Linux Audio

Check our new training course

Loading...
v3.1
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#include "ttm/ttm_module.h"
  32#include "ttm/ttm_bo_driver.h"
  33#include "ttm/ttm_placement.h"
 
  34#include <linux/jiffies.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/mm.h>
  38#include <linux/file.h>
  39#include <linux/module.h>
  40#include <linux/atomic.h>
 
  41
  42#define TTM_ASSERT_LOCKED(param)
  43#define TTM_DEBUG(fmt, arg...)
  44#define TTM_BO_HASH_ORDER 13
  45
  46static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  48static void ttm_bo_global_kobj_release(struct kobject *kobj);
  49
  50static struct attribute ttm_bo_count = {
  51	.name = "bo_count",
  52	.mode = S_IRUGO
  53};
  54
  55static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  56{
  57	int i;
  58
  59	for (i = 0; i <= TTM_PL_PRIV5; i++)
  60		if (flags & (1 << i)) {
  61			*mem_type = i;
  62			return 0;
  63		}
  64	return -EINVAL;
  65}
  66
  67static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
 
  68{
  69	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  70
  71	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
  72	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
  73	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
  74	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
  75	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
  76	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
  77		man->available_caching);
  78	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
  79		man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
  88
  89	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
  90		bo, bo->mem.num_pages, bo->mem.size >> 10,
  91		bo->mem.size >> 20);
 
 
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
  98			i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 
 
 
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 
 131{
 132	return 1 << (type);
 
 
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 
 
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->destroy)
 153		bo->destroy(bo);
 154	else {
 155		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
 156		kfree(bo);
 157	}
 158}
 159
 160int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 161{
 162	if (interruptible) {
 163		return wait_event_interruptible(bo->event_queue,
 164					       atomic_read(&bo->reserved) == 0);
 165	} else {
 166		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 167		return 0;
 168	}
 169}
 170EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 171
 172void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 173{
 174	struct ttm_bo_device *bdev = bo->bdev;
 175	struct ttm_mem_type_manager *man;
 176
 177	BUG_ON(!atomic_read(&bo->reserved));
 
 178
 179	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 
 180
 181		BUG_ON(!list_empty(&bo->lru));
 
 182
 183		man = &bdev->man[bo->mem.mem_type];
 184		list_add_tail(&bo->lru, &man->lru);
 185		kref_get(&bo->list_kref);
 
 
 186
 187		if (bo->ttm != NULL) {
 188			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 189			kref_get(&bo->list_kref);
 190		}
 191	}
 192}
 
 193
 194int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 195{
 196	int put_count = 0;
 197
 198	if (!list_empty(&bo->swap)) {
 199		list_del_init(&bo->swap);
 200		++put_count;
 201	}
 202	if (!list_empty(&bo->lru)) {
 203		list_del_init(&bo->lru);
 204		++put_count;
 205	}
 206
 207	/*
 208	 * TODO: Add a driver hook to delete from
 209	 * driver-specific LRU's here.
 210	 */
 211
 212	return put_count;
 213}
 214
 215int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 216			  bool interruptible,
 217			  bool no_wait, bool use_sequence, uint32_t sequence)
 218{
 219	struct ttm_bo_global *glob = bo->glob;
 220	int ret;
 221
 222	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 223		/**
 224		 * Deadlock avoidance for multi-bo reserving.
 225		 */
 226		if (use_sequence && bo->seq_valid) {
 227			/**
 228			 * We've already reserved this one.
 229			 */
 230			if (unlikely(sequence == bo->val_seq))
 231				return -EDEADLK;
 232			/**
 233			 * Already reserved by a thread that will not back
 234			 * off for us. We need to back off.
 235			 */
 236			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 237				return -EAGAIN;
 238		}
 239
 240		if (no_wait)
 241			return -EBUSY;
 242
 243		spin_unlock(&glob->lru_lock);
 244		ret = ttm_bo_wait_unreserved(bo, interruptible);
 245		spin_lock(&glob->lru_lock);
 246
 247		if (unlikely(ret))
 248			return ret;
 
 249	}
 250
 251	if (use_sequence) {
 252		/**
 253		 * Wake up waiters that may need to recheck for deadlock,
 254		 * if we decreased the sequence number.
 255		 */
 256		if (unlikely((bo->val_seq - sequence < (1 << 31))
 257			     || !bo->seq_valid))
 258			wake_up_all(&bo->event_queue);
 259
 260		bo->val_seq = sequence;
 261		bo->seq_valid = true;
 262	} else {
 263		bo->seq_valid = false;
 264	}
 265
 266	return 0;
 267}
 268EXPORT_SYMBOL(ttm_bo_reserve);
 269
 270static void ttm_bo_ref_bug(struct kref *list_kref)
 271{
 272	BUG();
 273}
 274
 275void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 276			 bool never_free)
 277{
 278	kref_sub(&bo->list_kref, count,
 279		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 280}
 
 281
 282int ttm_bo_reserve(struct ttm_buffer_object *bo,
 283		   bool interruptible,
 284		   bool no_wait, bool use_sequence, uint32_t sequence)
 
 285{
 286	struct ttm_bo_global *glob = bo->glob;
 287	int put_count = 0;
 288	int ret;
 289
 290	spin_lock(&glob->lru_lock);
 291	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 292				    sequence);
 293	if (likely(ret == 0))
 294		put_count = ttm_bo_del_from_lru(bo);
 295	spin_unlock(&glob->lru_lock);
 296
 297	ttm_bo_list_ref_sub(bo, put_count, true);
 298
 299	return ret;
 300}
 301
 302void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 303{
 304	ttm_bo_add_to_lru(bo);
 305	atomic_set(&bo->reserved, 0);
 306	wake_up_all(&bo->event_queue);
 307}
 308
 309void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 310{
 311	struct ttm_bo_global *glob = bo->glob;
 312
 313	spin_lock(&glob->lru_lock);
 314	ttm_bo_unreserve_locked(bo);
 315	spin_unlock(&glob->lru_lock);
 316}
 317EXPORT_SYMBOL(ttm_bo_unreserve);
 318
 319/*
 320 * Call bo->mutex locked.
 321 */
 322static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	struct ttm_bo_global *glob = bo->glob;
 326	int ret = 0;
 327	uint32_t page_flags = 0;
 328
 329	TTM_ASSERT_LOCKED(&bo->mutex);
 330	bo->ttm = NULL;
 331
 332	if (bdev->need_dma32)
 333		page_flags |= TTM_PAGE_FLAG_DMA32;
 334
 335	switch (bo->type) {
 336	case ttm_bo_type_device:
 337		if (zero_alloc)
 338			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 339	case ttm_bo_type_kernel:
 340		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 341					page_flags, glob->dummy_read_page);
 342		if (unlikely(bo->ttm == NULL))
 343			ret = -ENOMEM;
 344		break;
 345	case ttm_bo_type_user:
 346		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 347					page_flags | TTM_PAGE_FLAG_USER,
 348					glob->dummy_read_page);
 349		if (unlikely(bo->ttm == NULL)) {
 350			ret = -ENOMEM;
 351			break;
 352		}
 353
 354		ret = ttm_tt_set_user(bo->ttm, current,
 355				      bo->buffer_start, bo->num_pages);
 356		if (unlikely(ret != 0)) {
 357			ttm_tt_destroy(bo->ttm);
 358			bo->ttm = NULL;
 359		}
 360		break;
 361	default:
 362		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
 363		ret = -EINVAL;
 364		break;
 365	}
 366
 367	return ret;
 368}
 369
 370static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 371				  struct ttm_mem_reg *mem,
 372				  bool evict, bool interruptible,
 373				  bool no_wait_reserve, bool no_wait_gpu)
 374{
 375	struct ttm_bo_device *bdev = bo->bdev;
 376	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 377	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 378	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 379	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 380	int ret = 0;
 381
 382	if (old_is_pci || new_is_pci ||
 383	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 384		ret = ttm_mem_io_lock(old_man, true);
 385		if (unlikely(ret != 0))
 386			goto out_err;
 387		ttm_bo_unmap_virtual_locked(bo);
 388		ttm_mem_io_unlock(old_man);
 389	}
 390
 391	/*
 392	 * Create and bind a ttm if required.
 393	 */
 394
 395	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 396		if (bo->ttm == NULL) {
 397			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 398			ret = ttm_bo_add_ttm(bo, zero);
 399			if (ret)
 400				goto out_err;
 401		}
 402
 403		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 404		if (ret)
 405			goto out_err;
 406
 407		if (mem->mem_type != TTM_PL_SYSTEM) {
 408			ret = ttm_tt_bind(bo->ttm, mem);
 409			if (ret)
 410				goto out_err;
 411		}
 412
 413		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 414			if (bdev->driver->move_notify)
 415				bdev->driver->move_notify(bo, mem);
 416			bo->mem = *mem;
 417			mem->mm_node = NULL;
 418			goto moved;
 419		}
 420	}
 421
 422	if (bdev->driver->move_notify)
 423		bdev->driver->move_notify(bo, mem);
 424
 425	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 426	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 427		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428	else if (bdev->driver->move)
 429		ret = bdev->driver->move(bo, evict, interruptible,
 430					 no_wait_reserve, no_wait_gpu, mem);
 431	else
 432		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 433
 434	if (ret)
 435		goto out_err;
 436
 437moved:
 438	if (bo->evicted) {
 439		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 440		if (ret)
 441			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
 442		bo->evicted = false;
 443	}
 444
 445	if (bo->mem.mm_node) {
 446		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 447		    bdev->man[bo->mem.mem_type].gpu_offset;
 448		bo->cur_placement = bo->mem.placement;
 449	} else
 450		bo->offset = 0;
 451
 452	return 0;
 453
 454out_err:
 455	new_man = &bdev->man[bo->mem.mem_type];
 456	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 457		ttm_tt_unbind(bo->ttm);
 458		ttm_tt_destroy(bo->ttm);
 459		bo->ttm = NULL;
 460	}
 461
 462	return ret;
 463}
 464
 465/**
 466 * Call bo::reserved.
 467 * Will release GPU memory type usage on destruction.
 468 * This is the place to put in driver specific hooks to release
 469 * driver private resources.
 470 * Will release the bo::reserved lock.
 471 */
 472
 473static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 474{
 475	if (bo->ttm) {
 476		ttm_tt_unbind(bo->ttm);
 477		ttm_tt_destroy(bo->ttm);
 478		bo->ttm = NULL;
 479	}
 480	ttm_bo_mem_put(bo, &bo->mem);
 481
 482	atomic_set(&bo->reserved, 0);
 483
 484	/*
 485	 * Make processes trying to reserve really pick it up.
 486	 */
 487	smp_mb__after_atomic_dec();
 488	wake_up_all(&bo->event_queue);
 489}
 490
 491static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 492{
 493	struct ttm_bo_device *bdev = bo->bdev;
 494	struct ttm_bo_global *glob = bo->glob;
 495	struct ttm_bo_driver *driver;
 496	void *sync_obj = NULL;
 497	void *sync_obj_arg;
 498	int put_count;
 499	int ret;
 500
 501	spin_lock(&bdev->fence_lock);
 502	(void) ttm_bo_wait(bo, false, false, true);
 503	if (!bo->sync_obj) {
 504
 505		spin_lock(&glob->lru_lock);
 506
 507		/**
 508		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 509		 * but that's OK, since we're only trylocking.
 510		 */
 511
 512		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 513
 514		if (unlikely(ret == -EBUSY))
 515			goto queue;
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517		spin_unlock(&bdev->fence_lock);
 518		put_count = ttm_bo_del_from_lru(bo);
 
 
 
 
 
 
 
 519
 520		spin_unlock(&glob->lru_lock);
 521		ttm_bo_cleanup_memtype_use(bo);
 
 
 
 522
 523		ttm_bo_list_ref_sub(bo, put_count, true);
 
 524
 525		return;
 526	} else {
 527		spin_lock(&glob->lru_lock);
 528	}
 529queue:
 530	driver = bdev->driver;
 531	if (bo->sync_obj)
 532		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 533	sync_obj_arg = bo->sync_obj_arg;
 534
 535	kref_get(&bo->list_kref);
 536	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 537	spin_unlock(&glob->lru_lock);
 538	spin_unlock(&bdev->fence_lock);
 539
 540	if (sync_obj) {
 541		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 542		driver->sync_obj_unref(&sync_obj);
 543	}
 544	schedule_delayed_work(&bdev->wq,
 545			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 546}
 547
 548/**
 549 * function ttm_bo_cleanup_refs
 550 * If bo idle, remove from delayed- and lru lists, and unref.
 551 * If not idle, do nothing.
 
