1095		break;
1096	case 1:
1097		interface = PHY_INTERFACE_MODE_RMII;
1098		break;
1099	default:
1100		interface = PHY_INTERFACE_MODE_RGMII;
1101		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1102			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1103		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1104			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1105			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1106				interface = PHY_INTERFACE_MODE_RGMII_ID;
1107		}
1108		break;
1109	}
1110	return interface;
1111}
1112
1113static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1114				   u8 dev_addr, u16 reg_addr, u16 val)
1115{
1116	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1117		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1118	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1119	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1120		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1121	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1122}
1123
1124static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1125{
1126	/* Apply PHY settings to address errata listed in
1127	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1128	 * Silicon Errata and Data Sheet Clarification documents:
1129	 *
1130	 * Register settings are needed to improve PHY receive performance
1131	 */
1132	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1133	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1134	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1135	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1136	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1137	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1138	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1139
1140	/* Transmit waveform amplitude can be improved
1141	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1142	 */
1143	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1144
1145	/* Energy Efficient Ethernet (EEE) feature select must
1146	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1147	 */
1148	if (dev->features & GBIT_SUPPORT)
1149		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1150
1151	/* Register settings are required to meet data sheet
1152	 * supply current specifications
1153	 */
1154	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1155	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1156	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1157	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1158	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1159	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1160	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1161	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1162	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1163	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1164	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1165	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1166	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1167}
1168
1169static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1170{
1171	u8 data8;
1172	u8 member;
1173	u16 data16;
1174	struct ksz_port *p = &dev->ports[port];
1175
1176	/* enable tag tail for host port */
1177	if (cpu_port)
1178		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1179			     true);
1180
1181	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1182
1183	/* set back pressure */
1184	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1185
1186	/* enable broadcast storm limit */
1187	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1188
1189	/* disable DiffServ priority */
1190	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1191
1192	/* replace priority */
1193	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1194		     false);
1195	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1196			   MTI_PVID_REPLACE, false);
1197
1198	/* enable 802.1p priority */
1199	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1200
1201	if (port < dev->phy_port_cnt) {
1202		/* do not force flow control */
1203		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1204			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1205			     false);
1206
1207		if (dev->phy_errata_9477)
1208			ksz9477_phy_errata_setup(dev, port);
1209	} else {
1210		/* force flow control */
1211		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1212			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1213			     true);
1214
1215		/* configure MAC to 1G & RGMII mode */
1216		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1217		switch (p->interface) {
1218		case PHY_INTERFACE_MODE_MII:
1219			ksz9477_set_xmii(dev, 0, &data8);
1220			ksz9477_set_gbit(dev, false, &data8);
1221			p->phydev.speed = SPEED_100;
1222			break;
1223		case PHY_INTERFACE_MODE_RMII:
1224			ksz9477_set_xmii(dev, 1, &data8);
1225			ksz9477_set_gbit(dev, false, &data8);
1226			p->phydev.speed = SPEED_100;
1227			break;
1228		case PHY_INTERFACE_MODE_GMII:
1229			ksz9477_set_xmii(dev, 2, &data8);
1230			ksz9477_set_gbit(dev, true, &data8);
1231			p->phydev.speed = SPEED_1000;
1232			break;
1233		default:
1234			ksz9477_set_xmii(dev, 3, &data8);
1235			ksz9477_set_gbit(dev, true, &data8);
1236			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1237			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1238			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1239			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1240				data8 |= PORT_RGMII_ID_IG_ENABLE;
1241			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1242			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1243				data8 |= PORT_RGMII_ID_EG_ENABLE;
1244			/* On KSZ9893, disable RGMII in-band status support */
1245			if (dev->features & IS_9893)
1246				data8 &= ~PORT_MII_MAC_MODE;
1247			p->phydev.speed = SPEED_1000;
1248			break;
1249		}
1250		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1251		p->phydev.duplex = 1;
1252	}
1253	mutex_lock(&dev->dev_mutex);
1254	if (cpu_port)
1255		member = dev->port_mask;
1256	else
1257		member = dev->host_mask | p->vid_member;
1258	mutex_unlock(&dev->dev_mutex);
1259	ksz9477_cfg_port_member(dev, port, member);
1260
1261	/* clear pending interrupts */
1262	if (port < dev->phy_port_cnt)
1263		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1264}
1265
1266static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1267{
1268	struct ksz_device *dev = ds->priv;
1269	struct ksz_port *p;
1270	int i;
1271
1272	for (i = 0; i < dev->port_cnt; i++) {
1273		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1274			phy_interface_t interface;
1275			const char *prev_msg;
1276			const char *prev_mode;
1277
1278			dev->cpu_port = i;
1279			dev->host_mask = (1 << dev->cpu_port);
1280			dev->port_mask |= dev->host_mask;
1281			p = &dev->ports[i];
1282
1283			/* Read from XMII register to determine host port
1284			 * interface.  If set specifically in device tree
1285			 * note the difference to help debugging.
