Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
 
 
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
 
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
 
 
 
  27#include <linux/platform_device.h>
  28#include <linux/uaccess.h>
  29#include <linux/mfd/core.h>
  30#include <linux/mfd/db8500-prcmu.h>
 
  31#include <linux/regulator/db8500-prcmu.h>
  32#include <linux/regulator/machine.h>
  33#include <mach/hardware.h>
  34#include <mach/irqs.h>
  35#include <mach/db8500-regs.h>
  36#include <mach/id.h>
  37#include "db8500-prcmu-regs.h"
  38
  39/* Offset for the firmware version within the TCPM */
  40#define PRCMU_FW_VERSION_OFFSET 0xA4
  41
  42/* PRCMU project numbers, defined by PRCMU FW */
  43#define PRCMU_PROJECT_ID_8500V1_0 1
  44#define PRCMU_PROJECT_ID_8500V2_0 2
  45#define PRCMU_PROJECT_ID_8400V2_0 3
  46
  47/* Index of different voltages to be used when accessing AVSData */
  48#define PRCM_AVS_BASE		0x2FC
  49#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  50#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  51#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  52#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  53#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  54#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  55#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  56#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  57#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  58#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  59#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  60#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  61#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  62
  63#define PRCM_AVS_VOLTAGE		0
  64#define PRCM_AVS_VOLTAGE_MASK		0x3f
  65#define PRCM_AVS_ISSLOWSTARTUP		6
  66#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  67#define PRCM_AVS_ISMODEENABLE		7
  68#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  69
  70#define PRCM_BOOT_STATUS	0xFFF
  71#define PRCM_ROMCODE_A2P	0xFFE
  72#define PRCM_ROMCODE_P2A	0xFFD
  73#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  74
  75#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  76
  77#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  78#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  79#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  80#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  81#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  82#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  83#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  84#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  85
  86/* Req Mailboxes */
  87#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  88#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  89#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  90#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  91#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  92#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  93
  94/* Ack Mailboxes */
  95#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  96#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  97#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  98#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  99#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
 100#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
 101
 102/* Mailbox 0 headers */
 103#define MB0H_POWER_STATE_TRANS		0
 104#define MB0H_CONFIG_WAKEUPS_EXE		1
 105#define MB0H_READ_WAKEUP_ACK		3
 106#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 107
 108#define MB0H_WAKEUP_EXE 2
 109#define MB0H_WAKEUP_SLEEP 5
 110
 111/* Mailbox 0 REQs */
 112#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 113#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 114#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 115#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 116#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 117#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 118
 119/* Mailbox 0 ACKs */
 120#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 121#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 122#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 123#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 124#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 125#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 126#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 127
 128/* Mailbox 1 headers */
 129#define MB1H_ARM_APE_OPP 0x0
 130#define MB1H_RESET_MODEM 0x2
 131#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 132#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 133#define MB1H_RELEASE_USB_WAKEUP 0x5
 
 134
 135/* Mailbox 1 Requests */
 136#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 137#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 138#define PRCM_REQ_MB1_APE_OPP_100_RESTORE	(PRCM_REQ_MB1 + 0x4)
 139#define PRCM_REQ_MB1_ARM_OPP_100_RESTORE	(PRCM_REQ_MB1 + 0x8)
 
 
 
 140
 141/* Mailbox 1 ACKs */
 142#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 143#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 144#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 145#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 146
 147/* Mailbox 2 headers */
 148#define MB2H_DPS	0x0
 149#define MB2H_AUTO_PWR	0x1
 150
 151/* Mailbox 2 REQs */
 152#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 153#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 154#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 155#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 156#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 157#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 158#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 159#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 160#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 161#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 162
 163/* Mailbox 2 ACKs */
 164#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 165#define HWACC_PWR_ST_OK 0xFE
 166
 167/* Mailbox 3 headers */
 168#define MB3H_ANC	0x0
 169#define MB3H_SIDETONE	0x1
 170#define MB3H_SYSCLK	0xE
 171
 172/* Mailbox 3 Requests */
 173#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 174#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 175#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 176#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 178#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 179#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 180
 181/* Mailbox 4 headers */
 182#define MB4H_DDR_INIT	0x0
 183#define MB4H_MEM_ST	0x1
 184#define MB4H_HOTDOG	0x12
 185#define MB4H_HOTMON	0x13
 186#define MB4H_HOT_PERIOD	0x14
 
 
 
 
 
 187
 188/* Mailbox 4 Requests */
 189#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 190#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 191#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 192#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 194#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 195#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 196#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 197#define HOTMON_CONFIG_LOW			BIT(0)
 198#define HOTMON_CONFIG_HIGH			BIT(1)
 
 
 
 
 
 
 
 199
 200/* Mailbox 5 Requests */
 201#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 202#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 203#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 204#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 205#define PRCMU_I2C_WRITE(slave) \
 206	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
 207#define PRCMU_I2C_READ(slave) \
 208	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
 209#define PRCMU_I2C_STOP_EN		BIT(3)
 210
 211/* Mailbox 5 ACKs */
 212#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 213#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 214#define I2C_WR_OK 0x1
 215#define I2C_RD_OK 0x2
 216
 217#define NUM_MB 8
 218#define MBOX_BIT BIT
 219#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 220
 221/*
 222 * Wakeups/IRQs
 223 */
 224
 225#define WAKEUP_BIT_RTC BIT(0)
 226#define WAKEUP_BIT_RTT0 BIT(1)
 227#define WAKEUP_BIT_RTT1 BIT(2)
 228#define WAKEUP_BIT_HSI0 BIT(3)
 229#define WAKEUP_BIT_HSI1 BIT(4)
 230#define WAKEUP_BIT_CA_WAKE BIT(5)
 231#define WAKEUP_BIT_USB BIT(6)
 232#define WAKEUP_BIT_ABB BIT(7)
 233#define WAKEUP_BIT_ABB_FIFO BIT(8)
 234#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 235#define WAKEUP_BIT_CA_SLEEP BIT(10)
 236#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 237#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 238#define WAKEUP_BIT_ANC_OK BIT(13)
 239#define WAKEUP_BIT_SW_ERROR BIT(14)
 240#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 241#define WAKEUP_BIT_ARM BIT(17)
 242#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 243#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 244#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 245#define WAKEUP_BIT_GPIO0 BIT(23)
 246#define WAKEUP_BIT_GPIO1 BIT(24)
 247#define WAKEUP_BIT_GPIO2 BIT(25)
 248#define WAKEUP_BIT_GPIO3 BIT(26)
 249#define WAKEUP_BIT_GPIO4 BIT(27)
 250#define WAKEUP_BIT_GPIO5 BIT(28)
 251#define WAKEUP_BIT_GPIO6 BIT(29)
 252#define WAKEUP_BIT_GPIO7 BIT(30)
 253#define WAKEUP_BIT_GPIO8 BIT(31)
 254
 
 
 
 
 
 
 
 255/*
 256 * This vector maps irq numbers to the bits in the bit field used in
 257 * communication with the PRCMU firmware.
 258 *
 259 * The reason for having this is to keep the irq numbers contiguous even though
 260 * the bits in the bit field are not. (The bits also have a tendency to move
 261 * around, to further complicate matters.)
 262 */
 263#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
 264#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 266	IRQ_ENTRY(RTC),
 267	IRQ_ENTRY(RTT0),
 268	IRQ_ENTRY(RTT1),
 269	IRQ_ENTRY(HSI0),
 270	IRQ_ENTRY(HSI1),
 271	IRQ_ENTRY(CA_WAKE),
 272	IRQ_ENTRY(USB),
 273	IRQ_ENTRY(ABB),
 274	IRQ_ENTRY(ABB_FIFO),
 275	IRQ_ENTRY(CA_SLEEP),
 276	IRQ_ENTRY(ARM),
 277	IRQ_ENTRY(HOTMON_LOW),
 278	IRQ_ENTRY(HOTMON_HIGH),
 279	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 280	IRQ_ENTRY(GPIO0),
 281	IRQ_ENTRY(GPIO1),
 282	IRQ_ENTRY(GPIO2),
 283	IRQ_ENTRY(GPIO3),
 284	IRQ_ENTRY(GPIO4),
 285	IRQ_ENTRY(GPIO5),
 286	IRQ_ENTRY(GPIO6),
 287	IRQ_ENTRY(GPIO7),
 288	IRQ_ENTRY(GPIO8)
 289};
 290
 291#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 292#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 293static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 294	WAKEUP_ENTRY(RTC),
 295	WAKEUP_ENTRY(RTT0),
 296	WAKEUP_ENTRY(RTT1),
 297	WAKEUP_ENTRY(HSI0),
 298	WAKEUP_ENTRY(HSI1),
 299	WAKEUP_ENTRY(USB),
 300	WAKEUP_ENTRY(ABB),
 301	WAKEUP_ENTRY(ABB_FIFO),
 302	WAKEUP_ENTRY(ARM)
 303};
 304
 305/*
 306 * mb0_transfer - state needed for mailbox 0 communication.
 307 * @lock:		The transaction lock.
 308 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 309 *			the request data.
 310 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 311 * @req:		Request data that need to persist between requests.
 312 */
 313static struct {
 314	spinlock_t lock;
 315	spinlock_t dbb_irqs_lock;
 316	struct work_struct mask_work;
 317	struct mutex ac_wake_lock;
 318	struct completion ac_wake_work;
 319	struct {
 320		u32 dbb_irqs;
 321		u32 dbb_wakeups;
 322		u32 abb_events;
 323	} req;
 324} mb0_transfer;
 325
 326/*
 327 * mb1_transfer - state needed for mailbox 1 communication.
 328 * @lock:	The transaction lock.
 329 * @work:	The transaction completion structure.
 
 330 * @ack:	Reply ("acknowledge") data.
 331 */
 332static struct {
 333	struct mutex lock;
 334	struct completion work;
 
 335	struct {
 336		u8 header;
 337		u8 arm_opp;
 338		u8 ape_opp;
 339		u8 ape_voltage_status;
 340	} ack;
 341} mb1_transfer;
 342
 343/*
 344 * mb2_transfer - state needed for mailbox 2 communication.
 345 * @lock:            The transaction lock.
 346 * @work:            The transaction completion structure.
 347 * @auto_pm_lock:    The autonomous power management configuration lock.
 348 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 349 * @req:             Request data that need to persist between requests.
 350 * @ack:             Reply ("acknowledge") data.
 351 */
 352static struct {
 353	struct mutex lock;
 354	struct completion work;
 355	spinlock_t auto_pm_lock;
 356	bool auto_pm_enabled;
 357	struct {
 358		u8 status;
 359	} ack;
 360} mb2_transfer;
 361
 362/*
 363 * mb3_transfer - state needed for mailbox 3 communication.
 364 * @lock:		The request lock.
 365 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 366 * @sysclk_work:	Work structure used for sysclk requests.
 367 */
 368static struct {
 369	spinlock_t lock;
 370	struct mutex sysclk_lock;
 371	struct completion sysclk_work;
 372} mb3_transfer;
 373
 374/*
 375 * mb4_transfer - state needed for mailbox 4 communication.
 376 * @lock:	The transaction lock.
 377 * @work:	The transaction completion structure.
 378 */
 379static struct {
 380	struct mutex lock;
 381	struct completion work;
 382} mb4_transfer;
 383
 384/*
 385 * mb5_transfer - state needed for mailbox 5 communication.
 386 * @lock:	The transaction lock.
 387 * @work:	The transaction completion structure.
 388 * @ack:	Reply ("acknowledge") data.
 389 */
 390static struct {
 391	struct mutex lock;
 392	struct completion work;
 393	struct {
 394		u8 status;
 395		u8 value;
 396	} ack;
 397} mb5_transfer;
 398
 399static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 400
 401/* Spinlocks */
 
 402static DEFINE_SPINLOCK(clkout_lock);
 403static DEFINE_SPINLOCK(gpiocr_lock);
 404
 405/* Global var to runtime determine TCDM base for v2 or v1 */
 406static __iomem void *tcdm_base;
 
 407
 408struct clk_mgt {
 409	unsigned int offset;
 410	u32 pllsw;
 
 
 411};
 412
 413static DEFINE_SPINLOCK(clk_mgt_lock);
 414
 415#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT), 0 }
 416struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 417	CLK_MGT_ENTRY(SGACLK),
 418	CLK_MGT_ENTRY(UARTCLK),
 419	CLK_MGT_ENTRY(MSP02CLK),
 420	CLK_MGT_ENTRY(MSP1CLK),
 421	CLK_MGT_ENTRY(I2CCLK),
 422	CLK_MGT_ENTRY(SDMMCCLK),
 423	CLK_MGT_ENTRY(SLIMCLK),
 424	CLK_MGT_ENTRY(PER1CLK),
 425	CLK_MGT_ENTRY(PER2CLK),
 426	CLK_MGT_ENTRY(PER3CLK),
 427	CLK_MGT_ENTRY(PER5CLK),
 428	CLK_MGT_ENTRY(PER6CLK),
 429	CLK_MGT_ENTRY(PER7CLK),
 430	CLK_MGT_ENTRY(LCDCLK),
 431	CLK_MGT_ENTRY(BMLCLK),
 432	CLK_MGT_ENTRY(HSITXCLK),
 433	CLK_MGT_ENTRY(HSIRXCLK),
 434	CLK_MGT_ENTRY(HDMICLK),
 435	CLK_MGT_ENTRY(APEATCLK),
 436	CLK_MGT_ENTRY(APETRACECLK),
 437	CLK_MGT_ENTRY(MCDECLK),
 438	CLK_MGT_ENTRY(IPI2CCLK),
 439	CLK_MGT_ENTRY(DSIALTCLK),
 440	CLK_MGT_ENTRY(DMACLK),
 441	CLK_MGT_ENTRY(B2R2CLK),
 442	CLK_MGT_ENTRY(TVCLK),
 443	CLK_MGT_ENTRY(SSPCLK),
 444	CLK_MGT_ENTRY(RNGCLK),
 445	CLK_MGT_ENTRY(UICCCLK),
 446};
 447
 448/*
 449* Used by MCDE to setup all necessary PRCMU registers
 450*/
 451#define PRCMU_RESET_DSIPLL		0x00004000
 452#define PRCMU_UNCLAMP_DSIPLL		0x00400800
 453
 454#define PRCMU_CLK_PLL_DIV_SHIFT		0
 455#define PRCMU_CLK_PLL_SW_SHIFT		5
 456#define PRCMU_CLK_38			(1 << 9)
 457#define PRCMU_CLK_38_SRC		(1 << 10)
 458#define PRCMU_CLK_38_DIV		(1 << 11)
 459
 460/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 461#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
 462
 463/* PLLDIV=8, PLLSW=4 (PLLDDR) */
 464#define PRCMU_DSI_CLOCK_SETTING_U8400	0x00000088
 465
 466/* DPI 50000000 Hz */
 467#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 468					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 469#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
 470
 471/* D=101, N=1, R=4, SELDIV2=0 */
 472#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
 473
 474/* D=70, N=1, R=3, SELDIV2=0 */
 475#define PRCMU_PLLDSI_FREQ_SETTING_U8400	0x00030146
 476
 477#define PRCMU_ENABLE_PLLDSI		0x00000001
 478#define PRCMU_DISABLE_PLLDSI		0x00000000
 479#define PRCMU_RELEASE_RESET_DSS		0x0000400C
 480#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
 481/* ESC clk, div0=1, div1=1, div2=3 */
 482#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
 483#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
 484#define PRCMU_DSI_RESET_SW		0x00000007
 485
 486#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
 487
 488static struct {
 489	u8 project_number;
 490	u8 api_version;
 491	u8 func_version;
 492	u8 errata;
 493} prcmu_version;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 
 
 
 
 
 495
 496int prcmu_enable_dsipll(void)
 497{
 498	int i;
 499	unsigned int plldsifreq;
 
 
 
 
 
 
 
 
 500
 501	/* Clear DSIPLL_RESETN */
 502	writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_CLR));
 503	/* Unclamp DSIPLL in/out */
 504	writel(PRCMU_UNCLAMP_DSIPLL, (_PRCMU_BASE + PRCM_MMIP_LS_CLAMP_CLR));
 
