Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
   4 *
   5 * Authors:
   6 *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
   7 *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
   8 *
   9 * Baikal-T1 Process, Voltage, Temperature sensor driver
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bitops.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/device.h>
  17#include <linux/hwmon-sysfs.h>
  18#include <linux/hwmon.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/ktime.h>
  23#include <linux/limits.h>
  24#include <linux/module.h>
  25#include <linux/mutex.h>
  26#include <linux/of.h>
  27#include <linux/platform_device.h>
  28#include <linux/seqlock.h>
  29#include <linux/sysfs.h>
  30#include <linux/types.h>
  31
  32#include "bt1-pvt.h"
  33
  34/*
  35 * For the sake of the code simplification we created the sensors info table
  36 * with the sensor names, activation modes, threshold registers base address
  37 * and the thresholds bit fields.
  38 */
  39static const struct pvt_sensor_info pvt_info[] = {
  40	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
  41	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
  42	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
  43	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
  44	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
  45};
  46
  47/*
  48 * The original translation formulae of the temperature (in degrees of Celsius)
  49 * to PVT data and vice-versa are following:
  50 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
  51 *     1.7204e2,
  52 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
  53 *     3.1020e-1*(N^1) - 4.838e1,
  54 * where T = [-48.380, 147.438]C and N = [0, 1023].
  55 * They must be accordingly altered to be suitable for the integer arithmetics.
  56 * The technique is called 'factor redistribution', which just makes sure the
  57 * multiplications and divisions are made so to have a result of the operations
  58 * within the integer numbers limit. In addition we need to translate the
  59 * formulae to accept millidegrees of Celsius. Here what they look like after
  60 * the alterations:
  61 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
  62 *     17204e2) / 1e4,
  63 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
  64 *     48380,
  65 * where T = [-48380, 147438] mC and N = [0, 1023].
  66 */
  67static const struct pvt_poly __maybe_unused poly_temp_to_N = {
  68	.total_divider = 10000,
  69	.terms = {
  70		{4, 18322, 10000, 10000},
  71		{3, 2343, 10000, 10},
  72		{2, 87018, 10000, 10},
  73		{1, 39269, 1000, 1},
  74		{0, 1720400, 1, 1}
  75	}
  76};
  77
  78static const struct pvt_poly poly_N_to_temp = {
  79	.total_divider = 1,
  80	.terms = {
  81		{4, -16743, 1000, 1},
  82		{3, 81542, 1000, 1},
  83		{2, -182010, 1000, 1},
  84		{1, 310200, 1000, 1},
  85		{0, -48380, 1, 1}
  86	}
  87};
  88
  89/*
  90 * Similar alterations are performed for the voltage conversion equations.
  91 * The original formulae are:
  92 * N = 1.8658e3*V - 1.1572e3,
  93 * V = (N + 1.1572e3) / 1.8658e3,
  94 * where V = [0.620, 1.168] V and N = [0, 1023].
  95 * After the optimization they looks as follows:
  96 * N = (18658e-3*V - 11572) / 10,
  97 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
  98 */
  99static const struct pvt_poly __maybe_unused poly_volt_to_N = {
 100	.total_divider = 10,
 101	.terms = {
 102		{1, 18658, 1000, 1},
 103		{0, -11572, 1, 1}
 104	}
 105};
 106
 107static const struct pvt_poly poly_N_to_volt = {
 108	.total_divider = 10,
 109	.terms = {
 110		{1, 100000, 18658, 1},
 111		{0, 115720000, 1, 18658}
 112	}
 113};
 114
 115/*
 116 * Here is the polynomial calculation function, which performs the
 117 * redistributed terms calculations. It's pretty straightforward. We walk
 118 * over each degree term up to the free one, and perform the redistributed
 119 * multiplication of the term coefficient, its divider (as for the rationale
 120 * fraction representation), data power and the rational fraction divider
 121 * leftover. Then all of this is collected in a total sum variable, which
 122 * value is normalized by the total divider before being returned.
