Linux Audio

Check our new training course

Loading...
v3.1
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#include "ttm/ttm_module.h"
  32#include "ttm/ttm_bo_driver.h"
  33#include "ttm/ttm_placement.h"
 
 
  34#include <linux/jiffies.h>
  35#include <linux/slab.h>
  36#include <linux/sched.h>
  37#include <linux/mm.h>
  38#include <linux/file.h>
  39#include <linux/module.h>
  40#include <linux/atomic.h>
 
  41
  42#define TTM_ASSERT_LOCKED(param)
  43#define TTM_DEBUG(fmt, arg...)
  44#define TTM_BO_HASH_ORDER 13
  45
  46static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  48static void ttm_bo_global_kobj_release(struct kobject *kobj);
  49
 
 
 
 
 
 
 
 
  50static struct attribute ttm_bo_count = {
  51	.name = "bo_count",
  52	.mode = S_IRUGO
  53};
  54
  55static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
 
  56{
  57	int i;
 
  58
  59	for (i = 0; i <= TTM_PL_PRIV5; i++)
  60		if (flags & (1 << i)) {
  61			*mem_type = i;
  62			return 0;
  63		}
  64	return -EINVAL;
 
 
 
 
 
  65}
  66
  67static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
 
  68{
  69	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  70
  71	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
  72	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
  73	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
  74	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
  75	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
  76	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
  77		man->available_caching);
  78	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
  79		man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
 
  87	int i, ret, mem_type;
  88
  89	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
  90		bo, bo->mem.num_pages, bo->mem.size >> 10,
  91		bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
  98			i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->destroy)
 153		bo->destroy(bo);
 154	else {
 155		ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
 156		kfree(bo);
 157	}
 158}
 159
 160int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 161{
 162	if (interruptible) {
 163		return wait_event_interruptible(bo->event_queue,
 164					       atomic_read(&bo->reserved) == 0);
 165	} else {
 166		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 167		return 0;
 168	}
 169}
 170EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 171
 172void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 173{
 174	struct ttm_bo_device *bdev = bo->bdev;
 175	struct ttm_mem_type_manager *man;
 176
 177	BUG_ON(!atomic_read(&bo->reserved));
 178
 179	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 180
 181		BUG_ON(!list_empty(&bo->lru));
 
 182
 183		man = &bdev->man[bo->mem.mem_type];
 184		list_add_tail(&bo->lru, &man->lru);
 185		kref_get(&bo->list_kref);
 186
 187		if (bo->ttm != NULL) {
 188			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 189			kref_get(&bo->list_kref);
 190		}
 191	}
 192}
 193
 194int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 195{
 196	int put_count = 0;
 
 197
 198	if (!list_empty(&bo->swap)) {
 199		list_del_init(&bo->swap);
 200		++put_count;
 201	}
 202	if (!list_empty(&bo->lru)) {
 203		list_del_init(&bo->lru);
 204		++put_count;
 205	}
 206
 207	/*
 208	 * TODO: Add a driver hook to delete from
 209	 * driver-specific LRU's here.
 210	 */
 211
 212	return put_count;
 213}
 214
 215int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 216			  bool interruptible,
 217			  bool no_wait, bool use_sequence, uint32_t sequence)
 218{
 219	struct ttm_bo_global *glob = bo->glob;
 220	int ret;
 221
 222	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 223		/**
 224		 * Deadlock avoidance for multi-bo reserving.
 225		 */
 226		if (use_sequence && bo->seq_valid) {
 227			/**
 228			 * We've already reserved this one.
 229			 */
 230			if (unlikely(sequence == bo->val_seq))
 231				return -EDEADLK;
 232			/**
 233			 * Already reserved by a thread that will not back
 234			 * off for us. We need to back off.
 235			 */
 236			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 237				return -EAGAIN;
 238		}
 239
 240		if (no_wait)
 241			return -EBUSY;
 242
 243		spin_unlock(&glob->lru_lock);
 244		ret = ttm_bo_wait_unreserved(bo, interruptible);
 245		spin_lock(&glob->lru_lock);
 
 246
 247		if (unlikely(ret))
 248			return ret;
 249	}
 250
 251	if (use_sequence) {
 252		/**
 253		 * Wake up waiters that may need to recheck for deadlock,
 254		 * if we decreased the sequence number.
 255		 */
 256		if (unlikely((bo->val_seq - sequence < (1 << 31))
 257			     || !bo->seq_valid))
 258			wake_up_all(&bo->event_queue);
 259
 260		bo->val_seq = sequence;
 261		bo->seq_valid = true;
 262	} else {
 263		bo->seq_valid = false;
 
 
 
 264	}
 265
 266	return 0;
 267}
 268EXPORT_SYMBOL(ttm_bo_reserve);
 269
 270static void ttm_bo_ref_bug(struct kref *list_kref)
 271{
 272	BUG();
 273}
 274
 275void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 276			 bool never_free)
 277{
 278	kref_sub(&bo->list_kref, count,
 279		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 280}
 281
 282int ttm_bo_reserve(struct ttm_buffer_object *bo,
 283		   bool interruptible,
 284		   bool no_wait, bool use_sequence, uint32_t sequence)
 285{
 286	struct ttm_bo_global *glob = bo->glob;
 287	int put_count = 0;
 288	int ret;
 289
 290	spin_lock(&glob->lru_lock);
 291	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 292				    sequence);
 293	if (likely(ret == 0))
 294		put_count = ttm_bo_del_from_lru(bo);
 295	spin_unlock(&glob->lru_lock);
 296
 297	ttm_bo_list_ref_sub(bo, put_count, true);
 
 298
 299	return ret;
 300}
 
 
 301
 302void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 303{
 304	ttm_bo_add_to_lru(bo);
 305	atomic_set(&bo->reserved, 0);
 306	wake_up_all(&bo->event_queue);
 307}
 308
 309void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 310{
 311	struct ttm_bo_global *glob = bo->glob;
 312
 313	spin_lock(&glob->lru_lock);
 314	ttm_bo_unreserve_locked(bo);
 315	spin_unlock(&glob->lru_lock);
 316}
 317EXPORT_SYMBOL(ttm_bo_unreserve);
 318
 319/*
 320 * Call bo->mutex locked.
 321 */
 322static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	struct ttm_bo_global *glob = bo->glob;
 326	int ret = 0;
 327	uint32_t page_flags = 0;
 328
 329	TTM_ASSERT_LOCKED(&bo->mutex);
 330	bo->ttm = NULL;
 
 331
 332	if (bdev->need_dma32)
 333		page_flags |= TTM_PAGE_FLAG_DMA32;
 334
 335	switch (bo->type) {
 336	case ttm_bo_type_device:
 337		if (zero_alloc)
 338			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 339	case ttm_bo_type_kernel:
 340		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 341					page_flags, glob->dummy_read_page);
 342		if (unlikely(bo->ttm == NULL))
 343			ret = -ENOMEM;
 344		break;
 345	case ttm_bo_type_user:
 346		bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 347					page_flags | TTM_PAGE_FLAG_USER,
 348					glob->dummy_read_page);
 349		if (unlikely(bo->ttm == NULL)) {
 350			ret = -ENOMEM;
 351			break;
 352		}
 353
 354		ret = ttm_tt_set_user(bo->ttm, current,
 355				      bo->buffer_start, bo->num_pages);
 356		if (unlikely(ret != 0)) {
 357			ttm_tt_destroy(bo->ttm);
 358			bo->ttm = NULL;
 359		}
 360		break;
 361	default:
 362		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
 363		ret = -EINVAL;
 364		break;
 365	}
 366
 367	return ret;
 368}
 
 369
 370static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 371				  struct ttm_mem_reg *mem,
 372				  bool evict, bool interruptible,
 373				  bool no_wait_reserve, bool no_wait_gpu)
 374{
 375	struct ttm_bo_device *bdev = bo->bdev;
 376	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 377	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 378	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 379	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 380	int ret = 0;
 381
 382	if (old_is_pci || new_is_pci ||
 383	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 384		ret = ttm_mem_io_lock(old_man, true);
 385		if (unlikely(ret != 0))
 386			goto out_err;
 387		ttm_bo_unmap_virtual_locked(bo);
 388		ttm_mem_io_unlock(old_man);
 389	}
 390
 391	/*
 392	 * Create and bind a ttm if required.
 393	 */
 394
 395	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 396		if (bo->ttm == NULL) {
 397			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 398			ret = ttm_bo_add_ttm(bo, zero);
 399			if (ret)
 400				goto out_err;
 401		}
 402
 403		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 404		if (ret)
 405			goto out_err;
 406
 407		if (mem->mem_type != TTM_PL_SYSTEM) {
 408			ret = ttm_tt_bind(bo->ttm, mem);
 409			if (ret)
 410				goto out_err;
 411		}
 412
 413		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 414			if (bdev->driver->move_notify)
 415				bdev->driver->move_notify(bo, mem);
 416			bo->mem = *mem;
 417			mem->mm_node = NULL;
 418			goto moved;
 419		}
 420	}
 421
 422	if (bdev->driver->move_notify)
 423		bdev->driver->move_notify(bo, mem);
 424
 425	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 426	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 427		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428	else if (bdev->driver->move)
 429		ret = bdev->driver->move(bo, evict, interruptible,
 430					 no_wait_reserve, no_wait_gpu, mem);
 431	else
 432		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 433
 434	if (ret)
 435		goto out_err;
 
 
 
 
 436
 437moved:
 438	if (bo->evicted) {
 439		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 440		if (ret)
 441			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
 442		bo->evicted = false;
 443	}
 444
 445	if (bo->mem.mm_node) {
 446		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 447		    bdev->man[bo->mem.mem_type].gpu_offset;
 448		bo->cur_placement = bo->mem.placement;
 449	} else
 450		bo->offset = 0;
 451
 
 452	return 0;
 453
 454out_err:
 455	new_man = &bdev->man[bo->mem.mem_type];
 456	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 457		ttm_tt_unbind(bo->ttm);
 458		ttm_tt_destroy(bo->ttm);
 459		bo->ttm = NULL;
 460	}
 461
 462	return ret;
 463}
 464
 465/**
 466 * Call bo::reserved.
 467 * Will release GPU memory type usage on destruction.
 468 * This is the place to put in driver specific hooks to release
 469 * driver private resources.
 470 * Will release the bo::reserved lock.
 471 */
 472
 473static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 474{
 475	if (bo->ttm) {
 476		ttm_tt_unbind(bo->ttm);
 477		ttm_tt_destroy(bo->ttm);
 478		bo->ttm = NULL;
 479	}
 480	ttm_bo_mem_put(bo, &bo->mem);
 481
 482	atomic_set(&bo->reserved, 0);
 483
 484	/*
 485	 * Make processes trying to reserve really pick it up.
 486	 */
 487	smp_mb__after_atomic_dec();
 488	wake_up_all(&bo->event_queue);
 489}
 490
 491static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 492{
 493	struct ttm_bo_device *bdev = bo->bdev;
 494	struct ttm_bo_global *glob = bo->glob;
 495	struct ttm_bo_driver *driver;
 496	void *sync_obj = NULL;
 497	void *sync_obj_arg;
 498	int put_count;
 499	int ret;
 500
 501	spin_lock(&bdev->fence_lock);
 502	(void) ttm_bo_wait(bo, false, false, true);
 503	if (!bo->sync_obj) {
 504
 505		spin_lock(&glob->lru_lock);
 506
 507		/**
 508		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 509		 * but that's OK, since we're only trylocking.
 
 
 
 
 
 
 510		 */
 
 
 
 
 511
 512		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 513
 514		if (unlikely(ret == -EBUSY))
 515			goto queue;
 516
 517		spin_unlock(&bdev->fence_lock);
 518		put_count = ttm_bo_del_from_lru(bo);
 519
 520		spin_unlock(&glob->lru_lock);
 521		ttm_bo_cleanup_memtype_use(bo);
 522
 523		ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 
 
 524
 525		return;
 526	} else {
 527		spin_lock(&glob->lru_lock);
 528	}
 529queue:
 530	driver = bdev->driver;
 531	if (bo->sync_obj)
 532		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 533	sync_obj_arg = bo->sync_obj_arg;
 534
 535	kref_get(&bo->list_kref);
 536	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 537	spin_unlock(&glob->lru_lock);
 538	spin_unlock(&bdev->fence_lock);
 539
 540	if (sync_obj) {
 541		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 542		driver->sync_obj_unref(&sync_obj);
 543	}
 544	schedule_delayed_work(&bdev->wq,
 545			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 546}
 547
 548/**
 549 * function ttm_bo_cleanup_refs
 550 * If bo idle, remove from delayed- and lru lists, and unref.
 551 * If not idle, do nothing.
 
