Linux Audio

Check our new training course

Loading...
v3.1
 
   1
   2/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
   3 *                            FireStream  50 (MB86695) device driver 
   4 */
   5 
   6/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl 
   7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA 
   8 * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd 
   9 */
  10
  11/*
  12  This program is free software; you can redistribute it and/or modify
  13  it under the terms of the GNU General Public License as published by
  14  the Free Software Foundation; either version 2 of the License, or
  15  (at your option) any later version.
  16
  17  This program is distributed in the hope that it will be useful,
  18  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20  GNU General Public License for more details.
  21
  22  You should have received a copy of the GNU General Public License
  23  along with this program; if not, write to the Free Software
  24  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25
  26  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  27  system and in the file COPYING in the Linux kernel source.
  28*/
  29
  30
  31#include <linux/module.h>
  32#include <linux/sched.h>
  33#include <linux/kernel.h>
  34#include <linux/mm.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/errno.h>
  38#include <linux/atm.h>
  39#include <linux/atmdev.h>
  40#include <linux/sonet.h>
  41#include <linux/skbuff.h>
  42#include <linux/netdevice.h>
  43#include <linux/delay.h>
  44#include <linux/ioport.h> /* for request_region */
  45#include <linux/uio.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/capability.h>
  49#include <linux/bitops.h>
  50#include <linux/slab.h>
  51#include <asm/byteorder.h>
  52#include <asm/system.h>
  53#include <asm/string.h>
  54#include <asm/io.h>
  55#include <linux/atomic.h>
  56#include <asm/uaccess.h>
  57#include <linux/wait.h>
  58
  59#include "firestream.h"
  60
  61static int loopback = 0;
  62static int num=0x5a;
  63
  64/* According to measurements (but they look suspicious to me!) done in
  65 * '97, 37% of the packets are one cell in size. So it pays to have
  66 * buffers allocated at that size. A large jump in percentage of
  67 * packets occurs at packets around 536 bytes in length. So it also
  68 * pays to have those pre-allocated. Unfortunately, we can't fully
  69 * take advantage of this as the majority of the packets is likely to
  70 * be TCP/IP (As where obviously the measurement comes from) There the
  71 * link would be opened with say a 1500 byte MTU, and we can't handle
  72 * smaller buffers more efficiently than the larger ones. -- REW
  73 */
  74
  75/* Due to the way Linux memory management works, specifying "576" as
  76 * an allocation size here isn't going to help. They are allocated
  77 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
  78 * large), it doesn't pay to allocate the smallest size (64) -- REW */
  79
  80/* This is all guesswork. Hard numbers to back this up or disprove this, 
  81 * are appreciated. -- REW */
  82
  83/* The last entry should be about 64k. However, the "buffer size" is
  84 * passed to the chip in a 16 bit field. I don't know how "65536"
  85 * would be interpreted. -- REW */
  86
  87#define NP FS_NR_FREE_POOLS
  88static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
  89/* log2:                 7     8     9    10    11    12    14     16 */
  90
  91#if 0
  92static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
  93#else
  94/* debug */
  95static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
  96#endif
  97/* log2:                 10    10    9    8     7     6     5      5  */
  98/* sumlog2:              17    18    18   18    18    18    19     21 */
  99/* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
 100/* tot mem: almost 4M */
 101
 102/* NP is shorter, so that it fits on a single line. */
 103#undef NP
 104
 105
 106/* Small hardware gotcha:
 107
 108   The FS50 CAM (VP/VC match registers) always take the lowest channel
 109   number that matches. This is not a problem.
 110
 111   However, they also ignore whether the channel is enabled or
 112   not. This means that if you allocate channel 0 to 1.2 and then
 113   channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
 114   match channel for channel 0 will "steal" the traffic from channel
 115   1, even if you correctly disable channel 0.
 116
 117   Workaround: 
 118
 119   - When disabling channels, write an invalid VP/VC value to the
 120   match register. (We use 0xffffffff, which in the worst case 
 121   matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
 122   anything as some "when not in use, program to 0" bits are now
 123   programmed to 1...)
 124
 125   - Don't initialize the match registers to 0, as 0.0 is a valid
 126   channel.
 127*/
 128
 129
 130/* Optimization hints and tips.
 131
 132   The FireStream chips are very capable of reducing the amount of
 133   "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
 134   action. You could try to minimize this a bit. 
 135
 136   Besides that, the userspace->kernel copy and the PCI bus are the
 137   performance limiting issues for this driver.
 138
 139   You could queue up a bunch of outgoing packets without telling the
 140   FireStream. I'm not sure that's going to win you much though. The
 141   Linux layer won't tell us in advance when it's not going to give us
 142   any more packets in a while. So this is tricky to implement right without
 143   introducing extra delays. 
 144  
 145   -- REW
 146 */
 147
 148
 149
 150
 151/* The strings that define what the RX queue entry is all about. */
 152/* Fujitsu: Please tell me which ones can have a pointer to a 
 153   freepool descriptor! */
 154static char *res_strings[] = {
 155	"RX OK: streaming not EOP", 
 156	"RX OK: streaming EOP", 
 157	"RX OK: Single buffer packet", 
 158	"RX OK: packet mode", 
 159	"RX OK: F4 OAM (end to end)", 
 160	"RX OK: F4 OAM (Segment)", 
 161	"RX OK: F5 OAM (end to end)", 
 162	"RX OK: F5 OAM (Segment)", 
 163	"RX OK: RM cell", 
 164	"RX OK: TRANSP cell", 
 165	"RX OK: TRANSPC cell", 
 166	"Unmatched cell", 
 167	"reserved 12", 
 168	"reserved 13", 
 169	"reserved 14", 
 170	"Unrecognized cell", 
 171	"reserved 16", 
 172	"reassemby abort: AAL5 abort", 
 173	"packet purged", 
 174	"packet ageing timeout", 
 175	"channel ageing timeout", 
 176	"calculated length error", 
 177	"programmed length limit error", 
 178	"aal5 crc32 error", 
 179	"oam transp or transpc crc10 error", 
 180	"reserved 25", 
 181	"reserved 26", 
 182	"reserved 27", 
 183	"reserved 28", 
 184	"reserved 29", 
 185	"reserved 30", 
 186	"reassembly abort: no buffers", 
 187	"receive buffer overflow", 
 188	"change in GFC", 
 189	"receive buffer full", 
 190	"low priority discard - no receive descriptor", 
 191	"low priority discard - missing end of packet", 
 
 
 
 
 192	"reserved 41", 
 193	"reserved 42", 
 194	"reserved 43", 
 195	"reserved 44", 
 196	"reserved 45", 
 197	"reserved 46", 
 198	"reserved 47", 
 199	"reserved 48", 
 200	"reserved 49", 
 201	"reserved 50", 
 202	"reserved 51", 
 203	"reserved 52", 
 204	"reserved 53", 
 205	"reserved 54", 
 206	"reserved 55", 
 207	"reserved 56", 
 208	"reserved 57", 
 209	"reserved 58", 
 210	"reserved 59", 
 211	"reserved 60", 
 212	"reserved 61", 
 213	"reserved 62", 
 214	"reserved 63", 
 215};  
 216
 217static char *irq_bitname[] = {
 218	"LPCO",
 219	"DPCO",
 220	"RBRQ0_W",
 221	"RBRQ1_W",
 222	"RBRQ2_W",
 223	"RBRQ3_W",
 224	"RBRQ0_NF",
 225	"RBRQ1_NF",
 226	"RBRQ2_NF",
 227	"RBRQ3_NF",
 228	"BFP_SC",
 229	"INIT",
 230	"INIT_ERR",
 231	"USCEO",
 232	"UPEC0",
 233	"VPFCO",
 234	"CRCCO",
 235	"HECO",
 236	"TBRQ_W",
 237	"TBRQ_NF",
 238	"CTPQ_E",
 239	"GFC_C0",
 240	"PCI_FTL",
 241	"CSQ_W",
 242	"CSQ_NF",
 243	"EXT_INT",
 244	"RXDMA_S"
 245};
 246
 247
 248#define PHY_EOF -1
 249#define PHY_CLEARALL -2
 250
 251struct reginit_item {
 252	int reg, val;
 253};
 254
 255
 256static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
 257	{ PHY_CLEARALL, 0x40 }, 
 258	{ 0x12,  0x0001 },
 259	{ 0x13,  0x7605 },
 260	{ 0x1A,  0x0001 },
 261	{ 0x1B,  0x0005 },
 262	{ 0x38,  0x0003 },
 263	{ 0x39,  0x0006 },   /* changed here to make loopback */
 264	{ 0x01,  0x5262 },
 265	{ 0x15,  0x0213 },
 266	{ 0x00,  0x0003 },
 267	{ PHY_EOF, 0},    /* -1 signals end of list */
 268};
 269
 270
 271/* Safetyfeature: If the card interrupts more than this number of times
 272   in a jiffy (1/100th of a second) then we just disable the interrupt and
 273   print a message. This prevents the system from hanging. 
 274
 275   150000 packets per second is close to the limit a PC is going to have
 276   anyway. We therefore have to disable this for production. -- REW */
 277#undef IRQ_RATE_LIMIT // 100
 278
 279/* Interrupts work now. Unlike serial cards, ATM cards don't work all
 280   that great without interrupts. -- REW */
 281#undef FS_POLL_FREQ // 100
 282
 283/* 
 284   This driver can spew a whole lot of debugging output at you. If you
 285   need maximum performance, you should disable the DEBUG define. To
 286   aid in debugging in the field, I'm leaving the compile-time debug
 287   features enabled, and disable them "runtime". That allows me to
 288   instruct people with problems to enable debugging without requiring
 289   them to recompile... -- REW
 290*/
 291#define DEBUG
 292
 293#ifdef DEBUG
 294#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
 295#else
 296#define fs_dprintk(f, str...) /* nothing */
 297#endif
 298
 299
 300static int fs_keystream = 0;
 301
 302#ifdef DEBUG
 303/* I didn't forget to set this to zero before shipping. Hit me with a stick 
 304   if you get this with the debug default not set to zero again. -- REW */
 305static int fs_debug = 0;
 306#else
 307#define fs_debug 0
 308#endif
 309
 310#ifdef MODULE
 311#ifdef DEBUG 
 312module_param(fs_debug, int, 0644);
 313#endif
 314module_param(loopback, int, 0);
 315module_param(num, int, 0);
 316module_param(fs_keystream, int, 0);
 317/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
 318#endif
 319
 320
 321#define FS_DEBUG_FLOW    0x00000001
 322#define FS_DEBUG_OPEN    0x00000002
 323#define FS_DEBUG_QUEUE   0x00000004
 324#define FS_DEBUG_IRQ     0x00000008
 325#define FS_DEBUG_INIT    0x00000010
 326#define FS_DEBUG_SEND    0x00000020
 327#define FS_DEBUG_PHY     0x00000040
 328#define FS_DEBUG_CLEANUP 0x00000080
 329#define FS_DEBUG_QOS     0x00000100
 330#define FS_DEBUG_TXQ     0x00000200
 331#define FS_DEBUG_ALLOC   0x00000400
 332#define FS_DEBUG_TXMEM   0x00000800
 333#define FS_DEBUG_QSIZE   0x00001000
 334
 335
 336#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
 337#define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
 338
 339
 340static struct fs_dev *fs_boards = NULL;
 341
 342#ifdef DEBUG
 343
 344static void my_hd (void *addr, int len)
 345{
 346	int j, ch;
 347	unsigned char *ptr = addr;
 348
 349	while (len > 0) {
 350		printk ("%p ", ptr);
 351		for (j=0;j < ((len < 16)?len:16);j++) {
 352			printk ("%02x %s", ptr[j], (j==7)?" ":"");
 353		}
 354		for (  ;j < 16;j++) {
 355			printk ("   %s", (j==7)?" ":"");
 356		}
 357		for (j=0;j < ((len < 16)?len:16);j++) {
 358			ch = ptr[j];
 359			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
 360		}
 361		printk ("\n");
 362		ptr += 16;
 363		len -= 16;
 364	}
 365}
 366#else /* DEBUG */
 367static void my_hd (void *addr, int len){}
 368#endif /* DEBUG */
 369
 370/********** free an skb (as per ATM device driver documentation) **********/
 371
 372/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
 373 * I copied it over from the ambassador driver. -- REW */
 374
 375static inline void fs_kfree_skb (struct sk_buff * skb) 
 376{
 377	if (ATM_SKB(skb)->vcc->pop)
 378		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 379	else
 380		dev_kfree_skb_any (skb);
 381}
 382
 383
 384
 385
 386/* It seems the ATM forum recommends this horribly complicated 16bit
 387 * floating point format. Turns out the Ambassador uses the exact same
 388 * encoding. I just copied it over. If Mitch agrees, I'll move it over
 389 * to the atm_misc file or something like that. (and remove it from 
 390 * here and the ambassador driver) -- REW
 391 */
 392
 393/* The good thing about this format is that it is monotonic. So, 
 394   a conversion routine need not be very complicated. To be able to
 395   round "nearest" we need to take along a few extra bits. Lets
 396   put these after 16 bits, so that we can just return the top 16
 397   bits of the 32bit number as the result:
 398
 399   int mr (unsigned int rate, int r) 
 400     {
 401     int e = 16+9;
 402     static int round[4]={0, 0, 0xffff, 0x8000};
 403     if (!rate) return 0;
 404     while (rate & 0xfc000000) {
 405       rate >>= 1;
 406       e++;
 407     }
 408     while (! (rate & 0xfe000000)) {
 409       rate <<= 1;
 410       e--;
 411     }
 412
 413// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
 414     rate &= ~0x02000000;
 415// Next add in the exponent
 416     rate |= e << (16+9);
 417// And perform the rounding:
 418     return (rate + round[r]) >> 16;
 419   }
 420
 421   14 lines-of-code. Compare that with the 120 that the Ambassador
 422   guys needed. (would be 8 lines shorter if I'd try to really reduce
 423   the number of lines:
 424
 425   int mr (unsigned int rate, int r) 
 426   {
 427     int e = 16+9;
 428     static int round[4]={0, 0, 0xffff, 0x8000};
 429     if (!rate) return 0;
 430     for (;  rate & 0xfc000000 ;rate >>= 1, e++);
 431     for (;!(rate & 0xfe000000);rate <<= 1, e--);
 432     return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
 433   }
 434
 435   Exercise for the reader: Remove one more line-of-code, without
 436   cheating. (Just joining two lines is cheating). (I know it's
 437   possible, don't think you've beat me if you found it... If you
 438   manage to lose two lines or more, keep me updated! ;-)
 439
 440   -- REW */
 441
 442
 443#define ROUND_UP      1
 444#define ROUND_DOWN    2
 445#define ROUND_NEAREST 3
 446/********** make rate (not quite as much fun as Horizon) **********/
 447
 448static int make_rate(unsigned int rate, int r,
 449		      u16 *bits, unsigned int *actual)
 450{
 451	unsigned char exp = -1; /* hush gcc */
 452	unsigned int man = -1;  /* hush gcc */
 453  
 454	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
 455  
 456	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
 457	   given 5-bit e and 9-bit m:
 458	   rate = EITHER (1+m/2^9)*2^e    OR 0
 459	   bits = EITHER 1<<14 | e<<9 | m OR 0
 460	   (bit 15 is "reserved", bit 14 "non-zero")
 461	   smallest rate is 0 (special representation)
 462	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
 463	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
 464	   simple algorithm:
 465	   find position of top bit, this gives e
 466	   remove top bit and shift (rounding if feeling clever) by 9-e
 467	*/
 468	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
 469	   representable. // This should move into the ambassador driver
 470	   when properly merged. -- REW */
 471  
 472	if (rate > 0xffc00000U) {
 473		/* larger than largest representable rate */
 474    
 475		if (r == ROUND_UP) {
 476			return -EINVAL;
 477		} else {
 478			exp = 31;
 479			man = 511;
 480		}
 481    
 482	} else if (rate) {
 483		/* representable rate */
 484    
 485		exp = 31;
 486		man = rate;
 487    
 488		/* invariant: rate = man*2^(exp-31) */
 489		while (!(man & (1<<31))) {
 490			exp = exp - 1;
 491			man = man<<1;
 492		}
 493    
 494		/* man has top bit set
 495		   rate = (2^31+(man-2^31))*2^(exp-31)
 496		   rate = (1+(man-2^31)/2^31)*2^exp 
 497		*/
 498		man = man<<1;
 499		man &= 0xffffffffU; /* a nop on 32-bit systems */
 500		/* rate = (1+man/2^32)*2^exp
 501    
 502		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
 503		   time to lose significance... we want m in the range 0 to 2^9-1
 504		   rounding presents a minor problem... we first decide which way
 505		   we are rounding (based on given rounding direction and possibly
 506		   the bits of the mantissa that are to be discarded).
 507		*/
 508
 509		switch (r) {
 510		case ROUND_DOWN: {
 511			/* just truncate */
 512			man = man>>(32-9);
 513			break;
 514		}
 515		case ROUND_UP: {
 516			/* check all bits that we are discarding */
 517			if (man & (~0U>>9)) {
 518				man = (man>>(32-9)) + 1;
 519				if (man == (1<<9)) {
 520					/* no need to check for round up outside of range */
 521					man = 0;
 522					exp += 1;
 523				}
 524			} else {
 525				man = (man>>(32-9));
 526			}
 527			break;
 528		}
 529		case ROUND_NEAREST: {
 530			/* check msb that we are discarding */
 531			if (man & (1<<(32-9-1))) {
 532				man = (man>>(32-9)) + 1;
 533				if (man == (1<<9)) {
 534					/* no need to check for round up outside of range */
 535					man = 0;
 536					exp += 1;
 537				}
 538			} else {
 539				man = (man>>(32-9));
 540			}
 541			break;
 542		}
 543		}
 544    
 545	} else {
 546		/* zero rate - not representable */
 547    
 548		if (r == ROUND_DOWN) {
 549			return -EINVAL;
 550		} else {
 551			exp = 0;
 552			man = 0;
 553		}
 554	}
 555  
 556	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
 557  
 558	if (bits)
 559		*bits = /* (1<<14) | */ (exp<<9) | man;
 560  
 561	if (actual)
 562		*actual = (exp >= 9)
 563			? (1 << exp) + (man << (exp-9))
 564			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
 565  
 566	return 0;
 567}
 568
 569
 570
 571
 572/* FireStream access routines */
 573/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
 574   certain registers or to just log all accesses. */
 575
 576static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
 577{
 578	writel (val, dev->base + offset);
 579}
 580
 581
 582static inline u32  read_fs (struct fs_dev *dev, int offset)
 583{
 584	return readl (dev->base + offset);
 585}
 586
 587
 588
 589static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
 590{
 591	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
 592}
 593
 594
 595static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
 596{
 597	u32 wp;
 598	struct FS_QENTRY *cqe;
 599
 600	/* XXX Sanity check: the write pointer can be checked to be 
 601	   still the same as the value passed as qe... -- REW */
 602	/*  udelay (5); */
 603	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
 604		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n", 
 605			    q->offset);
 606		schedule ();
 607	}
 608
 609	wp &= ~0xf;
 610	cqe = bus_to_virt (wp);
 611	if (qe != cqe) {
 612		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
 613	}
 614
 615	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
 616
 617	{
 618		static int c;
 619		if (!(c++ % 100))
 620			{
 621				int rp, wp;
 622				rp =  read_fs (dev, Q_RP(q->offset));
 623				wp =  read_fs (dev, Q_WP(q->offset));
 624				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n", 
 625					    q->offset, rp, wp, wp-rp);
 626			}
 627	}
 628}
 629
 630#ifdef DEBUG_EXTRA
 631static struct FS_QENTRY pq[60];
 632static int qp;
 633
 634static struct FS_BPENTRY dq[60];
 635static int qd;
 636static void *da[60];
 637#endif 
 638
 639static void submit_queue (struct fs_dev *dev, struct queue *q, 
 640			  u32 cmd, u32 p1, u32 p2, u32 p3)
 641{
 642	struct FS_QENTRY *qe;
 643
 644	qe = get_qentry (dev, q);
 645	qe->cmd = cmd;
 646	qe->p0 = p1;
 647	qe->p1 = p2;
 648	qe->p2 = p3;
 649	submit_qentry (dev,  q, qe);
 650
 651#ifdef DEBUG_EXTRA
 652	pq[qp].cmd = cmd;
 653	pq[qp].p0 = p1;
 654	pq[qp].p1 = p2;
 655	pq[qp].p2 = p3;
 656	qp++;
 657	if (qp >= 60) qp = 0;
 658#endif
 659}
 660
 661/* Test the "other" way one day... -- REW */
 662#if 1
 663#define submit_command submit_queue
 664#else
 665
 666static void submit_command (struct fs_dev *dev, struct queue *q, 
 667			    u32 cmd, u32 p1, u32 p2, u32 p3)
 668{
 669	write_fs (dev, CMDR0, cmd);
 670	write_fs (dev, CMDR1, p1);
 671	write_fs (dev, CMDR2, p2);
 672	write_fs (dev, CMDR3, p3);
 673}
 674#endif
 675
 676
 677
 678static void process_return_queue (struct fs_dev *dev, struct queue *q)
 679{
 680	long rq;
 681	struct FS_QENTRY *qe;
 682	void *tc;
 683  
 684	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 685		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq); 
 686		qe = bus_to_virt (rq);
 687    
 688		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n", 
 689			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 690
 691		switch (STATUS_CODE (qe)) {
 692		case 5:
 693			tc = bus_to_virt (qe->p0);
 694			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
 695			kfree (tc);
 696			break;
 697		}
 698    
 699		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 700	}
 701}
 702
 703
 704static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
 705{
 706	long rq;
 707	long tmp;
 708	struct FS_QENTRY *qe;
 709	struct sk_buff *skb;
 710	struct FS_BPENTRY *td;
 711
 712	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 713		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq); 
 714		qe = bus_to_virt (rq);
 715    
 716		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n", 
 717			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 718
 719		if (STATUS_CODE (qe) != 2)
 720			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n", 
 721				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 722
 723
 724		switch (STATUS_CODE (qe)) {
 725		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
 726			/* Fall through */
 727		case 0x02:
 728			/* Process a real txdone entry. */
 729			tmp = qe->p0;
 730			if (tmp & 0x0f)
 731				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
 732			tmp &= ~0x0f;
 733			td = bus_to_virt (tmp);
 734
 735			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n", 
 736				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
 737      
 738			skb = td->skb;
 739			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
 740				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
 741				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
 
