Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
 
 
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
 
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
 
 
 
  27#include <linux/platform_device.h>
  28#include <linux/uaccess.h>
  29#include <linux/mfd/core.h>
  30#include <linux/mfd/db8500-prcmu.h>
 
  31#include <linux/regulator/db8500-prcmu.h>
  32#include <linux/regulator/machine.h>
  33#include <mach/hardware.h>
  34#include <mach/irqs.h>
  35#include <mach/db8500-regs.h>
  36#include <mach/id.h>
  37#include "db8500-prcmu-regs.h"
  38
  39/* Offset for the firmware version within the TCPM */
  40#define PRCMU_FW_VERSION_OFFSET 0xA4
  41
  42/* PRCMU project numbers, defined by PRCMU FW */
  43#define PRCMU_PROJECT_ID_8500V1_0 1
  44#define PRCMU_PROJECT_ID_8500V2_0 2
  45#define PRCMU_PROJECT_ID_8400V2_0 3
  46
  47/* Index of different voltages to be used when accessing AVSData */
  48#define PRCM_AVS_BASE		0x2FC
  49#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  50#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  51#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  52#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  53#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  54#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  55#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  56#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  57#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  58#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  59#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  60#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  61#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  62
  63#define PRCM_AVS_VOLTAGE		0
  64#define PRCM_AVS_VOLTAGE_MASK		0x3f
  65#define PRCM_AVS_ISSLOWSTARTUP		6
  66#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  67#define PRCM_AVS_ISMODEENABLE		7
  68#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  69
  70#define PRCM_BOOT_STATUS	0xFFF
  71#define PRCM_ROMCODE_A2P	0xFFE
  72#define PRCM_ROMCODE_P2A	0xFFD
  73#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  74
  75#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  76
  77#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  78#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  79#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  80#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  81#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  82#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  83#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  84#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  85
  86/* Req Mailboxes */
  87#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  88#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  89#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  90#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  91#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  92#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  93
  94/* Ack Mailboxes */
  95#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  96#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  97#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  98#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  99#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
 100#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
 101
 102/* Mailbox 0 headers */
 103#define MB0H_POWER_STATE_TRANS		0
 104#define MB0H_CONFIG_WAKEUPS_EXE		1
 105#define MB0H_READ_WAKEUP_ACK		3
 106#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 107
 108#define MB0H_WAKEUP_EXE 2
 109#define MB0H_WAKEUP_SLEEP 5
 110
 111/* Mailbox 0 REQs */
 112#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 113#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 114#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 115#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 116#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 117#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 118
 119/* Mailbox 0 ACKs */
 120#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 121#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 122#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 123#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 124#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 125#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 126#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 127
 128/* Mailbox 1 headers */
 129#define MB1H_ARM_APE_OPP 0x0
 130#define MB1H_RESET_MODEM 0x2
 131#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 132#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 133#define MB1H_RELEASE_USB_WAKEUP 0x5
 
 134
 135/* Mailbox 1 Requests */
 136#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 137#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 138#define PRCM_REQ_MB1_APE_OPP_100_RESTORE	(PRCM_REQ_MB1 + 0x4)
 139#define PRCM_REQ_MB1_ARM_OPP_100_RESTORE	(PRCM_REQ_MB1 + 0x8)
 
 
 
 140
 141/* Mailbox 1 ACKs */
 142#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 143#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 144#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 145#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 146
 147/* Mailbox 2 headers */
 148#define MB2H_DPS	0x0
 149#define MB2H_AUTO_PWR	0x1
 150
 151/* Mailbox 2 REQs */
 152#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 153#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 154#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 155#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 156#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 157#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 158#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 159#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 160#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 161#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 162
 163/* Mailbox 2 ACKs */
 164#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 165#define HWACC_PWR_ST_OK 0xFE
 166
 167/* Mailbox 3 headers */
 168#define MB3H_ANC	0x0
 169#define MB3H_SIDETONE	0x1
 170#define MB3H_SYSCLK	0xE
 171
 172/* Mailbox 3 Requests */
 173#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 174#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 175#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 176#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 178#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 179#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 180
 181/* Mailbox 4 headers */
 182#define MB4H_DDR_INIT	0x0
 183#define MB4H_MEM_ST	0x1
 184#define MB4H_HOTDOG	0x12
 185#define MB4H_HOTMON	0x13
 186#define MB4H_HOT_PERIOD	0x14
 
 
 
 
 
 187
 188/* Mailbox 4 Requests */
 189#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 190#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 191#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 192#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 194#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 195#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 196#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 197#define HOTMON_CONFIG_LOW			BIT(0)
 198#define HOTMON_CONFIG_HIGH			BIT(1)
 
 
 
 
 
 
 
 199
 200/* Mailbox 5 Requests */
 201#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 202#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 203#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 204#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 205#define PRCMU_I2C_WRITE(slave) \
 206	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
 207#define PRCMU_I2C_READ(slave) \
 208	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
 209#define PRCMU_I2C_STOP_EN		BIT(3)
 210
 211/* Mailbox 5 ACKs */
 212#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 213#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 214#define I2C_WR_OK 0x1
 215#define I2C_RD_OK 0x2
 216
 217#define NUM_MB 8
 218#define MBOX_BIT BIT
 219#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 220
 221/*
 222 * Wakeups/IRQs
 223 */
 224
 225#define WAKEUP_BIT_RTC BIT(0)
 226#define WAKEUP_BIT_RTT0 BIT(1)
 227#define WAKEUP_BIT_RTT1 BIT(2)
 228#define WAKEUP_BIT_HSI0 BIT(3)
 229#define WAKEUP_BIT_HSI1 BIT(4)
 230#define WAKEUP_BIT_CA_WAKE BIT(5)
 231#define WAKEUP_BIT_USB BIT(6)
 232#define WAKEUP_BIT_ABB BIT(7)
 233#define WAKEUP_BIT_ABB_FIFO BIT(8)
 234#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 235#define WAKEUP_BIT_CA_SLEEP BIT(10)
 236#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 237#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 238#define WAKEUP_BIT_ANC_OK BIT(13)
 239#define WAKEUP_BIT_SW_ERROR BIT(14)
 240#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 241#define WAKEUP_BIT_ARM BIT(17)
 242#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 243#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 244#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 245#define WAKEUP_BIT_GPIO0 BIT(23)
 246#define WAKEUP_BIT_GPIO1 BIT(24)
 247#define WAKEUP_BIT_GPIO2 BIT(25)
 248#define WAKEUP_BIT_GPIO3 BIT(26)
 249#define WAKEUP_BIT_GPIO4 BIT(27)
 250#define WAKEUP_BIT_GPIO5 BIT(28)
 251#define WAKEUP_BIT_GPIO6 BIT(29)
 252#define WAKEUP_BIT_GPIO7 BIT(30)
 253#define WAKEUP_BIT_GPIO8 BIT(31)
 254
 
 
 
 
 
 
 
 255/*
 256 * This vector maps irq numbers to the bits in the bit field used in
 257 * communication with the PRCMU firmware.
 258 *
 259 * The reason for having this is to keep the irq numbers contiguous even though
 260 * the bits in the bit field are not. (The bits also have a tendency to move
 261 * around, to further complicate matters.)
 262 */
 263#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
 264#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 266	IRQ_ENTRY(RTC),
 267	IRQ_ENTRY(RTT0),
 268	IRQ_ENTRY(RTT1),
 269	IRQ_ENTRY(HSI0),
 270	IRQ_ENTRY(HSI1),
 271	IRQ_ENTRY(CA_WAKE),
 272	IRQ_ENTRY(USB),
 273	IRQ_ENTRY(ABB),
 274	IRQ_ENTRY(ABB_FIFO),
 275	IRQ_ENTRY(CA_SLEEP),
 276	IRQ_ENTRY(ARM),
 277	IRQ_ENTRY(HOTMON_LOW),
 278	IRQ_ENTRY(HOTMON_HIGH),
 279	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 280	IRQ_ENTRY(GPIO0),
 281	IRQ_ENTRY(GPIO1),
 282	IRQ_ENTRY(GPIO2),
 283	IRQ_ENTRY(GPIO3),
 284	IRQ_ENTRY(GPIO4),
 285	IRQ_ENTRY(GPIO5),
 286	IRQ_ENTRY(GPIO6),
 287	IRQ_ENTRY(GPIO7),
 288	IRQ_ENTRY(GPIO8)
 289};
 290
 291#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 292#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 293static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 294	WAKEUP_ENTRY(RTC),
 295	WAKEUP_ENTRY(RTT0),
 296	WAKEUP_ENTRY(RTT1),
 297	WAKEUP_ENTRY(HSI0),
 298	WAKEUP_ENTRY(HSI1),
 299	WAKEUP_ENTRY(USB),
 300	WAKEUP_ENTRY(ABB),
 301	WAKEUP_ENTRY(ABB_FIFO),
 302	WAKEUP_ENTRY(ARM)
 303};
 304
 305/*
 306 * mb0_transfer - state needed for mailbox 0 communication.
 307 * @lock:		The transaction lock.
 308 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 309 *			the request data.
 310 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 311 * @req:		Request data that need to persist between requests.
 312 */
 313static struct {
 314	spinlock_t lock;
 315	spinlock_t dbb_irqs_lock;
 316	struct work_struct mask_work;
 317	struct mutex ac_wake_lock;
 318	struct completion ac_wake_work;
 319	struct {
 320		u32 dbb_irqs;
 321		u32 dbb_wakeups;
 322		u32 abb_events;
 323	} req;
 324} mb0_transfer;
 325
 326/*
 327 * mb1_transfer - state needed for mailbox 1 communication.
 328 * @lock:	The transaction lock.
 329 * @work:	The transaction completion structure.
 
 330 * @ack:	Reply ("acknowledge") data.
 331 */
 332static struct {
 333	struct mutex lock;
 334	struct completion work;
 
 335	struct {
 336		u8 header;
 337		u8 arm_opp;
 338		u8 ape_opp;
 339		u8 ape_voltage_status;
 340	} ack;
 341} mb1_transfer;
 342
 343/*
 344 * mb2_transfer - state needed for mailbox 2 communication.
 345 * @lock:            The transaction lock.
 346 * @work:            The transaction completion structure.
 347 * @auto_pm_lock:    The autonomous power management configuration lock.
 348 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 349 * @req:             Request data that need to persist between requests.
 350 * @ack:             Reply ("acknowledge") data.
 351 */
 352static struct {
 353	struct mutex lock;
 354	struct completion work;
 355	spinlock_t auto_pm_lock;
 356	bool auto_pm_enabled;
 357	struct {
 358		u8 status;
 359	} ack;
 360} mb2_transfer;
 361
 362/*
 363 * mb3_transfer - state needed for mailbox 3 communication.
 364 * @lock:		The request lock.
 365 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 366 * @sysclk_work:	Work structure used for sysclk requests.
 367 */
 368static struct {
 369	spinlock_t lock;
 370	struct mutex sysclk_lock;
 371	struct completion sysclk_work;
 372} mb3_transfer;
 373
 374/*
 375 * mb4_transfer - state needed for mailbox 4 communication.
 376 * @lock:	The transaction lock.
 377 * @work:	The transaction completion structure.
 378 */
 379static struct {
 380	struct mutex lock;
 381	struct completion work;
 382} mb4_transfer;
 383
 384/*
 385 * mb5_transfer - state needed for mailbox 5 communication.
 386 * @lock:	The transaction lock.
 387 * @work:	The transaction completion structure.
 388 * @ack:	Reply ("acknowledge") data.
 389 */
 390static struct {
 391	struct mutex lock;
 392	struct completion work;
 393	struct {
 394		u8 status;
 395		u8 value;
 396	} ack;
 397} mb5_transfer;
 398
 399static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 400
 401/* Spinlocks */
 
 402static DEFINE_SPINLOCK(clkout_lock);
 403static DEFINE_SPINLOCK(gpiocr_lock);
 404
 405/* Global var to runtime determine TCDM base for v2 or v1 */
 406static __iomem void *tcdm_base;
 
 407
 408struct clk_mgt {
 409	unsigned int offset;
 410	u32 pllsw;
 
 
 411};
 412
 413static DEFINE_SPINLOCK(clk_mgt_lock);
 414
 415#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT), 0 }
 416struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 417	CLK_MGT_ENTRY(SGACLK),
 418	CLK_MGT_ENTRY(UARTCLK),
 419	CLK_MGT_ENTRY(MSP02CLK),
 420	CLK_MGT_ENTRY(MSP1CLK),
 421	CLK_MGT_ENTRY(I2CCLK),
 422	CLK_MGT_ENTRY(SDMMCCLK),
 423	CLK_MGT_ENTRY(SLIMCLK),
 424	CLK_MGT_ENTRY(PER1CLK),
 425	CLK_MGT_ENTRY(PER2CLK),
 426	CLK_MGT_ENTRY(PER3CLK),
 427	CLK_MGT_ENTRY(PER5CLK),
 428	CLK_MGT_ENTRY(PER6CLK),
 429	CLK_MGT_ENTRY(PER7CLK),
 430	CLK_MGT_ENTRY(LCDCLK),
 431	CLK_MGT_ENTRY(BMLCLK),
 432	CLK_MGT_ENTRY(HSITXCLK),
 433	CLK_MGT_ENTRY(HSIRXCLK),
 434	CLK_MGT_ENTRY(HDMICLK),
 435	CLK_MGT_ENTRY(APEATCLK),
 436	CLK_MGT_ENTRY(APETRACECLK),
 437	CLK_MGT_ENTRY(MCDECLK),
 438	CLK_MGT_ENTRY(IPI2CCLK),
 439	CLK_MGT_ENTRY(DSIALTCLK),
 440	CLK_MGT_ENTRY(DMACLK),
 441	CLK_MGT_ENTRY(B2R2CLK),
 442	CLK_MGT_ENTRY(TVCLK),
 443	CLK_MGT_ENTRY(SSPCLK),
 444	CLK_MGT_ENTRY(RNGCLK),
 445	CLK_MGT_ENTRY(UICCCLK),
 446};
 447
 448/*
 449* Used by MCDE to setup all necessary PRCMU registers
 450*/
 451#define PRCMU_RESET_DSIPLL		0x00004000
 452#define PRCMU_UNCLAMP_DSIPLL		0x00400800
 453
 454#define PRCMU_CLK_PLL_DIV_SHIFT		0
 455#define PRCMU_CLK_PLL_SW_SHIFT		5
 456#define PRCMU_CLK_38			(1 << 9)
 457#define PRCMU_CLK_38_SRC		(1 << 10)
 458#define PRCMU_CLK_38_DIV		(1 << 11)
 459
 460/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 461#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
 462
 463/* PLLDIV=8, PLLSW=4 (PLLDDR) */
 464#define PRCMU_DSI_CLOCK_SETTING_U8400	0x00000088
 465
 466/* DPI 50000000 Hz */
 467#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 468					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 469#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
 470
 471/* D=101, N=1, R=4, SELDIV2=0 */
 472#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
 473
 474/* D=70, N=1, R=3, SELDIV2=0 */
 475#define PRCMU_PLLDSI_FREQ_SETTING_U8400	0x00030146
 476
 477#define PRCMU_ENABLE_PLLDSI		0x00000001
 478#define PRCMU_DISABLE_PLLDSI		0x00000000
 479#define PRCMU_RELEASE_RESET_DSS		0x0000400C
 480#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
 481/* ESC clk, div0=1, div1=1, div2=3 */
 482#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
 483#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
 484#define PRCMU_DSI_RESET_SW		0x00000007
 485
 486#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
 487
 488static struct {
 489	u8 project_number;
 490	u8 api_version;
 491	u8 func_version;
 492	u8 errata;
 493} prcmu_version;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 
 