 
 
 552 *
 553 * @interruptible         Any sleeps should occur interruptibly.
 554 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 555 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 
 556 */
 557
 558static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 559			       bool interruptible,
 560			       bool no_wait_reserve,
 561			       bool no_wait_gpu)
 562{
 563	struct ttm_bo_device *bdev = bo->bdev;
 564	struct ttm_bo_global *glob = bo->glob;
 565	int put_count;
 566	int ret = 0;
 567
 568retry:
 569	spin_lock(&bdev->fence_lock);
 570	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 571	spin_unlock(&bdev->fence_lock);
 572
 573	if (unlikely(ret != 0))
 574		return ret;
 575
 576	spin_lock(&glob->lru_lock);
 577	ret = ttm_bo_reserve_locked(bo, interruptible,
 578				    no_wait_reserve, false, 0);
 579
 580	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
 581		spin_unlock(&glob->lru_lock);
 582		return ret;
 583	}
 584
 585	/**
 586	 * We can re-check for sync object without taking
 587	 * the bo::lock since setting the sync object requires
 588	 * also bo::reserved. A busy object at this point may
 589	 * be caused by another thread recently starting an accelerated
 590	 * eviction.
 591	 */
 592
 593	if (unlikely(bo->sync_obj)) {
 594		atomic_set(&bo->reserved, 0);
 595		wake_up_all(&bo->event_queue);
 596		spin_unlock(&glob->lru_lock);
 597		goto retry;
 
 
 
 
 
 
 
 
 
 598	}
 599
 600	put_count = ttm_bo_del_from_lru(bo);
 601	list_del_init(&bo->ddestroy);
 602	++put_count;
 
 
 
 603
 604	spin_unlock(&glob->lru_lock);
 
 
 605	ttm_bo_cleanup_memtype_use(bo);
 606
 607	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 608
 609	return 0;
 610}
 611
 612/**
 613 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 614 * encountered buffers.
 615 */
 616
 617static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 618{
 619	struct ttm_bo_global *glob = bdev->glob;
 620	struct ttm_buffer_object *entry = NULL;
 621	int ret = 0;
 622
 623	spin_lock(&glob->lru_lock);
 624	if (list_empty(&bdev->ddestroy))
 625		goto out_unlock;
 626
 627	entry = list_first_entry(&bdev->ddestroy,
 628		struct ttm_buffer_object, ddestroy);
 629	kref_get(&entry->list_kref);
 630
 631	for (;;) {
 632		struct ttm_buffer_object *nentry = NULL;
 633
 634		if (entry->ddestroy.next != &bdev->ddestroy) {
 635			nentry = list_first_entry(&entry->ddestroy,
 636				struct ttm_buffer_object, ddestroy);
 637			kref_get(&nentry->list_kref);
 638		}
 639
 640		spin_unlock(&glob->lru_lock);
 641		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 642					  !remove_all);
 643		kref_put(&entry->list_kref, ttm_bo_release_list);
 644		entry = nentry;
 645
 646		if (ret || !entry)
 647			goto out;
 
 
 
 648
 649		spin_lock(&glob->lru_lock);
 650		if (list_empty(&entry->ddestroy))
 651			break;
 652	}
 653
 654out_unlock:
 655	spin_unlock(&glob->lru_lock);
 656out:
 657	if (entry)
 658		kref_put(&entry->list_kref, ttm_bo_release_list);
 659	return ret;
 660}
 661
 662static void ttm_bo_delayed_workqueue(struct work_struct *work)
 663{
 664	struct ttm_bo_device *bdev =
 665	    container_of(work, struct ttm_bo_device, wq.work);
 
 666
 667	if (ttm_bo_delayed_delete(bdev, false)) {
 668		schedule_delayed_work(&bdev->wq,
 669				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 670	}
 
 
 
 
 
 671}
 672
 673static void ttm_bo_release(struct kref *kref)
 674{
 675	struct ttm_buffer_object *bo =
 676	    container_of(kref, struct ttm_buffer_object, kref);
 677	struct ttm_bo_device *bdev = bo->bdev;
 678	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 
 
 
 
 
 
 
 
 
 
 
 
 679
 680	if (likely(bo->vm_node != NULL)) {
 681		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 682		drm_mm_put_block(bo->vm_node);
 683		bo->vm_node = NULL;
 684	}
 685	write_unlock(&bdev->vm_lock);
 686	ttm_mem_io_lock(man, false);
 687	ttm_mem_io_free_vm(bo);
 688	ttm_mem_io_unlock(man);
 689	ttm_bo_cleanup_refs_or_queue(bo);
 690	kref_put(&bo->list_kref, ttm_bo_release_list);
 691	write_lock(&bdev->vm_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692}
 693
 694void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 695{
 696	struct ttm_buffer_object *bo = *p_bo;
 697	struct ttm_bo_device *bdev = bo->bdev;
 698
 699	*p_bo = NULL;
 700	write_lock(&bdev->vm_lock);
 701	kref_put(&bo->kref, ttm_bo_release);
 702	write_unlock(&bdev->vm_lock);
 703}
 704EXPORT_SYMBOL(ttm_bo_unref);
 705
 706int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 707{
 708	return cancel_delayed_work_sync(&bdev->wq);
 709}
 710EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 711
 712void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 713{
 714	if (resched)
 715		schedule_delayed_work(&bdev->wq,
 716				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 717}
 718EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 719
 720static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 721			bool no_wait_reserve, bool no_wait_gpu)
 
 
 722{
 723	struct ttm_bo_device *bdev = bo->bdev;
 724	struct ttm_mem_reg evict_mem;
 725	struct ttm_placement placement;
 726	int ret = 0;
 727
 728	spin_lock(&bdev->fence_lock);
 729	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 730	spin_unlock(&bdev->fence_lock);
 731
 732	if (unlikely(ret != 0)) {
 733		if (ret != -ERESTARTSYS) {
 734			printk(KERN_ERR TTM_PFX
 735			       "Failed to expire sync object before "
 736			       "buffer eviction.\n");
 737		}
 738		goto out;
 
 
 739	}
 
 
 740
 741	BUG_ON(!atomic_read(&bo->reserved));
 
 
 
 
 
 
 
 742
 743	evict_mem = bo->mem;
 744	evict_mem.mm_node = NULL;
 745	evict_mem.bus.io_reserved_vm = false;
 746	evict_mem.bus.io_reserved_count = 0;
 747
 748	placement.fpfn = 0;
 749	placement.lpfn = 0;
 750	placement.num_placement = 0;
 751	placement.num_busy_placement = 0;
 752	bdev->driver->evict_flags(bo, &placement);
 753	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 754				no_wait_reserve, no_wait_gpu);
 
 
 
 
 
 
 
 
 
 
 
 
 755	if (ret) {
 756		if (ret != -ERESTARTSYS) {
 757			printk(KERN_ERR TTM_PFX
 758			       "Failed to find memory space for "
 759			       "buffer 0x%p eviction.\n", bo);
 760			ttm_bo_mem_space_debug(bo, &placement);
 761		}
 762		goto out;
 763	}
 764
 765	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 766				     no_wait_reserve, no_wait_gpu);
 767	if (ret) {
 768		if (ret != -ERESTARTSYS)
 769			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
 770		ttm_bo_mem_put(bo, &evict_mem);
 771		goto out;
 
 
 
 
 772	}
 773	bo->evicted = true;
 774out:
 775	return ret;
 776}
 777
 778static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 779				uint32_t mem_type,
 780				bool interruptible, bool no_wait_reserve,
 781				bool no_wait_gpu)
 782{
 783	struct ttm_bo_global *glob = bdev->glob;
 784	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 785	struct ttm_buffer_object *bo;
 786	int ret, put_count = 0;
 787
 788retry:
 789	spin_lock(&glob->lru_lock);
 790	if (list_empty(&man->lru)) {
 791		spin_unlock(&glob->lru_lock);
 792		return -EBUSY;
 793	}
 794
 795	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 796	kref_get(&bo->list_kref);
 
 
 
 
 797
 798	if (!list_empty(&bo->ddestroy)) {
 799		spin_unlock(&glob->lru_lock);
 800		ret = ttm_bo_cleanup_refs(bo, interruptible,
 801					  no_wait_reserve, no_wait_gpu);
 802		kref_put(&bo->list_kref, ttm_bo_release_list);
 803
 804		if (likely(ret == 0 || ret == -ERESTARTSYS))
 805			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807		goto retry;
 
 
 
 
 
 808	}
 809
 810	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812	if (unlikely(ret == -EBUSY)) {
 813		spin_unlock(&glob->lru_lock);
 814		if (likely(!no_wait_gpu))
 815			ret = ttm_bo_wait_unreserved(bo, interruptible);
 
 816
 817		kref_put(&bo->list_kref, ttm_bo_release_list);
 
 
 
 
 
 
 818
 819		/**
 820		 * We *need* to retry after releasing the lru lock.
 821		 */
 822
 823		if (unlikely(ret != 0))
 824			return ret;
 825		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	}
 827
 828	put_count = ttm_bo_del_from_lru(bo);
 829	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 830
 831	BUG_ON(ret != 0);
 
 
 
 
 
 832
 833	ttm_bo_list_ref_sub(bo, put_count, true);
 834
 835	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 836	ttm_bo_unreserve(bo);
 
 837
 838	kref_put(&bo->list_kref, ttm_bo_release_list);
 839	return ret;
 840}
 841
 842void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 
 
 
 
 
 
 
 