 742			}
 743			td->dev->ntxpckts--;
 744
 745			{
 746				static int c=0;
 747	
 748				if (!(c++ % 100)) {
 749					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
 750				}
 751			}
 752
 753			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 754
 755			fs_dprintk (FS_DEBUG_TXMEM, "i");
 756			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
 757			fs_kfree_skb (skb);
 758
 759			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td); 
 760			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
 761			kfree (td);
 762			break;
 763		default:
 764			/* Here we get the tx purge inhibit command ... */
 765			/* Action, I believe, is "don't do anything". -- REW */
 766			;
 767		}
 768    
 769		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 770	}
 771}
 772
 773
 774static void process_incoming (struct fs_dev *dev, struct queue *q)
 775{
 776	long rq;
 777	struct FS_QENTRY *qe;
 778	struct FS_BPENTRY *pe;    
 779	struct sk_buff *skb;
 780	unsigned int channo;
 781	struct atm_vcc *atm_vcc;
 782
 783	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 784		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq); 
 785		qe = bus_to_virt (rq);
 786    
 787		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ", 
 788			    qe->cmd, qe->p0, qe->p1, qe->p2);
 789
 790		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n", 
 791			    STATUS_CODE (qe), 
 792			    res_strings[STATUS_CODE(qe)]);
 793
 794		pe = bus_to_virt (qe->p0);
 795		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n", 
 796			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize, 
 797			    pe->skb, pe->fp);
 798      
 799		channo = qe->cmd & 0xffff;
 800
 801		if (channo < dev->nchannels)
 802			atm_vcc = dev->atm_vccs[channo];
 803		else
 804			atm_vcc = NULL;
 805
 806		/* Single buffer packet */
 807		switch (STATUS_CODE (qe)) {
 808		case 0x1:
 809			/* Fall through for streaming mode */
 
 810		case 0x2:/* Packet received OK.... */
 811			if (atm_vcc) {
 812				skb = pe->skb;
 813				pe->fp->n--;
 814#if 0
 815				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
 816				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
 817#endif
 818				skb_put (skb, qe->p1 & 0xffff); 
 819				ATM_SKB(skb)->vcc = atm_vcc;
 820				atomic_inc(&atm_vcc->stats->rx);
 821				__net_timestamp(skb);
 822				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
 823				atm_vcc->push (atm_vcc, skb);
 824				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 825				kfree (pe);
 826			} else {
 827				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
 828			}
 829			break;
 830		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
 831			     has been consumed and needs to be processed. -- REW */
 832			if (qe->p1 & 0xffff) {
 833				pe = bus_to_virt (qe->p0);
 834				pe->fp->n--;
 835				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
 836				dev_kfree_skb_any (pe->skb);
 837				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 838				kfree (pe);
 839			}
 840			if (atm_vcc)
 841				atomic_inc(&atm_vcc->stats->rx_drop);
 842			break;
 843		case 0x1f: /*  Reassembly abort: no buffers. */
 844			/* Silently increment error counter. */
 845			if (atm_vcc)
 846				atomic_inc(&atm_vcc->stats->rx_drop);
 847			break;
 848		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
 849			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n", 
 850				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
 851		}
 852		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 853	}
 854}
 855
 856
 857
 858#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
 859
 860static int fs_open(struct atm_vcc *atm_vcc)
 861{
 862	struct fs_dev *dev;
 863	struct fs_vcc *vcc;
 864	struct fs_transmit_config *tc;
 865	struct atm_trafprm * txtp;
 866	struct atm_trafprm * rxtp;
 867	/*  struct fs_receive_config *rc;*/
 868	/*  struct FS_QENTRY *qe; */
 869	int error;
 870	int bfp;
 871	int to;
 872	unsigned short tmc0;
 873	short vpi = atm_vcc->vpi;
 874	int vci = atm_vcc->vci;
 875
 876	func_enter ();
 877
 878	dev = FS_DEV(atm_vcc->dev);
 879	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n", 
 880		    dev, atm_vcc);
 881
 882	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
 883		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
 884
 885	if ((atm_vcc->qos.aal != ATM_AAL5) &&
 886	    (atm_vcc->qos.aal != ATM_AAL2))
 887	  return -EINVAL; /* XXX AAL0 */
 888
 889	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n", 
 890		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);	
 891
 892	/* XXX handle qos parameters (rate limiting) ? */
 893
 894	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
 895	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
 896	if (!vcc) {
 897		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
 898		return -ENOMEM;
 899	}
 900  
 901	atm_vcc->dev_data = vcc;
 902	vcc->last_skb = NULL;
 903
 904	init_waitqueue_head (&vcc->close_wait);
 905
 906	txtp = &atm_vcc->qos.txtp;
 907	rxtp = &atm_vcc->qos.rxtp;
 908
 909	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
 910		if (IS_FS50(dev)) {
 911			/* Increment the channel numer: take a free one next time.  */
 912			for (to=33;to;to--, dev->channo++) {
 913				/* We only have 32 channels */
 914				if (dev->channo >= 32)
 915					dev->channo = 0;
 916				/* If we need to do RX, AND the RX is inuse, try the next */
 917				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
 918					continue;
 919				/* If we need to do TX, AND the TX is inuse, try the next */
 920				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
 921					continue;
 922				/* Ok, both are free! (or not needed) */
 923				break;
 924			}
 925			if (!to) {
 926				printk ("No more free channels for FS50..\n");
 
 927				return -EBUSY;
 928			}
 929			vcc->channo = dev->channo;
 930			dev->channo &= dev->channel_mask;
 931      
 932		} else {
 933			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
 934			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
 935			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
 936				printk ("Channel is in use for FS155.\n");
 
 937				return -EBUSY;
 938			}
 939		}
 940		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n", 
 941			    vcc->channo, vcc->channo);
 942	}
 943
 944	if (DO_DIRECTION (txtp)) {
 945		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
 946		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
 947			    tc, sizeof (struct fs_transmit_config));
 948		if (!tc) {
 949			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
 
 950			return -ENOMEM;
 951		}
 952
 953		/* Allocate the "open" entry from the high priority txq. This makes
 954		   it most likely that the chip will notice it. It also prevents us
 955		   from having to wait for completion. On the other hand, we may
 956		   need to wait for completion anyway, to see if it completed
 957		   successfully. */
 958
 959		switch (atm_vcc->qos.aal) {
 960		case ATM_AAL2:
 961		case ATM_AAL0:
 962		  tc->flags = 0
 963		    | TC_FLAGS_TRANSPARENT_PAYLOAD
 964		    | TC_FLAGS_PACKET
 965		    | (1 << 28)
 966		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
 967		    | TC_FLAGS_CAL0;
 968		  break;
 969		case ATM_AAL5:
 970		  tc->flags = 0
 971			| TC_FLAGS_AAL5
 972			| TC_FLAGS_PACKET  /* ??? */
 973			| TC_FLAGS_TYPE_CBR
 974			| TC_FLAGS_CAL0;
 975		  break;
 976		default:
 977			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
 978			tc->flags = 0;
 979		}
 980		/* Docs are vague about this atm_hdr field. By the way, the FS
 981		 * chip makes odd errors if lower bits are set.... -- REW */
 982		tc->atm_hdr =  (vpi << 20) | (vci << 4); 
 983		tmc0 = 0;
 984		{
 985			int pcr = atm_pcr_goal (txtp);
 986
 987			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
 988
 989			/* XXX Hmm. officially we're only allowed to do this if rounding 
 990			   is round_down -- REW */
 991			if (IS_FS50(dev)) {
 992				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
 993			} else {
 994				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
 995			}
 996			if (!pcr) {
 997				/* no rate cap */
 998				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
 999			} else {
1000				int r;
1001				if (pcr < 0) {
1002					r = ROUND_DOWN;
1003					pcr = -pcr;
1004				} else {
1005					r = ROUND_UP;
1006				}
1007				error = make_rate (pcr, r, &tmc0, NULL);
1008				if (error) {
1009					kfree(tc);
 
