Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/vmalloc.h>
  14#include <linux/pagemap.h>
  15#include <linux/init.h>
  16#include <linux/spinlock.h>
  17#include <linux/bootmem.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
 
 
 
 
  20#include <linux/kdebug.h>
 
 
 
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
 
 
  23
  24#include <asm/bitext.h>
  25#include <asm/page.h>
 
 
  26#include <asm/pgalloc.h>
  27#include <asm/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/vaddrs.h>
  30#include <asm/traps.h>
  31#include <asm/smp.h>
  32#include <asm/mbus.h>
  33#include <asm/cache.h>
 
  34#include <asm/oplib.h>
 
 
  35#include <asm/asi.h>
  36#include <asm/msi.h>
  37#include <asm/mmu_context.h>
  38#include <asm/io-unit.h>
  39#include <asm/cacheflush.h>
  40#include <asm/tlbflush.h>
  41
  42/* Now the cpu specific definitions. */
  43#include <asm/viking.h>
  44#include <asm/mxcc.h>
  45#include <asm/ross.h>
  46#include <asm/tsunami.h>
 
  47#include <asm/swift.h>
  48#include <asm/turbosparc.h>
  49#include <asm/leon.h>
 
 
  50
  51#include <asm/btfixup.h>
  52
  53enum mbus_module srmmu_modtype;
  54static unsigned int hwbug_bitmask;
  55int vac_cache_size;
 
  56int vac_line_size;
  57
  58extern struct resource sparc_iomap;
  59
  60extern unsigned long last_valid_pfn;
  61
  62extern unsigned long page_kernel;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
 
 
 
  66#ifdef CONFIG_SMP
 
 
  67#define FLUSH_BEGIN(mm)
  68#define FLUSH_END
  69#else
  70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
  71#define FLUSH_END	}
  72#endif
  73
  74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
  75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
  76
  77int flush_page_for_dma_global = 1;
  78
  79#ifdef CONFIG_SMP
  80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
  81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
  82#endif
  83
  84char *srmmu_name;
  85
  86ctxd_t *srmmu_ctx_table_phys;
  87static ctxd_t *srmmu_context_table;
  88
  89int viking_mxcc_present;
  90static DEFINE_SPINLOCK(srmmu_context_spinlock);
  91
  92static int is_hypersparc;
  93
  94/*
  95 * In general all page table modifications should use the V8 atomic
  96 * swap instruction.  This insures the mmu and the cpu are in sync
  97 * with respect to ref/mod bits in the page tables.
  98 */
  99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
 100{
 101	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
 102	return value;
 103}
 104
 105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
 106{
 107	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
 108}
 109
 110/* The very generic SRMMU page table operations. */
 111static inline int srmmu_device_memory(unsigned long x)
 112{
 113	return ((x & 0xF0000000) != 0);
 114}
 115
 116static int srmmu_cache_pagetables;
 117
 118/* these will be initialized in srmmu_nocache_calcsize() */
 119static unsigned long srmmu_nocache_size;
 120static unsigned long srmmu_nocache_end;
 121
 122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
 123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 124
 125/* The context table is a nocache user with the biggest alignment needs. */
 126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 127
 128void *srmmu_nocache_pool;
 129void *srmmu_nocache_bitmap;
 130static struct bit_map srmmu_nocache_map;
 131
 132static unsigned long srmmu_pte_pfn(pte_t pte)
 133{
 134	if (srmmu_device_memory(pte_val(pte))) {
 135		/* Just return something that will cause
 136		 * pfn_valid() to return false.  This makes
 137		 * copy_one_pte() to just directly copy to
 138		 * PTE over.
 139		 */
 140		return ~0UL;
 141	}
 142	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
 143}
 144
 145static struct page *srmmu_pmd_page(pmd_t pmd)
 146{
 147
 148	if (srmmu_device_memory(pmd_val(pmd)))
 149		BUG();
 150	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
 151}
 152
 153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
 154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
 155
 156
 157static inline int srmmu_pte_none(pte_t pte)
 158{ return !(pte_val(pte) & 0xFFFFFFF); }
 159
 160static inline int srmmu_pte_present(pte_t pte)
 161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
 162
 163static inline void srmmu_pte_clear(pte_t *ptep)
 164{ srmmu_set_pte(ptep, __pte(0)); }
 165
 166static inline int srmmu_pmd_none(pmd_t pmd)
 167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 168
 169static inline int srmmu_pmd_bad(pmd_t pmd)
 170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 171
 172static inline int srmmu_pmd_present(pmd_t pmd)
 173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 174
 175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
 176	int i;
 177	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
 178		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
 179}
 180
 181static inline int srmmu_pgd_none(pgd_t pgd)          
 182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
 183
 184static inline int srmmu_pgd_bad(pgd_t pgd)
 185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 186
 187static inline int srmmu_pgd_present(pgd_t pgd)
 188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 189
 190static inline void srmmu_pgd_clear(pgd_t * pgdp)
 191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
 192
 193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
 194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
 195
 196static inline pte_t srmmu_pte_mkclean(pte_t pte)
 197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
 198
 199static inline pte_t srmmu_pte_mkold(pte_t pte)
 200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
 201
 202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
 203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
 204
 205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
 206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
 207
 208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
 209{ return __pte(pte_val(pte) | SRMMU_REF);}
 210
 211/*
 212 * Conversion functions: convert a page and protection to a page entry,
 213 * and a page entry and page directory to the page they refer to.
 214 */
 215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
 216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
 217
 218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
 219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
 220
 221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
 222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
 223
 224/* XXX should we hyper_flush_whole_icache here - Anton */
 225static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 226{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 227
 228static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
 229{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
 230
 231static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
 232{
 233	unsigned long ptp;	/* Physical address, shifted right by 4 */
 234	int i;
 235
 236	ptp = __nocache_pa((unsigned long) ptep) >> 4;
 237	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 238		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 239		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 240	}
 241}
 242
 243static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
 244{
 245	unsigned long ptp;	/* Physical address, shifted right by 4 */
 246	int i;
 247
 248	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 249	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 250		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 251		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 252	}
 253}
 254
 255static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
 256{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
 257
 258/* to find an entry in a top-level page table... */
 259static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
 260{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
 261
 262/* Find an entry in the second-level page table.. */
 263static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
 264{
 265	return (pmd_t *) srmmu_pgd_page(*dir) +
 266	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 267}
 268
 269/* Find an entry in the third-level page table.. */ 
 270static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
 271{
 272	void *pte;
 273
 274	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 275	return (pte_t *) pte +
 276	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 277}
 278
 279static unsigned long srmmu_swp_type(swp_entry_t entry)
 280{
 281	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
 282}
 283
 284static unsigned long srmmu_swp_offset(swp_entry_t entry)
 285{
 286	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
 
 
 
 
 287}
 288
 289static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
 290{
 291	return (swp_entry_t) {
 292		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
 293		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
 294}
 295
 296/*
 297 * size: bytes to allocate in the nocache area.
 298 * align: bytes, number to align at.
 299 * Returns the virtual address of the allocated area.
 300 */
 301static unsigned long __srmmu_get_nocache(int size, int align)
 302{
 303	int offset;
 