1286			 */
1287			interface = ksz9477_get_interface(dev, i);
1288			if (!p->interface) {
1289				if (dev->compat_interface) {
1290					dev_warn(dev->dev,
1291						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1292						 "Please update your device tree.\n",
1293						 i);
1294					p->interface = dev->compat_interface;
1295				} else {
1296					p->interface = interface;
1297				}
1298			}
1299			if (interface && interface != p->interface) {
1300				prev_msg = " instead of ";
1301				prev_mode = phy_modes(interface);
1302			} else {
1303				prev_msg = "";
1304				prev_mode = "";
1305			}
1306			dev_info(dev->dev,
1307				 "Port%d: using phy mode %s%s%s\n",
1308				 i,
1309				 phy_modes(p->interface),
1310				 prev_msg,
1311				 prev_mode);
1312
1313			/* enable cpu port */
1314			ksz9477_port_setup(dev, i, true);
1315			p->vid_member = dev->port_mask;
1316			p->on = 1;
1317		}
1318	}
1319
1320	dev->member = dev->host_mask;
1321
1322	for (i = 0; i < dev->port_cnt; i++) {
1323		if (i == dev->cpu_port)
1324			continue;
1325		p = &dev->ports[i];
1326
1327		/* Initialize to non-zero so that ksz_cfg_port_member() will
1328		 * be called.
1329		 */
1330		p->vid_member = (1 << i);
1331		p->member = dev->port_mask;
1332		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1333		p->on = 1;
1334		if (i < dev->phy_port_cnt)
1335			p->phy = 1;
1336		if (dev->chip_id == 0x00947700 && i == 6) {
1337			p->sgmii = 1;
1338
1339			/* SGMII PHY detection code is not implemented yet. */
1340			p->phy = 0;
1341		}
1342	}
1343}
1344
1345static int ksz9477_setup(struct dsa_switch *ds)
1346{
1347	struct ksz_device *dev = ds->priv;
1348	int ret = 0;
1349
1350	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1351				       dev->num_vlans, GFP_KERNEL);
1352	if (!dev->vlan_cache)
1353		return -ENOMEM;
1354
1355	ret = ksz9477_reset_switch(dev);
1356	if (ret) {
1357		dev_err(ds->dev, "failed to reset switch\n");
1358		return ret;
1359	}
1360
1361	/* Required for port partitioning. */
1362	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1363		      true);
1364
1365	/* Do not work correctly with tail tagging. */
1366	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1367
1368	/* accept packet up to 2000bytes */
1369	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1370
1371	ksz9477_config_cpu_port(ds);
1372
1373	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1374
1375	/* queue based egress rate limit */
1376	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1377
1378	/* enable global MIB counter freeze function */
1379	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1380
1381	/* start switch */
1382	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1383
1384	ksz_init_mib_timer(dev);
1385
1386	ds->configure_vlan_while_not_filtering = false;
1387
1388	return 0;
1389}
1390
1391static const struct dsa_switch_ops ksz9477_switch_ops = {
1392	.get_tag_protocol	= ksz9477_get_tag_protocol,
1393	.setup			= ksz9477_setup,
1394	.phy_read		= ksz9477_phy_read16,
1395	.phy_write		= ksz9477_phy_write16,
1396	.phylink_mac_link_down	= ksz_mac_link_down,
1397	.port_enable		= ksz_enable_port,
1398	.get_strings		= ksz9477_get_strings,
1399	.get_ethtool_stats	= ksz_get_ethtool_stats,
1400	.get_sset_count		= ksz_sset_count,
1401	.port_bridge_join	= ksz_port_bridge_join,
1402	.port_bridge_leave	= ksz_port_bridge_leave,
1403	.port_stp_state_set	= ksz9477_port_stp_state_set,
1404	.port_fast_age		= ksz_port_fast_age,