1010					return error;
1011				}
1012			}
1013			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1014		}
1015      
1016		tc->TMC[0] = tmc0 | 0x4000;
1017		tc->TMC[1] = 0; /* Unused */
1018		tc->TMC[2] = 0; /* Unused */
1019		tc->TMC[3] = 0; /* Unused */
1020    
1021		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1022		tc->rtag[0] = 0; /* What should I do with routing tags??? 
1023				    -- Not used -- AS -- Thanks -- REW*/
1024		tc->rtag[1] = 0;
1025		tc->rtag[2] = 0;
1026
1027		if (fs_debug & FS_DEBUG_OPEN) {
1028			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1029			my_hd (tc, sizeof (*tc));
1030		}
1031
1032		/* We now use the "submit_command" function to submit commands to
1033		   the firestream. There is a define up near the definition of
1034		   that routine that switches this routine between immediate write
1035		   to the immediate command registers and queuing the commands in
1036		   the HPTXQ for execution. This last technique might be more
1037		   efficient if we know we're going to submit a whole lot of
1038		   commands in one go, but this driver is not setup to be able to
1039		   use such a construct. So it probably doen't matter much right
1040		   now. -- REW */
1041    
1042		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1043		submit_command (dev, &dev->hp_txq, 
1044				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1045				virt_to_bus (tc), 0, 0);
1046
1047		submit_command (dev, &dev->hp_txq, 
1048				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1049				0, 0, 0);
1050		set_bit (vcc->channo, dev->tx_inuse);
1051	}
1052
1053	if (DO_DIRECTION (rxtp)) {
1054		dev->atm_vccs[vcc->channo] = atm_vcc;
1055
1056		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1057			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1058		if (bfp >= FS_NR_FREE_POOLS) {
1059			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n", 
1060				    atm_vcc->qos.rxtp.max_sdu);
1061			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1062
1063			/* XXX clear tx inuse. Close TX part? */
1064			dev->atm_vccs[vcc->channo] = NULL;
1065			kfree (vcc);
1066			return -EINVAL;
1067		}
1068
1069		switch (atm_vcc->qos.aal) {
1070		case ATM_AAL0:
1071		case ATM_AAL2:
1072			submit_command (dev, &dev->hp_txq,
1073					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074					RC_FLAGS_TRANSP |
1075					RC_FLAGS_BFPS_BFP * bfp |
1076					RC_FLAGS_RXBM_PSB, 0, 0);
1077			break;
1078		case ATM_AAL5:
1079			submit_command (dev, &dev->hp_txq,
1080					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1081					RC_FLAGS_AAL5 |
1082					RC_FLAGS_BFPS_BFP * bfp |
1083					RC_FLAGS_RXBM_PSB, 0, 0);
1084			break;
1085		};
1086		if (IS_FS50 (dev)) {
1087			submit_command (dev, &dev->hp_txq, 
1088					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1089					0x80 + vcc->channo,
1090					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1091		}
1092		submit_command (dev, &dev->hp_txq, 
1093				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1094				0, 0, 0);
1095	}
1096    
1097	/* Indicate we're done! */
1098	set_bit(ATM_VF_READY, &atm_vcc->flags);
1099
1100	func_exit ();
1101	return 0;
1102}
1103
1104
1105static void fs_close(struct atm_vcc *atm_vcc)
1106{
1107	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1108	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1109	struct atm_trafprm * txtp;
1110	struct atm_trafprm * rxtp;
1111
1112	func_enter ();
1113
1114	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1115
1116	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1117	if (vcc->last_skb) {
1118		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n", 
1119			    vcc->last_skb);
1120		/* We're going to wait for the last packet to get sent on this VC. It would
1121		   be impolite not to send them don't you think? 
1122		   XXX
1123		   We don't know which packets didn't get sent. So if we get interrupted in 
1124		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1125		   On the other hand, it's awfully convenient that we can abort a "close" that
1126		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1127		interruptible_sleep_on (& vcc->close_wait);
1128	}
1129
1130	txtp = &atm_vcc->qos.txtp;
1131	rxtp = &atm_vcc->qos.rxtp;
1132  
1133
1134	/* See App note XXX (Unpublished as of now) for the reason for the 
1135	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1136
1137	if (DO_DIRECTION (txtp)) {
1138		submit_command (dev,  &dev->hp_txq,
1139				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1140		clear_bit (vcc->channo, dev->tx_inuse);
1141	}
1142
1143	if (DO_DIRECTION (rxtp)) {
1144		submit_command (dev,  &dev->hp_txq,
1145				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1146		dev->atm_vccs [vcc->channo] = NULL;
1147  
1148		/* This means that this is configured as a receive channel */
1149		if (IS_FS50 (dev)) {
1150			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1151			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1152			   (0xfff...) -- REW */
1153			submit_command (dev, &dev->hp_txq, 
1154					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1155					0x80 + vcc->channo, -1, 0 ); 
1156		}
1157	}
1158
1159	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1160	kfree (vcc);
1161
1162	func_exit ();
1163}
1164
1165
1166static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1167{
1168	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1169	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1170	struct FS_BPENTRY *td;
1171
1172	func_enter ();
1173
1174	fs_dprintk (FS_DEBUG_TXMEM, "I");
1175	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n", 
1176		    atm_vcc, skb, vcc, dev);
1177
1178	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1179
1180	ATM_SKB(skb)->vcc = atm_vcc;
1181
1182	vcc->last_skb = skb;
1183
1184	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1185	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1186	if (!td) {
1187		/* Oops out of mem */
1188		return -ENOMEM;
1189	}
1190
1191	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n", 
1192		    *(int *) skb->data);
1193
1194	td->flags =  TD_EPI | TD_DATA | skb->len;
1195	td->next = 0;
1196	td->bsa  = virt_to_bus (skb->data);
1197	td->skb = skb;
1198	td->dev = dev;
1199	dev->ntxpckts++;
1200
1201#ifdef DEBUG_EXTRA
1202	da[qd] = td;
1203	dq[qd].flags = td->flags;
1204	dq[qd].next  = td->next;
1205	dq[qd].bsa   = td->bsa;
1206	dq[qd].skb   = td->skb;
1207	dq[qd].dev   = td->dev;
1208	qd++;
1209	if (qd >= 60) qd = 0;
1210#endif
1211
1212	submit_queue (dev, &dev->hp_txq, 
1213		      QE_TRANSMIT_DE | vcc->channo,
1214		      virt_to_bus (td), 0, 
1215		      virt_to_bus (td));
1216
1217	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n", 
1218		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1219		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1220		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1221		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1222
1223	func_exit ();
1224	return 0;
1225}
1226
1227
1228/* Some function placeholders for functions we don't yet support. */
1229
1230#if 0
1231static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1232{
1233	func_enter ();
1234	func_exit ();
1235	return -ENOIOCTLCMD;
1236}
1237
1238
1239static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1240			 void __user *optval,int optlen)
1241{
1242	func_enter ();
1243	func_exit ();
1244	return 0;
1245}
1246
1247
1248static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1249			 void __user *optval,unsigned int optlen)
1250{
1251	func_enter ();
1252	func_exit ();
1253	return 0;
1254}
1255
1256
1257static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1258		       unsigned long addr)
1259{
1260	func_enter ();
1261	func_exit ();
1262}
1263
1264
1265static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1266{
1267	func_enter ();
1268	func_exit ();
1269	return 0;
1270}
1271
1272
1273static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1274{
1275	func_enter ();
1276	func_exit ();
1277	return 0;
1278};
1279
1280#endif
1281
1282
1283static const struct atmdev_ops ops = {
1284	.open =         fs_open,
1285	.close =        fs_close,
1286	.send =         fs_send,
1287	.owner =        THIS_MODULE,
1288	/* ioctl:          fs_ioctl, */
1289	/* getsockopt:     fs_getsockopt, */
1290	/* setsockopt:     fs_setsockopt, */
1291	/* change_qos:     fs_change_qos, */
1292
1293	/* For now implement these internally here... */  
1294	/* phy_put:        fs_phy_put, */
1295	/* phy_get:        fs_phy_get, */
1296};
1297
1298
1299static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1300{
1301	u32 tint;
1302
1303	/* The Windows driver says: */
1304	/* Switch off FireStream Retry Limit Threshold 
1305	 */
1306
1307	/* The register at 0x28 is documented as "reserved", no further
1308	   comments. */
1309
1310	pci_read_config_dword (pdev, 0x28, &tint);
1311	if (tint != 0x80) {
1312		tint = 0x80;
1313		pci_write_config_dword (pdev, 0x28, tint);
1314	}
1315}
1316
1317
1318
1319/**************************************************************************
1320 *                              PHY routines                              *
1321 **************************************************************************/
1322
1323static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1324{
1325	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1326			regnum, val, 0);
1327}
1328
1329static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1330{
1331	int i;
1332
1333	func_enter ();
1334	while (reginit->reg != PHY_EOF) {
1335		if (reginit->reg == PHY_CLEARALL) {
1336			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1337			for (i=0;i<reginit->val;i++) {
1338				write_phy (dev, i, 0);
1339			}
1340		} else {
1341			write_phy (dev, reginit->reg, reginit->val);
1342		}
1343		reginit++;
1344	}
1345	func_exit ();
1346	return 0;
1347}
1348
1349static void reset_chip (struct fs_dev *dev)
1350{
1351	int i;
1352
1353	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1354
1355	/* Undocumented delay */
1356	udelay (128);
1357
1358	/* The "internal registers are documented to all reset to zero, but 
1359	   comments & code in the Windows driver indicates that the pools are
1360	   NOT reset. */
1361	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1362		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1363		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1364		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1365		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1366		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1367	}
1368
1369	/* The same goes for the match channel registers, although those are
1370	   NOT documented that way in the Windows driver. -- REW */
1371	/* The Windows driver DOES write 0 to these registers somewhere in
1372	   the init sequence. However, a small hardware-feature, will
1373	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1374	   allocated happens to have no disabled channels that have a lower
1375	   number. -- REW */
1376
1377	/* Clear the match channel registers. */
1378	if (IS_FS50 (dev)) {
1379		for (i=0;i<FS50_NR_CHANNELS;i++) {
1380			write_fs (dev, 0x200 + i * 4, -1);
1381		}
1382	}
1383}
1384
1385static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1386{
1387	void  *t;
1388
1389	if (alignment <= 0x10) {
1390		t = kmalloc (size, flags);
1391		if ((unsigned long)t & (alignment-1)) {
1392			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1393			kfree (t);
1394			return aligned_kmalloc (size, flags, alignment * 4);
1395		}
1396		return t;
1397	}
1398	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1399	return NULL;
1400}
1401
1402static int __devinit init_q (struct fs_dev *dev, 
1403			  struct queue *txq, int queue, int nentries, int is_rq)
1404{
1405	int sz = nentries * sizeof (struct FS_QENTRY);
1406	struct FS_QENTRY *p;
1407
1408	func_enter ();
1409
1410	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n", 
1411		    queue, nentries);
1412
1413	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1414	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1415
1416	if (!p) return 0;
1417
1418	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1419	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1420	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1421	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1422	if (is_rq) {
1423		/* Configuration for the receive queue: 0: interrupt immediately,
1424		   no pre-warning to empty queues: We do our best to keep the
1425		   queue filled anyway. */
1426		write_fs (dev, Q_CNF(queue), 0 ); 
1427	}
1428
1429	txq->sa = p;
1430	txq->ea = p;
1431	txq->offset = queue; 
1432
1433	func_exit ();
1434	return 1;
1435}
1436
1437
1438static int __devinit init_fp (struct fs_dev *dev, 
1439			   struct freepool *fp, int queue, int bufsize, int nr_buffers)
1440{
1441	func_enter ();
1442
1443	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1444
1445	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1446	write_fs (dev, FP_SA(queue),  0);
1447	write_fs (dev, FP_EA(queue),  0);
1448	write_fs (dev, FP_CTU(queue), 0);
1449	write_fs (dev, FP_CNT(queue), 0);
1450
1451	fp->offset = queue; 
1452	fp->bufsize = bufsize;
1453	fp->nr_buffers = nr_buffers;
1454
1455	func_exit ();
1456	return 1;
1457}
1458
1459
1460static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1461{
1462#if 0
1463	/* This seems to be unreliable.... */
1464	return read_fs (dev, FP_CNT (fp->offset));
1465#else
1466	return fp->n;
1467#endif
1468}
1469
1470
1471/* Check if this gets going again if a pool ever runs out.  -- Yes, it
1472   does. I've seen "receive abort: no buffers" and things started
1473   working again after that...  -- REW */
1474
1475static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1476			gfp_t gfp_flags)
1477{
1478	struct FS_BPENTRY *qe, *ne;
1479	struct sk_buff *skb;
1480	int n = 0;
1481	u32 qe_tmp;
1482
1483	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n", 
1484		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n, 
1485		    fp->nr_buffers);
1486	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1487
1488		skb = alloc_skb (fp->bufsize, gfp_flags);
1489		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1490		if (!skb) break;
1491		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1492		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1493		if (!ne) {
1494			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1495			dev_kfree_skb_any (skb);
1496			break;
1497		}
1498
1499		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ", 
1500			    skb, ne, skb->data, skb->head);
1501		n++;
1502		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1503		ne->next  = virt_to_bus (NULL);
1504		ne->bsa   = virt_to_bus (skb->data);
1505		ne->aal_bufsize = fp->bufsize;
1506		ne->skb = skb;
1507		ne->fp = fp;
1508
1509		/*
1510		 * FIXME: following code encodes and decodes
1511		 * machine pointers (could be 64-bit) into a
1512		 * 32-bit register.
1513		 */
1514
1515		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1516		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1517		if (qe_tmp) {
1518			qe = bus_to_virt ((long) qe_tmp);
1519			qe->next = virt_to_bus(ne);
1520			qe->flags &= ~FP_FLAGS_EPI;
1521		} else
1522			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1523
1524		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1525		fp->n++;   /* XXX Atomic_inc? */
1526		write_fs (dev, FP_CTU(fp->offset), 1);
1527	}
1528
1529	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1530}
1531
1532static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1533{
1534	func_enter ();
1535
1536	write_fs (dev, Q_SA(txq->offset), 0);
1537	write_fs (dev, Q_EA(txq->offset), 0);
1538	write_fs (dev, Q_RP(txq->offset), 0);
1539	write_fs (dev, Q_WP(txq->offset), 0);
1540	/* Configuration ? */
1541
1542	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1543	kfree (txq->sa);
1544
1545	func_exit ();
1546}
1547
1548static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1549{
1550	func_enter ();
1551
1552	write_fs (dev, FP_CNF(fp->offset), 0);
1553	write_fs (dev, FP_SA (fp->offset), 0);
1554	write_fs (dev, FP_EA (fp->offset), 0);
1555	write_fs (dev, FP_CNT(fp->offset), 0);
1556	write_fs (dev, FP_CTU(fp->offset), 0);
1557
