Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
   4 *
   5 * Authors:
   6 *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
   7 *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
   8 *
   9 * Baikal-T1 Process, Voltage, Temperature sensor driver
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bitops.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/delay.h>
  17#include <linux/device.h>
  18#include <linux/hwmon-sysfs.h>
  19#include <linux/hwmon.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/kernel.h>
  23#include <linux/ktime.h>
  24#include <linux/limits.h>
  25#include <linux/module.h>
  26#include <linux/mutex.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/seqlock.h>
  30#include <linux/sysfs.h>
  31#include <linux/types.h>
  32
  33#include "bt1-pvt.h"
  34
  35/*
  36 * For the sake of the code simplification we created the sensors info table
  37 * with the sensor names, activation modes, threshold registers base address
  38 * and the thresholds bit fields.
  39 */
  40static const struct pvt_sensor_info pvt_info[] = {
  41	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
  42	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
  43	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
  44	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
  45	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
  46};
  47
  48/*
  49 * The original translation formulae of the temperature (in degrees of Celsius)
  50 * to PVT data and vice-versa are following:
  51 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
  52 *     1.7204e2,
  53 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
  54 *     3.1020e-1*(N^1) - 4.838e1,
  55 * where T = [-48.380, 147.438]C and N = [0, 1023].
  56 * They must be accordingly altered to be suitable for the integer arithmetics.
  57 * The technique is called 'factor redistribution', which just makes sure the
  58 * multiplications and divisions are made so to have a result of the operations
  59 * within the integer numbers limit. In addition we need to translate the
  60 * formulae to accept millidegrees of Celsius. Here what they look like after
  61 * the alterations:
  62 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
  63 *     17204e2) / 1e4,
  64 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
  65 *     48380,
  66 * where T = [-48380, 147438] mC and N = [0, 1023].
  67 */
  68static const struct pvt_poly __maybe_unused poly_temp_to_N = {
  69	.total_divider = 10000,
  70	.terms = {
  71		{4, 18322, 10000, 10000},
  72		{3, 2343, 10000, 10},
  73		{2, 87018, 10000, 10},
  74		{1, 39269, 1000, 1},
  75		{0, 1720400, 1, 1}
  76	}
  77};
  78
  79static const struct pvt_poly poly_N_to_temp = {
  80	.total_divider = 1,
  81	.terms = {
  82		{4, -16743, 1000, 1},
  83		{3, 81542, 1000, 1},
  84		{2, -182010, 1000, 1},
  85		{1, 310200, 1000, 1},
  86		{0, -48380, 1, 1}
  87	}
  88};
  89
  90/*
  91 * Similar alterations are performed for the voltage conversion equations.
  92 * The original formulae are:
  93 * N = 1.8658e3*V - 1.1572e3,
  94 * V = (N + 1.1572e3) / 1.8658e3,
  95 * where V = [0.620, 1.168] V and N = [0, 1023].
  96 * After the optimization they looks as follows:
  97 * N = (18658e-3*V - 11572) / 10,
  98 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
  99 */
 100static const struct pvt_poly __maybe_unused poly_volt_to_N = {
 101	.total_divider = 10,
 102	.terms = {
 103		{1, 18658, 1000, 1},
 104		{0, -11572, 1, 1}
 105	}
 106};
 107
 108static const struct pvt_poly poly_N_to_volt = {
 109	.total_divider = 10,
 110	.terms = {
 111		{1, 100000, 18658, 1},
 112		{0, 115720000, 1, 18658}
 113	}
 114};
 115
 116/*
 117 * Here is the polynomial calculation function, which performs the
 118 * redistributed terms calculations. It's pretty straightforward. We walk
 119 * over each degree term up to the free one, and perform the redistributed
 120 * multiplication of the term coefficient, its divider (as for the rationale
 121 * fraction representation), data power and the rational fraction divider
 122 * leftover. Then all of this is collected in a total sum variable, which
 123 * value is normalized by the total divider before being returned.