 505
 506	if (prcmu_is_u8400())
 507		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
 508	else
 509		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
 510	/* Set DSI PLL FREQ */
 511	writel(plldsifreq, (_PRCMU_BASE + PRCM_PLLDSI_FREQ));
 512	writel(PRCMU_DSI_PLLOUT_SEL_SETTING,
 513		(_PRCMU_BASE + PRCM_DSI_PLLOUT_SEL));
 514	/* Enable Escape clocks */
 515	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV,
 516					(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
 517
 518	/* Start DSI PLL */
 519	writel(PRCMU_ENABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
 520	/* Reset DSI PLL */
 521	writel(PRCMU_DSI_RESET_SW, (_PRCMU_BASE + PRCM_DSI_SW_RESET));
 522	for (i = 0; i < 10; i++) {
 523		if ((readl(_PRCMU_BASE + PRCM_PLLDSI_LOCKP) &
 524			PRCMU_PLLDSI_LOCKP_LOCKED)
 525					== PRCMU_PLLDSI_LOCKP_LOCKED)
 526			break;
 527		udelay(100);
 528	}
 529	/* Set DSIPLL_RESETN */
 530	writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_SET));
 531	return 0;
 532}
 533
 534int prcmu_disable_dsipll(void)
 535{
 536	/* Disable dsi pll */
 537	writel(PRCMU_DISABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
 538	/* Disable  escapeclock */
 539	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV,
 540					(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
 541	return 0;
 542}
 543
 544int prcmu_set_display_clocks(void)
 545{
 546	unsigned long flags;
 547	unsigned int dsiclk;
 548
 549	if (prcmu_is_u8400())
 550		dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
 551	else
 552		dsiclk = PRCMU_DSI_CLOCK_SETTING;
 553
 554	spin_lock_irqsave(&clk_mgt_lock, flags);
 555
 556	/* Grab the HW semaphore. */
 557	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 558		cpu_relax();
 559
 560	writel(dsiclk, (_PRCMU_BASE + PRCM_HDMICLK_MGT));
 561	writel(PRCMU_DSI_LP_CLOCK_SETTING, (_PRCMU_BASE + PRCM_TVCLK_MGT));
 562	writel(PRCMU_DPI_CLOCK_SETTING, (_PRCMU_BASE + PRCM_LCDCLK_MGT));
 563
 564	/* Release the HW semaphore. */
 565	writel(0, (_PRCMU_BASE + PRCM_SEM));
 566
 567	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 568
 569	return 0;
 
 
 570}
 571
 572/**
 573 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
 574 */
 575void prcmu_enable_spi2(void)
 576{
 577	u32 reg;
 578	unsigned long flags;
 579
 580	spin_lock_irqsave(&gpiocr_lock, flags);
 581	reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
 582	writel(reg | PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
 583	spin_unlock_irqrestore(&gpiocr_lock, flags);
 
 584}
 585
 586/**
 587 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
 588 */
 589void prcmu_disable_spi2(void)
 590{
 591	u32 reg;
 592	unsigned long flags;
 593
 594	spin_lock_irqsave(&gpiocr_lock, flags);
 595	reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
 596	writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
 597	spin_unlock_irqrestore(&gpiocr_lock, flags);
 598}
 599
 600bool prcmu_has_arm_maxopp(void)
 601{
 602	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 603		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 604}
 605
 606bool prcmu_is_u8400(void)
 607{
 608	return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
 609}
 610
 611/**
 612 * prcmu_get_boot_status - PRCMU boot status checking
 613 * Returns: the current PRCMU boot status
 614 */
 615int prcmu_get_boot_status(void)
 616{
 617	return readb(tcdm_base + PRCM_BOOT_STATUS);
 
 618}
 619
 620/**
 621 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 622 * @val: Value to be set, i.e. transition requested
 623 * Returns: 0 on success, -EINVAL on invalid argument
 624 *
 625 * This function is used to run the following power state sequences -
 626 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 627 */
 628int prcmu_set_rc_a2p(enum romcode_write val)
 629{
 630	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 631		return -EINVAL;
 632	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 633	return 0;
 634}
 635
 636/**
 637 * prcmu_get_rc_p2a - This function is used to get power state sequences
 638 * Returns: the power transition that has last happened
 639 *
 640 * This function can return the following transitions-
 641 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 642 */
 643enum romcode_read prcmu_get_rc_p2a(void)
 644{
 645	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 646}
 647
 648/**
 649 * prcmu_get_current_mode - Return the current XP70 power mode
 650 * Returns: Returns the current AP(ARM) power mode: init,
 651 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 652 */
 653enum ap_pwrst prcmu_get_xp70_current_state(void)
 654{
 655	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 656}
 657
 658/**
 659 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 660 * @clkout:	The CLKOUT number (0 or 1).
 661 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 662 * @div:	The divider to be applied.
 663 *
 664 * Configures one of the programmable clock outputs (CLKOUTs).
 665 * @div should be in the range [1,63] to request a configuration, or 0 to
 666 * inform that the configuration is no longer requested.
 667 */
 668int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 669{
 670	static int requests[2];
 671	int r = 0;
 672	unsigned long flags;
 673	u32 val;
 674	u32 bits;
 675	u32 mask;
 676	u32 div_mask;
 677
 678	BUG_ON(clkout > 1);
 679	BUG_ON(div > 63);
 680	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 681
 682	if (!div && !requests[clkout])
 683		return -EINVAL;
 684
 685	switch (clkout) {
 686	case 0:
 687		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 688		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 689		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 690			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 691		break;
 692	case 1:
 693		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 694		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 695			PRCM_CLKOCR_CLK1TYPE);
 696		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 697			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 698		break;
 699	}
 700	bits &= mask;
 701
 702	spin_lock_irqsave(&clkout_lock, flags);
 703
 704	val = readl(_PRCMU_BASE + PRCM_CLKOCR);
 705	if (val & div_mask) {
 706		if (div) {
 707			if ((val & mask) != bits) {
 708				r = -EBUSY;
 709				goto unlock_and_return;
 710			}
 711		} else {
 712			if ((val & mask & ~div_mask) != bits) {
 713				r = -EINVAL;
 714				goto unlock_and_return;
 715			}
 716		}
 717	}
 718	writel((bits | (val & ~mask)), (_PRCMU_BASE + PRCM_CLKOCR));
 719	requests[clkout] += (div ? 1 : -1);
 720
 721unlock_and_return:
 722	spin_unlock_irqrestore(&clkout_lock, flags);
 723
 724	return r;
 725}
 726
 727int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 728{
 729	unsigned long flags;
 730
 731	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 732
 733	spin_lock_irqsave(&mb0_transfer.lock, flags);
 734
 735	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 736		cpu_relax();
 737
 738	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 739	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 740	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 741	writeb((keep_ulp_clk ? 1 : 0),
 742		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 743	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 744	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 745
 746	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 747
 748	return 0;
 749}
 750
 
 
 
 
 
 751/* This function should only be called while mb0_transfer.lock is held. */
 752static void config_wakeups(void)
 753{
 754	const u8 header[2] = {
 755		MB0H_CONFIG_WAKEUPS_EXE,
 756		MB0H_CONFIG_WAKEUPS_SLEEP
 757	};
 758	static u32 last_dbb_events;
 759	static u32 last_abb_events;
 760	u32 dbb_events;
 761	u32 abb_events;
 762	unsigned int i;
 763
 764	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 765	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 766
 767	abb_events = mb0_transfer.req.abb_events;
 768
 769	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 770		return;
 771
 772	for (i = 0; i < 2; i++) {
 773		while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 774			cpu_relax();
 775		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 776		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 777		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 778		writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 779	}
 780	last_dbb_events = dbb_events;
 781	last_abb_events = abb_events;
 782}
 783
 784void prcmu_enable_wakeups(u32 wakeups)
 785{
 786	unsigned long flags;
 787	u32 bits;
 788	int i;
 789
 790	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 791
 792	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 793		if (wakeups & BIT(i))
 794			bits |= prcmu_wakeup_bit[i];
 795	}
 796
 797	spin_lock_irqsave(&mb0_transfer.lock, flags);
 798
 799	mb0_transfer.req.dbb_wakeups = bits;
 800	config_wakeups();
 801
 802	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 803}
 804
 805void prcmu_config_abb_event_readout(u32 abb_events)
 806{
 807	unsigned long flags;
 808
 809	spin_lock_irqsave(&mb0_transfer.lock, flags);
 810
 811	mb0_transfer.req.abb_events = abb_events;
 812	config_wakeups();
 813
 814	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 815}
 816
 817void prcmu_get_abb_event_buffer(void __iomem **buf)
 818{
 819	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 820		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 821	else
 822		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 823}
 824
 825/**
 826 * prcmu_set_arm_opp - set the appropriate ARM OPP
 827 * @opp: The new ARM operating point to which transition is to be made
 828 * Returns: 0 on success, non-zero on failure
 829 *
 830 * This function sets the the operating point of the ARM.
 831 */
 832int prcmu_set_arm_opp(u8 opp)
 833{
 834	int r;
 835
 836	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 837		return -EINVAL;
 838
 839	r = 0;
 840
 841	mutex_lock(&mb1_transfer.lock);
 842
 843	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 844		cpu_relax();
 845
 846	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 847	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 848	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 849
 850	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 851	wait_for_completion(&mb1_transfer.work);
 852
 853	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 854		(mb1_transfer.ack.arm_opp != opp))
 855		r = -EIO;
 856
 857	mutex_unlock(&mb1_transfer.lock);
 858
 859	return r;
 860}
 861
 862/**
 863 * prcmu_get_arm_opp - get the current ARM OPP
 864 *
 865 * Returns: the current ARM OPP
 866 */
 867int prcmu_get_arm_opp(void)
 868{
 869	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 870}
 871
 872/**
 873 * prcmu_get_ddr_opp - get the current DDR OPP
 874 *
 875 * Returns: the current DDR OPP
 876 */
 877int prcmu_get_ddr_opp(void)
 878{
 879	return readb(_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW);
 880}
 881
 882/**
 883 * set_ddr_opp - set the appropriate DDR OPP
 884 * @opp: The new DDR operating point to which transition is to be made
 885 * Returns: 0 on success, non-zero on failure
 886 *
 887 * This function sets the operating point of the DDR.
 888 */
 889int prcmu_set_ddr_opp(u8 opp)
 890{
 891	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
 892		return -EINVAL;
 893	/* Changing the DDR OPP can hang the hardware pre-v21 */
 894	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
 895		writeb(opp, (_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW));
 
 896
 897	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898}
 
 899/**
 900 * set_ape_opp - set the appropriate APE OPP
 901 * @opp: The new APE operating point to which transition is to be made
 902 * Returns: 0 on success, non-zero on failure
 903 *
 904 * This function sets the operating point of the APE.
 905 */
 906int prcmu_set_ape_opp(u8 opp)
 907{
 908	int r = 0;
 909
 
 
 
 910	mutex_lock(&mb1_transfer.lock);
 911
 912	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 
 
 
 
 
 
 913		cpu_relax();
 914
 915	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 916	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 917	writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 
 918
 919	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 920	wait_for_completion(&mb1_transfer.work);
 921
 922	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 923		(mb1_transfer.ack.ape_opp != opp))
 924		r = -EIO;
 925
 
 
 
 
 
 
 
 926	mutex_unlock(&mb1_transfer.lock);
 927
 928	return r;
 929}
 930
 931/**
 932 * prcmu_get_ape_opp - get the current APE OPP
 933 *
 934 * Returns: the current APE OPP
 935 */
 936int prcmu_get_ape_opp(void)
 937{
 938	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 939}
 940
 941/**
 942 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 943 * @enable: true to request the higher voltage, false to drop a request.
 944 *
 945 * Calls to this function to enable and disable requests must be balanced.
 946 */
 947int prcmu_request_ape_opp_100_voltage(bool enable)
 948{
 949	int r = 0;
 950	u8 header;
 951	static unsigned int requests;
 952
 953	mutex_lock(&mb1_transfer.lock);
 954
 955	if (enable) {
 956		if (0 != requests++)
 957			goto unlock_and_return;
 958		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 959	} else {
 960		if (requests == 0) {
 961			r = -EIO;
 962			goto unlock_and_return;
 963		} else if (1 != requests--) {
 964			goto unlock_and_return;
 965		}
 966		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 967	}
 968
 969	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 970		cpu_relax();
 971
 972	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 973
 974	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 975	wait_for_completion(&mb1_transfer.work);
 976
 977	if ((mb1_transfer.ack.header != header) ||
 978		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 979		r = -EIO;
 980
 981unlock_and_return:
 982	mutex_unlock(&mb1_transfer.lock);
 983
 984	return r;
 985}
 986
 987/**
 988 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
 989 *
 990 * This function releases the power state requirements of a USB wakeup.
 991 */
 992int prcmu_release_usb_wakeup_state(void)
 993{
 994	int r = 0;
 995
 996	mutex_lock(&mb1_transfer.lock);
 997
 998	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 999		cpu_relax();
1000
1001	writeb(MB1H_RELEASE_USB_WAKEUP,
1002		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1003
1004	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1005	wait_for_completion(&mb1_transfer.work);
1006
1007	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1008		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1009		r = -EIO;
1010
1011	mutex_unlock(&mb1_transfer.lock);
1012
1013	return r;
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016/**
1017 * prcmu_set_epod - set the state of a EPOD (power domain)
1018 * @epod_id: The EPOD to set
1019 * @epod_state: The new EPOD state
1020 *
1021 * This function sets the state of a EPOD (power domain). It may not be called
1022 * from interrupt context.
1023 */
1024int prcmu_set_epod(u16 epod_id, u8 epod_state)
1025{
1026	int r = 0;
1027	bool ram_retention = false;
1028	int i;
1029
1030	/* check argument */
1031	BUG_ON(epod_id >= NUM_EPOD_ID);
1032
1033	/* set flag if retention is possible */
1034	switch (epod_id) {
1035	case EPOD_ID_SVAMMDSP:
1036	case EPOD_ID_SIAMMDSP:
1037	case EPOD_ID_ESRAM12:
1038	case EPOD_ID_ESRAM34:
1039		ram_retention = true;
1040		break;
1041	}
1042
1043	/* check argument */
1044	BUG_ON(epod_state > EPOD_STATE_ON);
1045	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1046
1047	/* get lock */
1048	mutex_lock(&mb2_transfer.lock);
1049
1050	/* wait for mailbox */
1051	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1052		cpu_relax();
1053
1054	/* fill in mailbox */
1055	for (i = 0; i < NUM_EPOD_ID; i++)
1056		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1057	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1058
1059	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1060
1061	writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1062
1063	/*
1064	 * The current firmware version does not handle errors correctly,
1065	 * and we cannot recover if there is an error.
1066	 * This is expected to change when the firmware is updated.
1067	 */
1068	if (!wait_for_completion_timeout(&mb2_transfer.work,
1069			msecs_to_jiffies(20000))) {
1070		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1071			__func__);
1072		r = -EIO;
1073		goto unlock_and_return;
1074	}
1075
1076	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1077		r = -EIO;
1078
1079unlock_and_return:
1080	mutex_unlock(&mb2_transfer.lock);
1081	return r;
1082}
1083
1084/**
1085 * prcmu_configure_auto_pm - Configure autonomous power management.
1086 * @sleep: Configuration for ApSleep.
1087 * @idle:  Configuration for ApIdle.
1088 */
1089void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1090	struct prcmu_auto_pm_config *idle)
1091{
1092	u32 sleep_cfg;
1093	u32 idle_cfg;
1094	unsigned long flags;
1095
1096	BUG_ON((sleep == NULL) || (idle == NULL));
1097
1098	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1099	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1100	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1101	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1102	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1103	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1104
1105	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1106	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1107	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1108	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1109	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1110	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1111
1112	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1113
1114	/*
1115	 * The autonomous power management configuration is done through
1116	 * fields in mailbox 2, but these fields are only used as shared
1117	 * variables - i.e. there is no need to send a message.
1118	 */
1119	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1120	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1121
1122	mb2_transfer.auto_pm_enabled =
1123		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1124		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1125		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1126		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1127
1128	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1129}
1130EXPORT_SYMBOL(prcmu_configure_auto_pm);
1131
1132bool prcmu_is_auto_pm_enabled(void)
1133{
1134	return mb2_transfer.auto_pm_enabled;
1135}
1136
1137static int request_sysclk(bool enable)
1138{
1139	int r;
1140	unsigned long flags;
1141
1142	r = 0;
1143
1144	mutex_lock(&mb3_transfer.sysclk_lock);
1145
1146	spin_lock_irqsave(&mb3_transfer.lock, flags);
1147
1148	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1149		cpu_relax();
1150
1151	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1152
1153	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1154	writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1155
1156	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1157
1158	/*
1159	 * The firmware only sends an ACK if we want to enable the
1160	 * SysClk, and it succeeds.
1161	 */
1162	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1163			msecs_to_jiffies(20000))) {
1164		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1165			__func__);
1166		r = -EIO;
1167	}
1168
1169	mutex_unlock(&mb3_transfer.sysclk_lock);
1170
1171	return r;
1172}
1173
1174static int request_timclk(bool enable)
1175{
1176	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
 
 
 
 
 
 
 
 
 
 
1177
1178	if (!enable)
1179		val |= PRCM_TCR_STOP_TIMERS;
1180	writel(val, (_PRCMU_BASE + PRCM_TCR));
 
 
 