1558	func_exit ();
1559}
1560
1561
1562
1563static irqreturn_t fs_irq (int irq, void *dev_id) 
1564{
1565	int i;
1566	u32 status;
1567	struct fs_dev *dev = dev_id;
1568
1569	status = read_fs (dev, ISR);
1570	if (!status)
1571		return IRQ_NONE;
1572
1573	func_enter ();
1574
1575#ifdef IRQ_RATE_LIMIT
1576	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual 
1577	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1578	{
1579		static int lastjif;
1580		static int nintr=0;
1581    
1582		if (lastjif == jiffies) {
1583			if (++nintr > IRQ_RATE_LIMIT) {
1584				free_irq (dev->irq, dev_id);
1585				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n", 
1586					dev->irq);
1587			}
1588		} else {
1589			lastjif = jiffies;
1590			nintr = 0;
1591		}
1592	}
1593#endif
1594	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n", 
1595		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1596		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1597		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1598		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1599
1600	/* print the bits in the ISR register. */
1601	if (fs_debug & FS_DEBUG_IRQ) {
1602		/* The FS_DEBUG things are unnecessary here. But this way it is
1603		   clear for grep that these are debug prints. */
1604		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1605		for (i=0;i<27;i++) 
1606			if (status & (1 << i)) 
1607				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1608		fs_dprintk (FS_DEBUG_IRQ, "\n");
1609	}
1610  
1611	if (status & ISR_RBRQ0_W) {
1612		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1613		process_incoming (dev, &dev->rx_rq[0]);
1614		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1615		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1616		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1617	}
1618
1619	if (status & ISR_RBRQ1_W) {
1620		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1621		process_incoming (dev, &dev->rx_rq[1]);
1622		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1623		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1624	}
1625
1626	if (status & ISR_RBRQ2_W) {
1627		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1628		process_incoming (dev, &dev->rx_rq[2]);
1629		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1630		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1631	}
1632
1633	if (status & ISR_RBRQ3_W) {
1634		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1635		process_incoming (dev, &dev->rx_rq[3]);
1636		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1637		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1638	}
1639
1640	if (status & ISR_CSQ_W) {
1641		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1642		process_return_queue (dev, &dev->st_q);
1643	}
1644
1645	if (status & ISR_TBRQ_W) {
1646		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1647		process_txdone_queue (dev, &dev->tx_relq);
1648	}
1649
1650	func_exit ();
1651	return IRQ_HANDLED;
1652}
1653
1654
1655#ifdef FS_POLL_FREQ
1656static void fs_poll (unsigned long data)
1657{
1658	struct fs_dev *dev = (struct fs_dev *) data;
1659  
1660	fs_irq (0, dev);
1661	dev->timer.expires = jiffies + FS_POLL_FREQ;
1662	add_timer (&dev->timer);
1663}
1664#endif
1665
1666static int __devinit fs_init (struct fs_dev *dev)
1667{
1668	struct pci_dev  *pci_dev;
1669	int isr, to;
1670	int i;
1671
1672	func_enter ();
1673	pci_dev = dev->pci_dev;
1674
1675	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1676		IS_FS50(dev)?50:155,
1677		(unsigned long long)pci_resource_start(pci_dev, 0),
1678		dev->pci_dev->irq);
1679
1680	if (fs_debug & FS_DEBUG_INIT)
1681		my_hd ((unsigned char *) dev, sizeof (*dev));
1682
1683	undocumented_pci_fix (pci_dev);
1684
1685	dev->hw_base = pci_resource_start(pci_dev, 0);
1686
1687	dev->base = ioremap(dev->hw_base, 0x1000);
1688
1689	reset_chip (dev);
1690  
1691	write_fs (dev, SARMODE0, 0 
1692		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1693		  | (1 * SARMODE0_INTMODE_READCLEAR)
1694		  | (1 * SARMODE0_CWRE)
1695		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1696			  SARMODE0_PRPWT_FS155_3)
1697		  | (1 * SARMODE0_CALSUP_1)
1698		  | (IS_FS50(dev) ? (0
1699				   | SARMODE0_RXVCS_32
1700				   | SARMODE0_ABRVCS_32 
1701				   | SARMODE0_TXVCS_32):
1702		                  (0
1703				   | SARMODE0_RXVCS_1k
1704				   | SARMODE0_ABRVCS_1k 
1705				   | SARMODE0_TXVCS_1k)));
1706
1707	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1708	   1ms. */
1709	to = 100;
1710	while (--to) {
1711		isr = read_fs (dev, ISR);
1712
1713		/* This bit is documented as "RESERVED" */
1714		if (isr & ISR_INIT_ERR) {
1715			printk (KERN_ERR "Error initializing the FS... \n");
1716			goto unmap;
1717		}
1718		if (isr & ISR_INIT) {
1719			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1720			break;
1721		}
1722
1723		/* Try again after 10ms. */
1724		msleep(10);
1725	}
1726
1727	if (!to) {
1728		printk (KERN_ERR "timeout initializing the FS... \n");
1729		goto unmap;
1730	}
1731
1732	/* XXX fix for fs155 */
1733	dev->channel_mask = 0x1f; 
1734	dev->channo = 0;
1735
1736	/* AN3: 10 */
1737	write_fs (dev, SARMODE1, 0 
1738		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1739		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1740		  | (1 * SARMODE1_DCRM)
1741		  | (1 * SARMODE1_DCOAM)
1742		  | (0 * SARMODE1_OAMCRC)
1743		  | (0 * SARMODE1_DUMPE)
1744		  | (0 * SARMODE1_GPLEN) 
1745		  | (0 * SARMODE1_GNAM)
1746		  | (0 * SARMODE1_GVAS)
1747		  | (0 * SARMODE1_GPAS)
1748		  | (1 * SARMODE1_GPRI)
1749		  | (0 * SARMODE1_PMS)
1750		  | (0 * SARMODE1_GFCR)
1751		  | (1 * SARMODE1_HECM2)
1752		  | (1 * SARMODE1_HECM1)
1753		  | (1 * SARMODE1_HECM0)
1754		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1755		  | (0 * 0xff) /* XXX FS155 */);
1756
1757
1758	/* Cal prescale etc */
1759
1760	/* AN3: 11 */
1761	write_fs (dev, TMCONF, 0x0000000f);
1762	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1763	write_fs (dev, 0x80, 0x000F00E4);
1764
1765	/* AN3: 12 */
1766	write_fs (dev, CELLOSCONF, 0
1767		  | (   0 * CELLOSCONF_CEN)
1768		  | (       CELLOSCONF_SC1)
1769		  | (0x80 * CELLOSCONF_COBS)
1770		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1771		  | (num  * CELLOSCONF_COST));/* after a hint from Hang. 
1772					       * performance jumped 50->70... */
1773
1774	/* Magic value by Hang */
1775	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1776
1777	if (IS_FS50 (dev)) {
1778		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1779		dev->atm_dev->ci_range.vpi_bits = 12;
1780		dev->atm_dev->ci_range.vci_bits = 16;
1781		dev->nchannels = FS50_NR_CHANNELS;
1782	} else {
1783		write_fs (dev, RAS0, RAS0_DCD_XHLT 
1784			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1785			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1786		/* We can chose the split arbitrarily. We might be able to 
1787		   support more. Whatever. This should do for now. */
1788		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1789		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1790    
1791		/* Address bits we can't use should be compared to 0. */
1792		write_fs (dev, RAC, 0);
1793
1794		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1795		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1796		 * other bits, then compare with 0, which is exactly what we
1797		 * want. */
1798		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1799		dev->nchannels = FS155_NR_CHANNELS;
1800	}
1801	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1802				 GFP_KERNEL);
1803	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1804		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1805
1806	if (!dev->atm_vccs) {
1807		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1808		/* XXX Clean up..... */
1809		goto unmap;
1810	}
1811
1812	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1813	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n", 
1814		    dev->atm_vccs, dev->nchannels / 8);
1815
1816	if (!dev->tx_inuse) {
1817		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1818		/* XXX Clean up..... */
1819		goto unmap;
1820	}
1821	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1822	/* -- RAS2 : FS50 only: Default is OK. */
1823
1824	/* DMAMODE, default should be OK. -- REW */
1825	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1826
1827	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1828	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1829	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1830	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1831
1832	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1833		init_fp (dev, &dev->rx_fp[i], RXB_FP(i), 
1834			 rx_buf_sizes[i], rx_pool_sizes[i]);
1835		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1836	}
1837
1838
1839	for (i=0;i < FS_NR_RX_QUEUES;i++)
1840		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1841
1842	dev->irq = pci_dev->irq;
1843	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1844		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1845		/* XXX undo all previous stuff... */
1846		goto unmap;
1847	}
1848	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1849  
1850	/* We want to be notified of most things. Just the statistics count
1851	   overflows are not interesting */
1852	write_fs (dev, IMR, 0
1853		  | ISR_RBRQ0_W 
1854		  | ISR_RBRQ1_W 
1855		  | ISR_RBRQ2_W 
1856		  | ISR_RBRQ3_W 
1857		  | ISR_TBRQ_W
1858		  | ISR_CSQ_W);
1859
1860	write_fs (dev, SARMODE0, 0 
1861		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1862		  | (1 * SARMODE0_GINT)
1863		  | (1 * SARMODE0_INTMODE_READCLEAR)
1864		  | (0 * SARMODE0_CWRE)
1865		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5: 
1866		                  SARMODE0_PRPWT_FS155_3)
1867		  | (1 * SARMODE0_CALSUP_1)
1868		  | (IS_FS50 (dev)?(0
1869				    | SARMODE0_RXVCS_32
1870				    | SARMODE0_ABRVCS_32 
1871				    | SARMODE0_TXVCS_32):
1872		                   (0
1873				    | SARMODE0_RXVCS_1k
1874				    | SARMODE0_ABRVCS_1k 
1875				    | SARMODE0_TXVCS_1k))
1876		  | (1 * SARMODE0_RUN));
1877
1878	init_phy (dev, PHY_NTC_INIT);
1879
1880	if (loopback == 2) {
1881		write_phy (dev, 0x39, 0x000e);
1882	}
1883
1884#ifdef FS_POLL_FREQ
1885	init_timer (&dev->timer);
1886	dev->timer.data = (unsigned long) dev;
1887	dev->timer.function = fs_poll;
1888	dev->timer.expires = jiffies + FS_POLL_FREQ;
1889	add_timer (&dev->timer);
1890#endif
1891
1892	dev->atm_dev->dev_data = dev;
1893  
1894	func_exit ();
1895	return 0;
1896unmap:
1897	iounmap(dev->base);
1898	return 1;
1899}
1900
1901static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1902				       const struct pci_device_id *ent) 
1903{
1904	struct atm_dev *atm_dev;
1905	struct fs_dev *fs_dev;
1906	
1907	if (pci_enable_device(pci_dev)) 
1908		goto err_out;
1909
1910	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1911	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1912		    fs_dev, sizeof (struct fs_dev));
1913	if (!fs_dev)
1914		goto err_out;
1915	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1916	if (!atm_dev)
1917		goto err_out_free_fs_dev;
1918  
1919	fs_dev->pci_dev = pci_dev;
1920	fs_dev->atm_dev = atm_dev;
1921	fs_dev->flags = ent->driver_data;
1922
1923	if (fs_init(fs_dev))
1924		goto err_out_free_atm_dev;
1925
1926	fs_dev->next = fs_boards;
1927	fs_boards = fs_dev;
1928	return 0;
1929
1930 err_out_free_atm_dev:
1931	atm_dev_deregister(atm_dev);
1932 err_out_free_fs_dev:
1933 	kfree(fs_dev);
1934 err_out:
1935	return -ENODEV;
1936}
1937
1938static void __devexit firestream_remove_one (struct pci_dev *pdev)
1939{
1940	int i;
1941	struct fs_dev *dev, *nxtdev;
1942	struct fs_vcc *vcc;
1943	struct FS_BPENTRY *fp, *nxt;
1944  
1945	func_enter ();
1946
1947#if 0
1948	printk ("hptxq:\n");
1949	for (i=0;i<60;i++) {
1950		printk ("%d: %08x %08x %08x %08x \n", 
1951			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1952		qp++;
1953		if (qp >= 60) qp = 0;
1954	}
1955
1956	printk ("descriptors:\n");
1957	for (i=0;i<60;i++) {
1958		printk ("%d: %p: %08x %08x %p %p\n", 
1959			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1960		qd++;
1961		if (qd >= 60) qd = 0;
1962	}
1963#endif
1964
1965	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1966		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1967
1968		/* XXX Hit all the tx channels too! */
1969
1970		for (i=0;i < dev->nchannels;i++) {
1971			if (dev->atm_vccs[i]) {
1972				vcc = FS_VCC (dev->atm_vccs[i]);
1973				submit_command (dev,  &dev->hp_txq,
1974						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1975				submit_command (dev,  &dev->hp_txq,
1976						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1977
1978			}
1979		}
1980
1981		/* XXX Wait a while for the chip to release all buffers. */
1982
1983		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1984			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1985			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1986				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1987				dev_kfree_skb_any (fp->skb);
1988				nxt = bus_to_virt (fp->next);
1989				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1990				kfree (fp);
1991			}
1992			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1993			dev_kfree_skb_any (fp->skb);
1994			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1995			kfree (fp);
1996		}
1997
1998		/* Hang the chip in "reset", prevent it clobbering memory that is
1999		   no longer ours. */
2000		reset_chip (dev);
2001
2002		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2003		free_irq (dev->irq, dev);
2004		del_timer (&dev->timer);
2005
2006		atm_dev_deregister(dev->atm_dev);
2007		free_queue (dev, &dev->hp_txq);
2008		free_queue (dev, &dev->lp_txq);
2009		free_queue (dev, &dev->tx_relq);
2010		free_queue (dev, &dev->st_q);
2011
2012		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2013		kfree (dev->atm_vccs);
2014
2015		for (i=0;i< FS_NR_FREE_POOLS;i++)
2016			free_freepool (dev, &dev->rx_fp[i]);
2017    
2018		for (i=0;i < FS_NR_RX_QUEUES;i++)
2019			free_queue (dev, &dev->rx_rq[i]);
2020
2021		iounmap(dev->base);
2022		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2023		nxtdev = dev->next;
2024		kfree (dev);
2025	}
2026
2027	func_exit ();
2028}
2029
2030static struct pci_device_id firestream_pci_tbl[] = {
2031	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2032	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2033	{ 0, }
2034};
2035
2036MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2037
2038static struct pci_driver firestream_driver = {
2039	.name		= "firestream",
2040	.id_table	= firestream_pci_tbl,
2041	.probe		= firestream_init_one,
2042	.remove		= __devexit_p(firestream_remove_one),
2043};
2044
2045static int __init firestream_init_module (void)
2046{
2047	int error;
2048
2049	func_enter ();
2050	error = pci_register_driver(&firestream_driver);
2051	func_exit ();
2052	return error;
2053}
2054
2055static void __exit firestream_cleanup_module(void)
2056{
2057	pci_unregister_driver(&firestream_driver);
2058}
2059
2060module_init(firestream_init_module);
2061module_exit(firestream_cleanup_module);
2062
2063MODULE_LICENSE("GPL");
2064
2065
2066
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2
   3/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
   4 *                            FireStream  50 (MB86695) device driver 
   5 */
   6 
   7/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl 
   8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA 
   9 * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd 
  10 */
  11
  12/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13*/
  14
  15
  16#include <linux/module.h>
  17#include <linux/sched.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/pci.h>
  21#include <linux/poison.h>
  22#include <linux/errno.h>
  23#include <linux/atm.h>
  24#include <linux/atmdev.h>
  25#include <linux/sonet.h>
  26#include <linux/skbuff.h>
  27#include <linux/netdevice.h>
  28#include <linux/delay.h>
  29#include <linux/ioport.h> /* for request_region */
  30#include <linux/uio.h>
  31#include <linux/init.h>
  32#include <linux/interrupt.h>
  33#include <linux/capability.h>
  34#include <linux/bitops.h>
  35#include <linux/slab.h>
  36#include <asm/byteorder.h>
 