 
 
 
 495
 496int prcmu_enable_dsipll(void)
 497{
 498	int i;
 499	unsigned int plldsifreq;
 
 
 
 
 
 
 
 
 500
 501	/* Clear DSIPLL_RESETN */
 502	writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_CLR));
 503	/* Unclamp DSIPLL in/out */
 504	writel(PRCMU_UNCLAMP_DSIPLL, (_PRCMU_BASE + PRCM_MMIP_LS_CLAMP_CLR));
 
 505
 506	if (prcmu_is_u8400())
 507		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
 508	else
 509		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
 510	/* Set DSI PLL FREQ */
 511	writel(plldsifreq, (_PRCMU_BASE + PRCM_PLLDSI_FREQ));
 512	writel(PRCMU_DSI_PLLOUT_SEL_SETTING,
 513		(_PRCMU_BASE + PRCM_DSI_PLLOUT_SEL));
 514	/* Enable Escape clocks */
 515	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV,
 516					(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
 517
 518	/* Start DSI PLL */
 519	writel(PRCMU_ENABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
 520	/* Reset DSI PLL */
 521	writel(PRCMU_DSI_RESET_SW, (_PRCMU_BASE + PRCM_DSI_SW_RESET));
 522	for (i = 0; i < 10; i++) {
 523		if ((readl(_PRCMU_BASE + PRCM_PLLDSI_LOCKP) &
 524			PRCMU_PLLDSI_LOCKP_LOCKED)
 525					== PRCMU_PLLDSI_LOCKP_LOCKED)
 526			break;
 527		udelay(100);
 528	}
 529	/* Set DSIPLL_RESETN */
 530	writel(PRCMU_RESET_DSIPLL, (_PRCMU_BASE + PRCM_APE_RESETN_SET));
 531	return 0;
 532}
 533
 534int prcmu_disable_dsipll(void)
 535{
 536	/* Disable dsi pll */
 537	writel(PRCMU_DISABLE_PLLDSI, (_PRCMU_BASE + PRCM_PLLDSI_ENABLE));
 538	/* Disable  escapeclock */
 539	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV,
 540					(_PRCMU_BASE + PRCM_DSITVCLK_DIV));
 541	return 0;
 542}
 543
 544int prcmu_set_display_clocks(void)
 545{
 546	unsigned long flags;
 547	unsigned int dsiclk;
 548
 549	if (prcmu_is_u8400())
 550		dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
 551	else
 552		dsiclk = PRCMU_DSI_CLOCK_SETTING;
 553
 554	spin_lock_irqsave(&clk_mgt_lock, flags);
 555
 556	/* Grab the HW semaphore. */
 557	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 558		cpu_relax();
 559
 560	writel(dsiclk, (_PRCMU_BASE + PRCM_HDMICLK_MGT));
 561	writel(PRCMU_DSI_LP_CLOCK_SETTING, (_PRCMU_BASE + PRCM_TVCLK_MGT));
 562	writel(PRCMU_DPI_CLOCK_SETTING, (_PRCMU_BASE + PRCM_LCDCLK_MGT));
 563
 564	/* Release the HW semaphore. */
 565	writel(0, (_PRCMU_BASE + PRCM_SEM));
 566
 567	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 568
 569	return 0;
 
 
 570}
 571
 572/**
 573 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
 574 */
 575void prcmu_enable_spi2(void)
 576{
 577	u32 reg;
 578	unsigned long flags;
 579
 580	spin_lock_irqsave(&gpiocr_lock, flags);
 581	reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
 582	writel(reg | PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
 583	spin_unlock_irqrestore(&gpiocr_lock, flags);
 
 584}
 585
 586/**
 587 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
 588 */
 589void prcmu_disable_spi2(void)
 590{
 591	u32 reg;
 592	unsigned long flags;
 593
 594	spin_lock_irqsave(&gpiocr_lock, flags);
 595	reg = readl(_PRCMU_BASE + PRCM_GPIOCR);
 596	writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, _PRCMU_BASE + PRCM_GPIOCR);
 597	spin_unlock_irqrestore(&gpiocr_lock, flags);
 598}
 599
 600bool prcmu_has_arm_maxopp(void)
 601{
 602	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 603		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 604}
 605
 606bool prcmu_is_u8400(void)
 607{
 608	return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
 609}
 610
 611/**
 612 * prcmu_get_boot_status - PRCMU boot status checking
 613 * Returns: the current PRCMU boot status
 614 */
 615int prcmu_get_boot_status(void)
 616{
 617	return readb(tcdm_base + PRCM_BOOT_STATUS);
 
 618}
 619
 620/**
 621 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 622 * @val: Value to be set, i.e. transition requested
 623 * Returns: 0 on success, -EINVAL on invalid argument
 624 *
 625 * This function is used to run the following power state sequences -
 626 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 627 */
 628int prcmu_set_rc_a2p(enum romcode_write val)
 629{
 630	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 631		return -EINVAL;
 632	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 633	return 0;
 634}
 635
 636/**
 637 * prcmu_get_rc_p2a - This function is used to get power state sequences
 638 * Returns: the power transition that has last happened
 639 *
 640 * This function can return the following transitions-
 641 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 642 */
 643enum romcode_read prcmu_get_rc_p2a(void)
 644{
 645	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 646}
 647
 648/**
 649 * prcmu_get_current_mode - Return the current XP70 power mode
 650 * Returns: Returns the current AP(ARM) power mode: init,
 651 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 652 */
 653enum ap_pwrst prcmu_get_xp70_current_state(void)
 654{
 655	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 656}
 657
 658/**
 659 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 660 * @clkout:	The CLKOUT number (0 or 1).
 661 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 662 * @div:	The divider to be applied.
 663 *
 664 * Configures one of the programmable clock outputs (CLKOUTs).
 665 * @div should be in the range [1,63] to request a configuration, or 0 to
 666 * inform that the configuration is no longer requested.
 667 */
 668int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 669{
 670	static int requests[2];
 671	int r = 0;
 672	unsigned long flags;
 673	u32 val;
 674	u32 bits;
 675	u32 mask;
 676	u32 div_mask;
 677
 678	BUG_ON(clkout > 1);
 679	BUG_ON(div > 63);
 680	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 681
 682	if (!div && !requests[clkout])
 683		return -EINVAL;
 684
 685	switch (clkout) {
 686	case 0:
 687		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 688		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 689		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 690			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 691		break;
 692	case 1:
 693		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 694		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 695			PRCM_CLKOCR_CLK1TYPE);
 696		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 697			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 698		break;
 699	}
 700	bits &= mask;
 701
 702	spin_lock_irqsave(&clkout_lock, flags);
 703
 704	val = readl(_PRCMU_BASE + PRCM_CLKOCR);
 705	if (val & div_mask) {
 706		if (div) {
 707			if ((val & mask) != bits) {
 708				r = -EBUSY;
 709				goto unlock_and_return;
 710			}
 711		} else {
 712			if ((val & mask & ~div_mask) != bits) {
 713				r = -EINVAL;
 714				goto unlock_and_return;
 715			}
 716		}
 717	}
 718	writel((bits | (val & ~mask)), (_PRCMU_BASE + PRCM_CLKOCR));
 719	requests[clkout] += (div ? 1 : -1);
 720
 721unlock_and_return:
 722	spin_unlock_irqrestore(&clkout_lock, flags);
 723
 724	return r;
 725}
 726
 727int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 728{
 729	unsigned long flags;
 730
 731	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 732
 733	spin_lock_irqsave(&mb0_transfer.lock, flags);
 734
 735	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 736		cpu_relax();
 737
 738	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 739	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 740	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 741	writeb((keep_ulp_clk ? 1 : 0),
 742		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 743	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 744	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 745
 746	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 747
 748	return 0;
 749}
 750
 
 
 
 
 
 751/* This function should only be called while mb0_transfer.lock is held. */
 752static void config_wakeups(void)
 753{
 754	const u8 header[2] = {
 755		MB0H_CONFIG_WAKEUPS_EXE,
 756		MB0H_CONFIG_WAKEUPS_SLEEP
 757	};
 758	static u32 last_dbb_events;
 759	static u32 last_abb_events;
 760	u32 dbb_events;
 761	u32 abb_events;
 762	unsigned int i;
 763
 764	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 765	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 766
 767	abb_events = mb0_transfer.req.abb_events;
 768
 769	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 770		return;
 771
 772	for (i = 0; i < 2; i++) {
 773		while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 774			cpu_relax();
 775		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 776		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 777		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 778		writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 779	}
 780	last_dbb_events = dbb_events;
 781	last_abb_events = abb_events;
 782}
 783
 784void prcmu_enable_wakeups(u32 wakeups)
 785{
 786	unsigned long flags;
 787	u32 bits;
 788	int i;
 789
 790	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 791
 792	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 793		if (wakeups & BIT(i))
 794			bits |= prcmu_wakeup_bit[i];
 795	}
 796
 797	spin_lock_irqsave(&mb0_transfer.lock, flags);
 798
 799	mb0_transfer.req.dbb_wakeups = bits;
 800	config_wakeups();
 801
 802	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 803}
 804
 805void prcmu_config_abb_event_readout(u32 abb_events)
 806{
 807	unsigned long flags;
 808
 809	spin_lock_irqsave(&mb0_transfer.lock, flags);
 810
 811	mb0_transfer.req.abb_events = abb_events;
 812	config_wakeups();
 813
 814	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 815}
 816
 817void prcmu_get_abb_event_buffer(void __iomem **buf)
 818{
 819	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 820		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 821	else
 822		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 823}
 824
 825/**
 826 * prcmu_set_arm_opp - set the appropriate ARM OPP
 827 * @opp: The new ARM operating point to which transition is to be made
 828 * Returns: 0 on success, non-zero on failure
 829 *
 830 * This function sets the the operating point of the ARM.
 831 */
 832int prcmu_set_arm_opp(u8 opp)
 833{
 834	int r;
 835
 836	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 837		return -EINVAL;
 838
 839	r = 0;
 840
 841	mutex_lock(&mb1_transfer.lock);
 842
 843	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 844		cpu_relax();
 845
 846	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 847	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 848	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 849
 850	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 851	wait_for_completion(&mb1_transfer.work);
 852
 853	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 854		(mb1_transfer.ack.arm_opp != opp))
 855		r = -EIO;
 856
 857	mutex_unlock(&mb1_transfer.lock);
 858
 859	return r;
 860}
 861
 862/**
 863 * prcmu_get_arm_opp - get the current ARM OPP
 864 *
 865 * Returns: the current ARM OPP
 866 */
 867int prcmu_get_arm_opp(void)
 868{
 869	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 870}
 871
 872/**
 873 * prcmu_get_ddr_opp - get the current DDR OPP
 874 *
 875 * Returns: the current DDR OPP
 876 */
 877int prcmu_get_ddr_opp(void)
 878{
 879	return readb(_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW);
 880}
 881
 882/**
 883 * set_ddr_opp - set the appropriate DDR OPP
 884 * @opp: The new DDR operating point to which transition is to be made
 885 * Returns: 0 on success, non-zero on failure
 886 *
 887 * This function sets the operating point of the DDR.
 888 */
 889int prcmu_set_ddr_opp(u8 opp)
 890{
 891	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
 892		return -EINVAL;
 893	/* Changing the DDR OPP can hang the hardware pre-v21 */
 894	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
 895		writeb(opp, (_PRCMU_BASE + PRCM_DDR_SUBSYS_APE_MINBW));
 
 896
 897	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898}
 
 899/**
 900 * set_ape_opp - set the appropriate APE OPP
 901 * @opp: The new APE operating point to which transition is to be made
 902 * Returns: 0 on success, non-zero on failure
 903 *
 904 * This function sets the operating point of the APE.
 905 */
 906int prcmu_set_ape_opp(u8 opp)
 907{
 908	int r = 0;
 909
 
 
 
 910	mutex_lock(&mb1_transfer.lock);
 911
 912	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 
 
 
 
 
 
 913		cpu_relax();
 914
 915	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 916	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 917	writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 
 918
 919	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 920	wait_for_completion(&mb1_transfer.work);
 921
 922	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 923		(mb1_transfer.ack.ape_opp != opp))
 924		r = -EIO;
 925
 
 
 
 
 
 
 