 304
 305	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 306		printk("Size 0x%x too small for nocache request\n", size);
 307		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 308	}
 309	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
 310		printk("Size 0x%x unaligned int nocache request\n", size);
 311		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
 
 
 312	}
 313	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 314
 315	offset = bit_map_string_get(&srmmu_nocache_map,
 316		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 317					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 318	if (offset == -1) {
 319		printk("srmmu: out of nocache %d: %d/%d\n",
 320		    size, (int) srmmu_nocache_size,
 321		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 322		return 0;
 323	}
 324
 325	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
 
 326}
 327
 328static unsigned long srmmu_get_nocache(int size, int align)
 329{
 330	unsigned long tmp;
 331
 332	tmp = __srmmu_get_nocache(size, align);
 333
 334	if (tmp)
 335		memset((void *)tmp, 0, size);
 336
 337	return tmp;
 338}
 339
 340static void srmmu_free_nocache(unsigned long vaddr, int size)
 341{
 
 342	int offset;
 343
 
 344	if (vaddr < SRMMU_NOCACHE_VADDR) {
 345		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 346		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 347		BUG();
 348	}
 349	if (vaddr+size > srmmu_nocache_end) {
 350		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 351		    vaddr, srmmu_nocache_end);
 352		BUG();
 353	}
 354	if (!is_power_of_2(size)) {
 355		printk("Size 0x%x is not a power of 2\n", size);
 356		BUG();
 357	}
 358	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 359		printk("Size 0x%x is too small\n", size);
 360		BUG();
 361	}
 362	if (vaddr & (size-1)) {
 363		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 364		BUG();
 365	}
 366
 367	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 368	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 369
 370	bit_map_clear(&srmmu_nocache_map, offset, size);
 371}
 372
 373static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 374						 unsigned long end);
 375
 376extern unsigned long probe_memory(void);	/* in fault.c */
 
 
 
 
 
 
 
 
 
 
 377
 378/*
 379 * Reserve nocache dynamically proportionally to the amount of
 380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 381 */
 382static void srmmu_nocache_calcsize(void)
 383{
 384	unsigned long sysmemavail = probe_memory() / 1024;
 385	int srmmu_nocache_npages;
 386
 387	srmmu_nocache_npages =
 388		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 389
 390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 391	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 392	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 393		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 394
 395	/* anything above 1280 blows up */
 396	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 397		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 398
 399	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 400	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 401}
 402
 403static void __init srmmu_nocache_init(void)
 404{
 
 405	unsigned int bitmap_bits;
 406	pgd_t *pgd;
 
 
 407	pmd_t *pmd;
 408	pte_t *pte;
 409	unsigned long paddr, vaddr;
 410	unsigned long pteval;
 411
 412	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 413
 414	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 415		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 
 
 
 416	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 417
 418	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
 
 
 
 
 
 419	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 420
 421	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 422	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 423	init_mm.pgd = srmmu_swapper_pg_dir;
 424
 425	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 426
 427	paddr = __pa((unsigned long)srmmu_nocache_pool);
 428	vaddr = SRMMU_NOCACHE_VADDR;
 429
 430	while (vaddr < srmmu_nocache_end) {
 431		pgd = pgd_offset_k(vaddr);
 432		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
 433		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
 
 
 434
 435		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 436
 437		if (srmmu_cache_pagetables)
 438			pteval |= SRMMU_CACHE;
 439
 440		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
 441
 442		vaddr += PAGE_SIZE;
 443		paddr += PAGE_SIZE;
 444	}
 445
 446	flush_cache_all();
 447	flush_tlb_all();
 448}
 449
 450static inline pgd_t *srmmu_get_pgd_fast(void)
 451{
 452	pgd_t *pgd = NULL;
 453
 454	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 455	if (pgd) {
 456		pgd_t *init = pgd_offset_k(0);
 457		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 458		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 459						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 460	}
 461
 462	return pgd;
 463}
 464
 465static void srmmu_free_pgd_fast(pgd_t *pgd)
 466{
 467	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
 468}
 469
 470static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
 471{
 472	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 473}
 474
 475static void srmmu_pmd_free(pmd_t * pmd)
 476{
 477	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
 478}
 479
 480/*
 481 * Hardware needs alignment to 256 only, but we align to whole page size
 482 * to reduce fragmentation problems due to the buddy principle.
 483 * XXX Provide actual fragmentation statistics in /proc.
 484 *
 485 * Alignments up to the page size are the same for physical and virtual
 486 * addresses of the nocache area.
 487 */
 488static pte_t *
 489srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 490{
 491	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 492}
 493
 494static pgtable_t
 495srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
 496{
 497	unsigned long pte;
 498	struct page *page;
 499
 500	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
 501		return NULL;
 502	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
 503	pgtable_page_ctor(page);
 504	return page;
 
 
 505}
 506
 507static void srmmu_free_pte_fast(pte_t *pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508{
 509	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
 
 510}
 511
 512static void srmmu_pte_free(pgtable_t pte)
 513{
 514	unsigned long p;
 515
 516	pgtable_page_dtor(pte);
 517	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 518	if (p == 0)
 519		BUG();
 520	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 521	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
 522	srmmu_free_nocache(p, PTE_SIZE);
 523}
 
 
 
 524
 525/*
 526 */
 527static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 528{
 529	struct ctx_list *ctxp;
 530
 531	ctxp = ctx_free.next;
 532	if(ctxp != &ctx_free) {
 533		remove_from_ctx_list(ctxp);
 534		add_to_used_ctxlist(ctxp);
 535		mm->context = ctxp->ctx_number;
 536		ctxp->ctx_mm = mm;
 537		return;
 538	}
 539	ctxp = ctx_used.next;
 540	if(ctxp->ctx_mm == old_mm)
 541		ctxp = ctxp->next;
 542	if(ctxp == &ctx_used)
 543		panic("out of mmu contexts");
 544	flush_cache_mm(ctxp->ctx_mm);
 545	flush_tlb_mm(ctxp->ctx_mm);
 546	remove_from_ctx_list(ctxp);
 547	add_to_used_ctxlist(ctxp);
 548	ctxp->ctx_mm->context = NO_CONTEXT;
 549	ctxp->ctx_mm = mm;
 550	mm->context = ctxp->ctx_number;
 551}
 552
 553static inline void free_context(int context)
 554{
 555	struct ctx_list *ctx_old;
 556
 557	ctx_old = ctx_list_pool + context;
 558	remove_from_ctx_list(ctx_old);
 559	add_to_free_ctxlist(ctx_old);
 560}
 561
 
 
 
 
 
 
 
 
 
 562
 563static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 564    struct task_struct *tsk, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 565{
 566	if(mm->context == NO_CONTEXT) {
 567		spin_lock(&srmmu_context_spinlock);
 