 843{
 844	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 
 
 845
 846	if (mem->mm_node)
 847		(*man->func->put_node)(man, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848}
 849EXPORT_SYMBOL(ttm_bo_mem_put);
 850
 851/**
 852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 853 * space, or we've evicted everything and there isn't enough space.
 854 */
 855static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 856					uint32_t mem_type,
 857					struct ttm_placement *placement,
 858					struct ttm_mem_reg *mem,
 859					bool interruptible,
 860					bool no_wait_reserve,
 861					bool no_wait_gpu)
 862{
 863	struct ttm_bo_device *bdev = bo->bdev;
 864	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 865	int ret;
 866
 
 
 867	do {
 868		ret = (*man->func->get_node)(man, bo, placement, mem);
 869		if (unlikely(ret != 0))
 870			return ret;
 871		if (mem->mm_node)
 872			break;
 873		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 874						no_wait_reserve, no_wait_gpu);
 
 
 875		if (unlikely(ret != 0))
 876			return ret;
 877	} while (1);
 878	if (mem->mm_node == NULL)
 879		return -ENOMEM;
 880	mem->mem_type = mem_type;
 881	return 0;
 882}
 883
 884static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 885				      uint32_t cur_placement,
 886				      uint32_t proposed_placement)
 887{
 888	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 889	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 890
 891	/**
 892	 * Keep current caching if possible.
 893	 */
 894
 895	if ((cur_placement & caching) != 0)
 896		result |= (cur_placement & caching);
 897	else if ((man->default_caching & caching) != 0)
 898		result |= man->default_caching;
 899	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 900		result |= TTM_PL_FLAG_CACHED;
 901	else if ((TTM_PL_FLAG_WC & caching) != 0)
 902		result |= TTM_PL_FLAG_WC;
 903	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 904		result |= TTM_PL_FLAG_UNCACHED;
 905
 906	return result;
 907}
 908
 909static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 910				 bool disallow_fixed,
 911				 uint32_t mem_type,
 912				 uint32_t proposed_placement,
 913				 uint32_t *masked_placement)
 914{
 915	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 916
 917	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
 918		return false;
 919
 920	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 921		return false;
 922
 923	if ((proposed_placement & man->available_caching) == 0)
 924		return false;
 925
 926	cur_flags |= (proposed_placement & man->available_caching);
 927
 928	*masked_placement = cur_flags;
 929	return true;
 930}
 931
 932/**
 933 * Creates space for memory region @mem according to its type.
 934 *
 935 * This function first searches for free space in compatible memory types in
 936 * the priority order defined by the driver.  If free space isn't found, then
 937 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 938 * space.
 939 */
 940int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 941			struct ttm_placement *placement,
 942			struct ttm_mem_reg *mem,
 943			bool interruptible, bool no_wait_reserve,
 944			bool no_wait_gpu)
 945{
 946	struct ttm_bo_device *bdev = bo->bdev;
 947	struct ttm_mem_type_manager *man;
 948	uint32_t mem_type = TTM_PL_SYSTEM;
 949	uint32_t cur_flags = 0;
 950	bool type_found = false;
 951	bool type_ok = false;
 952	bool has_erestartsys = false;
 953	int i, ret;
 954
 955	mem->mm_node = NULL;
 956	for (i = 0; i < placement->num_placement; ++i) {
 957		ret = ttm_mem_type_from_flags(placement->placement[i],
 958						&mem_type);
 959		if (ret)
 960			return ret;
 961		man = &bdev->man[mem_type];
 962
 963		type_ok = ttm_bo_mt_compatible(man,
 964						bo->type == ttm_bo_type_user,
 965						mem_type,
 966						placement->placement[i],
 967						&cur_flags);
 968
 969		if (!type_ok)
 
 970			continue;
 971
 972		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 973						  cur_flags);
 974		/*
 975		 * Use the access and other non-mapping-related flag bits from
 976		 * the memory placement flags to the current flags
 977		 */
 978		ttm_flag_masked(&cur_flags, placement->placement[i],
 979				~TTM_PL_MASK_MEMTYPE);
 980
 981		if (mem_type == TTM_PL_SYSTEM)
 982			break;
 
 
 
 983
 984		if (man->has_type && man->use_type) {
 985			type_found = true;
 986			ret = (*man->func->get_node)(man, bo, placement, mem);
 987			if (unlikely(ret))
 988				return ret;
 989		}
 990		if (mem->mm_node)
 991			break;
 992	}
 993
 994	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 995		mem->mem_type = mem_type;
 996		mem->placement = cur_flags;
 997		return 0;
 998	}
 999
1000	if (!type_found)
1001		return -EINVAL;
1002
1003	for (i = 0; i < placement->num_busy_placement; ++i) {
1004		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005						&mem_type);
1006		if (ret)
1007			return ret;
1008		man = &bdev->man[mem_type];
1009		if (!man->has_type)
1010			continue;
1011		if (!ttm_bo_mt_compatible(man,
1012						bo->type == ttm_bo_type_user,
1013						mem_type,
1014						placement->busy_placement[i],
1015						&cur_flags))
1016			continue;
1017
1018		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019						  cur_flags);
1020		/*
1021		 * Use the access and other non-mapping-related flag bits from
1022		 * the memory placement flags to the current flags
1023		 */
1024		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025				~TTM_PL_MASK_MEMTYPE);
1026
 
 
 
1027
1028		if (mem_type == TTM_PL_SYSTEM) {
1029			mem->mem_type = mem_type;
1030			mem->placement = cur_flags;
1031			mem->mm_node = NULL;
1032			return 0;
1033		}
1034
1035		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036						interruptible, no_wait_reserve, no_wait_gpu);
1037		if (ret == 0 && mem->mm_node) {
1038			mem->placement = cur_flags;
1039			return 0;
1040		}
1041		if (ret == -ERESTARTSYS)
1042			has_erestartsys = true;
1043	}
1044	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045	return ret;
1046}
1047EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050{
1051	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052		return -EBUSY;
 
 
 
 
 
1053
1054	return wait_event_interruptible(bo->event_queue,
1055					atomic_read(&bo->cpu_writers) == 0);
1056}
1057EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060			struct ttm_placement *placement,
1061			bool interruptible, bool no_wait_reserve,
1062			bool no_wait_gpu)
1063{
1064	int ret = 0;
1065	struct ttm_mem_reg mem;
1066	struct ttm_bo_device *bdev = bo->bdev;
1067
1068	BUG_ON(!atomic_read(&bo->reserved));
1069
1070	/*
1071	 * FIXME: It's possible to pipeline buffer moves.
1072	 * Have the driver move function wait for idle when necessary,
1073	 * instead of doing it here.
 
 
 
 
1074	 */
1075	spin_lock(&bdev->fence_lock);
1076	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077	spin_unlock(&bdev->fence_lock);
1078	if (ret)
1079		return ret;
1080	mem.num_pages = bo->num_pages;
1081	mem.size = mem.num_pages << PAGE_SHIFT;
1082	mem.page_alignment = bo->mem.page_alignment;
1083	mem.bus.io_reserved_vm = false;
1084	mem.bus.io_reserved_count = 0;
1085	/*
1086	 * Determine where to move the buffer.
1087	 */
1088	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
 
1089	if (ret)
1090		goto out_unlock;
1091	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1092out_unlock:
1093	if (ret && mem.mm_node)
1094		ttm_bo_mem_put(bo, &mem);
1095	return ret;
1096}
1097
1098static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099			     struct ttm_mem_reg *mem)
 
 
1100{
1101	int i;
1102
1103	if (mem->mm_node && placement->lpfn != 0 &&
1104	    (mem->start < placement->fpfn ||
1105	     mem->start + mem->num_pages > placement->lpfn))
1106		return -1;
1107
1108	for (i = 0; i < placement->num_placement; i++) {
1109		if ((placement->placement[i] & mem->placement &
1110			TTM_PL_MASK_CACHING) &&
1111			(placement->placement[i] & mem->placement &
1112			TTM_PL_MASK_MEM))
1113			return i;
 
 
 
1114	}
1115	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116}
 
1117
1118int ttm_bo_validate(struct ttm_buffer_object *bo,
1119			struct ttm_placement *placement,
1120			bool interruptible, bool no_wait_reserve,
1121			bool no_wait_gpu)
1122{
1123	int ret;
 
 
 
 
 
 
 
 
 
1124
1125	BUG_ON(!atomic_read(&bo->reserved));
1126	/* Check that range is valid */
1127	if (placement->lpfn || placement->fpfn)
1128		if (placement->fpfn > placement->lpfn ||
1129			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130			return -EINVAL;
1131	/*
1132	 * Check whether we need to move buffer.
1133	 */
1134	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135	if (ret < 0) {
1136		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137		if (ret)
1138			return ret;
1139	} else {
1140		/*
1141		 * Use the access and other non-mapping-related flag bits from
1142		 * the compatible memory placement flags to the active flags
1143		 */
1144		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145				~TTM_PL_MASK_MEMTYPE);
1146	}
1147	/*
1148	 * We might need to add a TTM.
1149	 */
1150	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151		ret = ttm_bo_add_ttm(bo, true);
1152		if (ret)
1153			return ret;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ttm_bo_validate);
1158
1159int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160				struct ttm_placement *placement)
 
 
 
 
 
 
 
 
1161{
1162	BUG_ON((placement->fpfn || placement->lpfn) &&
1163	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165	return 0;
1166}
1167
1168int ttm_bo_init(struct ttm_bo_device *bdev,
1169		struct ttm_buffer_object *bo,
1170		unsigned long size,
1171		enum ttm_bo_type type,
1172		struct ttm_placement *placement,
1173		uint32_t page_alignment,
1174		unsigned long buffer_start,
1175		bool interruptible,
1176		struct file *persistent_swap_storage,
1177		size_t acc_size,
1178		void (*destroy) (struct ttm_buffer_object *))
1179{
1180	int ret = 0;
1181	unsigned long num_pages;
1182
1183	size += buffer_start & ~PAGE_MASK;
1184	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (num_pages == 0) {
1186		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187		if (destroy)
1188			(*destroy)(bo);
1189		else
1190			kfree(bo);
1191		return -EINVAL;
1192	}
1193	bo->destroy = destroy;
1194
1195	kref_init(&bo->kref);
1196	kref_init(&bo->list_kref);
1197	atomic_set(&bo->cpu_writers, 0);
1198	atomic_set(&bo->reserved, 1);
1199	init_waitqueue_head(&bo->event_queue);
1200	INIT_LIST_HEAD(&bo->lru);
1201	INIT_LIST_HEAD(&bo->ddestroy);
1202	INIT_LIST_HEAD(&bo->swap);
1203	INIT_LIST_HEAD(&bo->io_reserve_lru);
1204	bo->bdev = bdev;
1205	bo->glob = bdev->glob;
1206	bo->type = type;
1207	bo->num_pages = num_pages;
1208	bo->mem.size = num_pages << PAGE_SHIFT;
1209	bo->mem.mem_type = TTM_PL_SYSTEM;
1210	bo->mem.num_pages = bo->num_pages;
1211	bo->mem.mm_node = NULL;
1212	bo->mem.page_alignment = page_alignment;
1213	bo->mem.bus.io_reserved_vm = false;
1214	bo->mem.bus.io_reserved_count = 0;
1215	bo->buffer_start = buffer_start & PAGE_MASK;
1216	bo->priv_flags = 0;
1217	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218	bo->seq_valid = false;
1219	bo->persistent_swap_storage = persistent_swap_storage;
1220	bo->acc_size = acc_size;
1221	atomic_inc(&bo->glob->bo_count);
1222
1223	ret = ttm_bo_check_placement(bo, placement);
1224	if (unlikely(ret != 0))
1225		goto out_err;
1226
1227	/*
1228	 * For ttm_bo_type_device buffers, allocate
1229	 * address space from the device.
1230	 */
1231	if (bo->type == ttm_bo_type_device) {
1232		ret = ttm_bo_setup_vm(bo);
1233		if (ret)
1234			goto out_err;
1235	}
 
