Linux Audio

Check our new training course

Loading...
v3.1
   1
   2/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
   3 *                            FireStream  50 (MB86695) device driver 
   4 */
   5 
   6/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl 
   7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA 
   8 * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd 
   9 */
  10
  11/*
  12  This program is free software; you can redistribute it and/or modify
  13  it under the terms of the GNU General Public License as published by
  14  the Free Software Foundation; either version 2 of the License, or
  15  (at your option) any later version.
  16
  17  This program is distributed in the hope that it will be useful,
  18  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20  GNU General Public License for more details.
  21
  22  You should have received a copy of the GNU General Public License
  23  along with this program; if not, write to the Free Software
  24  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25
  26  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  27  system and in the file COPYING in the Linux kernel source.
  28*/
  29
  30
  31#include <linux/module.h>
  32#include <linux/sched.h>
  33#include <linux/kernel.h>
  34#include <linux/mm.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/errno.h>
  38#include <linux/atm.h>
  39#include <linux/atmdev.h>
  40#include <linux/sonet.h>
  41#include <linux/skbuff.h>
  42#include <linux/netdevice.h>
  43#include <linux/delay.h>
  44#include <linux/ioport.h> /* for request_region */
  45#include <linux/uio.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/capability.h>
  49#include <linux/bitops.h>
  50#include <linux/slab.h>
  51#include <asm/byteorder.h>
  52#include <asm/system.h>
  53#include <asm/string.h>
  54#include <asm/io.h>
  55#include <linux/atomic.h>
  56#include <asm/uaccess.h>
  57#include <linux/wait.h>
  58
  59#include "firestream.h"
  60
  61static int loopback = 0;
  62static int num=0x5a;
  63
  64/* According to measurements (but they look suspicious to me!) done in
  65 * '97, 37% of the packets are one cell in size. So it pays to have
  66 * buffers allocated at that size. A large jump in percentage of
  67 * packets occurs at packets around 536 bytes in length. So it also
  68 * pays to have those pre-allocated. Unfortunately, we can't fully
  69 * take advantage of this as the majority of the packets is likely to
  70 * be TCP/IP (As where obviously the measurement comes from) There the
  71 * link would be opened with say a 1500 byte MTU, and we can't handle
  72 * smaller buffers more efficiently than the larger ones. -- REW
  73 */
  74
  75/* Due to the way Linux memory management works, specifying "576" as
  76 * an allocation size here isn't going to help. They are allocated
  77 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
  78 * large), it doesn't pay to allocate the smallest size (64) -- REW */
  79
  80/* This is all guesswork. Hard numbers to back this up or disprove this, 
  81 * are appreciated. -- REW */
  82
  83/* The last entry should be about 64k. However, the "buffer size" is
  84 * passed to the chip in a 16 bit field. I don't know how "65536"
  85 * would be interpreted. -- REW */
  86
  87#define NP FS_NR_FREE_POOLS
  88static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
  89/* log2:                 7     8     9    10    11    12    14     16 */
  90
  91#if 0
  92static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
  93#else
  94/* debug */
  95static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
  96#endif
  97/* log2:                 10    10    9    8     7     6     5      5  */
  98/* sumlog2:              17    18    18   18    18    18    19     21 */
  99/* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
 100/* tot mem: almost 4M */
 101
 102/* NP is shorter, so that it fits on a single line. */
 103#undef NP
 104
 105
 106/* Small hardware gotcha:
 107
 108   The FS50 CAM (VP/VC match registers) always take the lowest channel
 109   number that matches. This is not a problem.
 110
 111   However, they also ignore whether the channel is enabled or
 112   not. This means that if you allocate channel 0 to 1.2 and then
 113   channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
 114   match channel for channel 0 will "steal" the traffic from channel
 115   1, even if you correctly disable channel 0.
 116
 117   Workaround: 
 118
 119   - When disabling channels, write an invalid VP/VC value to the
 120   match register. (We use 0xffffffff, which in the worst case 
 121   matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
 122   anything as some "when not in use, program to 0" bits are now
 123   programmed to 1...)
 124
 125   - Don't initialize the match registers to 0, as 0.0 is a valid
 126   channel.
 127*/
 128
 129
 130/* Optimization hints and tips.
 131
 132   The FireStream chips are very capable of reducing the amount of
 133   "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
 134   action. You could try to minimize this a bit. 
 135
 136   Besides that, the userspace->kernel copy and the PCI bus are the
 137   performance limiting issues for this driver.
 138
 139   You could queue up a bunch of outgoing packets without telling the
 140   FireStream. I'm not sure that's going to win you much though. The
 141   Linux layer won't tell us in advance when it's not going to give us
 142   any more packets in a while. So this is tricky to implement right without
 143   introducing extra delays. 
 144  
 145   -- REW
 146 */
 147
 148
 149
 150
 151/* The strings that define what the RX queue entry is all about. */
 152/* Fujitsu: Please tell me which ones can have a pointer to a 
 153   freepool descriptor! */
 154static char *res_strings[] = {
 155	"RX OK: streaming not EOP", 
 156	"RX OK: streaming EOP", 
 157	"RX OK: Single buffer packet", 
 158	"RX OK: packet mode", 
 159	"RX OK: F4 OAM (end to end)", 
 160	"RX OK: F4 OAM (Segment)", 
 161	"RX OK: F5 OAM (end to end)", 
 162	"RX OK: F5 OAM (Segment)", 
 163	"RX OK: RM cell", 
 164	"RX OK: TRANSP cell", 
 165	"RX OK: TRANSPC cell", 
 166	"Unmatched cell", 
 167	"reserved 12", 
 168	"reserved 13", 
 169	"reserved 14", 
 170	"Unrecognized cell", 
 171	"reserved 16", 
 172	"reassemby abort: AAL5 abort", 
 173	"packet purged", 
 174	"packet ageing timeout", 
 175	"channel ageing timeout", 
 176	"calculated length error", 
 177	"programmed length limit error", 
 178	"aal5 crc32 error", 
 179	"oam transp or transpc crc10 error", 
 180	"reserved 25", 
 181	"reserved 26", 
 182	"reserved 27", 
 183	"reserved 28", 
 184	"reserved 29", 
 185	"reserved 30", 
 186	"reassembly abort: no buffers", 
 187	"receive buffer overflow", 
 188	"change in GFC", 
 189	"receive buffer full", 
 190	"low priority discard - no receive descriptor", 
 191	"low priority discard - missing end of packet", 
 192	"reserved 41", 
 193	"reserved 42", 
 194	"reserved 43", 
 195	"reserved 44", 
 196	"reserved 45", 
 197	"reserved 46", 
 198	"reserved 47", 
 199	"reserved 48", 
 200	"reserved 49", 
 201	"reserved 50", 
 202	"reserved 51", 
 203	"reserved 52", 
 204	"reserved 53", 
 205	"reserved 54", 
 206	"reserved 55", 
 207	"reserved 56", 
 208	"reserved 57", 
 209	"reserved 58", 
 210	"reserved 59", 
 211	"reserved 60", 
 212	"reserved 61", 
 213	"reserved 62", 
 214	"reserved 63", 
 215};  
 216
 217static char *irq_bitname[] = {
 218	"LPCO",
 219	"DPCO",
 220	"RBRQ0_W",
 221	"RBRQ1_W",
 222	"RBRQ2_W",
 223	"RBRQ3_W",
 224	"RBRQ0_NF",
 225	"RBRQ1_NF",
 226	"RBRQ2_NF",
 227	"RBRQ3_NF",
 228	"BFP_SC",
 229	"INIT",
 230	"INIT_ERR",
 231	"USCEO",
 232	"UPEC0",
 233	"VPFCO",
 234	"CRCCO",
 235	"HECO",
 236	"TBRQ_W",
 237	"TBRQ_NF",
 238	"CTPQ_E",
 239	"GFC_C0",
 240	"PCI_FTL",
 241	"CSQ_W",
 242	"CSQ_NF",
 243	"EXT_INT",
 244	"RXDMA_S"
 245};
 246
 247
 248#define PHY_EOF -1
 249#define PHY_CLEARALL -2
 250
 251struct reginit_item {
 252	int reg, val;
 253};
 254
 255
 256static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
 257	{ PHY_CLEARALL, 0x40 }, 
 258	{ 0x12,  0x0001 },
 259	{ 0x13,  0x7605 },
 260	{ 0x1A,  0x0001 },
 261	{ 0x1B,  0x0005 },
 262	{ 0x38,  0x0003 },
 263	{ 0x39,  0x0006 },   /* changed here to make loopback */
 264	{ 0x01,  0x5262 },
 265	{ 0x15,  0x0213 },
 266	{ 0x00,  0x0003 },
 267	{ PHY_EOF, 0},    /* -1 signals end of list */
 268};
 269
 270
 271/* Safetyfeature: If the card interrupts more than this number of times
 272   in a jiffy (1/100th of a second) then we just disable the interrupt and
 273   print a message. This prevents the system from hanging. 
 274
 275   150000 packets per second is close to the limit a PC is going to have
 276   anyway. We therefore have to disable this for production. -- REW */
 277#undef IRQ_RATE_LIMIT // 100
 278
 279/* Interrupts work now. Unlike serial cards, ATM cards don't work all
 280   that great without interrupts. -- REW */
 281#undef FS_POLL_FREQ // 100
 282
 283/* 
 284   This driver can spew a whole lot of debugging output at you. If you
 285   need maximum performance, you should disable the DEBUG define. To
 286   aid in debugging in the field, I'm leaving the compile-time debug
 287   features enabled, and disable them "runtime". That allows me to
 288   instruct people with problems to enable debugging without requiring
 289   them to recompile... -- REW
 290*/
 291#define DEBUG
 292
 293#ifdef DEBUG
 294#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
 295#else
 296#define fs_dprintk(f, str...) /* nothing */
 297#endif
 298
 299
 300static int fs_keystream = 0;
 301
 302#ifdef DEBUG
 303/* I didn't forget to set this to zero before shipping. Hit me with a stick 
 304   if you get this with the debug default not set to zero again. -- REW */
 305static int fs_debug = 0;
 306#else
 307#define fs_debug 0
 308#endif
 309
 310#ifdef MODULE
 311#ifdef DEBUG 
 312module_param(fs_debug, int, 0644);
 313#endif
 314module_param(loopback, int, 0);
 315module_param(num, int, 0);
 316module_param(fs_keystream, int, 0);
 317/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
 318#endif
 319
 320
 321#define FS_DEBUG_FLOW    0x00000001
 322#define FS_DEBUG_OPEN    0x00000002
 323#define FS_DEBUG_QUEUE   0x00000004
 324#define FS_DEBUG_IRQ     0x00000008
 325#define FS_DEBUG_INIT    0x00000010
 326#define FS_DEBUG_SEND    0x00000020
 327#define FS_DEBUG_PHY     0x00000040
 328#define FS_DEBUG_CLEANUP 0x00000080
 329#define FS_DEBUG_QOS     0x00000100
 330#define FS_DEBUG_TXQ     0x00000200
 331#define FS_DEBUG_ALLOC   0x00000400
 332#define FS_DEBUG_TXMEM   0x00000800
 333#define FS_DEBUG_QSIZE   0x00001000
 334
 335
 336#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
 337#define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
 338
 339
 340static struct fs_dev *fs_boards = NULL;
 341
 342#ifdef DEBUG
 343
 344static void my_hd (void *addr, int len)
 345{
 346	int j, ch;
 347	unsigned char *ptr = addr;
 348
 349	while (len > 0) {
 350		printk ("%p ", ptr);
 351		for (j=0;j < ((len < 16)?len:16);j++) {
 352			printk ("%02x %s", ptr[j], (j==7)?" ":"");
 353		}
 354		for (  ;j < 16;j++) {
 355			printk ("   %s", (j==7)?" ":"");
 356		}
 357		for (j=0;j < ((len < 16)?len:16);j++) {
 358			ch = ptr[j];
 359			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
 360		}
 361		printk ("\n");
 362		ptr += 16;
 363		len -= 16;
 364	}
 365}
 366#else /* DEBUG */
 367static void my_hd (void *addr, int len){}
 368#endif /* DEBUG */
 369
 370/********** free an skb (as per ATM device driver documentation) **********/
 371
 372/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
 373 * I copied it over from the ambassador driver. -- REW */
 374
 375static inline void fs_kfree_skb (struct sk_buff * skb) 
 376{
 377	if (ATM_SKB(skb)->vcc->pop)
 378		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 379	else
 380		dev_kfree_skb_any (skb);
 381}
 382
 383
 384
 385
 386/* It seems the ATM forum recommends this horribly complicated 16bit
 387 * floating point format. Turns out the Ambassador uses the exact same
 388 * encoding. I just copied it over. If Mitch agrees, I'll move it over
 389 * to the atm_misc file or something like that. (and remove it from 
 390 * here and the ambassador driver) -- REW
 391 */
 392
 393/* The good thing about this format is that it is monotonic. So, 
 394   a conversion routine need not be very complicated. To be able to
 395   round "nearest" we need to take along a few extra bits. Lets
 396   put these after 16 bits, so that we can just return the top 16
 397   bits of the 32bit number as the result:
 398
 399   int mr (unsigned int rate, int r) 
 400     {
 401     int e = 16+9;
 402     static int round[4]={0, 0, 0xffff, 0x8000};
 403     if (!rate) return 0;
 404     while (rate & 0xfc000000) {
 405       rate >>= 1;
 406       e++;
 407     }
 408     while (! (rate & 0xfe000000)) {
 409       rate <<= 1;
 410       e--;
 411     }
 412
 413// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
 414     rate &= ~0x02000000;
 415// Next add in the exponent
 416     rate |= e << (16+9);
 417// And perform the rounding:
 418     return (rate + round[r]) >> 16;
 419   }
 420
 421   14 lines-of-code. Compare that with the 120 that the Ambassador
 422   guys needed. (would be 8 lines shorter if I'd try to really reduce
 423   the number of lines:
 424
 425   int mr (unsigned int rate, int r) 
 426   {
 427     int e = 16+9;
 428     static int round[4]={0, 0, 0xffff, 0x8000};
 429     if (!rate) return 0;
 430     for (;  rate & 0xfc000000 ;rate >>= 1, e++);
 431     for (;!(rate & 0xfe000000);rate <<= 1, e--);
 432     return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
 433   }
 434
 435   Exercise for the reader: Remove one more line-of-code, without
 436   cheating. (Just joining two lines is cheating). (I know it's
 437   possible, don't think you've beat me if you found it... If you
 438   manage to lose two lines or more, keep me updated! ;-)
 439
 440   -- REW */
 441
 442
 443#define ROUND_UP      1
 444#define ROUND_DOWN    2
 445#define ROUND_NEAREST 3
 446/********** make rate (not quite as much fun as Horizon) **********/
 447
 448static int make_rate(unsigned int rate, int r,
 449		      u16 *bits, unsigned int *actual)
 450{
 451	unsigned char exp = -1; /* hush gcc */
 452	unsigned int man = -1;  /* hush gcc */
 453  
 454	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
 455  
 456	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
 457	   given 5-bit e and 9-bit m:
 458	   rate = EITHER (1+m/2^9)*2^e    OR 0
 459	   bits = EITHER 1<<14 | e<<9 | m OR 0
 460	   (bit 15 is "reserved", bit 14 "non-zero")
 461	   smallest rate is 0 (special representation)
 462	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
 463	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
 464	   simple algorithm:
 465	   find position of top bit, this gives e
 466	   remove top bit and shift (rounding if feeling clever) by 9-e
 467	*/
 468	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
 469	   representable. // This should move into the ambassador driver
 470	   when properly merged. -- REW */
 471  
 472	if (rate > 0xffc00000U) {
 473		/* larger than largest representable rate */
 474    
 475		if (r == ROUND_UP) {
 476			return -EINVAL;
 477		} else {
 478			exp = 31;
 479			man = 511;
 480		}
 481    
 482	} else if (rate) {
 483		/* representable rate */
 484    
 485		exp = 31;
 486		man = rate;
 487    
 488		/* invariant: rate = man*2^(exp-31) */
 489		while (!(man & (1<<31))) {
 490			exp = exp - 1;
 491			man = man<<1;
 492		}
 493    
 494		/* man has top bit set
 495		   rate = (2^31+(man-2^31))*2^(exp-31)
 496		   rate = (1+(man-2^31)/2^31)*2^exp 
 497		*/
 498		man = man<<1;
 499		man &= 0xffffffffU; /* a nop on 32-bit systems */
 500		/* rate = (1+man/2^32)*2^exp
 501    
 502		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
 503		   time to lose significance... we want m in the range 0 to 2^9-1
 504		   rounding presents a minor problem... we first decide which way
 505		   we are rounding (based on given rounding direction and possibly
 506		   the bits of the mantissa that are to be discarded).