 124 */
 125static long pvt_calc_poly(const struct pvt_poly *poly, long data)
 126{
 127	const struct pvt_poly_term *term = poly->terms;
 128	long tmp, ret = 0;
 129	int deg;
 130
 131	do {
 132		tmp = term->coef;
 133		for (deg = 0; deg < term->deg; ++deg)
 134			tmp = mult_frac(tmp, data, term->divider);
 135		ret += tmp / term->divider_leftover;
 136	} while ((term++)->deg);
 137
 138	return ret / poly->total_divider;
 139}
 140
 141static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
 142{
 143	u32 old;
 144
 145	old = readl_relaxed(reg);
 146	writel((old & ~mask) | (data & mask), reg);
 147
 148	return old & mask;
 149}
 150
 151/*
 152 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
 153 * So first we disable it, then set the new mode together with the controller
 154 * getting back enabled. The same concerns the temperature trim and
 155 * measurements timeout. If it is necessary the interface mutex is supposed
 156 * to be locked at the time the operations are performed.
 157 */
 158static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
 159{
 160	u32 old;
 161
 162	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
 163
 164	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 165	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
 166		   mode | old);
 167}
 168
 169static inline u32 pvt_calc_trim(long temp)
 170{
 171	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
 172
 173	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
 174}
 175
 176static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
 177{
 178	u32 old;
 179
 180	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
 181
 182	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 183	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
 184		   trim | old);
 185}
 186
 187static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
 188{
 189	u32 old;
 190
 191	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 192	writel(tout, pvt->regs + PVT_TTIMEOUT);
 193	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
 194}
 195
 196/*
 197 * This driver can optionally provide the hwmon alarms for each sensor the PVT
 198 * controller supports. The alarms functionality is made compile-time
 199 * configurable due to the hardware interface implementation peculiarity
 200 * described further in this comment. So in case if alarms are unnecessary in
 201 * your system design it's recommended to have them disabled to prevent the PVT
 202 * IRQs being periodically raised to get the data cache/alarms status up to
 203 * date.
 204 *
 205 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
 206 * but is equipped with a dedicated control wrapper. It exposes the PVT
 207 * sub-block registers space via the APB3 bus. In addition the wrapper provides
 208 * a common interrupt vector of the sensors conversion completion events and
 209 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
 210 * through. There is only one sensor can be activated at a time, for which the
 211 * thresholds comparator is enabled right after the data conversion is
 212 * completed. Due to this if alarms need to be implemented for all available
 213 * sensors we can't just set the thresholds and enable the interrupts. We need
 214 * to enable the sensors one after another and let the controller to detect
 215 * the alarms by itself at each conversion. This also makes pointless to handle
 216 * the alarms interrupts, since in occasion they happen synchronously with
 217 * data conversion completion. The best driver design would be to have the
 218 * completion interrupts enabled only and keep the converted value in the
 219 * driver data cache. This solution is implemented if hwmon alarms are enabled
 220 * in this driver. In case if the alarms are disabled, the conversion is
 221 * performed on demand at the time a sensors input file is read.
 222 */
 223
 224#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 225
 226#define pvt_hard_isr NULL
 227
 228static irqreturn_t pvt_soft_isr(int irq, void *data)
 229{
 230	const struct pvt_sensor_info *info;
 231	struct pvt_hwmon *pvt = data;
 232	struct pvt_cache *cache;
 233	u32 val, thres_sts, old;
 234
 235	/*
 236	 * DVALID bit will be cleared by reading the data. We need to save the
 237	 * status before the next conversion happens. Threshold events will be
 238	 * handled a bit later.
 239	 */
 240	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
 241
 242	/*
 243	 * Then lets recharge the PVT interface with the next sampling mode.
 244	 * Lock the interface mutex to serialize trim, timeouts and alarm
 245	 * thresholds settings.
 246	 */
 247	cache = &pvt->cache[pvt->sensor];
 248	info = &pvt_info[pvt->sensor];
 249	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
 250		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
 251
 252	/*
 253	 * For some reason we have to mask the interrupt before changing the
 254	 * mode, otherwise sometimes the temperature mode doesn't get
 255	 * activated even though the actual mode in the ctrl register
 256	 * corresponds to one. Then we read the data. By doing so we also
 257	 * recharge the data conversion. After this the mode corresponding
 258	 * to the next sensor in the row is set. Finally we enable the
 259	 * interrupts back.
 260	 */
 261	mutex_lock(&pvt->iface_mtx);
 262
 263	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 264			 PVT_INTR_DVALID);
 265
 266	val = readl(pvt->regs + PVT_DATA);
 267
 268	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
 269
 270	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
 271
 272	mutex_unlock(&pvt->iface_mtx);
 273
 274	/*
 275	 * We can now update the data cache with data just retrieved from the
 276	 * sensor. Lock write-seqlock to make sure the reader has a coherent
 277	 * data.