1236
1237	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238	if (ret)
1239		goto out_err;
1240
1241	ttm_bo_unreserve(bo);
1242	return 0;
1243
1244out_err:
1245	ttm_bo_unreserve(bo);
1246	ttm_bo_unref(&bo);
1247
1248	return ret;
1249}
1250EXPORT_SYMBOL(ttm_bo_init);
1251
1252static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253				 unsigned long num_pages)
1254{
1255	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256	    PAGE_MASK;
1257
1258	return glob->ttm_bo_size + 2 * page_array_size;
1259}
1260
1261int ttm_bo_create(struct ttm_bo_device *bdev,
1262			unsigned long size,
1263			enum ttm_bo_type type,
1264			struct ttm_placement *placement,
1265			uint32_t page_alignment,
1266			unsigned long buffer_start,
1267			bool interruptible,
1268			struct file *persistent_swap_storage,
1269			struct ttm_buffer_object **p_bo)
1270{
1271	struct ttm_buffer_object *bo;
1272	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273	int ret;
1274
1275	size_t acc_size =
1276	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278	if (unlikely(ret != 0))
1279		return ret;
1280
1281	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283	if (unlikely(bo == NULL)) {
1284		ttm_mem_global_free(mem_glob, acc_size);
1285		return -ENOMEM;
1286	}
1287
1288	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289				buffer_start, interruptible,
1290				persistent_swap_storage, acc_size, NULL);
1291	if (likely(ret == 0))
1292		*p_bo = bo;
1293
1294	return ret;
1295}
1296
1297static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1298					unsigned mem_type, bool allow_errors)
1299{
1300	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301	struct ttm_bo_global *glob = bdev->glob;
1302	int ret;
1303
1304	/*
1305	 * Can't use standard list traversal since we're unlocking.
 
1306	 */
 
 
 
 
1307
1308	spin_lock(&glob->lru_lock);
1309	while (!list_empty(&man->lru)) {
1310		spin_unlock(&glob->lru_lock);
1311		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1312		if (ret) {
1313			if (allow_errors) {
1314				return ret;
1315			} else {
1316				printk(KERN_ERR TTM_PFX
1317					"Cleanup eviction failed\n");
1318			}
1319		}
1320		spin_lock(&glob->lru_lock);
1321	}
1322	spin_unlock(&glob->lru_lock);
1323	return 0;
1324}
1325
1326int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1327{
1328	struct ttm_mem_type_manager *man;
1329	int ret = -EINVAL;
1330
1331	if (mem_type >= TTM_NUM_MEM_TYPES) {
1332		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1333		return ret;
1334	}
1335	man = &bdev->man[mem_type];
1336
1337	if (!man->has_type) {
1338		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1339		       "memory manager type %u\n", mem_type);
1340		return ret;
1341	}
1342
1343	man->use_type = false;
1344	man->has_type = false;
1345
1346	ret = 0;
1347	if (mem_type > 0) {
1348		ttm_bo_force_list_clean(bdev, mem_type, false);
1349
1350		ret = (*man->func->takedown)(man);
1351	}
1352
1353	return ret;
1354}
1355EXPORT_SYMBOL(ttm_bo_clean_mm);
1356
1357int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1360
1361	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1362		printk(KERN_ERR TTM_PFX
1363		       "Illegal memory manager memory type %u.\n",
1364		       mem_type);
1365		return -EINVAL;
1366	}
1367
1368	if (!man->has_type) {
1369		printk(KERN_ERR TTM_PFX
1370		       "Memory type %u has not been initialized.\n",
1371		       mem_type);
1372		return 0;
1373	}
1374
1375	return ttm_bo_force_list_clean(bdev, mem_type, true);
1376}
1377EXPORT_SYMBOL(ttm_bo_evict_mm);
1378
1379int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1380			unsigned long p_size)
 
 
 
 
 
 
 
 
1381{
1382	int ret = -EINVAL;
1383	struct ttm_mem_type_manager *man;
1384
1385	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1386	man = &bdev->man[type];
1387	BUG_ON(man->has_type);
1388	man->io_reserve_fastpath = true;
1389	man->use_io_reserve_lru = false;
1390	mutex_init(&man->io_reserve_mutex);
1391	INIT_LIST_HEAD(&man->io_reserve_lru);
1392
1393	ret = bdev->driver->init_mem_type(bdev, type, man);
 
1394	if (ret)
1395		return ret;
1396	man->bdev = bdev;
1397
1398	ret = 0;
1399	if (type != TTM_PL_SYSTEM) {
1400		ret = (*man->func->init)(man, p_size);
1401		if (ret)
1402			return ret;
1403	}
1404	man->has_type = true;
1405	man->use_type = true;
1406	man->size = p_size;
1407
1408	INIT_LIST_HEAD(&man->lru);
1409
1410	return 0;
1411}
1412EXPORT_SYMBOL(ttm_bo_init_mm);
1413
1414static void ttm_bo_global_kobj_release(struct kobject *kobj)
1415{
1416	struct ttm_bo_global *glob =
1417		container_of(kobj, struct ttm_bo_global, kobj);
1418
1419	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1420	__free_page(glob->dummy_read_page);
1421	kfree(glob);
1422}
1423
1424void ttm_bo_global_release(struct drm_global_reference *ref)
1425{
1426	struct ttm_bo_global *glob = ref->object;
1427
1428	kobject_del(&glob->kobj);
1429	kobject_put(&glob->kobj);
1430}
1431EXPORT_SYMBOL(ttm_bo_global_release);
1432
1433int ttm_bo_global_init(struct drm_global_reference *ref)
1434{
1435	struct ttm_bo_global_ref *bo_ref =
1436		container_of(ref, struct ttm_bo_global_ref, ref);
1437	struct ttm_bo_global *glob = ref->object;
1438	int ret;
1439
1440	mutex_init(&glob->device_list_mutex);
1441	spin_lock_init(&glob->lru_lock);
1442	glob->mem_glob = bo_ref->mem_glob;
1443	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1444
1445	if (unlikely(glob->dummy_read_page == NULL)) {
1446		ret = -ENOMEM;
1447		goto out_no_drp;
1448	}
1449
1450	INIT_LIST_HEAD(&glob->swap_lru);
1451	INIT_LIST_HEAD(&glob->device_list);
1452
1453	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1454	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1455	if (unlikely(ret != 0)) {
1456		printk(KERN_ERR TTM_PFX
1457		       "Could not register buffer object swapout.\n");
1458		goto out_no_shrink;
1459	}
1460
1461	glob->ttm_bo_extra_size =
1462		ttm_round_pot(sizeof(struct ttm_tt)) +
1463		ttm_round_pot(sizeof(struct ttm_backend));
1464
1465	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1466		ttm_round_pot(sizeof(struct ttm_buffer_object));
1467
1468	atomic_set(&glob->bo_count, 0);
1469
1470	ret = kobject_init_and_add(
1471		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1472	if (unlikely(ret != 0))
1473		kobject_put(&glob->kobj);
1474	return ret;
1475out_no_shrink:
1476	__free_page(glob->dummy_read_page);
1477out_no_drp:
1478	kfree(glob);
1479	return ret;
1480}
1481EXPORT_SYMBOL(ttm_bo_global_init);
1482
1483
1484int ttm_bo_device_release(struct ttm_bo_device *bdev)
1485{
1486	int ret = 0;
1487	unsigned i = TTM_NUM_MEM_TYPES;
1488	struct ttm_mem_type_manager *man;
1489	struct ttm_bo_global *glob = bdev->glob;
1490
1491	while (i--) {
1492		man = &bdev->man[i];
1493		if (man->has_type) {
1494			man->use_type = false;
1495			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1496				ret = -EBUSY;
1497				printk(KERN_ERR TTM_PFX
1498				       "DRM memory manager type %d "
1499				       "is not clean.\n", i);
1500			}
1501			man->has_type = false;
1502		}
1503	}
1504
1505	mutex_lock(&glob->device_list_mutex);
1506	list_del(&bdev->device_list);
1507	mutex_unlock(&glob->device_list_mutex);
1508
1509	cancel_delayed_work_sync(&bdev->wq);
1510
1511	while (ttm_bo_delayed_delete(bdev, true))
1512		;
1513
1514	spin_lock(&glob->lru_lock);
1515	if (list_empty(&bdev->ddestroy))
1516		TTM_DEBUG("Delayed destroy list was clean\n");
1517
1518	if (list_empty(&bdev->man[0].lru))
1519		TTM_DEBUG("Swap list was clean\n");
1520	spin_unlock(&glob->lru_lock);
1521
1522	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1523	write_lock(&bdev->vm_lock);
1524	drm_mm_takedown(&bdev->addr_space_mm);
1525	write_unlock(&bdev->vm_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
1534		       uint64_t file_page_offset,
1535		       bool need_dma32)
1536{
1537	int ret = -EINVAL;
1538
1539	rwlock_init(&bdev->vm_lock);
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	bdev->addr_space_rb = RB_ROOT;
1553	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1554	if (unlikely(ret != 0))
1555		goto out_no_addr_mm;
1556
1557	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558	bdev->nice_mode = true;
1559	INIT_LIST_HEAD(&bdev->ddestroy);
1560	bdev->dev_mapping = NULL;
1561	bdev->glob = glob;
1562	bdev->need_dma32 = need_dma32;
1563	bdev->val_seq = 0;
1564	spin_lock_init(&bdev->fence_lock);
1565	mutex_lock(&glob->device_list_mutex);
1566	list_add_tail(&bdev->device_list, &glob->device_list);
1567	mutex_unlock(&glob->device_list_mutex);
1568
1569	return 0;
1570out_no_addr_mm:
1571	ttm_bo_clean_mm(bdev, 0);
1572out_no_sys:
1573	return ret;
1574}
1575EXPORT_SYMBOL(ttm_bo_device_init);
1576
1577/*
1578 * buffer object vm functions.
1579 */
1580
1581bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1582{
1583	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1584
1585	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1586		if (mem->mem_type == TTM_PL_SYSTEM)
1587			return false;
1588
1589		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1590			return false;
1591
1592		if (mem->placement & TTM_PL_FLAG_CACHED)
1593			return false;
1594	}
1595	return true;
1596}
1597
1598void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	loff_t offset = (loff_t) bo->addr_space_offset;
1602	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1603
1604	if (!bdev->dev_mapping)
1605		return;
1606	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1607	ttm_mem_io_free_vm(bo);
1608}
1609
1610void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1611{
1612	struct ttm_bo_device *bdev = bo->bdev;
1613	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1614
1615	ttm_mem_io_lock(man, false);
1616	ttm_bo_unmap_virtual_locked(bo);
1617	ttm_mem_io_unlock(man);
1618}
1619
1620
1621EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1622
1623static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1624{
1625	struct ttm_bo_device *bdev = bo->bdev;
1626	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1627	struct rb_node *parent = NULL;
1628	struct ttm_buffer_object *cur_bo;
1629	unsigned long offset = bo->vm_node->start;
1630	unsigned long cur_offset;
1631
1632	while (*cur) {
1633		parent = *cur;
1634		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1635		cur_offset = cur_bo->vm_node->start;
1636		if (offset < cur_offset)
1637			cur = &parent->rb_left;
1638		else if (offset > cur_offset)
1639			cur = &parent->rb_right;
1640		else
1641			BUG();
1642	}
1643
1644	rb_link_node(&bo->vm_rb, parent, cur);
1645	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1646}
1647
1648/**
1649 * ttm_bo_setup_vm:
1650 *
1651 * @bo: the buffer to allocate address space for
1652 *
1653 * Allocate address space in the drm device so that applications
1654 * can mmap the buffer and access the contents. This only
1655 * applies to ttm_bo_type_device objects as others are not
1656 * placed in the drm device address space.
1657 */
1658
1659static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1660{
1661	struct ttm_bo_device *bdev = bo->bdev;
1662	int ret;
1663
1664retry_pre_get:
1665	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1666	if (unlikely(ret != 0))
1667		return ret;
1668
1669	write_lock(&bdev->vm_lock);
1670	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1671					 bo->mem.num_pages, 0, 0);
1672
1673	if (unlikely(bo->vm_node == NULL)) {
1674		ret = -ENOMEM;
1675		goto out_unlock;
1676	}
1677
1678	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1679					      bo->mem.num_pages, 0);
1680
1681	if (unlikely(bo->vm_node == NULL)) {
1682		write_unlock(&bdev->vm_lock);
1683		goto retry_pre_get;
1684	}
1685
1686	ttm_bo_vm_insert_rb(bo);
1687	write_unlock(&bdev->vm_lock);
1688	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1689
1690	return 0;
1691out_unlock:
1692	write_unlock(&bdev->vm_lock);
1693	return ret;
1694}
1695
1696int ttm_bo_wait(struct ttm_buffer_object *bo,
1697		bool lazy, bool interruptible, bool no_wait)
1698{
1699	struct ttm_bo_driver *driver = bo->bdev->driver;
1700	struct ttm_bo_device *bdev = bo->bdev;
1701	void *sync_obj;
1702	void *sync_obj_arg;
1703	int ret = 0;
1704
1705	if (likely(bo->sync_obj == NULL))
1706		return 0;
 