 
 568		alloc_context(old_mm, mm);
 569		spin_unlock(&srmmu_context_spinlock);
 570		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 571	}
 572
 573	if (sparc_cpu_model == sparc_leon)
 574		leon_switch_mm();
 575
 576	if (is_hypersparc)
 577		hyper_flush_whole_icache();
 578
 579	srmmu_set_context(mm->context);
 580}
 581
 582/* Low level IO area allocation on the SRMMU. */
 583static inline void srmmu_mapioaddr(unsigned long physaddr,
 584    unsigned long virt_addr, int bus_type)
 585{
 586	pgd_t *pgdp;
 
 
 587	pmd_t *pmdp;
 588	pte_t *ptep;
 589	unsigned long tmp;
 590
 591	physaddr &= PAGE_MASK;
 592	pgdp = pgd_offset_k(virt_addr);
 593	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 594	ptep = srmmu_pte_offset(pmdp, virt_addr);
 
 
 595	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 596
 597	/*
 598	 * I need to test whether this is consistent over all
 599	 * sun4m's.  The bus_type represents the upper 4 bits of
 600	 * 36-bit physical address on the I/O space lines...
 601	 */
 602	tmp |= (bus_type << 28);
 603	tmp |= SRMMU_PRIV;
 604	__flush_page_to_ram(virt_addr);
 605	srmmu_set_pte(ptep, __pte(tmp));
 606}
 607
 608static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 609    unsigned long xva, unsigned int len)
 610{
 611	while (len != 0) {
 612		len -= PAGE_SIZE;
 613		srmmu_mapioaddr(xpa, xva, bus);
 614		xva += PAGE_SIZE;
 615		xpa += PAGE_SIZE;
 616	}
 617	flush_tlb_all();
 618}
 619
 620static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 621{
 622	pgd_t *pgdp;
 
 
 623	pmd_t *pmdp;
 624	pte_t *ptep;
 625
 
 626	pgdp = pgd_offset_k(virt_addr);
 627	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 628	ptep = srmmu_pte_offset(pmdp, virt_addr);
 