 278	 */
 279	write_seqlock(&cache->data_seqlock);
 280
 281	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
 282
 283	write_sequnlock(&cache->data_seqlock);
 284
 285	/*
 286	 * While PVT core is doing the next mode data conversion, we'll check
 287	 * whether the alarms were triggered for the current sensor. Note that
 288	 * according to the documentation only one threshold IRQ status can be
 289	 * set at a time, that's why if-else statement is utilized.
 290	 */
 291	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
 292		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
 293		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
 294				   info->channel);
 295	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
 296		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
 297		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
 298				   info->channel);
 299	}
 300
 301	return IRQ_HANDLED;
 302}
 303
 304static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 305{
 306	return 0644;
 307}
 308
 309static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 310{
 311	return 0444;
 312}
 313
 314static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 315			 long *val)
 316{
 317	struct pvt_cache *cache = &pvt->cache[type];
 318	unsigned int seq;
 319	u32 data;
 320
 321	do {
 322		seq = read_seqbegin(&cache->data_seqlock);
 323		data = cache->data;
 324	} while (read_seqretry(&cache->data_seqlock, seq));
 325
 326	if (type == PVT_TEMP)
 327		*val = pvt_calc_poly(&poly_N_to_temp, data);
 328	else
 329		*val = pvt_calc_poly(&poly_N_to_volt, data);
 330
 331	return 0;
 332}
 333
 334static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 335			  bool is_low, long *val)
 336{
 337	u32 data;
 338
 339	/* No need in serialization, since it is just read from MMIO. */
 340	data = readl(pvt->regs + pvt_info[type].thres_base);
 341
 342	if (is_low)
 343		data = FIELD_GET(PVT_THRES_LO_MASK, data);
 344	else
 345		data = FIELD_GET(PVT_THRES_HI_MASK, data);
 346
 347	if (type == PVT_TEMP)
 348		*val = pvt_calc_poly(&poly_N_to_temp, data);
 349	else
 350		*val = pvt_calc_poly(&poly_N_to_volt, data);
 351
 352	return 0;
 353}
 354
 355static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 356			   bool is_low, long val)
 357{
 358	u32 data, limit, mask;
 359	int ret;
 360
 361	if (type == PVT_TEMP) {
 362		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
 363		data = pvt_calc_poly(&poly_temp_to_N, val);
 364	} else {
 365		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
 366		data = pvt_calc_poly(&poly_volt_to_N, val);
 367	}
 368
 369	/* Serialize limit update, since a part of the register is changed. */
 370	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 371	if (ret)
 372		return ret;
 373
 374	/* Make sure the upper and lower ranges don't intersect. */
 375	limit = readl(pvt->regs + pvt_info[type].thres_base);
 376	if (is_low) {
 377		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
 378		data = clamp_val(data, PVT_DATA_MIN, limit);
 379		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
 380		mask = PVT_THRES_LO_MASK;
 381	} else {
 382		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
 383		data = clamp_val(data, limit, PVT_DATA_MAX);
 384		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
 385		mask = PVT_THRES_HI_MASK;
 386	}
 387
 388	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
 389
 390	mutex_unlock(&pvt->iface_mtx);
 391
 392	return 0;
 393}
 394
 395static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 396			  bool is_low, long *val)
 397{
 398	if (is_low)
 399		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
 400	else
 401		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
 402
 403	return 0;
 404}
 405
 406static const struct hwmon_channel_info *pvt_channel_info[] = {
 407	HWMON_CHANNEL_INFO(chip,
 408			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 409	HWMON_CHANNEL_INFO(temp,
 410			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 411			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
 412			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
 413			   HWMON_T_OFFSET),
 414	HWMON_CHANNEL_INFO(in,
 415			   HWMON_I_INPUT | HWMON_I_LABEL |
 416			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 417			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 418			   HWMON_I_INPUT | HWMON_I_LABEL |
 419			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 420			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 421			   HWMON_I_INPUT | HWMON_I_LABEL |
 422			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 423			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 424			   HWMON_I_INPUT | HWMON_I_LABEL |
 425			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 426			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
 427	NULL
 428};
 429
 430#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 431
 432static irqreturn_t pvt_hard_isr(int irq, void *data)
 433{
 434	struct pvt_hwmon *pvt = data;
 435	struct pvt_cache *cache;
 436	u32 val;
 437
 438	/*
 439	 * Mask the DVALID interrupt so after exiting from the handler a
 440	 * repeated conversion wouldn't happen.