 
 
 
1707
1708	while (bo->sync_obj) {
 
 
 
1709
1710		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1711			void *tmp_obj = bo->sync_obj;
1712			bo->sync_obj = NULL;
1713			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1714			spin_unlock(&bdev->fence_lock);
1715			driver->sync_obj_unref(&tmp_obj);
1716			spin_lock(&bdev->fence_lock);
1717			continue;
1718		}
1719
1720		if (no_wait)
1721			return -EBUSY;
1722
1723		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1724		sync_obj_arg = bo->sync_obj_arg;
1725		spin_unlock(&bdev->fence_lock);
1726		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1727					    lazy, interruptible);
1728		if (unlikely(ret != 0)) {
1729			driver->sync_obj_unref(&sync_obj);
1730			spin_lock(&bdev->fence_lock);
1731			return ret;
1732		}
1733		spin_lock(&bdev->fence_lock);
1734		if (likely(bo->sync_obj == sync_obj &&
1735			   bo->sync_obj_arg == sync_obj_arg)) {
1736			void *tmp_obj = bo->sync_obj;
1737			bo->sync_obj = NULL;
1738			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1739				  &bo->priv_flags);
1740			spin_unlock(&bdev->fence_lock);
1741			driver->sync_obj_unref(&sync_obj);
1742			driver->sync_obj_unref(&tmp_obj);
1743			spin_lock(&bdev->fence_lock);
1744		} else {
1745			spin_unlock(&bdev->fence_lock);
1746			driver->sync_obj_unref(&sync_obj);
1747			spin_lock(&bdev->fence_lock);
1748		}
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(ttm_bo_wait);
1753
1754int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
 
1755{
1756	struct ttm_bo_device *bdev = bo->bdev;
1757	int ret = 0;
 
1758
1759	/*
1760	 * Using ttm_bo_reserve makes sure the lru lists are updated.
 
 
 
1761	 */
 
 
 
 
1762
1763	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1764	if (unlikely(ret != 0))
1765		return ret;
1766	spin_lock(&bdev->fence_lock);
1767	ret = ttm_bo_wait(bo, false, true, no_wait);
1768	spin_unlock(&bdev->fence_lock);
1769	if (likely(ret == 0))
1770		atomic_inc(&bo->cpu_writers);
1771	ttm_bo_unreserve(bo);
1772	return ret;
1773}
1774EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1775
1776void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1777{
1778	if (atomic_dec_and_test(&bo->cpu_writers))
1779		wake_up_all(&bo->event_queue);
1780}
1781EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782
1783/**
1784 * A buffer object shrink method that tries to swap out the first
1785 * buffer object on the bo_global::swap_lru list.
1786 */
 
1787
1788static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789{
1790	struct ttm_bo_global *glob =
1791	    container_of(shrink, struct ttm_bo_global, shrink);
1792	struct ttm_buffer_object *bo;
1793	int ret = -EBUSY;
1794	int put_count;
1795	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796
1797	spin_lock(&glob->lru_lock);
1798	while (ret == -EBUSY) {
1799		if (unlikely(list_empty(&glob->swap_lru))) {
1800			spin_unlock(&glob->lru_lock);
1801			return -EBUSY;
1802		}
1803
1804		bo = list_first_entry(&glob->swap_lru,
1805				      struct ttm_buffer_object, swap);
1806		kref_get(&bo->list_kref);
1807
1808		if (!list_empty(&bo->ddestroy)) {
1809			spin_unlock(&glob->lru_lock);
1810			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1811			kref_put(&bo->list_kref, ttm_bo_release_list);
1812			continue;
1813		}
1814
1815		/**
1816		 * Reserve buffer. Since we unlock while sleeping, we need
1817		 * to re-check that nobody removed us from the swap-list while
1818		 * we slept.
1819		 */
1820
1821		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1822		if (unlikely(ret == -EBUSY)) {
1823			spin_unlock(&glob->lru_lock);
1824			ttm_bo_wait_unreserved(bo, false);
1825			kref_put(&bo->list_kref, ttm_bo_release_list);
1826			spin_lock(&glob->lru_lock);
1827		}
1828	}
1829
1830	BUG_ON(ret != 0);
1831	put_count = ttm_bo_del_from_lru(bo);
1832	spin_unlock(&glob->lru_lock);
1833
1834	ttm_bo_list_ref_sub(bo, put_count, true);
1835
1836	/**
1837	 * Wait for GPU, then move to system cached.
1838	 */
1839
1840	spin_lock(&bo->bdev->fence_lock);
1841	ret = ttm_bo_wait(bo, false, false, false);
1842	spin_unlock(&bo->bdev->fence_lock);
1843
1844	if (unlikely(ret != 0))
1845		goto out;
1846
1847	if ((bo->mem.placement & swap_placement) != swap_placement) {
1848		struct ttm_mem_reg evict_mem;
1849
1850		evict_mem = bo->mem;
1851		evict_mem.mm_node = NULL;
1852		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1853		evict_mem.mem_type = TTM_PL_SYSTEM;
1854
1855		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1856					     false, false, false);
1857		if (unlikely(ret != 0))
1858			goto out;
1859	}
1860
1861	ttm_bo_unmap_virtual(bo);
1862
1863	/**
1864	 * Swap out. Buffer will be swapped in again as soon as
1865	 * anyone tries to access a ttm page.
1866	 */
 
 
1867
1868	if (bo->bdev->driver->swap_notify)
1869		bo->bdev->driver->swap_notify(bo);
1870
1871	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1872out:
1873
1874	/**
1875	 *
1876	 * Unreserve without putting on LRU to avoid swapping out an
1877	 * already swapped buffer.
1878	 */
1879
1880	atomic_set(&bo->reserved, 0);
1881	wake_up_all(&bo->event_queue);
1882	kref_put(&bo->list_kref, ttm_bo_release_list);
1883	return ret;
1884}
1885
1886void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1887{
1888	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1889		;
 
 
 
1890}
1891EXPORT_SYMBOL(ttm_bo_swapout_all);
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43#include <linux/dma-resv.h>
  44
  45#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47/* default destructor */
  48static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
  49{
  50	kfree(bo);
 
 
 
 
 
 
 
 
 
 
 
 
  51}
  52
  53static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  54					struct ttm_placement *placement)
  55{
  56	struct drm_printer p = drm_debug_printer(TTM_PFX);
  57	struct ttm_resource_manager *man;
  58	int i, mem_type;
  59
  60	drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n",
  61		   bo, bo->resource->num_pages, bo->base.size >> 10,
  62		   bo->base.size >> 20);
  63	for (i = 0; i < placement->num_placement; i++) {
  64		mem_type = placement->placement[i].mem_type;
  65		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  66			   i, placement->placement[i].flags, mem_type);
  67		man = ttm_manager_type(bo->bdev, mem_type);
  68		ttm_resource_manager_debug(man, &p);
 
 
  69	}
  70}
  71
  72static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 
 
  73{
  74	struct ttm_device *bdev = bo->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76	list_del_init(&bo->lru);
 
 
 
 
  77
  78	if (bdev->funcs->del_from_lru_notify)
  79		bdev->funcs->del_from_lru_notify(bo);
  80}
  81
  82static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
  83				     struct ttm_buffer_object *bo)
  84{
  85	if (!pos->first)
  86		pos->first = bo;
  87	pos->last = bo;
  88}
  89
  90void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
  91			     struct ttm_resource *mem,
  92			     struct ttm_lru_bulk_move *bulk)
  93{
  94	struct ttm_device *bdev = bo->bdev;
  95	struct ttm_resource_manager *man;
 
  96
  97	if (!bo->deleted)
  98		dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100	if (bo->pin_count) {
 101		ttm_bo_del_from_lru(bo);
 102		return;
 
 
 
 
 
 103	}
 
 
 
 
 
 
 
 104
 105	if (!mem)
 106		return;
 107
 108	man = ttm_manager_type(bdev, mem->mem_type);
 109	list_move_tail(&bo->lru, &man->lru[bo->priority]);
 110
 111	if (bdev->funcs->del_from_lru_notify)
 112		bdev->funcs->del_from_lru_notify(bo);
 113
 114	if (bulk && !bo->pin_count) {
 115		switch (bo->resource->mem_type) {
 116		case TTM_PL_TT:
 117			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
 118			break;
 119
 120		case TTM_PL_VRAM:
 121			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
 122			break;
 123		}
 124	}
 125}
 126EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 127
 128void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
 129{
 130	unsigned i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 133		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
 134		struct ttm_resource_manager *man;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135
 136		if (!pos->first)
 137			continue;
 138
 139		dma_resv_assert_held(pos->first->base.resv);
 140		dma_resv_assert_held(pos->last->base.resv);
 