  37#include <asm/string.h>
  38#include <asm/io.h>
  39#include <linux/atomic.h>
  40#include <linux/uaccess.h>
  41#include <linux/wait.h>
  42
  43#include "firestream.h"
  44
  45static int loopback = 0;
  46static int num=0x5a;
  47
  48/* According to measurements (but they look suspicious to me!) done in
  49 * '97, 37% of the packets are one cell in size. So it pays to have
  50 * buffers allocated at that size. A large jump in percentage of
  51 * packets occurs at packets around 536 bytes in length. So it also
  52 * pays to have those pre-allocated. Unfortunately, we can't fully
  53 * take advantage of this as the majority of the packets is likely to
  54 * be TCP/IP (As where obviously the measurement comes from) There the
  55 * link would be opened with say a 1500 byte MTU, and we can't handle
  56 * smaller buffers more efficiently than the larger ones. -- REW
  57 */
  58
  59/* Due to the way Linux memory management works, specifying "576" as
  60 * an allocation size here isn't going to help. They are allocated
  61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
  62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
  63
  64/* This is all guesswork. Hard numbers to back this up or disprove this, 
  65 * are appreciated. -- REW */
  66
  67/* The last entry should be about 64k. However, the "buffer size" is
  68 * passed to the chip in a 16 bit field. I don't know how "65536"
  69 * would be interpreted. -- REW */
  70
  71#define NP FS_NR_FREE_POOLS
  72static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
  73/* log2:                 7     8     9    10    11    12    14     16 */
  74
  75#if 0
  76static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
  77#else
  78/* debug */
  79static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
  80#endif
  81/* log2:                 10    10    9    8     7     6     5      5  */
  82/* sumlog2:              17    18    18   18    18    18    19     21 */
  83/* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
  84/* tot mem: almost 4M */
  85
  86/* NP is shorter, so that it fits on a single line. */
  87#undef NP
  88
  89
  90/* Small hardware gotcha:
  91
  92   The FS50 CAM (VP/VC match registers) always take the lowest channel
  93   number that matches. This is not a problem.
  94
  95   However, they also ignore whether the channel is enabled or
  96   not. This means that if you allocate channel 0 to 1.2 and then
  97   channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
  98   match channel for channel 0 will "steal" the traffic from channel
  99   1, even if you correctly disable channel 0.
 100
 101   Workaround: 
 102
 103   - When disabling channels, write an invalid VP/VC value to the
 104   match register. (We use 0xffffffff, which in the worst case 
 105   matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
 106   anything as some "when not in use, program to 0" bits are now
 107   programmed to 1...)
 108
 109   - Don't initialize the match registers to 0, as 0.0 is a valid
 110   channel.
 111*/
 112
 113
 114/* Optimization hints and tips.
 115
 116   The FireStream chips are very capable of reducing the amount of
 117   "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
 118   action. You could try to minimize this a bit. 
 119
 120   Besides that, the userspace->kernel copy and the PCI bus are the
 121   performance limiting issues for this driver.
 122
 123   You could queue up a bunch of outgoing packets without telling the
 124   FireStream. I'm not sure that's going to win you much though. The
 125   Linux layer won't tell us in advance when it's not going to give us
 126   any more packets in a while. So this is tricky to implement right without
 127   introducing extra delays. 
 128  
 129   -- REW
 130 */
 131
 132
 133
 134
 135/* The strings that define what the RX queue entry is all about. */
 136/* Fujitsu: Please tell me which ones can have a pointer to a 
 137   freepool descriptor! */
 138static char *res_strings[] = {
 139	"RX OK: streaming not EOP", 
 140	"RX OK: streaming EOP", 
 141	"RX OK: Single buffer packet", 
 142	"RX OK: packet mode", 
 143	"RX OK: F4 OAM (end to end)", 
 144	"RX OK: F4 OAM (Segment)", 
 145	"RX OK: F5 OAM (end to end)", 
 146	"RX OK: F5 OAM (Segment)", 
 147	"RX OK: RM cell", 
 148	"RX OK: TRANSP cell", 
 149	"RX OK: TRANSPC cell", 
 150	"Unmatched cell", 
 151	"reserved 12", 
 152	"reserved 13", 
 153	"reserved 14", 
 154	"Unrecognized cell", 
 155	"reserved 16", 
 156	"reassembly abort: AAL5 abort", 
 157	"packet purged", 
 158	"packet ageing timeout", 
 159	"channel ageing timeout", 
 160	"calculated length error", 
 161	"programmed length limit error", 
 162	"aal5 crc32 error", 
 163	"oam transp or transpc crc10 error", 
 164	"reserved 25", 
 165	"reserved 26", 
 166	"reserved 27", 
 167	"reserved 28", 
 168	"reserved 29", 
 169	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
 170	"reassembly abort: no buffers", 
 171	"receive buffer overflow", 
 172	"change in GFC", 
 173	"receive buffer full", 
 174	"low priority discard - no receive descriptor", 
 175	"low priority discard - missing end of packet", 
 176	"reserved 37",
 177	"reserved 38",
 178	"reserved 39",
 179	"reserved 40",
 180	"reserved 41", 
 181	"reserved 42", 
 182	"reserved 43", 
 183	"reserved 44", 
 184	"reserved 45", 
 185	"reserved 46", 
 186	"reserved 47", 
 187	"reserved 48", 
 188	"reserved 49", 
 189	"reserved 50", 
 190	"reserved 51", 
 191	"reserved 52", 
 192	"reserved 53", 
 193	"reserved 54", 
 194	"reserved 55", 
 195	"reserved 56", 
 196	"reserved 57", 
 197	"reserved 58", 
 198	"reserved 59", 
 199	"reserved 60", 
 200	"reserved 61", 
 201	"reserved 62", 
 202	"reserved 63", 
 203};  
 204
 205static char *irq_bitname[] = {
 206	"LPCO",
 207	"DPCO",
 208	"RBRQ0_W",
 209	"RBRQ1_W",
 210	"RBRQ2_W",
 211	"RBRQ3_W",
 212	"RBRQ0_NF",
 213	"RBRQ1_NF",
 214	"RBRQ2_NF",
 215	"RBRQ3_NF",
 216	"BFP_SC",
 217	"INIT",
 218	"INIT_ERR",
 219	"USCEO",
 220	"UPEC0",
 221	"VPFCO",
 222	"CRCCO",
 223	"HECO",
 224	"TBRQ_W",
 225	"TBRQ_NF",
 226	"CTPQ_E",
 227	"GFC_C0",
 228	"PCI_FTL",
 229	"CSQ_W",
 230	"CSQ_NF",
 231	"EXT_INT",
 232	"RXDMA_S"
 233};
 234
 235
 236#define PHY_EOF -1
 237#define PHY_CLEARALL -2
 238
 239struct reginit_item {
 240	int reg, val;
 241};
 242
 243
 244static struct reginit_item PHY_NTC_INIT[] = {
 245	{ PHY_CLEARALL, 0x40 }, 
 246	{ 0x12,  0x0001 },
 247	{ 0x13,  0x7605 },
 248	{ 0x1A,  0x0001 },
 249	{ 0x1B,  0x0005 },
 250	{ 0x38,  0x0003 },
 251	{ 0x39,  0x0006 },   /* changed here to make loopback */
 252	{ 0x01,  0x5262 },
 253	{ 0x15,  0x0213 },
 254	{ 0x00,  0x0003 },
 255	{ PHY_EOF, 0},    /* -1 signals end of list */
 256};
 257
 258
 259/* Safetyfeature: If the card interrupts more than this number of times
 260   in a jiffy (1/100th of a second) then we just disable the interrupt and
 261   print a message. This prevents the system from hanging. 
 262
 263   150000 packets per second is close to the limit a PC is going to have
 264   anyway. We therefore have to disable this for production. -- REW */
 265#undef IRQ_RATE_LIMIT // 100
 266
 267/* Interrupts work now. Unlike serial cards, ATM cards don't work all
 268   that great without interrupts. -- REW */
 269#undef FS_POLL_FREQ // 100
 270
 271/* 
 272   This driver can spew a whole lot of debugging output at you. If you
 273   need maximum performance, you should disable the DEBUG define. To
 274   aid in debugging in the field, I'm leaving the compile-time debug
 275   features enabled, and disable them "runtime". That allows me to
 276   instruct people with problems to enable debugging without requiring
 277   them to recompile... -- REW
 278*/
 279#define DEBUG
 280
 281#ifdef DEBUG
 282#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
 283#else
 284#define fs_dprintk(f, str...) /* nothing */
 285#endif
 286
 287
 288static int fs_keystream = 0;
 289
 290#ifdef DEBUG
 291/* I didn't forget to set this to zero before shipping. Hit me with a stick 
 292   if you get this with the debug default not set to zero again. -- REW */
 293static int fs_debug = 0;
 294#else
 295#define fs_debug 0
 296#endif
 297
 298#ifdef MODULE
 299#ifdef DEBUG 
 300module_param(fs_debug, int, 0644);
 301#endif
 302module_param(loopback, int, 0);
 303module_param(num, int, 0);
 304module_param(fs_keystream, int, 0);
 305/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
 306#endif
 307
 308
 309#define FS_DEBUG_FLOW    0x00000001
 310#define FS_DEBUG_OPEN    0x00000002
 311#define FS_DEBUG_QUEUE   0x00000004
 312#define FS_DEBUG_IRQ     0x00000008
 313#define FS_DEBUG_INIT    0x00000010
 314#define FS_DEBUG_SEND    0x00000020
 315#define FS_DEBUG_PHY     0x00000040
 316#define FS_DEBUG_CLEANUP 0x00000080
 317#define FS_DEBUG_QOS     0x00000100
 318#define FS_DEBUG_TXQ     0x00000200
 319#define FS_DEBUG_ALLOC   0x00000400
 320#define FS_DEBUG_TXMEM   0x00000800
 321#define FS_DEBUG_QSIZE   0x00001000
 322
 323
 324#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
 325#define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
 326
 327
 328static struct fs_dev *fs_boards = NULL;
 329
 330#ifdef DEBUG
 331
 332static void my_hd (void *addr, int len)
 333{
 334	int j, ch;
 335	unsigned char *ptr = addr;
 336
 337	while (len > 0) {
 338		printk ("%p ", ptr);
 339		for (j=0;j < ((len < 16)?len:16);j++) {
 340			printk ("%02x %s", ptr[j], (j==7)?" ":"");
 341		}
 342		for (  ;j < 16;j++) {
 343			printk ("   %s", (j==7)?" ":"");
 344		}
 345		for (j=0;j < ((len < 16)?len:16);j++) {
 346			ch = ptr[j];
 347			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
 348		}
 349		printk ("\n");
 350		ptr += 16;
 351		len -= 16;
 352	}
 353}
 354#else /* DEBUG */
 355static void my_hd (void *addr, int len){}
 356#endif /* DEBUG */
 357
 358/********** free an skb (as per ATM device driver documentation) **********/
 359
 360/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
 361 * I copied it over from the ambassador driver. -- REW */
 362
 363static inline void fs_kfree_skb (struct sk_buff * skb) 
 364{
 365	if (ATM_SKB(skb)->vcc->pop)
 366		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 367	else
 368		dev_kfree_skb_any (skb);
 369}
 370
 371
 372
 373
 374/* It seems the ATM forum recommends this horribly complicated 16bit
 375 * floating point format. Turns out the Ambassador uses the exact same
 376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
 377 * to the atm_misc file or something like that. (and remove it from 
 378 * here and the ambassador driver) -- REW
 379 */
 380
 381/* The good thing about this format is that it is monotonic. So, 
 382   a conversion routine need not be very complicated. To be able to
 383   round "nearest" we need to take along a few extra bits. Lets
 384   put these after 16 bits, so that we can just return the top 16
 385   bits of the 32bit number as the result:
 386
 387   int mr (unsigned int rate, int r) 
 388     {
 389     int e = 16+9;
 390     static int round[4]={0, 0, 0xffff, 0x8000};
 391     if (!rate) return 0;
 392     while (rate & 0xfc000000) {
 393       rate >>= 1;
 394       e++;
 395     }
 396     while (! (rate & 0xfe000000)) {
 397       rate <<= 1;
 398       e--;
 399     }
 400
 401// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
 402     rate &= ~0x02000000;
 403// Next add in the exponent
 404     rate |= e << (16+9);
 405// And perform the rounding:
 406     return (rate + round[r]) >> 16;
 407   }
 408
 409   14 lines-of-code. Compare that with the 120 that the Ambassador
 410   guys needed. (would be 8 lines shorter if I'd try to really reduce
 411   the number of lines:
 412
 413   int mr (unsigned int rate, int r) 
 414   {
 415     int e = 16+9;
 416     static int round[4]={0, 0, 0xffff, 0x8000};
 417     if (!rate) return 0;
 418     for (;  rate & 0xfc000000 ;rate >>= 1, e++);
 419     for (;!(rate & 0xfe000000);rate <<= 1, e--);
 420     return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
 421   }
 422
 423   Exercise for the reader: Remove one more line-of-code, without
 424   cheating. (Just joining two lines is cheating). (I know it's
 425   possible, don't think you've beat me if you found it... If you
 426   manage to lose two lines or more, keep me updated! ;-)
 427
 428   -- REW */
 429
 430
 431#define ROUND_UP      1
 432#define ROUND_DOWN    2
 433#define ROUND_NEAREST 3
 434/********** make rate (not quite as much fun as Horizon) **********/
 435
 436static int make_rate(unsigned int rate, int r,
 437		      u16 *bits, unsigned int *actual)
 438{
 439	unsigned char exp = -1; /* hush gcc */
 440	unsigned int man = -1;  /* hush gcc */
 441  
 442	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
 443  
 444	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
 445	   given 5-bit e and 9-bit m:
 446	   rate = EITHER (1+m/2^9)*2^e    OR 0
 447	   bits = EITHER 1<<14 | e<<9 | m OR 0
 448	   (bit 15 is "reserved", bit 14 "non-zero")
 449	   smallest rate is 0 (special representation)
 450	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
 451	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
 452	   simple algorithm:
 453	   find position of top bit, this gives e
 454	   remove top bit and shift (rounding if feeling clever) by 9-e
 455	*/
 456	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
 457	   representable. // This should move into the ambassador driver
 458	   when properly merged. -- REW */
 459  
 460	if (rate > 0xffc00000U) {
 461		/* larger than largest representable rate */
 462    
 463		if (r == ROUND_UP) {
 464			return -EINVAL;
 465		} else {
 466			exp = 31;
 467			man = 511;
 468		}
 469    
 470	} else if (rate) {
 471		/* representable rate */
 472    
 473		exp = 31;
 474		man = rate;
 475    
 476		/* invariant: rate = man*2^(exp-31) */
 477		while (!(man & (1<<31))) {
 478			exp = exp - 1;
 479			man = man<<1;
 480		}
 481    
 482		/* man has top bit set
 483		   rate = (2^31+(man-2^31))*2^(exp-31)
 484		   rate = (1+(man-2^31)/2^31)*2^exp 
 485		*/
 486		man = man<<1;
 487		man &= 0xffffffffU; /* a nop on 32-bit systems */
 488		/* rate = (1+man/2^32)*2^exp
 489    
 490		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
 491		   time to lose significance... we want m in the range 0 to 2^9-1
 492		   rounding presents a minor problem... we first decide which way
 493		   we are rounding (based on given rounding direction and possibly
 494		   the bits of the mantissa that are to be discarded).
 495		*/
 496
 497		switch (r) {
 498		case ROUND_DOWN: {
 499			/* just truncate */
 500			man = man>>(32-9);
 501			break;
 502		}
 503		case ROUND_UP: {
 504			/* check all bits that we are discarding */
 505			if (man & (~0U>>9)) {
 506				man = (man>>(32-9)) + 1;
 507				if (man == (1<<9)) {
 508					/* no need to check for round up outside of range */
 509					man = 0;
 510					exp += 1;
 511				}
 512			} else {
 513				man = (man>>(32-9));
 514			}
 515			break;
 516		}
 517		case ROUND_NEAREST: {
 518			/* check msb that we are discarding */
 519			if (man & (1<<(32-9-1))) {
 520				man = (man>>(32-9)) + 1;
 521				if (man == (1<<9)) {
 522					/* no need to check for round up outside of range */
 523					man = 0;
 524					exp += 1;
 525				}
 526			} else {
 527				man = (man>>(32-9));
 528			}
 529			break;
 530		}
 531		}
 532    
 533	} else {
 534		/* zero rate - not representable */
 535    
 536		if (r == ROUND_DOWN) {
 537			return -EINVAL;
 538		} else {
 539			exp = 0;
 540			man = 0;
 541		}
 542	}
 543  
 544	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
 545  
 546	if (bits)
 547		*bits = /* (1<<14) | */ (exp<<9) | man;
 548  
 549	if (actual)
 550		*actual = (exp >= 9)
 551			? (1 << exp) + (man << (exp-9))
 552			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
 553  
 554	return 0;
 555}
 556
 557
 558
 559
 560/* FireStream access routines */
 561/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
 562   certain registers or to just log all accesses. */
 563
 564static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
 565{
 566	writel (val, dev->base + offset);
 567}
 568
 569
 570static inline u32  read_fs (struct fs_dev *dev, int offset)
 571{
 572	return readl (dev->base + offset);
 573}
 574
 575
 576
 577static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
 578{
 579	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
 580}
 581
 582
 583static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
 584{
 585	u32 wp;
 586	struct FS_QENTRY *cqe;
 587
 588	/* XXX Sanity check: the write pointer can be checked to be 
 589	   still the same as the value passed as qe... -- REW */
 590	/*  udelay (5); */
 591	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
 592		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n", 
 593			    q->offset);
 594		schedule ();
 595	}
 596
 597	wp &= ~0xf;
 598	cqe = bus_to_virt (wp);
 599	if (qe != cqe) {
 600		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
 601	}
 602
 603	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
 604
 605	{
 606		static int c;
 607		if (!(c++ % 100))
 608			{
 609				int rp, wp;
 610				rp =  read_fs (dev, Q_RP(q->offset));
 611				wp =  read_fs (dev, Q_WP(q->offset));
 612				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n", 
 613					    q->offset, rp, wp, wp-rp);
 614			}
 615	}
 616}
 617
 618#ifdef DEBUG_EXTRA
 619static struct FS_QENTRY pq[60];
 620static int qp;
 621
 622static struct FS_BPENTRY dq[60];
 623static int qd;
 624static void *da[60];
 625#endif 
 626
 627static void submit_queue (struct fs_dev *dev, struct queue *q, 
 628			  u32 cmd, u32 p1, u32 p2, u32 p3)
 629{
 630	struct FS_QENTRY *qe;
 631
 632	qe = get_qentry (dev, q);
 633	qe->cmd = cmd;
 634	qe->p0 = p1;
 635	qe->p1 = p2;
 636	qe->p2 = p3;
 637	submit_qentry (dev,  q, qe);
 638
 639#ifdef DEBUG_EXTRA
 640	pq[qp].cmd = cmd;
 641	pq[qp].p0 = p1;
 642	pq[qp].p1 = p2;
 643	pq[qp].p2 = p3;
 644	qp++;
 645	if (qp >= 60) qp = 0;
 646#endif
 647}
 648
 649/* Test the "other" way one day... -- REW */
 650#if 1
 651#define submit_command submit_queue
 652#else
 653
 654static void submit_command (struct fs_dev *dev, struct queue *q, 
 655			    u32 cmd, u32 p1, u32 p2, u32 p3)
 656{
 657	write_fs (dev, CMDR0, cmd);
 658	write_fs (dev, CMDR1, p1);
 659	write_fs (dev, CMDR2, p2);
 660	write_fs (dev, CMDR3, p3);
 661}
 662#endif
 663
 664
 665
 666static void process_return_queue (struct fs_dev *dev, struct queue *q)
 667{
 668	long rq;
 669	struct FS_QENTRY *qe;
 670	void *tc;
 671  
 672	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 673		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq); 
 674		qe = bus_to_virt (rq);
 675    
 676		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n", 
 677			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 678
 679		switch (STATUS_CODE (qe)) {
 680		case 5:
 681			tc = bus_to_virt (qe->p0);
 682			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
 683			kfree (tc);
 684			break;
 685		}
 686    
 687		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 688	}
 689}
 690
 691
 692static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
 693{
 694	long rq;
 695	long tmp;
 696	struct FS_QENTRY *qe;
 697	struct sk_buff *skb;
 698	struct FS_BPENTRY *td;
 699
 700	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 701		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq); 
 702		qe = bus_to_virt (rq);
 703    
 704		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n", 
 705			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 706
 707		if (STATUS_CODE (qe) != 2)
 708			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n", 
 709				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 710
 711
 712		switch (STATUS_CODE (qe)) {
 713		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
 714			fallthrough;
 715		case 0x02:
 716			/* Process a real txdone entry. */
 717			tmp = qe->p0;
 718			if (tmp & 0x0f)
 719				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
 720			tmp &= ~0x0f;
 721			td = bus_to_virt (tmp);
 722
 723			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n", 
 724				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
 725      
 726			skb = td->skb;
 727			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
 