 507		*/
 508
 509		switch (r) {
 510		case ROUND_DOWN: {
 511			/* just truncate */
 512			man = man>>(32-9);
 513			break;
 514		}
 515		case ROUND_UP: {
 516			/* check all bits that we are discarding */
 517			if (man & (~0U>>9)) {
 518				man = (man>>(32-9)) + 1;
 519				if (man == (1<<9)) {
 520					/* no need to check for round up outside of range */
 521					man = 0;
 522					exp += 1;
 523				}
 524			} else {
 525				man = (man>>(32-9));
 526			}
 527			break;
 528		}
 529		case ROUND_NEAREST: {
 530			/* check msb that we are discarding */
 531			if (man & (1<<(32-9-1))) {
 532				man = (man>>(32-9)) + 1;
 533				if (man == (1<<9)) {
 534					/* no need to check for round up outside of range */
 535					man = 0;
 536					exp += 1;
 537				}
 538			} else {
 539				man = (man>>(32-9));
 540			}
 541			break;
 542		}
 543		}
 544    
 545	} else {
 546		/* zero rate - not representable */
 547    
 548		if (r == ROUND_DOWN) {
 549			return -EINVAL;
 550		} else {
 551			exp = 0;
 552			man = 0;
 553		}
 554	}
 555  
 556	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
 557  
 558	if (bits)
 559		*bits = /* (1<<14) | */ (exp<<9) | man;
 560  
 561	if (actual)
 562		*actual = (exp >= 9)
 563			? (1 << exp) + (man << (exp-9))
 564			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
 565  
 566	return 0;
 567}
 568
 569
 570
 571
 572/* FireStream access routines */
 573/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
 574   certain registers or to just log all accesses. */
 575
 576static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
 577{
 578	writel (val, dev->base + offset);
 579}
 580
 581
 582static inline u32  read_fs (struct fs_dev *dev, int offset)
 583{
 584	return readl (dev->base + offset);
 585}
 586
 587
 588
 589static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
 590{
 591	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
 592}
 593
 594
 595static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
 596{
 597	u32 wp;
 598	struct FS_QENTRY *cqe;
 599
 600	/* XXX Sanity check: the write pointer can be checked to be 
 601	   still the same as the value passed as qe... -- REW */
 602	/*  udelay (5); */
 603	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
 604		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n", 
 605			    q->offset);
 606		schedule ();
 607	}
 608
 609	wp &= ~0xf;
 610	cqe = bus_to_virt (wp);
 611	if (qe != cqe) {
 612		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
 613	}
 614
 615	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
 616
 617	{
 618		static int c;
 619		if (!(c++ % 100))
 620			{
 621				int rp, wp;
 622				rp =  read_fs (dev, Q_RP(q->offset));
 623				wp =  read_fs (dev, Q_WP(q->offset));
 624				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n", 
 625					    q->offset, rp, wp, wp-rp);
 626			}
 627	}
 628}
 629
 630#ifdef DEBUG_EXTRA
 631static struct FS_QENTRY pq[60];
 632static int qp;
 633
 634static struct FS_BPENTRY dq[60];
 635static int qd;
 636static void *da[60];
 637#endif 
 638
 639static void submit_queue (struct fs_dev *dev, struct queue *q, 
 640			  u32 cmd, u32 p1, u32 p2, u32 p3)
 641{
 642	struct FS_QENTRY *qe;
 643
 644	qe = get_qentry (dev, q);
 645	qe->cmd = cmd;
 646	qe->p0 = p1;
 647	qe->p1 = p2;
 648	qe->p2 = p3;
 649	submit_qentry (dev,  q, qe);
 650
 651#ifdef DEBUG_EXTRA
 652	pq[qp].cmd = cmd;
 653	pq[qp].p0 = p1;
 654	pq[qp].p1 = p2;
 655	pq[qp].p2 = p3;
 656	qp++;
 657	if (qp >= 60) qp = 0;
 658#endif
 659}
 660
 661/* Test the "other" way one day... -- REW */
 662#if 1
 663#define submit_command submit_queue
 664#else
 665
 666static void submit_command (struct fs_dev *dev, struct queue *q, 
 667			    u32 cmd, u32 p1, u32 p2, u32 p3)
 668{
 669	write_fs (dev, CMDR0, cmd);
 670	write_fs (dev, CMDR1, p1);
 671	write_fs (dev, CMDR2, p2);
 672	write_fs (dev, CMDR3, p3);
 673}
 674#endif
 675
 676
 677
 678static void process_return_queue (struct fs_dev *dev, struct queue *q)
 679{
 680	long rq;
 681	struct FS_QENTRY *qe;
 682	void *tc;
 683  
 684	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 685		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq); 
 686		qe = bus_to_virt (rq);
 687    
 688		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n", 
 689			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 690
 691		switch (STATUS_CODE (qe)) {
 692		case 5:
 693			tc = bus_to_virt (qe->p0);
 694			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
 695			kfree (tc);
 696			break;
 697		}
 698    
 699		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 700	}
 701}
 702
 703
 704static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
 705{
 706	long rq;
 707	long tmp;
 708	struct FS_QENTRY *qe;
 709	struct sk_buff *skb;
 710	struct FS_BPENTRY *td;
 711
 712	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 713		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq); 
 714		qe = bus_to_virt (rq);
 715    
 716		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n", 
 717			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 718
 719		if (STATUS_CODE (qe) != 2)
 720			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n", 
 721				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 722
 723
 724		switch (STATUS_CODE (qe)) {
 725		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
 726			/* Fall through */
 727		case 0x02:
 728			/* Process a real txdone entry. */
 729			tmp = qe->p0;
 730			if (tmp & 0x0f)
 731				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
 732			tmp &= ~0x0f;
 733			td = bus_to_virt (tmp);
 734
 735			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n", 
 736				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
 737      
 738			skb = td->skb;
 739			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
 740				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
 741				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
 
 742			}
 743			td->dev->ntxpckts--;
 744
 745			{
 746				static int c=0;
 747	
 748				if (!(c++ % 100)) {
 749					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
 750				}
 751			}
 752
 753			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 754
 755			fs_dprintk (FS_DEBUG_TXMEM, "i");
 756			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
 757			fs_kfree_skb (skb);
 758
 759			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td); 
 760			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
 761			kfree (td);
 762			break;
 763		default:
 764			/* Here we get the tx purge inhibit command ... */
 765			/* Action, I believe, is "don't do anything". -- REW */
 766			;
 767		}
 768    
 769		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 770	}
 771}
 772
 773
 774static void process_incoming (struct fs_dev *dev, struct queue *q)
 775{
 776	long rq;
 777	struct FS_QENTRY *qe;
 778	struct FS_BPENTRY *pe;    
 779	struct sk_buff *skb;
 780	unsigned int channo;
 781	struct atm_vcc *atm_vcc;
 782
 783	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 784		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq); 
 785		qe = bus_to_virt (rq);
 786    
 787		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ", 
 788			    qe->cmd, qe->p0, qe->p1, qe->p2);
 789
 790		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n", 
 791			    STATUS_CODE (qe), 
 792			    res_strings[STATUS_CODE(qe)]);
 793
 794		pe = bus_to_virt (qe->p0);
 795		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n", 
 796			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize, 
 797			    pe->skb, pe->fp);
 798      
 799		channo = qe->cmd & 0xffff;
 800
 801		if (channo < dev->nchannels)
 802			atm_vcc = dev->atm_vccs[channo];
 803		else
 804			atm_vcc = NULL;
 805
 806		/* Single buffer packet */
 807		switch (STATUS_CODE (qe)) {
 808		case 0x1:
 809			/* Fall through for streaming mode */
 810		case 0x2:/* Packet received OK.... */
 811			if (atm_vcc) {
 812				skb = pe->skb;
 813				pe->fp->n--;
 814#if 0
 815				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
 816				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
 817#endif
 818				skb_put (skb, qe->p1 & 0xffff); 
 819				ATM_SKB(skb)->vcc = atm_vcc;
 820				atomic_inc(&atm_vcc->stats->rx);
 821				__net_timestamp(skb);
 822				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
 823				atm_vcc->push (atm_vcc, skb);
 824				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 825				kfree (pe);
 826			} else {
 827				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
 828			}
 829			break;
 830		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
 831			     has been consumed and needs to be processed. -- REW */
 832			if (qe->p1 & 0xffff) {
 833				pe = bus_to_virt (qe->p0);
 834				pe->fp->n--;
 835				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
 836				dev_kfree_skb_any (pe->skb);
 837				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 838				kfree (pe);
 839			}
 840			if (atm_vcc)
 841				atomic_inc(&atm_vcc->stats->rx_drop);
 842			break;
 843		case 0x1f: /*  Reassembly abort: no buffers. */
 844			/* Silently increment error counter. */
 845			if (atm_vcc)
 846				atomic_inc(&atm_vcc->stats->rx_drop);
 847			break;
 848		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
 849			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n", 
 850				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
 851		}
 852		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 853	}
 854}
 855
 856
 857
 858#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
 859
 860static int fs_open(struct atm_vcc *atm_vcc)
 861{
 862	struct fs_dev *dev;
 863	struct fs_vcc *vcc;
 864	struct fs_transmit_config *tc;
 865	struct atm_trafprm * txtp;
 866	struct atm_trafprm * rxtp;
 867	/*  struct fs_receive_config *rc;*/
 868	/*  struct FS_QENTRY *qe; */
 869	int error;
 870	int bfp;
 871	int to;
 872	unsigned short tmc0;
 873	short vpi = atm_vcc->vpi;
 874	int vci = atm_vcc->vci;
 875
 876	func_enter ();
 877
 878	dev = FS_DEV(atm_vcc->dev);
 879	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n", 
 880		    dev, atm_vcc);
 881
 882	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
 883		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
 884
 885	if ((atm_vcc->qos.aal != ATM_AAL5) &&
 886	    (atm_vcc->qos.aal != ATM_AAL2))
 887	  return -EINVAL; /* XXX AAL0 */
 888
 889	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n", 
 890		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);	
 891
 892	/* XXX handle qos parameters (rate limiting) ? */
 893
 894	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
 895	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
 896	if (!vcc) {
 897		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
 898		return -ENOMEM;
 899	}
 900  
 901	atm_vcc->dev_data = vcc;
 902	vcc->last_skb = NULL;
 903
 904	init_waitqueue_head (&vcc->close_wait);
 905
 906	txtp = &atm_vcc->qos.txtp;
 907	rxtp = &atm_vcc->qos.rxtp;
 908
 909	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
 910		if (IS_FS50(dev)) {
 911			/* Increment the channel numer: take a free one next time.  */
 912			for (to=33;to;to--, dev->channo++) {
 913				/* We only have 32 channels */
 914				if (dev->channo >= 32)
 915					dev->channo = 0;
 916				/* If we need to do RX, AND the RX is inuse, try the next */
 917				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
 918					continue;
 919				/* If we need to do TX, AND the TX is inuse, try the next */
 920				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
 921					continue;
 922				/* Ok, both are free! (or not needed) */
 923				break;
 924			}
 925			if (!to) {
 926				printk ("No more free channels for FS50..\n");
 927				return -EBUSY;
 928			}
 929			vcc->channo = dev->channo;
 930			dev->channo &= dev->channel_mask;
 931      
 932		} else {
 933			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
 934			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
 935			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
 936				printk ("Channel is in use for FS155.\n");
 937				return -EBUSY;
 938			}
 939		}
 940		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n", 
 941			    vcc->channo, vcc->channo);
 942	}
 943
 944	if (DO_DIRECTION (txtp)) {
 945		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
 946		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
 947			    tc, sizeof (struct fs_transmit_config));
 948		if (!tc) {
 949			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
 950			return -ENOMEM;
 951		}
 952
 953		/* Allocate the "open" entry from the high priority txq. This makes
 954		   it most likely that the chip will notice it. It also prevents us
 955		   from having to wait for completion. On the other hand, we may
 956		   need to wait for completion anyway, to see if it completed
 957		   successfully. */
 958
 959		switch (atm_vcc->qos.aal) {
 960		case ATM_AAL2:
 961		case ATM_AAL0:
 962		  tc->flags = 0
 963		    | TC_FLAGS_TRANSPARENT_PAYLOAD
 964		    | TC_FLAGS_PACKET
 965		    | (1 << 28)
 966		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
 967		    | TC_FLAGS_CAL0;
 968		  break;
 969		case ATM_AAL5:
 970		  tc->flags = 0
 971			| TC_FLAGS_AAL5
 972			| TC_FLAGS_PACKET  /* ??? */
 973			| TC_FLAGS_TYPE_CBR
 974			| TC_FLAGS_CAL0;
 975		  break;
 976		default:
 977			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
 978			tc->flags = 0;
 979		}
 980		/* Docs are vague about this atm_hdr field. By the way, the FS
 981		 * chip makes odd errors if lower bits are set.... -- REW */
 982		tc->atm_hdr =  (vpi << 20) | (vci << 4); 
 983		tmc0 = 0;
 984		{
 985			int pcr = atm_pcr_goal (txtp);
 986
 987			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
 988
 989			/* XXX Hmm. officially we're only allowed to do this if rounding 
 990			   is round_down -- REW */
 991			if (IS_FS50(dev)) {
 992				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
 993			} else {
 994				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
 995			}
 996			if (!pcr) {
 997				/* no rate cap */
 998				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
 999			} else {
1000				int r;
1001				if (pcr < 0) {
1002					r = ROUND_DOWN;
1003					pcr = -pcr;
1004				} else {
1005					r = ROUND_UP;
1006				}
1007				error = make_rate (pcr, r, &tmc0, NULL);
1008				if (error) {
1009					kfree(tc);
1010					return error;
1011				}
1012			}
1013			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1014		}
1015      
1016		tc->TMC[0] = tmc0 | 0x4000;
1017		tc->TMC[1] = 0; /* Unused */
1018		tc->TMC[2] = 0; /* Unused */
1019		tc->TMC[3] = 0; /* Unused */
1020    
1021		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1022		tc->rtag[0] = 0; /* What should I do with routing tags??? 