 141
 142		man = ttm_manager_type(pos->first->bdev, TTM_PL_TT);
 143		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 144				    &pos->last->lru);
 145	}
 146
 147	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 148		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
 149		struct ttm_resource_manager *man;
 
 
 
 
 
 
 
 
 
 
 
 150
 151		if (!pos->first)
 152			continue;
 
 153
 154		dma_resv_assert_held(pos->first->base.resv);
 155		dma_resv_assert_held(pos->last->base.resv);
 
 
 156
 157		man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM);
 158		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 159				    &pos->last->lru);
 160	}
 
 161}
 162EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
 163
 164static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 165				  struct ttm_resource *mem, bool evict,
 166				  struct ttm_operation_ctx *ctx,
 167				  struct ttm_place *hop)
 168{
 169	struct ttm_resource_manager *old_man, *new_man;
 170	struct ttm_device *bdev = bo->bdev;
 171	int ret;
 172
 173	old_man = ttm_manager_type(bdev, bo->resource->mem_type);
 174	new_man = ttm_manager_type(bdev, mem->mem_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178	/*
 179	 * Create and bind a ttm if required.
 180	 */
 181
 182	if (new_man->use_tt) {
 183		/* Zero init the new TTM structure if the old location should
 184		 * have used one as well.
 185		 */
 186		ret = ttm_tt_create(bo, old_man->use_tt);
 
 
 
 
 187		if (ret)
 188			goto out_err;
 189
 190		if (mem->mem_type != TTM_PL_SYSTEM) {
 191			ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
 192			if (ret)
 193				goto out_err;
 194		}
 
 
 
 
 
 
 
 
 195	}
 196
 197	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 198	if (ret) {
 199		if (ret == -EMULTIHOP)
 200			return ret;
 
 
 
 
 
 
 
 
 
 201		goto out_err;
 
 
 
 
 
 
 
 202	}
 203
 204	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 205	return 0;
 206
 207out_err:
 208	new_man = ttm_manager_type(bdev, bo->resource->mem_type);
 209	if (!new_man->use_tt)
 210		ttm_bo_tt_destroy(bo);
 
 
 
 211
 212	return ret;
 213}
 214
 215/*
 216 * Call bo::reserved.
 217 * Will release GPU memory type usage on destruction.
 218 * This is the place to put in driver specific hooks to release
 219 * driver private resources.
 220 * Will release the bo::reserved lock.
 221 */
 222
 223static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 224{
 225	if (bo->bdev->funcs->delete_mem_notify)
 226		bo->bdev->funcs->delete_mem_notify(bo);
 
 
 
 
 
 
 227
 228	ttm_bo_tt_destroy(bo);
 229	ttm_resource_free(bo, &bo->resource);
 
 
 
 230}
 231
 232static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 233{
 234	int r;
 
 
 
 
 
 
 235
 236	if (bo->base.resv == &bo->base._resv)
 237		return 0;
 
 
 
 
 
 
 
 
 238
 239	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 240
 241	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 242	dma_resv_unlock(&bo->base._resv);
 243	if (r)
 244		return r;
 245
 246	if (bo->type != ttm_bo_type_sg) {
 247		/* This works because the BO is about to be destroyed and nobody
 248		 * reference it any more. The only tricky case is the trylock on
 249		 * the resv object while holding the lru_lock.
 250		 */
 251		spin_lock(&bo->bdev->lru_lock);
 252		bo->base.resv = &bo->base._resv;
 253		spin_unlock(&bo->bdev->lru_lock);
 254	}
 255
 256	return r;
 257}
 258
 259static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 260{
 261	struct dma_resv *resv = &bo->base._resv;
 262	struct dma_resv_list *fobj;
 263	struct dma_fence *fence;
 264	int i;
 265
 266	rcu_read_lock();
 267	fobj = dma_resv_shared_list(resv);
 268	fence = dma_resv_excl_fence(resv);
 269	if (fence && !fence->ops->signaled)
 270		dma_fence_enable_sw_signaling(fence);
 271
 272	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 273		fence = rcu_dereference(fobj->shared[i]);
 274
 275		if (!fence->ops->signaled)
 276			dma_fence_enable_sw_signaling(fence);
 
 277	}
 278	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281/**
 282 * ttm_bo_cleanup_refs
 283 * If bo idle, remove from lru lists, and unref.
 284 * If not idle, block if possible.
 285 *
 286 * Must be called with lru_lock and reservation held, this function
 287 * will drop the lru lock and optionally the reservation lock before returning.
 288 *
 289 * @bo:                    The buffer object to clean-up
 290 * @interruptible:         Any sleeps should occur interruptibly.
 291 * @no_wait_gpu:           Never wait for gpu. Return -EBUSY instead.
 292 * @unlock_resv:           Unlock the reservation lock as well.
 293 */
 294
 295static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 296			       bool interruptible, bool no_wait_gpu,
 297			       bool unlock_resv)
 298{
 299	struct dma_resv *resv = &bo->base._resv;
 300	int ret;
 
 
 
 301
 302	if (dma_resv_test_signaled(resv, true))
 303		ret = 0;
 304	else
 305		ret = -EBUSY;
 306
 307	if (ret && !no_wait_gpu) {
 308		long lret;
 309
 310		if (unlock_resv)
 311			dma_resv_unlock(bo->base.resv);
 312		spin_unlock(&bo->bdev->lru_lock);
 313
 314		lret = dma_resv_wait_timeout(resv, true, interruptible,
 315					     30 * HZ);
 
 
 316
 317		if (lret < 0)
 318			return lret;
 319		else if (lret == 0)
 320			return -EBUSY;
 
 
 
 321
 322		spin_lock(&bo->bdev->lru_lock);
 323		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 324			/*
 325			 * We raced, and lost, someone else holds the reservation now,
 326			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 327			 *
 328			 * Even if it's not the case, because we finished waiting any
 329			 * delayed destruction would succeed, so just return success
 330			 * here.
 331			 */
 332			spin_unlock(&bo->bdev->lru_lock);
 333			return 0;
 334		}
 335		ret = 0;
 336	}
 337
 338	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 339		if (unlock_resv)
 340			dma_resv_unlock(bo->base.resv);
 341		spin_unlock(&bo->bdev->lru_lock);
 342		return ret;
 343	}
 344
 345	ttm_bo_del_from_lru(bo);
 346	list_del_init(&bo->ddestroy);
 347	spin_unlock(&bo->bdev->lru_lock);
 348	ttm_bo_cleanup_memtype_use(bo);
 349
 350	if (unlock_resv)
 351		dma_resv_unlock(bo->base.resv);
 352
 353	ttm_bo_put(bo);
 354
 355	return 0;
 356}
 357
 358/*
 359 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 360 * encountered buffers.
 361 */
 362bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all)
 
 363{
 364	struct list_head removed;
 365	bool empty;
 
 366
 367	INIT_LIST_HEAD(&removed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368
 369	spin_lock(&bdev->lru_lock);
 370	while (!list_empty(&bdev->ddestroy)) {
 371		struct ttm_buffer_object *bo;
 
 
 372
 373		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
 374				      ddestroy);
 375		list_move_tail(&bo->ddestroy, &removed);
 376		if (!ttm_bo_get_unless_zero(bo))
 377			continue;
 378
 379		if (remove_all || bo->base.resv != &bo->base._resv) {
 380			spin_unlock(&bdev->lru_lock);
 381			dma_resv_lock(bo->base.resv, NULL);
 
 382
 383			spin_lock(&bdev->lru_lock);
 384			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 
 
 
 
 
 385
 386		} else if (dma_resv_trylock(bo->base.resv)) {
 387			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 388		} else {
 389			spin_unlock(&bdev->lru_lock);
 390		}
 391
 392		ttm_bo_put(bo);
 393		spin_lock(&bdev->lru_lock);
 
 394	}
 395	list_splice_tail(&removed, &bdev->ddestroy);
 396	empty = list_empty(&bdev->ddestroy);
 397	spin_unlock(&bdev->lru_lock);
 398
 399	return empty;
 400}
 401
 402static void ttm_bo_release(struct kref *kref)
 403{
 404	struct ttm_buffer_object *bo =
 405	    container_of(kref, struct ttm_buffer_object, kref);
 406	struct ttm_device *bdev = bo->bdev;
 407	int ret;
 408
 409	WARN_ON_ONCE(bo->pin_count);
 410
 411	if (!bo->deleted) {
 412		ret = ttm_bo_individualize_resv(bo);
 413		if (ret) {
 414			/* Last resort, if we fail to allocate memory for the
 415			 * fences block for the BO to become idle
 416			 */
 417			dma_resv_wait_timeout(bo->base.resv, true, false,
 418					      30 * HZ);
 419		}
 420
 421		if (bo->bdev->funcs->release_notify)
 422			bo->bdev->funcs->release_notify(bo);
 423
 424		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 425		ttm_mem_io_free(bdev, bo->resource);
 426	}
 427
 428	if (!dma_resv_test_signaled(bo->base.resv, true) ||
 429	    !dma_resv_trylock(bo->base.resv)) {
 430		/* The BO is not idle, resurrect it for delayed destroy */
 431		ttm_bo_flush_all_fences(bo);
 432		bo->deleted = true;
 433
 434		spin_lock(&bo->bdev->lru_lock);
 435
 436		/*
 437		 * Make pinned bos immediately available to
 438		 * shrinkers, now that they are queued for
 439		 * destruction.
 440		 *
 441		 * FIXME: QXL is triggering this. Can be removed when the
 442		 * driver is fixed.
 443		 */
 444		if (bo->pin_count) {
 445			bo->pin_count = 0;
 446			ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
 447		}
 448
 449		kref_init(&bo->kref);
 450		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 451		spin_unlock(&bo->bdev->lru_lock);
 452
 453		schedule_delayed_work(&bdev->wq,
 454				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 455		return;
 456	}
 457
 458	spin_lock(&bo->bdev->lru_lock);
 459	ttm_bo_del_from_lru(bo);
 460	list_del(&bo->ddestroy);
 461	spin_unlock(&bo->bdev->lru_lock);
 462
 463	ttm_bo_cleanup_memtype_use(bo);
 464	dma_resv_unlock(bo->base.resv);
 465
 466	atomic_dec(&ttm_glob.bo_count);
 467	dma_fence_put(bo->moving);
 468	bo->destroy(bo);
 469}
 470
 471void ttm_bo_put(struct ttm_buffer_object *bo)
 472{
 
 
 
 
 
 473	kref_put(&bo->kref, ttm_bo_release);
 
 474}
 475EXPORT_SYMBOL(ttm_bo_put);
 476
 477int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev)
 478{
 479	return cancel_delayed_work_sync(&bdev->wq);
 480}
 481EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 482
 483void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched)
 484{
 485	if (resched)
 486		schedule_delayed_work(&bdev->wq,
 487				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 488}
 489EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 490
 491static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 492				     struct ttm_resource **mem,
 493				     struct ttm_operation_ctx *ctx,
 494				     struct ttm_place *hop)
 495{
 496	struct ttm_placement hop_placement;
 497	struct ttm_resource *hop_mem;
 498	int ret;
 