 
 629
 630	/* No need to flush uncacheable page. */
 631	srmmu_pte_clear(ptep);
 632}
 633
 634static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 635{
 636	while (len != 0) {
 637		len -= PAGE_SIZE;
 638		srmmu_unmapioaddr(virt_addr);
 639		virt_addr += PAGE_SIZE;
 640	}
 641	flush_tlb_all();
 642}
 643
 644/*
 645 * On the SRMMU we do not have the problems with limited tlb entries
 646 * for mapping kernel pages, so we just take things from the free page
 647 * pool.  As a side effect we are putting a little too much pressure
 648 * on the gfp() subsystem.  This setup also makes the logic of the
 649 * iommu mapping code a lot easier as we can transparently handle
 650 * mappings on the kernel stack without any special code as we did
 651 * need on the sun4c.
 652 */
 653static struct thread_info *srmmu_alloc_thread_info_node(int node)
 654{
 655	struct thread_info *ret;
 656
 657	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
 658						     THREAD_INFO_ORDER);
 659#ifdef CONFIG_DEBUG_STACK_USAGE
 660	if (ret)
 661		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
 662#endif /* DEBUG_STACK_USAGE */
 663
 664	return ret;
 665}
 666
 667static void srmmu_free_thread_info(struct thread_info *ti)
 668{
 669	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
 670}
 671
 672/* tsunami.S */
 673extern void tsunami_flush_cache_all(void);
 674extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 675extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 676extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 677extern void tsunami_flush_page_to_ram(unsigned long page);
 678extern void tsunami_flush_page_for_dma(unsigned long page);
 679extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 680extern void tsunami_flush_tlb_all(void);
 681extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 682extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 683extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 684extern void tsunami_setup_blockops(void);
 685
 686/*
 687 * Workaround, until we find what's going on with Swift. When low on memory,
 688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
 689 * out it is already in page tables/ fault again on the same instruction.
 690 * I really don't understand it, have checked it and contexts
 691 * are right, flush_tlb_all is done as well, and it faults again...
 692 * Strange. -jj
 693 *
 694 * The following code is a deadwood that may be necessary when
 695 * we start to make precise page flushes again. --zaitcev
 696 */
 697static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
 698{
 699#if 0
 700	static unsigned long last;
 701	unsigned int val;
 702	/* unsigned int n; */
 703
 704	if (address == last) {
 705		val = srmmu_hwprobe(address);
 706		if (val != 0 && pte_val(*ptep) != val) {
 707			printk("swift_update_mmu_cache: "
 708			    "addr %lx put %08x probed %08x from %p\n",
 709			    address, pte_val(*ptep), val,
 710			    __builtin_return_address(0));
 711			srmmu_flush_whole_tlb();
 712		}
 713	}
 714	last = address;
 715#endif
 716}
 717
 718/* swift.S */
 719extern void swift_flush_cache_all(void);
 720extern void swift_flush_cache_mm(struct mm_struct *mm);
 721extern void swift_flush_cache_range(struct vm_area_struct *vma,
 722				    unsigned long start, unsigned long end);
 723extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 724extern void swift_flush_page_to_ram(unsigned long page);
 725extern void swift_flush_page_for_dma(unsigned long page);
 726extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 727extern void swift_flush_tlb_all(void);
 728extern void swift_flush_tlb_mm(struct mm_struct *mm);
 729extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 730				  unsigned long start, unsigned long end);
 731extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 732
 733#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 734void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 735{
 736	int cctx, ctx1;
 737
 738	page &= PAGE_MASK;
 739	if ((ctx1 = vma->vm_mm->context) != -1) {
 740		cctx = srmmu_get_context();
 741/* Is context # ever different from current context? P3 */
 742		if (cctx != ctx1) {
 743			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 744			srmmu_set_context(ctx1);
 745			swift_flush_page(page);
 746			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 747					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 748			srmmu_set_context(cctx);
 749		} else {
 750			 /* Rm. prot. bits from virt. c. */
 751			/* swift_flush_cache_all(); */
 752			/* swift_flush_cache_page(vma, page); */
 753			swift_flush_page(page);
 754
 755			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 756				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 757			/* same as above: srmmu_flush_tlb_page() */
 758		}
 759	}
 760}
 761#endif
 762
 763/*
 764 * The following are all MBUS based SRMMU modules, and therefore could
 765 * be found in a multiprocessor configuration.  On the whole, these
 766 * chips seems to be much more touchy about DVMA and page tables
 767 * with respect to cache coherency.
 768 */
 769
 770/* Cypress flushes. */
 771static void cypress_flush_cache_all(void)
 772{
 773	volatile unsigned long cypress_sucks;
 774	unsigned long faddr, tagval;
 775
 776	flush_user_windows();
 777	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
 778		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
 779				     "=r" (tagval) :
 780				     "r" (faddr), "r" (0x40000),
 781				     "i" (ASI_M_DATAC_TAG));
 782
 783		/* If modified and valid, kick it. */
 784		if((tagval & 0x60) == 0x60)
 785			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
 786	}
 787}
 788
 789static void cypress_flush_cache_mm(struct mm_struct *mm)
 790{
 791	register unsigned long a, b, c, d, e, f, g;
 792	unsigned long flags, faddr;
 793	int octx;
 794
 795	FLUSH_BEGIN(mm)
 796	flush_user_windows();
 797	local_irq_save(flags);
 798	octx = srmmu_get_context();
 799	srmmu_set_context(mm->context);
 800	a = 0x20; b = 0x40; c = 0x60;
 801	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 802
 803	faddr = (0x10000 - 0x100);
 804	goto inside;
 805	do {
 806		faddr -= 0x100;
 807	inside:
 808		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 809				     "sta %%g0, [%0 + %2] %1\n\t"
 810				     "sta %%g0, [%0 + %3] %1\n\t"
 811				     "sta %%g0, [%0 + %4] %1\n\t"
 812				     "sta %%g0, [%0 + %5] %1\n\t"
 813				     "sta %%g0, [%0 + %6] %1\n\t"
 814				     "sta %%g0, [%0 + %7] %1\n\t"
 815				     "sta %%g0, [%0 + %8] %1\n\t" : :
 816				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
 817				     "r" (a), "r" (b), "r" (c), "r" (d),
 818				     "r" (e), "r" (f), "r" (g));
 819	} while(faddr);
 820	srmmu_set_context(octx);
 821	local_irq_restore(flags);
 822	FLUSH_END
 823}
 824
 825static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 826{
 827	struct mm_struct *mm = vma->vm_mm;
 828	register unsigned long a, b, c, d, e, f, g;
 829	unsigned long flags, faddr;
 830	int octx;
 831
 832	FLUSH_BEGIN(mm)
 833	flush_user_windows();
 834	local_irq_save(flags);
 835	octx = srmmu_get_context();
 836	srmmu_set_context(mm->context);
 837	a = 0x20; b = 0x40; c = 0x60;
 838	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 839
 840	start &= SRMMU_REAL_PMD_MASK;
 841	while(start < end) {
 842		faddr = (start + (0x10000 - 0x100));
 843		goto inside;
 844		do {
 845			faddr -= 0x100;
 846		inside:
 847			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 848					     "sta %%g0, [%0 + %2] %1\n\t"
 849					     "sta %%g0, [%0 + %3] %1\n\t"
 850					     "sta %%g0, [%0 + %4] %1\n\t"
 851					     "sta %%g0, [%0 + %5] %1\n\t"
 852					     "sta %%g0, [%0 + %6] %1\n\t"
 853					     "sta %%g0, [%0 + %7] %1\n\t"
 854					     "sta %%g0, [%0 + %8] %1\n\t" : :
 855					     "r" (faddr),
 856					     "i" (ASI_M_FLUSH_SEG),
 857					     "r" (a), "r" (b), "r" (c), "r" (d),
 858					     "r" (e), "r" (f), "r" (g));
 859		} while (faddr != start);
 860		start += SRMMU_REAL_PMD_SIZE;
 861	}
 862	srmmu_set_context(octx);
 863	local_irq_restore(flags);
 864	FLUSH_END
 865}
 866
 867static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
 868{
 869	register unsigned long a, b, c, d, e, f, g;
 870	struct mm_struct *mm = vma->vm_mm;
 871	unsigned long flags, line;
 872	int octx;
 873
 874	FLUSH_BEGIN(mm)
 875	flush_user_windows();
 876	local_irq_save(flags);
 877	octx = srmmu_get_context();
 878	srmmu_set_context(mm->context);
 879	a = 0x20; b = 0x40; c = 0x60;
 880	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 881
 882	page &= PAGE_MASK;
 883	line = (page + PAGE_SIZE) - 0x100;
 884	goto inside;
 885	do {
 886		line -= 0x100;
 887	inside:
 888			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 889					     "sta %%g0, [%0 + %2] %1\n\t"
 890					     "sta %%g0, [%0 + %3] %1\n\t"
 891					     "sta %%g0, [%0 + %4] %1\n\t"
 892					     "sta %%g0, [%0 + %5] %1\n\t"
 893					     "sta %%g0, [%0 + %6] %1\n\t"
 894					     "sta %%g0, [%0 + %7] %1\n\t"
 895					     "sta %%g0, [%0 + %8] %1\n\t" : :
 896					     "r" (line),
 897					     "i" (ASI_M_FLUSH_PAGE),
 898					     "r" (a), "r" (b), "r" (c), "r" (d),
 899					     "r" (e), "r" (f), "r" (g));
 900	} while(line != page);
 901	srmmu_set_context(octx);
 902	local_irq_restore(flags);
 903	FLUSH_END
 904}
 905
 906/* Cypress is copy-back, at least that is how we configure it. */
 907static void cypress_flush_page_to_ram(unsigned long page)
 908{
 909	register unsigned long a, b, c, d, e, f, g;
 910	unsigned long line;
 911
 912	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 913	page &= PAGE_MASK;
 914	line = (page + PAGE_SIZE) - 0x100;
 915	goto inside;
 916	do {
 917		line -= 0x100;
 918	inside:
 919		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 920				     "sta %%g0, [%0 + %2] %1\n\t"
 921				     "sta %%g0, [%0 + %3] %1\n\t"
 922				     "sta %%g0, [%0 + %4] %1\n\t"
 923				     "sta %%g0, [%0 + %5] %1\n\t"
 924				     "sta %%g0, [%0 + %6] %1\n\t"
 925				     "sta %%g0, [%0 + %7] %1\n\t"
 926				     "sta %%g0, [%0 + %8] %1\n\t" : :
 927				     "r" (line),
 928				     "i" (ASI_M_FLUSH_PAGE),
 929				     "r" (a), "r" (b), "r" (c), "r" (d),
 930				     "r" (e), "r" (f), "r" (g));
 931	} while(line != page);
 932}
 933
 934/* Cypress is also IO cache coherent. */
 935static void cypress_flush_page_for_dma(unsigned long page)
 936{
 937}
 938
 939/* Cypress has unified L2 VIPT, from which both instructions and data
 940 * are stored.  It does not have an onboard icache of any sort, therefore
 941 * no flush is necessary.
 942 */
 943static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
 944{
 945}
 946
 947static void cypress_flush_tlb_all(void)
 948{
 949	srmmu_flush_whole_tlb();
 950}
 951
 952static void cypress_flush_tlb_mm(struct mm_struct *mm)
 953{
 954	FLUSH_BEGIN(mm)
 955	__asm__ __volatile__(
 956	"lda	[%0] %3, %%g5\n\t"
 957	"sta	%2, [%0] %3\n\t"
 958	"sta	%%g0, [%1] %4\n\t"
 959	"sta	%%g5, [%0] %3\n"
 960	: /* no outputs */
 961	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
 962	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
 963	: "g5");
 964	FLUSH_END
 965}
 966
 967static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 968{
 969	struct mm_struct *mm = vma->vm_mm;
 970	unsigned long size;
 971
 972	FLUSH_BEGIN(mm)
 973	start &= SRMMU_PGDIR_MASK;
 974	size = SRMMU_PGDIR_ALIGN(end) - start;
 975	__asm__ __volatile__(
 976		"lda	[%0] %5, %%g5\n\t"
 977		"sta	%1, [%0] %5\n"
 978		"1:\n\t"
 979		"subcc	%3, %4, %3\n\t"
 980		"bne	1b\n\t"
 981		" sta	%%g0, [%2 + %3] %6\n\t"
 982		"sta	%%g5, [%0] %5\n"
 983	: /* no outputs */
 984	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
 985	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
 986	  "i" (ASI_M_FLUSH_PROBE)
 987	: "g5", "cc");
 988	FLUSH_END
 989}
 990
 991static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 992{
 993	struct mm_struct *mm = vma->vm_mm;
 994
 995	FLUSH_BEGIN(mm)
 996	__asm__ __volatile__(
 997	"lda	[%0] %3, %%g5\n\t"
 998	"sta	%1, [%0] %3\n\t"
 999	"sta	%%g0, [%2] %4\n\t"
1000	"sta	%%g5, [%0] %3\n"
1001	: /* no outputs */
1002	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004	: "g5");
1005	FLUSH_END
1006}
1007
1008/* viking.S */
1009extern void viking_flush_cache_all(void);
1010extern void viking_flush_cache_mm(struct mm_struct *mm);
1011extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012				     unsigned long end);
1013extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014extern void viking_flush_page_to_ram(unsigned long page);
1015extern void viking_flush_page_for_dma(unsigned long page);
1016extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017extern void viking_flush_page(unsigned long page);
1018extern void viking_mxcc_flush_page(unsigned long page);
1019extern void viking_flush_tlb_all(void);
1020extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022				   unsigned long end);
1023extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024				  unsigned long page);
1025extern void sun4dsmp_flush_tlb_all(void);
1026extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028				   unsigned long end);
1029extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030				  unsigned long page);
1031
1032/* hypersparc.S */
1033extern void hypersparc_flush_cache_all(void);
1034extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037extern void hypersparc_flush_page_to_ram(unsigned long page);
1038extern void hypersparc_flush_page_for_dma(unsigned long page);
1039extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040extern void hypersparc_flush_tlb_all(void);
1041extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044extern void hypersparc_setup_blockops(void);
1045
1046/*
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 *       kernel mappings are done with one single contiguous chunk of
1049 *       ram.  On small ram machines (classics mainly) we only get
1050 *       around 8mb mapped for us.
1051 */
1052
1053static void __init early_pgtable_allocfail(char *type)
1054{
1055	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056	prom_halt();
1057}
1058
1059static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060							unsigned long end)
1061{
1062	pgd_t *pgdp;
 