1181
1182	return 0;
1183}
1184
1185static int request_reg_clock(u8 clock, bool enable)
1186{
1187	u32 val;
1188	unsigned long flags;
1189
1190	spin_lock_irqsave(&clk_mgt_lock, flags);
1191
1192	/* Grab the HW semaphore. */
1193	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1194		cpu_relax();
1195
1196	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1197	if (enable) {
1198		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1199	} else {
1200		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1201		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1202	}
1203	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1204
1205	/* Release the HW semaphore. */
1206	writel(0, (_PRCMU_BASE + PRCM_SEM));
1207
1208	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1209
1210	return 0;
1211}
1212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213/**
1214 * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1215 * @clock:      The clock for which the request is made.
1216 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1217 *
1218 * This function should only be used by the clock implementation.
1219 * Do not use it from any other place!
1220 */
1221int prcmu_request_clock(u8 clock, bool enable)
1222{
1223	if (clock < PRCMU_NUM_REG_CLOCKS)
1224		return request_reg_clock(clock, enable);
 
 
1225	else if (clock == PRCMU_TIMCLK)
1226		return request_timclk(enable);
 
 
 
 
 
 
1227	else if (clock == PRCMU_SYSCLK)
1228		return request_sysclk(enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233int prcmu_config_esram0_deep_sleep(u8 state)
1234{
1235	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1236	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1237		return -EINVAL;
1238
1239	mutex_lock(&mb4_transfer.lock);
1240
1241	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1242		cpu_relax();
1243
1244	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1245	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1246	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1247	writeb(DDR_PWR_STATE_ON,
1248	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1249	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1250
1251	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1252	wait_for_completion(&mb4_transfer.work);
1253
1254	mutex_unlock(&mb4_transfer.lock);
1255
1256	return 0;
1257}
1258
1259int prcmu_config_hotdog(u8 threshold)
1260{
1261	mutex_lock(&mb4_transfer.lock);
1262
1263	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1264		cpu_relax();
1265
1266	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1267	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1268
1269	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1270	wait_for_completion(&mb4_transfer.work);
1271
1272	mutex_unlock(&mb4_transfer.lock);
1273
1274	return 0;
1275}
1276
1277int prcmu_config_hotmon(u8 low, u8 high)
1278{
1279	mutex_lock(&mb4_transfer.lock);
1280
1281	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1282		cpu_relax();
1283
1284	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1285	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1286	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1287		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1288	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1289
1290	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1291	wait_for_completion(&mb4_transfer.work);
1292
1293	mutex_unlock(&mb4_transfer.lock);
1294
1295	return 0;
1296}
 
1297
1298static int config_hot_period(u16 val)
1299{
1300	mutex_lock(&mb4_transfer.lock);
1301
1302	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1303		cpu_relax();
1304
1305	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1306	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1307
1308	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1309	wait_for_completion(&mb4_transfer.work);
1310
1311	mutex_unlock(&mb4_transfer.lock);
1312
1313	return 0;
1314}
1315
1316int prcmu_start_temp_sense(u16 cycles32k)
1317{
1318	if (cycles32k == 0xFFFF)
1319		return -EINVAL;
1320
1321	return config_hot_period(cycles32k);
1322}
 
1323
1324int prcmu_stop_temp_sense(void)
1325{
1326	return config_hot_period(0xFFFF);
1327}
 
1328
1329/**
1330 * prcmu_set_clock_divider() - Configure the clock divider.
1331 * @clock:	The clock for which the request is made.
1332 * @divider:	The clock divider. (< 32)
1333 *
1334 * This function should only be used by the clock implementation.
1335 * Do not use it from any other place!
1336 */
1337int prcmu_set_clock_divider(u8 clock, u8 divider)
1338{
1339	u32 val;
1340	unsigned long flags;
1341
1342	if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1343		return -EINVAL;
1344
1345	spin_lock_irqsave(&clk_mgt_lock, flags);
1346
1347	/* Grab the HW semaphore. */
1348	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1349		cpu_relax();
1350
1351	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1352	val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1353	val |= (u32)divider;
1354	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1355
1356	/* Release the HW semaphore. */
1357	writel(0, (_PRCMU_BASE + PRCM_SEM));
1358
1359	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 
 
 
1360
1361	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363
1364/**
1365 * prcmu_abb_read() - Read register value(s) from the ABB.
1366 * @slave:	The I2C slave address.
1367 * @reg:	The (start) register address.
1368 * @value:	The read out value(s).
1369 * @size:	The number of registers to read.
1370 *
1371 * Reads register value(s) from the ABB.
1372 * @size has to be 1 for the current firmware version.
1373 */
1374int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1375{
1376	int r;
1377
1378	if (size != 1)
1379		return -EINVAL;
1380
1381	mutex_lock(&mb5_transfer.lock);
1382
1383	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1384		cpu_relax();
1385
 
1386	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1387	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1388	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1389	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1390
1391	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1392
1393	if (!wait_for_completion_timeout(&mb5_transfer.work,
1394				msecs_to_jiffies(20000))) {
1395		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1396			__func__);
1397		r = -EIO;
1398	} else {
1399		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1400	}
1401
1402	if (!r)
1403		*value = mb5_transfer.ack.value;
1404
1405	mutex_unlock(&mb5_transfer.lock);
1406
1407	return r;
1408}
1409
1410/**
1411 * prcmu_abb_write() - Write register value(s) to the ABB.
1412 * @slave:	The I2C slave address.
1413 * @reg:	The (start) register address.
1414 * @value:	The value(s) to write.
 
1415 * @size:	The number of registers to write.
1416 *
1417 * Reads register value(s) from the ABB.
 
 
1418 * @size has to be 1 for the current firmware version.
1419 */
1420int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1421{
1422	int r;
1423
1424	if (size != 1)
1425		return -EINVAL;
1426
1427	mutex_lock(&mb5_transfer.lock);
1428
1429	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1430		cpu_relax();
1431
 
1432	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1433	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1434	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1435	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1436
1437	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1438
1439	if (!wait_for_completion_timeout(&mb5_transfer.work,
1440				msecs_to_jiffies(20000))) {
1441		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1442			__func__);
1443		r = -EIO;
1444	} else {
1445		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1446	}
1447
1448	mutex_unlock(&mb5_transfer.lock);
1449
1450	return r;
1451}
1452
1453/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1455 */
1456void prcmu_ac_wake_req(void)
1457{
1458	u32 val;
 
1459
1460	mutex_lock(&mb0_transfer.ac_wake_lock);
1461
1462	val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1463	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1464		goto unlock_and_return;
1465
1466	atomic_set(&ac_wake_req_state, 1);
1467
1468	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1469		(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
 
 
 
 
 
 
 
 
 
 
1470
1471	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1472			msecs_to_jiffies(20000))) {
1473		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1474			__func__);
 
1475	}
1476
1477unlock_and_return:
1478	mutex_unlock(&mb0_transfer.ac_wake_lock);
 
1479}
1480
1481/**
1482 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1483 */
1484void prcmu_ac_sleep_req()
1485{
1486	u32 val;
1487
1488	mutex_lock(&mb0_transfer.ac_wake_lock);
1489
1490	val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1491	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1492		goto unlock_and_return;
1493
1494	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1495		(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
1496
1497	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1498			msecs_to_jiffies(20000))) {
1499		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1500			__func__);
1501	}
1502
1503	atomic_set(&ac_wake_req_state, 0);
1504
1505unlock_and_return:
1506	mutex_unlock(&mb0_transfer.ac_wake_lock);
1507}
1508
1509bool prcmu_is_ac_wake_requested(void)
1510{
1511	return (atomic_read(&ac_wake_req_state) != 0);
1512}
1513
1514/**
1515 * prcmu_system_reset - System reset
1516 *
1517 * Saves the reset reason code and then sets the APE_SOFRST register which
1518 * fires interrupt to fw
 
 
1519 */
1520void prcmu_system_reset(u16 reset_code)
1521{
1522	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1523	writel(1, (_PRCMU_BASE + PRCM_APE_SOFTRST));
 
 
 
 
 
 
 
 
 
 
 
1524}
1525
1526/**
1527 * prcmu_reset_modem - ask the PRCMU to reset modem
1528 */
1529void prcmu_modem_reset(void)
1530{
1531	mutex_lock(&mb1_transfer.lock);
1532
1533	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1534		cpu_relax();
1535
1536	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1537	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1538	wait_for_completion(&mb1_transfer.work);
1539
1540	/*
1541	 * No need to check return from PRCMU as modem should go in reset state
1542	 * This state is already managed by upper layer
1543	 */
1544
1545	mutex_unlock(&mb1_transfer.lock);
1546}
1547
1548static void ack_dbb_wakeup(void)
1549{
1550	unsigned long flags;
1551
1552	spin_lock_irqsave(&mb0_transfer.lock, flags);
1553
1554	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1555		cpu_relax();
1556
1557	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1558	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1559
1560	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1561}
1562
1563static inline void print_unknown_header_warning(u8 n, u8 header)
1564{
1565	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1566		header, n);
1567}
1568
1569static bool read_mailbox_0(void)
1570{
1571	bool r;
1572	u32 ev;
1573	unsigned int n;
1574	u8 header;
1575
1576	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1577	switch (header) {
1578	case MB0H_WAKEUP_EXE:
1579	case MB0H_WAKEUP_SLEEP:
1580		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1581			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1582		else
1583			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1584
1585		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1586			complete(&mb0_transfer.ac_wake_work);
1587		if (ev & WAKEUP_BIT_SYSCLK_OK)
1588			complete(&mb3_transfer.sysclk_work);
1589
1590		ev &= mb0_transfer.req.dbb_irqs;
1591
1592		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1593			if (ev & prcmu_irq_bit[n])
1594				generic_handle_irq(IRQ_PRCMU_BASE + n);
1595		}
1596		r = true;
1597		break;
1598	default:
1599		print_unknown_header_warning(0, header);
1600		r = false;
1601		break;
1602	}
1603	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1604	return r;
1605}
1606
1607static bool read_mailbox_1(void)
1608{
1609	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1610	mb1_transfer.ack.arm_opp = readb(tcdm_base +
1611		PRCM_ACK_MB1_CURRENT_ARM_OPP);
1612	mb1_transfer.ack.ape_opp = readb(tcdm_base +
1613		PRCM_ACK_MB1_CURRENT_APE_OPP);
1614	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1615		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1616	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1617	complete(&mb1_transfer.work);
1618	return false;
1619}
1620
1621static bool read_mailbox_2(void)
1622{
1623	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1624	writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1625	complete(&mb2_transfer.work);
1626	return false;
1627}
1628
1629static bool read_mailbox_3(void)
1630{
1631	writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1632	return false;
1633}
1634
1635static bool read_mailbox_4(void)
1636{
1637	u8 header;
1638	bool do_complete = true;
1639
1640	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1641	switch (header) {
1642	case MB4H_MEM_ST:
1643	case MB4H_HOTDOG:
1644	case MB4H_HOTMON:
1645	case MB4H_HOT_PERIOD:
 
 
 
 
 
1646		break;
1647	default:
1648		print_unknown_header_warning(4, header);
1649		do_complete = false;
1650		break;
1651	}
1652
1653	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1654
1655	if (do_complete)
1656		complete(&mb4_transfer.work);
1657
1658	return false;
1659}
1660
1661static bool read_mailbox_5(void)
1662{
1663	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1664	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1665	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1666	complete(&mb5_transfer.work);
1667	return false;
1668}
1669
1670static bool read_mailbox_6(void)
1671{
1672	writel(MBOX_BIT(6), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1673	return false;
1674}
1675
1676static bool read_mailbox_7(void)
1677{
1678	writel(MBOX_BIT(7), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1679	return false;
1680}
1681
1682static bool (* const read_mailbox[NUM_MB])(void) = {
1683	read_mailbox_0,
1684	read_mailbox_1,
1685	read_mailbox_2,
1686	read_mailbox_3,
1687	read_mailbox_4,
1688	read_mailbox_5,
1689	read_mailbox_6,
1690	read_mailbox_7
1691};
1692
1693static irqreturn_t prcmu_irq_handler(int irq, void *data)
1694{
1695	u32 bits;
1696	u8 n;
1697	irqreturn_t r;
1698
1699	bits = (readl(_PRCMU_BASE + PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
1700	if (unlikely(!bits))
1701		return IRQ_NONE;
1702
1703	r = IRQ_HANDLED;
1704	for (n = 0; bits; n++) {
1705		if (bits & MBOX_BIT(n)) {
1706			bits -= MBOX_BIT(n);
1707			if (read_mailbox[n]())
1708				r = IRQ_WAKE_THREAD;
1709		}
1710	}
1711	return r;
1712}
1713
1714static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1715{
1716	ack_dbb_wakeup();
1717	return IRQ_HANDLED;
1718}
1719
1720static void prcmu_mask_work(struct work_struct *work)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&mb0_transfer.lock, flags);
1725
1726	config_wakeups();
1727
1728	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1729}
1730
1731static void prcmu_irq_mask(struct irq_data *d)
1732{
1733	unsigned long flags;
1734
1735	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1736
1737	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1738
1739	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1740
1741	if (d->irq != IRQ_PRCMU_CA_SLEEP)
1742		schedule_work(&mb0_transfer.mask_work);
1743}
1744
1745static void prcmu_irq_unmask(struct irq_data *d)
1746{
1747	unsigned long flags;
1748
1749	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1750
1751	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1752
1753	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1754
1755	if (d->irq != IRQ_PRCMU_CA_SLEEP)
1756		schedule_work(&mb0_transfer.mask_work);
1757}
1758
1759static void noop(struct irq_data *d)
1760{
1761}
1762
1763static struct irq_chip prcmu_irq_chip = {
1764	.name		= "prcmu",
1765	.irq_disable	= prcmu_irq_mask,
1766	.irq_ack	= noop,
1767	.irq_mask	= prcmu_irq_mask,
1768	.irq_unmask	= prcmu_irq_unmask,
1769};
1770
1771void __init prcmu_early_init(void)
1772{
1773	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	if (cpu_is_u8500v1()) {
1776		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1777	} else if (cpu_is_u8500v2()) {
1778		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1779
1780		if (tcpm_base != NULL) {
1781			int version;
1782			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1783			prcmu_version.project_number = version & 0xFF;
1784			prcmu_version.api_version = (version >> 8) & 0xFF;
1785			prcmu_version.func_version = (version >> 16) & 0xFF;
1786			prcmu_version.errata = (version >> 24) & 0xFF;
1787			pr_info("PRCMU firmware version %d.%d.%d\n",
1788				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
1789				(version >> 24) & 0xFF);
1790			iounmap(tcpm_base);
1791		}
1792
1793		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1794	} else {
1795		pr_err("prcmu: Unsupported chip version\n");
1796		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797	}
 
 
1798
1799	spin_lock_init(&mb0_transfer.lock);
1800	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1801	mutex_init(&mb0_transfer.ac_wake_lock);
1802	init_completion(&mb0_transfer.ac_wake_work);
1803	mutex_init(&mb1_transfer.lock);
1804	init_completion(&mb1_transfer.work);
 
1805	mutex_init(&mb2_transfer.lock);
1806	init_completion(&mb2_transfer.work);
1807	spin_lock_init(&mb2_transfer.auto_pm_lock);
1808	spin_lock_init(&mb3_transfer.lock);
1809	mutex_init(&mb3_transfer.sysclk_lock);
1810	init_completion(&mb3_transfer.sysclk_work);
1811	mutex_init(&mb4_transfer.lock);
1812	init_completion(&mb4_transfer.work);
1813	mutex_init(&mb5_transfer.lock);
1814	init_completion(&mb5_transfer.work);
1815
1816	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
 
1817
1818	/* Initalize irqs. */
1819	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1820		unsigned int irq;
1821
1822		irq = IRQ_PRCMU_BASE + i;
1823		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1824					 handle_simple_irq);
1825		set_irq_flags(irq, IRQF_VALID);
1826	}
1827}
1828
1829/*
1830 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1831 */
1832static struct regulator_consumer_supply db8500_vape_consumers[] = {
1833	REGULATOR_SUPPLY("v-ape", NULL),
1834	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1835	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1836	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1837	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
 
1838	/* "v-mmc" changed to "vcore" in the mainline kernel */
1839	REGULATOR_SUPPLY("vcore", "sdi0"),
1840	REGULATOR_SUPPLY("vcore", "sdi1"),
1841	REGULATOR_SUPPLY("vcore", "sdi2"),
1842	REGULATOR_SUPPLY("vcore", "sdi3"),
1843	REGULATOR_SUPPLY("vcore", "sdi4"),
1844	REGULATOR_SUPPLY("v-dma", "dma40.0"),
1845	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1846	/* "v-uart" changed to "vcore" in the mainline kernel */
1847	REGULATOR_SUPPLY("vcore", "uart0"),
1848	REGULATOR_SUPPLY("vcore", "uart1"),
1849	REGULATOR_SUPPLY("vcore", "uart2"),
1850	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
 