 499
 500	hop_placement.num_placement = hop_placement.num_busy_placement = 1;
 501	hop_placement.placement = hop_placement.busy_placement = hop;
 
 502
 503	/* find space in the bounce domain */
 504	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 505	if (ret)
 506		return ret;
 507	/* move to the bounce domain */
 508	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 509	if (ret) {
 510		ttm_resource_free(bo, &hop_mem);
 511		return ret;
 512	}
 513	return 0;
 514}
 515
 516static int ttm_bo_evict(struct ttm_buffer_object *bo,
 517			struct ttm_operation_ctx *ctx)
 518{
 519	struct ttm_device *bdev = bo->bdev;
 520	struct ttm_resource *evict_mem;
 521	struct ttm_placement placement;
 522	struct ttm_place hop;
 523	int ret = 0;
 524
 525	memset(&hop, 0, sizeof(hop));
 526
 527	dma_resv_assert_held(bo->base.resv);
 
 528
 
 
 529	placement.num_placement = 0;
 530	placement.num_busy_placement = 0;
 531	bdev->funcs->evict_flags(bo, &placement);
 532
 533	if (!placement.num_placement && !placement.num_busy_placement) {
 534		ret = ttm_bo_wait(bo, true, false);
 535		if (ret)
 536			return ret;
 537
 538		/*
 539		 * Since we've already synced, this frees backing store
 540		 * immediately.
 541		 */
 542		return ttm_bo_pipeline_gutting(bo);
 543	}
 544
 545	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 546	if (ret) {
 547		if (ret != -ERESTARTSYS) {
 548			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 549			       bo);
 
 550			ttm_bo_mem_space_debug(bo, &placement);
 551		}
 552		goto out;
 553	}
 554
 555bounce:
 556	ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 557	if (ret == -EMULTIHOP) {
 558		ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop);
 559		if (ret) {
 560			pr_err("Buffer eviction failed\n");
 561			ttm_resource_free(bo, &evict_mem);
 562			goto out;
 563		}
 564		/* try and move to final place now. */
 565		goto bounce;
 566	}
 
 567out:
 568	return ret;
 569}
 570
 571bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 572			      const struct ttm_place *place)
 573{
 574	dma_resv_assert_held(bo->base.resv);
 575	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 576		return true;
 
 
 
 
 
 
 
 
 
 
 577
 578	/* Don't evict this BO if it's outside of the
 579	 * requested placement range
 580	 */
 581	if (place->fpfn >= (bo->resource->start + bo->resource->num_pages) ||
 582	    (place->lpfn && place->lpfn <= bo->resource->start))
 583		return false;
 584
 585	return true;
 586}
 587EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 
 
 588
 589/*
 590 * Check the target bo is allowable to be evicted or swapout, including cases:
 591 *
 592 * a. if share same reservation object with ctx->resv, have assumption
 593 * reservation objects should already be locked, so not lock again and
 594 * return true directly when either the opreation allow_reserved_eviction
 595 * or the target bo already is in delayed free list;
 596 *
 597 * b. Otherwise, trylock it.
 598 */
 599static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 600					   struct ttm_operation_ctx *ctx,
 601					   const struct ttm_place *place,
 602					   bool *locked, bool *busy)
 603{
 604	bool ret = false;
 605
 606	if (bo->base.resv == ctx->resv) {
 607		dma_resv_assert_held(bo->base.resv);
 608		if (ctx->allow_res_evict)
 609			ret = true;
 610		*locked = false;
 611		if (busy)
 612			*busy = false;
 613	} else {
 614		ret = dma_resv_trylock(bo->base.resv);
 615		*locked = ret;
 616		if (busy)
 617			*busy = !ret;
 618	}
 619
 620	if (ret && place && !bo->bdev->funcs->eviction_valuable(bo, place)) {
 621		ret = false;
 622		if (*locked) {
 623			dma_resv_unlock(bo->base.resv);
 624			*locked = false;
 625		}
 626	}
 627
 628	return ret;
 629}
 630
 631/**
 632 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 633 *
 634 * @busy_bo: BO which couldn't be locked with trylock
 635 * @ctx: operation context
 636 * @ticket: acquire ticket
 637 *
 638 * Try to lock a busy buffer object to avoid failing eviction.
 639 */
 640static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 641				   struct ttm_operation_ctx *ctx,
 642				   struct ww_acquire_ctx *ticket)
 643{
 644	int r;
 645
 646	if (!busy_bo || !ticket)
 647		return -EBUSY;
 648
 649	if (ctx->interruptible)
 650		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 651							  ticket);
 652	else
 653		r = dma_resv_lock(busy_bo->base.resv, ticket);
 654
 655	/*
 656	 * TODO: It would be better to keep the BO locked until allocation is at
 657	 * least tried one more time, but that would mean a much larger rework
 658	 * of TTM.
 659	 */
 660	if (!r)
 661		dma_resv_unlock(busy_bo->base.resv);
 662
 663	return r == -EDEADLK ? -EBUSY : r;
 664}
 
 665
 666int ttm_mem_evict_first(struct ttm_device *bdev,
 667			struct ttm_resource_manager *man,
 668			const struct ttm_place *place,
 669			struct ttm_operation_ctx *ctx,
 670			struct ww_acquire_ctx *ticket)
 671{
 672	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 673	bool locked = false;
 674	unsigned i;
 675	int ret;
 676
 677	spin_lock(&bdev->lru_lock);
 678	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 679		list_for_each_entry(bo, &man->lru[i], lru) {
 680			bool busy;
 681
 682			if (!ttm_bo_evict_swapout_allowable(bo, ctx, place,
 683							    &locked, &busy)) {
 684				if (busy && !busy_bo && ticket !=
 685				    dma_resv_locking_ctx(bo->base.resv))
 686					busy_bo = bo;
 687				continue;
 688			}
 689
 690			if (!ttm_bo_get_unless_zero(bo)) {
 691				if (locked)
 692					dma_resv_unlock(bo->base.resv);
 693				continue;
 694			}
 695			break;
 696		}
 697
 698		/* If the inner loop terminated early, we have our candidate */
 699		if (&bo->lru != &man->lru[i])
 700			break;
 701
 702		bo = NULL;
 703	}
 704
 705	if (!bo) {
 706		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
 707			busy_bo = NULL;
 708		spin_unlock(&bdev->lru_lock);
 709		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 710		if (busy_bo)
 711			ttm_bo_put(busy_bo);
 712		return ret;
 713	}
 714
 715	if (bo->deleted) {
 716		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 717					  ctx->no_wait_gpu, locked);
 718		ttm_bo_put(bo);
 719		return ret;
 720	}
 721
 722	spin_unlock(&bdev->lru_lock);
 723
 724	ret = ttm_bo_evict(bo, ctx);
 725	if (locked)
 726		ttm_bo_unreserve(bo);
 727
 728	ttm_bo_put(bo);
 729	return ret;
 730}
 731
 732/*
 733 * Add the last move fence to the BO and reserve a new shared slot. We only use
 734 * a shared slot to avoid unecessary sync and rely on the subsequent bo move to
 735 * either stall or use an exclusive fence respectively set bo->moving.
 736 */
 737static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 738				 struct ttm_resource_manager *man,
 739				 struct ttm_resource *mem,
 740				 bool no_wait_gpu)
 741{
 742	struct dma_fence *fence;
 743	int ret;
 744
 745	spin_lock(&man->move_lock);
 746	fence = dma_fence_get(man->move);
 747	spin_unlock(&man->move_lock);
 748
 749	if (!fence)
 750		return 0;
 751
 752	if (no_wait_gpu) {
 753		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 754		dma_fence_put(fence);
 755		return ret;
 756	}
 757
 758	dma_resv_add_shared_fence(bo->base.resv, fence);
 759
 760	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 761	if (unlikely(ret)) {
 762		dma_fence_put(fence);
 763		return ret;
 764	}
 765
 766	dma_fence_put(bo->moving);
 767	bo->moving = fence;
 768	return 0;
 769}
 
 770
 771/*
 772 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 773 * space, or we've evicted everything and there isn't enough space.
 774 */
 775static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 776				  const struct ttm_place *place,
 777				  struct ttm_resource **mem,
 778				  struct ttm_operation_ctx *ctx)
 779{
 780	struct ttm_device *bdev = bo->bdev;
 781	struct ttm_resource_manager *man;
 782	struct ww_acquire_ctx *ticket;
 
 
 783	int ret;
 784
 785	man = ttm_manager_type(bdev, place->mem_type);
 786	ticket = dma_resv_locking_ctx(bo->base.resv);
 787	do {
 788		ret = ttm_resource_alloc(bo, place, mem);
 789		if (likely(!ret))
 
 
 790			break;
 791		if (unlikely(ret != -ENOSPC))
 792			return ret;
 793		ret = ttm_mem_evict_first(bdev, man, place, ctx,
 794					  ticket);
 795		if (unlikely(ret != 0))
 796			return ret;
 797	} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802/*
 803 * Creates space for memory region @mem according to its type.
 804 *
 805 * This function first searches for free space in compatible memory types in
 806 * the priority order defined by the driver.  If free space isn't found, then
 807 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 808 * space.
 809 */
 810int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 811			struct ttm_placement *placement,
 812			struct ttm_resource **mem,
 813			struct ttm_operation_ctx *ctx)
 814{
 815	struct ttm_device *bdev = bo->bdev;
 
 
 
 
 816	bool type_found = false;
 
 
 817	int i, ret;
 818
 819	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 820	if (unlikely(ret))
 821		return ret;
 
 
 
 
 822
 823	for (i = 0; i < placement->num_placement; ++i) {
 824		const struct ttm_place *place = &placement->placement[i];
 825		struct ttm_resource_manager *man;
 
 
 826
 827		man = ttm_manager_type(bdev, place->mem_type);
 828		if (!man || !ttm_resource_manager_used(man))
 829			continue;
 830
 831		type_found = true;
 832		ret = ttm_resource_alloc(bo, place, mem);
 833		if (ret == -ENOSPC)
 834			continue;
 835		if (unlikely(ret))
 836			goto error;
 
 
 837
 838		ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 839		if (unlikely(ret)) {
 840			ttm_resource_free(bo, mem);
 841			if (ret == -EBUSY)
 842				continue;
 843
 844			goto error;
 
 
 
 
 845		}
 
 
 
 
 
 
 
 846		return 0;
 847	}
 848
 
 
 
 849	for (i = 0; i < placement->num_busy_placement; ++i) {
 850		const struct ttm_place *place = &placement->busy_placement[i];
 851		struct ttm_resource_manager *man;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 853		man = ttm_manager_type(bdev, place->mem_type);
 854		if (!man || !ttm_resource_manager_used(man))
 855			continue;
 856
 857		type_found = true;
 858		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
 859		if (likely(!ret))
 
 860			return 0;
 
 861
 862		if (ret && ret != -EBUSY)
 863			goto error;
 
 
 
 
 
 
 864	}
 
 
 
 
 865
 866	ret = -ENOMEM;
 867	if (!type_found) {
 868		pr_err(TTM_PFX "No compatible memory type found\n");
 869		ret = -EINVAL;
 870	}
 871
 872error:
 873	if (bo->resource->mem_type == TTM_PL_SYSTEM && !bo->pin_count)
 874		ttm_bo_move_to_lru_tail_unlocked(bo);
 875
 876	return ret;
 