 926	mutex_unlock(&mb1_transfer.lock);
 927
 928	return r;
 929}
 930
 931/**
 932 * prcmu_get_ape_opp - get the current APE OPP
 933 *
 934 * Returns: the current APE OPP
 935 */
 936int prcmu_get_ape_opp(void)
 937{
 938	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 939}
 940
 941/**
 942 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 943 * @enable: true to request the higher voltage, false to drop a request.
 944 *
 945 * Calls to this function to enable and disable requests must be balanced.
 946 */
 947int prcmu_request_ape_opp_100_voltage(bool enable)
 948{
 949	int r = 0;
 950	u8 header;
 951	static unsigned int requests;
 952
 953	mutex_lock(&mb1_transfer.lock);
 954
 955	if (enable) {
 956		if (0 != requests++)
 957			goto unlock_and_return;
 958		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 959	} else {
 960		if (requests == 0) {
 961			r = -EIO;
 962			goto unlock_and_return;
 963		} else if (1 != requests--) {
 964			goto unlock_and_return;
 965		}
 966		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 967	}
 968
 969	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 970		cpu_relax();
 971
 972	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 973
 974	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
 975	wait_for_completion(&mb1_transfer.work);
 976
 977	if ((mb1_transfer.ack.header != header) ||
 978		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 979		r = -EIO;
 980
 981unlock_and_return:
 982	mutex_unlock(&mb1_transfer.lock);
 983
 984	return r;
 985}
 986
 987/**
 988 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
 989 *
 990 * This function releases the power state requirements of a USB wakeup.
 991 */
 992int prcmu_release_usb_wakeup_state(void)
 993{
 994	int r = 0;
 995
 996	mutex_lock(&mb1_transfer.lock);
 997
 998	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 999		cpu_relax();
1000
1001	writeb(MB1H_RELEASE_USB_WAKEUP,
1002		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1003
1004	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1005	wait_for_completion(&mb1_transfer.work);
1006
1007	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1008		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1009		r = -EIO;
1010
1011	mutex_unlock(&mb1_transfer.lock);
1012
1013	return r;
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016/**
1017 * prcmu_set_epod - set the state of a EPOD (power domain)
1018 * @epod_id: The EPOD to set
1019 * @epod_state: The new EPOD state
1020 *
1021 * This function sets the state of a EPOD (power domain). It may not be called
1022 * from interrupt context.
1023 */
1024int prcmu_set_epod(u16 epod_id, u8 epod_state)
1025{
1026	int r = 0;
1027	bool ram_retention = false;
1028	int i;
1029
1030	/* check argument */
1031	BUG_ON(epod_id >= NUM_EPOD_ID);
1032
1033	/* set flag if retention is possible */
1034	switch (epod_id) {
1035	case EPOD_ID_SVAMMDSP:
1036	case EPOD_ID_SIAMMDSP:
1037	case EPOD_ID_ESRAM12:
1038	case EPOD_ID_ESRAM34:
1039		ram_retention = true;
1040		break;
1041	}
1042
1043	/* check argument */
1044	BUG_ON(epod_state > EPOD_STATE_ON);
1045	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1046
1047	/* get lock */
1048	mutex_lock(&mb2_transfer.lock);
1049
1050	/* wait for mailbox */
1051	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1052		cpu_relax();
1053
1054	/* fill in mailbox */
1055	for (i = 0; i < NUM_EPOD_ID; i++)
1056		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1057	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1058
1059	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1060
1061	writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1062
1063	/*
1064	 * The current firmware version does not handle errors correctly,
1065	 * and we cannot recover if there is an error.
1066	 * This is expected to change when the firmware is updated.
1067	 */
1068	if (!wait_for_completion_timeout(&mb2_transfer.work,
1069			msecs_to_jiffies(20000))) {
1070		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1071			__func__);
1072		r = -EIO;
1073		goto unlock_and_return;
1074	}
1075
1076	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1077		r = -EIO;
1078
1079unlock_and_return:
1080	mutex_unlock(&mb2_transfer.lock);
1081	return r;
1082}
1083
1084/**
1085 * prcmu_configure_auto_pm - Configure autonomous power management.
1086 * @sleep: Configuration for ApSleep.
1087 * @idle:  Configuration for ApIdle.
1088 */
1089void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1090	struct prcmu_auto_pm_config *idle)
1091{
1092	u32 sleep_cfg;
1093	u32 idle_cfg;
1094	unsigned long flags;
1095
1096	BUG_ON((sleep == NULL) || (idle == NULL));
1097
1098	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1099	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1100	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1101	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1102	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1103	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1104
1105	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1106	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1107	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1108	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1109	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1110	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1111
1112	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1113
1114	/*
1115	 * The autonomous power management configuration is done through
1116	 * fields in mailbox 2, but these fields are only used as shared
1117	 * variables - i.e. there is no need to send a message.
1118	 */
1119	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1120	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1121
1122	mb2_transfer.auto_pm_enabled =
1123		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1124		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1125		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1126		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1127
1128	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1129}
1130EXPORT_SYMBOL(prcmu_configure_auto_pm);
1131
1132bool prcmu_is_auto_pm_enabled(void)
1133{
1134	return mb2_transfer.auto_pm_enabled;
1135}
1136
1137static int request_sysclk(bool enable)
1138{
1139	int r;
1140	unsigned long flags;
1141
1142	r = 0;
1143
1144	mutex_lock(&mb3_transfer.sysclk_lock);
1145
1146	spin_lock_irqsave(&mb3_transfer.lock, flags);
1147
1148	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1149		cpu_relax();
1150
1151	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1152
1153	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1154	writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1155
1156	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1157
1158	/*
1159	 * The firmware only sends an ACK if we want to enable the
1160	 * SysClk, and it succeeds.
1161	 */
1162	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1163			msecs_to_jiffies(20000))) {
1164		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1165			__func__);
1166		r = -EIO;
1167	}
1168
1169	mutex_unlock(&mb3_transfer.sysclk_lock);
1170
1171	return r;
1172}
1173
1174static int request_timclk(bool enable)
1175{
1176	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
 
 
 
 
 
 
 
 
 
 
1177
1178	if (!enable)
1179		val |= PRCM_TCR_STOP_TIMERS;
1180	writel(val, (_PRCMU_BASE + PRCM_TCR));
 
 
 
1181
1182	return 0;
1183}
1184
1185static int request_reg_clock(u8 clock, bool enable)
1186{
1187	u32 val;
1188	unsigned long flags;
1189
1190	spin_lock_irqsave(&clk_mgt_lock, flags);
1191
1192	/* Grab the HW semaphore. */
1193	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1194		cpu_relax();
1195
1196	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1197	if (enable) {
1198		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1199	} else {
1200		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1201		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1202	}
1203	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1204
1205	/* Release the HW semaphore. */
1206	writel(0, (_PRCMU_BASE + PRCM_SEM));
1207
1208	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1209
1210	return 0;
1211}
1212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213/**
1214 * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1215 * @clock:      The clock for which the request is made.
1216 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1217 *
1218 * This function should only be used by the clock implementation.
1219 * Do not use it from any other place!
1220 */
1221int prcmu_request_clock(u8 clock, bool enable)
1222{
1223	if (clock < PRCMU_NUM_REG_CLOCKS)
1224		return request_reg_clock(clock, enable);
 
 
1225	else if (clock == PRCMU_TIMCLK)
1226		return request_timclk(enable);
 
 
 
 
 
 
1227	else if (clock == PRCMU_SYSCLK)
1228		return request_sysclk(enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233int prcmu_config_esram0_deep_sleep(u8 state)
1234{
1235	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1236	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1237		return -EINVAL;
1238
1239	mutex_lock(&mb4_transfer.lock);
1240
1241	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1242		cpu_relax();
1243
1244	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1245	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1246	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1247	writeb(DDR_PWR_STATE_ON,
1248	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1249	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1250
1251	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1252	wait_for_completion(&mb4_transfer.work);
1253
1254	mutex_unlock(&mb4_transfer.lock);
1255
1256	return 0;
1257}
1258
1259int prcmu_config_hotdog(u8 threshold)
1260{
1261	mutex_lock(&mb4_transfer.lock);
1262
1263	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1264		cpu_relax();
1265
1266	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1267	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1268
1269	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1270	wait_for_completion(&mb4_transfer.work);
1271
1272	mutex_unlock(&mb4_transfer.lock);
1273
1274	return 0;
1275}
1276
1277int prcmu_config_hotmon(u8 low, u8 high)
1278{
1279	mutex_lock(&mb4_transfer.lock);
1280
1281	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1282		cpu_relax();
1283
1284	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1285	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1286	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1287		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1288	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1289
1290	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1291	wait_for_completion(&mb4_transfer.work);
1292
1293	mutex_unlock(&mb4_transfer.lock);
1294
1295	return 0;
1296}
 
1297
1298static int config_hot_period(u16 val)
1299{
1300	mutex_lock(&mb4_transfer.lock);
1301
1302	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1303		cpu_relax();
1304
1305	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1306	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1307
1308	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1309	wait_for_completion(&mb4_transfer.work);
1310
1311	mutex_unlock(&mb4_transfer.lock);
1312
1313	return 0;
1314}
1315
1316int prcmu_start_temp_sense(u16 cycles32k)
1317{
1318	if (cycles32k == 0xFFFF)
1319		return -EINVAL;
1320
1321	return config_hot_period(cycles32k);
1322}
 
1323
1324int prcmu_stop_temp_sense(void)
1325{
1326	return config_hot_period(0xFFFF);
1327}
 
1328
1329/**
1330 * prcmu_set_clock_divider() - Configure the clock divider.
1331 * @clock:	The clock for which the request is made.
1332 * @divider:	The clock divider. (< 32)
1333 *
1334 * This function should only be used by the clock implementation.
1335 * Do not use it from any other place!
1336 */
1337int prcmu_set_clock_divider(u8 clock, u8 divider)
1338{
1339	u32 val;
1340	unsigned long flags;
1341
1342	if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1343		return -EINVAL;
1344
1345	spin_lock_irqsave(&clk_mgt_lock, flags);
1346
1347	/* Grab the HW semaphore. */
1348	while ((readl(_PRCMU_BASE + PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1349		cpu_relax();
1350
1351	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1352	val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1353	val |= (u32)divider;
1354	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1355
1356	/* Release the HW semaphore. */
1357	writel(0, (_PRCMU_BASE + PRCM_SEM));
1358
1359	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 
 
 
1360
1361	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
 
1363
1364/**
1365 * prcmu_abb_read() - Read register value(s) from the ABB.
1366 * @slave:	The I2C slave address.
1367 * @reg:	The (start) register address.
1368 * @value:	The read out value(s).
1369 * @size:	The number of registers to read.
1370 *
1371 * Reads register value(s) from the ABB.
1372 * @size has to be 1 for the current firmware version.
1373 */
1374int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1375{
1376	int r;
1377
1378	if (size != 1)
1379		return -EINVAL;
1380
1381	mutex_lock(&mb5_transfer.lock);
1382
1383	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1384		cpu_relax();
1385
 
1386	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1387	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1388	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1389	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1390
1391	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1392
1393	if (!wait_for_completion_timeout(&mb5_transfer.work,
1394				msecs_to_jiffies(20000))) {
1395		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1396			__func__);
1397		r = -EIO;
1398	} else {
1399		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1400	}
1401
1402	if (!r)
1403		*value = mb5_transfer.ack.value;
1404
1405	mutex_unlock(&mb5_transfer.lock);
1406
1407	return r;
1408}
1409
1410/**
1411 * prcmu_abb_write() - Write register value(s) to the ABB.
1412 * @slave:	The I2C slave address.
1413 * @reg:	The (start) register address.
1414 * @value:	The value(s) to write.
 
1415 * @size:	The number of registers to write.
1416 *
1417 * Reads register value(s) from the ABB.
 
 
1418 * @size has to be 1 for the current firmware version.
1419 */
1420int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1421{
1422	int r;
1423
1424	if (size != 1)
1425		return -EINVAL;
1426
1427	mutex_lock(&mb5_transfer.lock);
1428
1429	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1430		cpu_relax();
1431
 
1432	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1433	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1434	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1435	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1436
1437	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1438
1439	if (!wait_for_completion_timeout(&mb5_transfer.work,
1440				msecs_to_jiffies(20000))) {
1441		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1442			__func__);
1443		r = -EIO;
1444	} else {
1445		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1446	}
1447
1448	mutex_unlock(&mb5_transfer.lock);
1449
1450	return r;
1451}
1452
1453/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1455 */
1456void prcmu_ac_wake_req(void)
1457{
1458	u32 val;
 
1459
1460	mutex_lock(&mb0_transfer.ac_wake_lock);
1461
1462	val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1463	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1464		goto unlock_and_return;
1465
1466	atomic_set(&ac_wake_req_state, 1);
1467
1468	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1469		(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
 
 
 
 
 
 
 
 
 
 
1470
1471	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1472			msecs_to_jiffies(20000))) {
1473		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1474			__func__);
 
1475	}
1476
1477unlock_and_return:
1478	mutex_unlock(&mb0_transfer.ac_wake_lock);
 
1479}
1480
1481/**
1482 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1483 */
1484void prcmu_ac_sleep_req()
1485{
1486	u32 val;
1487
1488	mutex_lock(&mb0_transfer.ac_wake_lock);
1489
1490	val = readl(_PRCMU_BASE + PRCM_HOSTACCESS_REQ);
1491	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1492		goto unlock_and_return;
1493
1494	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1495		(_PRCMU_BASE + PRCM_HOSTACCESS_REQ));
1496
1497	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1498			msecs_to_jiffies(20000))) {
1499		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1500			__func__);
1501	}
1502
1503	atomic_set(&ac_wake_req_state, 0);
1504
1505unlock_and_return:
1506	mutex_unlock(&mb0_transfer.ac_wake_lock);
1507}
1508
1509bool prcmu_is_ac_wake_requested(void)
1510{
1511	return (atomic_read(&ac_wake_req_state) != 0);
1512}
1513
1514/**
1515 * prcmu_system_reset - System reset
1516 *
1517 * Saves the reset reason code and then sets the APE_SOFRST register which
1518 * fires interrupt to fw
 
 
1519 */
1520void prcmu_system_reset(u16 reset_code)
1521{
1522	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1523	writel(1, (_PRCMU_BASE + PRCM_APE_SOFTRST));
 
 
 
 
 
 
 
 
 
 
 
1524}
1525
1526/**
1527 * prcmu_reset_modem - ask the PRCMU to reset modem
1528 */
1529void prcmu_modem_reset(void)
1530{
1531	mutex_lock(&mb1_transfer.lock);
1532
1533	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1534		cpu_relax();
1535
1536	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1537	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1538	wait_for_completion(&mb1_transfer.work);
1539
1540	/*
1541	 * No need to check return from PRCMU as modem should go in reset state
1542	 * This state is already managed by upper layer
1543	 */
1544
1545	mutex_unlock(&mb1_transfer.lock);
1546}
1547
1548static void ack_dbb_wakeup(void)
1549{
1550	unsigned long flags;
1551
1552	spin_lock_irqsave(&mb0_transfer.lock, flags);
1553
1554	while (readl(_PRCMU_BASE + PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1555		cpu_relax();
1556
1557	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1558	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_MBOX_CPU_SET));
1559
1560	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1561}
1562
1563static inline void print_unknown_header_warning(u8 n, u8 header)
1564{
1565	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1566		header, n);
1567}
1568
1569static bool read_mailbox_0(void)
1570{
1571	bool r;
1572	u32 ev;
1573	unsigned int n;
1574	u8 header;
1575
1576	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1577	switch (header) {
1578	case MB0H_WAKEUP_EXE:
1579	case MB0H_WAKEUP_SLEEP:
1580		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1581			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1582		else
1583			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1584
1585		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1586			complete(&mb0_transfer.ac_wake_work);
1587		if (ev & WAKEUP_BIT_SYSCLK_OK)
1588			complete(&mb3_transfer.sysclk_work);
1589
1590		ev &= mb0_transfer.req.dbb_irqs;
1591
1592		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1593			if (ev & prcmu_irq_bit[n])
1594				generic_handle_irq(IRQ_PRCMU_BASE + n);
1595		}
1596		r = true;
1597		break;
1598	default:
1599		print_unknown_header_warning(0, header);
1600		r = false;
1601		break;
1602	}
1603	writel(MBOX_BIT(0), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1604	return r;
1605}
1606
1607static bool read_mailbox_1(void)
1608{
1609	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1610	mb1_transfer.ack.arm_opp = readb(tcdm_base +
1611		PRCM_ACK_MB1_CURRENT_ARM_OPP);
1612	mb1_transfer.ack.ape_opp = readb(tcdm_base +
1613		PRCM_ACK_MB1_CURRENT_APE_OPP);
1614	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1615		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1616	writel(MBOX_BIT(1), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1617	complete(&mb1_transfer.work);
1618	return false;
1619}
1620
1621static bool read_mailbox_2(void)
1622{
1623	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1624	writel(MBOX_BIT(2), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1625	complete(&mb2_transfer.work);
1626	return false;
1627}
1628
1629static bool read_mailbox_3(void)
1630{
1631	writel(MBOX_BIT(3), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1632	return false;
1633}
1634
1635static bool read_mailbox_4(void)
1636{
1637	u8 header;
1638	bool do_complete = true;
1639
1640	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1641	switch (header) {
1642	case MB4H_MEM_ST:
1643	case MB4H_HOTDOG:
1644	case MB4H_HOTMON:
1645	case MB4H_HOT_PERIOD:
 