 
 
 552 *
 553 * @interruptible         Any sleeps should occur interruptibly.
 554 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 555 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 
 556 */
 557
 558static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 559			       bool interruptible,
 560			       bool no_wait_reserve,
 561			       bool no_wait_gpu)
 562{
 563	struct ttm_bo_device *bdev = bo->bdev;
 564	struct ttm_bo_global *glob = bo->glob;
 565	int put_count;
 566	int ret = 0;
 567
 568retry:
 569	spin_lock(&bdev->fence_lock);
 570	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 571	spin_unlock(&bdev->fence_lock);
 572
 573	if (unlikely(ret != 0))
 574		return ret;
 575
 576	spin_lock(&glob->lru_lock);
 577	ret = ttm_bo_reserve_locked(bo, interruptible,
 578				    no_wait_reserve, false, 0);
 579
 580	if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
 581		spin_unlock(&glob->lru_lock);
 582		return ret;
 583	}
 584
 585	/**
 586	 * We can re-check for sync object without taking
 587	 * the bo::lock since setting the sync object requires
 588	 * also bo::reserved. A busy object at this point may
 589	 * be caused by another thread recently starting an accelerated
 590	 * eviction.
 591	 */
 592
 593	if (unlikely(bo->sync_obj)) {
 594		atomic_set(&bo->reserved, 0);
 595		wake_up_all(&bo->event_queue);
 596		spin_unlock(&glob->lru_lock);
 597		goto retry;
 
 
 
 
 
 
 
 
 
 598	}
 599
 600	put_count = ttm_bo_del_from_lru(bo);
 601	list_del_init(&bo->ddestroy);
 602	++put_count;
 
 
 
 603
 604	spin_unlock(&glob->lru_lock);
 
 
 605	ttm_bo_cleanup_memtype_use(bo);
 606
 607	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 608
 609	return 0;
 610}
 611
 612/**
 613 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 614 * encountered buffers.
 615 */
 616
 617static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 618{
 619	struct ttm_bo_global *glob = bdev->glob;
 620	struct ttm_buffer_object *entry = NULL;
 621	int ret = 0;
 
 
 622
 623	spin_lock(&glob->lru_lock);
 624	if (list_empty(&bdev->ddestroy))
 625		goto out_unlock;
 626
 627	entry = list_first_entry(&bdev->ddestroy,
 628		struct ttm_buffer_object, ddestroy);
 629	kref_get(&entry->list_kref);
 630
 631	for (;;) {
 632		struct ttm_buffer_object *nentry = NULL;
 633
 634		if (entry->ddestroy.next != &bdev->ddestroy) {
 635			nentry = list_first_entry(&entry->ddestroy,
 636				struct ttm_buffer_object, ddestroy);
 637			kref_get(&nentry->list_kref);
 638		}
 639
 640		spin_unlock(&glob->lru_lock);
 641		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 642					  !remove_all);
 643		kref_put(&entry->list_kref, ttm_bo_release_list);
 644		entry = nentry;
 645
 646		if (ret || !entry)
 647			goto out;
 
 
 
 
 
 
 648
 
 649		spin_lock(&glob->lru_lock);
 650		if (list_empty(&entry->ddestroy))
 651			break;
 652	}
 653
 654out_unlock:
 655	spin_unlock(&glob->lru_lock);
 656out:
 657	if (entry)
 658		kref_put(&entry->list_kref, ttm_bo_release_list);
 659	return ret;
 660}
 661
 662static void ttm_bo_delayed_workqueue(struct work_struct *work)
 663{
 664	struct ttm_bo_device *bdev =
 665	    container_of(work, struct ttm_bo_device, wq.work);
 666
 667	if (ttm_bo_delayed_delete(bdev, false)) {
 668		schedule_delayed_work(&bdev->wq,
 669				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 670	}
 671}
 672
 673static void ttm_bo_release(struct kref *kref)
 674{
 675	struct ttm_buffer_object *bo =
 676	    container_of(kref, struct ttm_buffer_object, kref);
 677	struct ttm_bo_device *bdev = bo->bdev;
 678	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 
 
 679
 680	if (likely(bo->vm_node != NULL)) {
 681		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 682		drm_mm_put_block(bo->vm_node);
 683		bo->vm_node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 684	}
 685	write_unlock(&bdev->vm_lock);
 686	ttm_mem_io_lock(man, false);
 687	ttm_mem_io_free_vm(bo);
 688	ttm_mem_io_unlock(man);
 689	ttm_bo_cleanup_refs_or_queue(bo);
 690	kref_put(&bo->list_kref, ttm_bo_release_list);
 691	write_lock(&bdev->vm_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692}
 693
 694void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 695{
 696	struct ttm_buffer_object *bo = *p_bo;
 697	struct ttm_bo_device *bdev = bo->bdev;
 698
 699	*p_bo = NULL;
 700	write_lock(&bdev->vm_lock);
 701	kref_put(&bo->kref, ttm_bo_release);
 702	write_unlock(&bdev->vm_lock);
 703}
 704EXPORT_SYMBOL(ttm_bo_unref);
 705
 706int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 707{
 708	return cancel_delayed_work_sync(&bdev->wq);
 709}
 710EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 711
 712void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 713{
 714	if (resched)
 715		schedule_delayed_work(&bdev->wq,
 716				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 717}
 718EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 719
 720static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 721			bool no_wait_reserve, bool no_wait_gpu)
 722{
 723	struct ttm_bo_device *bdev = bo->bdev;
 724	struct ttm_mem_reg evict_mem;
 725	struct ttm_placement placement;
 726	int ret = 0;
 727
 728	spin_lock(&bdev->fence_lock);
 729	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 730	spin_unlock(&bdev->fence_lock);
 731
 732	if (unlikely(ret != 0)) {
 733		if (ret != -ERESTARTSYS) {
 734			printk(KERN_ERR TTM_PFX
 735			       "Failed to expire sync object before "
 736			       "buffer eviction.\n");
 737		}
 738		goto out;
 739	}
 740
 741	BUG_ON(!atomic_read(&bo->reserved));
 
 
 
 
 
 
 742
 743	evict_mem = bo->mem;
 744	evict_mem.mm_node = NULL;
 745	evict_mem.bus.io_reserved_vm = false;
 746	evict_mem.bus.io_reserved_count = 0;
 747
 748	placement.fpfn = 0;
 749	placement.lpfn = 0;
 750	placement.num_placement = 0;
 751	placement.num_busy_placement = 0;
 752	bdev->driver->evict_flags(bo, &placement);
 753	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 754				no_wait_reserve, no_wait_gpu);
 755	if (ret) {
 756		if (ret != -ERESTARTSYS) {
 757			printk(KERN_ERR TTM_PFX
 758			       "Failed to find memory space for "
 759			       "buffer 0x%p eviction.\n", bo);
 760			ttm_bo_mem_space_debug(bo, &placement);
 761		}
 762		goto out;
 763	}
 764
 765	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 766				     no_wait_reserve, no_wait_gpu);
 767	if (ret) {
 768		if (ret != -ERESTARTSYS)
 769			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
 770		ttm_bo_mem_put(bo, &evict_mem);
 771		goto out;
 772	}
 773	bo->evicted = true;
 774out:
 775	return ret;
 776}
 777
 778static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 779				uint32_t mem_type,
 780				bool interruptible, bool no_wait_reserve,
 781				bool no_wait_gpu)
 782{
 783	struct ttm_bo_global *glob = bdev->glob;
 784	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 785	struct ttm_buffer_object *bo;
 786	int ret, put_count = 0;
 
 
 787
 788retry:
 789	spin_lock(&glob->lru_lock);
 790	if (list_empty(&man->lru)) {
 791		spin_unlock(&glob->lru_lock);
 792		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	}
 794
 795	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 796	kref_get(&bo->list_kref);
 797
 798	if (!list_empty(&bo->ddestroy)) {
 799		spin_unlock(&glob->lru_lock);
 800		ret = ttm_bo_cleanup_refs(bo, interruptible,
 801					  no_wait_reserve, no_wait_gpu);
 802		kref_put(&bo->list_kref, ttm_bo_release_list);
 
 
 
 
 
 
 
 
 
 803
 804		if (likely(ret == 0 || ret == -ERESTARTSYS))
 805			return ret;
 806
 807		goto retry;
 808	}
 
 
 
 809
 810	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 
 
 
 
 
 
 811
 812	if (unlikely(ret == -EBUSY)) {
 813		spin_unlock(&glob->lru_lock);
 814		if (likely(!no_wait_gpu))
 815			ret = ttm_bo_wait_unreserved(bo, interruptible);
 816
 817		kref_put(&bo->list_kref, ttm_bo_release_list);
 
 
 
 
 
 
 
 
 
 
 818
 819		/**
 820		 * We *need* to retry after releasing the lru lock.
 821		 */
 
 
 
 
 
 
 
 
 
 822
 823		if (unlikely(ret != 0))
 824			return ret;
 825		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	}
 827
 828	put_count = ttm_bo_del_from_lru(bo);
 829	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 830
 831	BUG_ON(ret != 0);
 
 
 
 
 
 832
 833	ttm_bo_list_ref_sub(bo, put_count, true);
 834
 835	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 836	ttm_bo_unreserve(bo);
 
 837
 838	kref_put(&bo->list_kref, ttm_bo_release_list);
 839	return ret;
 840}
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 842void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 843{
 844	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 845
 846	if (mem->mm_node)
 847		(*man->func->put_node)(man, mem);
 
 
 
 
 848}
 849EXPORT_SYMBOL(ttm_bo_mem_put);
 850
 851/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 853 * space, or we've evicted everything and there isn't enough space.
 854 */
 855static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 856					uint32_t mem_type,
 857					struct ttm_placement *placement,
 858					struct ttm_mem_reg *mem,
 859					bool interruptible,
 860					bool no_wait_reserve,
 861					bool no_wait_gpu)
 862{
 863	struct ttm_bo_device *bdev = bo->bdev;
 864	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 
 865	int ret;
 866
 
 867	do {
 868		ret = (*man->func->get_node)(man, bo, placement, mem);
 869		if (unlikely(ret != 0))
 870			return ret;
 871		if (mem->mm_node)
 872			break;
 873		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 874						no_wait_reserve, no_wait_gpu);
 
 
 875		if (unlikely(ret != 0))
 876			return ret;
 877	} while (1);
 878	if (mem->mm_node == NULL)
 879		return -ENOMEM;
 880	mem->mem_type = mem_type;
 881	return 0;
 882}
 883
 884static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 885				      uint32_t cur_placement,
 886				      uint32_t proposed_placement)
 887{
 888	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 889	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 890
 891	/**
 892	 * Keep current caching if possible.
 893	 */
 894
 895	if ((cur_placement & caching) != 0)
 896		result |= (cur_placement & caching);
 897	else if ((man->default_caching & caching) != 0)
 898		result |= man->default_caching;
 899	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 900		result |= TTM_PL_FLAG_CACHED;
 901	else if ((TTM_PL_FLAG_WC & caching) != 0)
 902		result |= TTM_PL_FLAG_WC;
 903	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 904		result |= TTM_PL_FLAG_UNCACHED;
 905
 906	return result;
 907}
 908
 909static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 910				 bool disallow_fixed,
 911				 uint32_t mem_type,
 912				 uint32_t proposed_placement,
 913				 uint32_t *masked_placement)
 914{
 915	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 916
 917	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
 918		return false;
 919
 920	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 921		return false;
 922
 923	if ((proposed_placement & man->available_caching) == 0)
 924		return false;
 925
 926	cur_flags |= (proposed_placement & man->available_caching);
 927
 928	*masked_placement = cur_flags;
 929	return true;
 930}
 931
 932/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933 * Creates space for memory region @mem according to its type.
 934 *
 935 * This function first searches for free space in compatible memory types in
 936 * the priority order defined by the driver.  If free space isn't found, then
 937 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 938 * space.
 939 */
 940int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 941			struct ttm_placement *placement,
 942			struct ttm_mem_reg *mem,
 943			bool interruptible, bool no_wait_reserve,
 944			bool no_wait_gpu)
 945{
 946	struct ttm_bo_device *bdev = bo->bdev;
 947	struct ttm_mem_type_manager *man;
 948	uint32_t mem_type = TTM_PL_SYSTEM;
 949	uint32_t cur_flags = 0;
 950	bool type_found = false;
 951	bool type_ok = false;
 952	bool has_erestartsys = false;
 953	int i, ret;
 954
 955	mem->mm_node = NULL;
 956	for (i = 0; i < placement->num_placement; ++i) {
 957		ret = ttm_mem_type_from_flags(placement->placement[i],
 958						&mem_type);
 959		if (ret)
 960			return ret;
 961		man = &bdev->man[mem_type];
 962
 963		type_ok = ttm_bo_mt_compatible(man,
 964						bo->type == ttm_bo_type_user,
 965						mem_type,
 966						placement->placement[i],
 967						&cur_flags);
 968
 969		if (!type_ok)
 
 970			continue;
 
 
 971
 972		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 973						  cur_flags);
 974		/*
 975		 * Use the access and other non-mapping-related flag bits from
 976		 * the memory placement flags to the current flags
 977		 */
 978		ttm_flag_masked(&cur_flags, placement->placement[i],
 979				~TTM_PL_MASK_MEMTYPE);
 980
 981		if (mem_type == TTM_PL_SYSTEM)
 982			break;
 
 
 
 
 983
 984		if (man->has_type && man->use_type) {
 985			type_found = true;
 986			ret = (*man->func->get_node)(man, bo, placement, mem);
 987			if (unlikely(ret))
 988				return ret;
 989		}
 990		if (mem->mm_node)
 991			break;
 992	}
 993
 994	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 995		mem->mem_type = mem_type;
 996		mem->placement = cur_flags;
 997		return 0;
 998	}
 999
1000	if (!type_found)
1001		return -EINVAL;
1002
1003	for (i = 0; i < placement->num_busy_placement; ++i) {
1004		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005						&mem_type);
1006		if (ret)
1007			return ret;
1008		man = &bdev->man[mem_type];
1009		if (!man->has_type)
1010			continue;
1011		if (!ttm_bo_mt_compatible(man,
1012						bo->type == ttm_bo_type_user,
1013						mem_type,
1014						placement->busy_placement[i],
1015						&cur_flags))
1016			continue;
 