1023				    -- Not used -- AS -- Thanks -- REW*/
1024		tc->rtag[1] = 0;
1025		tc->rtag[2] = 0;
1026
1027		if (fs_debug & FS_DEBUG_OPEN) {
1028			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1029			my_hd (tc, sizeof (*tc));
1030		}
1031
1032		/* We now use the "submit_command" function to submit commands to
1033		   the firestream. There is a define up near the definition of
1034		   that routine that switches this routine between immediate write
1035		   to the immediate command registers and queuing the commands in
1036		   the HPTXQ for execution. This last technique might be more
1037		   efficient if we know we're going to submit a whole lot of
1038		   commands in one go, but this driver is not setup to be able to
1039		   use such a construct. So it probably doen't matter much right
1040		   now. -- REW */
1041    
1042		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1043		submit_command (dev, &dev->hp_txq, 
1044				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1045				virt_to_bus (tc), 0, 0);
1046
1047		submit_command (dev, &dev->hp_txq, 
1048				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1049				0, 0, 0);
1050		set_bit (vcc->channo, dev->tx_inuse);
1051	}
1052
1053	if (DO_DIRECTION (rxtp)) {
1054		dev->atm_vccs[vcc->channo] = atm_vcc;
1055
1056		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1057			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1058		if (bfp >= FS_NR_FREE_POOLS) {
1059			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n", 
1060				    atm_vcc->qos.rxtp.max_sdu);
1061			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1062
1063			/* XXX clear tx inuse. Close TX part? */
1064			dev->atm_vccs[vcc->channo] = NULL;
1065			kfree (vcc);
1066			return -EINVAL;
1067		}
1068
1069		switch (atm_vcc->qos.aal) {
1070		case ATM_AAL0:
1071		case ATM_AAL2:
1072			submit_command (dev, &dev->hp_txq,
1073					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074					RC_FLAGS_TRANSP |
1075					RC_FLAGS_BFPS_BFP * bfp |
1076					RC_FLAGS_RXBM_PSB, 0, 0);
1077			break;
1078		case ATM_AAL5:
1079			submit_command (dev, &dev->hp_txq,
1080					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1081					RC_FLAGS_AAL5 |
1082					RC_FLAGS_BFPS_BFP * bfp |
1083					RC_FLAGS_RXBM_PSB, 0, 0);
1084			break;
1085		};
1086		if (IS_FS50 (dev)) {
1087			submit_command (dev, &dev->hp_txq, 
1088					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1089					0x80 + vcc->channo,
1090					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1091		}
1092		submit_command (dev, &dev->hp_txq, 
1093				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1094				0, 0, 0);
1095	}
1096    
1097	/* Indicate we're done! */
1098	set_bit(ATM_VF_READY, &atm_vcc->flags);
1099
1100	func_exit ();
1101	return 0;
1102}
1103
1104
1105static void fs_close(struct atm_vcc *atm_vcc)
1106{
1107	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1108	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1109	struct atm_trafprm * txtp;
1110	struct atm_trafprm * rxtp;
1111
1112	func_enter ();
1113
1114	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1115
1116	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1117	if (vcc->last_skb) {
1118		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n", 
1119			    vcc->last_skb);
1120		/* We're going to wait for the last packet to get sent on this VC. It would
1121		   be impolite not to send them don't you think? 
1122		   XXX
1123		   We don't know which packets didn't get sent. So if we get interrupted in 
1124		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1125		   On the other hand, it's awfully convenient that we can abort a "close" that
1126		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1127		interruptible_sleep_on (& vcc->close_wait);
1128	}
1129
1130	txtp = &atm_vcc->qos.txtp;
1131	rxtp = &atm_vcc->qos.rxtp;
1132  
1133
1134	/* See App note XXX (Unpublished as of now) for the reason for the 
1135	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1136
1137	if (DO_DIRECTION (txtp)) {
1138		submit_command (dev,  &dev->hp_txq,
1139				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1140		clear_bit (vcc->channo, dev->tx_inuse);
1141	}
1142
1143	if (DO_DIRECTION (rxtp)) {
1144		submit_command (dev,  &dev->hp_txq,
1145				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1146		dev->atm_vccs [vcc->channo] = NULL;
1147  
1148		/* This means that this is configured as a receive channel */
1149		if (IS_FS50 (dev)) {
1150			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1151			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1152			   (0xfff...) -- REW */
1153			submit_command (dev, &dev->hp_txq, 
1154					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1155					0x80 + vcc->channo, -1, 0 ); 
1156		}
1157	}
1158
1159	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1160	kfree (vcc);
1161
1162	func_exit ();
1163}
1164
1165
1166static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1167{
1168	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1169	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1170	struct FS_BPENTRY *td;
1171
1172	func_enter ();
1173
1174	fs_dprintk (FS_DEBUG_TXMEM, "I");
1175	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n", 
1176		    atm_vcc, skb, vcc, dev);
1177
1178	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1179
1180	ATM_SKB(skb)->vcc = atm_vcc;
1181
1182	vcc->last_skb = skb;
1183
1184	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1185	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1186	if (!td) {
1187		/* Oops out of mem */
1188		return -ENOMEM;
1189	}
1190
1191	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n", 
1192		    *(int *) skb->data);
1193
1194	td->flags =  TD_EPI | TD_DATA | skb->len;
1195	td->next = 0;
1196	td->bsa  = virt_to_bus (skb->data);
1197	td->skb = skb;
1198	td->dev = dev;
1199	dev->ntxpckts++;
1200
1201#ifdef DEBUG_EXTRA
1202	da[qd] = td;
1203	dq[qd].flags = td->flags;
1204	dq[qd].next  = td->next;
1205	dq[qd].bsa   = td->bsa;
1206	dq[qd].skb   = td->skb;
1207	dq[qd].dev   = td->dev;
1208	qd++;
1209	if (qd >= 60) qd = 0;
1210#endif
1211
1212	submit_queue (dev, &dev->hp_txq, 
1213		      QE_TRANSMIT_DE | vcc->channo,
1214		      virt_to_bus (td), 0, 
1215		      virt_to_bus (td));
1216
1217	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n", 
1218		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1219		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1220		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1221		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1222
1223	func_exit ();
1224	return 0;
1225}
1226
1227
1228/* Some function placeholders for functions we don't yet support. */
1229
1230#if 0
1231static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1232{
1233	func_enter ();
1234	func_exit ();
1235	return -ENOIOCTLCMD;
1236}
1237
1238
1239static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1240			 void __user *optval,int optlen)
1241{
1242	func_enter ();
1243	func_exit ();
1244	return 0;
1245}
1246
1247
1248static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1249			 void __user *optval,unsigned int optlen)
1250{
1251	func_enter ();
1252	func_exit ();
1253	return 0;
1254}
1255
1256
1257static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1258		       unsigned long addr)
1259{
1260	func_enter ();
1261	func_exit ();
1262}
1263
1264
1265static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1266{
1267	func_enter ();
1268	func_exit ();
1269	return 0;
1270}
1271
1272
1273static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1274{
1275	func_enter ();
1276	func_exit ();
1277	return 0;
1278};
1279
1280#endif
1281
1282
1283static const struct atmdev_ops ops = {
1284	.open =         fs_open,
1285	.close =        fs_close,
1286	.send =         fs_send,
1287	.owner =        THIS_MODULE,
1288	/* ioctl:          fs_ioctl, */
1289	/* getsockopt:     fs_getsockopt, */
1290	/* setsockopt:     fs_setsockopt, */
1291	/* change_qos:     fs_change_qos, */
1292
1293	/* For now implement these internally here... */  
1294	/* phy_put:        fs_phy_put, */
1295	/* phy_get:        fs_phy_get, */
1296};
1297
1298
1299static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1300{
1301	u32 tint;
1302
1303	/* The Windows driver says: */
1304	/* Switch off FireStream Retry Limit Threshold 
1305	 */
1306
1307	/* The register at 0x28 is documented as "reserved", no further
1308	   comments. */
1309
1310	pci_read_config_dword (pdev, 0x28, &tint);
1311	if (tint != 0x80) {
1312		tint = 0x80;
1313		pci_write_config_dword (pdev, 0x28, tint);
1314	}
1315}
1316
1317
1318
1319/**************************************************************************
1320 *                              PHY routines                              *
1321 **************************************************************************/
1322
1323static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1324{
1325	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1326			regnum, val, 0);
1327}
1328
1329static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1330{
1331	int i;
1332
1333	func_enter ();
1334	while (reginit->reg != PHY_EOF) {
1335		if (reginit->reg == PHY_CLEARALL) {
1336			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1337			for (i=0;i<reginit->val;i++) {
1338				write_phy (dev, i, 0);
1339			}
1340		} else {
1341			write_phy (dev, reginit->reg, reginit->val);
1342		}
1343		reginit++;
1344	}
1345	func_exit ();
1346	return 0;
1347}
1348
1349static void reset_chip (struct fs_dev *dev)
1350{
1351	int i;
1352
1353	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1354
1355	/* Undocumented delay */
1356	udelay (128);
1357
1358	/* The "internal registers are documented to all reset to zero, but 
1359	   comments & code in the Windows driver indicates that the pools are
1360	   NOT reset. */
1361	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1362		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1363		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1364		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1365		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1366		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1367	}
1368
1369	/* The same goes for the match channel registers, although those are
1370	   NOT documented that way in the Windows driver. -- REW */
1371	/* The Windows driver DOES write 0 to these registers somewhere in
1372	   the init sequence. However, a small hardware-feature, will
1373	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1374	   allocated happens to have no disabled channels that have a lower
1375	   number. -- REW */
1376
1377	/* Clear the match channel registers. */
1378	if (IS_FS50 (dev)) {
1379		for (i=0;i<FS50_NR_CHANNELS;i++) {
1380			write_fs (dev, 0x200 + i * 4, -1);
1381		}
1382	}
1383}
1384
1385static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1386{
1387	void  *t;
1388
1389	if (alignment <= 0x10) {
1390		t = kmalloc (size, flags);
1391		if ((unsigned long)t & (alignment-1)) {
1392			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1393			kfree (t);
1394			return aligned_kmalloc (size, flags, alignment * 4);
1395		}
1396		return t;
1397	}
1398	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1399	return NULL;
1400}
1401
1402static int __devinit init_q (struct fs_dev *dev, 
1403			  struct queue *txq, int queue, int nentries, int is_rq)
1404{
1405	int sz = nentries * sizeof (struct FS_QENTRY);
1406	struct FS_QENTRY *p;
1407
1408	func_enter ();
1409
1410	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n", 
1411		    queue, nentries);
1412
1413	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1414	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1415
1416	if (!p) return 0;
1417
1418	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1419	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1420	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1421	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1422	if (is_rq) {
1423		/* Configuration for the receive queue: 0: interrupt immediately,
1424		   no pre-warning to empty queues: We do our best to keep the
1425		   queue filled anyway. */
1426		write_fs (dev, Q_CNF(queue), 0 ); 
1427	}
1428
1429	txq->sa = p;
1430	txq->ea = p;
1431	txq->offset = queue; 
1432
1433	func_exit ();
1434	return 1;
1435}
1436
1437
1438static int __devinit init_fp (struct fs_dev *dev, 
1439			   struct freepool *fp, int queue, int bufsize, int nr_buffers)
1440{
1441	func_enter ();
1442
1443	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1444
1445	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1446	write_fs (dev, FP_SA(queue),  0);
1447	write_fs (dev, FP_EA(queue),  0);
1448	write_fs (dev, FP_CTU(queue), 0);
1449	write_fs (dev, FP_CNT(queue), 0);
1450
1451	fp->offset = queue; 
1452	fp->bufsize = bufsize;
1453	fp->nr_buffers = nr_buffers;
1454
1455	func_exit ();
1456	return 1;
1457}
1458
1459
1460static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1461{
1462#if 0
1463	/* This seems to be unreliable.... */
1464	return read_fs (dev, FP_CNT (fp->offset));
1465#else
1466	return fp->n;
1467#endif
1468}
1469
1470
1471/* Check if this gets going again if a pool ever runs out.  -- Yes, it
1472   does. I've seen "receive abort: no buffers" and things started
1473   working again after that...  -- REW */
1474
1475static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1476			gfp_t gfp_flags)
1477{
1478	struct FS_BPENTRY *qe, *ne;
1479	struct sk_buff *skb;
1480	int n = 0;
1481	u32 qe_tmp;
1482
1483	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n", 
1484		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n, 
1485		    fp->nr_buffers);
1486	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1487
1488		skb = alloc_skb (fp->bufsize, gfp_flags);
1489		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1490		if (!skb) break;
1491		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1492		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1493		if (!ne) {
1494			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1495			dev_kfree_skb_any (skb);
1496			break;
1497		}
1498
1499		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ", 
1500			    skb, ne, skb->data, skb->head);
1501		n++;
1502		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1503		ne->next  = virt_to_bus (NULL);
1504		ne->bsa   = virt_to_bus (skb->data);
1505		ne->aal_bufsize = fp->bufsize;
1506		ne->skb = skb;
1507		ne->fp = fp;
1508
1509		/*
1510		 * FIXME: following code encodes and decodes
1511		 * machine pointers (could be 64-bit) into a
1512		 * 32-bit register.