 
 
 
 
1646		break;
1647	default:
1648		print_unknown_header_warning(4, header);
1649		do_complete = false;
1650		break;
1651	}
1652
1653	writel(MBOX_BIT(4), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1654
1655	if (do_complete)
1656		complete(&mb4_transfer.work);
1657
1658	return false;
1659}
1660
1661static bool read_mailbox_5(void)
1662{
1663	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1664	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1665	writel(MBOX_BIT(5), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1666	complete(&mb5_transfer.work);
1667	return false;
1668}
1669
1670static bool read_mailbox_6(void)
1671{
1672	writel(MBOX_BIT(6), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1673	return false;
1674}
1675
1676static bool read_mailbox_7(void)
1677{
1678	writel(MBOX_BIT(7), (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
1679	return false;
1680}
1681
1682static bool (* const read_mailbox[NUM_MB])(void) = {
1683	read_mailbox_0,
1684	read_mailbox_1,
1685	read_mailbox_2,
1686	read_mailbox_3,
1687	read_mailbox_4,
1688	read_mailbox_5,
1689	read_mailbox_6,
1690	read_mailbox_7
1691};
1692
1693static irqreturn_t prcmu_irq_handler(int irq, void *data)
1694{
1695	u32 bits;
1696	u8 n;
1697	irqreturn_t r;
1698
1699	bits = (readl(_PRCMU_BASE + PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
1700	if (unlikely(!bits))
1701		return IRQ_NONE;
1702
1703	r = IRQ_HANDLED;
1704	for (n = 0; bits; n++) {
1705		if (bits & MBOX_BIT(n)) {
1706			bits -= MBOX_BIT(n);
1707			if (read_mailbox[n]())
1708				r = IRQ_WAKE_THREAD;
1709		}
1710	}
1711	return r;
1712}
1713
1714static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1715{
1716	ack_dbb_wakeup();
1717	return IRQ_HANDLED;
1718}
1719
1720static void prcmu_mask_work(struct work_struct *work)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&mb0_transfer.lock, flags);
1725
1726	config_wakeups();
1727
1728	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1729}
1730
1731static void prcmu_irq_mask(struct irq_data *d)
1732{
1733	unsigned long flags;
1734
1735	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1736
1737	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1738
1739	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1740
1741	if (d->irq != IRQ_PRCMU_CA_SLEEP)
1742		schedule_work(&mb0_transfer.mask_work);
1743}
1744
1745static void prcmu_irq_unmask(struct irq_data *d)
1746{
1747	unsigned long flags;
1748
1749	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1750
1751	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1752
1753	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1754
1755	if (d->irq != IRQ_PRCMU_CA_SLEEP)
1756		schedule_work(&mb0_transfer.mask_work);
1757}
1758
1759static void noop(struct irq_data *d)
1760{
1761}
1762
1763static struct irq_chip prcmu_irq_chip = {
1764	.name		= "prcmu",
1765	.irq_disable	= prcmu_irq_mask,
1766	.irq_ack	= noop,
1767	.irq_mask	= prcmu_irq_mask,
1768	.irq_unmask	= prcmu_irq_unmask,
1769};
1770
1771void __init prcmu_early_init(void)
1772{
1773	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	if (cpu_is_u8500v1()) {
1776		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1777	} else if (cpu_is_u8500v2()) {
1778		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1779
1780		if (tcpm_base != NULL) {
1781			int version;
1782			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1783			prcmu_version.project_number = version & 0xFF;
1784			prcmu_version.api_version = (version >> 8) & 0xFF;
1785			prcmu_version.func_version = (version >> 16) & 0xFF;
1786			prcmu_version.errata = (version >> 24) & 0xFF;
1787			pr_info("PRCMU firmware version %d.%d.%d\n",
1788				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
1789				(version >> 24) & 0xFF);
1790			iounmap(tcpm_base);
1791		}
1792
1793		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1794	} else {
1795		pr_err("prcmu: Unsupported chip version\n");
1796		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797	}
 
 
1798
1799	spin_lock_init(&mb0_transfer.lock);
1800	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1801	mutex_init(&mb0_transfer.ac_wake_lock);
1802	init_completion(&mb0_transfer.ac_wake_work);
1803	mutex_init(&mb1_transfer.lock);
1804	init_completion(&mb1_transfer.work);
 
1805	mutex_init(&mb2_transfer.lock);
1806	init_completion(&mb2_transfer.work);
1807	spin_lock_init(&mb2_transfer.auto_pm_lock);
1808	spin_lock_init(&mb3_transfer.lock);
1809	mutex_init(&mb3_transfer.sysclk_lock);
1810	init_completion(&mb3_transfer.sysclk_work);
1811	mutex_init(&mb4_transfer.lock);
1812	init_completion(&mb4_transfer.work);
1813	mutex_init(&mb5_transfer.lock);
1814	init_completion(&mb5_transfer.work);
1815
1816	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
 
1817
1818	/* Initalize irqs. */
1819	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1820		unsigned int irq;
1821
1822		irq = IRQ_PRCMU_BASE + i;
1823		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1824					 handle_simple_irq);
1825		set_irq_flags(irq, IRQF_VALID);
1826	}
1827}
1828
1829/*
1830 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1831 */
1832static struct regulator_consumer_supply db8500_vape_consumers[] = {
1833	REGULATOR_SUPPLY("v-ape", NULL),
1834	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1835	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1836	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1837	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
 
1838	/* "v-mmc" changed to "vcore" in the mainline kernel */
1839	REGULATOR_SUPPLY("vcore", "sdi0"),
1840	REGULATOR_SUPPLY("vcore", "sdi1"),
1841	REGULATOR_SUPPLY("vcore", "sdi2"),
1842	REGULATOR_SUPPLY("vcore", "sdi3"),
1843	REGULATOR_SUPPLY("vcore", "sdi4"),
1844	REGULATOR_SUPPLY("v-dma", "dma40.0"),
1845	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1846	/* "v-uart" changed to "vcore" in the mainline kernel */
1847	REGULATOR_SUPPLY("vcore", "uart0"),
1848	REGULATOR_SUPPLY("vcore", "uart1"),
1849	REGULATOR_SUPPLY("vcore", "uart2"),
1850	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
 
 
1851};
1852
1853static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1854	/* CG2900 and CW1200 power to off-chip peripherals */
1855	REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1856	REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1857	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1858	/* AV8100 regulator */
1859	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1860};
1861
1862static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1863	REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1864	REGULATOR_SUPPLY("vsupply", "mcde.0"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865};
1866
1867static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1868	[DB8500_REGULATOR_VAPE] = {
1869		.constraints = {
1870			.name = "db8500-vape",
1871			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
 
1872		},
1873		.consumer_supplies = db8500_vape_consumers,
1874		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1875	},
1876	[DB8500_REGULATOR_VARM] = {
1877		.constraints = {
1878			.name = "db8500-varm",
1879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1880		},
1881	},
1882	[DB8500_REGULATOR_VMODEM] = {
1883		.constraints = {
1884			.name = "db8500-vmodem",
1885			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1886		},
1887	},
1888	[DB8500_REGULATOR_VPLL] = {
1889		.constraints = {
1890			.name = "db8500-vpll",
1891			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1892		},
1893	},
1894	[DB8500_REGULATOR_VSMPS1] = {
1895		.constraints = {
1896			.name = "db8500-vsmps1",
1897			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1898		},
1899	},
1900	[DB8500_REGULATOR_VSMPS2] = {
1901		.constraints = {
1902			.name = "db8500-vsmps2",
1903			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1904		},
1905		.consumer_supplies = db8500_vsmps2_consumers,
1906		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1907	},
1908	[DB8500_REGULATOR_VSMPS3] = {
1909		.constraints = {
1910			.name = "db8500-vsmps3",
1911			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1912		},
1913	},
1914	[DB8500_REGULATOR_VRF1] = {
1915		.constraints = {
1916			.name = "db8500-vrf1",
1917			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1918		},
1919	},
1920	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1921		.supply_regulator = "db8500-vape",
1922		.constraints = {
1923			.name = "db8500-sva-mmdsp",
1924			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1925		},
 
 
1926	},
1927	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1928		.constraints = {
1929			/* "ret" means "retention" */
1930			.name = "db8500-sva-mmdsp-ret",
1931			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1932		},
1933	},
1934	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1935		.supply_regulator = "db8500-vape",
1936		.constraints = {
1937			.name = "db8500-sva-pipe",
1938			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1939		},
 
 
1940	},
1941	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1942		.supply_regulator = "db8500-vape",
1943		.constraints = {
1944			.name = "db8500-sia-mmdsp",
1945			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1946		},
 
 
1947	},
1948	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1949		.constraints = {
1950			.name = "db8500-sia-mmdsp-ret",
1951			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1952		},
1953	},
1954	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1955		.supply_regulator = "db8500-vape",
1956		.constraints = {
1957			.name = "db8500-sia-pipe",
1958			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1959		},
 
 
1960	},
1961	[DB8500_REGULATOR_SWITCH_SGA] = {
1962		.supply_regulator = "db8500-vape",
1963		.constraints = {
1964			.name = "db8500-sga",
1965			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1966		},
 
 
 
1967	},
1968	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1969		.supply_regulator = "db8500-vape",
1970		.constraints = {
1971			.name = "db8500-b2r2-mcde",
1972			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1973		},
1974		.consumer_supplies = db8500_b2r2_mcde_consumers,
1975		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
1976	},
1977	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
1978		.supply_regulator = "db8500-vape",
 
 
 
1979		.constraints = {
1980			.name = "db8500-esram12",
1981			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1982		},
 
 
1983	},
1984	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
1985		.constraints = {
1986			.name = "db8500-esram12-ret",
1987			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1988		},
1989	},
1990	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
1991		.supply_regulator = "db8500-vape",
 
 
 
1992		.constraints = {
1993			.name = "db8500-esram34",
1994			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
1995		},
 
 
1996	},
1997	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
1998		.constraints = {
1999			.name = "db8500-esram34-ret",
2000			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2001		},
2002	},
2003};
2004
2005static struct mfd_cell db8500_prcmu_devs[] = {
2006	{
2007		.name = "db8500-prcmu-regulators",
2008		.platform_data = &db8500_regulators,
2009		.pdata_size = sizeof(db8500_regulators),
2010	},
2011	{
2012		.name = "cpufreq-u8500",
2013	},
2014};
2015
2016/**
2017 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2018 *
2019 */
2020static int __init db8500_prcmu_probe(struct platform_device *pdev)
 
 
 
 
2021{
2022	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023
2024	if (ux500_is_svp())
 
 
 
 
 
 
 
 
 
 
 
 
2025		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026
2027	/* Clean up the mailbox interrupts after pre-kernel code. */
2028	writel(ALL_MBOX_BITS, (_PRCMU_BASE + PRCM_ARM_IT1_CLR));
 
 
 
 
2029
2030	err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2031		prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2032	if (err < 0) {
2033		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2034		err = -EBUSY;
2035		goto no_irq_return;
2036	}
2037
2038	if (cpu_is_u8500v20_or_later())
2039		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2040
2041	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2042			      ARRAY_SIZE(db8500_prcmu_devs), NULL,
2043			      0);
2044
2045	if (err)
 
 
2046		pr_err("prcmu: Failed to add subdevices\n");
2047	else
2048		pr_info("DB8500 PRCMU initialized\n");
2049
2050no_irq_return:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051	return err;
2052}
 
 
 
 
2053
2054static struct platform_driver db8500_prcmu_driver = {
2055	.driver = {
2056		.name = "db8500-prcmu",
2057		.owner = THIS_MODULE,
2058	},
 
2059};
2060
2061static int __init db8500_prcmu_init(void)
2062{
2063	return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2064}
2065
2066arch_initcall(db8500_prcmu_init);
2067
2068MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2069MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2070MODULE_LICENSE("GPL v2");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
 
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
 
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
 
 
 
 
  39#include "db8500-prcmu-regs.h"
  40
 
 
 
 
 
 
 
 
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE		0x2FC
  43#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE		0
  58#define PRCM_AVS_VOLTAGE_MASK		0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP		6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE		7
  62#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS	0xFFF
  65#define PRCM_ROMCODE_A2P	0xFFE
  66#define PRCM_ROMCODE_P2A	0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS		0
  98#define MB0H_CONFIG_WAKEUPS_EXE		1
  99#define MB0H_READ_WAKEUP_ACK		3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF	0x1
 135#define PLL_SOC0_ON	0x2
 136#define PLL_SOC1_OFF	0x4
 137#define PLL_SOC1_ON	0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS	0x0
 147#define MB2H_AUTO_PWR	0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC	0x0
 167#define MB3H_SIDETONE	0x1
 168#define MB3H_SYSCLK	0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT	0x0
 181#define MB4H_MEM_ST	0x1
 182#define MB4H_HOTDOG	0x12
 183#define MB4H_HOTMON	0x13
 184#define MB4H_HOT_PERIOD	0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW			BIT(0)
 201#define HOTMON_CONFIG_HIGH			BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN			BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS			0
 208#define A9WDOG_ID_MASK				0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 
 