 
1851};
1852
1853static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1854	/* CG2900 and CW1200 power to off-chip peripherals */
1855	REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1856	REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1857	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1858	/* AV8100 regulator */
1859	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1860};
1861
1862static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1863	REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1864	REGULATOR_SUPPLY("vsupply", "mcde.0"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865};
1866
1867static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1868	[DB8500_REGULATOR_VAPE] = {
1869		.constraints = {
1870			.name = "db8500-vape",
1871			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
 
1872		},
1873		.consumer_supplies = db8500_vape_consumers,
1874		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1875	},
1876	[DB8500_REGULATOR_VARM] = {
1877		.constraints = {
1878			.name = "db8500-varm",
1879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1880		},
1881	},
1882	[DB8500_REGULATOR_VMODEM] = {
1883		.constraints = {
1884			.name = "db8500-vmodem",
1885			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1886		},
1887	},
1888	[DB8500_REGULATOR_VPLL] = {
1889		.constraints = {
1890			.name = "db8500-vpll",
1891			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1892		},
1893	},
1894	[DB8500_REGULATOR_VSMPS1] = {
1895		.constraints = {
1896			.name = "db8500-vsmps1",
1897			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1898		},
1899	},
1900	[DB8500_REGULATOR_VSMPS2] = {
1901		.constraints = {
1902			.name = "db8500-vsmps2",
1903			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1904		},
1905		.consumer_supplies = db8500_vsmps2_consumers,
1906		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1907	},
1908	[DB8500_REGULATOR_VSMPS3] = {
1909		.constraints = {
1910			.name = "db8500-vsmps3",
1911			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1912		},
1913	},
1914	[DB8500_REGULATOR_VRF1] = {
1915		.constraints = {
1916			.name = "db8500-vrf1",
1917			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1918		},
1919	},
1920	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1921		.supply_regulator = "db8500-vape",
1922		.constraints = {
1923			.name = "db8500-sva-mmdsp",
1924			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1925		},
 
 
1926	},
1927	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1928		.constraints = {
1929			/* "ret" means "retention" */
1930			.name = "db8500-sva-mmdsp-ret",
1931			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1932		},
1933	},
1934	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1935		.supply_regulator = "db8500-vape",
1936		.constraints = {
1937			.name = "db8500-sva-pipe",
1938			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1939		},
 
 
1940	},
1941	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1942		.supply_regulator = "db8500-vape",
1943		.constraints = {
1944			.name = "db8500-sia-mmdsp",
1945			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1946		},
 
 
1947	},
1948	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1949		.constraints = {
1950			.name = "db8500-sia-mmdsp-ret",
1951			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1952		},
1953	},
1954	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1955		.supply_regulator = "db8500-vape",
1956		.constraints = {
1957			.name = "db8500-sia-pipe",
1958			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1959		},
 
 
1960	},
1961	[DB8500_REGULATOR_SWITCH_SGA] = {
1962		.supply_regulator = "db8500-vape",
1963		.constraints = {
1964			.name = "db8500-sga",
1965			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1966		},
 
 
 
1967	},
1968	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1969		.supply_regulator = "db8500-vape",
1970		.constraints = {
1971			.name = "db8500-b2r2-mcde",
1972			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1973		},
1974		.consumer_supplies = db8500_b2r2_mcde_consumers,
1975		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
1976	},
1977	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
1978		.supply_regulator = "db8500-vape",
 
 
 
1979		.constraints = {
1980			.name = "db8500-esram12",
1981			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1982		},
 
 
1983	},
1984	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
1985		.constraints = {
1986			.name = "db8500-esram12-ret",
1987			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1988		},
1989	},
1990	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
1991		.supply_regulator = "db8500-vape",
 
 
 
1992		.constraints = {
1993			.name = "db8500-esram34",
1994			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1995		},
 
 
1996	},
1997	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
1998		.constraints = {
1999			.name = "db8500-esram34-ret",
2000			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2001		},
2002	},
2003};
2004
2005static struct mfd_cell db8500_prcmu_devs[] = {
2006	{
2007		.name = "db8500-prcmu-regulators",
2008		.platform_data = &db8500_regulators,
2009		.pdata_size = sizeof(db8500_regulators),
2010	},
2011	{
2012		.name = "cpufreq-u8500",
 
 
 
2013	},
2014};
2015
2016/**
2017 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2018 *
2019 */
2020static int __init db8500_prcmu_probe(struct platform_device *pdev)
 
 
 
 
 
 
2021{
2022	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023
2024	if (ux500_is_svp())
 
 
 
 
 
 
 
 
 
 
 
 
2025		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026
2027	/* Clean up the mailbox interrupts after pre-kernel code. */
2028	writel(ALL_MBOX_BITS, (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
2029
2030	err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2031		prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
 
 
 
 
2032	if (err < 0) {
2033		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2034		err = -EBUSY;
2035		goto no_irq_return;
2036	}
2037
2038	if (cpu_is_u8500v20_or_later())
2039		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2040
2041	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2042			      ARRAY_SIZE(db8500_prcmu_devs), NULL,
2043			      0);
2044
2045	if (err)
 
 
2046		pr_err("prcmu: Failed to add subdevices\n");
2047	else
2048		pr_info("DB8500 PRCMU initialized\n");
2049
2050no_irq_return:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051	return err;
2052}
 
 
 
 
2053
2054static struct platform_driver db8500_prcmu_driver = {
2055	.driver = {
2056		.name = "db8500-prcmu",
2057		.owner = THIS_MODULE,
2058	},
 
2059};
2060
2061static int __init db8500_prcmu_init(void)
2062{
2063	return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2064}
2065
2066arch_initcall(db8500_prcmu_init);
2067
2068MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2069MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2070MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
 
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
 
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
  39#include <linux/platform_data/ux500_wdt.h>
  40#include "dbx500-prcmu-regs.h"
 
 
 
 
 
 
 
 
 
 
 
  41
  42/* Index of different voltages to be used when accessing AVSData */
  43#define PRCM_AVS_BASE		0x2FC
  44#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  45#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  46#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  47#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  48#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  49#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  50#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  51#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  52#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  53#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  54#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  55#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  56#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  57
  58#define PRCM_AVS_VOLTAGE		0
  59#define PRCM_AVS_VOLTAGE_MASK		0x3f
  60#define PRCM_AVS_ISSLOWSTARTUP		6
  61#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  62#define PRCM_AVS_ISMODEENABLE		7
  63#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  64
  65#define PRCM_BOOT_STATUS	0xFFF
  66#define PRCM_ROMCODE_A2P	0xFFE
  67#define PRCM_ROMCODE_P2A	0xFFD
  68#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  69
  70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  71
  72#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  73#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  74#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  75#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  76#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  77#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  78#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  79#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  80
  81/* Req Mailboxes */
  82#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  85#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  86#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  87#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  88
  89/* Ack Mailboxes */
  90#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  96
  97/* Mailbox 0 headers */
  98#define MB0H_POWER_STATE_TRANS		0
  99#define MB0H_CONFIG_WAKEUPS_EXE		1
 100#define MB0H_READ_WAKEUP_ACK		3
 101#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 102
 103#define MB0H_WAKEUP_EXE 2
 104#define MB0H_WAKEUP_SLEEP 5
 105
 106/* Mailbox 0 REQs */
 107#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 108#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 109#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 110#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 111#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 112#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 113
 114/* Mailbox 0 ACKs */
 115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 116#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 117#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 118#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 119#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 120#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 122
 123/* Mailbox 1 headers */
 124#define MB1H_ARM_APE_OPP 0x0
 125#define MB1H_RESET_MODEM 0x2
 126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 128#define MB1H_RELEASE_USB_WAKEUP 0x5
 129#define MB1H_PLL_ON_OFF 0x6
 130
 131/* Mailbox 1 Requests */
 132#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 133#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 134#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 135#define PLL_SOC0_OFF	0x1
 136#define PLL_SOC0_ON	0x2
 137#define PLL_SOC1_OFF	0x4
 138#define PLL_SOC1_ON	0x8
 139
 140/* Mailbox 1 ACKs */
 141#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 142#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 144#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 145
 146/* Mailbox 2 headers */
 147#define MB2H_DPS	0x0
 148#define MB2H_AUTO_PWR	0x1
 149
 150/* Mailbox 2 REQs */
 151#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 152#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 153#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 154#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 155#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 156#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 157#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 158#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 159#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 160#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 161
 162/* Mailbox 2 ACKs */
 163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 164#define HWACC_PWR_ST_OK 0xFE
 165
 166/* Mailbox 3 headers */
 167#define MB3H_ANC	0x0
 168#define MB3H_SIDETONE	0x1
 169#define MB3H_SYSCLK	0xE
 170
 171/* Mailbox 3 Requests */
 172#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 173#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 174#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 175#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 178#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 179
 180/* Mailbox 4 headers */
 181#define MB4H_DDR_INIT	0x0
 182#define MB4H_MEM_ST	0x1
 183#define MB4H_HOTDOG	0x12
 184#define MB4H_HOTMON	0x13
 185#define MB4H_HOT_PERIOD	0x14
 186#define MB4H_A9WDOG_CONF 0x16
 187#define MB4H_A9WDOG_EN   0x17
 188#define MB4H_A9WDOG_DIS  0x18
 189#define MB4H_A9WDOG_LOAD 0x19
 190#define MB4H_A9WDOG_KICK 0x20
 191
 192/* Mailbox 4 Requests */
 193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 195#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 198#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 199#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 200#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 201#define HOTMON_CONFIG_LOW			BIT(0)
 202#define HOTMON_CONFIG_HIGH			BIT(1)
 203#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 204#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 205#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 206#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 207#define A9WDOG_AUTO_OFF_EN			BIT(7)
 208#define A9WDOG_AUTO_OFF_DIS			0
 209#define A9WDOG_ID_MASK				0xf
 210
 211/* Mailbox 5 Requests */
 212#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 213#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 214#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 215#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 216#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 217#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 
 
 218#define PRCMU_I2C_STOP_EN		BIT(3)
 219
 220/* Mailbox 5 ACKs */
 221#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 222#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 223#define I2C_WR_OK 0x1
 224#define I2C_RD_OK 0x2
 225
 226#define NUM_MB 8
 227#define MBOX_BIT BIT
 228#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 229
 230/*
 231 * Wakeups/IRQs
 232 */
 233
 234#define WAKEUP_BIT_RTC BIT(0)
 235#define WAKEUP_BIT_RTT0 BIT(1)
 236#define WAKEUP_BIT_RTT1 BIT(2)
 237#define WAKEUP_BIT_HSI0 BIT(3)
 238#define WAKEUP_BIT_HSI1 BIT(4)
 239#define WAKEUP_BIT_CA_WAKE BIT(5)
 240#define WAKEUP_BIT_USB BIT(6)
 241#define WAKEUP_BIT_ABB BIT(7)
 242#define WAKEUP_BIT_ABB_FIFO BIT(8)
 243#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 244#define WAKEUP_BIT_CA_SLEEP BIT(10)
 245#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 246#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 247#define WAKEUP_BIT_ANC_OK BIT(13)
 248#define WAKEUP_BIT_SW_ERROR BIT(14)
 249#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 250#define WAKEUP_BIT_ARM BIT(17)
 251#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 252#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 253#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 254#define WAKEUP_BIT_GPIO0 BIT(23)
 255#define WAKEUP_BIT_GPIO1 BIT(24)
 256#define WAKEUP_BIT_GPIO2 BIT(25)
 257#define WAKEUP_BIT_GPIO3 BIT(26)
 258#define WAKEUP_BIT_GPIO4 BIT(27)
 259#define WAKEUP_BIT_GPIO5 BIT(28)
 260#define WAKEUP_BIT_GPIO6 BIT(29)
 261#define WAKEUP_BIT_GPIO7 BIT(30)
 262#define WAKEUP_BIT_GPIO8 BIT(31)
 263
 264static struct {
 265	bool valid;
 266	struct prcmu_fw_version version;
 267} fw_info;
 268
 269static struct irq_domain *db8500_irq_domain;
 270
 271/*
 272 * This vector maps irq numbers to the bits in the bit field used in
 273 * communication with the PRCMU firmware.
 274 *
 275 * The reason for having this is to keep the irq numbers contiguous even though
 276 * the bits in the bit field are not. (The bits also have a tendency to move
 277 * around, to further complicate matters.)
 278 */
 279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 281
 282#define IRQ_PRCMU_RTC 0
 283#define IRQ_PRCMU_RTT0 1
 284#define IRQ_PRCMU_RTT1 2
 285#define IRQ_PRCMU_HSI0 3
 286#define IRQ_PRCMU_HSI1 4
 287#define IRQ_PRCMU_CA_WAKE 5
 288#define IRQ_PRCMU_USB 6
 289#define IRQ_PRCMU_ABB 7
 290#define IRQ_PRCMU_ABB_FIFO 8
 291#define IRQ_PRCMU_ARM 9
 292#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 293#define IRQ_PRCMU_GPIO0 11
 294#define IRQ_PRCMU_GPIO1 12
 295#define IRQ_PRCMU_GPIO2 13
 296#define IRQ_PRCMU_GPIO3 14
 297#define IRQ_PRCMU_GPIO4 15
 298#define IRQ_PRCMU_GPIO5 16
 299#define IRQ_PRCMU_GPIO6 17
 300#define IRQ_PRCMU_GPIO7 18
 301#define IRQ_PRCMU_GPIO8 19
 302#define IRQ_PRCMU_CA_SLEEP 20
 303#define IRQ_PRCMU_HOTMON_LOW 21
 304#define IRQ_PRCMU_HOTMON_HIGH 22
 305#define NUM_PRCMU_WAKEUPS 23
 306
 307static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 308	IRQ_ENTRY(RTC),
 309	IRQ_ENTRY(RTT0),
 310	IRQ_ENTRY(RTT1),
 311	IRQ_ENTRY(HSI0),
 312	IRQ_ENTRY(HSI1),
 313	IRQ_ENTRY(CA_WAKE),
 314	IRQ_ENTRY(USB),
 315	IRQ_ENTRY(ABB),
 316	IRQ_ENTRY(ABB_FIFO),
 317	IRQ_ENTRY(CA_SLEEP),
 318	IRQ_ENTRY(ARM),
 319	IRQ_ENTRY(HOTMON_LOW),
 320	IRQ_ENTRY(HOTMON_HIGH),
 321	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 322	IRQ_ENTRY(GPIO0),
 323	IRQ_ENTRY(GPIO1),
 324	IRQ_ENTRY(GPIO2),
 325	IRQ_ENTRY(GPIO3),
 326	IRQ_ENTRY(GPIO4),
 327	IRQ_ENTRY(GPIO5),
 328	IRQ_ENTRY(GPIO6),
 329	IRQ_ENTRY(GPIO7),
 330	IRQ_ENTRY(GPIO8)
 331};
 332
 333#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 334#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 335static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 336	WAKEUP_ENTRY(RTC),
 337	WAKEUP_ENTRY(RTT0),
 338	WAKEUP_ENTRY(RTT1),
 339	WAKEUP_ENTRY(HSI0),
 340	WAKEUP_ENTRY(HSI1),
 341	WAKEUP_ENTRY(USB),
 342	WAKEUP_ENTRY(ABB),
 343	WAKEUP_ENTRY(ABB_FIFO),
 344	WAKEUP_ENTRY(ARM)
 345};
 346
 347/*
 348 * mb0_transfer - state needed for mailbox 0 communication.
 349 * @lock:		The transaction lock.
 350 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 351 *			the request data.
 352 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 353 * @req:		Request data that need to persist between requests.
 354 */
 355static struct {
 356	spinlock_t lock;
 357	spinlock_t dbb_irqs_lock;
 358	struct work_struct mask_work;
 359	struct mutex ac_wake_lock;
 360	struct completion ac_wake_work;
 361	struct {
 362		u32 dbb_irqs;
 363		u32 dbb_wakeups;
 364		u32 abb_events;
 365	} req;
 366} mb0_transfer;
 367
 368/*
 369 * mb1_transfer - state needed for mailbox 1 communication.
 370 * @lock:	The transaction lock.
 371 * @work:	The transaction completion structure.
 372 * @ape_opp:	The current APE OPP.
 373 * @ack:	Reply ("acknowledge") data.
 374 */
 375static struct {
 376	struct mutex lock;
 377	struct completion work;
 378	u8 ape_opp;
 379	struct {
 380		u8 header;
 381		u8 arm_opp;
 382		u8 ape_opp;
 383		u8 ape_voltage_status;
 384	} ack;
 385} mb1_transfer;
 386
 387/*
 388 * mb2_transfer - state needed for mailbox 2 communication.
 389 * @lock:            The transaction lock.
 390 * @work:            The transaction completion structure.
 391 * @auto_pm_lock:    The autonomous power management configuration lock.
 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 393 * @req:             Request data that need to persist between requests.
 394 * @ack:             Reply ("acknowledge") data.
 395 */
 396static struct {
 397	struct mutex lock;
 398	struct completion work;
 399	spinlock_t auto_pm_lock;
 400	bool auto_pm_enabled;
 401	struct {
 402		u8 status;
 403	} ack;
 404} mb2_transfer;
 405
 406/*
 407 * mb3_transfer - state needed for mailbox 3 communication.
 408 * @lock:		The request lock.
 409 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 410 * @sysclk_work:	Work structure used for sysclk requests.
 411 */
 412static struct {
 413	spinlock_t lock;
 414	struct mutex sysclk_lock;
 415	struct completion sysclk_work;
 416} mb3_transfer;
 417
 418/*
 419 * mb4_transfer - state needed for mailbox 4 communication.
 420 * @lock:	The transaction lock.
 421 * @work:	The transaction completion structure.
 422 */
 423static struct {
 424	struct mutex lock;
 425	struct completion work;
 426} mb4_transfer;
 427
 428/*
 429 * mb5_transfer - state needed for mailbox 5 communication.
 430 * @lock:	The transaction lock.
 431 * @work:	The transaction completion structure.
 432 * @ack:	Reply ("acknowledge") data.
 433 */
 434static struct {
 435	struct mutex lock;
 436	struct completion work;
 437	struct {
 438		u8 status;
 439		u8 value;
 440	} ack;
 441} mb5_transfer;
 442
 443static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 444
 445/* Spinlocks */
 446static DEFINE_SPINLOCK(prcmu_lock);
 447static DEFINE_SPINLOCK(clkout_lock);
 