1513		 */
1514
1515		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1516		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1517		if (qe_tmp) {
1518			qe = bus_to_virt ((long) qe_tmp);
1519			qe->next = virt_to_bus(ne);
1520			qe->flags &= ~FP_FLAGS_EPI;
1521		} else
1522			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1523
1524		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1525		fp->n++;   /* XXX Atomic_inc? */
1526		write_fs (dev, FP_CTU(fp->offset), 1);
1527	}
1528
1529	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1530}
1531
1532static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1533{
1534	func_enter ();
1535
1536	write_fs (dev, Q_SA(txq->offset), 0);
1537	write_fs (dev, Q_EA(txq->offset), 0);
1538	write_fs (dev, Q_RP(txq->offset), 0);
1539	write_fs (dev, Q_WP(txq->offset), 0);
1540	/* Configuration ? */
1541
1542	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1543	kfree (txq->sa);
1544
1545	func_exit ();
1546}
1547
1548static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1549{
1550	func_enter ();
1551
1552	write_fs (dev, FP_CNF(fp->offset), 0);
1553	write_fs (dev, FP_SA (fp->offset), 0);
1554	write_fs (dev, FP_EA (fp->offset), 0);
1555	write_fs (dev, FP_CNT(fp->offset), 0);
1556	write_fs (dev, FP_CTU(fp->offset), 0);
1557
1558	func_exit ();
1559}
1560
1561
1562
1563static irqreturn_t fs_irq (int irq, void *dev_id) 
1564{
1565	int i;
1566	u32 status;
1567	struct fs_dev *dev = dev_id;
1568
1569	status = read_fs (dev, ISR);
1570	if (!status)
1571		return IRQ_NONE;
1572
1573	func_enter ();
1574
1575#ifdef IRQ_RATE_LIMIT
1576	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual 
1577	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1578	{
1579		static int lastjif;
1580		static int nintr=0;
1581    
1582		if (lastjif == jiffies) {
1583			if (++nintr > IRQ_RATE_LIMIT) {
1584				free_irq (dev->irq, dev_id);
1585				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n", 
1586					dev->irq);
1587			}
1588		} else {
1589			lastjif = jiffies;
1590			nintr = 0;
1591		}
1592	}
1593#endif
1594	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n", 
1595		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1596		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1597		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1598		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1599
1600	/* print the bits in the ISR register. */
1601	if (fs_debug & FS_DEBUG_IRQ) {
1602		/* The FS_DEBUG things are unnecessary here. But this way it is
1603		   clear for grep that these are debug prints. */
1604		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1605		for (i=0;i<27;i++) 
1606			if (status & (1 << i)) 
1607				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1608		fs_dprintk (FS_DEBUG_IRQ, "\n");
1609	}
1610  
1611	if (status & ISR_RBRQ0_W) {
1612		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1613		process_incoming (dev, &dev->rx_rq[0]);
1614		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1615		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1616		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1617	}
1618
1619	if (status & ISR_RBRQ1_W) {
1620		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1621		process_incoming (dev, &dev->rx_rq[1]);
1622		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1623		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1624	}
1625
1626	if (status & ISR_RBRQ2_W) {
1627		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1628		process_incoming (dev, &dev->rx_rq[2]);
1629		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1630		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1631	}
1632
1633	if (status & ISR_RBRQ3_W) {
1634		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1635		process_incoming (dev, &dev->rx_rq[3]);
1636		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1637		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1638	}
1639
1640	if (status & ISR_CSQ_W) {
1641		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1642		process_return_queue (dev, &dev->st_q);
1643	}
1644
1645	if (status & ISR_TBRQ_W) {
1646		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1647		process_txdone_queue (dev, &dev->tx_relq);
1648	}
1649
1650	func_exit ();
1651	return IRQ_HANDLED;
1652}
1653
1654
1655#ifdef FS_POLL_FREQ
1656static void fs_poll (unsigned long data)
1657{
1658	struct fs_dev *dev = (struct fs_dev *) data;
1659  
1660	fs_irq (0, dev);
1661	dev->timer.expires = jiffies + FS_POLL_FREQ;
1662	add_timer (&dev->timer);
1663}
1664#endif
1665
1666static int __devinit fs_init (struct fs_dev *dev)
1667{
1668	struct pci_dev  *pci_dev;
1669	int isr, to;
1670	int i;
1671
1672	func_enter ();
1673	pci_dev = dev->pci_dev;
1674
1675	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1676		IS_FS50(dev)?50:155,
1677		(unsigned long long)pci_resource_start(pci_dev, 0),
1678		dev->pci_dev->irq);
1679
1680	if (fs_debug & FS_DEBUG_INIT)
1681		my_hd ((unsigned char *) dev, sizeof (*dev));
1682
1683	undocumented_pci_fix (pci_dev);
1684
1685	dev->hw_base = pci_resource_start(pci_dev, 0);
1686
1687	dev->base = ioremap(dev->hw_base, 0x1000);
1688
1689	reset_chip (dev);
1690  
1691	write_fs (dev, SARMODE0, 0 
1692		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1693		  | (1 * SARMODE0_INTMODE_READCLEAR)
1694		  | (1 * SARMODE0_CWRE)
1695		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1696			  SARMODE0_PRPWT_FS155_3)
1697		  | (1 * SARMODE0_CALSUP_1)
1698		  | (IS_FS50(dev) ? (0
1699				   | SARMODE0_RXVCS_32
1700				   | SARMODE0_ABRVCS_32 
1701				   | SARMODE0_TXVCS_32):
1702		                  (0
1703				   | SARMODE0_RXVCS_1k
1704				   | SARMODE0_ABRVCS_1k 
1705				   | SARMODE0_TXVCS_1k)));
1706
1707	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1708	   1ms. */
1709	to = 100;
1710	while (--to) {
1711		isr = read_fs (dev, ISR);
1712
1713		/* This bit is documented as "RESERVED" */
1714		if (isr & ISR_INIT_ERR) {
1715			printk (KERN_ERR "Error initializing the FS... \n");
1716			goto unmap;
1717		}
1718		if (isr & ISR_INIT) {
1719			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1720			break;
1721		}
1722
1723		/* Try again after 10ms. */
1724		msleep(10);
1725	}
1726
1727	if (!to) {
1728		printk (KERN_ERR "timeout initializing the FS... \n");
1729		goto unmap;
1730	}
1731
1732	/* XXX fix for fs155 */
1733	dev->channel_mask = 0x1f; 
1734	dev->channo = 0;
1735
1736	/* AN3: 10 */
1737	write_fs (dev, SARMODE1, 0 
1738		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1739		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1740		  | (1 * SARMODE1_DCRM)
1741		  | (1 * SARMODE1_DCOAM)
1742		  | (0 * SARMODE1_OAMCRC)
1743		  | (0 * SARMODE1_DUMPE)
1744		  | (0 * SARMODE1_GPLEN) 
1745		  | (0 * SARMODE1_GNAM)
1746		  | (0 * SARMODE1_GVAS)
1747		  | (0 * SARMODE1_GPAS)
1748		  | (1 * SARMODE1_GPRI)
1749		  | (0 * SARMODE1_PMS)
1750		  | (0 * SARMODE1_GFCR)
1751		  | (1 * SARMODE1_HECM2)
1752		  | (1 * SARMODE1_HECM1)
1753		  | (1 * SARMODE1_HECM0)
1754		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1755		  | (0 * 0xff) /* XXX FS155 */);
1756
1757
1758	/* Cal prescale etc */
1759
1760	/* AN3: 11 */
1761	write_fs (dev, TMCONF, 0x0000000f);
1762	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1763	write_fs (dev, 0x80, 0x000F00E4);
1764
1765	/* AN3: 12 */
1766	write_fs (dev, CELLOSCONF, 0
1767		  | (   0 * CELLOSCONF_CEN)
1768		  | (       CELLOSCONF_SC1)
1769		  | (0x80 * CELLOSCONF_COBS)
1770		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1771		  | (num  * CELLOSCONF_COST));/* after a hint from Hang. 
1772					       * performance jumped 50->70... */
1773
1774	/* Magic value by Hang */
1775	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1776
1777	if (IS_FS50 (dev)) {
1778		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1779		dev->atm_dev->ci_range.vpi_bits = 12;
1780		dev->atm_dev->ci_range.vci_bits = 16;
1781		dev->nchannels = FS50_NR_CHANNELS;
1782	} else {
1783		write_fs (dev, RAS0, RAS0_DCD_XHLT 
1784			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1785			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1786		/* We can chose the split arbitrarily. We might be able to 
1787		   support more. Whatever. This should do for now. */
1788		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1789		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1790    
1791		/* Address bits we can't use should be compared to 0. */
1792		write_fs (dev, RAC, 0);
1793
1794		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1795		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1796		 * other bits, then compare with 0, which is exactly what we
1797		 * want. */
1798		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1799		dev->nchannels = FS155_NR_CHANNELS;
1800	}
1801	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1802				 GFP_KERNEL);
1803	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1804		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1805
1806	if (!dev->atm_vccs) {
1807		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1808		/* XXX Clean up..... */
1809		goto unmap;
1810	}
1811
1812	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1813	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n", 
1814		    dev->atm_vccs, dev->nchannels / 8);
1815
1816	if (!dev->tx_inuse) {
1817		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1818		/* XXX Clean up..... */
1819		goto unmap;
1820	}
1821	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1822	/* -- RAS2 : FS50 only: Default is OK. */
1823
1824	/* DMAMODE, default should be OK. -- REW */
1825	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1826
1827	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1828	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1829	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1830	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1831
1832	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1833		init_fp (dev, &dev->rx_fp[i], RXB_FP(i), 
1834			 rx_buf_sizes[i], rx_pool_sizes[i]);
1835		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1836	}
1837
1838
1839	for (i=0;i < FS_NR_RX_QUEUES;i++)
1840		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1841
1842	dev->irq = pci_dev->irq;
1843	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1844		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1845		/* XXX undo all previous stuff... */
1846		goto unmap;
1847	}
1848	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1849  
1850	/* We want to be notified of most things. Just the statistics count
1851	   overflows are not interesting */
1852	write_fs (dev, IMR, 0
1853		  | ISR_RBRQ0_W 
1854		  | ISR_RBRQ1_W 
1855		  | ISR_RBRQ2_W 
1856		  | ISR_RBRQ3_W 
1857		  | ISR_TBRQ_W
1858		  | ISR_CSQ_W);
1859
1860	write_fs (dev, SARMODE0, 0 
1861		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1862		  | (1 * SARMODE0_GINT)
1863		  | (1 * SARMODE0_INTMODE_READCLEAR)
1864		  | (0 * SARMODE0_CWRE)
1865		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5: 
1866		                  SARMODE0_PRPWT_FS155_3)
1867		  | (1 * SARMODE0_CALSUP_1)
1868		  | (IS_FS50 (dev)?(0
1869				    | SARMODE0_RXVCS_32
1870				    | SARMODE0_ABRVCS_32 
1871				    | SARMODE0_TXVCS_32):
1872		                   (0
1873				    | SARMODE0_RXVCS_1k
1874				    | SARMODE0_ABRVCS_1k 
1875				    | SARMODE0_TXVCS_1k))
1876		  | (1 * SARMODE0_RUN));
1877
1878	init_phy (dev, PHY_NTC_INIT);
1879
1880	if (loopback == 2) {
1881		write_phy (dev, 0x39, 0x000e);
1882	}
1883
1884#ifdef FS_POLL_FREQ
1885	init_timer (&dev->timer);
1886	dev->timer.data = (unsigned long) dev;
1887	dev->timer.function = fs_poll;
1888	dev->timer.expires = jiffies + FS_POLL_FREQ;
1889	add_timer (&dev->timer);
1890#endif
1891
1892	dev->atm_dev->dev_data = dev;
1893  
1894	func_exit ();
1895	return 0;
1896unmap:
1897	iounmap(dev->base);
1898	return 1;
1899}
1900
1901static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1902				       const struct pci_device_id *ent) 
1903{
1904	struct atm_dev *atm_dev;
1905	struct fs_dev *fs_dev;
1906	
1907	if (pci_enable_device(pci_dev)) 
1908		goto err_out;
1909
1910	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1911	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1912		    fs_dev, sizeof (struct fs_dev));
1913	if (!fs_dev)
1914		goto err_out;
1915	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1916	if (!atm_dev)
1917		goto err_out_free_fs_dev;
1918  
1919	fs_dev->pci_dev = pci_dev;
1920	fs_dev->atm_dev = atm_dev;
1921	fs_dev->flags = ent->driver_data;
1922
1923	if (fs_init(fs_dev))
1924		goto err_out_free_atm_dev;
1925
1926	fs_dev->next = fs_boards;
1927	fs_boards = fs_dev;
1928	return 0;
1929
1930 err_out_free_atm_dev:
1931	atm_dev_deregister(atm_dev);
1932 err_out_free_fs_dev:
1933 	kfree(fs_dev);
1934 err_out:
1935	return -ENODEV;
1936}
1937
1938static void __devexit firestream_remove_one (struct pci_dev *pdev)
1939{
1940	int i;
1941	struct fs_dev *dev, *nxtdev;
1942	struct fs_vcc *vcc;
1943	struct FS_BPENTRY *fp, *nxt;
1944  
1945	func_enter ();
1946
1947#if 0
1948	printk ("hptxq:\n");
1949	for (i=0;i<60;i++) {
1950		printk ("%d: %08x %08x %08x %08x \n", 
1951			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1952		qp++;
1953		if (qp >= 60) qp = 0;
1954	}
1955
1956	printk ("descriptors:\n");
1957	for (i=0;i<60;i++) {
1958		printk ("%d: %p: %08x %08x %p %p\n", 
1959			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1960		qd++;
1961		if (qd >= 60) qd = 0;
1962	}
1963#endif
1964
1965	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1966		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1967
1968		/* XXX Hit all the tx channels too! */
1969
1970		for (i=0;i < dev->nchannels;i++) {
1971			if (dev->atm_vccs[i]) {
1972				vcc = FS_VCC (dev->atm_vccs[i]);
1973				submit_command (dev,  &dev->hp_txq,
1974						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1975				submit_command (dev,  &dev->hp_txq,
1976						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1977
1978			}
1979		}
1980
1981		/* XXX Wait a while for the chip to release all buffers. */
1982
1983		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1984			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1985			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1986				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1987				dev_kfree_skb_any (fp->skb);
1988				nxt = bus_to_virt (fp->next);
1989				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1990				kfree (fp);
1991			}
1992			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1993			dev_kfree_skb_any (fp->skb);
1994			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1995			kfree (fp);
1996		}
1997
1998		/* Hang the chip in "reset", prevent it clobbering memory that is
1999		   no longer ours. */
2000		reset_chip (dev);
2001
2002		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2003		free_irq (dev->irq, dev);
2004		del_timer (&dev->timer);
2005
2006		atm_dev_deregister(dev->atm_dev);
2007		free_queue (dev, &dev->hp_txq);
2008		free_queue (dev, &dev->lp_txq);
2009		free_queue (dev, &dev->tx_relq);
2010		free_queue (dev, &dev->st_q);
2011
2012		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2013		kfree (dev->atm_vccs);
2014
2015		for (i=0;i< FS_NR_FREE_POOLS;i++)
2016			free_freepool (dev, &dev->rx_fp[i]);
2017    
2018		for (i=0;i < FS_NR_RX_QUEUES;i++)
2019			free_queue (dev, &dev->rx_rq[i]);
2020
2021		iounmap(dev->base);
2022		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2023		nxtdev = dev->next;
2024		kfree (dev);
2025	}
2026
2027	func_exit ();
2028}
2029
2030static struct pci_device_id firestream_pci_tbl[] = {
2031	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2032	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2033	{ 0, }
2034};
2035
2036MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2037
2038static struct pci_driver firestream_driver = {
2039	.name		= "firestream",
2040	.id_table	= firestream_pci_tbl,
2041	.probe		= firestream_init_one,
2042	.remove		= __devexit_p(firestream_remove_one),
2043};
2044
2045static int __init firestream_init_module (void)
2046{
2047	int error;
2048
2049	func_enter ();
2050	error = pci_register_driver(&firestream_driver);
2051	func_exit ();
2052	return error;
2053}
2054
2055static void __exit firestream_cleanup_module(void)
2056{
2057	pci_unregister_driver(&firestream_driver);
2058}
2059
2060module_init(firestream_init_module);
2061module_exit(firestream_cleanup_module);
2062
2063MODULE_LICENSE("GPL");
2064
2065
2066
v4.6
   1
   2/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
   3 *                            FireStream  50 (MB86695) device driver 
   4 */
   5 
   6/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl 
   7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA 
   8 * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd 
   9 */
  10
  11/*
  12  This program is free software; you can redistribute it and/or modify
  13  it under the terms of the GNU General Public License as published by
  14  the Free Software Foundation; either version 2 of the License, or
  15  (at your option) any later version.