 
1063	pmd_t *pmdp;
1064	pte_t *ptep;
1065
1066	while(start < end) {
1067		pgdp = pgd_offset_k(start);
1068		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069			pmdp = (pmd_t *) __srmmu_get_nocache(
 
 
1070			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071			if (pmdp == NULL)
1072				early_pgtable_allocfail("pmd");
1073			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1075		}
1076		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079			if (ptep == NULL)
1080				early_pgtable_allocfail("pte");
1081			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1083		}
1084		if (start > (0xffffffffUL - PMD_SIZE))
1085			break;
1086		start = (start + PMD_SIZE) & PMD_MASK;
1087	}
1088}
1089
1090static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091						  unsigned long end)
1092{
1093	pgd_t *pgdp;
 
 
1094	pmd_t *pmdp;
1095	pte_t *ptep;
1096
1097	while(start < end) {
1098		pgdp = pgd_offset_k(start);
1099		if(srmmu_pgd_none(*pgdp)) {
1100			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 
 
1101			if (pmdp == NULL)
1102				early_pgtable_allocfail("pmd");
1103			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104			srmmu_pgd_set(pgdp, pmdp);
1105		}
1106		pmdp = srmmu_pmd_offset(pgdp, start);
1107		if(srmmu_pmd_none(*pmdp)) {
1108			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109							     PTE_SIZE);
1110			if (ptep == NULL)
1111				early_pgtable_allocfail("pte");
1112			memset(ptep, 0, PTE_SIZE);
1113			srmmu_pmd_set(pmdp, ptep);
1114		}
1115		if (start > (0xffffffffUL - PMD_SIZE))
1116			break;
1117		start = (start + PMD_SIZE) & PMD_MASK;
1118	}
1119}
1120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121/*
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do.  Yuck... this is much better.
1125 */
1126static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127					       unsigned long end)
1128{
 
 
1129	pgd_t *pgdp;
 
 
1130	pmd_t *pmdp;
1131	pte_t *ptep;
1132	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133	unsigned long prompte;
1134
1135	while(start <= end) {
1136		if (start == 0)
1137			break; /* probably wrap around */
1138		if(start == 0xfef00000)
1139			start = KADB_DEBUGGER_BEGVM;
1140		if(!(prompte = srmmu_hwprobe(start))) {
 
 
1141			start += PAGE_SIZE;
1142			continue;
1143		}
1144    
1145		/* A red snapper, see what it really is. */
1146		what = 0;
1147    
1148		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
 
1150				what = 1;
1151		}
1152    
1153		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155			   prompte)
1156				what = 2;
1157		}
1158    
1159		pgdp = pgd_offset_k(start);
1160		if(what == 2) {
1161			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162			start += SRMMU_PGDIR_SIZE;
 
 
1163			continue;
1164		}
1165		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 
1167			if (pmdp == NULL)
1168				early_pgtable_allocfail("pmd");
1169			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1171		}
1172		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175							     PTE_SIZE);
 
 
 
 
1176			if (ptep == NULL)
1177				early_pgtable_allocfail("pte");
1178			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1180		}
1181		if(what == 1) {
1182			/*
1183			 * We bend the rule where all 16 PTPs in a pmd_t point
1184			 * inside the same PTE page, and we leak a perfectly
1185			 * good hardware PTE piece. Alternatives seem worse.
1186			 */
1187			unsigned int x;	/* Index of HW PMD in soft cluster */
1188			x = (start >> PMD_SHIFT) & 15;
1189			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1190			start += SRMMU_REAL_PMD_SIZE;
1191			continue;
1192		}
1193		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195		start += PAGE_SIZE;
1196	}
1197}
1198
1199#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1200
1201/* Create a third-level SRMMU 16MB page mapping. */
1202static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1203{
1204	pgd_t *pgdp = pgd_offset_k(vaddr);
1205	unsigned long big_pte;
1206
1207	big_pte = KERNEL_PTE(phys_base >> 4);
1208	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1209}
1210
1211/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1213{
1214	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217	/* Map "low" memory only */
1218	const unsigned long min_vaddr = PAGE_OFFSET;
1219	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1220
1221	if (vstart < min_vaddr || vstart >= max_vaddr)
1222		return vstart;
1223	
1224	if (vend > max_vaddr || vend < min_vaddr)
1225		vend = max_vaddr;
1226
1227	while(vstart < vend) {
1228		do_large_mapping(vstart, pstart);
1229		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1230	}
1231	return vstart;
1232}
1233
1234static inline void memprobe_error(char *msg)
1235{
1236	prom_printf(msg);
1237	prom_printf("Halting now...\n");
1238	prom_halt();
1239}
1240
1241static inline void map_kernel(void)
1242{
1243	int i;
1244
1245	if (phys_base > 0) {
1246		do_large_mapping(PAGE_OFFSET, phys_base);
1247	}
1248
1249	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1251	}
1252
1253	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1254}
1255
1256/* Paging initialization on the Sparc Reference MMU. */
1257extern void sparc_context_init(int);
1258
1259void (*poke_srmmu)(void) __cpuinitdata = NULL;
1260
1261extern unsigned long bootmem_init(unsigned long *pages_avail);
1262
1263void __init srmmu_paging_init(void)
1264{
1265	int i;
1266	phandle cpunode;
1267	char node_str[128];
1268	pgd_t *pgd;
 