 123 */
 124static long pvt_calc_poly(const struct pvt_poly *poly, long data)
 125{
 126	const struct pvt_poly_term *term = poly->terms;
 127	long tmp, ret = 0;
 128	int deg;
 129
 130	do {
 131		tmp = term->coef;
 132		for (deg = 0; deg < term->deg; ++deg)
 133			tmp = mult_frac(tmp, data, term->divider);
 134		ret += tmp / term->divider_leftover;
 135	} while ((term++)->deg);
 136
 137	return ret / poly->total_divider;
 138}
 139
 140static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
 141{
 142	u32 old;
 143
 144	old = readl_relaxed(reg);
 145	writel((old & ~mask) | (data & mask), reg);
 146
 147	return old & mask;
 148}
 149
 150/*
 151 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
 152 * So first we disable it, then set the new mode together with the controller
 153 * getting back enabled. The same concerns the temperature trim and
 154 * measurements timeout. If it is necessary the interface mutex is supposed
 155 * to be locked at the time the operations are performed.
 156 */
 157static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
 158{
 159	u32 old;
 160
 161	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
 162
 163	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 164	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
 165		   mode | old);
 166}
 167
 168static inline u32 pvt_calc_trim(long temp)
 169{
 170	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
 171
 172	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
 173}
 174
 175static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
 176{
 177	u32 old;
 178
 179	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
 180
 181	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 182	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
 183		   trim | old);
 184}
 185
 186static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
 187{
 188	u32 old;
 189
 190	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 191	writel(tout, pvt->regs + PVT_TTIMEOUT);
 192	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
 193}
 194
 195/*
 196 * This driver can optionally provide the hwmon alarms for each sensor the PVT
 197 * controller supports. The alarms functionality is made compile-time
 198 * configurable due to the hardware interface implementation peculiarity
 199 * described further in this comment. So in case if alarms are unnecessary in
 200 * your system design it's recommended to have them disabled to prevent the PVT
 201 * IRQs being periodically raised to get the data cache/alarms status up to
 202 * date.
 203 *
 204 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
 205 * but is equipped with a dedicated control wrapper. It exposes the PVT
 206 * sub-block registers space via the APB3 bus. In addition the wrapper provides
 207 * a common interrupt vector of the sensors conversion completion events and
 208 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
 209 * through. There is only one sensor can be activated at a time, for which the
 210 * thresholds comparator is enabled right after the data conversion is
 211 * completed. Due to this if alarms need to be implemented for all available
 212 * sensors we can't just set the thresholds and enable the interrupts. We need
 213 * to enable the sensors one after another and let the controller to detect
 214 * the alarms by itself at each conversion. This also makes pointless to handle
 215 * the alarms interrupts, since in occasion they happen synchronously with
 216 * data conversion completion. The best driver design would be to have the
 217 * completion interrupts enabled only and keep the converted value in the
 218 * driver data cache. This solution is implemented if hwmon alarms are enabled
 219 * in this driver. In case if the alarms are disabled, the conversion is
 220 * performed on demand at the time a sensors input file is read.
 221 */
 222
 223#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 224
 225#define pvt_hard_isr NULL
 226
 227static irqreturn_t pvt_soft_isr(int irq, void *data)
 228{
 229	const struct pvt_sensor_info *info;
 230	struct pvt_hwmon *pvt = data;
 231	struct pvt_cache *cache;
 232	u32 val, thres_sts, old;
 233
 234	/*
 235	 * DVALID bit will be cleared by reading the data. We need to save the
 236	 * status before the next conversion happens. Threshold events will be
 237	 * handled a bit later.
 238	 */
 239	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
 240
 241	/*
 242	 * Then lets recharge the PVT interface with the next sampling mode.
 243	 * Lock the interface mutex to serialize trim, timeouts and alarm
 244	 * thresholds settings.
 245	 */
 246	cache = &pvt->cache[pvt->sensor];
 247	info = &pvt_info[pvt->sensor];
 248	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
 249		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
 250
 251	/*
 252	 * For some reason we have to mask the interrupt before changing the
 253	 * mode, otherwise sometimes the temperature mode doesn't get
 254	 * activated even though the actual mode in the ctrl register
 255	 * corresponds to one. Then we read the data. By doing so we also
 256	 * recharge the data conversion. After this the mode corresponding
 257	 * to the next sensor in the row is set. Finally we enable the
 258	 * interrupts back.