1405	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1406	.port_vlan_add		= ksz9477_port_vlan_add,
1407	.port_vlan_del		= ksz9477_port_vlan_del,
1408	.port_fdb_dump		= ksz9477_port_fdb_dump,
1409	.port_fdb_add		= ksz9477_port_fdb_add,
1410	.port_fdb_del		= ksz9477_port_fdb_del,
1411	.port_mdb_add           = ksz9477_port_mdb_add,
1412	.port_mdb_del           = ksz9477_port_mdb_del,
1413	.port_mirror_add	= ksz9477_port_mirror_add,
1414	.port_mirror_del	= ksz9477_port_mirror_del,
1415};
1416
1417static u32 ksz9477_get_port_addr(int port, int offset)
1418{
1419	return PORT_CTRL_ADDR(port, offset);
1420}
1421
1422static int ksz9477_switch_detect(struct ksz_device *dev)
1423{
1424	u8 data8;
1425	u8 id_hi;
1426	u8 id_lo;
1427	u32 id32;
1428	int ret;
1429
1430	/* turn off SPI DO Edge select */
1431	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1432	if (ret)
1433		return ret;
1434
1435	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1436	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1437	if (ret)
1438		return ret;
1439
1440	/* read chip id */
1441	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1442	if (ret)
1443		return ret;
1444	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1445	if (ret)
1446		return ret;
1447
1448	/* Number of ports can be reduced depending on chip. */
1449	dev->phy_port_cnt = 5;
1450
1451	/* Default capability is gigabit capable. */
1452	dev->features = GBIT_SUPPORT;
1453
1454	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1455	id_hi = (u8)(id32 >> 16);
1456	id_lo = (u8)(id32 >> 8);
1457	if ((id_lo & 0xf) == 3) {
1458		/* Chip is from KSZ9893 design. */
1459		dev_info(dev->dev, "Found KSZ9893\n");
1460		dev->features |= IS_9893;
1461
1462		/* Chip does not support gigabit. */
1463		if (data8 & SW_QW_ABLE)
1464			dev->features &= ~GBIT_SUPPORT;
1465		dev->phy_port_cnt = 2;
1466	} else {
1467		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1468		/* Chip uses new XMII register definitions. */
1469		dev->features |= NEW_XMII;
1470
1471		/* Chip does not support gigabit. */
1472		if (!(data8 & SW_GIGABIT_ABLE))
1473			dev->features &= ~GBIT_SUPPORT;
1474	}
1475
1476	/* Change chip id to known ones so it can be matched against them. */
1477	id32 = (id_hi << 16) | (id_lo << 8);
1478
1479	dev->chip_id = id32;
1480
1481	return 0;
1482}
1483
1484struct ksz_chip_data {
1485	u32 chip_id;
1486	const char *dev_name;
1487	int num_vlans;
1488	int num_alus;
1489	int num_statics;
1490	int cpu_ports;
1491	int port_cnt;
1492	bool phy_errata_9477;
1493};
1494
1495static const struct ksz_chip_data ksz9477_switch_chips[] = {
1496	{
1497		.chip_id = 0x00947700,
1498		.dev_name = "KSZ9477",
1499		.num_vlans = 4096,
1500		.num_alus = 4096,
1501		.num_statics = 16,
1502		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1503		.port_cnt = 7,		/* total physical port count */
1504		.phy_errata_9477 = true,
1505	},
1506	{
1507		.chip_id = 0x00989700,
1508		.dev_name = "KSZ9897",
1509		.num_vlans = 4096,
1510		.num_alus = 4096,
1511		.num_statics = 16,
1512		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1513		.port_cnt = 7,		/* total physical port count */
1514		.phy_errata_9477 = true,
1515	},
1516	{
1517		.chip_id = 0x00989300,
1518		.dev_name = "KSZ9893",
1519		.num_vlans = 4096,
1520		.num_alus = 4096,
1521		.num_statics = 16,
1522		.cpu_ports = 0x07,	/* can be configured as cpu port */
1523		.port_cnt = 3,		/* total port count */