 877}
 878EXPORT_SYMBOL(ttm_bo_mem_space);
 879
 880static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 881			      struct ttm_placement *placement,
 882			      struct ttm_operation_ctx *ctx)
 
 883{
 884	struct ttm_resource *mem;
 885	struct ttm_place hop;
 886	int ret;
 887
 888	dma_resv_assert_held(bo->base.resv);
 889
 890	/*
 891	 * Determine where to move the buffer.
 892	 *
 893	 * If driver determines move is going to need
 894	 * an extra step then it will return -EMULTIHOP
 895	 * and the buffer will be moved to the temporary
 896	 * stop and the driver will be called to make
 897	 * the second hop.
 898	 */
 899	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
 
 
 900	if (ret)
 901		return ret;
 902bounce:
 903	ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop);
 904	if (ret == -EMULTIHOP) {
 905		ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop);
 906		if (ret)
 907			goto out;
 908		/* try and move to final place now. */
 909		goto bounce;
 910	}
 911out:
 912	if (ret)
 913		ttm_resource_free(bo, &mem);
 
 
 
 
 914	return ret;
 915}
 916
 917static bool ttm_bo_places_compat(const struct ttm_place *places,
 918				 unsigned num_placement,
 919				 struct ttm_resource *mem,
 920				 uint32_t *new_flags)
 921{
 922	unsigned i;
 923
 924	for (i = 0; i < num_placement; i++) {
 925		const struct ttm_place *heap = &places[i];
 
 
 926
 927		if ((mem->start < heap->fpfn ||
 928		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
 929			continue;
 930
 931		*new_flags = heap->flags;
 932		if ((mem->mem_type == heap->mem_type) &&
 933		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
 934		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
 935			return true;
 936	}
 937	return false;
 938}
 939
 940bool ttm_bo_mem_compat(struct ttm_placement *placement,
 941		       struct ttm_resource *mem,
 942		       uint32_t *new_flags)
 943{
 944	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
 945				 mem, new_flags))
 946		return true;
 947
 948	if ((placement->busy_placement != placement->placement ||
 949	     placement->num_busy_placement > placement->num_placement) &&
 950	    ttm_bo_places_compat(placement->busy_placement,
 951				 placement->num_busy_placement,
 952				 mem, new_flags))
 953		return true;
 954
 955	return false;
 956}
 957EXPORT_SYMBOL(ttm_bo_mem_compat);
 958
 959int ttm_bo_validate(struct ttm_buffer_object *bo,
 960		    struct ttm_placement *placement,
 961		    struct ttm_operation_ctx *ctx)
 
 962{
 963	int ret;
 964	uint32_t new_flags;
 965
 966	dma_resv_assert_held(bo->base.resv);
 967
 968	/*
 969	 * Remove the backing store if no placement is given.
 970	 */
 971	if (!placement->num_placement && !placement->num_busy_placement)
 972		return ttm_bo_pipeline_gutting(bo);
 973
 
 
 
 
 
 
 974	/*
 975	 * Check whether we need to move buffer.
 976	 */
 977	if (!ttm_bo_mem_compat(placement, bo->resource, &new_flags)) {
 978		ret = ttm_bo_move_buffer(bo, placement, ctx);
 
 979		if (ret)
 980			return ret;
 
 
 
 
 
 
 
 981	}
 982	/*
 983	 * We might need to add a TTM.
 984	 */
 985	if (bo->resource->mem_type == TTM_PL_SYSTEM) {
 986		ret = ttm_tt_create(bo, true);
 987		if (ret)
 988			return ret;
 989	}
 990	return 0;
 991}
 992EXPORT_SYMBOL(ttm_bo_validate);
 993
 994int ttm_bo_init_reserved(struct ttm_device *bdev,
 995			 struct ttm_buffer_object *bo,
 996			 size_t size,
 997			 enum ttm_bo_type type,
 998			 struct ttm_placement *placement,
 999			 uint32_t page_alignment,
1000			 struct ttm_operation_ctx *ctx,
1001			 struct sg_table *sg,
1002			 struct dma_resv *resv,
1003			 void (*destroy) (struct ttm_buffer_object *))
1004{
1005	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
1006	bool locked;
1007	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
 
 
 
 
 
 
 
 
 
 
1010
1011	kref_init(&bo->kref);
 
 
 
 
1012	INIT_LIST_HEAD(&bo->lru);
1013	INIT_LIST_HEAD(&bo->ddestroy);
 
 
1014	bo->bdev = bdev;
 
1015	bo->type = type;
1016	bo->page_alignment = page_alignment;
1017	bo->moving = NULL;
1018	bo->pin_count = 0;
1019	bo->sg = sg;
1020	if (resv) {
1021		bo->base.resv = resv;
1022		dma_resv_assert_held(bo->base.resv);
1023	} else {
1024		bo->base.resv = &bo->base._resv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025	}
1026	atomic_inc(&ttm_glob.bo_count);
1027
1028	ret = ttm_resource_alloc(bo, &sys_mem, &bo->resource);
1029	if (unlikely(ret)) {
1030		ttm_bo_put(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031		return ret;
 
 
 
 
 
 
1032	}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	/*
1035	 * For ttm_bo_type_device buffers, allocate
1036	 * address space from the device.
1037	 */
1038	if (bo->type == ttm_bo_type_device ||
1039	    bo->type == ttm_bo_type_sg)
1040		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1041					 bo->resource->num_pages);
1042
1043	/* passed reservation objects should already be locked,
1044	 * since otherwise lockdep will be angered in radeon.
1045	 */
1046	if (!resv) {
1047		locked = dma_resv_trylock(bo->base.resv);
1048		WARN_ON(!locked);
 
 
 
 
 
 
 
1049	}
 
 
 
1050
1051	if (likely(!ret))
1052		ret = ttm_bo_validate(bo, placement, ctx);
 
 
1053
1054	if (unlikely(ret)) {
1055		if (!resv)
1056			ttm_bo_unreserve(bo);
 
 
1057
1058		ttm_bo_put(bo);
 
 
1059		return ret;
1060	}
1061
1062	ttm_bo_move_to_lru_tail_unlocked(bo);
 
 
 
 
 
 
 
 
1063
1064	return ret;
1065}
1066EXPORT_SYMBOL(ttm_bo_init_reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068int ttm_bo_init(struct ttm_device *bdev,
1069		struct ttm_buffer_object *bo,
1070		size_t size,
1071		enum ttm_bo_type type,
1072		struct ttm_placement *placement,
1073		uint32_t page_alignment,
1074		bool interruptible,
1075		struct sg_table *sg,
1076		struct dma_resv *resv,
1077		void (*destroy) (struct ttm_buffer_object *))
1078{
1079	struct ttm_operation_ctx ctx = { interruptible, false };
1080	int ret;
 
 
 
 
 
 
 
 
1081
1082	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1083				   page_alignment, &ctx, sg, resv, destroy);
1084	if (ret)
1085		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	if (!resv)
1088		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
1090	return 0;
 
 
 
 
1091}
1092EXPORT_SYMBOL(ttm_bo_init);
1093
1094/*
1095 * buffer object vm functions.
1096 */
1097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1099{
1100	struct ttm_device *bdev = bo->bdev;
 
1101
1102	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1103	ttm_mem_io_free(bdev, bo->resource);
 
1104}
 
 
1105EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107int ttm_bo_wait(struct ttm_buffer_object *bo,
1108		bool interruptible, bool no_wait)
1109{
1110	long timeout = 15 * HZ;
 
 
 
 
1111
1112	if (no_wait) {
1113		if (dma_resv_test_signaled(bo->base.resv, true))
1114			return 0;
1115		else
1116			return -EBUSY;
1117	}
1118
1119	timeout = dma_resv_wait_timeout(bo->base.resv, true, interruptible,
1120					timeout);
1121	if (timeout < 0)
1122		return timeout;
1123
1124	if (timeout == 0)
1125		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
1126
1127	dma_resv_add_excl_fence(bo->base.resv, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128	return 0;
1129}
1130EXPORT_SYMBOL(ttm_bo_wait);
1131
1132int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx,
1133		   gfp_t gfp_flags)
1134{
1135	struct ttm_place place;
1136	bool locked;
1137	int ret;
1138
1139	/*
1140	 * While the bo may already reside in SYSTEM placement, set
1141	 * SYSTEM as new placement to cover also the move further below.
1142	 * The driver may use the fact that we're moving from SYSTEM
1143	 * as an indication that we're about to swap out.
1144	 */
1145	memset(&place, 0, sizeof(place));
1146	place.mem_type = TTM_PL_SYSTEM;
1147	if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL))
1148		return -EBUSY;
1149
1150	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1151	    bo->ttm->page_flags & TTM_PAGE_FLAG_SG ||
1152	    bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED ||
1153	    !ttm_bo_get_unless_zero(bo)) {
1154		if (locked)
1155			dma_resv_unlock(bo->base.resv);
1156		return -EBUSY;
1157	}
 
 
 
 
 
 
 
 
 
 
 
1158
1159	if (bo->deleted) {
1160		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1161		ttm_bo_put(bo);
1162		return ret == -EBUSY ? -ENOSPC : ret;
1163	}
1164
1165	ttm_bo_del_from_lru(bo);
1166	/* TODO: Cleanup the locking */
1167	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169	/*
1170	 * Move to system cached
1171	 */
1172	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1173		struct ttm_operation_ctx ctx = { false, false };
1174		struct ttm_resource *evict_mem;
1175		struct ttm_place hop;
 
 
 
1176
1177		memset(&hop, 0, sizeof(hop));
1178		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1179		if (unlikely(ret))
1180			goto out;
 
1181
1182		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, &ctx, &hop);
1183		if (unlikely(ret != 0)) {
1184			WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n");
1185			goto out;
 
 
1186		}
1187	}
1188
1189	/*
1190	 * Make sure BO is idle.
 
 
 
 
 
 
1191	 */
1192	ret = ttm_bo_wait(bo, false, false);
 
 
 
 
1193	if (unlikely(ret != 0))
1194		goto out;
1195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196	ttm_bo_unmap_virtual(bo);
1197
1198	/*
1199	 * Swap out. Buffer will be swapped in again as soon as
1200	 * anyone tries to access a ttm page.
1201	 */
1202	if (bo->bdev->funcs->swap_notify)
1203		bo->bdev->funcs->swap_notify(bo);
1204
1205	if (ttm_tt_is_populated(bo->ttm))
1206		ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags);
 
 
1207out:
1208
1209	/*
 
1210	 * Unreserve without putting on LRU to avoid swapping out an
1211	 * already swapped buffer.
1212	 */
1213	if (locked)
1214		dma_resv_unlock(bo->base.resv);
1215	ttm_bo_put(bo);
1216	return ret == -EBUSY ? -ENOSPC : ret;
 
1217}
1218
1219void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1220{
1221	if (bo->ttm == NULL)
1222		return;
1223
1224	ttm_tt_destroy(bo->bdev, bo->ttm);
1225	bo->ttm = NULL;
1226}