 259	 */
 260	mutex_lock(&pvt->iface_mtx);
 261
 262	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 263			 PVT_INTR_DVALID);
 264
 265	val = readl(pvt->regs + PVT_DATA);
 266
 267	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
 268
 269	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
 270
 271	mutex_unlock(&pvt->iface_mtx);
 272
 273	/*
 274	 * We can now update the data cache with data just retrieved from the
 275	 * sensor. Lock write-seqlock to make sure the reader has a coherent
 276	 * data.
 277	 */
 278	write_seqlock(&cache->data_seqlock);
 279
 280	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
 281
 282	write_sequnlock(&cache->data_seqlock);
 283
 284	/*
 285	 * While PVT core is doing the next mode data conversion, we'll check
 286	 * whether the alarms were triggered for the current sensor. Note that
 287	 * according to the documentation only one threshold IRQ status can be
 288	 * set at a time, that's why if-else statement is utilized.
 289	 */
 290	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
 291		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
 292		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
 293				   info->channel);
 294	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
 295		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
 296		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
 297				   info->channel);
 298	}
 299
 300	return IRQ_HANDLED;
 301}
 302
 303static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 304{
 305	return 0644;
 306}
 307
 308static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 309{
 310	return 0444;
 311}
 312
 313static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 314			 long *val)
 315{
 316	struct pvt_cache *cache = &pvt->cache[type];
 317	unsigned int seq;
 318	u32 data;
 319
 320	do {
 321		seq = read_seqbegin(&cache->data_seqlock);
 322		data = cache->data;
 323	} while (read_seqretry(&cache->data_seqlock, seq));
 324
 325	if (type == PVT_TEMP)
 326		*val = pvt_calc_poly(&poly_N_to_temp, data);
 327	else
 328		*val = pvt_calc_poly(&poly_N_to_volt, data);
 329
 330	return 0;
 331}
 332
 333static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 334			  bool is_low, long *val)
 335{
 336	u32 data;
 337
 338	/* No need in serialization, since it is just read from MMIO. */
 339	data = readl(pvt->regs + pvt_info[type].thres_base);
 340
 341	if (is_low)
 342		data = FIELD_GET(PVT_THRES_LO_MASK, data);
 343	else
 344		data = FIELD_GET(PVT_THRES_HI_MASK, data);
 345
 346	if (type == PVT_TEMP)
 347		*val = pvt_calc_poly(&poly_N_to_temp, data);
 348	else
 349		*val = pvt_calc_poly(&poly_N_to_volt, data);
 350
 351	return 0;
 352}
 353
 354static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 355			   bool is_low, long val)
 356{
 357	u32 data, limit, mask;
 358	int ret;
 359
 360	if (type == PVT_TEMP) {
 361		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
 362		data = pvt_calc_poly(&poly_temp_to_N, val);
 363	} else {
 364		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
 365		data = pvt_calc_poly(&poly_volt_to_N, val);
 366	}
 367
 368	/* Serialize limit update, since a part of the register is changed. */
 369	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 370	if (ret)
 371		return ret;
 372
 373	/* Make sure the upper and lower ranges don't intersect. */
 374	limit = readl(pvt->regs + pvt_info[type].thres_base);
 375	if (is_low) {
 376		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
 377		data = clamp_val(data, PVT_DATA_MIN, limit);
 378		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
 379		mask = PVT_THRES_LO_MASK;
 380	} else {
 381		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
 382		data = clamp_val(data, limit, PVT_DATA_MAX);
 383		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
 384		mask = PVT_THRES_HI_MASK;
 385	}
 386
 387	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
 388
 389	mutex_unlock(&pvt->iface_mtx);
 390
 391	return 0;
 392}
 393
 394static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 395			  bool is_low, long *val)
 396{
 397	if (is_low)
 398		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
 399	else
 400		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
 401
 402	return 0;
 403}
 404
 405static const struct hwmon_channel_info *pvt_channel_info[] = {
 406	HWMON_CHANNEL_INFO(chip,
 407			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 408	HWMON_CHANNEL_INFO(temp,
 409			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 410			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
 411			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
 412			   HWMON_T_OFFSET),
 413	HWMON_CHANNEL_INFO(in,
 414			   HWMON_I_INPUT | HWMON_I_LABEL |
 415			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 416			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 417			   HWMON_I_INPUT | HWMON_I_LABEL |
 418			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 419			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 420			   HWMON_I_INPUT | HWMON_I_LABEL |
 421			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 422			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 423			   HWMON_I_INPUT | HWMON_I_LABEL |
 424			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 425			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
 426	NULL
 427};
 428
 429#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 430
 431static irqreturn_t pvt_hard_isr(int irq, void *data)
 432{
 433	struct pvt_hwmon *pvt = data;
 434	struct pvt_cache *cache;
 435	u32 val;
 436
 437	/*
 438	 * Mask the DVALID interrupt so after exiting from the handler a
 439	 * repeated conversion wouldn't happen.