 728				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
 729				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
 730			}
 731			td->dev->ntxpckts--;
 732
 733			{
 734				static int c=0;
 735	
 736				if (!(c++ % 100)) {
 737					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
 738				}
 739			}
 740
 741			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 742
 743			fs_dprintk (FS_DEBUG_TXMEM, "i");
 744			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
 745			fs_kfree_skb (skb);
 746
 747			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td); 
 748			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
 749			kfree (td);
 750			break;
 751		default:
 752			/* Here we get the tx purge inhibit command ... */
 753			/* Action, I believe, is "don't do anything". -- REW */
 754			;
 755		}
 756    
 757		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 758	}
 759}
 760
 761
 762static void process_incoming (struct fs_dev *dev, struct queue *q)
 763{
 764	long rq;
 765	struct FS_QENTRY *qe;
 766	struct FS_BPENTRY *pe;    
 767	struct sk_buff *skb;
 768	unsigned int channo;
 769	struct atm_vcc *atm_vcc;
 770
 771	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 772		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq); 
 773		qe = bus_to_virt (rq);
 774    
 775		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ", 
 776			    qe->cmd, qe->p0, qe->p1, qe->p2);
 777
 778		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n", 
 779			    STATUS_CODE (qe), 
 780			    res_strings[STATUS_CODE(qe)]);
 781
 782		pe = bus_to_virt (qe->p0);
 783		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n", 
 784			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize, 
 785			    pe->skb, pe->fp);
 786      
 787		channo = qe->cmd & 0xffff;
 788
 789		if (channo < dev->nchannels)
 790			atm_vcc = dev->atm_vccs[channo];
 791		else
 792			atm_vcc = NULL;
 793
 794		/* Single buffer packet */
 795		switch (STATUS_CODE (qe)) {
 796		case 0x1:
 797			/* Fall through for streaming mode */
 798			fallthrough;
 799		case 0x2:/* Packet received OK.... */
 800			if (atm_vcc) {
 801				skb = pe->skb;
 802				pe->fp->n--;
 803#if 0
 804				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
 805				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
 806#endif
 807				skb_put (skb, qe->p1 & 0xffff); 
 808				ATM_SKB(skb)->vcc = atm_vcc;
 809				atomic_inc(&atm_vcc->stats->rx);
 810				__net_timestamp(skb);
 811				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
 812				atm_vcc->push (atm_vcc, skb);
 813				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 814				kfree (pe);
 815			} else {
 816				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
 817			}
 818			break;
 819		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
 820			     has been consumed and needs to be processed. -- REW */
 821			if (qe->p1 & 0xffff) {
 822				pe = bus_to_virt (qe->p0);
 823				pe->fp->n--;
 824				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
 825				dev_kfree_skb_any (pe->skb);
 826				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 827				kfree (pe);
 828			}
 829			if (atm_vcc)
 830				atomic_inc(&atm_vcc->stats->rx_drop);
 831			break;
 832		case 0x1f: /*  Reassembly abort: no buffers. */
 833			/* Silently increment error counter. */
 834			if (atm_vcc)
 835				atomic_inc(&atm_vcc->stats->rx_drop);
 836			break;
 837		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
 838			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n", 
 839				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
 840		}
 841		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 842	}
 843}
 844
 845
 846
 847#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
 848
 849static int fs_open(struct atm_vcc *atm_vcc)
 850{
 851	struct fs_dev *dev;
 852	struct fs_vcc *vcc;
 853	struct fs_transmit_config *tc;
 854	struct atm_trafprm * txtp;
 855	struct atm_trafprm * rxtp;
 856	/*  struct fs_receive_config *rc;*/
 857	/*  struct FS_QENTRY *qe; */
 858	int error;
 859	int bfp;
 860	int to;
 861	unsigned short tmc0;
 862	short vpi = atm_vcc->vpi;
 863	int vci = atm_vcc->vci;
 864
 865	func_enter ();
 866
 867	dev = FS_DEV(atm_vcc->dev);
 868	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n", 
 869		    dev, atm_vcc);
 870
 871	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
 872		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
 873
 874	if ((atm_vcc->qos.aal != ATM_AAL5) &&
 875	    (atm_vcc->qos.aal != ATM_AAL2))
 876	  return -EINVAL; /* XXX AAL0 */
 877
 878	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n", 
 879		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);	
 880
 881	/* XXX handle qos parameters (rate limiting) ? */
 882
 883	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
 884	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
 885	if (!vcc) {
 886		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
 887		return -ENOMEM;
 888	}
 889  
 890	atm_vcc->dev_data = vcc;
 891	vcc->last_skb = NULL;
 892
 893	init_waitqueue_head (&vcc->close_wait);
 894
 895	txtp = &atm_vcc->qos.txtp;
 896	rxtp = &atm_vcc->qos.rxtp;
 897
 898	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
 899		if (IS_FS50(dev)) {
 900			/* Increment the channel numer: take a free one next time.  */
 901			for (to=33;to;to--, dev->channo++) {
 902				/* We only have 32 channels */
 903				if (dev->channo >= 32)
 904					dev->channo = 0;
 905				/* If we need to do RX, AND the RX is inuse, try the next */
 906				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
 907					continue;
 908				/* If we need to do TX, AND the TX is inuse, try the next */
 909				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
 910					continue;
 911				/* Ok, both are free! (or not needed) */
 912				break;
 913			}
 914			if (!to) {
 915				printk ("No more free channels for FS50..\n");
 916				kfree(vcc);
 917				return -EBUSY;
 918			}
 919			vcc->channo = dev->channo;
 920			dev->channo &= dev->channel_mask;
 921      
 922		} else {
 923			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
 924			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
 925			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
 926				printk ("Channel is in use for FS155.\n");
 927				kfree(vcc);
 928				return -EBUSY;
 929			}
 930		}
 931		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n", 
 932			    vcc->channo, vcc->channo);
 933	}
 934
 935	if (DO_DIRECTION (txtp)) {
 936		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
 937		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
 938			    tc, sizeof (struct fs_transmit_config));
 939		if (!tc) {
 940			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
 941			kfree(vcc);
 942			return -ENOMEM;
 943		}
 944
 945		/* Allocate the "open" entry from the high priority txq. This makes
 946		   it most likely that the chip will notice it. It also prevents us
 947		   from having to wait for completion. On the other hand, we may
 948		   need to wait for completion anyway, to see if it completed
 949		   successfully. */
 950
 951		switch (atm_vcc->qos.aal) {
 952		case ATM_AAL2:
 953		case ATM_AAL0:
 954		  tc->flags = 0
 955		    | TC_FLAGS_TRANSPARENT_PAYLOAD
 956		    | TC_FLAGS_PACKET
 957		    | (1 << 28)
 958		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
 959		    | TC_FLAGS_CAL0;
 960		  break;
 961		case ATM_AAL5:
 962		  tc->flags = 0
 963			| TC_FLAGS_AAL5
 964			| TC_FLAGS_PACKET  /* ??? */
 965			| TC_FLAGS_TYPE_CBR
 966			| TC_FLAGS_CAL0;
 967		  break;
 968		default:
 969			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
 970			tc->flags = 0;
 971		}
 972		/* Docs are vague about this atm_hdr field. By the way, the FS
 973		 * chip makes odd errors if lower bits are set.... -- REW */
 974		tc->atm_hdr =  (vpi << 20) | (vci << 4); 
 975		tmc0 = 0;
 976		{
 977			int pcr = atm_pcr_goal (txtp);
 978
 979			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
 980
 981			/* XXX Hmm. officially we're only allowed to do this if rounding 
 982			   is round_down -- REW */
 983			if (IS_FS50(dev)) {
 984				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
 985			} else {
 986				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
 987			}
 988			if (!pcr) {
 989				/* no rate cap */
 990				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
 991			} else {
 992				int r;
 993				if (pcr < 0) {
 994					r = ROUND_DOWN;
 995					pcr = -pcr;
 996				} else {
 997					r = ROUND_UP;
 998				}
 999				error = make_rate (pcr, r, &tmc0, NULL);
1000				if (error) {
1001					kfree(tc);
1002					kfree(vcc);
1003					return error;
1004				}
1005			}
1006			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1007		}
1008      
1009		tc->TMC[0] = tmc0 | 0x4000;
1010		tc->TMC[1] = 0; /* Unused */
1011		tc->TMC[2] = 0; /* Unused */
1012		tc->TMC[3] = 0; /* Unused */
1013    
1014		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1015		tc->rtag[0] = 0; /* What should I do with routing tags??? 
1016				    -- Not used -- AS -- Thanks -- REW*/
1017		tc->rtag[1] = 0;
1018		tc->rtag[2] = 0;
1019
1020		if (fs_debug & FS_DEBUG_OPEN) {
1021			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1022			my_hd (tc, sizeof (*tc));
1023		}
1024
1025		/* We now use the "submit_command" function to submit commands to
1026		   the firestream. There is a define up near the definition of
1027		   that routine that switches this routine between immediate write
1028		   to the immediate command registers and queuing the commands in
1029		   the HPTXQ for execution. This last technique might be more
1030		   efficient if we know we're going to submit a whole lot of
1031		   commands in one go, but this driver is not setup to be able to
1032		   use such a construct. So it probably doen't matter much right
1033		   now. -- REW */
1034    
1035		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1036		submit_command (dev, &dev->hp_txq, 
1037				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1038				virt_to_bus (tc), 0, 0);
1039
1040		submit_command (dev, &dev->hp_txq, 
1041				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1042				0, 0, 0);
1043		set_bit (vcc->channo, dev->tx_inuse);
1044	}
1045
1046	if (DO_DIRECTION (rxtp)) {
1047		dev->atm_vccs[vcc->channo] = atm_vcc;
1048
1049		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1050			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1051		if (bfp >= FS_NR_FREE_POOLS) {
1052			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n", 
1053				    atm_vcc->qos.rxtp.max_sdu);
1054			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1055
1056			/* XXX clear tx inuse. Close TX part? */
1057			dev->atm_vccs[vcc->channo] = NULL;
1058			kfree (vcc);
1059			return -EINVAL;
1060		}
1061
1062		switch (atm_vcc->qos.aal) {
1063		case ATM_AAL0:
1064		case ATM_AAL2:
1065			submit_command (dev, &dev->hp_txq,
1066					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1067					RC_FLAGS_TRANSP |
1068					RC_FLAGS_BFPS_BFP * bfp |
1069					RC_FLAGS_RXBM_PSB, 0, 0);
1070			break;
1071		case ATM_AAL5:
1072			submit_command (dev, &dev->hp_txq,
1073					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074					RC_FLAGS_AAL5 |
1075					RC_FLAGS_BFPS_BFP * bfp |
1076					RC_FLAGS_RXBM_PSB, 0, 0);
1077			break;
1078		}
1079		if (IS_FS50 (dev)) {
1080			submit_command (dev, &dev->hp_txq, 
1081					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1082					0x80 + vcc->channo,
1083					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1084		}
1085		submit_command (dev, &dev->hp_txq, 
1086				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1087				0, 0, 0);
1088	}
1089    
1090	/* Indicate we're done! */
1091	set_bit(ATM_VF_READY, &atm_vcc->flags);
1092
1093	func_exit ();
1094	return 0;
1095}
1096
1097
1098static void fs_close(struct atm_vcc *atm_vcc)
1099{
1100	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1101	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1102	struct atm_trafprm * txtp;
1103	struct atm_trafprm * rxtp;
1104
1105	func_enter ();
1106
1107	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1108
1109	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1110	if (vcc->last_skb) {
1111		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n", 
1112			    vcc->last_skb);
1113		/* We're going to wait for the last packet to get sent on this VC. It would
1114		   be impolite not to send them don't you think? 
1115		   XXX
1116		   We don't know which packets didn't get sent. So if we get interrupted in 
1117		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1118		   On the other hand, it's awfully convenient that we can abort a "close" that
1119		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1120		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1121	}
1122
1123	txtp = &atm_vcc->qos.txtp;
1124	rxtp = &atm_vcc->qos.rxtp;
1125  
1126
1127	/* See App note XXX (Unpublished as of now) for the reason for the 
1128	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1129
1130	if (DO_DIRECTION (txtp)) {
1131		submit_command (dev,  &dev->hp_txq,
1132				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1133		clear_bit (vcc->channo, dev->tx_inuse);
1134	}
1135
1136	if (DO_DIRECTION (rxtp)) {
1137		submit_command (dev,  &dev->hp_txq,
1138				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1139		dev->atm_vccs [vcc->channo] = NULL;
1140  
1141		/* This means that this is configured as a receive channel */
1142		if (IS_FS50 (dev)) {
1143			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1144			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1145			   (0xfff...) -- REW */
1146			submit_command (dev, &dev->hp_txq, 
1147					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1148					0x80 + vcc->channo, -1, 0 ); 
1149		}
1150	}
1151
1152	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1153	kfree (vcc);
1154
1155	func_exit ();
1156}
1157
1158
1159static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1160{
1161	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1162	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1163	struct FS_BPENTRY *td;
1164
1165	func_enter ();
1166
1167	fs_dprintk (FS_DEBUG_TXMEM, "I");
1168	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n", 
1169		    atm_vcc, skb, vcc, dev);
1170
1171	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1172
1173	ATM_SKB(skb)->vcc = atm_vcc;
1174
1175	vcc->last_skb = skb;
1176
1177	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1178	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1179	if (!td) {
1180		/* Oops out of mem */
1181		return -ENOMEM;
1182	}
1183
1184	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n", 
1185		    *(int *) skb->data);
1186
1187	td->flags =  TD_EPI | TD_DATA | skb->len;
1188	td->next = 0;
1189	td->bsa  = virt_to_bus (skb->data);
1190	td->skb = skb;
1191	td->dev = dev;
1192	dev->ntxpckts++;
1193
1194#ifdef DEBUG_EXTRA
1195	da[qd] = td;
1196	dq[qd].flags = td->flags;
1197	dq[qd].next  = td->next;
1198	dq[qd].bsa   = td->bsa;
1199	dq[qd].skb   = td->skb;
1200	dq[qd].dev   = td->dev;
1201	qd++;
1202	if (qd >= 60) qd = 0;
1203#endif
1204
1205	submit_queue (dev, &dev->hp_txq, 
1206		      QE_TRANSMIT_DE | vcc->channo,
1207		      virt_to_bus (td), 0, 
1208		      virt_to_bus (td));
1209
1210	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n", 
1211		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1212		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1213		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1214		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1215
1216	func_exit ();
1217	return 0;
1218}
1219
1220
1221/* Some function placeholders for functions we don't yet support. */
1222
1223#if 0
1224static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1225{
1226	func_enter ();
1227	func_exit ();
1228	return -ENOIOCTLCMD;
1229}
1230
1231
1232static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1233			 void __user *optval,int optlen)
1234{
1235	func_enter ();
1236	func_exit ();
1237	return 0;
1238}
1239
1240
1241static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1242			 void __user *optval,unsigned int optlen)
1243{
1244	func_enter ();
1245	func_exit ();
1246	return 0;
1247}
1248
1249
1250static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1251		       unsigned long addr)
1252{
1253	func_enter ();
1254	func_exit ();
1255}
1256
1257
1258static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1259{
1260	func_enter ();
1261	func_exit ();
1262	return 0;
1263}
1264
1265
1266static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1267{
1268	func_enter ();
1269	func_exit ();
1270	return 0;
1271};
1272
1273#endif
1274
1275
1276static const struct atmdev_ops ops = {
1277	.open =         fs_open,
1278	.close =        fs_close,
1279	.send =         fs_send,
1280	.owner =        THIS_MODULE,
1281	/* ioctl:          fs_ioctl, */
 