 441	 */
 442	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 443		   PVT_INTR_DVALID);
 444
 445	/*
 446	 * Nothing special for alarm-less driver. Just read the data, update
 447	 * the cache and notify a waiter of this event.
 448	 */
 449	val = readl(pvt->regs + PVT_DATA);
 450	if (!(val & PVT_DATA_VALID)) {
 451		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
 452		return IRQ_HANDLED;
 453	}
 454
 455	cache = &pvt->cache[pvt->sensor];
 456
 457	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
 458
 459	complete(&cache->conversion);
 460
 461	return IRQ_HANDLED;
 462}
 463
 464#define pvt_soft_isr NULL
 465
 466static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 467{
 468	return 0;
 469}
 470
 471static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 472{
 473	return 0;
 474}
 475
 476static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 477			 long *val)
 478{
 479	struct pvt_cache *cache = &pvt->cache[type];
 480	unsigned long timeout;
 481	u32 data;
 482	int ret;
 483
 484	/*
 485	 * Lock PVT conversion interface until data cache is updated. The
 486	 * data read procedure is following: set the requested PVT sensor
 487	 * mode, enable IRQ and conversion, wait until conversion is finished,
 488	 * then disable conversion and IRQ, and read the cached data.
 489	 */
 490	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 491	if (ret)
 492		return ret;
 493
 494	pvt->sensor = type;
 495	pvt_set_mode(pvt, pvt_info[type].mode);
 496
 497	/*
 498	 * Unmask the DVALID interrupt and enable the sensors conversions.
 499	 * Do the reverse procedure when conversion is done.
 500	 */
 501	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
 502	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 503
 504	/*
 505	 * Wait with timeout since in case if the sensor is suddenly powered
 506	 * down the request won't be completed and the caller will hang up on
 507	 * this procedure until the power is back up again. Multiply the
 508	 * timeout by the factor of two to prevent a false timeout.
 509	 */
 510	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
 511	ret = wait_for_completion_timeout(&cache->conversion, timeout);
 512
 513	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 514	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 515		   PVT_INTR_DVALID);
 516
 517	data = READ_ONCE(cache->data);
 518
 519	mutex_unlock(&pvt->iface_mtx);
 520
 521	if (!ret)
 522		return -ETIMEDOUT;
 523
 524	if (type == PVT_TEMP)
 525		*val = pvt_calc_poly(&poly_N_to_temp, data);
 526	else
 527		*val = pvt_calc_poly(&poly_N_to_volt, data);
 528
 529	return 0;
 530}
 531
 532static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 533			  bool is_low, long *val)
 534{
 535	return -EOPNOTSUPP;
 536}
 537
 538static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 539			   bool is_low, long val)
 540{
 541	return -EOPNOTSUPP;
 542}
 543
 544static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 545			  bool is_low, long *val)
 546{
 547	return -EOPNOTSUPP;
 548}
 549
 550static const struct hwmon_channel_info *pvt_channel_info[] = {
 551	HWMON_CHANNEL_INFO(chip,
 552			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 553	HWMON_CHANNEL_INFO(temp,
 554			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 555			   HWMON_T_OFFSET),
 556	HWMON_CHANNEL_INFO(in,
 557			   HWMON_I_INPUT | HWMON_I_LABEL,
 558			   HWMON_I_INPUT | HWMON_I_LABEL,
 559			   HWMON_I_INPUT | HWMON_I_LABEL,
 560			   HWMON_I_INPUT | HWMON_I_LABEL),
 561	NULL
 562};
 563
 564#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 565
 566static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
 567					      int ch)
 568{
 569	switch (type) {
 570	case hwmon_temp:
 571		if (ch < 0 || ch >= PVT_TEMP_CHS)