 448
 449/* Global var to runtime determine TCDM base for v2 or v1 */
 450static __iomem void *tcdm_base;
 451static __iomem void *prcmu_base;
 452
 453struct clk_mgt {
 454	u32 offset;
 455	u32 pllsw;
 456	int branch;
 457	bool clk38div;
 458};
 459
 460enum {
 461	PLL_RAW,
 462	PLL_FIX,
 463	PLL_DIV
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464};
 465
 466static DEFINE_SPINLOCK(clk_mgt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 469	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 470static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 471	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 472	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 476	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 477	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 478	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 484	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 485	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 488	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 489	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 492	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 493	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 494	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 496	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 499	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 500};
 501
 502struct dsiclk {
 503	u32 divsel_mask;
 504	u32 divsel_shift;
 505	u32 divsel;
 506};
 507
 508static struct dsiclk dsiclk[2] = {
 509	{
 510		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 511		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 512		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 513	},
 514	{
 515		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 516		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 517		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 518	}
 519};
 520
 521struct dsiescclk {
 522	u32 en;
 523	u32 div_mask;
 524	u32 div_shift;
 525};
 526
 527static struct dsiescclk dsiescclk[3] = {
 528	{
 529		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 530		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 531		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 532	},
 533	{
 534		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 535		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 536		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 537	},
 538	{
 539		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 540		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 541		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 
 
 
 
 
 
 
 542	}
 543};
 
 
 
 544
 545u32 db8500_prcmu_read(unsigned int reg)
 546{
 547	return readl(prcmu_base + reg);
 
 
 
 
 
 548}
 549
 550void db8500_prcmu_write(unsigned int reg, u32 value)
 551{
 552	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554	spin_lock_irqsave(&prcmu_lock, flags);
 555	writel(value, (prcmu_base + reg));
 556	spin_unlock_irqrestore(&prcmu_lock, flags);
 557}
 558
 559void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 
 
 
 560{
 561	u32 val;
 562	unsigned long flags;
 563
 564	spin_lock_irqsave(&prcmu_lock, flags);
 565	val = readl(prcmu_base + reg);
 566	val = ((val & ~mask) | (value & mask));
 567	writel(val, (prcmu_base + reg));
 568	spin_unlock_irqrestore(&prcmu_lock, flags);
 569}
 570
 571struct prcmu_fw_version *prcmu_get_fw_version(void)
 
 
 
 572{
 573	return fw_info.valid ? &fw_info.version : NULL;
 
 
 
 
 
 
 574}
 575
 576static bool prcmu_is_ulppll_disabled(void)
 577{
 578	struct prcmu_fw_version *ver;
 
 
 579
 580	ver = prcmu_get_fw_version();
 581	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 
 582}
 583
 584bool prcmu_has_arm_maxopp(void)
 
 
 
 
 585{
 586	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 587		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 588}
 589
 590/**
 591 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 592 * @val: Value to be set, i.e. transition requested
 593 * Returns: 0 on success, -EINVAL on invalid argument
 594 *
 595 * This function is used to run the following power state sequences -
 596 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 597 */
 598int prcmu_set_rc_a2p(enum romcode_write val)
 599{
 600	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 601		return -EINVAL;
 602	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 603	return 0;
 604}
 605
 606/**
 607 * prcmu_get_rc_p2a - This function is used to get power state sequences
 608 * Returns: the power transition that has last happened
 609 *
 610 * This function can return the following transitions-
 611 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 612 */
 613enum romcode_read prcmu_get_rc_p2a(void)
 614{
 615	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 616}
 617
 618/**
 619 * prcmu_get_xp70_current_state - Return the current XP70 power mode
 620 * Returns: Returns the current AP(ARM) power mode: init,
 621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 622 */
 623enum ap_pwrst prcmu_get_xp70_current_state(void)
 624{
 625	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 626}
 627
 628/**
 629 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 630 * @clkout:	The CLKOUT number (0 or 1).
 631 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 632 * @div:	The divider to be applied.
 633 *
 634 * Configures one of the programmable clock outputs (CLKOUTs).
 635 * @div should be in the range [1,63] to request a configuration, or 0 to
 636 * inform that the configuration is no longer requested.
 637 */
 638int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 639{
 640	static int requests[2];
 641	int r = 0;
 642	unsigned long flags;
 643	u32 val;
 644	u32 bits;
 645	u32 mask;
 646	u32 div_mask;
 647
 648	BUG_ON(clkout > 1);
 649	BUG_ON(div > 63);
 650	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 651
 652	if (!div && !requests[clkout])
 653		return -EINVAL;
 654
 655	if (clkout == 0) {
 
 656		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 657		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 658		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 659			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 660	} else {
 
 661		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 662		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 663			PRCM_CLKOCR_CLK1TYPE);
 664		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 665			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 
 666	}
 667	bits &= mask;
 668
 669	spin_lock_irqsave(&clkout_lock, flags);
 670
 671	val = readl(PRCM_CLKOCR);
 672	if (val & div_mask) {
 673		if (div) {
 674			if ((val & mask) != bits) {
 675				r = -EBUSY;
 676				goto unlock_and_return;
 677			}
 678		} else {
 679			if ((val & mask & ~div_mask) != bits) {
 680				r = -EINVAL;
 681				goto unlock_and_return;
 682			}
 683		}
 684	}
 685	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 686	requests[clkout] += (div ? 1 : -1);
 687
 688unlock_and_return:
 689	spin_unlock_irqrestore(&clkout_lock, flags);
 690
 691	return r;
 692}
 693
 694int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 695{
 696	unsigned long flags;
 697
 698	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 699
 700	spin_lock_irqsave(&mb0_transfer.lock, flags);
 701
 702	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 703		cpu_relax();
 704
 705	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 706	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 707	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 708	writeb((keep_ulp_clk ? 1 : 0),
 709		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 710	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 711	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 712
 713	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 714
 715	return 0;
 716}
 717
 718u8 db8500_prcmu_get_power_state_result(void)
 719{
 720	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 721}
 722
 723/* This function should only be called while mb0_transfer.lock is held. */
 724static void config_wakeups(void)
 725{
 726	const u8 header[2] = {
 727		MB0H_CONFIG_WAKEUPS_EXE,
 728		MB0H_CONFIG_WAKEUPS_SLEEP
 729	};
 730	static u32 last_dbb_events;
 731	static u32 last_abb_events;
 732	u32 dbb_events;
 733	u32 abb_events;
 734	unsigned int i;
 735
 736	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 737	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 738
 739	abb_events = mb0_transfer.req.abb_events;
 740
 741	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 742		return;
 743
 744	for (i = 0; i < 2; i++) {
 745		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 746			cpu_relax();
 747		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 748		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 749		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 750		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 751	}
 752	last_dbb_events = dbb_events;
 753	last_abb_events = abb_events;
 754}
 755
 756void db8500_prcmu_enable_wakeups(u32 wakeups)
 757{
 758	unsigned long flags;
 759	u32 bits;
 760	int i;
 761
 762	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 763
 764	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 765		if (wakeups & BIT(i))
 766			bits |= prcmu_wakeup_bit[i];
 767	}
 768
 769	spin_lock_irqsave(&mb0_transfer.lock, flags);
 770
 771	mb0_transfer.req.dbb_wakeups = bits;
 772	config_wakeups();
 773
 774	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 775}
 776
 777void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 778{
 779	unsigned long flags;
 780
 781	spin_lock_irqsave(&mb0_transfer.lock, flags);
 782
 783	mb0_transfer.req.abb_events = abb_events;
 784	config_wakeups();
 785
 786	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 787}
 788
 789void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 790{
 791	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 792		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 793	else
 794		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 795}
 796
 797/**
 798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 799 * @opp: The new ARM operating point to which transition is to be made
 800 * Returns: 0 on success, non-zero on failure
 801 *
 802 * This function sets the the operating point of the ARM.
 803 */
 804int db8500_prcmu_set_arm_opp(u8 opp)
 805{
 806	int r;
 807
 808	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 809		return -EINVAL;
 810
 811	r = 0;
 812
 813	mutex_lock(&mb1_transfer.lock);
 814
 815	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 816		cpu_relax();
 817
 818	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 819	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 820	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 821
 822	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 823	wait_for_completion(&mb1_transfer.work);
 824
 825	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 826		(mb1_transfer.ack.arm_opp != opp))
 827		r = -EIO;
 828
 829	mutex_unlock(&mb1_transfer.lock);
 830
 831	return r;
 832}
 833
 834/**
 835 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 836 *
 837 * Returns: the current ARM OPP
 838 */
 839int db8500_prcmu_get_arm_opp(void)
 840{
 841	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 842}
 843
 844/**
 845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 846 *
 847 * Returns: the current DDR OPP
 848 */
 849int db8500_prcmu_get_ddr_opp(void)
 850{
 851	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 852}
 853
 854/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 855static void request_even_slower_clocks(bool enable)
 
 
 
 
 