 217#define PRCMU_I2C_STOP_EN		BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264	bool valid;
 265	struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307	IRQ_ENTRY(RTC),
 308	IRQ_ENTRY(RTT0),
 309	IRQ_ENTRY(RTT1),
 310	IRQ_ENTRY(HSI0),
 311	IRQ_ENTRY(HSI1),
 312	IRQ_ENTRY(CA_WAKE),
 313	IRQ_ENTRY(USB),
 314	IRQ_ENTRY(ABB),
 315	IRQ_ENTRY(ABB_FIFO),
 316	IRQ_ENTRY(CA_SLEEP),
 317	IRQ_ENTRY(ARM),
 318	IRQ_ENTRY(HOTMON_LOW),
 319	IRQ_ENTRY(HOTMON_HIGH),
 320	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321	IRQ_ENTRY(GPIO0),
 322	IRQ_ENTRY(GPIO1),
 323	IRQ_ENTRY(GPIO2),
 324	IRQ_ENTRY(GPIO3),
 325	IRQ_ENTRY(GPIO4),
 326	IRQ_ENTRY(GPIO5),
 327	IRQ_ENTRY(GPIO6),
 328	IRQ_ENTRY(GPIO7),
 329	IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335	WAKEUP_ENTRY(RTC),
 336	WAKEUP_ENTRY(RTT0),
 337	WAKEUP_ENTRY(RTT1),
 338	WAKEUP_ENTRY(HSI0),
 339	WAKEUP_ENTRY(HSI1),
 340	WAKEUP_ENTRY(USB),
 341	WAKEUP_ENTRY(ABB),
 342	WAKEUP_ENTRY(ABB_FIFO),
 343	WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:		The transaction lock.
 349 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 350 *			the request data.
 351 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 352 * @req:		Request data that need to persist between requests.
 353 */
 354static struct {
 355	spinlock_t lock;
 356	spinlock_t dbb_irqs_lock;
 357	struct work_struct mask_work;
 358	struct mutex ac_wake_lock;
 359	struct completion ac_wake_work;
 360	struct {
 361		u32 dbb_irqs;
 362		u32 dbb_wakeups;
 363		u32 abb_events;
 364	} req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:	The transaction lock.
 370 * @work:	The transaction completion structure.
 371 * @ape_opp:	The current APE OPP.
 372 * @ack:	Reply ("acknowledge") data.
 373 */
 374static struct {
 375	struct mutex lock;
 376	struct completion work;
 377	u8 ape_opp;
 378	struct {
 379		u8 header;
 380		u8 arm_opp;
 381		u8 ape_opp;
 382		u8 ape_voltage_status;
 383	} ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396	struct mutex lock;
 397	struct completion work;
 398	spinlock_t auto_pm_lock;
 399	bool auto_pm_enabled;
 400	struct {
 401		u8 status;
 402	} ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:		The request lock.
 408 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:	Work structure used for sysclk requests.
 410 */
 411static struct {
 412	spinlock_t lock;
 413	struct mutex sysclk_lock;
 414	struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:	The transaction lock.
 420 * @work:	The transaction completion structure.
 421 */
 422static struct {
 423	struct mutex lock;
 424	struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:	The transaction lock.
 430 * @work:	The transaction completion structure.
 431 * @ack:	Reply ("acknowledge") data.
 432 */
 433static struct {
 434	struct mutex lock;
 435	struct completion work;
 436	struct {
 437		u8 status;
 438		u8 value;
 439	} ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453	u32 offset;
 454	u32 pllsw;
 455	int branch;
 456	bool clk38div;
 457};
 458
 459enum {
 460	PLL_RAW,
 461	PLL_FIX,
 462	PLL_DIV
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502	u32 divsel_mask;
 503	u32 divsel_shift;
 504	u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508	{
 509		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512	},
 513	{
 514		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517	}
 518};
 519
 520struct dsiescclk {
 521	u32 en;
 522	u32 div_mask;
 523	u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527	{
 528		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531	},
 532	{
 533		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536	},
 537	{
 538		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 
 
 
 
 
 
 
 541	}
 542};
 
 
 
 543
 544u32 db8500_prcmu_read(unsigned int reg)
 545{
 546	return readl(prcmu_base + reg);
 
 
 
 
 
 547}
 548
 549void db8500_prcmu_write(unsigned int reg, u32 value)
 550{
 551	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553	spin_lock_irqsave(&prcmu_lock, flags);
 554	writel(value, (prcmu_base + reg));
 555	spin_unlock_irqrestore(&prcmu_lock, flags);
 556}
 557
 558void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 
 
 
 559{
 560	u32 val;
 561	unsigned long flags;
 562
 563	spin_lock_irqsave(&prcmu_lock, flags);
 564	val = readl(prcmu_base + reg);
 565	val = ((val & ~mask) | (value & mask));
 566	writel(val, (prcmu_base + reg));
 567	spin_unlock_irqrestore(&prcmu_lock, flags);
 568}
 569
 570struct prcmu_fw_version *prcmu_get_fw_version(void)
 
 
 
 571{
 572	return fw_info.valid ? &fw_info.version : NULL;
 
 
 
 
 
 
 573}
 574
 575static bool prcmu_is_ulppll_disabled(void)
 576{
 577	struct prcmu_fw_version *ver;
 
 
 578
 579	ver = prcmu_get_fw_version();
 580	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 
 581}
 582
 583bool prcmu_has_arm_maxopp(void)
 
 
 
 
 584{
 585	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 586		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 587}
 588
 589/**
 590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 591 * @val: Value to be set, i.e. transition requested
 592 * Returns: 0 on success, -EINVAL on invalid argument
 593 *
 594 * This function is used to run the following power state sequences -
 595 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 596 */
 597int prcmu_set_rc_a2p(enum romcode_write val)
 598{
 599	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 600		return -EINVAL;
 601	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 602	return 0;
 603}
 604
 605/**
 606 * prcmu_get_rc_p2a - This function is used to get power state sequences
 607 * Returns: the power transition that has last happened
 608 *
 609 * This function can return the following transitions-
 610 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 611 */
 612enum romcode_read prcmu_get_rc_p2a(void)
 613{
 614	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 615}
 616
 617/**
 618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
 619 * Returns: Returns the current AP(ARM) power mode: init,
 620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 621 */
 622enum ap_pwrst prcmu_get_xp70_current_state(void)
 623{
 624	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 625}
 626
 627/**
 628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 629 * @clkout:	The CLKOUT number (0 or 1).
 630 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 631 * @div:	The divider to be applied.
 632 *
 633 * Configures one of the programmable clock outputs (CLKOUTs).
 634 * @div should be in the range [1,63] to request a configuration, or 0 to
 635 * inform that the configuration is no longer requested.
 636 */
 637int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 638{
 639	static int requests[2];
 640	int r = 0;
 641	unsigned long flags;
 642	u32 val;
 643	u32 bits;
 644	u32 mask;
 645	u32 div_mask;
 646
 647	BUG_ON(clkout > 1);
 648	BUG_ON(div > 63);
 649	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 650
 651	if (!div && !requests[clkout])
 652		return -EINVAL;
 653
 654	if (clkout == 0) {
 
 655		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 656		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 657		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 658			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 659	} else {
 
 660		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 661		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 662			PRCM_CLKOCR_CLK1TYPE);
 663		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 664			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 
 665	}
 666	bits &= mask;
 667
 668	spin_lock_irqsave(&clkout_lock, flags);
 669
 670	val = readl(PRCM_CLKOCR);
 671	if (val & div_mask) {
 672		if (div) {
 673			if ((val & mask) != bits) {
 674				r = -EBUSY;
 675				goto unlock_and_return;
 676			}
 677		} else {
 678			if ((val & mask & ~div_mask) != bits) {
 679				r = -EINVAL;
 680				goto unlock_and_return;
 681			}
 682		}
 683	}
 684	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 685	requests[clkout] += (div ? 1 : -1);
 686
 687unlock_and_return:
 688	spin_unlock_irqrestore(&clkout_lock, flags);
 689
 690	return r;
 691}
 692
 693int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 694{
 695	unsigned long flags;
 696
 697	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 698
 699	spin_lock_irqsave(&mb0_transfer.lock, flags);
 700
 701	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 702		cpu_relax();
 703
 704	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 705	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 706	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 707	writeb((keep_ulp_clk ? 1 : 0),
 708		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 709	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 710	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 711
 712	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 713
 714	return 0;
 715}
 716
 717u8 db8500_prcmu_get_power_state_result(void)
 718{
 719	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 720}
 721
 722/* This function should only be called while mb0_transfer.lock is held. */
 723static void config_wakeups(void)
 724{
 725	const u8 header[2] = {
 726		MB0H_CONFIG_WAKEUPS_EXE,
 727		MB0H_CONFIG_WAKEUPS_SLEEP
 728	};
 729	static u32 last_dbb_events;
 730	static u32 last_abb_events;
 731	u32 dbb_events;
 732	u32 abb_events;
 733	unsigned int i;
 734
 735	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 736	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 737
 738	abb_events = mb0_transfer.req.abb_events;
 739
 740	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 741		return;
 742
 743	for (i = 0; i < 2; i++) {
 744		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 745			cpu_relax();
 746		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 747		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 748		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 749		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 750	}
 751	last_dbb_events = dbb_events;
 752	last_abb_events = abb_events;
 753}
 754
 755void db8500_prcmu_enable_wakeups(u32 wakeups)
 756{
 757	unsigned long flags;
 758	u32 bits;
 759	int i;
 760
 761	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 762
 763	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 764		if (wakeups & BIT(i))
 765			bits |= prcmu_wakeup_bit[i];
 766	}
 767
 768	spin_lock_irqsave(&mb0_transfer.lock, flags);
 769
 770	mb0_transfer.req.dbb_wakeups = bits;
 771	config_wakeups();
 772
 773	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 774}
 775
 776void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 777{
 778	unsigned long flags;
 779
 780	spin_lock_irqsave(&mb0_transfer.lock, flags);
 781
 782	mb0_transfer.req.abb_events = abb_events;
 783	config_wakeups();
 784
 785	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 786}
 787
 788void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 789{
 790	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 791		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 792	else
 793		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 794}
 795
 796/**
 797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 798 * @opp: The new ARM operating point to which transition is to be made
 799 * Returns: 0 on success, non-zero on failure
 800 *
 801 * This function sets the operating point of the ARM.
 802 */
 803int db8500_prcmu_set_arm_opp(u8 opp)
 804{
 805	int r;
 806
 807	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 808		return -EINVAL;
 809
 810	r = 0;
 811
 812	mutex_lock(&mb1_transfer.lock);
 813
 814	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 815		cpu_relax();
 816
 817	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 818	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 819	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 820
 821	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 822	wait_for_completion(&mb1_transfer.work);
 823
 824	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 825		(mb1_transfer.ack.arm_opp != opp))
 826		r = -EIO;
 827
 828	mutex_unlock(&mb1_transfer.lock);
 829
 830	return r;
 831}
 832
 833/**
 834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 835 *
 836 * Returns: the current ARM OPP
 837 */
 838int db8500_prcmu_get_arm_opp(void)
 839{
 840	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 841}
 842
 843/**
 844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 845 *
 846 * Returns: the current DDR OPP
 847 */
 848int db8500_prcmu_get_ddr_opp(void)
 849{
 850	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 851}
 852
 853/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 854static void request_even_slower_clocks(bool enable)
 
 
 
 
 