 572			return false;
 573		break;
 574	case hwmon_in:
 575		if (ch < 0 || ch >= PVT_VOLT_CHS)
 576			return false;
 577		break;
 578	default:
 579		break;
 580	}
 581
 582	/* The rest of the types are independent from the channel number. */
 583	return true;
 584}
 585
 586static umode_t pvt_hwmon_is_visible(const void *data,
 587				    enum hwmon_sensor_types type,
 588				    u32 attr, int ch)
 589{
 590	if (!pvt_hwmon_channel_is_valid(type, ch))
 591		return 0;
 592
 593	switch (type) {
 594	case hwmon_chip:
 595		switch (attr) {
 596		case hwmon_chip_update_interval:
 597			return 0644;
 598		}
 599		break;
 600	case hwmon_temp:
 601		switch (attr) {
 602		case hwmon_temp_input:
 603		case hwmon_temp_type:
 604		case hwmon_temp_label:
 605			return 0444;
 606		case hwmon_temp_min:
 607		case hwmon_temp_max:
 608			return pvt_limit_is_visible(ch);
 609		case hwmon_temp_min_alarm:
 610		case hwmon_temp_max_alarm:
 611			return pvt_alarm_is_visible(ch);
 612		case hwmon_temp_offset:
 613			return 0644;
 614		}
 615		break;
 616	case hwmon_in:
 617		switch (attr) {
 618		case hwmon_in_input:
 619		case hwmon_in_label:
 620			return 0444;
 621		case hwmon_in_min:
 622		case hwmon_in_max:
 623			return pvt_limit_is_visible(PVT_VOLT + ch);
 624		case hwmon_in_min_alarm:
 625		case hwmon_in_max_alarm:
 626			return pvt_alarm_is_visible(PVT_VOLT + ch);
 627		}
 628		break;
 629	default:
 630		break;
 631	}
 632
 633	return 0;
 634}
 635
 636static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
 637{
 638	u32 data;
 639
 640	data = readl(pvt->regs + PVT_CTRL);
 641	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
 642
 643	return 0;
 644}
 645
 646static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
 647{
 648	u32 trim;
 649	int ret;
 650
 651	/*
 652	 * Serialize trim update, since a part of the register is changed and
 653	 * the controller is supposed to be disabled during this operation.
 654	 */
 655	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 656	if (ret)
 657		return ret;
 658
 659	trim = pvt_calc_trim(val);
 660	pvt_set_trim(pvt, trim);
 661
 662	mutex_unlock(&pvt->iface_mtx);
 663
 664	return 0;
 665}
 666
 667static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
 668{
 669	int ret;
 670
 671	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 672	if (ret)
 673		return ret;
 674
 675	/* Return the result in msec as hwmon sysfs interface requires. */
 676	*val = ktime_to_ms(pvt->timeout);
 677
 678	mutex_unlock(&pvt->iface_mtx);
 679
 680	return 0;
 681}
 682
 683static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
 684{
 685	unsigned long rate;
 686	ktime_t kt, cache;
 687	u32 data;
 688	int ret;
 689
 690	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 691	if (!rate)
 692		return -ENODEV;
 693
 694	/*
 695	 * If alarms are enabled, the requested timeout must be divided
 696	 * between all available sensors to have the requested delay
 697	 * applicable to each individual sensor.
 698	 */
 699	cache = kt = ms_to_ktime(val);
 700#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 701	kt = ktime_divns(kt, PVT_SENSORS_NUM);
 702#endif
 703
 704	/*
 705	 * Subtract a constant lag, which always persists due to the limited
 706	 * PVT sampling rate. Make sure the timeout is not negative.
 707	 */
 708	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
 709	if (ktime_to_ns(kt) < 0)
 710		kt = ktime_set(0, 0);
 711
 712	/*
 713	 * Finally recalculate the timeout in terms of the reference clock
 714	 * period.
 715	 */
 716	data = ktime_divns(kt * rate, NSEC_PER_SEC);
 717
 718	/*
 719	 * Update the measurements delay, but lock the interface first, since
 720	 * we have to disable PVT in order to have the new delay actually
 721	 * updated.