 440	 */
 441	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 442		   PVT_INTR_DVALID);
 443
 444	/*
 445	 * Nothing special for alarm-less driver. Just read the data, update
 446	 * the cache and notify a waiter of this event.
 447	 */
 448	val = readl(pvt->regs + PVT_DATA);
 449	if (!(val & PVT_DATA_VALID)) {
 450		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
 451		return IRQ_HANDLED;
 452	}
 453
 454	cache = &pvt->cache[pvt->sensor];
 455
 456	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
 457
 458	complete(&cache->conversion);
 459
 460	return IRQ_HANDLED;
 461}
 462
 463#define pvt_soft_isr NULL
 464
 465static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 466{
 467	return 0;
 468}
 469
 470static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 471{
 472	return 0;
 473}
 474
 475static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 476			 long *val)
 477{
 478	struct pvt_cache *cache = &pvt->cache[type];
 479	u32 data;
 480	int ret;
 481
 482	/*
 483	 * Lock PVT conversion interface until data cache is updated. The
 484	 * data read procedure is following: set the requested PVT sensor
 485	 * mode, enable IRQ and conversion, wait until conversion is finished,
 486	 * then disable conversion and IRQ, and read the cached data.
 487	 */
 488	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 489	if (ret)
 490		return ret;
 491
 492	pvt->sensor = type;
 493	pvt_set_mode(pvt, pvt_info[type].mode);
 494
 495	/*
 496	 * Unmask the DVALID interrupt and enable the sensors conversions.
 497	 * Do the reverse procedure when conversion is done.
 498	 */
 499	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
 500	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 501
 502	wait_for_completion(&cache->conversion);
 503
 504	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 505	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 506		   PVT_INTR_DVALID);
 507
 508	data = READ_ONCE(cache->data);
 509
 510	mutex_unlock(&pvt->iface_mtx);
 511
 512	if (type == PVT_TEMP)
 513		*val = pvt_calc_poly(&poly_N_to_temp, data);
 514	else
 515		*val = pvt_calc_poly(&poly_N_to_volt, data);
 516
 517	return 0;
 518}
 519
 520static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 521			  bool is_low, long *val)
 522{
 523	return -EOPNOTSUPP;
 524}
 525
 526static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 527			   bool is_low, long val)
 528{
 529	return -EOPNOTSUPP;
 530}
 531
 532static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 533			  bool is_low, long *val)
 534{
 535	return -EOPNOTSUPP;
 536}
 537
 538static const struct hwmon_channel_info *pvt_channel_info[] = {
 539	HWMON_CHANNEL_INFO(chip,
 540			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 541	HWMON_CHANNEL_INFO(temp,
 542			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 543			   HWMON_T_OFFSET),
 544	HWMON_CHANNEL_INFO(in,
 545			   HWMON_I_INPUT | HWMON_I_LABEL,
 546			   HWMON_I_INPUT | HWMON_I_LABEL,
 547			   HWMON_I_INPUT | HWMON_I_LABEL,
 548			   HWMON_I_INPUT | HWMON_I_LABEL),
 549	NULL
 550};
 551
 552#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 553
 554static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
 555					      int ch)
 556{
 557	switch (type) {
 558	case hwmon_temp:
 559		if (ch < 0 || ch >= PVT_TEMP_CHS)
 560			return false;
 561		break;
 562	case hwmon_in:
 563		if (ch < 0 || ch >= PVT_VOLT_CHS)
 564			return false;
 565		break;
 566	default:
 567		break;
 568	}
 569
 570	/* The rest of the types are independent from the channel number. */
 571	return true;
 572}
 573
 574static umode_t pvt_hwmon_is_visible(const void *data,
 575				    enum hwmon_sensor_types type,
 576				    u32 attr, int ch)
 577{