 
1269	pmd_t *pmd;
1270	pte_t *pte;
1271	unsigned long pages_avail;
1272
 
1273	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1274
1275	if (sparc_cpu_model == sun4d)
1276		num_contexts = 65536; /* We know it is Viking */
1277	else {
1278		/* Find the number of contexts on the srmmu. */
1279		cpunode = prom_getchild(prom_root_node);
1280		num_contexts = 0;
1281		while(cpunode != 0) {
1282			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283			if(!strcmp(node_str, "cpu")) {
1284				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285				break;
1286			}
1287			cpunode = prom_getsibling(cpunode);
1288		}
1289	}
1290
1291	if(!num_contexts) {
1292		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293		prom_halt();
1294	}
1295
1296	pages_avail = 0;
1297	last_valid_pfn = bootmem_init(&pages_avail);
1298
1299	srmmu_nocache_calcsize();
1300	srmmu_nocache_init();
1301        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302	map_kernel();
1303
1304	/* ctx table has to be physically aligned to its size */
1305	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1307
1308	for(i = 0; i < num_contexts; i++)
1309		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1310
1311	flush_cache_all();
1312	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313#ifdef CONFIG_SMP
1314	/* Stop from hanging here... */
1315	local_flush_tlb_all();
1316#else
1317	flush_tlb_all();
1318#endif
1319	poke_srmmu();
1320
1321	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1323
1324	srmmu_allocate_ptable_skeleton(
1325		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1327
1328	pgd = pgd_offset_k(PKMAP_BASE);
1329	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
 
 
1331	pkmap_page_table = pte;
1332
1333	flush_cache_all();
1334	flush_tlb_all();
1335
1336	sparc_context_init(num_contexts);
1337
1338	kmap_init();
1339
1340	{
1341		unsigned long zones_size[MAX_NR_ZONES];
1342		unsigned long zholes_size[MAX_NR_ZONES];
1343		unsigned long npages;
1344		int znum;
1345
1346		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347			zones_size[znum] = zholes_size[znum] = 0;
1348
1349		npages = max_low_pfn - pfn_base;
1350
1351		zones_size[ZONE_DMA] = npages;
1352		zholes_size[ZONE_DMA] = npages - pages_avail;
 
1353
1354		npages = highend_pfn - max_low_pfn;
1355		zones_size[ZONE_HIGHMEM] = npages;
1356		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1357
1358		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359	}
1360}
1361
1362static void srmmu_mmu_info(struct seq_file *m)
1363{
1364	seq_printf(m, 
1365		   "MMU type\t: %s\n"
1366		   "contexts\t: %d\n"
1367		   "nocache total\t: %ld\n"
1368		   "nocache used\t: %d\n",
1369		   srmmu_name,
1370		   num_contexts,
1371		   srmmu_nocache_size,
1372		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1373}
1374
1375static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376{
 