 722	 */
 723	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 724	if (ret)
 725		return ret;
 726
 727	pvt_set_tout(pvt, data);
 728	pvt->timeout = cache;
 729
 730	mutex_unlock(&pvt->iface_mtx);
 731
 732	return 0;
 733}
 734
 735static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 736			  u32 attr, int ch, long *val)
 737{
 738	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 739
 740	if (!pvt_hwmon_channel_is_valid(type, ch))
 741		return -EINVAL;
 742
 743	switch (type) {
 744	case hwmon_chip:
 745		switch (attr) {
 746		case hwmon_chip_update_interval:
 747			return pvt_read_timeout(pvt, val);
 748		}
 749		break;
 750	case hwmon_temp:
 751		switch (attr) {
 752		case hwmon_temp_input:
 753			return pvt_read_data(pvt, ch, val);
 754		case hwmon_temp_type:
 755			*val = 1;
 756			return 0;
 757		case hwmon_temp_min:
 758			return pvt_read_limit(pvt, ch, true, val);
 759		case hwmon_temp_max:
 760			return pvt_read_limit(pvt, ch, false, val);
 761		case hwmon_temp_min_alarm:
 762			return pvt_read_alarm(pvt, ch, true, val);
 763		case hwmon_temp_max_alarm:
 764			return pvt_read_alarm(pvt, ch, false, val);
 765		case hwmon_temp_offset:
 766			return pvt_read_trim(pvt, val);
 767		}
 768		break;
 769	case hwmon_in:
 770		switch (attr) {
 771		case hwmon_in_input:
 772			return pvt_read_data(pvt, PVT_VOLT + ch, val);
 773		case hwmon_in_min:
 774			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
 775		case hwmon_in_max:
 776			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
 777		case hwmon_in_min_alarm:
 778			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
 779		case hwmon_in_max_alarm:
 780			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
 781		}
 782		break;
 783	default:
 784		break;
 785	}
 786
 787	return -EOPNOTSUPP;
 788}
 789
 790static int pvt_hwmon_read_string(struct device *dev,
 791				 enum hwmon_sensor_types type,
 792				 u32 attr, int ch, const char **str)
 793{
 794	if (!pvt_hwmon_channel_is_valid(type, ch))
 795		return -EINVAL;
 796
 797	switch (type) {
 798	case hwmon_temp:
 799		switch (attr) {
 800		case hwmon_temp_label:
 801			*str = pvt_info[ch].label;
 802			return 0;
 803		}
 804		break;
 805	case hwmon_in:
 806		switch (attr) {
 807		case hwmon_in_label:
 808			*str = pvt_info[PVT_VOLT + ch].label;
 809			return 0;
 810		}
 811		break;
 812	default:
 813		break;
 814	}
 815
 816	return -EOPNOTSUPP;
 817}
 818
 819static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
 820			   u32 attr, int ch, long val)
 821{
 822	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 823
 824	if (!pvt_hwmon_channel_is_valid(type, ch))
 825		return -EINVAL;
 826
 827	switch (type) {
 828	case hwmon_chip:
 829		switch (attr) {
 830		case hwmon_chip_update_interval:
 831			return pvt_write_timeout(pvt, val);
 832		}
 833		break;
 834	case hwmon_temp:
 835		switch (attr) {
 836		case hwmon_temp_min:
 837			return pvt_write_limit(pvt, ch, true, val);
 838		case hwmon_temp_max:
 839			return pvt_write_limit(pvt, ch, false, val);
 840		case hwmon_temp_offset:
 841			return pvt_write_trim(pvt, val);
 842		}
 843		break;
 844	case hwmon_in:
 845		switch (attr) {
 846		case hwmon_in_min:
 847			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
 848		case hwmon_in_max:
 849			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
 850		}
 851		break;
 852	default:
 853		break;
 854	}
 855
 856	return -EOPNOTSUPP;
 857}
 858
 859static const struct hwmon_ops pvt_hwmon_ops = {
 860	.is_visible = pvt_hwmon_is_visible,
 861	.read = pvt_hwmon_read,
 862	.read_string = pvt_hwmon_read_string,
 863	.write = pvt_hwmon_write
 864};
 865
 866static const struct hwmon_chip_info pvt_hwmon_info = {
 867	.ops = &pvt_hwmon_ops,
 868	.info = pvt_channel_info
 869};
 870
 871static void pvt_clear_data(void *data)
 872{
 873	struct pvt_hwmon *pvt = data;
 874#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 875	int idx;
 876