 
 855{
 856	u32 clock_reg[] = {
 857		PRCM_ACLK_MGT,
 858		PRCM_DMACLK_MGT
 859	};
 860	unsigned long flags;
 861	unsigned int i;
 862
 863	spin_lock_irqsave(&clk_mgt_lock, flags);
 864
 865	/* Grab the HW semaphore. */
 866	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 867		cpu_relax();
 868
 869	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 870		u32 val;
 871		u32 div;
 872
 873		val = readl(prcmu_base + clock_reg[i]);
 874		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 875		if (enable) {
 876			if ((div <= 1) || (div > 15)) {
 877				pr_err("prcmu: Bad clock divider %d in %s\n",
 878					div, __func__);
 879				goto unlock_and_return;
 880			}
 881			div <<= 1;
 882		} else {
 883			if (div <= 2)
 884				goto unlock_and_return;
 885			div >>= 1;
 886		}
 887		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 888			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 889		writel(val, prcmu_base + clock_reg[i]);
 890	}
 891
 892unlock_and_return:
 893	/* Release the HW semaphore. */
 894	writel(0, PRCM_SEM);
 895
 896	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 897}
 898
 899/**
 900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
 901 * @opp: The new APE operating point to which transition is to be made
 902 * Returns: 0 on success, non-zero on failure
 903 *
 904 * This function sets the operating point of the APE.
 905 */
 906int db8500_prcmu_set_ape_opp(u8 opp)
 907{
 908	int r = 0;
 909
 910	if (opp == mb1_transfer.ape_opp)
 911		return 0;
 912
 913	mutex_lock(&mb1_transfer.lock);
 914
 915	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 916		request_even_slower_clocks(false);
 917
 918	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 919		goto skip_message;
 920
 921	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 922		cpu_relax();
 923
 924	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 925	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 926	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 927		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
 928
 929	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 930	wait_for_completion(&mb1_transfer.work);
 931
 932	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 933		(mb1_transfer.ack.ape_opp != opp))
 934		r = -EIO;
 935
 936skip_message:
 937	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 938		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 939		request_even_slower_clocks(true);
 940	if (!r)
 941		mb1_transfer.ape_opp = opp;
 942
 943	mutex_unlock(&mb1_transfer.lock);
 944
 945	return r;
 946}
 947
 948/**
 949 * db8500_prcmu_get_ape_opp - get the current APE OPP
 950 *
 951 * Returns: the current APE OPP
 952 */
 953int db8500_prcmu_get_ape_opp(void)
 954{
 955	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 956}
 957
 958/**
 959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 960 * @enable: true to request the higher voltage, false to drop a request.
 961 *
 962 * Calls to this function to enable and disable requests must be balanced.
 963 */
 964int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 965{
 966	int r = 0;
 967	u8 header;
 968	static unsigned int requests;
 969
 970	mutex_lock(&mb1_transfer.lock);
 971
 972	if (enable) {
 973		if (0 != requests++)
 974			goto unlock_and_return;
 975		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 976	} else {
 977		if (requests == 0) {
 978			r = -EIO;
 979			goto unlock_and_return;
 980		} else if (1 != requests--) {
 981			goto unlock_and_return;
 982		}
 983		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 984	}
 985
 986	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 987		cpu_relax();
 988
 989	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 990
 991	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 992	wait_for_completion(&mb1_transfer.work);
 993
 994	if ((mb1_transfer.ack.header != header) ||
 995		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 996		r = -EIO;
 997
 998unlock_and_return:
 999	mutex_unlock(&mb1_transfer.lock);
1000
1001	return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011	int r = 0;
1012
1013	mutex_lock(&mb1_transfer.lock);
1014
1015	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016		cpu_relax();
1017
1018	writeb(MB1H_RELEASE_USB_WAKEUP,
1019		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022	wait_for_completion(&mb1_transfer.work);
1023
1024	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026		r = -EIO;
1027
1028	mutex_unlock(&mb1_transfer.lock);
1029
1030	return r;
1031}
1032
1033static int request_pll(u8 clock, bool enable)
1034{
1035	int r = 0;
1036
1037	if (clock == PRCMU_PLLSOC0)
1038		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039	else if (clock == PRCMU_PLLSOC1)
1040		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041	else
1042		return -EINVAL;
1043
1044	mutex_lock(&mb1_transfer.lock);
1045
1046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047		cpu_relax();
1048
1049	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053	wait_for_completion(&mb1_transfer.work);
1054
1055	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056		r = -EIO;
1057
1058	mutex_unlock(&mb1_transfer.lock);
1059
1060	return r;
1061}
1062
1063/**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
1071int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072{
1073	int r = 0;
1074	bool ram_retention = false;
1075	int i;
1076
1077	/* check argument */
1078	BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080	/* set flag if retention is possible */
1081	switch (epod_id) {
1082	case EPOD_ID_SVAMMDSP:
1083	case EPOD_ID_SIAMMDSP:
1084	case EPOD_ID_ESRAM12:
1085	case EPOD_ID_ESRAM34:
1086		ram_retention = true;
1087		break;
1088	}
1089
1090	/* check argument */
1091	BUG_ON(epod_state > EPOD_STATE_ON);
1092	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094	/* get lock */
1095	mutex_lock(&mb2_transfer.lock);
1096
1097	/* wait for mailbox */
1098	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099		cpu_relax();
1100
1101	/* fill in mailbox */
1102	for (i = 0; i < NUM_EPOD_ID; i++)
1103		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110	/*
1111	 * The current firmware version does not handle errors correctly,
1112	 * and we cannot recover if there is an error.
1113	 * This is expected to change when the firmware is updated.
1114	 */
1115	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116			msecs_to_jiffies(20000))) {
1117		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118			__func__);
1119		r = -EIO;
1120		goto unlock_and_return;
1121	}
1122
1123	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124		r = -EIO;
1125
1126unlock_and_return:
1127	mutex_unlock(&mb2_transfer.lock);
1128	return r;
1129}
1130
1131/**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle:  Configuration for ApIdle.
1135 */
1136void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137	struct prcmu_auto_pm_config *idle)
1138{
1139	u32 sleep_cfg;
1140	u32 idle_cfg;
1141	unsigned long flags;
1142
1143	BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161	/*
1162	 * The autonomous power management configuration is done through
1163	 * fields in mailbox 2, but these fields are only used as shared
1164	 * variables - i.e. there is no need to send a message.
1165	 */
1166	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169	mb2_transfer.auto_pm_enabled =
1170		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176}
1177EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179bool prcmu_is_auto_pm_enabled(void)
1180{
1181	return mb2_transfer.auto_pm_enabled;
1182}
1183
1184static int request_sysclk(bool enable)
1185{
1186	int r;
1187	unsigned long flags;
1188
1189	r = 0;
1190
1191	mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196		cpu_relax();
1197
1198	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205	/*
1206	 * The firmware only sends an ACK if we want to enable the
1207	 * SysClk, and it succeeds.
1208	 */
1209	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210			msecs_to_jiffies(20000))) {
1211		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212			__func__);
1213		r = -EIO;
1214	}
1215
1216	mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218	return r;
1219}
1220
1221static int request_timclk(bool enable)
1222{
1223	u32 val;
1224
1225	/*
1226	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227	 * PLL is disabled so we cannot use doze mode, this will
1228	 * stop the clock on this firmware.
1229	 */
1230	if (prcmu_is_ulppll_disabled())
1231		val = 0;
1232	else
1233		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235	if (!enable)
1236		val |= PRCM_TCR_STOP_TIMERS |
1237			PRCM_TCR_DOZE_MODE |
1238			PRCM_TCR_TENSEL_MASK;
1239
1240	writel(val, PRCM_TCR);
1241
1242	return 0;
1243}
1244
1245static int request_clock(u8 clock, bool enable)
1246{
1247	u32 val;
1248	unsigned long flags;
1249
1250	spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252	/* Grab the HW semaphore. */
1253	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254		cpu_relax();
1255
1256	val = readl(prcmu_base + clk_mgt[clock].offset);
1257	if (enable) {
1258		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259	} else {
1260		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262	}
1263	writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265	/* Release the HW semaphore. */
1266	writel(0, PRCM_SEM);
1267
1268	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270	return 0;
1271}
1272
1273static int request_sga_clock(u8 clock, bool enable)
1274{
1275	u32 val;
1276	int ret;
1277
1278	if (enable) {
1279		val = readl(PRCM_CGATING_BYPASS);
1280		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281	}
1282
1283	ret = request_clock(clock, enable);
1284
1285	if (!ret && !enable) {
1286		val = readl(PRCM_CGATING_BYPASS);
1287		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288	}
1289
1290	return ret;
1291}
1292
1293static inline bool plldsi_locked(void)
1294{
1295	return (readl(PRCM_PLLDSI_LOCKP) &
1296		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300}
1301
1302static int request_plldsi(bool enable)
1303{
1304	int r = 0;
1305	u32 val;
1306
1307	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311	val = readl(PRCM_PLLDSI_ENABLE);
1312	if (enable)
1313		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314	else
1315		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316	writel(val, PRCM_PLLDSI_ENABLE);
1317
1318	if (enable) {
1319		unsigned int i;
1320		bool locked = plldsi_locked();
1321
1322		for (i = 10; !locked && (i > 0); --i) {
1323			udelay(100);
1324			locked = plldsi_locked();
1325		}
1326		if (locked) {
1327			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328				PRCM_APE_RESETN_SET);
1329		} else {
1330			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332				PRCM_MMIP_LS_CLAMP_SET);
1333			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334			writel(val, PRCM_PLLDSI_ENABLE);
1335			r = -EAGAIN;
1336		}
1337	} else {
1338		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339	}
1340	return r;
1341}
1342
1343static int request_dsiclk(u8 n, bool enable)
1344{
1345	u32 val;
1346
1347	val = readl(PRCM_DSI_PLLOUT_SEL);
1348	val &= ~dsiclk[n].divsel_mask;
1349	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350		dsiclk[n].divsel_shift);
1351	writel(val, PRCM_DSI_PLLOUT_SEL);
1352	return 0;
1353}
1354
1355static int request_dsiescclk(u8 n, bool enable)
1356{
1357	u32 val;
1358
1359	val = readl(PRCM_DSITVCLK_DIV);
1360	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361	writel(val, PRCM_DSITVCLK_DIV);
1362	return 0;
1363}
1364
1365/**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock:      The clock for which the request is made.
1368 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
1373int db8500_prcmu_request_clock(u8 clock, bool enable)
1374{
1375	if (clock == PRCMU_SGACLK)
1376		return request_sga_clock(clock, enable);
1377	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378		return request_clock(clock, enable);
1379	else if (clock == PRCMU_TIMCLK)
1380		return request_timclk(enable);
1381	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385	else if (clock == PRCMU_PLLDSI)
1386		return request_plldsi(enable);
1387	else if (clock == PRCMU_SYSCLK)
1388		return request_sysclk(enable);
1389	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390		return request_pll(clock, enable);
1391	else
1392		return -EINVAL;
1393}
1394
1395static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396	int branch)
1397{
1398	u64 rate;
1399	u32 val;
1400	u32 d;
1401	u32 div = 1;
1402
1403	val = readl(reg);
1404
1405	rate = src_rate;
1406	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409	if (d > 1)
1410		div *= d;
1411
1412	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413	if (d > 1)
1414		div *= d;
1415
1416	if (val & PRCM_PLL_FREQ_SELDIV2)
1417		div *= 2;
1418
1419	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421		((reg == PRCM_PLLSOC0_FREQ) ||
1422		 (reg == PRCM_PLLARM_FREQ) ||
1423		 (reg == PRCM_PLLDDR_FREQ))))
1424		div *= 2;
1425
1426	(void)do_div(rate, div);
1427
1428	return (unsigned long)rate;
1429}
1430
1431#define ROOT_CLOCK_RATE 38400000
1432
1433static unsigned long clock_rate(u8 clock)
1434{
1435	u32 val;
1436	u32 pllsw;
1437	unsigned long rate = ROOT_CLOCK_RATE;
1438
1439	val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441	if (val & PRCM_CLK_MGT_CLK38) {
1442		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443			rate /= 2;
1444		return rate;
1445	}
1446
1447	val |= clk_mgt[clock].pllsw;
1448	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456	else
1457		return 0;
1458
1459	if ((clock == PRCMU_SGACLK) &&
1460		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461		u64 r = (rate * 10);
1462
1463		(void)do_div(r, 25);
1464		return (unsigned long)r;
1465	}
1466	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467	if (val)
1468		return rate / val;
1469	else
1470		return 0;
1471}
1472
1473static unsigned long armss_rate(void)
1474{
1475	u32 r;
1476	unsigned long rate;
1477
1478	r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481		/* External ARMCLKFIX clock */
1482
1483		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485		/* Check PRCM_ARM_CHGCLKREQ divider */
1486		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487			rate /= 2;
1488
1489		/* Check PRCM_ARMCLKFIX_MGT divider */
1490		r = readl(PRCM_ARMCLKFIX_MGT);
1491		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492		rate /= r;
1493
1494	} else {/* ARM PLL */
1495		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496	}
1497
1498	return rate;
1499}
1500
1501static unsigned long dsiclk_rate(u8 n)
1502{
1503	u32 divsel;
1504	u32 div = 1;
1505
1506	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510		divsel = dsiclk[n].divsel;
1511	else
1512		dsiclk[n].divsel = divsel;
1513
1514	switch (divsel) {
1515	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516		div *= 2;
1517		fallthrough;
1518	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519		div *= 2;
1520		fallthrough;
1521	case PRCM_DSI_PLLOUT_SEL_PHI:
1522		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523			PLL_RAW) / div;
1524	default:
1525		return 0;
1526	}
1527}
1528
1529static unsigned long dsiescclk_rate(u8 n)
1530{
1531	u32 div;
1532
1533	div = readl(PRCM_DSITVCLK_DIV);
1534	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536}
1537
1538unsigned long prcmu_clock_rate(u8 clock)
1539{
1540	if (clock < PRCMU_NUM_REG_CLOCKS)
1541		return clock_rate(clock);
1542	else if (clock == PRCMU_TIMCLK)
1543		return prcmu_is_ulppll_disabled() ?
1544			32768 : ROOT_CLOCK_RATE / 16;
1545	else if (clock == PRCMU_SYSCLK)
1546		return ROOT_CLOCK_RATE;
1547	else if (clock == PRCMU_PLLSOC0)
1548		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549	else if (clock == PRCMU_PLLSOC1)
1550		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551	else if (clock == PRCMU_ARMSS)
1552		return armss_rate();
1553	else if (clock == PRCMU_PLLDDR)
1554		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555	else if (clock == PRCMU_PLLDSI)
1556		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557			PLL_RAW);
1558	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562	else
1563		return 0;
1564}
1565
1566static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567{
1568	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569		return ROOT_CLOCK_RATE;
1570	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577	else
1578		return 0;
1579}
1580
1581static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582{
1583	u32 div;
1584
1585	div = (src_rate / rate);
1586	if (div == 0)
1587		return 1;
1588	if (rate < (src_rate / div))
1589		div++;
1590	return div;
1591}
1592
1593static long round_clock_rate(u8 clock, unsigned long rate)
1594{
1595	u32 val;
1596	u32 div;
1597	unsigned long src_rate;
1598	long rounded_rate;
1599
1600	val = readl(prcmu_base + clk_mgt[clock].offset);
1601	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602		clk_mgt[clock].branch);
1603	div = clock_divider(src_rate, rate);
1604	if (val & PRCM_CLK_MGT_CLK38) {
1605		if (clk_mgt[clock].clk38div) {
1606			if (div > 2)
1607				div = 2;
1608		} else {
1609			div = 1;
1610		}
1611	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612		u64 r = (src_rate * 10);
1613
1614		(void)do_div(r, 25);
1615		if (r <= rate)
1616			return (unsigned long)r;
1617	}
1618	rounded_rate = (src_rate / min(div, (u32)31));
1619
1620	return rounded_rate;
1621}
1622
1623static const unsigned long db8500_armss_freqs[] = {
1624	199680000,
1625	399360000,
1626	798720000,
1627	998400000
1628};
1629
1630/* The DB8520 has slightly higher ARMSS max frequency */
1631static const unsigned long db8520_armss_freqs[] = {
1632	199680000,
1633	399360000,
1634	798720000,
1635	1152000000
1636};
1637
1638static long round_armss_rate(unsigned long rate)
1639{
1640	unsigned long freq = 0;
1641	const unsigned long *freqs;
1642	int nfreqs;
1643	int i;
1644
1645	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646		freqs = db8520_armss_freqs;
1647		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648	} else {
1649		freqs = db8500_armss_freqs;
1650		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651	}
1652
1653	/* Find the corresponding arm opp from the cpufreq table. */
1654	for (i = 0; i < nfreqs; i++) {
1655		freq = freqs[i];
1656		if (rate <= freq)
1657			break;
1658	}
1659
1660	/* Return the last valid value, even if a match was not found. */
1661	return freq;
1662}
1663
1664#define MIN_PLL_VCO_RATE 600000000ULL
1665#define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667static long round_plldsi_rate(unsigned long rate)
1668{
1669	long rounded_rate = 0;
1670	unsigned long src_rate;
1671	unsigned long rem;
1672	u32 r;
1673
1674	src_rate = clock_rate(PRCMU_HDMICLK);
1675	rem = rate;
1676
1677	for (r = 7; (rem > 0) && (r > 0); r--) {
1678		u64 d;
1679
1680		d = (r * rate);
1681		(void)do_div(d, src_rate);
1682		if (d < 6)
1683			d = 6;
1684		else if (d > 255)
1685			d = 255;
1686		d *= src_rate;
1687		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689			continue;
1690		(void)do_div(d, r);
1691		if (rate < d) {
1692			if (rounded_rate == 0)
1693				rounded_rate = (long)d;
1694			break;
1695		}
1696		if ((rate - d) < rem) {
1697			rem = (rate - d);
1698			rounded_rate = (long)d;
1699		}
1700	}
1701	return rounded_rate;
1702}
1703
1704static long round_dsiclk_rate(unsigned long rate)
1705{
1706	u32 div;
1707	unsigned long src_rate;
1708	long rounded_rate;
1709
1710	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711		PLL_RAW);
1712	div = clock_divider(src_rate, rate);
1713	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715	return rounded_rate;
1716}
1717
1718static long round_dsiescclk_rate(unsigned long rate)
1719{
1720	u32 div;
1721	unsigned long src_rate;
1722	long rounded_rate;
1723
1724	src_rate = clock_rate(PRCMU_TVCLK);
1725	div = clock_divider(src_rate, rate);
1726	rounded_rate = (src_rate / min(div, (u32)255));
1727
1728	return rounded_rate;
1729}
1730
1731long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732{
1733	if (clock < PRCMU_NUM_REG_CLOCKS)
1734		return round_clock_rate(clock, rate);
1735	else if (clock == PRCMU_ARMSS)
1736		return round_armss_rate(rate);
1737	else if (clock == PRCMU_PLLDSI)
1738		return round_plldsi_rate(rate);
1739	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740		return round_dsiclk_rate(rate);
1741	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742		return round_dsiescclk_rate(rate);
1743	else
1744		return (long)prcmu_clock_rate(clock);
1745}
1746
1747static void set_clock_rate(u8 clock, unsigned long rate)
1748{
1749	u32 val;
1750	u32 div;
1751	unsigned long src_rate;
1752	unsigned long flags;
1753
1754	spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756	/* Grab the HW semaphore. */
1757	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758		cpu_relax();
1759
1760	val = readl(prcmu_base + clk_mgt[clock].offset);
1761	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762		clk_mgt[clock].branch);
1763	div = clock_divider(src_rate, rate);
1764	if (val & PRCM_CLK_MGT_CLK38) {
1765		if (clk_mgt[clock].clk38div) {
1766			if (div > 1)
1767				val |= PRCM_CLK_MGT_CLK38DIV;
1768			else
1769				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770		}
1771	} else if (clock == PRCMU_SGACLK) {
1772		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774		if (div == 3) {
1775			u64 r = (src_rate * 10);
1776
1777			(void)do_div(r, 25);
1778			if (r <= rate) {
1779				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780				div = 0;
1781			}
1782		}
1783		val |= min(div, (u32)31);
1784	} else {
1785		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786		val |= min(div, (u32)31);
1787	}
1788	writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790	/* Release the HW semaphore. */
1791	writel(0, PRCM_SEM);
1792
1793	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794}
1795
1796static int set_armss_rate(unsigned long rate)
1797{
1798	unsigned long freq;
1799	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800	const unsigned long *freqs;
1801	int nfreqs;
1802	int i;
1803
1804	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805		freqs = db8520_armss_freqs;
1806		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807	} else {
1808		freqs = db8500_armss_freqs;
1809		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810	}
1811
1812	/* Find the corresponding arm opp from the cpufreq table. */
1813	for (i = 0; i < nfreqs; i++) {
1814		freq = freqs[i];
1815		if (rate == freq)
1816			break;
1817	}
1818
1819	if (rate != freq)
1820		return -EINVAL;
1821
1822	/* Set the new arm opp. */
1823	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824	return db8500_prcmu_set_arm_opp(opps[i]);
1825}
1826
1827static int set_plldsi_rate(unsigned long rate)
1828{
1829	unsigned long src_rate;
1830	unsigned long rem;
1831	u32 pll_freq = 0;
1832	u32 r;
1833
1834	src_rate = clock_rate(PRCMU_HDMICLK);
1835	rem = rate;
1836
1837	for (r = 7; (rem > 0) && (r > 0); r--) {
1838		u64 d;
1839		u64 hwrate;
1840
1841		d = (r * rate);
1842		(void)do_div(d, src_rate);
1843		if (d < 6)
1844			d = 6;
1845		else if (d > 255)
1846			d = 255;
1847		hwrate = (d * src_rate);
1848		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850			continue;
1851		(void)do_div(hwrate, r);
1852		if (rate < hwrate) {
1853			if (pll_freq == 0)
1854				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855					(r << PRCM_PLL_FREQ_R_SHIFT));
1856			break;
1857		}
1858		if ((rate - hwrate) < rem) {
1859			rem = (rate - hwrate);
1860			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861				(r << PRCM_PLL_FREQ_R_SHIFT));
1862		}
1863	}
1864	if (pll_freq == 0)
1865		return -EINVAL;
1866
1867	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870	return 0;
1871}
1872
1873static void set_dsiclk_rate(u8 n, unsigned long rate)
1874{
1875	u32 val;
1876	u32 div;
1877
1878	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885	val = readl(PRCM_DSI_PLLOUT_SEL);
1886	val &= ~dsiclk[n].divsel_mask;
1887	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888	writel(val, PRCM_DSI_PLLOUT_SEL);
1889}
1890
1891static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892{
1893	u32 val;
1894	u32 div;
1895
1896	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897	val = readl(PRCM_DSITVCLK_DIV);
1898	val &= ~dsiescclk[n].div_mask;
1899	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900	writel(val, PRCM_DSITVCLK_DIV);
1901}
1902
1903int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904{
1905	if (clock < PRCMU_NUM_REG_CLOCKS)
1906		set_clock_rate(clock, rate);
1907	else if (clock == PRCMU_ARMSS)
1908		return set_armss_rate(rate);
1909	else if (clock == PRCMU_PLLDSI)
1910		return set_plldsi_rate(rate);
1911	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915	return 0;
1916}
1917
1918int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919{
1920	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922		return -EINVAL;
1923
1924	mutex_lock(&mb4_transfer.lock);
1925
1926	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927		cpu_relax();
1928
1929	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932	writeb(DDR_PWR_STATE_ON,
1933	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937	wait_for_completion(&mb4_transfer.work);
1938
1939	mutex_unlock(&mb4_transfer.lock);
1940
1941	return 0;
1942}
1943
1944int db8500_prcmu_config_hotdog(u8 threshold)
1945{
1946	mutex_lock(&mb4_transfer.lock);
1947
1948	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949		cpu_relax();
1950
1951	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955	wait_for_completion(&mb4_transfer.work);
1956
1957	mutex_unlock(&mb4_transfer.lock);
1958
1959	return 0;
1960}
1961
1962int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963{
1964	mutex_lock(&mb4_transfer.lock);
1965
1966	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967		cpu_relax();
1968
1969	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976	wait_for_completion(&mb4_transfer.work);
1977
1978	mutex_unlock(&mb4_transfer.lock);
1979
1980	return 0;
1981}
1982EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984static int config_hot_period(u16 val)
1985{
1986	mutex_lock(&mb4_transfer.lock);
1987
1988	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989		cpu_relax();
1990
1991	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995	wait_for_completion(&mb4_transfer.work);
1996
1997	mutex_unlock(&mb4_transfer.lock);
1998
1999	return 0;
2000}
2001
2002int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003{
2004	if (cycles32k == 0xFFFF)
2005		return -EINVAL;
2006
2007	return config_hot_period(cycles32k);
2008}
2009EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011int db8500_prcmu_stop_temp_sense(void)
2012{
2013	return config_hot_period(0xFFFF);
2014}
2015EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
 