 
1017
1018		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019						  cur_flags);
1020		/*
1021		 * Use the access and other non-mapping-related flag bits from
1022		 * the memory placement flags to the current flags
1023		 */
1024		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025				~TTM_PL_MASK_MEMTYPE);
1026
 
 
 
1027
1028		if (mem_type == TTM_PL_SYSTEM) {
1029			mem->mem_type = mem_type;
1030			mem->placement = cur_flags;
1031			mem->mm_node = NULL;
1032			return 0;
1033		}
1034
1035		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036						interruptible, no_wait_reserve, no_wait_gpu);
1037		if (ret == 0 && mem->mm_node) {
1038			mem->placement = cur_flags;
1039			return 0;
1040		}
1041		if (ret == -ERESTARTSYS)
1042			has_erestartsys = true;
1043	}
1044	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045	return ret;
1046}
1047EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050{
1051	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052		return -EBUSY;
1053
1054	return wait_event_interruptible(bo->event_queue,
1055					atomic_read(&bo->cpu_writers) == 0);
1056}
1057EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060			struct ttm_placement *placement,
1061			bool interruptible, bool no_wait_reserve,
1062			bool no_wait_gpu)
1063{
1064	int ret = 0;
1065	struct ttm_mem_reg mem;
1066	struct ttm_bo_device *bdev = bo->bdev;
1067
1068	BUG_ON(!atomic_read(&bo->reserved));
1069
1070	/*
1071	 * FIXME: It's possible to pipeline buffer moves.
1072	 * Have the driver move function wait for idle when necessary,
1073	 * instead of doing it here.
1074	 */
1075	spin_lock(&bdev->fence_lock);
1076	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077	spin_unlock(&bdev->fence_lock);
1078	if (ret)
1079		return ret;
1080	mem.num_pages = bo->num_pages;
1081	mem.size = mem.num_pages << PAGE_SHIFT;
1082	mem.page_alignment = bo->mem.page_alignment;
1083	mem.bus.io_reserved_vm = false;
1084	mem.bus.io_reserved_count = 0;
 
 
1085	/*
1086	 * Determine where to move the buffer.
1087	 */
1088	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1089	if (ret)
1090		goto out_unlock;
1091	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1092out_unlock:
1093	if (ret && mem.mm_node)
1094		ttm_bo_mem_put(bo, &mem);
1095	return ret;
1096}
1097
1098static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099			     struct ttm_mem_reg *mem)
 
 
1100{
1101	int i;
1102
1103	if (mem->mm_node && placement->lpfn != 0 &&
1104	    (mem->start < placement->fpfn ||
1105	     mem->start + mem->num_pages > placement->lpfn))
1106		return -1;
1107
1108	for (i = 0; i < placement->num_placement; i++) {
1109		if ((placement->placement[i] & mem->placement &
1110			TTM_PL_MASK_CACHING) &&
1111			(placement->placement[i] & mem->placement &
1112			TTM_PL_MASK_MEM))
1113			return i;
1114	}
1115	return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116}
 
1117
1118int ttm_bo_validate(struct ttm_buffer_object *bo,
1119			struct ttm_placement *placement,
1120			bool interruptible, bool no_wait_reserve,
1121			bool no_wait_gpu)
1122{
1123	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125	BUG_ON(!atomic_read(&bo->reserved));
1126	/* Check that range is valid */
1127	if (placement->lpfn || placement->fpfn)
1128		if (placement->fpfn > placement->lpfn ||
1129			(placement->lpfn - placement->fpfn) < bo->num_pages)
1130			return -EINVAL;
1131	/*
1132	 * Check whether we need to move buffer.
1133	 */
1134	ret = ttm_bo_mem_compat(placement, &bo->mem);
1135	if (ret < 0) {
1136		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137		if (ret)
1138			return ret;
1139	} else {
1140		/*
1141		 * Use the access and other non-mapping-related flag bits from
1142		 * the compatible memory placement flags to the active flags
1143		 */
1144		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145				~TTM_PL_MASK_MEMTYPE);
1146	}
1147	/*
1148	 * We might need to add a TTM.
1149	 */
1150	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151		ret = ttm_bo_add_ttm(bo, true);
1152		if (ret)
1153			return ret;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ttm_bo_validate);
1158
1159int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160				struct ttm_placement *placement)
1161{
1162	BUG_ON((placement->fpfn || placement->lpfn) &&
1163	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165	return 0;
1166}
1167
1168int ttm_bo_init(struct ttm_bo_device *bdev,
1169		struct ttm_buffer_object *bo,
1170		unsigned long size,
1171		enum ttm_bo_type type,
1172		struct ttm_placement *placement,
1173		uint32_t page_alignment,
1174		unsigned long buffer_start,
1175		bool interruptible,
1176		struct file *persistent_swap_storage,
1177		size_t acc_size,
1178		void (*destroy) (struct ttm_buffer_object *))
1179{
 
1180	int ret = 0;
1181	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
1182
1183	size += buffer_start & ~PAGE_MASK;
1184	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (num_pages == 0) {
1186		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187		if (destroy)
1188			(*destroy)(bo);
1189		else
1190			kfree(bo);
 
1191		return -EINVAL;
1192	}
1193	bo->destroy = destroy;
1194
1195	kref_init(&bo->kref);
1196	kref_init(&bo->list_kref);
1197	atomic_set(&bo->cpu_writers, 0);
1198	atomic_set(&bo->reserved, 1);
1199	init_waitqueue_head(&bo->event_queue);
1200	INIT_LIST_HEAD(&bo->lru);
1201	INIT_LIST_HEAD(&bo->ddestroy);
1202	INIT_LIST_HEAD(&bo->swap);
1203	INIT_LIST_HEAD(&bo->io_reserve_lru);
1204	bo->bdev = bdev;
1205	bo->glob = bdev->glob;
1206	bo->type = type;
1207	bo->num_pages = num_pages;
1208	bo->mem.size = num_pages << PAGE_SHIFT;
1209	bo->mem.mem_type = TTM_PL_SYSTEM;
1210	bo->mem.num_pages = bo->num_pages;
1211	bo->mem.mm_node = NULL;
1212	bo->mem.page_alignment = page_alignment;
1213	bo->mem.bus.io_reserved_vm = false;
1214	bo->mem.bus.io_reserved_count = 0;
1215	bo->buffer_start = buffer_start & PAGE_MASK;
1216	bo->priv_flags = 0;
1217	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218	bo->seq_valid = false;
1219	bo->persistent_swap_storage = persistent_swap_storage;
1220	bo->acc_size = acc_size;
1221	atomic_inc(&bo->glob->bo_count);
1222
1223	ret = ttm_bo_check_placement(bo, placement);
1224	if (unlikely(ret != 0))
1225		goto out_err;
 
 
 
 
 
 
 
 
 
 
 
1226
1227	/*
1228	 * For ttm_bo_type_device buffers, allocate
1229	 * address space from the device.
1230	 */
1231	if (bo->type == ttm_bo_type_device) {
1232		ret = ttm_bo_setup_vm(bo);
1233		if (ret)
1234			goto out_err;
 
 
 
 
 
 
 
1235	}
1236
1237	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238	if (ret)
1239		goto out_err;
1240
1241	ttm_bo_unreserve(bo);
1242	return 0;
 
1243
1244out_err:
1245	ttm_bo_unreserve(bo);
1246	ttm_bo_unref(&bo);
 
 
 
 
1247
1248	return ret;
1249}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250EXPORT_SYMBOL(ttm_bo_init);
1251
1252static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253				 unsigned long num_pages)
 
1254{
1255	size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256	    PAGE_MASK;
1257
1258	return glob->ttm_bo_size + 2 * page_array_size;
 
 
 
1259}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261int ttm_bo_create(struct ttm_bo_device *bdev,
1262			unsigned long size,
1263			enum ttm_bo_type type,
1264			struct ttm_placement *placement,
1265			uint32_t page_alignment,
1266			unsigned long buffer_start,
1267			bool interruptible,
1268			struct file *persistent_swap_storage,
1269			struct ttm_buffer_object **p_bo)
1270{
1271	struct ttm_buffer_object *bo;
1272	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273	int ret;
1274
1275	size_t acc_size =
1276	    ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278	if (unlikely(ret != 0))
1279		return ret;
1280
1281	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283	if (unlikely(bo == NULL)) {
1284		ttm_mem_global_free(mem_glob, acc_size);
1285		return -ENOMEM;
1286	}
1287
 
1288	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289				buffer_start, interruptible,
1290				persistent_swap_storage, acc_size, NULL);
1291	if (likely(ret == 0))
1292		*p_bo = bo;
1293
1294	return ret;
1295}
 
1296
1297static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1298					unsigned mem_type, bool allow_errors)
1299{
 
 
 
 
 
1300	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1301	struct ttm_bo_global *glob = bdev->glob;
 
1302	int ret;
 
1303
1304	/*
1305	 * Can't use standard list traversal since we're unlocking.
1306	 */
1307
1308	spin_lock(&glob->lru_lock);
1309	while (!list_empty(&man->lru)) {
1310		spin_unlock(&glob->lru_lock);
1311		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1312		if (ret) {
1313			if (allow_errors) {
 
1314				return ret;
1315			} else {
1316				printk(KERN_ERR TTM_PFX
1317					"Cleanup eviction failed\n");
1318			}
1319		}
1320		spin_lock(&glob->lru_lock);
1321	}
1322	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1323	return 0;
1324}
1325
1326int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1327{
1328	struct ttm_mem_type_manager *man;
1329	int ret = -EINVAL;
1330
1331	if (mem_type >= TTM_NUM_MEM_TYPES) {
1332		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1333		return ret;
1334	}
1335	man = &bdev->man[mem_type];
1336
1337	if (!man->has_type) {
1338		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1339		       "memory manager type %u\n", mem_type);
1340		return ret;
1341	}
1342
1343	man->use_type = false;
1344	man->has_type = false;
1345
1346	ret = 0;
1347	if (mem_type > 0) {
1348		ttm_bo_force_list_clean(bdev, mem_type, false);
 
 
 
 
1349
1350		ret = (*man->func->takedown)(man);
1351	}
1352
 
 
 
1353	return ret;
1354}
1355EXPORT_SYMBOL(ttm_bo_clean_mm);
1356
1357int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1360
1361	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1362		printk(KERN_ERR TTM_PFX
1363		       "Illegal memory manager memory type %u.\n",
1364		       mem_type);
1365		return -EINVAL;
1366	}
1367
1368	if (!man->has_type) {
1369		printk(KERN_ERR TTM_PFX
1370		       "Memory type %u has not been initialized.\n",
1371		       mem_type);
1372		return 0;
1373	}
1374
1375	return ttm_bo_force_list_clean(bdev, mem_type, true);
1376}
1377EXPORT_SYMBOL(ttm_bo_evict_mm);
1378
1379int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1380			unsigned long p_size)
1381{
1382	int ret = -EINVAL;
1383	struct ttm_mem_type_manager *man;
 
1384
1385	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1386	man = &bdev->man[type];
1387	BUG_ON(man->has_type);
1388	man->io_reserve_fastpath = true;
1389	man->use_io_reserve_lru = false;
1390	mutex_init(&man->io_reserve_mutex);
 
1391	INIT_LIST_HEAD(&man->io_reserve_lru);
1392
1393	ret = bdev->driver->init_mem_type(bdev, type, man);
1394	if (ret)
1395		return ret;
1396	man->bdev = bdev;
1397
1398	ret = 0;
1399	if (type != TTM_PL_SYSTEM) {
1400		ret = (*man->func->init)(man, p_size);
1401		if (ret)
1402			return ret;
1403	}
1404	man->has_type = true;
1405	man->use_type = true;
1406	man->size = p_size;
1407
1408	INIT_LIST_HEAD(&man->lru);
 
 
1409
1410	return 0;
1411}
1412EXPORT_SYMBOL(ttm_bo_init_mm);
1413
1414static void ttm_bo_global_kobj_release(struct kobject *kobj)
1415{
1416	struct ttm_bo_global *glob =
1417		container_of(kobj, struct ttm_bo_global, kobj);
1418
1419	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1420	__free_page(glob->dummy_read_page);
1421	kfree(glob);
1422}
1423
1424void ttm_bo_global_release(struct drm_global_reference *ref)
1425{
1426	struct ttm_bo_global *glob = ref->object;
 
 
 
 
1427
1428	kobject_del(&glob->kobj);
1429	kobject_put(&glob->kobj);
 
 
 
 
1430}
1431EXPORT_SYMBOL(ttm_bo_global_release);
1432
1433int ttm_bo_global_init(struct drm_global_reference *ref)
1434{
1435	struct ttm_bo_global_ref *bo_ref =
1436		container_of(ref, struct ttm_bo_global_ref, ref);
1437	struct ttm_bo_global *glob = ref->object;
1438	int ret;
 
 
 
 
 
 
 
1439
1440	mutex_init(&glob->device_list_mutex);
1441	spin_lock_init(&glob->lru_lock);
1442	glob->mem_glob = bo_ref->mem_glob;
1443	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1444
1445	if (unlikely(glob->dummy_read_page == NULL)) {
1446		ret = -ENOMEM;
1447		goto out_no_drp;
1448	}
1449
1450	INIT_LIST_HEAD(&glob->swap_lru);
 