 578	if (!pvt_hwmon_channel_is_valid(type, ch))
 579		return 0;
 580
 581	switch (type) {
 582	case hwmon_chip:
 583		switch (attr) {
 584		case hwmon_chip_update_interval:
 585			return 0644;
 586		}
 587		break;
 588	case hwmon_temp:
 589		switch (attr) {
 590		case hwmon_temp_input:
 591		case hwmon_temp_type:
 592		case hwmon_temp_label:
 593			return 0444;
 594		case hwmon_temp_min:
 595		case hwmon_temp_max:
 596			return pvt_limit_is_visible(ch);
 597		case hwmon_temp_min_alarm:
 598		case hwmon_temp_max_alarm:
 599			return pvt_alarm_is_visible(ch);
 600		case hwmon_temp_offset:
 601			return 0644;
 602		}
 603		break;
 604	case hwmon_in:
 605		switch (attr) {
 606		case hwmon_in_input:
 607		case hwmon_in_label:
 608			return 0444;
 609		case hwmon_in_min:
 610		case hwmon_in_max:
 611			return pvt_limit_is_visible(PVT_VOLT + ch);
 612		case hwmon_in_min_alarm:
 613		case hwmon_in_max_alarm:
 614			return pvt_alarm_is_visible(PVT_VOLT + ch);
 615		}
 616		break;
 617	default:
 618		break;
 619	}
 620
 621	return 0;
 622}
 623
 624static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
 625{
 626	u32 data;
 627
 628	data = readl(pvt->regs + PVT_CTRL);
 629	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
 630
 631	return 0;
 632}
 633
 634static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
 635{
 636	u32 trim;
 637	int ret;
 638
 639	/*
 640	 * Serialize trim update, since a part of the register is changed and
 641	 * the controller is supposed to be disabled during this operation.
 642	 */
 643	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 644	if (ret)
 645		return ret;
 646
 647	trim = pvt_calc_trim(val);
 648	pvt_set_trim(pvt, trim);
 649
 650	mutex_unlock(&pvt->iface_mtx);
 651
 652	return 0;
 653}
 654
 655static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
 656{
 657	unsigned long rate;
 658	ktime_t kt;
 659	u32 data;
 660
 661	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 662	if (!rate)
 663		return -ENODEV;
 664
 665	/*
 666	 * Don't bother with mutex here, since we just read data from MMIO.
 667	 * We also have to scale the ticks timeout up to compensate the
 668	 * ms-ns-data translations.
 669	 */
 670	data = readl(pvt->regs + PVT_TTIMEOUT) + 1;
 671
 672	/*
 673	 * Calculate ref-clock based delay (Ttotal) between two consecutive
 674	 * data samples of the same sensor. So we first must calculate the
 675	 * delay introduced by the internal ref-clock timer (Tref * Fclk).
 676	 * Then add the constant timeout cuased by each conversion latency
 677	 * (Tmin). The basic formulae for each conversion is following:
 678	 *   Ttotal = Tref * Fclk + Tmin
 679	 * Note if alarms are enabled the sensors are polled one after
 680	 * another, so in order to have the delay being applicable for each
 681	 * sensor the requested value must be equally redistirbuted.
 682	 */
 683#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 684	kt = ktime_set(PVT_SENSORS_NUM * (u64)data, 0);
 685	kt = ktime_divns(kt, rate);
 686	kt = ktime_add_ns(kt, PVT_SENSORS_NUM * PVT_TOUT_MIN);
 687#else
 688	kt = ktime_set(data, 0);
 689	kt = ktime_divns(kt, rate);
 690	kt = ktime_add_ns(kt, PVT_TOUT_MIN);
 691#endif
 692
 693	/* Return the result in msec as hwmon sysfs interface requires. */
 694	*val = ktime_to_ms(kt);
 695
 696	return 0;
 697}
 698
 699static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
 700{
 701	unsigned long rate;
 702	ktime_t kt;
 703	u32 data;
 704	int ret;
 705
 706	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 707	if (!rate)
 708		return -ENODEV;
 709
 710	/*
 711	 * If alarms are enabled, the requested timeout must be divided
 712	 * between all available sensors to have the requested delay
 713	 * applicable to each individual sensor.