 
 856{
 857	u32 clock_reg[] = {
 858		PRCM_ACLK_MGT,
 859		PRCM_DMACLK_MGT
 860	};
 861	unsigned long flags;
 862	unsigned int i;
 863
 864	spin_lock_irqsave(&clk_mgt_lock, flags);
 865
 866	/* Grab the HW semaphore. */
 867	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 868		cpu_relax();
 869
 870	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 871		u32 val;
 872		u32 div;
 873
 874		val = readl(prcmu_base + clock_reg[i]);
 875		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 876		if (enable) {
 877			if ((div <= 1) || (div > 15)) {
 878				pr_err("prcmu: Bad clock divider %d in %s\n",
 879					div, __func__);
 880				goto unlock_and_return;
 881			}
 882			div <<= 1;
 883		} else {
 884			if (div <= 2)
 885				goto unlock_and_return;
 886			div >>= 1;
 887		}
 888		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 889			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 890		writel(val, prcmu_base + clock_reg[i]);
 891	}
 892
 893unlock_and_return:
 894	/* Release the HW semaphore. */
 895	writel(0, PRCM_SEM);
 896
 897	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 898}
 899
 900/**
 901 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
 902 * @opp: The new APE operating point to which transition is to be made
 903 * Returns: 0 on success, non-zero on failure
 904 *
 905 * This function sets the operating point of the APE.
 906 */
 907int db8500_prcmu_set_ape_opp(u8 opp)
 908{
 909	int r = 0;
 910
 911	if (opp == mb1_transfer.ape_opp)
 912		return 0;
 913
 914	mutex_lock(&mb1_transfer.lock);
 915
 916	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 917		request_even_slower_clocks(false);
 918
 919	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 920		goto skip_message;
 921
 922	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 923		cpu_relax();
 924
 925	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 926	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 927	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 928		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
 929
 930	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 931	wait_for_completion(&mb1_transfer.work);
 932
 933	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 934		(mb1_transfer.ack.ape_opp != opp))
 935		r = -EIO;
 936
 937skip_message:
 938	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 939		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 940		request_even_slower_clocks(true);
 941	if (!r)
 942		mb1_transfer.ape_opp = opp;
 943
 944	mutex_unlock(&mb1_transfer.lock);
 945
 946	return r;
 947}
 948
 949/**
 950 * db8500_prcmu_get_ape_opp - get the current APE OPP
 951 *
 952 * Returns: the current APE OPP
 953 */
 954int db8500_prcmu_get_ape_opp(void)
 955{
 956	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 957}
 958
 959/**
 960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 961 * @enable: true to request the higher voltage, false to drop a request.
 962 *
 963 * Calls to this function to enable and disable requests must be balanced.
 964 */
 965int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 966{
 967	int r = 0;
 968	u8 header;
 969	static unsigned int requests;
 970
 971	mutex_lock(&mb1_transfer.lock);
 972
 973	if (enable) {
 974		if (0 != requests++)
 975			goto unlock_and_return;
 976		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 977	} else {
 978		if (requests == 0) {
 979			r = -EIO;
 980			goto unlock_and_return;
 981		} else if (1 != requests--) {
 982			goto unlock_and_return;
 983		}
 984		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 985	}
 986
 987	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 988		cpu_relax();
 989
 990	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 991
 992	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 993	wait_for_completion(&mb1_transfer.work);
 994
 995	if ((mb1_transfer.ack.header != header) ||
 996		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 997		r = -EIO;
 998
 999unlock_and_return:
1000	mutex_unlock(&mb1_transfer.lock);
1001
1002	return r;
1003}
1004
1005/**
1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007 *
1008 * This function releases the power state requirements of a USB wakeup.
1009 */
1010int prcmu_release_usb_wakeup_state(void)
1011{
1012	int r = 0;
1013
1014	mutex_lock(&mb1_transfer.lock);
1015
1016	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017		cpu_relax();
1018
1019	writeb(MB1H_RELEASE_USB_WAKEUP,
1020		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021
1022	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023	wait_for_completion(&mb1_transfer.work);
1024
1025	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027		r = -EIO;
1028
1029	mutex_unlock(&mb1_transfer.lock);
1030
1031	return r;
1032}
1033
1034static int request_pll(u8 clock, bool enable)
1035{
1036	int r = 0;
1037
1038	if (clock == PRCMU_PLLSOC0)
1039		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040	else if (clock == PRCMU_PLLSOC1)
1041		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042	else
1043		return -EINVAL;
1044
1045	mutex_lock(&mb1_transfer.lock);
1046
1047	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048		cpu_relax();
1049
1050	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052
1053	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054	wait_for_completion(&mb1_transfer.work);
1055
1056	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057		r = -EIO;
1058
1059	mutex_unlock(&mb1_transfer.lock);
1060
1061	return r;
1062}
1063
1064/**
1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066 * @epod_id: The EPOD to set
1067 * @epod_state: The new EPOD state
1068 *
1069 * This function sets the state of a EPOD (power domain). It may not be called
1070 * from interrupt context.
1071 */
1072int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073{
1074	int r = 0;
1075	bool ram_retention = false;
1076	int i;
1077
1078	/* check argument */
1079	BUG_ON(epod_id >= NUM_EPOD_ID);
1080
1081	/* set flag if retention is possible */
1082	switch (epod_id) {
1083	case EPOD_ID_SVAMMDSP:
1084	case EPOD_ID_SIAMMDSP:
1085	case EPOD_ID_ESRAM12:
1086	case EPOD_ID_ESRAM34:
1087		ram_retention = true;
1088		break;
1089	}
1090
1091	/* check argument */
1092	BUG_ON(epod_state > EPOD_STATE_ON);
1093	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094
1095	/* get lock */
1096	mutex_lock(&mb2_transfer.lock);
1097
1098	/* wait for mailbox */
1099	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100		cpu_relax();
1101
1102	/* fill in mailbox */
1103	for (i = 0; i < NUM_EPOD_ID; i++)
1104		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106
1107	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108
1109	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110
1111	/*
1112	 * The current firmware version does not handle errors correctly,
1113	 * and we cannot recover if there is an error.
1114	 * This is expected to change when the firmware is updated.
1115	 */
1116	if (!wait_for_completion_timeout(&mb2_transfer.work,
1117			msecs_to_jiffies(20000))) {
1118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119			__func__);
1120		r = -EIO;
1121		goto unlock_and_return;
1122	}
1123
1124	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125		r = -EIO;
1126
1127unlock_and_return:
1128	mutex_unlock(&mb2_transfer.lock);
1129	return r;
1130}
1131
1132/**
1133 * prcmu_configure_auto_pm - Configure autonomous power management.
1134 * @sleep: Configuration for ApSleep.
1135 * @idle:  Configuration for ApIdle.
1136 */
1137void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138	struct prcmu_auto_pm_config *idle)
1139{
1140	u32 sleep_cfg;
1141	u32 idle_cfg;
1142	unsigned long flags;
1143
1144	BUG_ON((sleep == NULL) || (idle == NULL));
1145
1146	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152
1153	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159
1160	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161
1162	/*
1163	 * The autonomous power management configuration is done through
1164	 * fields in mailbox 2, but these fields are only used as shared
1165	 * variables - i.e. there is no need to send a message.
1166	 */
1167	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169
1170	mb2_transfer.auto_pm_enabled =
1171		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175
1176	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177}
1178EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179
1180bool prcmu_is_auto_pm_enabled(void)
1181{
1182	return mb2_transfer.auto_pm_enabled;
1183}
1184
1185static int request_sysclk(bool enable)
1186{
1187	int r;
1188	unsigned long flags;
1189
1190	r = 0;
1191
1192	mutex_lock(&mb3_transfer.sysclk_lock);
1193
1194	spin_lock_irqsave(&mb3_transfer.lock, flags);
1195
1196	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197		cpu_relax();
1198
1199	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200
1201	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203
1204	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205
1206	/*
1207	 * The firmware only sends an ACK if we want to enable the
1208	 * SysClk, and it succeeds.
1209	 */
1210	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211			msecs_to_jiffies(20000))) {
1212		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213			__func__);
1214		r = -EIO;
1215	}
1216
1217	mutex_unlock(&mb3_transfer.sysclk_lock);
1218
1219	return r;
1220}
1221
1222static int request_timclk(bool enable)
1223{
1224	u32 val;
1225
1226	/*
1227	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228	 * PLL is disabled so we cannot use doze mode, this will
1229	 * stop the clock on this firmware.
1230	 */
1231	if (prcmu_is_ulppll_disabled())
1232		val = 0;
1233	else
1234		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235
1236	if (!enable)
1237		val |= PRCM_TCR_STOP_TIMERS |
1238			PRCM_TCR_DOZE_MODE |
1239			PRCM_TCR_TENSEL_MASK;
1240
1241	writel(val, PRCM_TCR);
1242
1243	return 0;
1244}
1245
1246static int request_clock(u8 clock, bool enable)
1247{
1248	u32 val;
1249	unsigned long flags;
1250
1251	spin_lock_irqsave(&clk_mgt_lock, flags);
1252
1253	/* Grab the HW semaphore. */
1254	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255		cpu_relax();
1256
1257	val = readl(prcmu_base + clk_mgt[clock].offset);
1258	if (enable) {
1259		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260	} else {
1261		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263	}
1264	writel(val, prcmu_base + clk_mgt[clock].offset);
1265
1266	/* Release the HW semaphore. */
1267	writel(0, PRCM_SEM);
1268
1269	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270
1271	return 0;
1272}
1273
1274static int request_sga_clock(u8 clock, bool enable)
1275{
1276	u32 val;
1277	int ret;
1278
1279	if (enable) {
1280		val = readl(PRCM_CGATING_BYPASS);
1281		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282	}
1283
1284	ret = request_clock(clock, enable);
1285
1286	if (!ret && !enable) {
1287		val = readl(PRCM_CGATING_BYPASS);
1288		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289	}
1290
1291	return ret;
1292}
1293
1294static inline bool plldsi_locked(void)
1295{
1296	return (readl(PRCM_PLLDSI_LOCKP) &
1297		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301}
1302
1303static int request_plldsi(bool enable)
1304{
1305	int r = 0;
1306	u32 val;
1307
1308	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311
1312	val = readl(PRCM_PLLDSI_ENABLE);
1313	if (enable)
1314		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315	else
1316		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317	writel(val, PRCM_PLLDSI_ENABLE);
1318
1319	if (enable) {
1320		unsigned int i;
1321		bool locked = plldsi_locked();
1322
1323		for (i = 10; !locked && (i > 0); --i) {
1324			udelay(100);
1325			locked = plldsi_locked();
1326		}
1327		if (locked) {
1328			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329				PRCM_APE_RESETN_SET);
1330		} else {
1331			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333				PRCM_MMIP_LS_CLAMP_SET);
1334			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335			writel(val, PRCM_PLLDSI_ENABLE);
1336			r = -EAGAIN;
1337		}
1338	} else {
1339		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340	}
1341	return r;
1342}
1343
1344static int request_dsiclk(u8 n, bool enable)
1345{
1346	u32 val;
1347
1348	val = readl(PRCM_DSI_PLLOUT_SEL);
1349	val &= ~dsiclk[n].divsel_mask;
1350	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351		dsiclk[n].divsel_shift);
1352	writel(val, PRCM_DSI_PLLOUT_SEL);
1353	return 0;
1354}
1355
1356static int request_dsiescclk(u8 n, bool enable)
1357{
1358	u32 val;
1359
1360	val = readl(PRCM_DSITVCLK_DIV);
1361	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362	writel(val, PRCM_DSITVCLK_DIV);
1363	return 0;
1364}
1365
1366/**
1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368 * @clock:      The clock for which the request is made.
1369 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1370 *
1371 * This function should only be used by the clock implementation.
1372 * Do not use it from any other place!
1373 */
1374int db8500_prcmu_request_clock(u8 clock, bool enable)
1375{
1376	if (clock == PRCMU_SGACLK)
1377		return request_sga_clock(clock, enable);
1378	else if (clock < PRCMU_NUM_REG_CLOCKS)
1379		return request_clock(clock, enable);
1380	else if (clock == PRCMU_TIMCLK)
1381		return request_timclk(enable);
1382	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386	else if (clock == PRCMU_PLLDSI)
1387		return request_plldsi(enable);
1388	else if (clock == PRCMU_SYSCLK)
1389		return request_sysclk(enable);
1390	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391		return request_pll(clock, enable);
1392	else
1393		return -EINVAL;
1394}
1395
1396static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397	int branch)
1398{
1399	u64 rate;
1400	u32 val;
1401	u32 d;
1402	u32 div = 1;
1403
1404	val = readl(reg);
1405
1406	rate = src_rate;
1407	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408
1409	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410	if (d > 1)
1411		div *= d;
1412
1413	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414	if (d > 1)
1415		div *= d;
1416
1417	if (val & PRCM_PLL_FREQ_SELDIV2)
1418		div *= 2;
1419
1420	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421		(val & PRCM_PLL_FREQ_DIV2EN) &&
1422		((reg == PRCM_PLLSOC0_FREQ) ||
1423		 (reg == PRCM_PLLARM_FREQ) ||
1424		 (reg == PRCM_PLLDDR_FREQ))))
1425		div *= 2;
1426
1427	(void)do_div(rate, div);
1428
1429	return (unsigned long)rate;
1430}
1431
1432#define ROOT_CLOCK_RATE 38400000
1433
1434static unsigned long clock_rate(u8 clock)
1435{
1436	u32 val;
1437	u32 pllsw;
1438	unsigned long rate = ROOT_CLOCK_RATE;
1439
1440	val = readl(prcmu_base + clk_mgt[clock].offset);
1441
1442	if (val & PRCM_CLK_MGT_CLK38) {
1443		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444			rate /= 2;
1445		return rate;
1446	}
1447
1448	val |= clk_mgt[clock].pllsw;
1449	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450
1451	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457	else
1458		return 0;
1459
1460	if ((clock == PRCMU_SGACLK) &&
1461		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462		u64 r = (rate * 10);
1463
1464		(void)do_div(r, 25);
1465		return (unsigned long)r;
1466	}
1467	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468	if (val)
1469		return rate / val;
1470	else
1471		return 0;
1472}
1473
1474static unsigned long armss_rate(void)
1475{
1476	u32 r;
1477	unsigned long rate;
1478
1479	r = readl(PRCM_ARM_CHGCLKREQ);
1480
1481	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482		/* External ARMCLKFIX clock */
1483
1484		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485
1486		/* Check PRCM_ARM_CHGCLKREQ divider */
1487		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488			rate /= 2;
1489
1490		/* Check PRCM_ARMCLKFIX_MGT divider */
1491		r = readl(PRCM_ARMCLKFIX_MGT);
1492		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493		rate /= r;
1494
1495	} else {/* ARM PLL */
1496		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497	}
1498
1499	return rate;
1500}
1501
1502static unsigned long dsiclk_rate(u8 n)
1503{
1504	u32 divsel;
1505	u32 div = 1;
1506
1507	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509
1510	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511		divsel = dsiclk[n].divsel;
1512	else
1513		dsiclk[n].divsel = divsel;
1514
1515	switch (divsel) {
1516	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517		div *= 2;
1518		fallthrough;
1519	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520		div *= 2;
1521		fallthrough;
1522	case PRCM_DSI_PLLOUT_SEL_PHI:
1523		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524			PLL_RAW) / div;
1525	default:
1526		return 0;
1527	}
1528}
1529
1530static unsigned long dsiescclk_rate(u8 n)
1531{
1532	u32 div;
1533
1534	div = readl(PRCM_DSITVCLK_DIV);
1535	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537}
1538
1539unsigned long prcmu_clock_rate(u8 clock)
1540{
1541	if (clock < PRCMU_NUM_REG_CLOCKS)
1542		return clock_rate(clock);
1543	else if (clock == PRCMU_TIMCLK)
1544		return prcmu_is_ulppll_disabled() ?
1545			32768 : ROOT_CLOCK_RATE / 16;
1546	else if (clock == PRCMU_SYSCLK)
1547		return ROOT_CLOCK_RATE;
1548	else if (clock == PRCMU_PLLSOC0)
1549		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550	else if (clock == PRCMU_PLLSOC1)
1551		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552	else if (clock == PRCMU_ARMSS)
1553		return armss_rate();
1554	else if (clock == PRCMU_PLLDDR)
1555		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556	else if (clock == PRCMU_PLLDSI)
1557		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558			PLL_RAW);
1559	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563	else
1564		return 0;
1565}
1566
1567static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568{
1569	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570		return ROOT_CLOCK_RATE;
1571	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578	else
1579		return 0;
1580}
1581
1582static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583{
1584	u32 div;
1585
1586	div = (src_rate / rate);
1587	if (div == 0)
1588		return 1;
1589	if (rate < (src_rate / div))
1590		div++;
1591	return div;
1592}
1593
1594static long round_clock_rate(u8 clock, unsigned long rate)
1595{
1596	u32 val;
1597	u32 div;
1598	unsigned long src_rate;
1599	long rounded_rate;
1600
1601	val = readl(prcmu_base + clk_mgt[clock].offset);
1602	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603		clk_mgt[clock].branch);
1604	div = clock_divider(src_rate, rate);
1605	if (val & PRCM_CLK_MGT_CLK38) {
1606		if (clk_mgt[clock].clk38div) {
1607			if (div > 2)
1608				div = 2;
1609		} else {
1610			div = 1;
1611		}
1612	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613		u64 r = (src_rate * 10);
1614
1615		(void)do_div(r, 25);
1616		if (r <= rate)
1617			return (unsigned long)r;
1618	}
1619	rounded_rate = (src_rate / min(div, (u32)31));
1620
1621	return rounded_rate;
1622}
1623
1624static const unsigned long db8500_armss_freqs[] = {
1625	199680000,
1626	399360000,
1627	798720000,
1628	998400000
1629};
1630
1631/* The DB8520 has slightly higher ARMSS max frequency */
1632static const unsigned long db8520_armss_freqs[] = {
1633	199680000,
1634	399360000,
1635	798720000,
1636	1152000000
1637};
1638
1639static long round_armss_rate(unsigned long rate)
1640{
1641	unsigned long freq = 0;
1642	const unsigned long *freqs;
1643	int nfreqs;
1644	int i;
1645
1646	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1647		freqs = db8520_armss_freqs;
1648		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1649	} else {
1650		freqs = db8500_armss_freqs;
1651		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1652	}
1653
1654	/* Find the corresponding arm opp from the cpufreq table. */
1655	for (i = 0; i < nfreqs; i++) {
1656		freq = freqs[i];
1657		if (rate <= freq)
1658			break;
1659	}
1660
1661	/* Return the last valid value, even if a match was not found. */
1662	return freq;
1663}
1664
1665#define MIN_PLL_VCO_RATE 600000000ULL
1666#define MAX_PLL_VCO_RATE 1680640000ULL
1667
1668static long round_plldsi_rate(unsigned long rate)
1669{
1670	long rounded_rate = 0;
1671	unsigned long src_rate;
1672	unsigned long rem;
1673	u32 r;
1674
1675	src_rate = clock_rate(PRCMU_HDMICLK);
1676	rem = rate;
1677
1678	for (r = 7; (rem > 0) && (r > 0); r--) {
1679		u64 d;
1680
1681		d = (r * rate);
1682		(void)do_div(d, src_rate);
1683		if (d < 6)
1684			d = 6;
1685		else if (d > 255)
1686			d = 255;
1687		d *= src_rate;
1688		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1689			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1690			continue;
1691		(void)do_div(d, r);
1692		if (rate < d) {
1693			if (rounded_rate == 0)
1694				rounded_rate = (long)d;
1695			break;
1696		}
1697		if ((rate - d) < rem) {
1698			rem = (rate - d);
1699			rounded_rate = (long)d;
1700		}
1701	}
1702	return rounded_rate;
1703}
1704
1705static long round_dsiclk_rate(unsigned long rate)
1706{
1707	u32 div;
1708	unsigned long src_rate;
1709	long rounded_rate;
1710
1711	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712		PLL_RAW);
1713	div = clock_divider(src_rate, rate);
1714	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1715
1716	return rounded_rate;
1717}
1718
1719static long round_dsiescclk_rate(unsigned long rate)
1720{
1721	u32 div;
1722	unsigned long src_rate;
1723	long rounded_rate;
1724
1725	src_rate = clock_rate(PRCMU_TVCLK);
1726	div = clock_divider(src_rate, rate);
1727	rounded_rate = (src_rate / min(div, (u32)255));
1728
1729	return rounded_rate;
1730}
1731
1732long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1733{
1734	if (clock < PRCMU_NUM_REG_CLOCKS)
1735		return round_clock_rate(clock, rate);
1736	else if (clock == PRCMU_ARMSS)
1737		return round_armss_rate(rate);
1738	else if (clock == PRCMU_PLLDSI)
1739		return round_plldsi_rate(rate);
1740	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1741		return round_dsiclk_rate(rate);
1742	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1743		return round_dsiescclk_rate(rate);
1744	else
1745		return (long)prcmu_clock_rate(clock);
1746}
1747
1748static void set_clock_rate(u8 clock, unsigned long rate)
1749{
1750	u32 val;
1751	u32 div;
1752	unsigned long src_rate;
1753	unsigned long flags;
1754
1755	spin_lock_irqsave(&clk_mgt_lock, flags);
1756
1757	/* Grab the HW semaphore. */
1758	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1759		cpu_relax();
1760
1761	val = readl(prcmu_base + clk_mgt[clock].offset);
1762	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1763		clk_mgt[clock].branch);
1764	div = clock_divider(src_rate, rate);
1765	if (val & PRCM_CLK_MGT_CLK38) {
1766		if (clk_mgt[clock].clk38div) {
1767			if (div > 1)
1768				val |= PRCM_CLK_MGT_CLK38DIV;
1769			else
1770				val &= ~PRCM_CLK_MGT_CLK38DIV;
1771		}
1772	} else if (clock == PRCMU_SGACLK) {
1773		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1774			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1775		if (div == 3) {
1776			u64 r = (src_rate * 10);
1777
1778			(void)do_div(r, 25);
1779			if (r <= rate) {
1780				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1781				div = 0;
1782			}
1783		}
1784		val |= min(div, (u32)31);
1785	} else {
1786		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1787		val |= min(div, (u32)31);
1788	}
1789	writel(val, prcmu_base + clk_mgt[clock].offset);
1790
1791	/* Release the HW semaphore. */
1792	writel(0, PRCM_SEM);
1793
1794	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1795}
1796
1797static int set_armss_rate(unsigned long rate)
1798{
1799	unsigned long freq;
1800	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1801	const unsigned long *freqs;
1802	int nfreqs;
1803	int i;
1804
1805	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1806		freqs = db8520_armss_freqs;
1807		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1808	} else {
1809		freqs = db8500_armss_freqs;
1810		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1811	}
1812
1813	/* Find the corresponding arm opp from the cpufreq table. */
1814	for (i = 0; i < nfreqs; i++) {
1815		freq = freqs[i];
1816		if (rate == freq)
1817			break;
1818	}
1819
1820	if (rate != freq)
1821		return -EINVAL;
1822
1823	/* Set the new arm opp. */
1824	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1825	return db8500_prcmu_set_arm_opp(opps[i]);
1826}
1827
1828static int set_plldsi_rate(unsigned long rate)
1829{
1830	unsigned long src_rate;
1831	unsigned long rem;
1832	u32 pll_freq = 0;
1833	u32 r;
1834
1835	src_rate = clock_rate(PRCMU_HDMICLK);
1836	rem = rate;
1837
1838	for (r = 7; (rem > 0) && (r > 0); r--) {
1839		u64 d;
1840		u64 hwrate;
1841
1842		d = (r * rate);
1843		(void)do_div(d, src_rate);
1844		if (d < 6)
1845			d = 6;
1846		else if (d > 255)
1847			d = 255;
1848		hwrate = (d * src_rate);
1849		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1850			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1851			continue;
1852		(void)do_div(hwrate, r);
1853		if (rate < hwrate) {
1854			if (pll_freq == 0)
1855				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1856					(r << PRCM_PLL_FREQ_R_SHIFT));
1857			break;
1858		}
1859		if ((rate - hwrate) < rem) {
1860			rem = (rate - hwrate);
1861			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1862				(r << PRCM_PLL_FREQ_R_SHIFT));
1863		}
1864	}
1865	if (pll_freq == 0)
1866		return -EINVAL;
1867
1868	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1869	writel(pll_freq, PRCM_PLLDSI_FREQ);
1870
1871	return 0;
1872}
1873
1874static void set_dsiclk_rate(u8 n, unsigned long rate)
1875{
1876	u32 val;
1877	u32 div;
1878
1879	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1880			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1881
1882	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1883			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1884			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1885
1886	val = readl(PRCM_DSI_PLLOUT_SEL);
1887	val &= ~dsiclk[n].divsel_mask;
1888	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1889	writel(val, PRCM_DSI_PLLOUT_SEL);
1890}
1891
1892static void set_dsiescclk_rate(u8 n, unsigned long rate)
1893{
1894	u32 val;
1895	u32 div;
1896
1897	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1898	val = readl(PRCM_DSITVCLK_DIV);
1899	val &= ~dsiescclk[n].div_mask;
1900	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1901	writel(val, PRCM_DSITVCLK_DIV);
1902}
1903
1904int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1905{
1906	if (clock < PRCMU_NUM_REG_CLOCKS)
1907		set_clock_rate(clock, rate);
1908	else if (clock == PRCMU_ARMSS)
1909		return set_armss_rate(rate);
1910	else if (clock == PRCMU_PLLDSI)
1911		return set_plldsi_rate(rate);
1912	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1913		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1914	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1915		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1916	return 0;
1917}
1918
1919int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1920{
1921	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1922	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1923		return -EINVAL;
1924
1925	mutex_lock(&mb4_transfer.lock);
1926
1927	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1928		cpu_relax();
1929
1930	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1931	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1932	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1933	writeb(DDR_PWR_STATE_ON,
1934	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1935	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1936
1937	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1938	wait_for_completion(&mb4_transfer.work);
1939
1940	mutex_unlock(&mb4_transfer.lock);
1941
1942	return 0;
1943}
1944
1945int db8500_prcmu_config_hotdog(u8 threshold)
1946{
1947	mutex_lock(&mb4_transfer.lock);
1948
1949	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1950		cpu_relax();
1951
1952	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1953	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1954
1955	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1956	wait_for_completion(&mb4_transfer.work);
1957
1958	mutex_unlock(&mb4_transfer.lock);
1959
1960	return 0;
1961}
1962
1963int db8500_prcmu_config_hotmon(u8 low, u8 high)
1964{
1965	mutex_lock(&mb4_transfer.lock);
1966
1967	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1968		cpu_relax();
1969
1970	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1971	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1972	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1973		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1974	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1975
1976	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1977	wait_for_completion(&mb4_transfer.work);
1978
1979	mutex_unlock(&mb4_transfer.lock);
1980
1981	return 0;
1982}
1983EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1984
1985static int config_hot_period(u16 val)
1986{
1987	mutex_lock(&mb4_transfer.lock);
1988
1989	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1990		cpu_relax();
1991
1992	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1993	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1994
1995	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1996	wait_for_completion(&mb4_transfer.work);
1997
1998	mutex_unlock(&mb4_transfer.lock);
1999
2000	return 0;
2001}
2002
2003int db8500_prcmu_start_temp_sense(u16 cycles32k)
2004{
2005	if (cycles32k == 0xFFFF)
2006		return -EINVAL;
2007
2008	return config_hot_period(cycles32k);
2009}
2010EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2011
2012int db8500_prcmu_stop_temp_sense(void)
2013{
2014	return config_hot_period(0xFFFF);
2015}
2016EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2017
2018static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
 