  16
  17  This program is distributed in the hope that it will be useful,
  18  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20  GNU General Public License for more details.
  21
  22  You should have received a copy of the GNU General Public License
  23  along with this program; if not, write to the Free Software
  24  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25
  26  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  27  system and in the file COPYING in the Linux kernel source.
  28*/
  29
  30
  31#include <linux/module.h>
  32#include <linux/sched.h>
  33#include <linux/kernel.h>
  34#include <linux/mm.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/errno.h>
  38#include <linux/atm.h>
  39#include <linux/atmdev.h>
  40#include <linux/sonet.h>
  41#include <linux/skbuff.h>
  42#include <linux/netdevice.h>
  43#include <linux/delay.h>
  44#include <linux/ioport.h> /* for request_region */
  45#include <linux/uio.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/capability.h>
  49#include <linux/bitops.h>
  50#include <linux/slab.h>
  51#include <asm/byteorder.h>
 
  52#include <asm/string.h>
  53#include <asm/io.h>
  54#include <linux/atomic.h>
  55#include <asm/uaccess.h>
  56#include <linux/wait.h>
  57
  58#include "firestream.h"
  59
  60static int loopback = 0;
  61static int num=0x5a;
  62
  63/* According to measurements (but they look suspicious to me!) done in
  64 * '97, 37% of the packets are one cell in size. So it pays to have
  65 * buffers allocated at that size. A large jump in percentage of
  66 * packets occurs at packets around 536 bytes in length. So it also
  67 * pays to have those pre-allocated. Unfortunately, we can't fully
  68 * take advantage of this as the majority of the packets is likely to
  69 * be TCP/IP (As where obviously the measurement comes from) There the
  70 * link would be opened with say a 1500 byte MTU, and we can't handle
  71 * smaller buffers more efficiently than the larger ones. -- REW
  72 */
  73
  74/* Due to the way Linux memory management works, specifying "576" as
  75 * an allocation size here isn't going to help. They are allocated
  76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
  77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
  78
  79/* This is all guesswork. Hard numbers to back this up or disprove this, 
  80 * are appreciated. -- REW */
  81
  82/* The last entry should be about 64k. However, the "buffer size" is
  83 * passed to the chip in a 16 bit field. I don't know how "65536"
  84 * would be interpreted. -- REW */
  85
  86#define NP FS_NR_FREE_POOLS
  87static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
  88/* log2:                 7     8     9    10    11    12    14     16 */
  89
  90#if 0
  91static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
  92#else
  93/* debug */
  94static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
  95#endif
  96/* log2:                 10    10    9    8     7     6     5      5  */
  97/* sumlog2:              17    18    18   18    18    18    19     21 */
  98/* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
  99/* tot mem: almost 4M */
 100
 101/* NP is shorter, so that it fits on a single line. */
 102#undef NP
 103
 104
 105/* Small hardware gotcha:
 106
 107   The FS50 CAM (VP/VC match registers) always take the lowest channel
 108   number that matches. This is not a problem.
 109
 110   However, they also ignore whether the channel is enabled or
 111   not. This means that if you allocate channel 0 to 1.2 and then
 112   channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
 113   match channel for channel 0 will "steal" the traffic from channel
 114   1, even if you correctly disable channel 0.
 115
 116   Workaround: 
 117
 118   - When disabling channels, write an invalid VP/VC value to the
 119   match register. (We use 0xffffffff, which in the worst case 
 120   matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
 121   anything as some "when not in use, program to 0" bits are now
 122   programmed to 1...)
 123
 124   - Don't initialize the match registers to 0, as 0.0 is a valid
 125   channel.
 126*/
 127
 128
 129/* Optimization hints and tips.
 130
 131   The FireStream chips are very capable of reducing the amount of
 132   "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
 133   action. You could try to minimize this a bit. 
 134
 135   Besides that, the userspace->kernel copy and the PCI bus are the
 136   performance limiting issues for this driver.
 137
 138   You could queue up a bunch of outgoing packets without telling the
 139   FireStream. I'm not sure that's going to win you much though. The
 140   Linux layer won't tell us in advance when it's not going to give us
 141   any more packets in a while. So this is tricky to implement right without
 142   introducing extra delays. 
 143  
 144   -- REW
 145 */
 146
 147
 148
 149
 150/* The strings that define what the RX queue entry is all about. */
 151/* Fujitsu: Please tell me which ones can have a pointer to a 
 152   freepool descriptor! */
 153static char *res_strings[] = {
 154	"RX OK: streaming not EOP", 
 155	"RX OK: streaming EOP", 
 156	"RX OK: Single buffer packet", 
 157	"RX OK: packet mode", 
 158	"RX OK: F4 OAM (end to end)", 
 159	"RX OK: F4 OAM (Segment)", 
 160	"RX OK: F5 OAM (end to end)", 
 161	"RX OK: F5 OAM (Segment)", 
 162	"RX OK: RM cell", 
 163	"RX OK: TRANSP cell", 
 164	"RX OK: TRANSPC cell", 
 165	"Unmatched cell", 
 166	"reserved 12", 
 167	"reserved 13", 
 168	"reserved 14", 
 169	"Unrecognized cell", 
 170	"reserved 16", 
 171	"reassembly abort: AAL5 abort", 
 172	"packet purged", 
 173	"packet ageing timeout", 
 174	"channel ageing timeout", 
 175	"calculated length error", 
 176	"programmed length limit error", 
 177	"aal5 crc32 error", 
 178	"oam transp or transpc crc10 error", 
 179	"reserved 25", 
 180	"reserved 26", 
 181	"reserved 27", 
 182	"reserved 28", 
 183	"reserved 29", 
 184	"reserved 30", 
 185	"reassembly abort: no buffers", 
 186	"receive buffer overflow", 
 187	"change in GFC", 
 188	"receive buffer full", 
 189	"low priority discard - no receive descriptor", 
 190	"low priority discard - missing end of packet", 
 191	"reserved 41", 
 192	"reserved 42", 
 193	"reserved 43", 
 194	"reserved 44", 
 195	"reserved 45", 
 196	"reserved 46", 
 197	"reserved 47", 
 198	"reserved 48", 
 199	"reserved 49", 
 200	"reserved 50", 
 201	"reserved 51", 
 202	"reserved 52", 
 203	"reserved 53", 
 204	"reserved 54", 
 205	"reserved 55", 
 206	"reserved 56", 
 207	"reserved 57", 
 208	"reserved 58", 
 209	"reserved 59", 
 210	"reserved 60", 
 211	"reserved 61", 
 212	"reserved 62", 
 213	"reserved 63", 
 214};  
 215
 216static char *irq_bitname[] = {
 217	"LPCO",
 218	"DPCO",
 219	"RBRQ0_W",
 220	"RBRQ1_W",
 221	"RBRQ2_W",
 222	"RBRQ3_W",
 223	"RBRQ0_NF",
 224	"RBRQ1_NF",
 225	"RBRQ2_NF",
 226	"RBRQ3_NF",
 227	"BFP_SC",
 228	"INIT",
 229	"INIT_ERR",
 230	"USCEO",
 231	"UPEC0",
 232	"VPFCO",
 233	"CRCCO",
 234	"HECO",
 235	"TBRQ_W",
 236	"TBRQ_NF",
 237	"CTPQ_E",
 238	"GFC_C0",
 239	"PCI_FTL",
 240	"CSQ_W",
 241	"CSQ_NF",
 242	"EXT_INT",
 243	"RXDMA_S"
 244};
 245
 246
 247#define PHY_EOF -1
 248#define PHY_CLEARALL -2
 249
 250struct reginit_item {
 251	int reg, val;
 252};
 253
 254
 255static struct reginit_item PHY_NTC_INIT[] = {
 256	{ PHY_CLEARALL, 0x40 }, 
 257	{ 0x12,  0x0001 },
 258	{ 0x13,  0x7605 },
 259	{ 0x1A,  0x0001 },
 260	{ 0x1B,  0x0005 },
 261	{ 0x38,  0x0003 },
 262	{ 0x39,  0x0006 },   /* changed here to make loopback */
 263	{ 0x01,  0x5262 },
 264	{ 0x15,  0x0213 },
 265	{ 0x00,  0x0003 },
 266	{ PHY_EOF, 0},    /* -1 signals end of list */
 267};
 268
 269
 270/* Safetyfeature: If the card interrupts more than this number of times
 271   in a jiffy (1/100th of a second) then we just disable the interrupt and
 272   print a message. This prevents the system from hanging. 
 273
 274   150000 packets per second is close to the limit a PC is going to have
 275   anyway. We therefore have to disable this for production. -- REW */
 276#undef IRQ_RATE_LIMIT // 100
 277
 278/* Interrupts work now. Unlike serial cards, ATM cards don't work all
 279   that great without interrupts. -- REW */
 280#undef FS_POLL_FREQ // 100
 281
 282/* 
 283   This driver can spew a whole lot of debugging output at you. If you
 284   need maximum performance, you should disable the DEBUG define. To
 285   aid in debugging in the field, I'm leaving the compile-time debug
 286   features enabled, and disable them "runtime". That allows me to
 287   instruct people with problems to enable debugging without requiring
 288   them to recompile... -- REW
 289*/
 290#define DEBUG
 291
 292#ifdef DEBUG
 293#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
 294#else
 295#define fs_dprintk(f, str...) /* nothing */
 296#endif
 297
 298
 299static int fs_keystream = 0;
 300
 301#ifdef DEBUG
 302/* I didn't forget to set this to zero before shipping. Hit me with a stick 
 303   if you get this with the debug default not set to zero again. -- REW */
 304static int fs_debug = 0;
 305#else
 306#define fs_debug 0
 307#endif
 308
 309#ifdef MODULE
 310#ifdef DEBUG 
 311module_param(fs_debug, int, 0644);
 312#endif
 313module_param(loopback, int, 0);
 314module_param(num, int, 0);
 315module_param(fs_keystream, int, 0);
 316/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
 317#endif
 318
 319
 320#define FS_DEBUG_FLOW    0x00000001
 321#define FS_DEBUG_OPEN    0x00000002
 322#define FS_DEBUG_QUEUE   0x00000004
 323#define FS_DEBUG_IRQ     0x00000008
 324#define FS_DEBUG_INIT    0x00000010
 325#define FS_DEBUG_SEND    0x00000020
 326#define FS_DEBUG_PHY     0x00000040
 327#define FS_DEBUG_CLEANUP 0x00000080
 328#define FS_DEBUG_QOS     0x00000100
 329#define FS_DEBUG_TXQ     0x00000200
 330#define FS_DEBUG_ALLOC   0x00000400
 331#define FS_DEBUG_TXMEM   0x00000800
 332#define FS_DEBUG_QSIZE   0x00001000
 333
 334
 335#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
 336#define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
 337
 338
 339static struct fs_dev *fs_boards = NULL;
 340
 341#ifdef DEBUG
 342
 343static void my_hd (void *addr, int len)
 344{
 345	int j, ch;
 346	unsigned char *ptr = addr;
 347
 348	while (len > 0) {
 349		printk ("%p ", ptr);
 350		for (j=0;j < ((len < 16)?len:16);j++) {
 351			printk ("%02x %s", ptr[j], (j==7)?" ":"");
 352		}
 353		for (  ;j < 16;j++) {
 354			printk ("   %s", (j==7)?" ":"");
 355		}
 356		for (j=0;j < ((len < 16)?len:16);j++) {
 357			ch = ptr[j];
 358			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
 359		}
 360		printk ("\n");
 361		ptr += 16;
 362		len -= 16;
 363	}
 364}
 365#else /* DEBUG */
 366static void my_hd (void *addr, int len){}
 367#endif /* DEBUG */
 368
 369/********** free an skb (as per ATM device driver documentation) **********/
 370
 371/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
 372 * I copied it over from the ambassador driver. -- REW */
 373
 374static inline void fs_kfree_skb (struct sk_buff * skb) 
 375{
 376	if (ATM_SKB(skb)->vcc->pop)
 377		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 378	else
 379		dev_kfree_skb_any (skb);
 380}
 381
 382
 383
 384
 385/* It seems the ATM forum recommends this horribly complicated 16bit
 386 * floating point format. Turns out the Ambassador uses the exact same
 387 * encoding. I just copied it over. If Mitch agrees, I'll move it over
 388 * to the atm_misc file or something like that. (and remove it from 
 389 * here and the ambassador driver) -- REW
 390 */
 391
 392/* The good thing about this format is that it is monotonic. So, 
 393   a conversion routine need not be very complicated. To be able to
 394   round "nearest" we need to take along a few extra bits. Lets
 395   put these after 16 bits, so that we can just return the top 16
 396   bits of the 32bit number as the result:
 397
 398   int mr (unsigned int rate, int r) 
 399     {
 400     int e = 16+9;
 401     static int round[4]={0, 0, 0xffff, 0x8000};
 402     if (!rate) return 0;
 403     while (rate & 0xfc000000) {
 404       rate >>= 1;
 405       e++;
 406     }
 407     while (! (rate & 0xfe000000)) {
 408       rate <<= 1;
 409       e--;
 410     }
 411
 412// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
 413     rate &= ~0x02000000;
 414// Next add in the exponent
 415     rate |= e << (16+9);
 416// And perform the rounding:
 417     return (rate + round[r]) >> 16;
 418   }
 419
 420   14 lines-of-code. Compare that with the 120 that the Ambassador
 421   guys needed. (would be 8 lines shorter if I'd try to really reduce
 422   the number of lines:
 423
 424   int mr (unsigned int rate, int r) 
 425   {
 426     int e = 16+9;
 427     static int round[4]={0, 0, 0xffff, 0x8000};
 428     if (!rate) return 0;
 429     for (;  rate & 0xfc000000 ;rate >>= 1, e++);
 430     for (;!(rate & 0xfe000000);rate <<= 1, e--);
 431     return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
 432   }
 433
 434   Exercise for the reader: Remove one more line-of-code, without
 435   cheating. (Just joining two lines is cheating). (I know it's
 436   possible, don't think you've beat me if you found it... If you
 437   manage to lose two lines or more, keep me updated! ;-)
 438
 439   -- REW */
 440
 441
 442#define ROUND_UP      1
 443#define ROUND_DOWN    2
 444#define ROUND_NEAREST 3
 445/********** make rate (not quite as much fun as Horizon) **********/
 446
 447static int make_rate(unsigned int rate, int r,
 448		      u16 *bits, unsigned int *actual)
 449{
 450	unsigned char exp = -1; /* hush gcc */
 451	unsigned int man = -1;  /* hush gcc */
 452  
 453	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
 454  
 455	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
 456	   given 5-bit e and 9-bit m:
 457	   rate = EITHER (1+m/2^9)*2^e    OR 0
 458	   bits = EITHER 1<<14 | e<<9 | m OR 0
 459	   (bit 15 is "reserved", bit 14 "non-zero")
 460	   smallest rate is 0 (special representation)
 461	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
 462	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
 463	   simple algorithm:
 464	   find position of top bit, this gives e
 465	   remove top bit and shift (rounding if feeling clever) by 9-e
 466	*/
 467	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
 468	   representable. // This should move into the ambassador driver
 469	   when properly merged. -- REW */
 470  
 471	if (rate > 0xffc00000U) {
 472		/* larger than largest representable rate */
 473    
 474		if (r == ROUND_UP) {
 475			return -EINVAL;
 476		} else {
 477			exp = 31;
 478			man = 511;
 479		}
 480    
 481	} else if (rate) {
 482		/* representable rate */
 483    
 484		exp = 31;
 485		man = rate;
 486    
 487		/* invariant: rate = man*2^(exp-31) */
 488		while (!(man & (1<<31))) {
 489			exp = exp - 1;
 490			man = man<<1;
 491		}
 492    
 493		/* man has top bit set
 494		   rate = (2^31+(man-2^31))*2^(exp-31)
 495		   rate = (1+(man-2^31)/2^31)*2^exp 
 496		*/
 497		man = man<<1;
 498		man &= 0xffffffffU; /* a nop on 32-bit systems */
 499		/* rate = (1+man/2^32)*2^exp
 500    
 501		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
 502		   time to lose significance... we want m in the range 0 to 2^9-1
 503		   rounding presents a minor problem... we first decide which way
 504		   we are rounding (based on given rounding direction and possibly
 505		   the bits of the mantissa that are to be discarded).