 714	 */
 715	kt = ms_to_ktime(val);
 716#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 717	kt = ktime_divns(kt, PVT_SENSORS_NUM);
 718#endif
 719
 720	/*
 721	 * Subtract a constant lag, which always persists due to the limited
 722	 * PVT sampling rate. Make sure the timeout is not negative.
 723	 */
 724	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
 725	if (ktime_to_ns(kt) < 0)
 726		kt = ktime_set(0, 0);
 727
 728	/*
 729	 * Finally recalculate the timeout in terms of the reference clock
 730	 * period.
 731	 */
 732	data = ktime_divns(kt * rate, NSEC_PER_SEC);
 733
 734	/*
 735	 * Update the measurements delay, but lock the interface first, since
 736	 * we have to disable PVT in order to have the new delay actually
 737	 * updated.
 738	 */
 739	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 740	if (ret)
 741		return ret;
 742
 743	pvt_set_tout(pvt, data);
 744
 745	mutex_unlock(&pvt->iface_mtx);
 746
 747	return 0;
 748}
 749
 750static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 751			  u32 attr, int ch, long *val)
 752{
 753	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 754
 755	if (!pvt_hwmon_channel_is_valid(type, ch))
 756		return -EINVAL;
 757
 758	switch (type) {
 759	case hwmon_chip:
 760		switch (attr) {
 761		case hwmon_chip_update_interval:
 762			return pvt_read_timeout(pvt, val);
 763		}
 764		break;
 765	case hwmon_temp:
 766		switch (attr) {
 767		case hwmon_temp_input:
 768			return pvt_read_data(pvt, ch, val);
 769		case hwmon_temp_type:
 770			*val = 1;
 771			return 0;
 772		case hwmon_temp_min:
 773			return pvt_read_limit(pvt, ch, true, val);
 774		case hwmon_temp_max:
 775			return pvt_read_limit(pvt, ch, false, val);
 776		case hwmon_temp_min_alarm:
 777			return pvt_read_alarm(pvt, ch, true, val);
 778		case hwmon_temp_max_alarm:
 779			return pvt_read_alarm(pvt, ch, false, val);
 780		case hwmon_temp_offset:
 781			return pvt_read_trim(pvt, val);
 782		}
 783		break;
 784	case hwmon_in:
 785		switch (attr) {
 786		case hwmon_in_input:
 787			return pvt_read_data(pvt, PVT_VOLT + ch, val);
 788		case hwmon_in_min:
 789			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
 790		case hwmon_in_max:
 791			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
 792		case hwmon_in_min_alarm:
 793			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
 794		case hwmon_in_max_alarm:
 795			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
 796		}
 797		break;
 798	default:
 799		break;
 800	}
 801
 802	return -EOPNOTSUPP;
 803}
 804
 805static int pvt_hwmon_read_string(struct device *dev,
 806				 enum hwmon_sensor_types type,
 807				 u32 attr, int ch, const char **str)
 808{
 809	if (!pvt_hwmon_channel_is_valid(type, ch))
 810		return -EINVAL;
 811
 812	switch (type) {
 813	case hwmon_temp:
 814		switch (attr) {
 815		case hwmon_temp_label:
 816			*str = pvt_info[ch].label;
 817			return 0;
 818		}
 819		break;
 820	case hwmon_in:
 821		switch (attr) {
 822		case hwmon_in_label:
 823			*str = pvt_info[PVT_VOLT + ch].label;
 824			return 0;
 825		}
 826		break;
 827	default:
 828		break;
 829	}
 830
 831	return -EOPNOTSUPP;
 832}
 833
 834static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
 835			   u32 attr, int ch, long val)
 836{
 837	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 838
 839	if (!pvt_hwmon_channel_is_valid(type, ch))
 840		return -EINVAL;
 841
 842	switch (type) {
 843	case hwmon_chip:
 844		switch (attr) {
 845		case hwmon_chip_update_interval:
 846			return pvt_write_timeout(pvt, val);
 847		}
 848		break;
 849	case hwmon_temp:
 850		switch (attr) {
 851		case hwmon_temp_min:
 852			return pvt_write_limit(pvt, ch, true, val);