 
 
 
 
 
 
 
2018{
 
 
2019
2020	mutex_lock(&mb4_transfer.lock);
 
 
 
2021
2022	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
 
2023		cpu_relax();
2024
2025	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
 
2031
2032	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033	wait_for_completion(&mb4_transfer.work);
2034
2035	mutex_unlock(&mb4_transfer.lock);
2036
2037	return 0;
2038
2039}
2040
2041int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042{
2043	BUG_ON(num == 0 || num > 0xf);
2044	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046			    A9WDOG_AUTO_OFF_DIS);
2047}
2048EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050int db8500_prcmu_enable_a9wdog(u8 id)
2051{
2052	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053}
2054EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056int db8500_prcmu_disable_a9wdog(u8 id)
2057{
2058	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059}
2060EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062int db8500_prcmu_kick_a9wdog(u8 id)
2063{
2064	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065}
2066EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068/*
2069 * timeout is 28 bit, in ms.
2070 */
2071int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072{
2073	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074			    (id & A9WDOG_ID_MASK) |
2075			    /*
2076			     * Put the lowest 28 bits of timeout at
2077			     * offset 4. Four first bits are used for id.
2078			     */
2079			    (u8)((timeout << 4) & 0xf0),
2080			    (u8)((timeout >> 4) & 0xff),
2081			    (u8)((timeout >> 12) & 0xff),
2082			    (u8)((timeout >> 20) & 0xff));
2083}
2084EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086/**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave:	The I2C slave address.
2089 * @reg:	The (start) register address.
2090 * @value:	The read out value(s).
2091 * @size:	The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
2096int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097{
2098	int r;
2099
2100	if (size != 1)
2101		return -EINVAL;
2102
2103	mutex_lock(&mb5_transfer.lock);
2104
2105	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106		cpu_relax();
2107
2108	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117				msecs_to_jiffies(20000))) {
2118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119			__func__);
2120		r = -EIO;
2121	} else {
2122		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123	}
2124
2125	if (!r)
2126		*value = mb5_transfer.ack.value;
2127
2128	mutex_unlock(&mb5_transfer.lock);
2129
2130	return r;
2131}
2132
2133/**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave:	The I2C slave address.
2136 * @reg:	The (start) register address.
2137 * @value:	The value(s) to write.
2138 * @mask:	The mask(s) to use.
2139 * @size:	The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
2146int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147{
2148	int r;
2149
2150	if (size != 1)
2151		return -EINVAL;
2152
2153	mutex_lock(&mb5_transfer.lock);
2154
2155	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156		cpu_relax();
2157
2158	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167				msecs_to_jiffies(20000))) {
2168		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169			__func__);
2170		r = -EIO;
2171	} else {
2172		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173	}
2174
2175	mutex_unlock(&mb5_transfer.lock);
2176
2177	return r;
2178}
2179
2180/**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave:	The I2C slave address.
2183 * @reg:	The (start) register address.
2184 * @value:	The value(s) to write.
2185 * @size:	The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
2190int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191{
2192	u8 mask = ~0;
2193
2194	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195}
2196
2197/**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
2200int prcmu_ac_wake_req(void)
2201{
2202	u32 val;
2203	int ret = 0;
2204
2205	mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207	val = readl(PRCM_HOSTACCESS_REQ);
2208	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209		goto unlock_and_return;
2210
2211	atomic_set(&ac_wake_req_state, 1);
2212
2213	/*
2214	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216	 * request. The 31us delay has been calculated by HWI.
2217	 */
2218	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219	writel(val, PRCM_HOSTACCESS_REQ);
2220
2221	udelay(31);
2222
2223	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224	writel(val, PRCM_HOSTACCESS_REQ);
2225
2226	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227			msecs_to_jiffies(5000))) {
2228		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229			__func__);
2230		ret = -EFAULT;
2231	}
2232
2233unlock_and_return:
2234	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235	return ret;
2236}
2237
2238/**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
2241void prcmu_ac_sleep_req(void)
2242{
2243	u32 val;
2244
2245	mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247	val = readl(PRCM_HOSTACCESS_REQ);
2248	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249		goto unlock_and_return;
2250
2251	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252		PRCM_HOSTACCESS_REQ);
2253
2254	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255			msecs_to_jiffies(5000))) {
2256		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257			__func__);
2258	}
2259
2260	atomic_set(&ac_wake_req_state, 0);
2261
2262unlock_and_return:
2263	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264}
2265
2266bool db8500_prcmu_is_ac_wake_requested(void)
2267{
2268	return (atomic_read(&ac_wake_req_state) != 0);
2269}
2270
2271/**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
2279void db8500_prcmu_system_reset(u16 reset_code)
2280{
2281	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282	writel(1, PRCM_APE_SOFTRST);
2283}
2284
2285/**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
2291u16 db8500_prcmu_get_reset_code(void)
2292{
2293	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294}
2295
2296/**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
2299void db8500_prcmu_modem_reset(void)
2300{
2301	mutex_lock(&mb1_transfer.lock);
2302
2303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304		cpu_relax();
2305
2306	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308	wait_for_completion(&mb1_transfer.work);
2309
2310	/*
2311	 * No need to check return from PRCMU as modem should go in reset state
2312	 * This state is already managed by upper layer
2313	 */
2314
2315	mutex_unlock(&mb1_transfer.lock);
2316}
2317
2318static void ack_dbb_wakeup(void)
2319{
2320	unsigned long flags;
2321
2322	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325		cpu_relax();
2326
2327	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331}
2332
2333static inline void print_unknown_header_warning(u8 n, u8 header)
2334{
2335	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336		header, n);
2337}
2338
2339static bool read_mailbox_0(void)
2340{
2341	bool r;
2342	u32 ev;
2343	unsigned int n;
2344	u8 header;
2345
2346	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347	switch (header) {
2348	case MB0H_WAKEUP_EXE:
2349	case MB0H_WAKEUP_SLEEP:
2350		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352		else
2353			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356			complete(&mb0_transfer.ac_wake_work);
2357		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358			complete(&mb3_transfer.sysclk_work);
2359
2360		ev &= mb0_transfer.req.dbb_irqs;
2361
2362		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363			if (ev & prcmu_irq_bit[n])
2364				generic_handle_domain_irq(db8500_irq_domain, n);
2365		}
2366		r = true;
2367		break;
2368	default:
2369		print_unknown_header_warning(0, header);
2370		r = false;
2371		break;
2372	}
2373	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374	return r;
2375}
2376
2377static bool read_mailbox_1(void)
2378{
2379	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387	complete(&mb1_transfer.work);
2388	return false;
2389}
2390
2391static bool read_mailbox_2(void)
2392{
2393	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395	complete(&mb2_transfer.work);
2396	return false;
2397}
2398
2399static bool read_mailbox_3(void)
2400{
2401	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402	return false;
2403}
2404
2405static bool read_mailbox_4(void)
2406{
2407	u8 header;
2408	bool do_complete = true;
2409
2410	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411	switch (header) {
2412	case MB4H_MEM_ST:
2413	case MB4H_HOTDOG:
2414	case MB4H_HOTMON:
2415	case MB4H_HOT_PERIOD:
2416	case MB4H_A9WDOG_CONF:
2417	case MB4H_A9WDOG_EN:
2418	case MB4H_A9WDOG_DIS:
2419	case MB4H_A9WDOG_LOAD:
2420	case MB4H_A9WDOG_KICK:
2421		break;
2422	default:
2423		print_unknown_header_warning(4, header);
2424		do_complete = false;
2425		break;
2426	}
2427
2428	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430	if (do_complete)
2431		complete(&mb4_transfer.work);
2432
2433	return false;
2434}
2435
2436static bool read_mailbox_5(void)
2437{
2438	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441	complete(&mb5_transfer.work);
2442	return false;
2443}
2444
2445static bool read_mailbox_6(void)
2446{
2447	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448	return false;
2449}
2450
2451static bool read_mailbox_7(void)
2452{
2453	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454	return false;
2455}
2456
2457static bool (* const read_mailbox[NUM_MB])(void) = {
2458	read_mailbox_0,
2459	read_mailbox_1,
2460	read_mailbox_2,
2461	read_mailbox_3,
2462	read_mailbox_4,
2463	read_mailbox_5,
2464	read_mailbox_6,
2465	read_mailbox_7
2466};
2467
2468static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469{
2470	u32 bits;
2471	u8 n;
2472	irqreturn_t r;
2473
2474	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475	if (unlikely(!bits))
2476		return IRQ_NONE;
2477
2478	r = IRQ_HANDLED;
2479	for (n = 0; bits; n++) {
2480		if (bits & MBOX_BIT(n)) {
2481			bits -= MBOX_BIT(n);
2482			if (read_mailbox[n]())
2483				r = IRQ_WAKE_THREAD;
2484		}
2485	}
2486	return r;
2487}
2488
2489static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490{
2491	ack_dbb_wakeup();
2492	return IRQ_HANDLED;
2493}
2494
2495static void prcmu_mask_work(struct work_struct *work)
2496{
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501	config_wakeups();
2502
2503	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504}
2505
2506static void prcmu_irq_mask(struct irq_data *d)
2507{
2508	unsigned long flags;
2509
2510	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517		schedule_work(&mb0_transfer.mask_work);
2518}
2519
2520static void prcmu_irq_unmask(struct irq_data *d)
2521{
2522	unsigned long flags;
2523
2524	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531		schedule_work(&mb0_transfer.mask_work);
2532}
2533
2534static void noop(struct irq_data *d)
2535{
2536}
2537
2538static struct irq_chip prcmu_irq_chip = {
2539	.name		= "prcmu",
2540	.irq_disable	= prcmu_irq_mask,
2541	.irq_ack	= noop,
2542	.irq_mask	= prcmu_irq_mask,
2543	.irq_unmask	= prcmu_irq_unmask,
2544};
2545
2546static char *fw_project_name(u32 project)
2547{
2548	switch (project) {
2549	case PRCMU_FW_PROJECT_U8500:
2550		return "U8500";
2551	case PRCMU_FW_PROJECT_U8400:
2552		return "U8400";
2553	case PRCMU_FW_PROJECT_U9500:
2554		return "U9500";
2555	case PRCMU_FW_PROJECT_U8500_MBB:
2556		return "U8500 MBB";
2557	case PRCMU_FW_PROJECT_U8500_C1:
2558		return "U8500 C1";
2559	case PRCMU_FW_PROJECT_U8500_C2:
2560		return "U8500 C2";
2561	case PRCMU_FW_PROJECT_U8500_C3:
2562		return "U8500 C3";
2563	case PRCMU_FW_PROJECT_U8500_C4:
2564		return "U8500 C4";
2565	case PRCMU_FW_PROJECT_U9500_MBL:
2566		return "U9500 MBL";
2567	case PRCMU_FW_PROJECT_U8500_SSG1:
2568		return "U8500 Samsung 1";
2569	case PRCMU_FW_PROJECT_U8500_MBL2:
2570		return "U8500 MBL2";
2571	case PRCMU_FW_PROJECT_U8520:
2572		return "U8520 MBL";
2573	case PRCMU_FW_PROJECT_U8420:
2574		return "U8420";
2575	case PRCMU_FW_PROJECT_U8500_SSG2:
2576		return "U8500 Samsung 2";
2577	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578		return "U8420-sysclk";
2579	case PRCMU_FW_PROJECT_U9540:
2580		return "U9540";
2581	case PRCMU_FW_PROJECT_A9420:
2582		return "A9420";
2583	case PRCMU_FW_PROJECT_L8540:
2584		return "L8540";
2585	case PRCMU_FW_PROJECT_L8580:
2586		return "L8580";
2587	default:
2588		return "Unknown";
2589	}
2590}
2591
2592static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593				irq_hw_number_t hwirq)
2594{
2595	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596				handle_simple_irq);
 