 506		*/
 507
 508		switch (r) {
 509		case ROUND_DOWN: {
 510			/* just truncate */
 511			man = man>>(32-9);
 512			break;
 513		}
 514		case ROUND_UP: {
 515			/* check all bits that we are discarding */
 516			if (man & (~0U>>9)) {
 517				man = (man>>(32-9)) + 1;
 518				if (man == (1<<9)) {
 519					/* no need to check for round up outside of range */
 520					man = 0;
 521					exp += 1;
 522				}
 523			} else {
 524				man = (man>>(32-9));
 525			}
 526			break;
 527		}
 528		case ROUND_NEAREST: {
 529			/* check msb that we are discarding */
 530			if (man & (1<<(32-9-1))) {
 531				man = (man>>(32-9)) + 1;
 532				if (man == (1<<9)) {
 533					/* no need to check for round up outside of range */
 534					man = 0;
 535					exp += 1;
 536				}
 537			} else {
 538				man = (man>>(32-9));
 539			}
 540			break;
 541		}
 542		}
 543    
 544	} else {
 545		/* zero rate - not representable */
 546    
 547		if (r == ROUND_DOWN) {
 548			return -EINVAL;
 549		} else {
 550			exp = 0;
 551			man = 0;
 552		}
 553	}
 554  
 555	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
 556  
 557	if (bits)
 558		*bits = /* (1<<14) | */ (exp<<9) | man;
 559  
 560	if (actual)
 561		*actual = (exp >= 9)
 562			? (1 << exp) + (man << (exp-9))
 563			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
 564  
 565	return 0;
 566}
 567
 568
 569
 570
 571/* FireStream access routines */
 572/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
 573   certain registers or to just log all accesses. */
 574
 575static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
 576{
 577	writel (val, dev->base + offset);
 578}
 579
 580
 581static inline u32  read_fs (struct fs_dev *dev, int offset)
 582{
 583	return readl (dev->base + offset);
 584}
 585
 586
 587
 588static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
 589{
 590	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
 591}
 592
 593
 594static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
 595{
 596	u32 wp;
 597	struct FS_QENTRY *cqe;
 598
 599	/* XXX Sanity check: the write pointer can be checked to be 
 600	   still the same as the value passed as qe... -- REW */
 601	/*  udelay (5); */
 602	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
 603		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n", 
 604			    q->offset);
 605		schedule ();
 606	}
 607
 608	wp &= ~0xf;
 609	cqe = bus_to_virt (wp);
 610	if (qe != cqe) {
 611		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
 612	}
 613
 614	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
 615
 616	{
 617		static int c;
 618		if (!(c++ % 100))
 619			{
 620				int rp, wp;
 621				rp =  read_fs (dev, Q_RP(q->offset));
 622				wp =  read_fs (dev, Q_WP(q->offset));
 623				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n", 
 624					    q->offset, rp, wp, wp-rp);
 625			}
 626	}
 627}
 628
 629#ifdef DEBUG_EXTRA
 630static struct FS_QENTRY pq[60];
 631static int qp;
 632
 633static struct FS_BPENTRY dq[60];
 634static int qd;
 635static void *da[60];
 636#endif 
 637
 638static void submit_queue (struct fs_dev *dev, struct queue *q, 
 639			  u32 cmd, u32 p1, u32 p2, u32 p3)
 640{
 641	struct FS_QENTRY *qe;
 642
 643	qe = get_qentry (dev, q);
 644	qe->cmd = cmd;
 645	qe->p0 = p1;
 646	qe->p1 = p2;
 647	qe->p2 = p3;
 648	submit_qentry (dev,  q, qe);
 649
 650#ifdef DEBUG_EXTRA
 651	pq[qp].cmd = cmd;
 652	pq[qp].p0 = p1;
 653	pq[qp].p1 = p2;
 654	pq[qp].p2 = p3;
 655	qp++;
 656	if (qp >= 60) qp = 0;
 657#endif
 658}
 659
 660/* Test the "other" way one day... -- REW */
 661#if 1
 662#define submit_command submit_queue
 663#else
 664
 665static void submit_command (struct fs_dev *dev, struct queue *q, 
 666			    u32 cmd, u32 p1, u32 p2, u32 p3)
 667{
 668	write_fs (dev, CMDR0, cmd);
 669	write_fs (dev, CMDR1, p1);
 670	write_fs (dev, CMDR2, p2);
 671	write_fs (dev, CMDR3, p3);
 672}
 673#endif
 674
 675
 676
 677static void process_return_queue (struct fs_dev *dev, struct queue *q)
 678{
 679	long rq;
 680	struct FS_QENTRY *qe;
 681	void *tc;
 682  
 683	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 684		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq); 
 685		qe = bus_to_virt (rq);
 686    
 687		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n", 
 688			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 689
 690		switch (STATUS_CODE (qe)) {
 691		case 5:
 692			tc = bus_to_virt (qe->p0);
 693			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
 694			kfree (tc);
 695			break;
 696		}
 697    
 698		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 699	}
 700}
 701
 702
 703static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
 704{
 705	long rq;
 706	long tmp;
 707	struct FS_QENTRY *qe;
 708	struct sk_buff *skb;
 709	struct FS_BPENTRY *td;
 710
 711	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 712		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq); 
 713		qe = bus_to_virt (rq);
 714    
 715		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n", 
 716			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 717
 718		if (STATUS_CODE (qe) != 2)
 719			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n", 
 720				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
 721
 722
 723		switch (STATUS_CODE (qe)) {
 724		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
 725			/* Fall through */
 726		case 0x02:
 727			/* Process a real txdone entry. */
 728			tmp = qe->p0;
 729			if (tmp & 0x0f)
 730				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
 731			tmp &= ~0x0f;
 732			td = bus_to_virt (tmp);
 733
 734			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n", 
 735				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
 736      
 737			skb = td->skb;
 738			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
 
 739				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
 740				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
 741			}
 742			td->dev->ntxpckts--;
 743
 744			{
 745				static int c=0;
 746	
 747				if (!(c++ % 100)) {
 748					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
 749				}
 750			}
 751
 752			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 753
 754			fs_dprintk (FS_DEBUG_TXMEM, "i");
 755			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
 756			fs_kfree_skb (skb);
 757
 758			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td); 
 759			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
 760			kfree (td);
 761			break;
 762		default:
 763			/* Here we get the tx purge inhibit command ... */
 764			/* Action, I believe, is "don't do anything". -- REW */
 765			;
 766		}
 767    
 768		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 769	}
 770}
 771
 772
 773static void process_incoming (struct fs_dev *dev, struct queue *q)
 774{
 775	long rq;
 776	struct FS_QENTRY *qe;
 777	struct FS_BPENTRY *pe;    
 778	struct sk_buff *skb;
 779	unsigned int channo;
 780	struct atm_vcc *atm_vcc;
 781
 782	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
 783		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq); 
 784		qe = bus_to_virt (rq);
 785    
 786		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ", 
 787			    qe->cmd, qe->p0, qe->p1, qe->p2);
 788
 789		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n", 
 790			    STATUS_CODE (qe), 
 791			    res_strings[STATUS_CODE(qe)]);
 792
 793		pe = bus_to_virt (qe->p0);
 794		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n", 
 795			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize, 
 796			    pe->skb, pe->fp);
 797      
 798		channo = qe->cmd & 0xffff;
 799
 800		if (channo < dev->nchannels)
 801			atm_vcc = dev->atm_vccs[channo];
 802		else
 803			atm_vcc = NULL;
 804
 805		/* Single buffer packet */
 806		switch (STATUS_CODE (qe)) {
 807		case 0x1:
 808			/* Fall through for streaming mode */
 809		case 0x2:/* Packet received OK.... */
 810			if (atm_vcc) {
 811				skb = pe->skb;
 812				pe->fp->n--;
 813#if 0
 814				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
 815				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
 816#endif
 817				skb_put (skb, qe->p1 & 0xffff); 
 818				ATM_SKB(skb)->vcc = atm_vcc;
 819				atomic_inc(&atm_vcc->stats->rx);
 820				__net_timestamp(skb);
 821				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
 822				atm_vcc->push (atm_vcc, skb);
 823				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 824				kfree (pe);
 825			} else {
 826				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
 827			}
 828			break;
 829		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
 830			     has been consumed and needs to be processed. -- REW */
 831			if (qe->p1 & 0xffff) {
 832				pe = bus_to_virt (qe->p0);
 833				pe->fp->n--;
 834				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
 835				dev_kfree_skb_any (pe->skb);
 836				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
 837				kfree (pe);
 838			}
 839			if (atm_vcc)
 840				atomic_inc(&atm_vcc->stats->rx_drop);
 841			break;
 842		case 0x1f: /*  Reassembly abort: no buffers. */
 843			/* Silently increment error counter. */
 844			if (atm_vcc)
 845				atomic_inc(&atm_vcc->stats->rx_drop);
 846			break;
 847		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
 848			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n", 
 849				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
 850		}
 851		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
 852	}
 853}
 854
 855
 856
 857#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
 858
 859static int fs_open(struct atm_vcc *atm_vcc)
 860{
 861	struct fs_dev *dev;
 862	struct fs_vcc *vcc;
 863	struct fs_transmit_config *tc;
 864	struct atm_trafprm * txtp;
 865	struct atm_trafprm * rxtp;
 866	/*  struct fs_receive_config *rc;*/
 867	/*  struct FS_QENTRY *qe; */
 868	int error;
 869	int bfp;
 870	int to;
 871	unsigned short tmc0;
 872	short vpi = atm_vcc->vpi;
 873	int vci = atm_vcc->vci;
 874
 875	func_enter ();
 876
 877	dev = FS_DEV(atm_vcc->dev);
 878	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n", 
 879		    dev, atm_vcc);
 880
 881	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
 882		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
 883
 884	if ((atm_vcc->qos.aal != ATM_AAL5) &&
 885	    (atm_vcc->qos.aal != ATM_AAL2))
 886	  return -EINVAL; /* XXX AAL0 */
 887
 888	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n", 
 889		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);	
 890
 891	/* XXX handle qos parameters (rate limiting) ? */
 892
 893	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
 894	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
 895	if (!vcc) {
 896		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
 897		return -ENOMEM;
 898	}
 899  
 900	atm_vcc->dev_data = vcc;
 901	vcc->last_skb = NULL;
 902
 903	init_waitqueue_head (&vcc->close_wait);
 904
 905	txtp = &atm_vcc->qos.txtp;
 906	rxtp = &atm_vcc->qos.rxtp;
 907
 908	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
 909		if (IS_FS50(dev)) {
 910			/* Increment the channel numer: take a free one next time.  */
 911			for (to=33;to;to--, dev->channo++) {
 912				/* We only have 32 channels */
 913				if (dev->channo >= 32)
 914					dev->channo = 0;
 915				/* If we need to do RX, AND the RX is inuse, try the next */
 916				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
 917					continue;
 918				/* If we need to do TX, AND the TX is inuse, try the next */
 919				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
 920					continue;
 921				/* Ok, both are free! (or not needed) */
 922				break;
 923			}
 924			if (!to) {
 925				printk ("No more free channels for FS50..\n");
 926				return -EBUSY;
 927			}
 928			vcc->channo = dev->channo;
 929			dev->channo &= dev->channel_mask;
 930      
 931		} else {
 932			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
 933			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
 934			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
 935				printk ("Channel is in use for FS155.\n");
 936				return -EBUSY;
 937			}
 938		}
 939		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n", 
 940			    vcc->channo, vcc->channo);
 941	}
 942
 943	if (DO_DIRECTION (txtp)) {
 944		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
 945		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
 946			    tc, sizeof (struct fs_transmit_config));
 947		if (!tc) {
 948			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
 949			return -ENOMEM;
 950		}
 951
 952		/* Allocate the "open" entry from the high priority txq. This makes
 953		   it most likely that the chip will notice it. It also prevents us
 954		   from having to wait for completion. On the other hand, we may
 955		   need to wait for completion anyway, to see if it completed
 956		   successfully. */
 957
 958		switch (atm_vcc->qos.aal) {
 959		case ATM_AAL2:
 960		case ATM_AAL0:
 961		  tc->flags = 0
 962		    | TC_FLAGS_TRANSPARENT_PAYLOAD
 963		    | TC_FLAGS_PACKET
 964		    | (1 << 28)
 965		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
 966		    | TC_FLAGS_CAL0;
 967		  break;
 968		case ATM_AAL5:
 969		  tc->flags = 0
 970			| TC_FLAGS_AAL5
 971			| TC_FLAGS_PACKET  /* ??? */
 972			| TC_FLAGS_TYPE_CBR
 973			| TC_FLAGS_CAL0;
 974		  break;
 975		default:
 976			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
 977			tc->flags = 0;
 978		}
 979		/* Docs are vague about this atm_hdr field. By the way, the FS
 980		 * chip makes odd errors if lower bits are set.... -- REW */
 981		tc->atm_hdr =  (vpi << 20) | (vci << 4); 
 982		tmc0 = 0;
 983		{
 984			int pcr = atm_pcr_goal (txtp);
 985
 986			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
 987
 988			/* XXX Hmm. officially we're only allowed to do this if rounding 
 989			   is round_down -- REW */
 990			if (IS_FS50(dev)) {
 991				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
 992			} else {
 993				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
 994			}
 995			if (!pcr) {
 996				/* no rate cap */
 997				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
 998			} else {
 999				int r;
1000				if (pcr < 0) {
1001					r = ROUND_DOWN;
1002					pcr = -pcr;
1003				} else {
1004					r = ROUND_UP;
1005				}
1006				error = make_rate (pcr, r, &tmc0, NULL);
1007				if (error) {
1008					kfree(tc);
1009					return error;
1010				}
1011			}
1012			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1013		}
1014      
1015		tc->TMC[0] = tmc0 | 0x4000;
1016		tc->TMC[1] = 0; /* Unused */
1017		tc->TMC[2] = 0; /* Unused */
1018		tc->TMC[3] = 0; /* Unused */
1019    
1020		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1021		tc->rtag[0] = 0; /* What should I do with routing tags??? 