 853		case hwmon_temp_max:
 854			return pvt_write_limit(pvt, ch, false, val);
 855		case hwmon_temp_offset:
 856			return pvt_write_trim(pvt, val);
 857		}
 858		break;
 859	case hwmon_in:
 860		switch (attr) {
 861		case hwmon_in_min:
 862			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
 863		case hwmon_in_max:
 864			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
 865		}
 866		break;
 867	default:
 868		break;
 869	}
 870
 871	return -EOPNOTSUPP;
 872}
 873
 874static const struct hwmon_ops pvt_hwmon_ops = {
 875	.is_visible = pvt_hwmon_is_visible,
 876	.read = pvt_hwmon_read,
 877	.read_string = pvt_hwmon_read_string,
 878	.write = pvt_hwmon_write
 879};
 880
 881static const struct hwmon_chip_info pvt_hwmon_info = {
 882	.ops = &pvt_hwmon_ops,
 883	.info = pvt_channel_info
 884};
 885
 886static void pvt_clear_data(void *data)
 887{
 888	struct pvt_hwmon *pvt = data;
 889#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 890	int idx;
 891
 892	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 893		complete_all(&pvt->cache[idx].conversion);
 894#endif
 895
 896	mutex_destroy(&pvt->iface_mtx);
 897}
 898
 899static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
 900{
 901	struct device *dev = &pdev->dev;
 902	struct pvt_hwmon *pvt;
 903	int ret, idx;
 904
 905	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
 906	if (!pvt)
 907		return ERR_PTR(-ENOMEM);
 908
 909	ret = devm_add_action(dev, pvt_clear_data, pvt);
 910	if (ret) {
 911		dev_err(dev, "Can't add PVT data clear action\n");
 912		return ERR_PTR(ret);
 913	}
 914
 915	pvt->dev = dev;
 916	pvt->sensor = PVT_SENSOR_FIRST;
 917	mutex_init(&pvt->iface_mtx);
 918
 919#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 920	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 921		seqlock_init(&pvt->cache[idx].data_seqlock);
 922#else
 923	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 924		init_completion(&pvt->cache[idx].conversion);
 925#endif
 926
 927	return pvt;
 928}
 929
 930static int pvt_request_regs(struct pvt_hwmon *pvt)
 931{
 932	struct platform_device *pdev = to_platform_device(pvt->dev);
 933	struct resource *res;
 934
 935	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 936	if (!res) {
 937		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
 938		return -EINVAL;
 939	}
 940
 941	pvt->regs = devm_ioremap_resource(pvt->dev, res);
 942	if (IS_ERR(pvt->regs)) {
 943		dev_err(pvt->dev, "Couldn't map PVT registers\n");
 944		return PTR_ERR(pvt->regs);
 945	}
 946
 947	return 0;
 948}
 949
 950static void pvt_disable_clks(void *data)
 951{
 952	struct pvt_hwmon *pvt = data;
 953
 954	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
 955}
 956
 957static int pvt_request_clks(struct pvt_hwmon *pvt)
 958{
 959	int ret;
 960
 961	pvt->clks[PVT_CLOCK_APB].id = "pclk";
 962	pvt->clks[PVT_CLOCK_REF].id = "ref";
 963
 964	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
 965	if (ret) {
 966		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
 967		return ret;
 968	}
 969
 970	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
 971	if (ret) {
 972		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
 973		return ret;
 974	}
 975
 976	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
 977	if (ret) {
 978		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
 979		return ret;
 980	}
 981
 982	return 0;
 983}
 984
 985static void pvt_init_iface(struct pvt_hwmon *pvt)
 986{
 987	u32 trim, temp;
 988
 989	/*
 990	 * Make sure all interrupts and controller are disabled so not to
 991	 * accidentally have ISR executed before the driver data is fully
 992	 * initialized. Clear the IRQ status as well.