 
1377}
1378
1379static void srmmu_destroy_context(struct mm_struct *mm)
1380{
 
1381
1382	if(mm->context != NO_CONTEXT) {
1383		flush_cache_mm(mm);
1384		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385		flush_tlb_mm(mm);
1386		spin_lock(&srmmu_context_spinlock);
1387		free_context(mm->context);
1388		spin_unlock(&srmmu_context_spinlock);
1389		mm->context = NO_CONTEXT;
1390	}
1391}
1392
1393/* Init various srmmu chip types. */
1394static void __init srmmu_is_bad(void)
1395{
1396	prom_printf("Could not determine SRMMU chip type.\n");
1397	prom_halt();
1398}
1399
1400static void __init init_vac_layout(void)
1401{
1402	phandle nd;
1403	int cache_lines;
1404	char node_str[128];
1405#ifdef CONFIG_SMP
1406	int cpu = 0;
1407	unsigned long max_size = 0;
1408	unsigned long min_line_size = 0x10000000;
1409#endif
1410
1411	nd = prom_getchild(prom_root_node);
1412	while((nd = prom_getsibling(nd)) != 0) {
1413		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414		if(!strcmp(node_str, "cpu")) {
1415			vac_line_size = prom_getint(nd, "cache-line-size");
1416			if (vac_line_size == -1) {
1417				prom_printf("can't determine cache-line-size, "
1418					    "halting.\n");
1419				prom_halt();
1420			}
1421			cache_lines = prom_getint(nd, "cache-nlines");
1422			if (cache_lines == -1) {
1423				prom_printf("can't determine cache-nlines, halting.\n");
1424				prom_halt();
1425			}
1426
1427			vac_cache_size = cache_lines * vac_line_size;
1428#ifdef CONFIG_SMP
1429			if(vac_cache_size > max_size)
1430				max_size = vac_cache_size;
1431			if(vac_line_size < min_line_size)
1432				min_line_size = vac_line_size;
1433			//FIXME: cpus not contiguous!!
1434			cpu++;
1435			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436				break;
1437#else
1438			break;
1439#endif
1440		}
1441	}
1442	if(nd == 0) {
1443		prom_printf("No CPU nodes found, halting.\n");
1444		prom_halt();
1445	}
1446#ifdef CONFIG_SMP
1447	vac_cache_size = max_size;
1448	vac_line_size = min_line_size;
1449#endif
1450	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451	       (int)vac_cache_size, (int)vac_line_size);
1452}
1453
1454static void __cpuinit poke_hypersparc(void)
1455{
1456	volatile unsigned long clear;
1457	unsigned long mreg = srmmu_get_mmureg();
1458
1459	hyper_flush_unconditional_combined();
1460
1461	mreg &= ~(HYPERSPARC_CWENABLE);
1462	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463	mreg |= (HYPERSPARC_CMODE);
1464
1465	srmmu_set_mmureg(mreg);
1466
1467#if 0 /* XXX I think this is bad news... -DaveM */
1468	hyper_clear_all_tags();
1469#endif
1470
1471	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472	hyper_flush_whole_icache();
1473	clear = srmmu_get_faddr();
1474	clear = srmmu_get_fstatus();
1475}
1476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477static void __init init_hypersparc(void)
1478{
1479	srmmu_name = "ROSS HyperSparc";
1480	srmmu_modtype = HyperSparc;
1481
1482	init_vac_layout();
1483
1484	is_hypersparc = 1;
1485
1486	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1493
1494	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1498
1499	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1502
1503
1504	poke_srmmu = poke_hypersparc;
1505
1506	hypersparc_setup_blockops();
1507}
1508
1509static void __cpuinit poke_cypress(void)
1510{
1511	unsigned long mreg = srmmu_get_mmureg();
1512	unsigned long faddr, tagval;
1513	volatile unsigned long cypress_sucks;
1514	volatile unsigned long clear;
1515
1516	clear = srmmu_get_faddr();
1517	clear = srmmu_get_fstatus();
1518
1519	if (!(mreg & CYPRESS_CENABLE)) {
1520		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522					     "sta %%g0, [%0] %2\n\t" : :
1523					     "r" (faddr), "r" (0x40000),
1524					     "i" (ASI_M_DATAC_TAG));
1525		}
1526	} else {
1527		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529					     "=r" (tagval) :
1530					     "r" (faddr), "r" (0x40000),
1531					     "i" (ASI_M_DATAC_TAG));
1532
1533			/* If modified and valid, kick it. */
1534			if((tagval & 0x60) == 0x60)
1535				cypress_sucks = *(unsigned long *)
1536							(0xf0020000 + faddr);
1537		}
1538	}
1539
1540	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1541	clear = srmmu_get_faddr();
1542	clear = srmmu_get_fstatus();
1543
1544	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545	srmmu_set_mmureg(mreg);
1546}
1547
1548static void __init init_cypress_common(void)
1549{
1550	init_vac_layout();
1551
1552	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1559
1560	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1564
1565
1566	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1569
1570	poke_srmmu = poke_cypress;
1571}
1572
1573static void __init init_cypress_604(void)
1574{
1575	srmmu_name = "ROSS Cypress-604(UP)";
1576	srmmu_modtype = Cypress;
1577	init_cypress_common();
1578}
1579
1580static void __init init_cypress_605(unsigned long mrev)
1581{
1582	srmmu_name = "ROSS Cypress-605(MP)";
1583	if(mrev == 0xe) {
1584		srmmu_modtype = Cypress_vE;
1585		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586	} else {
1587		if(mrev == 0xd) {
1588			srmmu_modtype = Cypress_vD;
1589			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590		} else {
1591			srmmu_modtype = Cypress;
1592		}
1593	}
1594	init_cypress_common();
1595}
1596
1597static void __cpuinit poke_swift(void)
1598{
1599	unsigned long mreg;
1600
1601	/* Clear any crap from the cache or else... */
1602	swift_flush_cache_all();
1603
1604	/* Enable I & D caches */
1605	mreg = srmmu_get_mmureg();
1606	mreg |= (SWIFT_IE | SWIFT_DE);
1607	/*
1608	 * The Swift branch folding logic is completely broken.  At
1609	 * trap time, if things are just right, if can mistakenly
1610	 * think that a trap is coming from kernel mode when in fact
1611	 * it is coming from user mode (it mis-executes the branch in
1612	 * the trap code).  So you see things like crashme completely
1613	 * hosing your machine which is completely unacceptable.  Turn
1614	 * this shit off... nice job Fujitsu.
1615	 */
1616	mreg &= ~(SWIFT_BF);
1617	srmmu_set_mmureg(mreg);
1618}
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620#define SWIFT_MASKID_ADDR  0x10003018
1621static void __init init_swift(void)
1622{
1623	unsigned long swift_rev;
1624
1625	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1626			     "srl %0, 0x18, %0\n\t" :
1627			     "=r" (swift_rev) :
1628			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629	srmmu_name = "Fujitsu Swift";
1630	switch(swift_rev) {
1631	case 0x11:
1632	case 0x20:
1633	case 0x23:
1634	case 0x30:
1635		srmmu_modtype = Swift_lots_o_bugs;
1636		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1637		/*
1638		 * Gee george, I wonder why Sun is so hush hush about
1639		 * this hardware bug... really braindamage stuff going
1640		 * on here.  However I think we can find a way to avoid
1641		 * all of the workaround overhead under Linux.  Basically,
1642		 * any page fault can cause kernel pages to become user
1643		 * accessible (the mmu gets confused and clears some of
1644		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1645		 * horrible eh?  But wait, after extensive testing it appears
1646		 * that if you use pgd_t level large kernel pte's (like the
1647		 * 4MB pages on the Pentium) the bug does not get tripped
1648		 * at all.  This avoids almost all of the major overhead.
1649		 * Welcome to a world where your vendor tells you to,
1650		 * "apply this kernel patch" instead of "sorry for the
1651		 * broken hardware, send it back and we'll give you
1652		 * properly functioning parts"
1653		 */
1654		break;
1655	case 0x25:
1656	case 0x31:
1657		srmmu_modtype = Swift_bad_c;
1658		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1659		/*
1660		 * You see Sun allude to this hardware bug but never
1661		 * admit things directly, they'll say things like,
1662		 * "the Swift chip cache problems" or similar.
1663		 */
1664		break;
1665	default:
1666		srmmu_modtype = Swift_ok;
1667		break;
1668	}
1669
1670	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1674
1675
1676	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1680
1681	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1684
1685	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1686
1687	flush_page_for_dma_global = 0;
1688
1689	/*
1690	 * Are you now convinced that the Swift is one of the
1691	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1692	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1693	 * you examined the microcode of the Swift you'd find
1694	 * XXX's all over the place.
1695	 */
1696	poke_srmmu = poke_swift;
1697}
1698
1699static void turbosparc_flush_cache_all(void)
1700{
1701	flush_user_windows();
1702	turbosparc_idflash_clear();
1703}
1704
1705static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1706{
1707	FLUSH_BEGIN(mm)
1708	flush_user_windows();
1709	turbosparc_idflash_clear();
1710	FLUSH_END
1711}
1712
1713static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1714{
1715	FLUSH_BEGIN(vma->vm_mm)
1716	flush_user_windows();
1717	turbosparc_idflash_clear();
1718	FLUSH_END
1719}
1720
1721static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1722{
1723	FLUSH_BEGIN(vma->vm_mm)
1724	flush_user_windows();
1725	if (vma->vm_flags & VM_EXEC)
1726		turbosparc_flush_icache();
1727	turbosparc_flush_dcache();
1728	FLUSH_END
1729}
1730
1731/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732static void turbosparc_flush_page_to_ram(unsigned long page)
1733{
1734#ifdef TURBOSPARC_WRITEBACK
1735	volatile unsigned long clear;
1736
1737	if (srmmu_hwprobe(page))
1738		turbosparc_flush_page_cache(page);
1739	clear = srmmu_get_fstatus();
1740#endif
1741}
1742
1743static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744{
1745}
1746
1747static void turbosparc_flush_page_for_dma(unsigned long page)
1748{
1749	turbosparc_flush_dcache();
1750}
1751
1752static void turbosparc_flush_tlb_all(void)
1753{
1754	srmmu_flush_whole_tlb();
1755}
1756
1757static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1758{
1759	FLUSH_BEGIN(mm)
1760	srmmu_flush_whole_tlb();
1761	FLUSH_END
1762}
1763
1764static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1765{
1766	FLUSH_BEGIN(vma->vm_mm)
1767	srmmu_flush_whole_tlb();
1768	FLUSH_END
1769}
1770
1771static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772{
1773	FLUSH_BEGIN(vma->vm_mm)
1774	srmmu_flush_whole_tlb();
1775	FLUSH_END
1776}
1777
1778
1779static void __cpuinit poke_turbosparc(void)
1780{
1781	unsigned long mreg = srmmu_get_mmureg();
1782	unsigned long ccreg;
1783
1784	/* Clear any crap from the cache or else... */
1785	turbosparc_flush_cache_all();
1786	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
 