1451	INIT_LIST_HEAD(&glob->device_list);
1452
1453	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1454	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1455	if (unlikely(ret != 0)) {
1456		printk(KERN_ERR TTM_PFX
1457		       "Could not register buffer object swapout.\n");
1458		goto out_no_shrink;
1459	}
1460
1461	glob->ttm_bo_extra_size =
1462		ttm_round_pot(sizeof(struct ttm_tt)) +
1463		ttm_round_pot(sizeof(struct ttm_backend));
1464
1465	glob->ttm_bo_size = glob->ttm_bo_extra_size +
1466		ttm_round_pot(sizeof(struct ttm_buffer_object));
1467
1468	atomic_set(&glob->bo_count, 0);
1469
1470	ret = kobject_init_and_add(
1471		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1472	if (unlikely(ret != 0))
1473		kobject_put(&glob->kobj);
1474	return ret;
1475out_no_shrink:
1476	__free_page(glob->dummy_read_page);
1477out_no_drp:
1478	kfree(glob);
1479	return ret;
1480}
1481EXPORT_SYMBOL(ttm_bo_global_init);
1482
1483
1484int ttm_bo_device_release(struct ttm_bo_device *bdev)
1485{
 
1486	int ret = 0;
1487	unsigned i = TTM_NUM_MEM_TYPES;
1488	struct ttm_mem_type_manager *man;
1489	struct ttm_bo_global *glob = bdev->glob;
1490
1491	while (i--) {
1492		man = &bdev->man[i];
1493		if (man->has_type) {
1494			man->use_type = false;
1495			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1496				ret = -EBUSY;
1497				printk(KERN_ERR TTM_PFX
1498				       "DRM memory manager type %d "
1499				       "is not clean.\n", i);
1500			}
1501			man->has_type = false;
1502		}
1503	}
1504
1505	mutex_lock(&glob->device_list_mutex);
1506	list_del(&bdev->device_list);
1507	mutex_unlock(&glob->device_list_mutex);
1508
1509	cancel_delayed_work_sync(&bdev->wq);
1510
1511	while (ttm_bo_delayed_delete(bdev, true))
1512		;
1513
1514	spin_lock(&glob->lru_lock);
1515	if (list_empty(&bdev->ddestroy))
1516		TTM_DEBUG("Delayed destroy list was clean\n");
1517
1518	if (list_empty(&bdev->man[0].lru))
1519		TTM_DEBUG("Swap list was clean\n");
1520	spin_unlock(&glob->lru_lock);
1521
1522	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1523	write_lock(&bdev->vm_lock);
1524	drm_mm_takedown(&bdev->addr_space_mm);
1525	write_unlock(&bdev->vm_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
1534		       uint64_t file_page_offset,
 
1535		       bool need_dma32)
1536{
1537	int ret = -EINVAL;
 
 
 
 
 
 
 
 
1538
1539	rwlock_init(&bdev->vm_lock);
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	bdev->addr_space_rb = RB_ROOT;
1553	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1554	if (unlikely(ret != 0))
1555		goto out_no_addr_mm;
1556
1557	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558	bdev->nice_mode = true;
1559	INIT_LIST_HEAD(&bdev->ddestroy);
1560	bdev->dev_mapping = NULL;
1561	bdev->glob = glob;
1562	bdev->need_dma32 = need_dma32;
1563	bdev->val_seq = 0;
1564	spin_lock_init(&bdev->fence_lock);
1565	mutex_lock(&glob->device_list_mutex);
1566	list_add_tail(&bdev->device_list, &glob->device_list);
1567	mutex_unlock(&glob->device_list_mutex);
1568
1569	return 0;
1570out_no_addr_mm:
1571	ttm_bo_clean_mm(bdev, 0);
1572out_no_sys:
 
1573	return ret;
1574}
1575EXPORT_SYMBOL(ttm_bo_device_init);
1576
1577/*
1578 * buffer object vm functions.
1579 */
1580
1581bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1582{
1583	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1584
1585	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1586		if (mem->mem_type == TTM_PL_SYSTEM)
1587			return false;
1588
1589		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1590			return false;
1591
1592		if (mem->placement & TTM_PL_FLAG_CACHED)
1593			return false;
1594	}
1595	return true;
1596}
1597
1598void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	loff_t offset = (loff_t) bo->addr_space_offset;
1602	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1603
1604	if (!bdev->dev_mapping)
1605		return;
1606	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1607	ttm_mem_io_free_vm(bo);
1608}
1609
1610void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1611{
1612	struct ttm_bo_device *bdev = bo->bdev;
1613	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1614
1615	ttm_mem_io_lock(man, false);
1616	ttm_bo_unmap_virtual_locked(bo);
1617	ttm_mem_io_unlock(man);
1618}
1619
1620
1621EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1622
1623static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1624{
1625	struct ttm_bo_device *bdev = bo->bdev;
1626	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1627	struct rb_node *parent = NULL;
1628	struct ttm_buffer_object *cur_bo;
1629	unsigned long offset = bo->vm_node->start;
1630	unsigned long cur_offset;
1631
1632	while (*cur) {
1633		parent = *cur;
1634		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1635		cur_offset = cur_bo->vm_node->start;
1636		if (offset < cur_offset)
1637			cur = &parent->rb_left;
1638		else if (offset > cur_offset)
1639			cur = &parent->rb_right;
1640		else
1641			BUG();
1642	}
1643
1644	rb_link_node(&bo->vm_rb, parent, cur);
1645	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1646}
1647
1648/**
1649 * ttm_bo_setup_vm:
1650 *
1651 * @bo: the buffer to allocate address space for
1652 *
1653 * Allocate address space in the drm device so that applications
1654 * can mmap the buffer and access the contents. This only
1655 * applies to ttm_bo_type_device objects as others are not
1656 * placed in the drm device address space.
1657 */
1658
1659static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1660{
1661	struct ttm_bo_device *bdev = bo->bdev;
1662	int ret;
1663
1664retry_pre_get:
1665	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1666	if (unlikely(ret != 0))
1667		return ret;
1668
1669	write_lock(&bdev->vm_lock);
1670	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1671					 bo->mem.num_pages, 0, 0);
1672
1673	if (unlikely(bo->vm_node == NULL)) {
1674		ret = -ENOMEM;
1675		goto out_unlock;
1676	}
1677
1678	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1679					      bo->mem.num_pages, 0);
1680
1681	if (unlikely(bo->vm_node == NULL)) {
1682		write_unlock(&bdev->vm_lock);
1683		goto retry_pre_get;
1684	}
1685
1686	ttm_bo_vm_insert_rb(bo);
1687	write_unlock(&bdev->vm_lock);
1688	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1689
1690	return 0;
1691out_unlock:
1692	write_unlock(&bdev->vm_lock);
1693	return ret;
1694}
1695
1696int ttm_bo_wait(struct ttm_buffer_object *bo,
1697		bool lazy, bool interruptible, bool no_wait)
1698{
1699	struct ttm_bo_driver *driver = bo->bdev->driver;
1700	struct ttm_bo_device *bdev = bo->bdev;
1701	void *sync_obj;
1702	void *sync_obj_arg;
1703	int ret = 0;
1704
1705	if (likely(bo->sync_obj == NULL))
1706		return 0;
1707
1708	while (bo->sync_obj) {
1709
1710		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1711			void *tmp_obj = bo->sync_obj;
1712			bo->sync_obj = NULL;
1713			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1714			spin_unlock(&bdev->fence_lock);
1715			driver->sync_obj_unref(&tmp_obj);
1716			spin_lock(&bdev->fence_lock);
1717			continue;
1718		}
1719
1720		if (no_wait)
1721			return -EBUSY;
1722
1723		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1724		sync_obj_arg = bo->sync_obj_arg;
1725		spin_unlock(&bdev->fence_lock);
1726		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1727					    lazy, interruptible);
1728		if (unlikely(ret != 0)) {
1729			driver->sync_obj_unref(&sync_obj);
1730			spin_lock(&bdev->fence_lock);
1731			return ret;
1732		}
1733		spin_lock(&bdev->fence_lock);
1734		if (likely(bo->sync_obj == sync_obj &&
1735			   bo->sync_obj_arg == sync_obj_arg)) {
1736			void *tmp_obj = bo->sync_obj;
1737			bo->sync_obj = NULL;
1738			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1739				  &bo->priv_flags);
1740			spin_unlock(&bdev->fence_lock);
1741			driver->sync_obj_unref(&sync_obj);
1742			driver->sync_obj_unref(&tmp_obj);
1743			spin_lock(&bdev->fence_lock);
1744		} else {
1745			spin_unlock(&bdev->fence_lock);
1746			driver->sync_obj_unref(&sync_obj);
1747			spin_lock(&bdev->fence_lock);
1748		}
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(ttm_bo_wait);
1753
1754int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1755{
1756	struct ttm_bo_device *bdev = bo->bdev;
1757	int ret = 0;
1758
1759	/*
1760	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1761	 */
 
1762
1763	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1764	if (unlikely(ret != 0))
1765		return ret;
1766	spin_lock(&bdev->fence_lock);
1767	ret = ttm_bo_wait(bo, false, true, no_wait);
1768	spin_unlock(&bdev->fence_lock);
1769	if (likely(ret == 0))
1770		atomic_inc(&bo->cpu_writers);
1771	ttm_bo_unreserve(bo);
1772	return ret;
1773}
1774EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1775
1776void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1777{
1778	if (atomic_dec_and_test(&bo->cpu_writers))
1779		wake_up_all(&bo->event_queue);
1780}
1781EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1782
1783/**
1784 * A buffer object shrink method that tries to swap out the first
1785 * buffer object on the bo_global::swap_lru list.
1786 */
1787
1788static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1789{
1790	struct ttm_bo_global *glob =
1791	    container_of(shrink, struct ttm_bo_global, shrink);
1792	struct ttm_buffer_object *bo;
1793	int ret = -EBUSY;
1794	int put_count;
1795	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1796
1797	spin_lock(&glob->lru_lock);
1798	while (ret == -EBUSY) {
1799		if (unlikely(list_empty(&glob->swap_lru))) {
1800			spin_unlock(&glob->lru_lock);
1801			return -EBUSY;
1802		}
1803
1804		bo = list_first_entry(&glob->swap_lru,
1805				      struct ttm_buffer_object, swap);
1806		kref_get(&bo->list_kref);
 
 
1807
1808		if (!list_empty(&bo->ddestroy)) {
1809			spin_unlock(&glob->lru_lock);
1810			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1811			kref_put(&bo->list_kref, ttm_bo_release_list);
1812			continue;
1813		}
 
 
 
1814
1815		/**
1816		 * Reserve buffer. Since we unlock while sleeping, we need
1817		 * to re-check that nobody removed us from the swap-list while
1818		 * we slept.
1819		 */
1820
1821		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1822		if (unlikely(ret == -EBUSY)) {
1823			spin_unlock(&glob->lru_lock);
1824			ttm_bo_wait_unreserved(bo, false);
1825			kref_put(&bo->list_kref, ttm_bo_release_list);
1826			spin_lock(&glob->lru_lock);
1827		}
1828	}
1829
1830	BUG_ON(ret != 0);
1831	put_count = ttm_bo_del_from_lru(bo);
1832	spin_unlock(&glob->lru_lock);
1833
1834	ttm_bo_list_ref_sub(bo, put_count, true);
1835
1836	/**
1837	 * Wait for GPU, then move to system cached.
1838	 */
1839
1840	spin_lock(&bo->bdev->fence_lock);
1841	ret = ttm_bo_wait(bo, false, false, false);
1842	spin_unlock(&bo->bdev->fence_lock);
1843
1844	if (unlikely(ret != 0))
1845		goto out;
1846
1847	if ((bo->mem.placement & swap_placement) != swap_placement) {
1848		struct ttm_mem_reg evict_mem;
1849
1850		evict_mem = bo->mem;
1851		evict_mem.mm_node = NULL;
1852		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1853		evict_mem.mem_type = TTM_PL_SYSTEM;
1854
1855		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1856					     false, false, false);
1857		if (unlikely(ret != 0))
1858			goto out;
1859	}
1860
 
 
 
 
 
 
 
 
1861	ttm_bo_unmap_virtual(bo);
1862
1863	/**
1864	 * Swap out. Buffer will be swapped in again as soon as
1865	 * anyone tries to access a ttm page.
1866	 */
1867
1868	if (bo->bdev->driver->swap_notify)
1869		bo->bdev->driver->swap_notify(bo);
1870
1871	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1872out:
1873
1874	/**
1875	 *
1876	 * Unreserve without putting on LRU to avoid swapping out an
1877	 * already swapped buffer.
1878	 */
1879
1880	atomic_set(&bo->reserved, 0);
1881	wake_up_all(&bo->event_queue);
1882	kref_put(&bo->list_kref, ttm_bo_release_list);
1883	return ret;
1884}
 
1885
1886void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1887{
1888	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1889		;
 
 
 
 
1890}
1891EXPORT_SYMBOL(ttm_bo_swapout_all);
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_module.h>
  35#include <drm/ttm/ttm_bo_driver.h>
  36#include <drm/ttm/ttm_placement.h>
  37#include <linux/jiffies.h>
  38#include <linux/slab.h>
  39#include <linux/sched.h>
  40#include <linux/mm.h>
  41#include <linux/file.h>
  42#include <linux/module.h>
  43#include <linux/atomic.h>
  44#include <linux/dma-resv.h>
  45
 
 
 
 
 