 
 
 
 
 
 
 
 
 
 
 
2597
2598	return 0;
2599}
2600
2601static const struct irq_domain_ops db8500_irq_ops = {
2602	.map    = db8500_irq_map,
2603	.xlate  = irq_domain_xlate_twocell,
2604};
2605
2606static int db8500_irq_init(struct device_node *np)
2607{
2608	int i;
2609
2610	db8500_irq_domain = irq_domain_add_simple(
2611		np, NUM_PRCMU_WAKEUPS, 0,
2612		&db8500_irq_ops, NULL);
2613
2614	if (!db8500_irq_domain) {
2615		pr_err("Failed to create irqdomain\n");
2616		return -ENOSYS;
2617	}
2618
2619	/* All wakeups will be used, so create mappings for all */
2620	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621		irq_create_mapping(db8500_irq_domain, i);
2622
2623	return 0;
2624}
2625
2626static void dbx500_fw_version_init(struct device_node *np)
2627{
2628	void __iomem *tcpm_base;
2629	u32 version;
2630
2631	tcpm_base = of_iomap(np, 1);
2632	if (!tcpm_base) {
2633		pr_err("no prcmu tcpm mem region provided\n");
2634		return;
2635	}
2636
2637	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638	fw_info.version.project = (version & 0xFF);
2639	fw_info.version.api_version = (version >> 8) & 0xFF;
2640	fw_info.version.func_version = (version >> 16) & 0xFF;
2641	fw_info.version.errata = (version >> 24) & 0xFF;
2642	strscpy(fw_info.version.project_name,
2643		fw_project_name(fw_info.version.project),
2644		sizeof(fw_info.version.project_name));
2645	fw_info.valid = true;
2646	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647		fw_info.version.project_name,
2648		fw_info.version.project,
2649		fw_info.version.api_version,
2650		fw_info.version.func_version,
2651		fw_info.version.errata);
2652	iounmap(tcpm_base);
2653}
2654
2655void __init db8500_prcmu_early_init(void)
2656{
2657	/*
2658	 * This is a temporary remap to bring up the clocks. It is
2659	 * subsequently replaces with a real remap. After the merge of
2660	 * the mailbox subsystem all of this early code goes away, and the
2661	 * clock driver can probe independently. An early initcall will
2662	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663	 */
2664	struct device_node *np;
2665
2666	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667	prcmu_base = of_iomap(np, 0);
2668	if (!prcmu_base) {
2669		of_node_put(np);
2670		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671		return;
2672	}
2673	dbx500_fw_version_init(np);
2674	of_node_put(np);
2675
2676	spin_lock_init(&mb0_transfer.lock);
2677	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678	mutex_init(&mb0_transfer.ac_wake_lock);
2679	init_completion(&mb0_transfer.ac_wake_work);
2680	mutex_init(&mb1_transfer.lock);
2681	init_completion(&mb1_transfer.work);
2682	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683	mutex_init(&mb2_transfer.lock);
2684	init_completion(&mb2_transfer.work);
2685	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686	spin_lock_init(&mb3_transfer.lock);
2687	mutex_init(&mb3_transfer.sysclk_lock);
2688	init_completion(&mb3_transfer.sysclk_work);
2689	mutex_init(&mb4_transfer.lock);
2690	init_completion(&mb4_transfer.work);
2691	mutex_init(&mb5_transfer.lock);
2692	init_completion(&mb5_transfer.work);
2693
2694	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695}
2696
2697static void init_prcm_registers(void)
2698{
2699	u32 val;
2700
2701	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704	writel(val, (PRCM_A9PL_FORCE_CLKEN));
 
2705}
2706
2707/*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711	REGULATOR_SUPPLY("v-ape", NULL),
2712	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718	REGULATOR_SUPPLY("vcore", "sdi0"),
2719	REGULATOR_SUPPLY("vcore", "sdi1"),
2720	REGULATOR_SUPPLY("vcore", "sdi2"),
2721	REGULATOR_SUPPLY("vcore", "sdi3"),
2722	REGULATOR_SUPPLY("vcore", "sdi4"),
2723	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725	/* "v-uart" changed to "vcore" in the mainline kernel */
2726	REGULATOR_SUPPLY("vcore", "uart0"),
2727	REGULATOR_SUPPLY("vcore", "uart1"),
2728	REGULATOR_SUPPLY("vcore", "uart2"),
2729	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732};
2733
2734static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
 
 
 
2735	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736	/* AV8100 regulator */
2737	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738};
2739
2740static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742	REGULATOR_SUPPLY("vsupply", "mcde"),
2743};
2744
2745/* SVA MMDSP regulator switch */
2746static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748};
2749
2750/* SVA pipe regulator switch */
2751static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753};
2754
2755/* SIA MMDSP regulator switch */
2756static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758};
2759
2760/* SIA pipe regulator switch */
2761static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763};
2764
2765static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766	REGULATOR_SUPPLY("v-mali", NULL),
2767};
2768
2769/* ESRAM1 and 2 regulator switch */
2770static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771	REGULATOR_SUPPLY("esram12", "cm_control"),
2772};
2773
2774/* ESRAM3 and 4 regulator switch */
2775static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777	REGULATOR_SUPPLY("esram34", "cm_control"),
2778	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779};
2780
2781static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782	[DB8500_REGULATOR_VAPE] = {
2783		.constraints = {
2784			.name = "db8500-vape",
2785			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786			.always_on = true,
2787		},
2788		.consumer_supplies = db8500_vape_consumers,
2789		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790	},
2791	[DB8500_REGULATOR_VARM] = {
2792		.constraints = {
2793			.name = "db8500-varm",
2794			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795		},
2796	},
2797	[DB8500_REGULATOR_VMODEM] = {
2798		.constraints = {
2799			.name = "db8500-vmodem",
2800			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801		},
2802	},
2803	[DB8500_REGULATOR_VPLL] = {
2804		.constraints = {
2805			.name = "db8500-vpll",
2806			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807		},
2808	},
2809	[DB8500_REGULATOR_VSMPS1] = {
2810		.constraints = {
2811			.name = "db8500-vsmps1",
2812			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813		},
2814	},
2815	[DB8500_REGULATOR_VSMPS2] = {
2816		.constraints = {
2817			.name = "db8500-vsmps2",
2818			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819		},
2820		.consumer_supplies = db8500_vsmps2_consumers,
2821		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822	},
2823	[DB8500_REGULATOR_VSMPS3] = {
2824		.constraints = {
2825			.name = "db8500-vsmps3",
2826			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827		},
2828	},
2829	[DB8500_REGULATOR_VRF1] = {
2830		.constraints = {
2831			.name = "db8500-vrf1",
2832			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833		},
2834	},
2835	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836		/* dependency to u8500-vape is handled outside regulator framework */
2837		.constraints = {
2838			.name = "db8500-sva-mmdsp",
2839			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840		},
2841		.consumer_supplies = db8500_svammdsp_consumers,
2842		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843	},
2844	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845		.constraints = {
2846			/* "ret" means "retention" */
2847			.name = "db8500-sva-mmdsp-ret",
2848			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849		},
2850	},
2851	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852		/* dependency to u8500-vape is handled outside regulator framework */
2853		.constraints = {
2854			.name = "db8500-sva-pipe",
2855			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856		},
2857		.consumer_supplies = db8500_svapipe_consumers,
2858		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859	},
2860	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861		/* dependency to u8500-vape is handled outside regulator framework */
2862		.constraints = {
2863			.name = "db8500-sia-mmdsp",
2864			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865		},
2866		.consumer_supplies = db8500_siammdsp_consumers,
2867		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868	},
2869	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870		.constraints = {
2871			.name = "db8500-sia-mmdsp-ret",
2872			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873		},
2874	},
2875	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876		/* dependency to u8500-vape is handled outside regulator framework */
2877		.constraints = {
2878			.name = "db8500-sia-pipe",
2879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880		},
2881		.consumer_supplies = db8500_siapipe_consumers,
2882		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883	},
2884	[DB8500_REGULATOR_SWITCH_SGA] = {
2885		.supply_regulator = "db8500-vape",
2886		.constraints = {
2887			.name = "db8500-sga",
2888			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889		},
2890		.consumer_supplies = db8500_sga_consumers,
2891		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893	},
2894	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895		.supply_regulator = "db8500-vape",
2896		.constraints = {
2897			.name = "db8500-b2r2-mcde",
2898			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899		},
2900		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902	},
2903	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904		/*
2905		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906		 * no need to hold Vape
2907		 */
2908		.constraints = {
2909			.name = "db8500-esram12",
2910			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911		},
2912		.consumer_supplies = db8500_esram12_consumers,
2913		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914	},
2915	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916		.constraints = {
2917			.name = "db8500-esram12-ret",
2918			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919		},
2920	},
2921	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922		/*
2923		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924		 * no need to hold Vape
2925		 */
2926		.constraints = {
2927			.name = "db8500-esram34",
2928			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929		},
2930		.consumer_supplies = db8500_esram34_consumers,
2931		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932	},
2933	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934		.constraints = {
2935			.name = "db8500-esram34-ret",
2936			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937		},
2938	},
2939};
2940
2941static const struct mfd_cell common_prcmu_devs[] = {
2942	MFD_CELL_NAME("db8500_wdt"),
2943	MFD_CELL_NAME("db8500-cpuidle"),
 
 
 
 
 
 
2944};
2945
2946static const struct mfd_cell db8500_prcmu_devs[] = {
2947	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949		    "stericsson,db8500-prcmu-regulator"),
2950	MFD_CELL_OF("db8500-thermal",
2951		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952};
2953
2954static int db8500_prcmu_register_ab8500(struct device *parent)
2955{
2956	struct device_node *np;
2957	struct resource ab850x_resource;
2958	const struct mfd_cell ab8500_cell = {
2959		.name = "ab8500-core",
2960		.of_compatible = "stericsson,ab8500",
2961		.id = AB8500_VERSION_AB8500,
2962		.resources = &ab850x_resource,
2963		.num_resources = 1,
2964	};
2965	const struct mfd_cell ab8505_cell = {
2966		.name = "ab8505-core",
2967		.of_compatible = "stericsson,ab8505",
2968		.id = AB8500_VERSION_AB8505,
2969		.resources = &ab850x_resource,
2970		.num_resources = 1,
2971	};
2972	const struct mfd_cell *ab850x_cell;
2973
2974	if (!parent->of_node)
2975		return -ENODEV;
2976
2977	/* Look up the device node, sneak the IRQ out of it */
2978	for_each_child_of_node(parent->of_node, np) {
2979		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980			ab850x_cell = &ab8500_cell;
2981			break;
2982		}
2983		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984			ab850x_cell = &ab8505_cell;
2985			break;
2986		}
2987	}
2988	if (!np) {
2989		dev_info(parent, "could not find AB850X node in the device tree\n");
2990		return -ENODEV;
2991	}
2992	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995}
2996
2997static int db8500_prcmu_probe(struct platform_device *pdev)
2998{
2999	struct device_node *np = pdev->dev.of_node;
3000	int irq = 0, err = 0;
3001	struct resource *res;
3002
3003	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004	if (!res) {
3005		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006		return -EINVAL;
3007	}
3008	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009	if (!prcmu_base) {
3010		dev_err(&pdev->dev,
3011			"failed to ioremap prcmu register memory\n");
3012		return -ENOMEM;
3013	}
3014	init_prcm_registers();
3015	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016	if (!res) {
3017		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018		return -EINVAL;
3019	}
3020	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021			resource_size(res));
3022	if (!tcdm_base) {
3023		dev_err(&pdev->dev,
3024			"failed to ioremap prcmu-tcdm register memory\n");
3025		return -ENOMEM;
3026	}
3027
3028	/* Clean up the mailbox interrupts after pre-kernel code. */
3029	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031	irq = platform_get_irq(pdev, 0);
3032	if (irq <= 0)
3033		return irq;
3034
3035	err = request_threaded_irq(irq, prcmu_irq_handler,
3036	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037	if (err < 0) {
3038		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039		return err;
 
3040	}
3041
3042	db8500_irq_init(np);
 
3043
3044	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
 
 
3045
3046	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048	if (err) {
3049		pr_err("prcmu: Failed to add subdevices\n");
3050		return err;
3051	}
3052
3053	/* TODO: Remove restriction when clk definitions are available. */
3054	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057				      db8500_irq_domain);
3058		if (err) {
3059			mfd_remove_devices(&pdev->dev);
3060			pr_err("prcmu: Failed to add subdevices\n");
3061			return err;
3062		}
3063	}
3064
3065	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066	if (err) {
3067		mfd_remove_devices(&pdev->dev);
3068		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069		return err;
3070	}
3071
3072	pr_info("DB8500 PRCMU initialized\n");
3073	return err;
3074}
3075static const struct of_device_id db8500_prcmu_match[] = {
3076	{ .compatible = "stericsson,db8500-prcmu"},
3077	{ },
3078};
3079
3080static struct platform_driver db8500_prcmu_driver = {
3081	.driver = {
3082		.name = "db8500-prcmu",
3083		.of_match_table = db8500_prcmu_match,
3084	},
3085	.probe = db8500_prcmu_probe,
3086};
3087
3088static int __init db8500_prcmu_init(void)
3089{
3090	return platform_driver_register(&db8500_prcmu_driver);
3091}
3092core_initcall(db8500_prcmu_init);