 
1282	/* change_qos:     fs_change_qos, */
1283
1284	/* For now implement these internally here... */  
1285	/* phy_put:        fs_phy_put, */
1286	/* phy_get:        fs_phy_get, */
1287};
1288
1289
1290static void undocumented_pci_fix(struct pci_dev *pdev)
1291{
1292	u32 tint;
1293
1294	/* The Windows driver says: */
1295	/* Switch off FireStream Retry Limit Threshold 
1296	 */
1297
1298	/* The register at 0x28 is documented as "reserved", no further
1299	   comments. */
1300
1301	pci_read_config_dword (pdev, 0x28, &tint);
1302	if (tint != 0x80) {
1303		tint = 0x80;
1304		pci_write_config_dword (pdev, 0x28, tint);
1305	}
1306}
1307
1308
1309
1310/**************************************************************************
1311 *                              PHY routines                              *
1312 **************************************************************************/
1313
1314static void write_phy(struct fs_dev *dev, int regnum, int val)
1315{
1316	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1317			regnum, val, 0);
1318}
1319
1320static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1321{
1322	int i;
1323
1324	func_enter ();
1325	while (reginit->reg != PHY_EOF) {
1326		if (reginit->reg == PHY_CLEARALL) {
1327			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1328			for (i=0;i<reginit->val;i++) {
1329				write_phy (dev, i, 0);
1330			}
1331		} else {
1332			write_phy (dev, reginit->reg, reginit->val);
1333		}
1334		reginit++;
1335	}
1336	func_exit ();
1337	return 0;
1338}
1339
1340static void reset_chip (struct fs_dev *dev)
1341{
1342	int i;
1343
1344	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1345
1346	/* Undocumented delay */
1347	udelay (128);
1348
1349	/* The "internal registers are documented to all reset to zero, but 
1350	   comments & code in the Windows driver indicates that the pools are
1351	   NOT reset. */
1352	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1353		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1354		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1355		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1356		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1357		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1358	}
1359
1360	/* The same goes for the match channel registers, although those are
1361	   NOT documented that way in the Windows driver. -- REW */
1362	/* The Windows driver DOES write 0 to these registers somewhere in
1363	   the init sequence. However, a small hardware-feature, will
1364	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1365	   allocated happens to have no disabled channels that have a lower
1366	   number. -- REW */
1367
1368	/* Clear the match channel registers. */
1369	if (IS_FS50 (dev)) {
1370		for (i=0;i<FS50_NR_CHANNELS;i++) {
1371			write_fs (dev, 0x200 + i * 4, -1);
1372		}
1373	}
1374}
1375
1376static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1377{
1378	void  *t;
1379
1380	if (alignment <= 0x10) {
1381		t = kmalloc (size, flags);
1382		if ((unsigned long)t & (alignment-1)) {
1383			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1384			kfree (t);
1385			return aligned_kmalloc (size, flags, alignment * 4);
1386		}
1387		return t;
1388	}
1389	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1390	return NULL;
1391}
1392
1393static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1394		  int nentries, int is_rq)
1395{
1396	int sz = nentries * sizeof (struct FS_QENTRY);
1397	struct FS_QENTRY *p;
1398
1399	func_enter ();
1400
1401	fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1402		    queue, nentries);
1403
1404	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1405	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1406
1407	if (!p) return 0;
1408
1409	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1410	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1411	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1412	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1413	if (is_rq) {
1414		/* Configuration for the receive queue: 0: interrupt immediately,
1415		   no pre-warning to empty queues: We do our best to keep the
1416		   queue filled anyway. */
1417		write_fs (dev, Q_CNF(queue), 0 ); 
1418	}
1419
1420	txq->sa = p;
1421	txq->ea = p;
1422	txq->offset = queue; 
1423
1424	func_exit ();
1425	return 1;
1426}
1427
1428
1429static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1430		   int bufsize, int nr_buffers)
1431{
1432	func_enter ();
1433
1434	fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1435
1436	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1437	write_fs (dev, FP_SA(queue),  0);
1438	write_fs (dev, FP_EA(queue),  0);
1439	write_fs (dev, FP_CTU(queue), 0);
1440	write_fs (dev, FP_CNT(queue), 0);
1441
1442	fp->offset = queue; 
1443	fp->bufsize = bufsize;
1444	fp->nr_buffers = nr_buffers;
1445
1446	func_exit ();
1447	return 1;
1448}
1449
1450
1451static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1452{
1453#if 0
1454	/* This seems to be unreliable.... */
1455	return read_fs (dev, FP_CNT (fp->offset));
1456#else
1457	return fp->n;
1458#endif
1459}
1460
1461
1462/* Check if this gets going again if a pool ever runs out.  -- Yes, it
1463   does. I've seen "receive abort: no buffers" and things started
1464   working again after that...  -- REW */
1465
1466static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1467			gfp_t gfp_flags)
1468{
1469	struct FS_BPENTRY *qe, *ne;
1470	struct sk_buff *skb;
1471	int n = 0;
1472	u32 qe_tmp;
1473
1474	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n", 
1475		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n, 
1476		    fp->nr_buffers);
1477	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1478
1479		skb = alloc_skb (fp->bufsize, gfp_flags);
1480		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1481		if (!skb) break;
1482		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1483		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1484		if (!ne) {
1485			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1486			dev_kfree_skb_any (skb);
1487			break;
1488		}
1489
1490		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ", 
1491			    skb, ne, skb->data, skb->head);
1492		n++;
1493		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1494		ne->next  = virt_to_bus (NULL);
1495		ne->bsa   = virt_to_bus (skb->data);
1496		ne->aal_bufsize = fp->bufsize;
1497		ne->skb = skb;
1498		ne->fp = fp;
1499
1500		/*
1501		 * FIXME: following code encodes and decodes
1502		 * machine pointers (could be 64-bit) into a
1503		 * 32-bit register.
1504		 */
1505
1506		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1507		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1508		if (qe_tmp) {
1509			qe = bus_to_virt ((long) qe_tmp);
1510			qe->next = virt_to_bus(ne);
1511			qe->flags &= ~FP_FLAGS_EPI;
1512		} else
1513			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1514
1515		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1516		fp->n++;   /* XXX Atomic_inc? */
1517		write_fs (dev, FP_CTU(fp->offset), 1);
1518	}
1519
1520	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1521}
1522
1523static void free_queue(struct fs_dev *dev, struct queue *txq)
1524{
1525	func_enter ();
1526
1527	write_fs (dev, Q_SA(txq->offset), 0);
1528	write_fs (dev, Q_EA(txq->offset), 0);
1529	write_fs (dev, Q_RP(txq->offset), 0);
1530	write_fs (dev, Q_WP(txq->offset), 0);
1531	/* Configuration ? */
1532
1533	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1534	kfree (txq->sa);
1535
1536	func_exit ();
1537}
1538
1539static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1540{
1541	func_enter ();
1542
1543	write_fs (dev, FP_CNF(fp->offset), 0);
1544	write_fs (dev, FP_SA (fp->offset), 0);
1545	write_fs (dev, FP_EA (fp->offset), 0);
1546	write_fs (dev, FP_CNT(fp->offset), 0);
1547	write_fs (dev, FP_CTU(fp->offset), 0);
1548
1549	func_exit ();
1550}
1551
1552
1553
1554static irqreturn_t fs_irq (int irq, void *dev_id) 
1555{
1556	int i;
1557	u32 status;
1558	struct fs_dev *dev = dev_id;
1559
1560	status = read_fs (dev, ISR);
1561	if (!status)
1562		return IRQ_NONE;
1563
1564	func_enter ();
1565
1566#ifdef IRQ_RATE_LIMIT
1567	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual 
1568	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1569	{
1570		static int lastjif;
1571		static int nintr=0;
1572    
1573		if (lastjif == jiffies) {
1574			if (++nintr > IRQ_RATE_LIMIT) {
1575				free_irq (dev->irq, dev_id);
1576				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n", 
1577					dev->irq);
1578			}
1579		} else {
1580			lastjif = jiffies;
1581			nintr = 0;
1582		}
1583	}
1584#endif
1585	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n", 
1586		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1587		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1588		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1589		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1590
1591	/* print the bits in the ISR register. */
1592	if (fs_debug & FS_DEBUG_IRQ) {
1593		/* The FS_DEBUG things are unnecessary here. But this way it is
1594		   clear for grep that these are debug prints. */
1595		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1596		for (i=0;i<27;i++) 
1597			if (status & (1 << i)) 
1598				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1599		fs_dprintk (FS_DEBUG_IRQ, "\n");
1600	}
1601  
1602	if (status & ISR_RBRQ0_W) {
1603		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1604		process_incoming (dev, &dev->rx_rq[0]);
1605		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1606		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1607		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1608	}
1609
1610	if (status & ISR_RBRQ1_W) {
1611		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1612		process_incoming (dev, &dev->rx_rq[1]);
1613		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1614		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1615	}
1616
1617	if (status & ISR_RBRQ2_W) {
1618		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1619		process_incoming (dev, &dev->rx_rq[2]);
1620		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1621		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1622	}
1623
1624	if (status & ISR_RBRQ3_W) {
1625		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1626		process_incoming (dev, &dev->rx_rq[3]);
1627		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1628		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1629	}
1630
1631	if (status & ISR_CSQ_W) {
1632		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1633		process_return_queue (dev, &dev->st_q);
1634	}
1635
1636	if (status & ISR_TBRQ_W) {
1637		fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1638		process_txdone_queue (dev, &dev->tx_relq);
1639	}
1640
1641	func_exit ();
1642	return IRQ_HANDLED;
1643}
1644
1645
1646#ifdef FS_POLL_FREQ
1647static void fs_poll (struct timer_list *t)
1648{
1649	struct fs_dev *dev = from_timer(dev, t, timer);
1650  
1651	fs_irq (0, dev);
1652	dev->timer.expires = jiffies + FS_POLL_FREQ;
1653	add_timer (&dev->timer);
1654}
1655#endif
1656
1657static int fs_init(struct fs_dev *dev)
1658{
1659	struct pci_dev  *pci_dev;
1660	int isr, to;
1661	int i;
1662
1663	func_enter ();
1664	pci_dev = dev->pci_dev;
1665
1666	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1667		IS_FS50(dev)?50:155,
1668		(unsigned long long)pci_resource_start(pci_dev, 0),
1669		dev->pci_dev->irq);
1670
1671	if (fs_debug & FS_DEBUG_INIT)
1672		my_hd ((unsigned char *) dev, sizeof (*dev));
1673
1674	undocumented_pci_fix (pci_dev);
1675
1676	dev->hw_base = pci_resource_start(pci_dev, 0);
1677
1678	dev->base = ioremap(dev->hw_base, 0x1000);
1679
1680	reset_chip (dev);
1681  
1682	write_fs (dev, SARMODE0, 0 
1683		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1684		  | (1 * SARMODE0_INTMODE_READCLEAR)
1685		  | (1 * SARMODE0_CWRE)
1686		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1687			  SARMODE0_PRPWT_FS155_3)
1688		  | (1 * SARMODE0_CALSUP_1)
1689		  | (IS_FS50(dev) ? (0
1690				   | SARMODE0_RXVCS_32
1691				   | SARMODE0_ABRVCS_32 
1692				   | SARMODE0_TXVCS_32):
1693		                  (0
1694				   | SARMODE0_RXVCS_1k
1695				   | SARMODE0_ABRVCS_1k 
1696				   | SARMODE0_TXVCS_1k)));
1697
1698	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1699	   1ms. */
1700	to = 100;
1701	while (--to) {
1702		isr = read_fs (dev, ISR);
1703
1704		/* This bit is documented as "RESERVED" */
1705		if (isr & ISR_INIT_ERR) {
1706			printk (KERN_ERR "Error initializing the FS... \n");
1707			goto unmap;
1708		}
1709		if (isr & ISR_INIT) {
1710			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1711			break;
1712		}
1713
1714		/* Try again after 10ms. */
1715		msleep(10);
1716	}
1717
1718	if (!to) {
1719		printk (KERN_ERR "timeout initializing the FS... \n");
1720		goto unmap;
1721	}
1722
1723	/* XXX fix for fs155 */
1724	dev->channel_mask = 0x1f; 
1725	dev->channo = 0;
1726
1727	/* AN3: 10 */
1728	write_fs (dev, SARMODE1, 0 
1729		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1730		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1731		  | (1 * SARMODE1_DCRM)
1732		  | (1 * SARMODE1_DCOAM)
1733		  | (0 * SARMODE1_OAMCRC)
1734		  | (0 * SARMODE1_DUMPE)
1735		  | (0 * SARMODE1_GPLEN) 
1736		  | (0 * SARMODE1_GNAM)
1737		  | (0 * SARMODE1_GVAS)
1738		  | (0 * SARMODE1_GPAS)
1739		  | (1 * SARMODE1_GPRI)
1740		  | (0 * SARMODE1_PMS)
1741		  | (0 * SARMODE1_GFCR)
1742		  | (1 * SARMODE1_HECM2)
1743		  | (1 * SARMODE1_HECM1)
1744		  | (1 * SARMODE1_HECM0)
1745		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1746		  | (0 * 0xff) /* XXX FS155 */);
1747
1748
1749	/* Cal prescale etc */
1750
1751	/* AN3: 11 */
1752	write_fs (dev, TMCONF, 0x0000000f);
1753	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1754	write_fs (dev, 0x80, 0x000F00E4);
1755
1756	/* AN3: 12 */
1757	write_fs (dev, CELLOSCONF, 0
1758		  | (   0 * CELLOSCONF_CEN)
1759		  | (       CELLOSCONF_SC1)
1760		  | (0x80 * CELLOSCONF_COBS)
1761		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1762		  | (num  * CELLOSCONF_COST));/* after a hint from Hang. 
1763					       * performance jumped 50->70... */
1764
1765	/* Magic value by Hang */
1766	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1767
1768	if (IS_FS50 (dev)) {
1769		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1770		dev->atm_dev->ci_range.vpi_bits = 12;
1771		dev->atm_dev->ci_range.vci_bits = 16;
1772		dev->nchannels = FS50_NR_CHANNELS;
1773	} else {
1774		write_fs (dev, RAS0, RAS0_DCD_XHLT 
1775			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1776			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1777		/* We can chose the split arbitrarily. We might be able to 
1778		   support more. Whatever. This should do for now. */
1779		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1780		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1781    
1782		/* Address bits we can't use should be compared to 0. */
1783		write_fs (dev, RAC, 0);
1784
1785		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1786		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1787		 * other bits, then compare with 0, which is exactly what we
1788		 * want. */
1789		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1790		dev->nchannels = FS155_NR_CHANNELS;
1791	}
1792	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1793				 GFP_KERNEL);
1794	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1795		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1796
1797	if (!dev->atm_vccs) {
1798		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1799		/* XXX Clean up..... */
1800		goto unmap;
1801	}
1802
1803	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1804	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n", 
1805		    dev->atm_vccs, dev->nchannels / 8);
1806
1807	if (!dev->tx_inuse) {
1808		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1809		/* XXX Clean up..... */
1810		goto unmap;
1811	}
1812	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1813	/* -- RAS2 : FS50 only: Default is OK. */
1814
1815	/* DMAMODE, default should be OK. -- REW */
1816	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1817
1818	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1819	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1820	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1821	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1822
1823	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1824		init_fp (dev, &dev->rx_fp[i], RXB_FP(i), 
1825			 rx_buf_sizes[i], rx_pool_sizes[i]);
1826		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1827	}
1828
1829
1830	for (i=0;i < FS_NR_RX_QUEUES;i++)
1831		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1832
1833	dev->irq = pci_dev->irq;
1834	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1835		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1836		/* XXX undo all previous stuff... */
1837		goto unmap;
1838	}
1839	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1840  
1841	/* We want to be notified of most things. Just the statistics count
1842	   overflows are not interesting */
1843	write_fs (dev, IMR, 0
1844		  | ISR_RBRQ0_W 
1845		  | ISR_RBRQ1_W 
1846		  | ISR_RBRQ2_W 
1847		  | ISR_RBRQ3_W 
1848		  | ISR_TBRQ_W
1849		  | ISR_CSQ_W);
1850
1851	write_fs (dev, SARMODE0, 0 
1852		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1853		  | (1 * SARMODE0_GINT)
1854		  | (1 * SARMODE0_INTMODE_READCLEAR)
1855		  | (0 * SARMODE0_CWRE)
1856		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5: 
1857		                  SARMODE0_PRPWT_FS155_3)
1858		  | (1 * SARMODE0_CALSUP_1)
1859		  | (IS_FS50 (dev)?(0
1860				    | SARMODE0_RXVCS_32
1861				    | SARMODE0_ABRVCS_32 
1862				    | SARMODE0_TXVCS_32):
1863		                   (0
1864				    | SARMODE0_RXVCS_1k
1865				    | SARMODE0_ABRVCS_1k 
1866				    | SARMODE0_TXVCS_1k))
1867		  | (1 * SARMODE0_RUN));
1868
1869	init_phy (dev, PHY_NTC_INIT);
1870
1871	if (loopback == 2) {
1872		write_phy (dev, 0x39, 0x000e);
1873	}
1874
1875#ifdef FS_POLL_FREQ
1876	timer_setup(&dev->timer, fs_poll, 0);
 