 
  46static void ttm_bo_global_kobj_release(struct kobject *kobj);
  47
  48/**
  49 * ttm_global_mutex - protecting the global BO state
  50 */
  51DEFINE_MUTEX(ttm_global_mutex);
  52unsigned ttm_bo_glob_use_count;
  53struct ttm_bo_global ttm_bo_glob;
  54EXPORT_SYMBOL(ttm_bo_glob);
  55
  56static struct attribute ttm_bo_count = {
  57	.name = "bo_count",
  58	.mode = S_IRUGO
  59};
  60
  61/* default destructor */
  62static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
  63{
  64	kfree(bo);
  65}
  66
  67static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  68					  uint32_t *mem_type)
  69{
  70	int pos;
  71
  72	pos = ffs(place->flags & TTM_PL_MASK_MEM);
  73	if (unlikely(!pos))
  74		return -EINVAL;
  75
  76	*mem_type = pos - 1;
  77	return 0;
  78}
  79
  80static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
  81			       int mem_type)
  82{
  83	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  84
  85	drm_printf(p, "    has_type: %d\n", man->has_type);
  86	drm_printf(p, "    use_type: %d\n", man->use_type);
  87	drm_printf(p, "    flags: 0x%08X\n", man->flags);
  88	drm_printf(p, "    size: %llu\n", man->size);
  89	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
  90	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
 
 
 
  91	if (mem_type != TTM_PL_SYSTEM)
  92		(*man->func->debug)(man, p);
  93}
  94
  95static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  96					struct ttm_placement *placement)
  97{
  98	struct drm_printer p = drm_debug_printer(TTM_PFX);
  99	int i, ret, mem_type;
 100
 101	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
 102		   bo, bo->mem.num_pages, bo->mem.size >> 10,
 103		   bo->mem.size >> 20);
 104	for (i = 0; i < placement->num_placement; i++) {
 105		ret = ttm_mem_type_from_place(&placement->placement[i],
 106						&mem_type);
 107		if (ret)
 108			return;
 109		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
 110			   i, placement->placement[i].flags, mem_type);
 111		ttm_mem_type_debug(bo->bdev, &p, mem_type);
 112	}
 113}
 114
 115static ssize_t ttm_bo_global_show(struct kobject *kobj,
 116				  struct attribute *attr,
 117				  char *buffer)
 118{
 119	struct ttm_bo_global *glob =
 120		container_of(kobj, struct ttm_bo_global, kobj);
 121
 122	return snprintf(buffer, PAGE_SIZE, "%d\n",
 123				atomic_read(&glob->bo_count));
 124}
 125
 126static struct attribute *ttm_bo_global_attrs[] = {
 127	&ttm_bo_count,
 128	NULL
 129};
 130
 131static const struct sysfs_ops ttm_bo_global_ops = {
 132	.show = &ttm_bo_global_show
 133};
 134
 135static struct kobj_type ttm_bo_glob_kobj_type  = {
 136	.release = &ttm_bo_global_kobj_release,
 137	.sysfs_ops = &ttm_bo_global_ops,
 138	.default_attrs = ttm_bo_global_attrs
 139};
 140
 141
 142static inline uint32_t ttm_bo_type_flags(unsigned type)
 143{
 144	return 1 << (type);
 145}
 146
 147static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
 148				  struct ttm_mem_reg *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149{
 150	struct ttm_bo_device *bdev = bo->bdev;
 151	struct ttm_mem_type_manager *man;
 152
 153	if (!list_empty(&bo->lru))
 154		return;
 
 155
 156	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
 157		return;
 158
 159	man = &bdev->man[mem->mem_type];
 160	list_add_tail(&bo->lru, &man->lru[bo->priority]);
 
 161
 162	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
 163	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
 164				     TTM_PAGE_FLAG_SWAPPED))) {
 165		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
 166	}
 167}
 168
 169static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 170{
 171	struct ttm_bo_device *bdev = bo->bdev;
 172	bool notify = false;
 173
 174	if (!list_empty(&bo->swap)) {
 175		list_del_init(&bo->swap);
 176		notify = true;
 177	}
 178	if (!list_empty(&bo->lru)) {
 179		list_del_init(&bo->lru);
 180		notify = true;
 181	}
 182
 183	if (notify && bdev->driver->del_from_lru_notify)
 184		bdev->driver->del_from_lru_notify(bo);
 
 
 
 
 185}
 186
 187static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
 188				     struct ttm_buffer_object *bo)
 
 189{
 190	if (!pos->first)
 191		pos->first = bo;
 192	pos->last = bo;
 193}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194
 195void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
 196			     struct ttm_lru_bulk_move *bulk)
 197{
 198	dma_resv_assert_held(bo->base.resv);
 199
 200	ttm_bo_del_from_lru(bo);
 201	ttm_bo_add_mem_to_lru(bo, &bo->mem);
 
 202
 203	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 204		switch (bo->mem.mem_type) {
 205		case TTM_PL_TT:
 206			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
 207			break;
 
 
 
 208
 209		case TTM_PL_VRAM:
 210			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
 211			break;
 212		}
 213		if (bo->ttm && !(bo->ttm->page_flags &
 214				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
 215			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
 216	}
 
 
 217}
 218EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 219
 220void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
 221{
 222	unsigned i;
 
 223
 224	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 225		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
 226		struct ttm_mem_type_manager *man;
 
 
 
 227
 228		if (!pos->first)
 229			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231		dma_resv_assert_held(pos->first->base.resv);
 232		dma_resv_assert_held(pos->last->base.resv);
 233
 234		man = &pos->first->bdev->man[TTM_PL_TT];
 235		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 236				    &pos->last->lru);
 237	}
 238
 239	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 240		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
 241		struct ttm_mem_type_manager *man;
 
 
 
 242
 243		if (!pos->first)
 244			continue;
 
 245
 246		dma_resv_assert_held(pos->first->base.resv);
 247		dma_resv_assert_held(pos->last->base.resv);
 
 
 
 248
 249		man = &pos->first->bdev->man[TTM_PL_VRAM];
 250		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 251				    &pos->last->lru);
 252	}
 
 
 
 
 
 253
 254	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 255		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
 256		struct list_head *lru;
 257
 258		if (!pos->first)
 259			continue;
 260
 261		dma_resv_assert_held(pos->first->base.resv);
 262		dma_resv_assert_held(pos->last->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263
 264		lru = &ttm_bo_glob.swap_lru[i];
 265		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
 
 
 
 
 
 
 
 
 
 266	}
 
 
 267}
 268EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
 269
 270static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 271				  struct ttm_mem_reg *mem, bool evict,
 272				  struct ttm_operation_ctx *ctx)
 
 273{
 274	struct ttm_bo_device *bdev = bo->bdev;
 
 
 275	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 276	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 277	int ret;
 278
 279	ret = ttm_mem_io_lock(old_man, true);
 280	if (unlikely(ret != 0))
 281		goto out_err;
 282	ttm_bo_unmap_virtual_locked(bo);
 283	ttm_mem_io_unlock(old_man);
 
 
 
 284
 285	/*
 286	 * Create and bind a ttm if required.
 287	 */
 288
 289	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 290		if (bo->ttm == NULL) {
 291			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 292			ret = ttm_tt_create(bo, zero);
 293			if (ret)
 294				goto out_err;
 295		}
 296
 297		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 298		if (ret)
 299			goto out_err;
 300
 301		if (mem->mem_type != TTM_PL_SYSTEM) {
 302			ret = ttm_tt_bind(bo->ttm, mem, ctx);
 303			if (ret)
 304				goto out_err;
 305		}
 306
 307		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 308			if (bdev->driver->move_notify)
 309				bdev->driver->move_notify(bo, evict, mem);
 310			bo->mem = *mem;
 
 311			goto moved;
 312		}
 313	}
 314
 315	if (bdev->driver->move_notify)
 316		bdev->driver->move_notify(bo, evict, mem);
 317
 318	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 319	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 320		ret = ttm_bo_move_ttm(bo, ctx, mem);
 321	else if (bdev->driver->move)
 322		ret = bdev->driver->move(bo, evict, ctx, mem);
 
 323	else
 324		ret = ttm_bo_move_memcpy(bo, ctx, mem);
 325
 326	if (ret) {
 327		if (bdev->driver->move_notify) {
 328			swap(*mem, bo->mem);
 329			bdev->driver->move_notify(bo, false, mem);
 330			swap(*mem, bo->mem);
 331		}
 332
 333		goto out_err;
 
 
 
 
 
 334	}
 335
 336moved:
 337	bo->evicted = false;
 
 
 
 
 338
 339	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
 340	return 0;
 341
 342out_err:
 343	new_man = &bdev->man[bo->mem.mem_type];
 344	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
 
 345		ttm_tt_destroy(bo->ttm);
 346		bo->ttm = NULL;
 347	}
 348
 349	return ret;
 350}
 351
 352/**
 353 * Call bo::reserved.
 354 * Will release GPU memory type usage on destruction.
 355 * This is the place to put in driver specific hooks to release
 356 * driver private resources.
 357 * Will release the bo::reserved lock.
 358 */
 359
 360static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 361{
 362	if (bo->bdev->driver->move_notify)
 363		bo->bdev->driver->move_notify(bo, false, NULL);
 
 
 
 
 
 
 364
 365	ttm_tt_destroy(bo->ttm);
 366	bo->ttm = NULL;
 367	ttm_bo_mem_put(bo, &bo->mem);
 
 
 368}
 369
 370static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 371{
 372	int r;
 
 
 
 
 
 
 373
 374	if (bo->base.resv == &bo->base._resv)
 375		return 0;
 
 376
 377	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 378
 379	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 380	dma_resv_unlock(&bo->base._resv);
 381	if (r)
 382		return r;
 383
 384	if (bo->type != ttm_bo_type_sg) {
 385		/* This works because the BO is about to be destroyed and nobody
 386		 * reference it any more. The only tricky case is the trylock on
 387		 * the resv object while holding the lru_lock.
 388		 */
 389		spin_lock(&ttm_bo_glob.lru_lock);
 390		bo->base.resv = &bo->base._resv;
 391		spin_unlock(&ttm_bo_glob.lru_lock);
 392	}
 393
 394	return r;
 395}
 
 
 
 
 
 
 
 
 396
 397static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 398{
 399	struct dma_resv *resv = &bo->base._resv;
 400	struct dma_resv_list *fobj;
 401	struct dma_fence *fence;
 402	int i;
 403
 404	rcu_read_lock();
 405	fobj = rcu_dereference(resv->fence);
 406	fence = rcu_dereference(resv->fence_excl);
 407	if (fence && !fence->ops->signaled)
 408		dma_fence_enable_sw_signaling(fence);
 
 
 
 
 409
 410	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 411		fence = rcu_dereference(fobj->shared[i]);
 
 
 412
 413		if (!fence->ops->signaled)
 414			dma_fence_enable_sw_signaling(fence);
 
 415	}
 416	rcu_read_unlock();
 
 417}
 418
 419/**
 420 * function ttm_bo_cleanup_refs
 421 * If bo idle, remove from lru lists, and unref.
 422 * If not idle, block if possible.
 423 *
 424 * Must be called with lru_lock and reservation held, this function
 425 * will drop the lru lock and optionally the reservation lock before returning.
 426 *
 427 * @interruptible         Any sleeps should occur interruptibly.
 
 428 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 429 * @unlock_resv           Unlock the reservation lock as well.
 430 */
 431
 432static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 433			       bool interruptible, bool no_wait_gpu,
 434			       bool unlock_resv)
 
 435{
 436	struct dma_resv *resv = &bo->base._resv;
 437	int ret;
 
 
 438
 439	if (dma_resv_test_signaled_rcu(resv, true))
 440		ret = 0;
 441	else
 442		ret = -EBUSY;
 443
 444	if (ret && !no_wait_gpu) {
 445		long lret;
 446
 447		if (unlock_resv)
 448			dma_resv_unlock(bo->base.resv);
 449		spin_unlock(&ttm_bo_glob.lru_lock);
 450
 451		lret = dma_resv_wait_timeout_rcu(resv, true, interruptible,
 452						 30 * HZ);
 
 
 453
 454		if (lret < 0)
 455			return lret;
 456		else if (lret == 0)
 457			return -EBUSY;
 
 
 
 458
 459		spin_lock(&ttm_bo_glob.lru_lock);
 460		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 461			/*
 462			 * We raced, and lost, someone else holds the reservation now,
 463			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 464			 *
 465			 * Even if it's not the case, because we finished waiting any
 466			 * delayed destruction would succeed, so just return success
 467			 * here.
 468			 */
 469			spin_unlock(&ttm_bo_glob.lru_lock);
 470			return 0;
 471		}
 472		ret = 0;
 473	}
 474
 475	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 476		if (unlock_resv)
 477			dma_resv_unlock(bo->base.resv);
 478		spin_unlock(&ttm_bo_glob.lru_lock);
 479		return ret;
 480	}
 481
 482	ttm_bo_del_from_lru(bo);
 483	list_del_init(&bo->ddestroy);
 484	spin_unlock(&ttm_bo_glob.lru_lock);
 485	ttm_bo_cleanup_memtype_use(bo);
 486
 487	if (unlock_resv)
 488		dma_resv_unlock(bo->base.resv);
 489
 490	ttm_bo_put(bo);
 491
 492	return 0;
 493}
 494
 495/**
 496 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 497 * encountered buffers.
 498 */
 499static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 
 500{
 501	struct ttm_bo_global *glob = &ttm_bo_glob;
 502	struct list_head removed;
 503	bool empty;
 504
 505	INIT_LIST_HEAD(&removed);
 506
 507	spin_lock(&glob->lru_lock);
 508	while (!list_empty(&bdev->ddestroy)) {
 509		struct ttm_buffer_object *bo;
 510
 511		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
 512				      ddestroy);
 513		list_move_tail(&bo->ddestroy, &removed);
 514		if (!ttm_bo_get_unless_zero(bo))
 515			continue;
 
 
 
 
 
 
 