1022				    -- Not used -- AS -- Thanks -- REW*/
1023		tc->rtag[1] = 0;
1024		tc->rtag[2] = 0;
1025
1026		if (fs_debug & FS_DEBUG_OPEN) {
1027			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1028			my_hd (tc, sizeof (*tc));
1029		}
1030
1031		/* We now use the "submit_command" function to submit commands to
1032		   the firestream. There is a define up near the definition of
1033		   that routine that switches this routine between immediate write
1034		   to the immediate command registers and queuing the commands in
1035		   the HPTXQ for execution. This last technique might be more
1036		   efficient if we know we're going to submit a whole lot of
1037		   commands in one go, but this driver is not setup to be able to
1038		   use such a construct. So it probably doen't matter much right
1039		   now. -- REW */
1040    
1041		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1042		submit_command (dev, &dev->hp_txq, 
1043				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1044				virt_to_bus (tc), 0, 0);
1045
1046		submit_command (dev, &dev->hp_txq, 
1047				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1048				0, 0, 0);
1049		set_bit (vcc->channo, dev->tx_inuse);
1050	}
1051
1052	if (DO_DIRECTION (rxtp)) {
1053		dev->atm_vccs[vcc->channo] = atm_vcc;
1054
1055		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1056			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1057		if (bfp >= FS_NR_FREE_POOLS) {
1058			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n", 
1059				    atm_vcc->qos.rxtp.max_sdu);
1060			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1061
1062			/* XXX clear tx inuse. Close TX part? */
1063			dev->atm_vccs[vcc->channo] = NULL;
1064			kfree (vcc);
1065			return -EINVAL;
1066		}
1067
1068		switch (atm_vcc->qos.aal) {
1069		case ATM_AAL0:
1070		case ATM_AAL2:
1071			submit_command (dev, &dev->hp_txq,
1072					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073					RC_FLAGS_TRANSP |
1074					RC_FLAGS_BFPS_BFP * bfp |
1075					RC_FLAGS_RXBM_PSB, 0, 0);
1076			break;
1077		case ATM_AAL5:
1078			submit_command (dev, &dev->hp_txq,
1079					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080					RC_FLAGS_AAL5 |
1081					RC_FLAGS_BFPS_BFP * bfp |
1082					RC_FLAGS_RXBM_PSB, 0, 0);
1083			break;
1084		};
1085		if (IS_FS50 (dev)) {
1086			submit_command (dev, &dev->hp_txq, 
1087					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1088					0x80 + vcc->channo,
1089					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1090		}
1091		submit_command (dev, &dev->hp_txq, 
1092				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1093				0, 0, 0);
1094	}
1095    
1096	/* Indicate we're done! */
1097	set_bit(ATM_VF_READY, &atm_vcc->flags);
1098
1099	func_exit ();
1100	return 0;
1101}
1102
1103
1104static void fs_close(struct atm_vcc *atm_vcc)
1105{
1106	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1107	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1108	struct atm_trafprm * txtp;
1109	struct atm_trafprm * rxtp;
1110
1111	func_enter ();
1112
1113	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1114
1115	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1116	if (vcc->last_skb) {
1117		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n", 
1118			    vcc->last_skb);
1119		/* We're going to wait for the last packet to get sent on this VC. It would
1120		   be impolite not to send them don't you think? 
1121		   XXX
1122		   We don't know which packets didn't get sent. So if we get interrupted in 
1123		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1124		   On the other hand, it's awfully convenient that we can abort a "close" that
1125		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1126		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1127	}
1128
1129	txtp = &atm_vcc->qos.txtp;
1130	rxtp = &atm_vcc->qos.rxtp;
1131  
1132
1133	/* See App note XXX (Unpublished as of now) for the reason for the 
1134	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1135
1136	if (DO_DIRECTION (txtp)) {
1137		submit_command (dev,  &dev->hp_txq,
1138				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1139		clear_bit (vcc->channo, dev->tx_inuse);
1140	}
1141
1142	if (DO_DIRECTION (rxtp)) {
1143		submit_command (dev,  &dev->hp_txq,
1144				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1145		dev->atm_vccs [vcc->channo] = NULL;
1146  
1147		/* This means that this is configured as a receive channel */
1148		if (IS_FS50 (dev)) {
1149			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1150			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1151			   (0xfff...) -- REW */
1152			submit_command (dev, &dev->hp_txq, 
1153					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1154					0x80 + vcc->channo, -1, 0 ); 
1155		}
1156	}
1157
1158	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159	kfree (vcc);
1160
1161	func_exit ();
1162}
1163
1164
1165static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1166{
1167	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1168	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1169	struct FS_BPENTRY *td;
1170
1171	func_enter ();
1172
1173	fs_dprintk (FS_DEBUG_TXMEM, "I");
1174	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n", 
1175		    atm_vcc, skb, vcc, dev);
1176
1177	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1178
1179	ATM_SKB(skb)->vcc = atm_vcc;
1180
1181	vcc->last_skb = skb;
1182
1183	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1184	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1185	if (!td) {
1186		/* Oops out of mem */
1187		return -ENOMEM;
1188	}
1189
1190	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n", 
1191		    *(int *) skb->data);
1192
1193	td->flags =  TD_EPI | TD_DATA | skb->len;
1194	td->next = 0;
1195	td->bsa  = virt_to_bus (skb->data);
1196	td->skb = skb;
1197	td->dev = dev;
1198	dev->ntxpckts++;
1199
1200#ifdef DEBUG_EXTRA
1201	da[qd] = td;
1202	dq[qd].flags = td->flags;
1203	dq[qd].next  = td->next;
1204	dq[qd].bsa   = td->bsa;
1205	dq[qd].skb   = td->skb;
1206	dq[qd].dev   = td->dev;
1207	qd++;
1208	if (qd >= 60) qd = 0;
1209#endif
1210
1211	submit_queue (dev, &dev->hp_txq, 
1212		      QE_TRANSMIT_DE | vcc->channo,
1213		      virt_to_bus (td), 0, 
1214		      virt_to_bus (td));
1215
1216	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n", 
1217		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1218		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1219		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1220		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1221
1222	func_exit ();
1223	return 0;
1224}
1225
1226
1227/* Some function placeholders for functions we don't yet support. */
1228
1229#if 0
1230static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1231{
1232	func_enter ();
1233	func_exit ();
1234	return -ENOIOCTLCMD;
1235}
1236
1237
1238static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1239			 void __user *optval,int optlen)
1240{
1241	func_enter ();
1242	func_exit ();
1243	return 0;
1244}
1245
1246
1247static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1248			 void __user *optval,unsigned int optlen)
1249{
1250	func_enter ();
1251	func_exit ();
1252	return 0;
1253}
1254
1255
1256static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1257		       unsigned long addr)
1258{
1259	func_enter ();
1260	func_exit ();
1261}
1262
1263
1264static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1265{
1266	func_enter ();
1267	func_exit ();
1268	return 0;
1269}
1270
1271
1272static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1273{
1274	func_enter ();
1275	func_exit ();
1276	return 0;
1277};
1278
1279#endif
1280
1281
1282static const struct atmdev_ops ops = {
1283	.open =         fs_open,
1284	.close =        fs_close,
1285	.send =         fs_send,
1286	.owner =        THIS_MODULE,
1287	/* ioctl:          fs_ioctl, */
1288	/* getsockopt:     fs_getsockopt, */
1289	/* setsockopt:     fs_setsockopt, */
1290	/* change_qos:     fs_change_qos, */
1291
1292	/* For now implement these internally here... */  
1293	/* phy_put:        fs_phy_put, */
1294	/* phy_get:        fs_phy_get, */
1295};
1296
1297
1298static void undocumented_pci_fix(struct pci_dev *pdev)
1299{
1300	u32 tint;
1301
1302	/* The Windows driver says: */
1303	/* Switch off FireStream Retry Limit Threshold 
1304	 */
1305
1306	/* The register at 0x28 is documented as "reserved", no further
1307	   comments. */
1308
1309	pci_read_config_dword (pdev, 0x28, &tint);
1310	if (tint != 0x80) {
1311		tint = 0x80;
1312		pci_write_config_dword (pdev, 0x28, tint);
1313	}
1314}
1315
1316
1317
1318/**************************************************************************
1319 *                              PHY routines                              *
1320 **************************************************************************/
1321
1322static void write_phy(struct fs_dev *dev, int regnum, int val)
1323{
1324	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1325			regnum, val, 0);
1326}
1327
1328static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1329{
1330	int i;
1331
1332	func_enter ();
1333	while (reginit->reg != PHY_EOF) {
1334		if (reginit->reg == PHY_CLEARALL) {
1335			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1336			for (i=0;i<reginit->val;i++) {
1337				write_phy (dev, i, 0);
1338			}
1339		} else {
1340			write_phy (dev, reginit->reg, reginit->val);
1341		}
1342		reginit++;
1343	}
1344	func_exit ();
1345	return 0;
1346}
1347
1348static void reset_chip (struct fs_dev *dev)
1349{
1350	int i;
1351
1352	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1353
1354	/* Undocumented delay */
1355	udelay (128);
1356
1357	/* The "internal registers are documented to all reset to zero, but 
1358	   comments & code in the Windows driver indicates that the pools are
1359	   NOT reset. */
1360	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1361		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1362		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1363		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1364		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1365		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1366	}
1367
1368	/* The same goes for the match channel registers, although those are
1369	   NOT documented that way in the Windows driver. -- REW */
1370	/* The Windows driver DOES write 0 to these registers somewhere in
1371	   the init sequence. However, a small hardware-feature, will
1372	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1373	   allocated happens to have no disabled channels that have a lower
1374	   number. -- REW */
1375
1376	/* Clear the match channel registers. */
1377	if (IS_FS50 (dev)) {
1378		for (i=0;i<FS50_NR_CHANNELS;i++) {
1379			write_fs (dev, 0x200 + i * 4, -1);
1380		}
1381	}
1382}
1383
1384static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1385{
1386	void  *t;
1387
1388	if (alignment <= 0x10) {
1389		t = kmalloc (size, flags);
1390		if ((unsigned long)t & (alignment-1)) {
1391			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1392			kfree (t);
1393			return aligned_kmalloc (size, flags, alignment * 4);
1394		}
1395		return t;
1396	}
1397	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1398	return NULL;
1399}
1400
1401static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1402		  int nentries, int is_rq)
1403{
1404	int sz = nentries * sizeof (struct FS_QENTRY);
1405	struct FS_QENTRY *p;
1406
1407	func_enter ();
1408
1409	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n", 
1410		    queue, nentries);
1411
1412	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1413	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1414
1415	if (!p) return 0;
1416
1417	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1418	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1419	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1420	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1421	if (is_rq) {
1422		/* Configuration for the receive queue: 0: interrupt immediately,
1423		   no pre-warning to empty queues: We do our best to keep the
1424		   queue filled anyway. */
1425		write_fs (dev, Q_CNF(queue), 0 ); 
1426	}
1427
1428	txq->sa = p;
1429	txq->ea = p;
1430	txq->offset = queue; 
1431
1432	func_exit ();
1433	return 1;
1434}
1435
1436
1437static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1438		   int bufsize, int nr_buffers)
1439{
1440	func_enter ();
1441
1442	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1443
1444	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1445	write_fs (dev, FP_SA(queue),  0);
1446	write_fs (dev, FP_EA(queue),  0);
1447	write_fs (dev, FP_CTU(queue), 0);
1448	write_fs (dev, FP_CNT(queue), 0);
1449
1450	fp->offset = queue; 
1451	fp->bufsize = bufsize;
1452	fp->nr_buffers = nr_buffers;
1453
1454	func_exit ();
1455	return 1;
1456}
1457
1458
1459static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1460{
1461#if 0
1462	/* This seems to be unreliable.... */
1463	return read_fs (dev, FP_CNT (fp->offset));
1464#else
1465	return fp->n;
1466#endif
1467}
1468
1469
1470/* Check if this gets going again if a pool ever runs out.  -- Yes, it
1471   does. I've seen "receive abort: no buffers" and things started
1472   working again after that...  -- REW */
1473
1474static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1475			gfp_t gfp_flags)
1476{
1477	struct FS_BPENTRY *qe, *ne;
1478	struct sk_buff *skb;
1479	int n = 0;
1480	u32 qe_tmp;
1481
1482	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n", 
1483		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n, 
1484		    fp->nr_buffers);
1485	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1486
1487		skb = alloc_skb (fp->bufsize, gfp_flags);
1488		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1489		if (!skb) break;
1490		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1491		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1492		if (!ne) {
1493			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1494			dev_kfree_skb_any (skb);
1495			break;
1496		}
1497
1498		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ", 
1499			    skb, ne, skb->data, skb->head);
1500		n++;
1501		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1502		ne->next  = virt_to_bus (NULL);
1503		ne->bsa   = virt_to_bus (skb->data);
1504		ne->aal_bufsize = fp->bufsize;
1505		ne->skb = skb;
1506		ne->fp = fp;
1507
1508		/*
1509		 * FIXME: following code encodes and decodes
1510		 * machine pointers (could be 64-bit) into a
1511		 * 32-bit register.