 877	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 878		complete_all(&pvt->cache[idx].conversion);
 879#endif
 880
 881	mutex_destroy(&pvt->iface_mtx);
 882}
 883
 884static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
 885{
 886	struct device *dev = &pdev->dev;
 887	struct pvt_hwmon *pvt;
 888	int ret, idx;
 889
 890	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
 891	if (!pvt)
 892		return ERR_PTR(-ENOMEM);
 893
 894	ret = devm_add_action(dev, pvt_clear_data, pvt);
 895	if (ret) {
 896		dev_err(dev, "Can't add PVT data clear action\n");
 897		return ERR_PTR(ret);
 898	}
 899
 900	pvt->dev = dev;
 901	pvt->sensor = PVT_SENSOR_FIRST;
 902	mutex_init(&pvt->iface_mtx);
 903
 904#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 905	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 906		seqlock_init(&pvt->cache[idx].data_seqlock);
 907#else
 908	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 909		init_completion(&pvt->cache[idx].conversion);
 910#endif
 911
 912	return pvt;
 913}
 914
 915static int pvt_request_regs(struct pvt_hwmon *pvt)
 916{
 917	struct platform_device *pdev = to_platform_device(pvt->dev);
 918	struct resource *res;
 919
 920	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 921	if (!res) {
 922		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
 923		return -EINVAL;
 924	}
 925
 926	pvt->regs = devm_ioremap_resource(pvt->dev, res);
 927	if (IS_ERR(pvt->regs))
 928		return PTR_ERR(pvt->regs);
 929
 930	return 0;
 931}
 932
 933static void pvt_disable_clks(void *data)
 934{
 935	struct pvt_hwmon *pvt = data;
 936
 937	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
 938}
 939
 940static int pvt_request_clks(struct pvt_hwmon *pvt)
 941{
 942	int ret;
 943
 944	pvt->clks[PVT_CLOCK_APB].id = "pclk";
 945	pvt->clks[PVT_CLOCK_REF].id = "ref";
 946
 947	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
 948	if (ret) {
 949		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
 950		return ret;
 951	}
 952
 953	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
 954	if (ret) {
 955		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
 956		return ret;
 957	}
 958
 959	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
 960	if (ret) {
 961		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
 962		return ret;
 963	}
 964
 965	return 0;
 966}
 967
 968static int pvt_check_pwr(struct pvt_hwmon *pvt)
 969{
 970	unsigned long tout;
 971	int ret = 0;
 972	u32 data;
 973
 974	/*
 975	 * Test out the sensor conversion functionality. If it is not done on
 976	 * time then the domain must have been unpowered and we won't be able
 977	 * to use the device later in this driver.
 978	 * Note If the power source is lost during the normal driver work the
 979	 * data read procedure will either return -ETIMEDOUT (for the
 980	 * alarm-less driver configuration) or just stop the repeated
 981	 * conversion. In the later case alas we won't be able to detect the
 982	 * problem.
 983	 */
 984	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
 985	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 986	pvt_set_tout(pvt, 0);
 987	readl(pvt->regs + PVT_DATA);
 988
 989	tout = PVT_TOUT_MIN / NSEC_PER_USEC;
 990	usleep_range(tout, 2 * tout);
 991
 992	data = readl(pvt->regs + PVT_DATA);
 993	if (!(data & PVT_DATA_VALID)) {
 994		ret = -ENODEV;
 995		dev_err(pvt->dev, "Sensor is powered down\n");
 996	}
 997
 998	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 999
1000	return ret;
1001}
1002
1003static int pvt_init_iface(struct pvt_hwmon *pvt)
1004{
1005	unsigned long rate;
1006	u32 trim, temp;
1007
1008	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
1009	if (!rate) {
1010		dev_err(pvt->dev, "Invalid reference clock rate\n");
1011		return -ENODEV;
1012	}
1013
1014	/*
1015	 * Make sure all interrupts and controller are disabled so not to
1016	 * accidentally have ISR executed before the driver data is fully
1017	 * initialized. Clear the IRQ status as well.