 516
 517		if (remove_all || bo->base.resv != &bo->base._resv) {
 518			spin_unlock(&glob->lru_lock);
 519			dma_resv_lock(bo->base.resv, NULL);
 
 
 520
 521			spin_lock(&glob->lru_lock);
 522			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 523
 524		} else if (dma_resv_trylock(bo->base.resv)) {
 525			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 526		} else {
 527			spin_unlock(&glob->lru_lock);
 528		}
 529
 530		ttm_bo_put(bo);
 531		spin_lock(&glob->lru_lock);
 
 
 532	}
 533	list_splice_tail(&removed, &bdev->ddestroy);
 534	empty = list_empty(&bdev->ddestroy);
 535	spin_unlock(&glob->lru_lock);
 536
 537	return empty;
 
 
 538}
 539
 540static void ttm_bo_delayed_workqueue(struct work_struct *work)
 541{
 542	struct ttm_bo_device *bdev =
 543	    container_of(work, struct ttm_bo_device, wq.work);
 544
 545	if (!ttm_bo_delayed_delete(bdev, false))
 546		schedule_delayed_work(&bdev->wq,
 547				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 548}
 549
 550static void ttm_bo_release(struct kref *kref)
 551{
 552	struct ttm_buffer_object *bo =
 553	    container_of(kref, struct ttm_buffer_object, kref);
 554	struct ttm_bo_device *bdev = bo->bdev;
 555	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 556	size_t acc_size = bo->acc_size;
 557	int ret;
 558
 559	if (!bo->deleted) {
 560		ret = ttm_bo_individualize_resv(bo);
 561		if (ret) {
 562			/* Last resort, if we fail to allocate memory for the
 563			 * fences block for the BO to become idle
 564			 */
 565			dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
 566						  30 * HZ);
 567		}
 568
 569		if (bo->bdev->driver->release_notify)
 570			bo->bdev->driver->release_notify(bo);
 571
 572		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 573		ttm_mem_io_lock(man, false);
 574		ttm_mem_io_free_vm(bo);
 575		ttm_mem_io_unlock(man);
 576	}
 577
 578	if (!dma_resv_test_signaled_rcu(bo->base.resv, true) ||
 579	    !dma_resv_trylock(bo->base.resv)) {
 580		/* The BO is not idle, resurrect it for delayed destroy */
 581		ttm_bo_flush_all_fences(bo);
 582		bo->deleted = true;
 583
 584		spin_lock(&ttm_bo_glob.lru_lock);
 585
 586		/*
 587		 * Make NO_EVICT bos immediately available to
 588		 * shrinkers, now that they are queued for
 589		 * destruction.
 590		 */
 591		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 592			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 593			ttm_bo_del_from_lru(bo);
 594			ttm_bo_add_mem_to_lru(bo, &bo->mem);
 595		}
 596
 597		kref_init(&bo->kref);
 598		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 599		spin_unlock(&ttm_bo_glob.lru_lock);
 600
 601		schedule_delayed_work(&bdev->wq,
 602				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 603		return;
 604	}
 605
 606	spin_lock(&ttm_bo_glob.lru_lock);
 607	ttm_bo_del_from_lru(bo);
 608	list_del(&bo->ddestroy);
 609	spin_unlock(&ttm_bo_glob.lru_lock);
 610
 611	ttm_bo_cleanup_memtype_use(bo);
 612	dma_resv_unlock(bo->base.resv);
 613
 614	atomic_dec(&ttm_bo_glob.bo_count);
 615	dma_fence_put(bo->moving);
 616	if (!ttm_bo_uses_embedded_gem_object(bo))
 617		dma_resv_fini(&bo->base._resv);
 618	bo->destroy(bo);
 619	ttm_mem_global_free(&ttm_mem_glob, acc_size);
 620}
 621
 622void ttm_bo_put(struct ttm_buffer_object *bo)
 623{
 
 
 
 
 
 624	kref_put(&bo->kref, ttm_bo_release);
 
 625}
 626EXPORT_SYMBOL(ttm_bo_put);
 627
 628int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 629{
 630	return cancel_delayed_work_sync(&bdev->wq);
 631}
 632EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 633
 634void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 635{
 636	if (resched)
 637		schedule_delayed_work(&bdev->wq,
 638				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 639}
 640EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 641
 642static int ttm_bo_evict(struct ttm_buffer_object *bo,
 643			struct ttm_operation_ctx *ctx)
 644{
 645	struct ttm_bo_device *bdev = bo->bdev;
 646	struct ttm_mem_reg evict_mem;
 647	struct ttm_placement placement;
 648	int ret = 0;
 649
 650	dma_resv_assert_held(bo->base.resv);
 
 
 651
 652	placement.num_placement = 0;
 653	placement.num_busy_placement = 0;
 654	bdev->driver->evict_flags(bo, &placement);
 
 
 
 
 
 655
 656	if (!placement.num_placement && !placement.num_busy_placement) {
 657		ret = ttm_bo_pipeline_gutting(bo);
 658		if (ret)
 659			return ret;
 660
 661		return ttm_tt_create(bo, false);
 662	}
 663
 664	evict_mem = bo->mem;
 665	evict_mem.mm_node = NULL;
 666	evict_mem.bus.io_reserved_vm = false;
 667	evict_mem.bus.io_reserved_count = 0;
 668
 669	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 
 
 
 
 
 
 670	if (ret) {
 671		if (ret != -ERESTARTSYS) {
 672			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 673			       bo);
 
 674			ttm_bo_mem_space_debug(bo, &placement);
 675		}
 676		goto out;
 677	}
 678
 679	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
 680	if (unlikely(ret)) {
 
 681		if (ret != -ERESTARTSYS)
 682			pr_err("Buffer eviction failed\n");
 683		ttm_bo_mem_put(bo, &evict_mem);
 684		goto out;
 685	}
 686	bo->evicted = true;
 687out:
 688	return ret;
 689}
 690
 691bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 692			      const struct ttm_place *place)
 
 
 693{
 694	/* Don't evict this BO if it's outside of the
 695	 * requested placement range
 696	 */
 697	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 698	    (place->lpfn && place->lpfn <= bo->mem.start))
 699		return false;
 700
 701	return true;
 702}
 703EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 704
 705/**
 706 * Check the target bo is allowable to be evicted or swapout, including cases:
 707 *
 708 * a. if share same reservation object with ctx->resv, have assumption
 709 * reservation objects should already be locked, so not lock again and
 710 * return true directly when either the opreation allow_reserved_eviction
 711 * or the target bo already is in delayed free list;
 712 *
 713 * b. Otherwise, trylock it.
 714 */
 715static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 716			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
 717{
 718	bool ret = false;
 719
 720	if (bo->base.resv == ctx->resv) {
 721		dma_resv_assert_held(bo->base.resv);
 722		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT)
 723			ret = true;
 724		*locked = false;
 725		if (busy)
 726			*busy = false;
 727	} else {
 728		ret = dma_resv_trylock(bo->base.resv);
 729		*locked = ret;
 730		if (busy)
 731			*busy = !ret;
 732	}
 733
 734	return ret;
 735}
 736
 737/**
 738 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 739 *
 740 * @busy_bo: BO which couldn't be locked with trylock
 741 * @ctx: operation context
 742 * @ticket: acquire ticket
 743 *
 744 * Try to lock a busy buffer object to avoid failing eviction.
 745 */
 746static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 747				   struct ttm_operation_ctx *ctx,
 748				   struct ww_acquire_ctx *ticket)
 749{
 750	int r;
 751
 752	if (!busy_bo || !ticket)
 753		return -EBUSY;
 754
 755	if (ctx->interruptible)
 756		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 757							  ticket);
 758	else
 759		r = dma_resv_lock(busy_bo->base.resv, ticket);
 760
 761	/*
 762	 * TODO: It would be better to keep the BO locked until allocation is at
 763	 * least tried one more time, but that would mean a much larger rework
 764	 * of TTM.
 765	 */
 766	if (!r)
 767		dma_resv_unlock(busy_bo->base.resv);
 768
 769	return r == -EDEADLK ? -EBUSY : r;
 770}
 
 
 771
 772static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 773			       uint32_t mem_type,
 774			       const struct ttm_place *place,
 775			       struct ttm_operation_ctx *ctx,
 776			       struct ww_acquire_ctx *ticket)
 777{
 778	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 779	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 780	bool locked = false;
 781	unsigned i;
 782	int ret;
 783
 784	spin_lock(&ttm_bo_glob.lru_lock);
 785	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 786		list_for_each_entry(bo, &man->lru[i], lru) {
 787			bool busy;
 788
 789			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
 790							    &busy)) {
 791				if (busy && !busy_bo && ticket !=
 792				    dma_resv_locking_ctx(bo->base.resv))
 793					busy_bo = bo;
 794				continue;
 795			}
 796
 797			if (place && !bdev->driver->eviction_valuable(bo,
 798								      place)) {
 799				if (locked)
 800					dma_resv_unlock(bo->base.resv);
 801				continue;
 802			}
 803			if (!ttm_bo_get_unless_zero(bo)) {
 804				if (locked)
 805					dma_resv_unlock(bo->base.resv);
 806				continue;
 807			}
 808			break;
 809		}
 810
 811		/* If the inner loop terminated early, we have our candidate */
 812		if (&bo->lru != &man->lru[i])
 813			break;
 814
 815		bo = NULL;
 816	}
 817
 818	if (!bo) {
 819		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
 820			busy_bo = NULL;
 821		spin_unlock(&ttm_bo_glob.lru_lock);
 822		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 823		if (busy_bo)
 824			ttm_bo_put(busy_bo);
 825		return ret;
 826	}
 827
 828	if (bo->deleted) {
 829		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 830					  ctx->no_wait_gpu, locked);
 831		ttm_bo_put(bo);
 832		return ret;
 833	}
 834
 835	spin_unlock(&ttm_bo_glob.lru_lock);
 836
 837	ret = ttm_bo_evict(bo, ctx);
 838	if (locked)
 839		ttm_bo_unreserve(bo);
 840
 841	ttm_bo_put(bo);
 842	return ret;
 843}
 844
 845static int ttm_bo_mem_get(struct ttm_buffer_object *bo,
 846			  const struct ttm_place *place,
 847			  struct ttm_mem_reg *mem)
 848{
 849	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 850
 851	mem->mm_node = NULL;
 852	if (!man->func || !man->func->get_node)
 853		return 0;
 854
 855	return man->func->get_node(man, bo, place, mem);
 856}
 857
 858void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 859{
 860	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 861
 862	if (!man->func || !man->func->put_node)
 863		return;
 864
 865	man->func->put_node(man, mem);
 866	mem->mm_node = NULL;
 867	mem->mem_type = TTM_PL_SYSTEM;
 868}
 869EXPORT_SYMBOL(ttm_bo_mem_put);
 870
 871/**
 872 * Add the last move fence to the BO and reserve a new shared slot.
 873 */
 874static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 875				 struct ttm_mem_type_manager *man,
 876				 struct ttm_mem_reg *mem,
 877				 bool no_wait_gpu)
 878{
 879	struct dma_fence *fence;
 880	int ret;
 881
 882	spin_lock(&man->move_lock);
 883	fence = dma_fence_get(man->move);
 884	spin_unlock(&man->move_lock);
 885
 886	if (!fence)
 887		return 0;
 888
 889	if (no_wait_gpu) {
 890		dma_fence_put(fence);
 891		return -EBUSY;
 892	}
 893
 894	dma_resv_add_shared_fence(bo->base.resv, fence);
 895
 896	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 897	if (unlikely(ret)) {
 898		dma_fence_put(fence);
 899		return ret;
 900	}
 901
 902	dma_fence_put(bo->moving);
 903	bo->moving = fence;
 904	return 0;
 905}
 906
 907/**
 908 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 909 * space, or we've evicted everything and there isn't enough space.
 910 */
 911static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 912				  const struct ttm_place *place,
 913				  struct ttm_mem_reg *mem,
 914				  struct ttm_operation_ctx *ctx)
 
 
 
 915{
 916	struct ttm_bo_device *bdev = bo->bdev;
 917	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 918	struct ww_acquire_ctx *ticket;
 919	int ret;
 920
 921	ticket = dma_resv_locking_ctx(bo->base.resv);
 922	do {
 923		ret = ttm_bo_mem_get(bo, place, mem);
 924		if (likely(!ret))
 
 
 925			break;
 926		if (unlikely(ret != -ENOSPC))
 927			return ret;
 928		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
 929					  ticket);
 930		if (unlikely(ret != 0))
 931			return ret;
 932	} while (1);
 933
 934	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
 
 
 935}
 936
 937static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 938				      uint32_t cur_placement,
 939				      uint32_t proposed_placement)
 940{
 941	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 942	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 943
 944	/**
 945	 * Keep current caching if possible.
 946	 */
 947
 948	if ((cur_placement & caching) != 0)
 949		result |= (cur_placement & caching);
 950	else if ((man->default_caching & caching) != 0)
 951		result |= man->default_caching;
 952	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 953		result |= TTM_PL_FLAG_CACHED;
 954	else if ((TTM_PL_FLAG_WC & caching) != 0)
 955		result |= TTM_PL_FLAG_WC;
 956	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 957		result |= TTM_PL_FLAG_UNCACHED;
 958
 959	return result;
 960}
 961
 962static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 
 963				 uint32_t mem_type,
 964				 const struct ttm_place *place,
 965				 uint32_t *masked_placement)
 966{
 967	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 968
 969	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
 
 
 