 
 
 
 
 
 
 
2019{
 
 
 
 
 
2020
2021	mutex_lock(&mb4_transfer.lock);
2022
2023	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
 
2024		cpu_relax();
2025
2026	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2027	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2028	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2029	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2030
2031	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
 
2032
2033	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2034	wait_for_completion(&mb4_transfer.work);
2035
2036	mutex_unlock(&mb4_transfer.lock);
2037
2038	return 0;
2039
2040}
2041
2042int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2043{
2044	BUG_ON(num == 0 || num > 0xf);
2045	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2046			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2047			    A9WDOG_AUTO_OFF_DIS);
2048}
2049EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2050
2051int db8500_prcmu_enable_a9wdog(u8 id)
2052{
2053	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2054}
2055EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2056
2057int db8500_prcmu_disable_a9wdog(u8 id)
2058{
2059	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2060}
2061EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2062
2063int db8500_prcmu_kick_a9wdog(u8 id)
2064{
2065	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2066}
2067EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2068
2069/*
2070 * timeout is 28 bit, in ms.
2071 */
2072int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2073{
2074	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2075			    (id & A9WDOG_ID_MASK) |
2076			    /*
2077			     * Put the lowest 28 bits of timeout at
2078			     * offset 4. Four first bits are used for id.
2079			     */
2080			    (u8)((timeout << 4) & 0xf0),
2081			    (u8)((timeout >> 4) & 0xff),
2082			    (u8)((timeout >> 12) & 0xff),
2083			    (u8)((timeout >> 20) & 0xff));
2084}
2085EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2086
2087/**
2088 * prcmu_abb_read() - Read register value(s) from the ABB.
2089 * @slave:	The I2C slave address.
2090 * @reg:	The (start) register address.
2091 * @value:	The read out value(s).
2092 * @size:	The number of registers to read.
2093 *
2094 * Reads register value(s) from the ABB.
2095 * @size has to be 1 for the current firmware version.
2096 */
2097int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2098{
2099	int r;
2100
2101	if (size != 1)
2102		return -EINVAL;
2103
2104	mutex_lock(&mb5_transfer.lock);
2105
2106	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2107		cpu_relax();
2108
2109	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2110	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2111	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2112	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2113	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2114
2115	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2116
2117	if (!wait_for_completion_timeout(&mb5_transfer.work,
2118				msecs_to_jiffies(20000))) {
2119		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2120			__func__);
2121		r = -EIO;
2122	} else {
2123		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2124	}
2125
2126	if (!r)
2127		*value = mb5_transfer.ack.value;
2128
2129	mutex_unlock(&mb5_transfer.lock);
2130
2131	return r;
2132}
2133
2134/**
2135 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2136 * @slave:	The I2C slave address.
2137 * @reg:	The (start) register address.
2138 * @value:	The value(s) to write.
2139 * @mask:	The mask(s) to use.
2140 * @size:	The number of registers to write.
2141 *
2142 * Writes masked register value(s) to the ABB.
2143 * For each @value, only the bits set to 1 in the corresponding @mask
2144 * will be written. The other bits are not changed.
2145 * @size has to be 1 for the current firmware version.
2146 */
2147int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2148{
2149	int r;
2150
2151	if (size != 1)
2152		return -EINVAL;
2153
2154	mutex_lock(&mb5_transfer.lock);
2155
2156	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2157		cpu_relax();
2158
2159	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2160	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2161	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2162	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2163	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2164
2165	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2166
2167	if (!wait_for_completion_timeout(&mb5_transfer.work,
2168				msecs_to_jiffies(20000))) {
2169		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2170			__func__);
2171		r = -EIO;
2172	} else {
2173		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2174	}
2175
2176	mutex_unlock(&mb5_transfer.lock);
2177
2178	return r;
2179}
2180
2181/**
2182 * prcmu_abb_write() - Write register value(s) to the ABB.
2183 * @slave:	The I2C slave address.
2184 * @reg:	The (start) register address.
2185 * @value:	The value(s) to write.
2186 * @size:	The number of registers to write.
2187 *
2188 * Writes register value(s) to the ABB.
2189 * @size has to be 1 for the current firmware version.
2190 */
2191int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2192{
2193	u8 mask = ~0;
2194
2195	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2196}
2197
2198/**
2199 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2200 */
2201int prcmu_ac_wake_req(void)
2202{
2203	u32 val;
2204	int ret = 0;
2205
2206	mutex_lock(&mb0_transfer.ac_wake_lock);
2207
2208	val = readl(PRCM_HOSTACCESS_REQ);
2209	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2210		goto unlock_and_return;
2211
2212	atomic_set(&ac_wake_req_state, 1);
2213
2214	/*
2215	 * Force Modem Wake-up before hostaccess_req ping-pong.
2216	 * It prevents Modem to enter in Sleep while acking the hostaccess
2217	 * request. The 31us delay has been calculated by HWI.
2218	 */
2219	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2220	writel(val, PRCM_HOSTACCESS_REQ);
2221
2222	udelay(31);
2223
2224	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2225	writel(val, PRCM_HOSTACCESS_REQ);
2226
2227	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2228			msecs_to_jiffies(5000))) {
2229		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2230			__func__);
2231		ret = -EFAULT;
2232	}
2233
2234unlock_and_return:
2235	mutex_unlock(&mb0_transfer.ac_wake_lock);
2236	return ret;
2237}
2238
2239/**
2240 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2241 */
2242void prcmu_ac_sleep_req(void)
2243{
2244	u32 val;
2245
2246	mutex_lock(&mb0_transfer.ac_wake_lock);
2247
2248	val = readl(PRCM_HOSTACCESS_REQ);
2249	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2250		goto unlock_and_return;
2251
2252	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2253		PRCM_HOSTACCESS_REQ);
2254
2255	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2256			msecs_to_jiffies(5000))) {
2257		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2258			__func__);
2259	}
2260
2261	atomic_set(&ac_wake_req_state, 0);
2262
2263unlock_and_return:
2264	mutex_unlock(&mb0_transfer.ac_wake_lock);
2265}
2266
2267bool db8500_prcmu_is_ac_wake_requested(void)
2268{
2269	return (atomic_read(&ac_wake_req_state) != 0);
2270}
2271
2272/**
2273 * db8500_prcmu_system_reset - System reset
2274 *
2275 * Saves the reset reason code and then sets the APE_SOFTRST register which
2276 * fires interrupt to fw
2277 *
2278 * @reset_code: The reason for system reset
2279 */
2280void db8500_prcmu_system_reset(u16 reset_code)
2281{
2282	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2283	writel(1, PRCM_APE_SOFTRST);
2284}
2285
2286/**
2287 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2288 *
2289 * Retrieves the reset reason code stored by prcmu_system_reset() before
2290 * last restart.
2291 */
2292u16 db8500_prcmu_get_reset_code(void)
2293{
2294	return readw(tcdm_base + PRCM_SW_RST_REASON);
2295}
2296
2297/**
2298 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2299 */
2300void db8500_prcmu_modem_reset(void)
2301{
2302	mutex_lock(&mb1_transfer.lock);
2303
2304	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2305		cpu_relax();
2306
2307	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2308	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2309	wait_for_completion(&mb1_transfer.work);
2310
2311	/*
2312	 * No need to check return from PRCMU as modem should go in reset state
2313	 * This state is already managed by upper layer
2314	 */
2315
2316	mutex_unlock(&mb1_transfer.lock);
2317}
2318
2319static void ack_dbb_wakeup(void)
2320{
2321	unsigned long flags;
2322
2323	spin_lock_irqsave(&mb0_transfer.lock, flags);
2324
2325	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2326		cpu_relax();
2327
2328	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2329	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2330
2331	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2332}
2333
2334static inline void print_unknown_header_warning(u8 n, u8 header)
2335{
2336	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2337		header, n);
2338}
2339
2340static bool read_mailbox_0(void)
2341{
2342	bool r;
2343	u32 ev;
2344	unsigned int n;
2345	u8 header;
2346
2347	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2348	switch (header) {
2349	case MB0H_WAKEUP_EXE:
2350	case MB0H_WAKEUP_SLEEP:
2351		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2352			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2353		else
2354			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2355
2356		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2357			complete(&mb0_transfer.ac_wake_work);
2358		if (ev & WAKEUP_BIT_SYSCLK_OK)
2359			complete(&mb3_transfer.sysclk_work);
2360
2361		ev &= mb0_transfer.req.dbb_irqs;
2362
2363		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2364			if (ev & prcmu_irq_bit[n])
2365				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2366		}
2367		r = true;
2368		break;
2369	default:
2370		print_unknown_header_warning(0, header);
2371		r = false;
2372		break;
2373	}
2374	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2375	return r;
2376}
2377
2378static bool read_mailbox_1(void)
2379{
2380	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2381	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2382		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2383	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2384		PRCM_ACK_MB1_CURRENT_APE_OPP);
2385	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2386		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2387	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2388	complete(&mb1_transfer.work);
2389	return false;
2390}
2391
2392static bool read_mailbox_2(void)
2393{
2394	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2395	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2396	complete(&mb2_transfer.work);
2397	return false;
2398}
2399
2400static bool read_mailbox_3(void)
2401{
2402	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2403	return false;
2404}
2405
2406static bool read_mailbox_4(void)
2407{
2408	u8 header;
2409	bool do_complete = true;
2410
2411	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2412	switch (header) {
2413	case MB4H_MEM_ST:
2414	case MB4H_HOTDOG:
2415	case MB4H_HOTMON:
2416	case MB4H_HOT_PERIOD:
2417	case MB4H_A9WDOG_CONF:
2418	case MB4H_A9WDOG_EN:
2419	case MB4H_A9WDOG_DIS:
2420	case MB4H_A9WDOG_LOAD:
2421	case MB4H_A9WDOG_KICK:
2422		break;
2423	default:
2424		print_unknown_header_warning(4, header);
2425		do_complete = false;
2426		break;
2427	}
2428
2429	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2430
2431	if (do_complete)
2432		complete(&mb4_transfer.work);
2433
2434	return false;
2435}
2436
2437static bool read_mailbox_5(void)
2438{
2439	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2440	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2441	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2442	complete(&mb5_transfer.work);
2443	return false;
2444}
2445
2446static bool read_mailbox_6(void)
2447{
2448	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2449	return false;
2450}
2451
2452static bool read_mailbox_7(void)
2453{
2454	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2455	return false;
2456}
2457
2458static bool (* const read_mailbox[NUM_MB])(void) = {
2459	read_mailbox_0,
2460	read_mailbox_1,
2461	read_mailbox_2,
2462	read_mailbox_3,
2463	read_mailbox_4,
2464	read_mailbox_5,
2465	read_mailbox_6,
2466	read_mailbox_7
2467};
2468
2469static irqreturn_t prcmu_irq_handler(int irq, void *data)
2470{
2471	u32 bits;
2472	u8 n;
2473	irqreturn_t r;
2474
2475	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2476	if (unlikely(!bits))
2477		return IRQ_NONE;
2478
2479	r = IRQ_HANDLED;
2480	for (n = 0; bits; n++) {
2481		if (bits & MBOX_BIT(n)) {
2482			bits -= MBOX_BIT(n);
2483			if (read_mailbox[n]())
2484				r = IRQ_WAKE_THREAD;
2485		}
2486	}
2487	return r;
2488}
2489
2490static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2491{
2492	ack_dbb_wakeup();
2493	return IRQ_HANDLED;
2494}
2495
2496static void prcmu_mask_work(struct work_struct *work)
2497{
2498	unsigned long flags;
2499
2500	spin_lock_irqsave(&mb0_transfer.lock, flags);
2501
2502	config_wakeups();
2503
2504	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2505}
2506
2507static void prcmu_irq_mask(struct irq_data *d)
2508{
2509	unsigned long flags;
2510
2511	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2512
2513	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2514
2515	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2516
2517	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2518		schedule_work(&mb0_transfer.mask_work);
2519}
2520
2521static void prcmu_irq_unmask(struct irq_data *d)
2522{
2523	unsigned long flags;
2524
2525	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2526
2527	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2528
2529	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2530
2531	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2532		schedule_work(&mb0_transfer.mask_work);
2533}
2534
2535static void noop(struct irq_data *d)
2536{
2537}
2538
2539static struct irq_chip prcmu_irq_chip = {
2540	.name		= "prcmu",
2541	.irq_disable	= prcmu_irq_mask,
2542	.irq_ack	= noop,
2543	.irq_mask	= prcmu_irq_mask,
2544	.irq_unmask	= prcmu_irq_unmask,
2545};
2546
2547static char *fw_project_name(u32 project)
2548{
2549	switch (project) {
2550	case PRCMU_FW_PROJECT_U8500:
2551		return "U8500";
2552	case PRCMU_FW_PROJECT_U8400:
2553		return "U8400";
2554	case PRCMU_FW_PROJECT_U9500:
2555		return "U9500";
2556	case PRCMU_FW_PROJECT_U8500_MBB:
2557		return "U8500 MBB";
2558	case PRCMU_FW_PROJECT_U8500_C1:
2559		return "U8500 C1";
2560	case PRCMU_FW_PROJECT_U8500_C2:
2561		return "U8500 C2";
2562	case PRCMU_FW_PROJECT_U8500_C3:
2563		return "U8500 C3";
2564	case PRCMU_FW_PROJECT_U8500_C4:
2565		return "U8500 C4";
2566	case PRCMU_FW_PROJECT_U9500_MBL:
2567		return "U9500 MBL";
2568	case PRCMU_FW_PROJECT_U8500_MBL:
2569		return "U8500 MBL";
2570	case PRCMU_FW_PROJECT_U8500_MBL2:
2571		return "U8500 MBL2";
2572	case PRCMU_FW_PROJECT_U8520:
2573		return "U8520 MBL";
2574	case PRCMU_FW_PROJECT_U8420:
2575		return "U8420";
2576	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2577		return "U8420-sysclk";
2578	case PRCMU_FW_PROJECT_U9540:
2579		return "U9540";
2580	case PRCMU_FW_PROJECT_A9420:
2581		return "A9420";
2582	case PRCMU_FW_PROJECT_L8540:
2583		return "L8540";
2584	case PRCMU_FW_PROJECT_L8580:
2585		return "L8580";
2586	default:
2587		return "Unknown";
2588	}
2589}
2590
2591static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2592				irq_hw_number_t hwirq)
2593{
2594	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2595				handle_simple_irq);
 