 
1877	dev->timer.expires = jiffies + FS_POLL_FREQ;
1878	add_timer (&dev->timer);
1879#endif
1880
1881	dev->atm_dev->dev_data = dev;
1882  
1883	func_exit ();
1884	return 0;
1885unmap:
1886	iounmap(dev->base);
1887	return 1;
1888}
1889
1890static int firestream_init_one(struct pci_dev *pci_dev,
1891			       const struct pci_device_id *ent)
1892{
1893	struct atm_dev *atm_dev;
1894	struct fs_dev *fs_dev;
1895	
1896	if (pci_enable_device(pci_dev)) 
1897		goto err_out;
1898
1899	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1900	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1901		    fs_dev, sizeof (struct fs_dev));
1902	if (!fs_dev)
1903		goto err_out;
1904	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1905	if (!atm_dev)
1906		goto err_out_free_fs_dev;
1907  
1908	fs_dev->pci_dev = pci_dev;
1909	fs_dev->atm_dev = atm_dev;
1910	fs_dev->flags = ent->driver_data;
1911
1912	if (fs_init(fs_dev))
1913		goto err_out_free_atm_dev;
1914
1915	fs_dev->next = fs_boards;
1916	fs_boards = fs_dev;
1917	return 0;
1918
1919 err_out_free_atm_dev:
1920	atm_dev_deregister(atm_dev);
1921 err_out_free_fs_dev:
1922 	kfree(fs_dev);
1923 err_out:
1924	return -ENODEV;
1925}
1926
1927static void firestream_remove_one(struct pci_dev *pdev)
1928{
1929	int i;
1930	struct fs_dev *dev, *nxtdev;
1931	struct fs_vcc *vcc;
1932	struct FS_BPENTRY *fp, *nxt;
1933  
1934	func_enter ();
1935
1936#if 0
1937	printk ("hptxq:\n");
1938	for (i=0;i<60;i++) {
1939		printk ("%d: %08x %08x %08x %08x \n", 
1940			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1941		qp++;
1942		if (qp >= 60) qp = 0;
1943	}
1944
1945	printk ("descriptors:\n");
1946	for (i=0;i<60;i++) {
1947		printk ("%d: %p: %08x %08x %p %p\n", 
1948			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1949		qd++;
1950		if (qd >= 60) qd = 0;
1951	}
1952#endif
1953
1954	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1955		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1956
1957		/* XXX Hit all the tx channels too! */
1958
1959		for (i=0;i < dev->nchannels;i++) {
1960			if (dev->atm_vccs[i]) {
1961				vcc = FS_VCC (dev->atm_vccs[i]);
1962				submit_command (dev,  &dev->hp_txq,
1963						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1964				submit_command (dev,  &dev->hp_txq,
1965						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1966
1967			}
1968		}
1969
1970		/* XXX Wait a while for the chip to release all buffers. */
1971
1972		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1973			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1974			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1975				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1976				dev_kfree_skb_any (fp->skb);
1977				nxt = bus_to_virt (fp->next);
1978				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1979				kfree (fp);
1980			}
1981			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1982			dev_kfree_skb_any (fp->skb);
1983			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1984			kfree (fp);
1985		}
1986
1987		/* Hang the chip in "reset", prevent it clobbering memory that is
1988		   no longer ours. */
1989		reset_chip (dev);
1990
1991		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1992		free_irq (dev->irq, dev);
1993		del_timer_sync (&dev->timer);
1994
1995		atm_dev_deregister(dev->atm_dev);
1996		free_queue (dev, &dev->hp_txq);
1997		free_queue (dev, &dev->lp_txq);
1998		free_queue (dev, &dev->tx_relq);
1999		free_queue (dev, &dev->st_q);
2000
2001		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2002		kfree (dev->atm_vccs);
2003
2004		for (i=0;i< FS_NR_FREE_POOLS;i++)
2005			free_freepool (dev, &dev->rx_fp[i]);
2006    
2007		for (i=0;i < FS_NR_RX_QUEUES;i++)
2008			free_queue (dev, &dev->rx_rq[i]);
2009
2010		iounmap(dev->base);
2011		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2012		nxtdev = dev->next;
2013		kfree (dev);
2014	}
2015
2016	func_exit ();
2017}
2018
2019static const struct pci_device_id firestream_pci_tbl[] = {
2020	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2021	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2022	{ 0, }
2023};
2024
2025MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2026
2027static struct pci_driver firestream_driver = {
2028	.name		= "firestream",
2029	.id_table	= firestream_pci_tbl,
2030	.probe		= firestream_init_one,
2031	.remove		= firestream_remove_one,
2032};
2033
2034static int __init firestream_init_module (void)
2035{
2036	int error;
2037
2038	func_enter ();
2039	error = pci_register_driver(&firestream_driver);
2040	func_exit ();
2041	return error;
2042}
2043
2044static void __exit firestream_cleanup_module(void)
2045{
2046	pci_unregister_driver(&firestream_driver);
2047}
2048
2049module_init(firestream_init_module);
2050module_exit(firestream_cleanup_module);
2051
2052MODULE_LICENSE("GPL");
2053
2054
2055