 970		return false;
 971
 972	if ((place->flags & man->available_caching) == 0)
 973		return false;
 974
 975	cur_flags |= (place->flags & man->available_caching);
 976
 977	*masked_placement = cur_flags;
 978	return true;
 979}
 980
 981/**
 982 * ttm_bo_mem_placement - check if placement is compatible
 983 * @bo: BO to find memory for
 984 * @place: where to search
 985 * @mem: the memory object to fill in
 986 * @ctx: operation context
 987 *
 988 * Check if placement is compatible and fill in mem structure.
 989 * Returns -EBUSY if placement won't work or negative error code.
 990 * 0 when placement can be used.
 991 */
 992static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
 993				const struct ttm_place *place,
 994				struct ttm_mem_reg *mem,
 995				struct ttm_operation_ctx *ctx)
 996{
 997	struct ttm_bo_device *bdev = bo->bdev;
 998	uint32_t mem_type = TTM_PL_SYSTEM;
 999	struct ttm_mem_type_manager *man;
1000	uint32_t cur_flags = 0;
1001	int ret;
1002
1003	ret = ttm_mem_type_from_place(place, &mem_type);
1004	if (ret)
1005		return ret;
1006
1007	man = &bdev->man[mem_type];
1008	if (!man->has_type || !man->use_type)
1009		return -EBUSY;
1010
1011	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1012		return -EBUSY;
1013
1014	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1015	/*
1016	 * Use the access and other non-mapping-related flag bits from
1017	 * the memory placement flags to the current flags
1018	 */
1019	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1020
1021	mem->mem_type = mem_type;
1022	mem->placement = cur_flags;
1023
1024	spin_lock(&ttm_bo_glob.lru_lock);
1025	ttm_bo_del_from_lru(bo);
1026	ttm_bo_add_mem_to_lru(bo, mem);
1027	spin_unlock(&ttm_bo_glob.lru_lock);
1028
1029	return 0;
1030}
1031
1032/**
1033 * Creates space for memory region @mem according to its type.
1034 *
1035 * This function first searches for free space in compatible memory types in
1036 * the priority order defined by the driver.  If free space isn't found, then
1037 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1038 * space.
1039 */
1040int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1041			struct ttm_placement *placement,
1042			struct ttm_mem_reg *mem,
1043			struct ttm_operation_ctx *ctx)
 
1044{
1045	struct ttm_bo_device *bdev = bo->bdev;
 
 
 
1046	bool type_found = false;
 
 
1047	int i, ret;
1048
1049	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1050	if (unlikely(ret))
1051		return ret;
 
 
 
 
1052
1053	for (i = 0; i < placement->num_placement; ++i) {
1054		const struct ttm_place *place = &placement->placement[i];
1055		struct ttm_mem_type_manager *man;
 
 
1056
1057		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1058		if (ret == -EBUSY)
1059			continue;
1060		if (ret)
1061			goto error;
1062
1063		type_found = true;
1064		ret = ttm_bo_mem_get(bo, place, mem);
1065		if (ret == -ENOSPC)
1066			continue;
1067		if (unlikely(ret))
1068			goto error;
 
 
1069
1070		man = &bdev->man[mem->mem_type];
1071		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1072		if (unlikely(ret)) {
1073			ttm_bo_mem_put(bo, mem);
1074			if (ret == -EBUSY)
1075				continue;
1076
1077			goto error;
 
 
 
 
1078		}
 
 
 
 
 
 
 
1079		return 0;
1080	}
1081
 
 
 
1082	for (i = 0; i < placement->num_busy_placement; ++i) {
1083		const struct ttm_place *place = &placement->busy_placement[i];
1084
1085		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1086		if (ret == -EBUSY)
 
 
 
 
 
 
 
 
1087			continue;
1088		if (ret)
1089			goto error;
1090
1091		type_found = true;
1092		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1093		if (likely(!ret))
1094			return 0;
 
 
 
 
1095
1096		if (ret && ret != -EBUSY)
1097			goto error;
1098	}
1099
1100	ret = -ENOMEM;
1101	if (!type_found) {
1102		pr_err(TTM_PFX "No compatible memory type found\n");
1103		ret = -EINVAL;
1104	}
 
1105
1106error:
1107	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1108		spin_lock(&ttm_bo_glob.lru_lock);
1109		ttm_bo_move_to_lru_tail(bo, NULL);
1110		spin_unlock(&ttm_bo_glob.lru_lock);
 
 
 
1111	}
1112
1113	return ret;
1114}
1115EXPORT_SYMBOL(ttm_bo_mem_space);
1116
1117static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1118			      struct ttm_placement *placement,
1119			      struct ttm_operation_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
1120{
1121	int ret = 0;
1122	struct ttm_mem_reg mem;
 
1123
1124	dma_resv_assert_held(bo->base.resv);
1125
 
 
 
 
 
 
 
 
 
 
1126	mem.num_pages = bo->num_pages;
1127	mem.size = mem.num_pages << PAGE_SHIFT;
1128	mem.page_alignment = bo->mem.page_alignment;
1129	mem.bus.io_reserved_vm = false;
1130	mem.bus.io_reserved_count = 0;
1131	mem.mm_node = NULL;
1132
1133	/*
1134	 * Determine where to move the buffer.
1135	 */
1136	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1137	if (ret)
1138		goto out_unlock;
1139	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1140out_unlock:
1141	if (ret)
1142		ttm_bo_mem_put(bo, &mem);
1143	return ret;
1144}
1145
1146static bool ttm_bo_places_compat(const struct ttm_place *places,
1147				 unsigned num_placement,
1148				 struct ttm_mem_reg *mem,
1149				 uint32_t *new_flags)
1150{
1151	unsigned i;
1152
1153	for (i = 0; i < num_placement; i++) {
1154		const struct ttm_place *heap = &places[i];
 
 
1155
1156		if ((mem->start < heap->fpfn ||
1157		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1158			continue;
1159
1160		*new_flags = heap->flags;
1161		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1162		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1163		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1164		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1165			return true;
1166	}
1167	return false;
1168}
1169
1170bool ttm_bo_mem_compat(struct ttm_placement *placement,
1171		       struct ttm_mem_reg *mem,
1172		       uint32_t *new_flags)
1173{
1174	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1175				 mem, new_flags))
1176		return true;
1177
1178	if ((placement->busy_placement != placement->placement ||
1179	     placement->num_busy_placement > placement->num_placement) &&
1180	    ttm_bo_places_compat(placement->busy_placement,
1181				 placement->num_busy_placement,
1182				 mem, new_flags))
1183		return true;
1184
1185	return false;
1186}
1187EXPORT_SYMBOL(ttm_bo_mem_compat);
1188
1189int ttm_bo_validate(struct ttm_buffer_object *bo,
1190		    struct ttm_placement *placement,
1191		    struct ttm_operation_ctx *ctx)
 
1192{
1193	int ret;
1194	uint32_t new_flags;
1195
1196	dma_resv_assert_held(bo->base.resv);
1197
1198	/*
1199	 * Remove the backing store if no placement is given.
1200	 */
1201	if (!placement->num_placement && !placement->num_busy_placement) {
1202		ret = ttm_bo_pipeline_gutting(bo);
1203		if (ret)
1204			return ret;
1205
1206		return ttm_tt_create(bo, false);
1207	}
1208
 
 
 
 
 
 
1209	/*
1210	 * Check whether we need to move buffer.
1211	 */
1212	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1213		ret = ttm_bo_move_buffer(bo, placement, ctx);
 
1214		if (ret)
1215			return ret;
1216	} else {
1217		/*
1218		 * Use the access and other non-mapping-related flag bits from
1219		 * the compatible memory placement flags to the active flags
1220		 */
1221		ttm_flag_masked(&bo->mem.placement, new_flags,
1222				~TTM_PL_MASK_MEMTYPE);
1223	}
1224	/*
1225	 * We might need to add a TTM.
1226	 */
1227	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1228		ret = ttm_tt_create(bo, true);
1229		if (ret)
1230			return ret;
1231	}
1232	return 0;
1233}
1234EXPORT_SYMBOL(ttm_bo_validate);
1235
1236int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1237			 struct ttm_buffer_object *bo,
1238			 unsigned long size,
1239			 enum ttm_bo_type type,
1240			 struct ttm_placement *placement,
1241			 uint32_t page_alignment,
1242			 struct ttm_operation_ctx *ctx,
1243			 size_t acc_size,
1244			 struct sg_table *sg,
1245			 struct dma_resv *resv,
1246			 void (*destroy) (struct ttm_buffer_object *))
 
 
 
 
 
 
 
 
 
1247{
1248	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1249	int ret = 0;
1250	unsigned long num_pages;
1251	bool locked;
1252
1253	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1254	if (ret) {
1255		pr_err("Out of kernel memory\n");
1256		if (destroy)
1257			(*destroy)(bo);
1258		else
1259			kfree(bo);
1260		return -ENOMEM;
1261	}
1262
 
1263	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1264	if (num_pages == 0) {
1265		pr_err("Illegal buffer object size\n");
1266		if (destroy)
1267			(*destroy)(bo);
1268		else
1269			kfree(bo);
1270		ttm_mem_global_free(mem_glob, acc_size);
1271		return -EINVAL;
1272	}
1273	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1274
1275	kref_init(&bo->kref);
 
 
 
 
1276	INIT_LIST_HEAD(&bo->lru);
1277	INIT_LIST_HEAD(&bo->ddestroy);
1278	INIT_LIST_HEAD(&bo->swap);
1279	INIT_LIST_HEAD(&bo->io_reserve_lru);
1280	bo->bdev = bdev;
 
1281	bo->type = type;
1282	bo->num_pages = num_pages;
1283	bo->mem.size = num_pages << PAGE_SHIFT;
1284	bo->mem.mem_type = TTM_PL_SYSTEM;
1285	bo->mem.num_pages = bo->num_pages;
1286	bo->mem.mm_node = NULL;
1287	bo->mem.page_alignment = page_alignment;
1288	bo->mem.bus.io_reserved_vm = false;
1289	bo->mem.bus.io_reserved_count = 0;
1290	bo->moving = NULL;
 
1291	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
 
 
1292	bo->acc_size = acc_size;
1293	bo->sg = sg;
1294	if (resv) {
1295		bo->base.resv = resv;
1296		dma_resv_assert_held(bo->base.resv);
1297	} else {
1298		bo->base.resv = &bo->base._resv;
1299	}
1300	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1301		/*
1302		 * bo.gem is not initialized, so we have to setup the
1303		 * struct elements we want use regardless.
1304		 */
1305		dma_resv_init(&bo->base._resv);
1306		drm_vma_node_reset(&bo->base.vma_node);
1307	}
1308	atomic_inc(&ttm_bo_glob.bo_count);
1309
1310	/*
1311	 * For ttm_bo_type_device buffers, allocate
1312	 * address space from the device.
1313	 */
1314	if (bo->type == ttm_bo_type_device ||
1315	    bo->type == ttm_bo_type_sg)
1316		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1317					 bo->mem.num_pages);
1318
1319	/* passed reservation objects should already be locked,
1320	 * since otherwise lockdep will be angered in radeon.
1321	 */
1322	if (!resv) {
1323		locked = dma_resv_trylock(bo->base.resv);
1324		WARN_ON(!locked);
1325	}
1326
1327	if (likely(!ret))
1328		ret = ttm_bo_validate(bo, placement, ctx);
 
1329
1330	if (unlikely(ret)) {
1331		if (!resv)
1332			ttm_bo_unreserve(bo);
1333
1334		ttm_bo_put(bo);
1335		return ret;
1336	}
1337
1338	spin_lock(&ttm_bo_glob.lru_lock);
1339	ttm_bo_move_to_lru_tail(bo, NULL);
1340	spin_unlock(&ttm_bo_glob.lru_lock);
1341
1342	return ret;
1343}
1344EXPORT_SYMBOL(ttm_bo_init_reserved);
1345
1346int ttm_bo_init(struct ttm_bo_device *bdev,
1347		struct ttm_buffer_object *bo,
1348		unsigned long size,
1349		enum ttm_bo_type type,
1350		struct ttm_placement *placement,
1351		uint32_t page_alignment,
1352		bool interruptible,
1353		size_t acc_size,
1354		struct sg_table *sg,
1355		struct dma_resv *resv,
1356		void (*destroy) (struct ttm_buffer_object *))
1357{
1358	struct ttm_operation_ctx ctx = { interruptible, false };
1359	int ret;
1360
1361	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1362				   page_alignment, &ctx, acc_size,
1363				   sg, resv, destroy);
1364	if (ret)
1365		return ret;
1366
1367	if (!resv)
1368		ttm_bo_unreserve(bo);
1369
1370	return 0;
1371}
1372EXPORT_SYMBOL(ttm_bo_init);
1373
1374size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1375		       unsigned long bo_size,
1376		       unsigned struct_size)
1377{
1378	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1379	size_t size = 0;
1380
1381	size += ttm_round_pot(struct_size);
1382	size += ttm_round_pot(npages * sizeof(void *));
1383	size += ttm_round_pot(sizeof(struct ttm_tt));
1384	return size;
1385}
1386EXPORT_SYMBOL(ttm_bo_acc_size);
1387
1388size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1389			   unsigned long bo_size,
1390			   unsigned struct_size)
1391{
1392	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1393	size_t size = 0;
1394
1395	size += ttm_round_pot(struct_size);
1396	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1397	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1398	return size;
1399}
1400EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1401
1402int ttm_bo_create(struct ttm_bo_device *bdev,
1403			unsigned long size,
1404			enum ttm_bo_type type,
1405			struct ttm_placement *placement,
1406			uint32_t page_alignment,
 