 
 
 
 
 
 
 
 
 
 
 
2596
2597	return 0;
2598}
2599
2600static const struct irq_domain_ops db8500_irq_ops = {
2601	.map    = db8500_irq_map,
2602	.xlate  = irq_domain_xlate_twocell,
2603};
2604
2605static int db8500_irq_init(struct device_node *np)
2606{
2607	int i;
2608
2609	db8500_irq_domain = irq_domain_add_simple(
2610		np, NUM_PRCMU_WAKEUPS, 0,
2611		&db8500_irq_ops, NULL);
2612
2613	if (!db8500_irq_domain) {
2614		pr_err("Failed to create irqdomain\n");
2615		return -ENOSYS;
2616	}
2617
2618	/* All wakeups will be used, so create mappings for all */
2619	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2620		irq_create_mapping(db8500_irq_domain, i);
2621
2622	return 0;
2623}
2624
2625static void dbx500_fw_version_init(struct device_node *np)
2626{
2627	void __iomem *tcpm_base;
2628	u32 version;
2629
2630	tcpm_base = of_iomap(np, 1);
2631	if (!tcpm_base) {
2632		pr_err("no prcmu tcpm mem region provided\n");
2633		return;
2634	}
2635
2636	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2637	fw_info.version.project = (version & 0xFF);
2638	fw_info.version.api_version = (version >> 8) & 0xFF;
2639	fw_info.version.func_version = (version >> 16) & 0xFF;
2640	fw_info.version.errata = (version >> 24) & 0xFF;
2641	strncpy(fw_info.version.project_name,
2642		fw_project_name(fw_info.version.project),
2643		PRCMU_FW_PROJECT_NAME_LEN);
2644	fw_info.valid = true;
2645	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2646		fw_info.version.project_name,
2647		fw_info.version.project,
2648		fw_info.version.api_version,
2649		fw_info.version.func_version,
2650		fw_info.version.errata);
2651	iounmap(tcpm_base);
2652}
2653
2654void __init db8500_prcmu_early_init(void)
2655{
2656	/*
2657	 * This is a temporary remap to bring up the clocks. It is
2658	 * subsequently replaces with a real remap. After the merge of
2659	 * the mailbox subsystem all of this early code goes away, and the
2660	 * clock driver can probe independently. An early initcall will
2661	 * still be needed, but it can be diverted into drivers/clk/ux500.
2662	 */
2663	struct device_node *np;
2664
2665	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2666	prcmu_base = of_iomap(np, 0);
2667	if (!prcmu_base) {
2668		of_node_put(np);
2669		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2670		return;
2671	}
2672	dbx500_fw_version_init(np);
2673	of_node_put(np);
2674
2675	spin_lock_init(&mb0_transfer.lock);
2676	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2677	mutex_init(&mb0_transfer.ac_wake_lock);
2678	init_completion(&mb0_transfer.ac_wake_work);
2679	mutex_init(&mb1_transfer.lock);
2680	init_completion(&mb1_transfer.work);
2681	mb1_transfer.ape_opp = APE_NO_CHANGE;
2682	mutex_init(&mb2_transfer.lock);
2683	init_completion(&mb2_transfer.work);
2684	spin_lock_init(&mb2_transfer.auto_pm_lock);
2685	spin_lock_init(&mb3_transfer.lock);
2686	mutex_init(&mb3_transfer.sysclk_lock);
2687	init_completion(&mb3_transfer.sysclk_work);
2688	mutex_init(&mb4_transfer.lock);
2689	init_completion(&mb4_transfer.work);
2690	mutex_init(&mb5_transfer.lock);
2691	init_completion(&mb5_transfer.work);
2692
2693	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2694}
2695
2696static void init_prcm_registers(void)
2697{
2698	u32 val;
2699
2700	val = readl(PRCM_A9PL_FORCE_CLKEN);
2701	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2702		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2703	writel(val, (PRCM_A9PL_FORCE_CLKEN));
 
2704}
2705
2706/*
2707 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2708 */
2709static struct regulator_consumer_supply db8500_vape_consumers[] = {
2710	REGULATOR_SUPPLY("v-ape", NULL),
2711	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2712	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2716	/* "v-mmc" changed to "vcore" in the mainline kernel */
2717	REGULATOR_SUPPLY("vcore", "sdi0"),
2718	REGULATOR_SUPPLY("vcore", "sdi1"),
2719	REGULATOR_SUPPLY("vcore", "sdi2"),
2720	REGULATOR_SUPPLY("vcore", "sdi3"),
2721	REGULATOR_SUPPLY("vcore", "sdi4"),
2722	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2723	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2724	/* "v-uart" changed to "vcore" in the mainline kernel */
2725	REGULATOR_SUPPLY("vcore", "uart0"),
2726	REGULATOR_SUPPLY("vcore", "uart1"),
2727	REGULATOR_SUPPLY("vcore", "uart2"),
2728	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2729	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2730	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2731};
2732
2733static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
 
 
 
2734	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2735	/* AV8100 regulator */
2736	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2737};
2738
2739static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2740	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2741	REGULATOR_SUPPLY("vsupply", "mcde"),
2742};
2743
2744/* SVA MMDSP regulator switch */
2745static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2746	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2747};
2748
2749/* SVA pipe regulator switch */
2750static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2751	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2752};
2753
2754/* SIA MMDSP regulator switch */
2755static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2756	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2757};
2758
2759/* SIA pipe regulator switch */
2760static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2761	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2762};
2763
2764static struct regulator_consumer_supply db8500_sga_consumers[] = {
2765	REGULATOR_SUPPLY("v-mali", NULL),
2766};
2767
2768/* ESRAM1 and 2 regulator switch */
2769static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2770	REGULATOR_SUPPLY("esram12", "cm_control"),
2771};
2772
2773/* ESRAM3 and 4 regulator switch */
2774static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2775	REGULATOR_SUPPLY("v-esram34", "mcde"),
2776	REGULATOR_SUPPLY("esram34", "cm_control"),
2777	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2778};
2779
2780static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2781	[DB8500_REGULATOR_VAPE] = {
2782		.constraints = {
2783			.name = "db8500-vape",
2784			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2785			.always_on = true,
2786		},
2787		.consumer_supplies = db8500_vape_consumers,
2788		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2789	},
2790	[DB8500_REGULATOR_VARM] = {
2791		.constraints = {
2792			.name = "db8500-varm",
2793			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2794		},
2795	},
2796	[DB8500_REGULATOR_VMODEM] = {
2797		.constraints = {
2798			.name = "db8500-vmodem",
2799			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2800		},
2801	},
2802	[DB8500_REGULATOR_VPLL] = {
2803		.constraints = {
2804			.name = "db8500-vpll",
2805			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2806		},
2807	},
2808	[DB8500_REGULATOR_VSMPS1] = {
2809		.constraints = {
2810			.name = "db8500-vsmps1",
2811			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2812		},
2813	},
2814	[DB8500_REGULATOR_VSMPS2] = {
2815		.constraints = {
2816			.name = "db8500-vsmps2",
2817			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2818		},
2819		.consumer_supplies = db8500_vsmps2_consumers,
2820		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2821	},
2822	[DB8500_REGULATOR_VSMPS3] = {
2823		.constraints = {
2824			.name = "db8500-vsmps3",
2825			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2826		},
2827	},
2828	[DB8500_REGULATOR_VRF1] = {
2829		.constraints = {
2830			.name = "db8500-vrf1",
2831			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2832		},
2833	},
2834	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2835		/* dependency to u8500-vape is handled outside regulator framework */
2836		.constraints = {
2837			.name = "db8500-sva-mmdsp",
2838			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2839		},
2840		.consumer_supplies = db8500_svammdsp_consumers,
2841		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2842	},
2843	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2844		.constraints = {
2845			/* "ret" means "retention" */
2846			.name = "db8500-sva-mmdsp-ret",
2847			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848		},
2849	},
2850	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2851		/* dependency to u8500-vape is handled outside regulator framework */
2852		.constraints = {
2853			.name = "db8500-sva-pipe",
2854			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855		},
2856		.consumer_supplies = db8500_svapipe_consumers,
2857		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2858	},
2859	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2860		/* dependency to u8500-vape is handled outside regulator framework */
2861		.constraints = {
2862			.name = "db8500-sia-mmdsp",
2863			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2864		},
2865		.consumer_supplies = db8500_siammdsp_consumers,
2866		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2867	},
2868	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2869		.constraints = {
2870			.name = "db8500-sia-mmdsp-ret",
2871			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872		},
2873	},
2874	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2875		/* dependency to u8500-vape is handled outside regulator framework */
2876		.constraints = {
2877			.name = "db8500-sia-pipe",
2878			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2879		},
2880		.consumer_supplies = db8500_siapipe_consumers,
2881		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2882	},
2883	[DB8500_REGULATOR_SWITCH_SGA] = {
2884		.supply_regulator = "db8500-vape",
2885		.constraints = {
2886			.name = "db8500-sga",
2887			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888		},
2889		.consumer_supplies = db8500_sga_consumers,
2890		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2891
2892	},
2893	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2894		.supply_regulator = "db8500-vape",
2895		.constraints = {
2896			.name = "db8500-b2r2-mcde",
2897			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898		},
2899		.consumer_supplies = db8500_b2r2_mcde_consumers,
2900		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2901	},
2902	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2903		/*
2904		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2905		 * no need to hold Vape
2906		 */
2907		.constraints = {
2908			.name = "db8500-esram12",
2909			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2910		},
2911		.consumer_supplies = db8500_esram12_consumers,
2912		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2913	},
2914	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2915		.constraints = {
2916			.name = "db8500-esram12-ret",
2917			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918		},
2919	},
2920	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2921		/*
2922		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2923		 * no need to hold Vape
2924		 */
2925		.constraints = {
2926			.name = "db8500-esram34",
2927			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2928		},
2929		.consumer_supplies = db8500_esram34_consumers,
2930		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2931	},
2932	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2933		.constraints = {
2934			.name = "db8500-esram34-ret",
2935			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936		},
2937	},
2938};
2939
2940static struct ux500_wdt_data db8500_wdt_pdata = {
2941	.timeout = 600, /* 10 minutes */
2942	.has_28_bits_resolution = true,
2943};
2944
2945static const struct mfd_cell common_prcmu_devs[] = {
2946	{
2947		.name = "ux500_wdt",
2948		.platform_data = &db8500_wdt_pdata,
2949		.pdata_size = sizeof(db8500_wdt_pdata),
2950		.id = -1,
2951	},
2952};
2953
2954static const struct mfd_cell db8500_prcmu_devs[] = {
2955	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2956		    &db8500_regulators, sizeof(db8500_regulators), 0,
2957		    "stericsson,db8500-prcmu-regulator"),
2958	MFD_CELL_OF("cpuidle-dbx500",
2959		    NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
2960	MFD_CELL_OF("db8500-thermal",
2961		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2962};
2963
2964static int db8500_prcmu_register_ab8500(struct device *parent)
2965{
2966	struct device_node *np;
2967	struct resource ab850x_resource;
2968	const struct mfd_cell ab8500_cell = {
2969		.name = "ab8500-core",
2970		.of_compatible = "stericsson,ab8500",
2971		.id = AB8500_VERSION_AB8500,
2972		.resources = &ab850x_resource,
2973		.num_resources = 1,
2974	};
2975	const struct mfd_cell ab8505_cell = {
2976		.name = "ab8505-core",
2977		.of_compatible = "stericsson,ab8505",
2978		.id = AB8500_VERSION_AB8505,
2979		.resources = &ab850x_resource,
2980		.num_resources = 1,
2981	};
2982	const struct mfd_cell *ab850x_cell;
2983
2984	if (!parent->of_node)
2985		return -ENODEV;
2986
2987	/* Look up the device node, sneak the IRQ out of it */
2988	for_each_child_of_node(parent->of_node, np) {
2989		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2990			ab850x_cell = &ab8500_cell;
2991			break;
2992		}
2993		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2994			ab850x_cell = &ab8505_cell;
2995			break;
2996		}
2997	}
2998	if (!np) {
2999		dev_info(parent, "could not find AB850X node in the device tree\n");
3000		return -ENODEV;
3001	}
3002	of_irq_to_resource_table(np, &ab850x_resource, 1);
3003
3004	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3005}
3006
3007static int db8500_prcmu_probe(struct platform_device *pdev)
3008{
3009	struct device_node *np = pdev->dev.of_node;
3010	int irq = 0, err = 0;
3011	struct resource *res;
3012
3013	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3014	if (!res) {
3015		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3016		return -EINVAL;
3017	}
3018	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3019	if (!prcmu_base) {
3020		dev_err(&pdev->dev,
3021			"failed to ioremap prcmu register memory\n");
3022		return -ENOMEM;
3023	}
3024	init_prcm_registers();
3025	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3026	if (!res) {
3027		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3028		return -EINVAL;
3029	}
3030	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3031			resource_size(res));
3032	if (!tcdm_base) {
3033		dev_err(&pdev->dev,
3034			"failed to ioremap prcmu-tcdm register memory\n");
3035		return -ENOMEM;
3036	}
3037
3038	/* Clean up the mailbox interrupts after pre-kernel code. */
3039	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3040
3041	irq = platform_get_irq(pdev, 0);
3042	if (irq <= 0)
3043		return irq;
3044
3045	err = request_threaded_irq(irq, prcmu_irq_handler,
3046	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3047	if (err < 0) {
3048		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3049		return err;
 
3050	}
3051
3052	db8500_irq_init(np);
 
3053
3054	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
 
 
3055
3056	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3057			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3058	if (err) {
3059		pr_err("prcmu: Failed to add subdevices\n");
3060		return err;
3061	}
3062
3063	/* TODO: Remove restriction when clk definitions are available. */
3064	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3065		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3066				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3067				      db8500_irq_domain);
3068		if (err) {
3069			mfd_remove_devices(&pdev->dev);
3070			pr_err("prcmu: Failed to add subdevices\n");
3071			return err;
3072		}
3073	}
3074
3075	err = db8500_prcmu_register_ab8500(&pdev->dev);
3076	if (err) {
3077		mfd_remove_devices(&pdev->dev);
3078		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3079		return err;
3080	}
3081
3082	pr_info("DB8500 PRCMU initialized\n");
3083	return err;
3084}
3085static const struct of_device_id db8500_prcmu_match[] = {
3086	{ .compatible = "stericsson,db8500-prcmu"},
3087	{ },
3088};
3089
3090static struct platform_driver db8500_prcmu_driver = {
3091	.driver = {
3092		.name = "db8500-prcmu",
3093		.of_match_table = db8500_prcmu_match,
3094	},
3095	.probe = db8500_prcmu_probe,
3096};
3097
3098static int __init db8500_prcmu_init(void)
3099{
3100	return platform_driver_register(&db8500_prcmu_driver);
3101}
3102core_initcall(db8500_prcmu_init);