1018	 */
1019	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
1020	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1021	readl(pvt->regs + PVT_CLR_INTR);
1022	readl(pvt->regs + PVT_DATA);
1023
1024	/* Setup default sensor mode, timeout and temperature trim. */
1025	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1026	pvt_set_tout(pvt, PVT_TOUT_DEF);
1027
1028	/*
1029	 * Preserve the current ref-clock based delay (Ttotal) between the
1030	 * sensors data samples in the driver data so not to recalculate it
1031	 * each time on the data requests and timeout reads. It consists of the
1032	 * delay introduced by the internal ref-clock timer (N / Fclk) and the
1033	 * constant timeout caused by each conversion latency (Tmin):
1034	 *   Ttotal = N / Fclk + Tmin
1035	 * If alarms are enabled the sensors are polled one after another and
1036	 * in order to get the next measurement of a particular sensor the
1037	 * caller will have to wait for at most until all the others are
1038	 * polled. In that case the formulae will look a bit different:
1039	 *   Ttotal = 5 * (N / Fclk + Tmin)
1040	 */
1041#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1042	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
1043	pvt->timeout = ktime_divns(pvt->timeout, rate);
1044	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
1045#else
1046	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
1047	pvt->timeout = ktime_divns(pvt->timeout, rate);
1048	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
1049#endif
1050
1051	trim = PVT_TRIM_DEF;
1052	if (!of_property_read_u32(pvt->dev->of_node,
1053	     "baikal,pvt-temp-offset-millicelsius", &temp))
1054		trim = pvt_calc_trim(temp);
1055
1056	pvt_set_trim(pvt, trim);
1057
1058	return 0;
1059}
1060
1061static int pvt_request_irq(struct pvt_hwmon *pvt)
1062{
1063	struct platform_device *pdev = to_platform_device(pvt->dev);
1064	int ret;
1065
1066	pvt->irq = platform_get_irq(pdev, 0);
1067	if (pvt->irq < 0)
1068		return pvt->irq;
1069
1070	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1071					pvt_hard_isr, pvt_soft_isr,
1072#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1073					IRQF_SHARED | IRQF_TRIGGER_HIGH |
1074					IRQF_ONESHOT,
1075#else
1076					IRQF_SHARED | IRQF_TRIGGER_HIGH,
1077#endif
1078					"pvt", pvt);
1079	if (ret) {
1080		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1081		return ret;
1082	}
1083
1084	return 0;
1085}
1086
1087static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1088{
1089	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1090		&pvt_hwmon_info, NULL);
1091	if (IS_ERR(pvt->hwmon)) {
1092		dev_err(pvt->dev, "Couldn't create hwmon device\n");
1093		return PTR_ERR(pvt->hwmon);
1094	}
1095
1096	return 0;
1097}
1098
1099#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1100
1101static void pvt_disable_iface(void *data)
1102{
1103	struct pvt_hwmon *pvt = data;
1104
1105	mutex_lock(&pvt->iface_mtx);
1106	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1107	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1108		   PVT_INTR_DVALID);
1109	mutex_unlock(&pvt->iface_mtx);
1110}
1111
1112static int pvt_enable_iface(struct pvt_hwmon *pvt)
1113{
1114	int ret;
1115
1116	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1117	if (ret) {
1118		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1119		return ret;
1120	}
1121
1122	/*
1123	 * Enable sensors data conversion and IRQ. We need to lock the
1124	 * interface mutex since hwmon has just been created and the
1125	 * corresponding sysfs files are accessible from user-space,
1126	 * which theoretically may cause races.
1127	 */
1128	mutex_lock(&pvt->iface_mtx);
1129	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1130	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1131	mutex_unlock(&pvt->iface_mtx);
1132
1133	return 0;
1134}
1135
1136#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1137
1138static int pvt_enable_iface(struct pvt_hwmon *pvt)
1139{
1140	return 0;
1141}
1142
1143#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1144
1145static int pvt_probe(struct platform_device *pdev)
1146{
1147	struct pvt_hwmon *pvt;
1148	int ret;
1149
1150	pvt = pvt_create_data(pdev);
1151	if (IS_ERR(pvt))
1152		return PTR_ERR(pvt);
1153
1154	ret = pvt_request_regs(pvt);
1155	if (ret)
1156		return ret;
1157
1158	ret = pvt_request_clks(pvt);
1159	if (ret)
1160		return ret;
1161
1162	ret = pvt_check_pwr(pvt);
1163	if (ret)
1164		return ret;
1165
1166	ret = pvt_init_iface(pvt);
1167	if (ret)
1168		return ret;
1169
1170	ret = pvt_request_irq(pvt);
1171	if (ret)
1172		return ret;
1173
1174	ret = pvt_create_hwmon(pvt);
1175	if (ret)
1176		return ret;
1177
1178	ret = pvt_enable_iface(pvt);
1179	if (ret)
1180		return ret;
1181
1182	return 0;
1183}
1184
1185static const struct of_device_id pvt_of_match[] = {
1186	{ .compatible = "baikal,bt1-pvt" },
1187	{ }
1188};
1189MODULE_DEVICE_TABLE(of, pvt_of_match);
1190
1191static struct platform_driver pvt_driver = {
1192	.probe = pvt_probe,
1193	.driver = {
1194		.name = "bt1-pvt",
1195		.of_match_table = pvt_of_match
1196	}
1197};
1198module_platform_driver(pvt_driver);
1199
1200MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1201MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1202MODULE_LICENSE("GPL v2");