1407			bool interruptible,
 
1408			struct ttm_buffer_object **p_bo)
1409{
1410	struct ttm_buffer_object *bo;
1411	size_t acc_size;
1412	int ret;
1413
 
 
 
 
 
 
1414	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1415	if (unlikely(bo == NULL))
 
 
1416		return -ENOMEM;
 
1417
1418	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1419	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1420			  interruptible, acc_size,
1421			  NULL, NULL, NULL);
1422	if (likely(ret == 0))
1423		*p_bo = bo;
1424
1425	return ret;
1426}
1427EXPORT_SYMBOL(ttm_bo_create);
1428
1429static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1430				   unsigned mem_type)
1431{
1432	struct ttm_operation_ctx ctx = {
1433		.interruptible = false,
1434		.no_wait_gpu = false,
1435		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1436	};
1437	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1438	struct ttm_bo_global *glob = &ttm_bo_glob;
1439	struct dma_fence *fence;
1440	int ret;
1441	unsigned i;
1442
1443	/*
1444	 * Can't use standard list traversal since we're unlocking.
1445	 */
1446
1447	spin_lock(&glob->lru_lock);
1448	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1449		while (!list_empty(&man->lru[i])) {
1450			spin_unlock(&glob->lru_lock);
1451			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1452						  NULL);
1453			if (ret)
1454				return ret;
1455			spin_lock(&glob->lru_lock);
 
 
 
1456		}
 
1457	}
1458	spin_unlock(&glob->lru_lock);
1459
1460	spin_lock(&man->move_lock);
1461	fence = dma_fence_get(man->move);
1462	spin_unlock(&man->move_lock);
1463
1464	if (fence) {
1465		ret = dma_fence_wait(fence, false);
1466		dma_fence_put(fence);
1467		if (ret)
1468			return ret;
1469	}
1470
1471	return 0;
1472}
1473
1474int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1475{
1476	struct ttm_mem_type_manager *man;
1477	int ret = -EINVAL;
1478
1479	if (mem_type >= TTM_NUM_MEM_TYPES) {
1480		pr_err("Illegal memory type %d\n", mem_type);
1481		return ret;
1482	}
1483	man = &bdev->man[mem_type];
1484
1485	if (!man->has_type) {
1486		pr_err("Trying to take down uninitialized memory manager type %u\n",
1487		       mem_type);
1488		return ret;
1489	}
1490
1491	man->use_type = false;
1492	man->has_type = false;
1493
1494	ret = 0;
1495	if (mem_type > 0) {
1496		ret = ttm_bo_force_list_clean(bdev, mem_type);
1497		if (ret) {
1498			pr_err("Cleanup eviction failed\n");
1499			return ret;
1500		}
1501
1502		ret = (*man->func->takedown)(man);
1503	}
1504
1505	dma_fence_put(man->move);
1506	man->move = NULL;
1507
1508	return ret;
1509}
1510EXPORT_SYMBOL(ttm_bo_clean_mm);
1511
1512int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1513{
1514	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1515
1516	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1517		pr_err("Illegal memory manager memory type %u\n", mem_type);
 
 
1518		return -EINVAL;
1519	}
1520
1521	if (!man->has_type) {
1522		pr_err("Memory type %u has not been initialized\n", mem_type);
 
 
1523		return 0;
1524	}
1525
1526	return ttm_bo_force_list_clean(bdev, mem_type);
1527}
1528EXPORT_SYMBOL(ttm_bo_evict_mm);
1529
1530int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1531			unsigned long p_size)
1532{
1533	int ret;
1534	struct ttm_mem_type_manager *man;
1535	unsigned i;
1536
1537	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1538	man = &bdev->man[type];
1539	BUG_ON(man->has_type);
 
1540	man->use_io_reserve_lru = false;
1541	mutex_init(&man->io_reserve_mutex);
1542	spin_lock_init(&man->move_lock);
1543	INIT_LIST_HEAD(&man->io_reserve_lru);
1544
1545	ret = bdev->driver->init_mem_type(bdev, type, man);
1546	if (ret)
1547		return ret;
1548	man->bdev = bdev;
1549
 
1550	if (type != TTM_PL_SYSTEM) {
1551		ret = (*man->func->init)(man, p_size);
1552		if (ret)
1553			return ret;
1554	}
1555	man->has_type = true;
1556	man->use_type = true;
1557	man->size = p_size;
1558
1559	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1560		INIT_LIST_HEAD(&man->lru[i]);
1561	man->move = NULL;
1562
1563	return 0;
1564}
1565EXPORT_SYMBOL(ttm_bo_init_mm);
1566
1567static void ttm_bo_global_kobj_release(struct kobject *kobj)
1568{
1569	struct ttm_bo_global *glob =
1570		container_of(kobj, struct ttm_bo_global, kobj);
1571
 
1572	__free_page(glob->dummy_read_page);
 
1573}
1574
1575static void ttm_bo_global_release(void)
1576{
1577	struct ttm_bo_global *glob = &ttm_bo_glob;
1578
1579	mutex_lock(&ttm_global_mutex);
1580	if (--ttm_bo_glob_use_count > 0)
1581		goto out;
1582
1583	kobject_del(&glob->kobj);
1584	kobject_put(&glob->kobj);
1585	ttm_mem_global_release(&ttm_mem_glob);
1586	memset(glob, 0, sizeof(*glob));
1587out:
1588	mutex_unlock(&ttm_global_mutex);
1589}
 
1590
1591static int ttm_bo_global_init(void)
1592{
1593	struct ttm_bo_global *glob = &ttm_bo_glob;
1594	int ret = 0;
1595	unsigned i;
1596
1597	mutex_lock(&ttm_global_mutex);
1598	if (++ttm_bo_glob_use_count > 1)
1599		goto out;
1600
1601	ret = ttm_mem_global_init(&ttm_mem_glob);
1602	if (ret)
1603		goto out;
1604
 
1605	spin_lock_init(&glob->lru_lock);
 
1606	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1607
1608	if (unlikely(glob->dummy_read_page == NULL)) {
1609		ret = -ENOMEM;
1610		goto out;
1611	}
1612
1613	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1614		INIT_LIST_HEAD(&glob->swap_lru[i]);
1615	INIT_LIST_HEAD(&glob->device_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616	atomic_set(&glob->bo_count, 0);
1617
1618	ret = kobject_init_and_add(
1619		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1620	if (unlikely(ret != 0))
1621		kobject_put(&glob->kobj);
1622out:
1623	mutex_unlock(&ttm_global_mutex);
 
 
 
1624	return ret;
1625}
 
 
1626
1627int ttm_bo_device_release(struct ttm_bo_device *bdev)
1628{
1629	struct ttm_bo_global *glob = &ttm_bo_glob;
1630	int ret = 0;
1631	unsigned i = TTM_NUM_MEM_TYPES;
1632	struct ttm_mem_type_manager *man;
 
1633
1634	while (i--) {
1635		man = &bdev->man[i];
1636		if (man->has_type) {
1637			man->use_type = false;
1638			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1639				ret = -EBUSY;
1640				pr_err("DRM memory manager type %d is not clean\n",
1641				       i);
 
1642			}
1643			man->has_type = false;
1644		}
1645	}
1646
1647	mutex_lock(&ttm_global_mutex);
1648	list_del(&bdev->device_list);
1649	mutex_unlock(&ttm_global_mutex);
1650
1651	cancel_delayed_work_sync(&bdev->wq);
1652
1653	if (ttm_bo_delayed_delete(bdev, true))
1654		pr_debug("Delayed destroy list was clean\n");
1655
1656	spin_lock(&glob->lru_lock);
1657	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1658		if (list_empty(&bdev->man[0].lru[0]))
1659			pr_debug("Swap list %d was clean\n", i);
 
 
1660	spin_unlock(&glob->lru_lock);
1661
1662	if (!ret)
1663		ttm_bo_global_release();
 
 
1664
1665	return ret;
1666}
1667EXPORT_SYMBOL(ttm_bo_device_release);
1668
1669int ttm_bo_device_init(struct ttm_bo_device *bdev,
 
1670		       struct ttm_bo_driver *driver,
1671		       struct address_space *mapping,
1672		       struct drm_vma_offset_manager *vma_manager,
1673		       bool need_dma32)
1674{
1675	struct ttm_bo_global *glob = &ttm_bo_glob;
1676	int ret;
1677
1678	if (WARN_ON(vma_manager == NULL))
1679		return -EINVAL;
1680
1681	ret = ttm_bo_global_init();
1682	if (ret)
1683		return ret;
1684
 
1685	bdev->driver = driver;
1686
1687	memset(bdev->man, 0, sizeof(bdev->man));
1688
1689	/*
1690	 * Initialize the system memory buffer type.
1691	 * Other types need to be driver / IOCTL initialized.
1692	 */
1693	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1694	if (unlikely(ret != 0))
1695		goto out_no_sys;
1696
1697	bdev->vma_manager = vma_manager;
 
 
 
 
1698	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
 
1699	INIT_LIST_HEAD(&bdev->ddestroy);
1700	bdev->dev_mapping = mapping;
 
1701	bdev->need_dma32 = need_dma32;
1702	mutex_lock(&ttm_global_mutex);
 
 
1703	list_add_tail(&bdev->device_list, &glob->device_list);
1704	mutex_unlock(&ttm_global_mutex);
1705
1706	return 0;
 
 
1707out_no_sys:
1708	ttm_bo_global_release();
1709	return ret;
1710}
1711EXPORT_SYMBOL(ttm_bo_device_init);
1712
1713/*
1714 * buffer object vm functions.
1715 */
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1718{
1719	struct ttm_bo_device *bdev = bo->bdev;
 
 
1720
1721	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
 
 
1722	ttm_mem_io_free_vm(bo);
1723}
1724
1725void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1726{
1727	struct ttm_bo_device *bdev = bo->bdev;
1728	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1729
1730	ttm_mem_io_lock(man, false);
1731	ttm_bo_unmap_virtual_locked(bo);
1732	ttm_mem_io_unlock(man);
1733}
1734
1735
1736EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738int ttm_bo_wait(struct ttm_buffer_object *bo,
1739		bool interruptible, bool no_wait)
1740{
1741	long timeout = 15 * HZ;
 
 
 
 
1742
1743	if (no_wait) {
1744		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1745			return 0;
1746		else
 
 
 
 
 
 
 
 
 
 
 
 
1747			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	}
 
 
 
 
 
 
 
 
1749
1750	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1751						      interruptible, timeout);
1752	if (timeout < 0)
1753		return timeout;
1754
1755	if (timeout == 0)
1756		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
1757
1758	dma_resv_add_excl_fence(bo->base.resv, NULL);
1759	return 0;
 
 
1760}
1761EXPORT_SYMBOL(ttm_bo_wait);
1762
1763/**
1764 * A buffer object shrink method that tries to swap out the first
1765 * buffer object on the bo_global::swap_lru list.
1766 */
1767int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
 
1768{
 
 
1769	struct ttm_buffer_object *bo;
1770	int ret = -EBUSY;
1771	bool locked;
1772	unsigned i;
1773
1774	spin_lock(&glob->lru_lock);
1775	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1776		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1777			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1778							    NULL))
1779				continue;
1780
1781			if (!ttm_bo_get_unless_zero(bo)) {
1782				if (locked)
1783					dma_resv_unlock(bo->base.resv);
1784				continue;
1785			}
1786
1787			ret = 0;
1788			break;
 
 
 
1789		}
1790		if (!ret)
1791			break;
1792	}
1793
1794	if (ret) {
1795		spin_unlock(&glob->lru_lock);
1796		return ret;
1797	}
 
1798
1799	if (bo->deleted) {
1800		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1801		ttm_bo_put(bo);
1802		return ret;
 
 
 
1803	}
1804
1805	ttm_bo_del_from_lru(bo);
 
1806	spin_unlock(&glob->lru_lock);
1807
 
 
1808	/**
1809	 * Move to system cached
1810	 */
1811
1812	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1813	    bo->ttm->caching_state != tt_cached) {
1814		struct ttm_operation_ctx ctx = { false, false };
 
 
 
 
 
1815		struct ttm_mem_reg evict_mem;
1816
1817		evict_mem = bo->mem;
1818		evict_mem.mm_node = NULL;
1819		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1820		evict_mem.mem_type = TTM_PL_SYSTEM;
1821
1822		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
 
1823		if (unlikely(ret != 0))
1824			goto out;
1825	}
1826
1827	/**
1828	 * Make sure BO is idle.
1829	 */
1830
1831	ret = ttm_bo_wait(bo, false, false);
1832	if (unlikely(ret != 0))
1833		goto out;
1834
1835	ttm_bo_unmap_virtual(bo);
1836
1837	/**
1838	 * Swap out. Buffer will be swapped in again as soon as
1839	 * anyone tries to access a ttm page.
1840	 */
1841
1842	if (bo->bdev->driver->swap_notify)
1843		bo->bdev->driver->swap_notify(bo);
1844
1845	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1846out:
1847
1848	/**
1849	 *
1850	 * Unreserve without putting on LRU to avoid swapping out an
1851	 * already swapped buffer.
1852	 */
1853	if (locked)
1854		dma_resv_unlock(bo->base.resv);
1855	ttm_bo_put(bo);
 
1856	return ret;
1857}
1858EXPORT_SYMBOL(ttm_bo_swapout);
1859
1860void ttm_bo_swapout_all(void)
1861{
1862	struct ttm_operation_ctx ctx = {
1863		.interruptible = false,
1864		.no_wait_gpu = false
1865	};
1866
1867	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1868}
1869EXPORT_SYMBOL(ttm_bo_swapout_all);