1512		 */
1513
1514		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1515		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1516		if (qe_tmp) {
1517			qe = bus_to_virt ((long) qe_tmp);
1518			qe->next = virt_to_bus(ne);
1519			qe->flags &= ~FP_FLAGS_EPI;
1520		} else
1521			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1522
1523		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1524		fp->n++;   /* XXX Atomic_inc? */
1525		write_fs (dev, FP_CTU(fp->offset), 1);
1526	}
1527
1528	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1529}
1530
1531static void free_queue(struct fs_dev *dev, struct queue *txq)
1532{
1533	func_enter ();
1534
1535	write_fs (dev, Q_SA(txq->offset), 0);
1536	write_fs (dev, Q_EA(txq->offset), 0);
1537	write_fs (dev, Q_RP(txq->offset), 0);
1538	write_fs (dev, Q_WP(txq->offset), 0);
1539	/* Configuration ? */
1540
1541	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1542	kfree (txq->sa);
1543
1544	func_exit ();
1545}
1546
1547static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1548{
1549	func_enter ();
1550
1551	write_fs (dev, FP_CNF(fp->offset), 0);
1552	write_fs (dev, FP_SA (fp->offset), 0);
1553	write_fs (dev, FP_EA (fp->offset), 0);
1554	write_fs (dev, FP_CNT(fp->offset), 0);
1555	write_fs (dev, FP_CTU(fp->offset), 0);
1556
1557	func_exit ();
1558}
1559
1560
1561
1562static irqreturn_t fs_irq (int irq, void *dev_id) 
1563{
1564	int i;
1565	u32 status;
1566	struct fs_dev *dev = dev_id;
1567
1568	status = read_fs (dev, ISR);
1569	if (!status)
1570		return IRQ_NONE;
1571
1572	func_enter ();
1573
1574#ifdef IRQ_RATE_LIMIT
1575	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual 
1576	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1577	{
1578		static int lastjif;
1579		static int nintr=0;
1580    
1581		if (lastjif == jiffies) {
1582			if (++nintr > IRQ_RATE_LIMIT) {
1583				free_irq (dev->irq, dev_id);
1584				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n", 
1585					dev->irq);
1586			}
1587		} else {
1588			lastjif = jiffies;
1589			nintr = 0;
1590		}
1591	}
1592#endif
1593	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n", 
1594		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1595		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1596		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1597		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1598
1599	/* print the bits in the ISR register. */
1600	if (fs_debug & FS_DEBUG_IRQ) {
1601		/* The FS_DEBUG things are unnecessary here. But this way it is
1602		   clear for grep that these are debug prints. */
1603		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1604		for (i=0;i<27;i++) 
1605			if (status & (1 << i)) 
1606				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1607		fs_dprintk (FS_DEBUG_IRQ, "\n");
1608	}
1609  
1610	if (status & ISR_RBRQ0_W) {
1611		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1612		process_incoming (dev, &dev->rx_rq[0]);
1613		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1614		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1615		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1616	}
1617
1618	if (status & ISR_RBRQ1_W) {
1619		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1620		process_incoming (dev, &dev->rx_rq[1]);
1621		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1622		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1623	}
1624
1625	if (status & ISR_RBRQ2_W) {
1626		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1627		process_incoming (dev, &dev->rx_rq[2]);
1628		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1629		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1630	}
1631
1632	if (status & ISR_RBRQ3_W) {
1633		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1634		process_incoming (dev, &dev->rx_rq[3]);
1635		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1636		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1637	}
1638
1639	if (status & ISR_CSQ_W) {
1640		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1641		process_return_queue (dev, &dev->st_q);
1642	}
1643
1644	if (status & ISR_TBRQ_W) {
1645		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1646		process_txdone_queue (dev, &dev->tx_relq);
1647	}
1648
1649	func_exit ();
1650	return IRQ_HANDLED;
1651}
1652
1653
1654#ifdef FS_POLL_FREQ
1655static void fs_poll (unsigned long data)
1656{
1657	struct fs_dev *dev = (struct fs_dev *) data;
1658  
1659	fs_irq (0, dev);
1660	dev->timer.expires = jiffies + FS_POLL_FREQ;
1661	add_timer (&dev->timer);
1662}
1663#endif
1664
1665static int fs_init(struct fs_dev *dev)
1666{
1667	struct pci_dev  *pci_dev;
1668	int isr, to;
1669	int i;
1670
1671	func_enter ();
1672	pci_dev = dev->pci_dev;
1673
1674	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1675		IS_FS50(dev)?50:155,
1676		(unsigned long long)pci_resource_start(pci_dev, 0),
1677		dev->pci_dev->irq);
1678
1679	if (fs_debug & FS_DEBUG_INIT)
1680		my_hd ((unsigned char *) dev, sizeof (*dev));
1681
1682	undocumented_pci_fix (pci_dev);
1683
1684	dev->hw_base = pci_resource_start(pci_dev, 0);
1685
1686	dev->base = ioremap(dev->hw_base, 0x1000);
1687
1688	reset_chip (dev);
1689  
1690	write_fs (dev, SARMODE0, 0 
1691		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692		  | (1 * SARMODE0_INTMODE_READCLEAR)
1693		  | (1 * SARMODE0_CWRE)
1694		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1695			  SARMODE0_PRPWT_FS155_3)
1696		  | (1 * SARMODE0_CALSUP_1)
1697		  | (IS_FS50(dev) ? (0
1698				   | SARMODE0_RXVCS_32
1699				   | SARMODE0_ABRVCS_32 
1700				   | SARMODE0_TXVCS_32):
1701		                  (0
1702				   | SARMODE0_RXVCS_1k
1703				   | SARMODE0_ABRVCS_1k 
1704				   | SARMODE0_TXVCS_1k)));
1705
1706	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707	   1ms. */
1708	to = 100;
1709	while (--to) {
1710		isr = read_fs (dev, ISR);
1711
1712		/* This bit is documented as "RESERVED" */
1713		if (isr & ISR_INIT_ERR) {
1714			printk (KERN_ERR "Error initializing the FS... \n");
1715			goto unmap;
1716		}
1717		if (isr & ISR_INIT) {
1718			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719			break;
1720		}
1721
1722		/* Try again after 10ms. */
1723		msleep(10);
1724	}
1725
1726	if (!to) {
1727		printk (KERN_ERR "timeout initializing the FS... \n");
1728		goto unmap;
1729	}
1730
1731	/* XXX fix for fs155 */
1732	dev->channel_mask = 0x1f; 
1733	dev->channo = 0;
1734
1735	/* AN3: 10 */
1736	write_fs (dev, SARMODE1, 0 
1737		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1738		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1739		  | (1 * SARMODE1_DCRM)
1740		  | (1 * SARMODE1_DCOAM)
1741		  | (0 * SARMODE1_OAMCRC)
1742		  | (0 * SARMODE1_DUMPE)
1743		  | (0 * SARMODE1_GPLEN) 
1744		  | (0 * SARMODE1_GNAM)
1745		  | (0 * SARMODE1_GVAS)
1746		  | (0 * SARMODE1_GPAS)
1747		  | (1 * SARMODE1_GPRI)
1748		  | (0 * SARMODE1_PMS)
1749		  | (0 * SARMODE1_GFCR)
1750		  | (1 * SARMODE1_HECM2)
1751		  | (1 * SARMODE1_HECM1)
1752		  | (1 * SARMODE1_HECM0)
1753		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1754		  | (0 * 0xff) /* XXX FS155 */);
1755
1756
1757	/* Cal prescale etc */
1758
1759	/* AN3: 11 */
1760	write_fs (dev, TMCONF, 0x0000000f);
1761	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1762	write_fs (dev, 0x80, 0x000F00E4);
1763
1764	/* AN3: 12 */
1765	write_fs (dev, CELLOSCONF, 0
1766		  | (   0 * CELLOSCONF_CEN)
1767		  | (       CELLOSCONF_SC1)
1768		  | (0x80 * CELLOSCONF_COBS)
1769		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1770		  | (num  * CELLOSCONF_COST));/* after a hint from Hang. 
1771					       * performance jumped 50->70... */
1772
1773	/* Magic value by Hang */
1774	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1775
1776	if (IS_FS50 (dev)) {
1777		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1778		dev->atm_dev->ci_range.vpi_bits = 12;
1779		dev->atm_dev->ci_range.vci_bits = 16;
1780		dev->nchannels = FS50_NR_CHANNELS;
1781	} else {
1782		write_fs (dev, RAS0, RAS0_DCD_XHLT 
1783			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1784			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1785		/* We can chose the split arbitrarily. We might be able to 
1786		   support more. Whatever. This should do for now. */
1787		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1788		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1789    
1790		/* Address bits we can't use should be compared to 0. */
1791		write_fs (dev, RAC, 0);
1792
1793		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1794		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1795		 * other bits, then compare with 0, which is exactly what we
1796		 * want. */
1797		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1798		dev->nchannels = FS155_NR_CHANNELS;
1799	}
1800	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1801				 GFP_KERNEL);
1802	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1803		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1804
1805	if (!dev->atm_vccs) {
1806		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1807		/* XXX Clean up..... */
1808		goto unmap;
1809	}
1810
1811	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1812	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n", 
1813		    dev->atm_vccs, dev->nchannels / 8);
1814
1815	if (!dev->tx_inuse) {
1816		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1817		/* XXX Clean up..... */
1818		goto unmap;
1819	}
1820	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1821	/* -- RAS2 : FS50 only: Default is OK. */
1822
1823	/* DMAMODE, default should be OK. -- REW */
1824	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1825
1826	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1827	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1828	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1829	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1830
1831	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1832		init_fp (dev, &dev->rx_fp[i], RXB_FP(i), 
1833			 rx_buf_sizes[i], rx_pool_sizes[i]);
1834		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1835	}
1836
1837
1838	for (i=0;i < FS_NR_RX_QUEUES;i++)
1839		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1840
1841	dev->irq = pci_dev->irq;
1842	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1843		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1844		/* XXX undo all previous stuff... */
1845		goto unmap;
1846	}
1847	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1848  
1849	/* We want to be notified of most things. Just the statistics count
1850	   overflows are not interesting */
1851	write_fs (dev, IMR, 0
1852		  | ISR_RBRQ0_W 
1853		  | ISR_RBRQ1_W 
1854		  | ISR_RBRQ2_W 
1855		  | ISR_RBRQ3_W 
1856		  | ISR_TBRQ_W
1857		  | ISR_CSQ_W);
1858
1859	write_fs (dev, SARMODE0, 0 
1860		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1861		  | (1 * SARMODE0_GINT)
1862		  | (1 * SARMODE0_INTMODE_READCLEAR)
1863		  | (0 * SARMODE0_CWRE)
1864		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5: 
1865		                  SARMODE0_PRPWT_FS155_3)
1866		  | (1 * SARMODE0_CALSUP_1)
1867		  | (IS_FS50 (dev)?(0
1868				    | SARMODE0_RXVCS_32
1869				    | SARMODE0_ABRVCS_32 
1870				    | SARMODE0_TXVCS_32):
1871		                   (0
1872				    | SARMODE0_RXVCS_1k
1873				    | SARMODE0_ABRVCS_1k 
1874				    | SARMODE0_TXVCS_1k))
1875		  | (1 * SARMODE0_RUN));
1876
1877	init_phy (dev, PHY_NTC_INIT);
1878
1879	if (loopback == 2) {
1880		write_phy (dev, 0x39, 0x000e);
1881	}
1882
1883#ifdef FS_POLL_FREQ
1884	init_timer (&dev->timer);
1885	dev->timer.data = (unsigned long) dev;
1886	dev->timer.function = fs_poll;
1887	dev->timer.expires = jiffies + FS_POLL_FREQ;
1888	add_timer (&dev->timer);
1889#endif
1890
1891	dev->atm_dev->dev_data = dev;
1892  
1893	func_exit ();
1894	return 0;
1895unmap:
1896	iounmap(dev->base);
1897	return 1;
1898}
1899
1900static int firestream_init_one(struct pci_dev *pci_dev,
1901			       const struct pci_device_id *ent)
1902{
1903	struct atm_dev *atm_dev;
1904	struct fs_dev *fs_dev;
1905	
1906	if (pci_enable_device(pci_dev)) 
1907		goto err_out;
1908
1909	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1910	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1911		    fs_dev, sizeof (struct fs_dev));
1912	if (!fs_dev)
1913		goto err_out;
1914	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1915	if (!atm_dev)
1916		goto err_out_free_fs_dev;
1917  
1918	fs_dev->pci_dev = pci_dev;
1919	fs_dev->atm_dev = atm_dev;
1920	fs_dev->flags = ent->driver_data;
1921
1922	if (fs_init(fs_dev))
1923		goto err_out_free_atm_dev;
1924
1925	fs_dev->next = fs_boards;
1926	fs_boards = fs_dev;
1927	return 0;
1928
1929 err_out_free_atm_dev:
1930	atm_dev_deregister(atm_dev);
1931 err_out_free_fs_dev:
1932 	kfree(fs_dev);
1933 err_out:
1934	return -ENODEV;
1935}
1936
1937static void firestream_remove_one(struct pci_dev *pdev)
1938{
1939	int i;
1940	struct fs_dev *dev, *nxtdev;
1941	struct fs_vcc *vcc;
1942	struct FS_BPENTRY *fp, *nxt;
1943  
1944	func_enter ();
1945
1946#if 0
1947	printk ("hptxq:\n");
1948	for (i=0;i<60;i++) {
1949		printk ("%d: %08x %08x %08x %08x \n", 
1950			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1951		qp++;
1952		if (qp >= 60) qp = 0;
1953	}
1954
1955	printk ("descriptors:\n");
1956	for (i=0;i<60;i++) {
1957		printk ("%d: %p: %08x %08x %p %p\n", 
1958			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1959		qd++;
1960		if (qd >= 60) qd = 0;
1961	}
1962#endif
1963
1964	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1965		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1966
1967		/* XXX Hit all the tx channels too! */
1968
1969		for (i=0;i < dev->nchannels;i++) {
1970			if (dev->atm_vccs[i]) {
1971				vcc = FS_VCC (dev->atm_vccs[i]);
1972				submit_command (dev,  &dev->hp_txq,
1973						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1974				submit_command (dev,  &dev->hp_txq,
1975						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976
1977			}
1978		}
1979
1980		/* XXX Wait a while for the chip to release all buffers. */
1981
1982		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1983			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1984			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1985				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1986				dev_kfree_skb_any (fp->skb);
1987				nxt = bus_to_virt (fp->next);
1988				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1989				kfree (fp);
1990			}
1991			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992			dev_kfree_skb_any (fp->skb);
1993			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994			kfree (fp);
1995		}
1996
1997		/* Hang the chip in "reset", prevent it clobbering memory that is
1998		   no longer ours. */
1999		reset_chip (dev);
2000
2001		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2002		free_irq (dev->irq, dev);
2003		del_timer_sync (&dev->timer);
2004
2005		atm_dev_deregister(dev->atm_dev);
2006		free_queue (dev, &dev->hp_txq);
2007		free_queue (dev, &dev->lp_txq);
2008		free_queue (dev, &dev->tx_relq);
2009		free_queue (dev, &dev->st_q);
2010
2011		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2012		kfree (dev->atm_vccs);
2013
2014		for (i=0;i< FS_NR_FREE_POOLS;i++)
2015			free_freepool (dev, &dev->rx_fp[i]);
2016    
2017		for (i=0;i < FS_NR_RX_QUEUES;i++)
2018			free_queue (dev, &dev->rx_rq[i]);
2019
2020		iounmap(dev->base);
2021		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2022		nxtdev = dev->next;
2023		kfree (dev);
2024	}
2025
2026	func_exit ();
2027}
2028
2029static struct pci_device_id firestream_pci_tbl[] = {
2030	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2031	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2032	{ 0, }
2033};
2034
2035MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2036
2037static struct pci_driver firestream_driver = {
2038	.name		= "firestream",
2039	.id_table	= firestream_pci_tbl,
2040	.probe		= firestream_init_one,
2041	.remove		= firestream_remove_one,
2042};
2043
2044static int __init firestream_init_module (void)
2045{
2046	int error;
2047
2048	func_enter ();
2049	error = pci_register_driver(&firestream_driver);
2050	func_exit ();
2051	return error;
2052}
2053
2054static void __exit firestream_cleanup_module(void)
2055{
2056	pci_unregister_driver(&firestream_driver);
2057}
2058
2059module_init(firestream_init_module);
2060module_exit(firestream_cleanup_module);
2061
2062MODULE_LICENSE("GPL");
2063
2064
2065