1524	},
1525	{
1526		.chip_id = 0x00956700,
1527		.dev_name = "KSZ9567",
1528		.num_vlans = 4096,
1529		.num_alus = 4096,
1530		.num_statics = 16,
1531		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1532		.port_cnt = 7,		/* total physical port count */
1533		.phy_errata_9477 = true,
1534	},
1535};
1536
1537static int ksz9477_switch_init(struct ksz_device *dev)
1538{
1539	int i;
1540
1541	dev->ds->ops = &ksz9477_switch_ops;
1542
1543	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1544		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1545
1546		if (dev->chip_id == chip->chip_id) {
1547			dev->name = chip->dev_name;
1548			dev->num_vlans = chip->num_vlans;
1549			dev->num_alus = chip->num_alus;
1550			dev->num_statics = chip->num_statics;
1551			dev->port_cnt = chip->port_cnt;
1552			dev->cpu_ports = chip->cpu_ports;
1553			dev->phy_errata_9477 = chip->phy_errata_9477;
1554
1555			break;
1556		}
1557	}
1558
1559	/* no switch found */
1560	if (!dev->port_cnt)
1561		return -ENODEV;
1562
1563	dev->port_mask = (1 << dev->port_cnt) - 1;
1564
1565	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1566	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1567
1568	dev->ports = devm_kzalloc(dev->dev,
1569				  dev->port_cnt * sizeof(struct ksz_port),
1570				  GFP_KERNEL);
1571	if (!dev->ports)
1572		return -ENOMEM;
1573	for (i = 0; i < dev->port_cnt; i++) {
1574		mutex_init(&dev->ports[i].mib.cnt_mutex);
1575		dev->ports[i].mib.counters =
1576			devm_kzalloc(dev->dev,
1577				     sizeof(u64) *
1578				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1579				     GFP_KERNEL);
1580		if (!dev->ports[i].mib.counters)
1581			return -ENOMEM;
1582	}
1583
1584	/* set the real number of ports */
1585	dev->ds->num_ports = dev->port_cnt;
1586
1587	return 0;
1588}
1589
1590static void ksz9477_switch_exit(struct ksz_device *dev)
1591{
1592	ksz9477_reset_switch(dev);
1593}
1594
1595static const struct ksz_dev_ops ksz9477_dev_ops = {
1596	.get_port_addr = ksz9477_get_port_addr,
1597	.cfg_port_member = ksz9477_cfg_port_member,
1598	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1599	.port_setup = ksz9477_port_setup,
1600	.r_mib_cnt = ksz9477_r_mib_cnt,
1601	.r_mib_pkt = ksz9477_r_mib_pkt,
1602	.freeze_mib = ksz9477_freeze_mib,
1603	.port_init_cnt = ksz9477_port_init_cnt,
1604	.shutdown = ksz9477_reset_switch,
1605	.detect = ksz9477_switch_detect,
1606	.init = ksz9477_switch_init,
1607	.exit = ksz9477_switch_exit,
1608};
1609
1610int ksz9477_switch_register(struct ksz_device *dev)
1611{
1612	int ret, i;
1613	struct phy_device *phydev;
1614
1615	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1616	if (ret)
1617		return ret;
1618
1619	for (i = 0; i < dev->phy_port_cnt; ++i) {
1620		if (!dsa_is_user_port(dev->ds, i))
1621			continue;
1622
1623		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1624
1625		/* The MAC actually cannot run in 1000 half-duplex mode. */
1626		phy_remove_link_mode(phydev,
1627				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1628
1629		/* PHY does not support gigabit. */
1630		if (!(dev->features & GBIT_SUPPORT))
1631			phy_remove_link_mode(phydev,
1632					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1633	}
1634	return ret;
1635}
1636EXPORT_SYMBOL(ksz9477_switch_register);
1637
1638MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1639MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1640MODULE_LICENSE("GPL");