 993	 */
 994	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
 995	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 996	readl(pvt->regs + PVT_CLR_INTR);
 997	readl(pvt->regs + PVT_DATA);
 998
 999	/* Setup default sensor mode, timeout and temperature trim. */
1000	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1001	pvt_set_tout(pvt, PVT_TOUT_DEF);
1002
1003	trim = PVT_TRIM_DEF;
1004	if (!of_property_read_u32(pvt->dev->of_node,
1005	     "baikal,pvt-temp-offset-millicelsius", &temp))
1006		trim = pvt_calc_trim(temp);
1007
1008	pvt_set_trim(pvt, trim);
1009}
1010
1011static int pvt_request_irq(struct pvt_hwmon *pvt)
1012{
1013	struct platform_device *pdev = to_platform_device(pvt->dev);
1014	int ret;
1015
1016	pvt->irq = platform_get_irq(pdev, 0);
1017	if (pvt->irq < 0)
1018		return pvt->irq;
1019
1020	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1021					pvt_hard_isr, pvt_soft_isr,
1022#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1023					IRQF_SHARED | IRQF_TRIGGER_HIGH |
1024					IRQF_ONESHOT,
1025#else
1026					IRQF_SHARED | IRQF_TRIGGER_HIGH,
1027#endif
1028					"pvt", pvt);
1029	if (ret) {
1030		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1031		return ret;
1032	}
1033
1034	return 0;
1035}
1036
1037static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1038{
1039	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1040		&pvt_hwmon_info, NULL);
1041	if (IS_ERR(pvt->hwmon)) {
1042		dev_err(pvt->dev, "Couldn't create hwmon device\n");
1043		return PTR_ERR(pvt->hwmon);
1044	}
1045
1046	return 0;
1047}
1048
1049#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1050
1051static void pvt_disable_iface(void *data)
1052{
1053	struct pvt_hwmon *pvt = data;
1054
1055	mutex_lock(&pvt->iface_mtx);
1056	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1057	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1058		   PVT_INTR_DVALID);
1059	mutex_unlock(&pvt->iface_mtx);
1060}
1061
1062static int pvt_enable_iface(struct pvt_hwmon *pvt)
1063{
1064	int ret;
1065
1066	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1067	if (ret) {
1068		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1069		return ret;
1070	}
1071
1072	/*
1073	 * Enable sensors data conversion and IRQ. We need to lock the
1074	 * interface mutex since hwmon has just been created and the
1075	 * corresponding sysfs files are accessible from user-space,
1076	 * which theoretically may cause races.
1077	 */
1078	mutex_lock(&pvt->iface_mtx);
1079	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1080	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1081	mutex_unlock(&pvt->iface_mtx);
1082
1083	return 0;
1084}
1085
1086#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1087
1088static int pvt_enable_iface(struct pvt_hwmon *pvt)
1089{
1090	return 0;
1091}
1092
1093#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1094
1095static int pvt_probe(struct platform_device *pdev)
1096{
1097	struct pvt_hwmon *pvt;
1098	int ret;
1099
1100	pvt = pvt_create_data(pdev);
1101	if (IS_ERR(pvt))
1102		return PTR_ERR(pvt);
1103
1104	ret = pvt_request_regs(pvt);
1105	if (ret)
1106		return ret;
1107
1108	ret = pvt_request_clks(pvt);
1109	if (ret)
1110		return ret;
1111
1112	pvt_init_iface(pvt);
1113
1114	ret = pvt_request_irq(pvt);
1115	if (ret)
1116		return ret;
1117
1118	ret = pvt_create_hwmon(pvt);
1119	if (ret)
1120		return ret;
1121
1122	ret = pvt_enable_iface(pvt);
1123	if (ret)
1124		return ret;
1125
1126	return 0;
1127}
1128
1129static const struct of_device_id pvt_of_match[] = {
1130	{ .compatible = "baikal,bt1-pvt" },
1131	{ }
1132};
1133MODULE_DEVICE_TABLE(of, pvt_of_match);
1134
1135static struct platform_driver pvt_driver = {
1136	.probe = pvt_probe,
1137	.driver = {
1138		.name = "bt1-pvt",
1139		.of_match_table = pvt_of_match
1140	}
1141};
1142module_platform_driver(pvt_driver);
1143
1144MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1145MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1146MODULE_LICENSE("GPL v2");