1787	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1788	srmmu_set_mmureg(mreg);
1789	
1790	ccreg = turbosparc_get_ccreg();
1791
1792#ifdef TURBOSPARC_WRITEBACK
1793	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1794	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795			/* Write-back D-cache, emulate VLSI
1796			 * abortion number three, not number one */
1797#else
1798	/* For now let's play safe, optimize later */
1799	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1801	ccreg &= ~(TURBOSPARC_uS2);
1802			/* Emulate VLSI abortion number three, not number one */
1803#endif
1804
1805	switch (ccreg & 7) {
1806	case 0: /* No SE cache */
1807	case 7: /* Test mode */
1808		break;
1809	default:
1810		ccreg |= (TURBOSPARC_SCENABLE);
1811	}
1812	turbosparc_set_ccreg (ccreg);
1813
1814	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1816	srmmu_set_mmureg(mreg);
1817}
1818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819static void __init init_turbosparc(void)
1820{
1821	srmmu_name = "Fujitsu TurboSparc";
1822	srmmu_modtype = TurboSparc;
1823
1824	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828
1829	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833
1834	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835
1836	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838
1839	poke_srmmu = poke_turbosparc;
1840}
1841
1842static void __cpuinit poke_tsunami(void)
1843{
1844	unsigned long mreg = srmmu_get_mmureg();
1845
1846	tsunami_flush_icache();
1847	tsunami_flush_dcache();
1848	mreg &= ~TSUNAMI_ITD;
1849	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850	srmmu_set_mmureg(mreg);
1851}
1852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853static void __init init_tsunami(void)
1854{
1855	/*
1856	 * Tsunami's pretty sane, Sun and TI actually got it
1857	 * somewhat right this time.  Fujitsu should have
1858	 * taken some lessons from them.
1859	 */
1860
1861	srmmu_name = "TI Tsunami";
1862	srmmu_modtype = Tsunami;
1863
1864	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868
1869
1870	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874
1875	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878
1879	poke_srmmu = poke_tsunami;
1880
1881	tsunami_setup_blockops();
1882}
1883
1884static void __cpuinit poke_viking(void)
1885{
1886	unsigned long mreg = srmmu_get_mmureg();
1887	static int smp_catch;
1888
1889	if(viking_mxcc_present) {
1890		unsigned long mxcc_control = mxcc_get_creg();
1891
1892		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893		mxcc_control &= ~(MXCC_CTL_RRC);
1894		mxcc_set_creg(mxcc_control);
1895
1896		/*
1897		 * We don't need memory parity checks.
1898		 * XXX This is a mess, have to dig out later. ecd.
1899		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900		 */
1901
1902		/* We do cache ptables on MXCC. */
1903		mreg |= VIKING_TCENABLE;
1904	} else {
1905		unsigned long bpreg;
1906
1907		mreg &= ~(VIKING_TCENABLE);
1908		if(smp_catch++) {
1909			/* Must disable mixed-cmd mode here for other cpu's. */
1910			bpreg = viking_get_bpreg();
1911			bpreg &= ~(VIKING_ACTION_MIX);
1912			viking_set_bpreg(bpreg);
1913
1914			/* Just in case PROM does something funny. */
1915			msi_set_sync();
1916		}
1917	}
1918
1919	mreg |= VIKING_SPENABLE;
1920	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921	mreg |= VIKING_SBENABLE;
1922	mreg &= ~(VIKING_ACENABLE);
1923	srmmu_set_mmureg(mreg);
1924}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926static void __init init_viking(void)
1927{
1928	unsigned long mreg = srmmu_get_mmureg();
1929
1930	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1931	if(mreg & VIKING_MMODE) {
1932		srmmu_name = "TI Viking";
1933		viking_mxcc_present = 0;
1934		msi_set_sync();
1935
1936		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939
1940		/*
1941		 * We need this to make sure old viking takes no hits
1942		 * on it's cache for dma snoops to workaround the
1943		 * "load from non-cacheable memory" interrupt bug.
1944		 * This is only necessary because of the new way in
1945		 * which we use the IOMMU.
1946		 */
1947		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948
 
 
1949		flush_page_for_dma_global = 0;
1950	} else {
1951		srmmu_name = "TI Viking/MXCC";
1952		viking_mxcc_present = 1;
1953
1954		srmmu_cache_pagetables = 1;
1955
1956		/* MXCC vikings lack the DMA snooping bug. */
1957		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958	}
1959
1960	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964
1965#ifdef CONFIG_SMP
1966	if (sparc_cpu_model == sun4d) {
1967		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971	} else
1972#endif
1973	{
1974		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978	}
1979
1980	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982
1983	poke_srmmu = poke_viking;
1984}
1985
1986#ifdef CONFIG_SPARC_LEON
1987
1988void __init poke_leonsparc(void)
1989{
1990}
1991
1992void __init init_leon(void)
1993{
1994
1995	srmmu_name = "LEON";
1996
1997	BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998			BTFIXUPCALL_NORM);
1999	BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000			BTFIXUPCALL_NORM);
2001	BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002			BTFIXUPCALL_NORM);
2003	BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004			BTFIXUPCALL_NORM);
2005	BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006			BTFIXUPCALL_NORM);
2007
2008	BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009	BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010	BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011	BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2012
2013	BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014			BTFIXUPCALL_NOP);
2015	BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2016
2017	poke_srmmu = poke_leonsparc;
2018
2019	srmmu_cache_pagetables = 0;
2020
2021	leon_flush_during_switch = leon_flush_needed();
2022}
2023#endif
2024
2025/* Probe for the srmmu chip version. */
2026static void __init get_srmmu_type(void)
2027{
2028	unsigned long mreg, psr;
2029	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2030
2031	srmmu_modtype = SRMMU_INVAL_MOD;
2032	hwbug_bitmask = 0;
2033
2034	mreg = srmmu_get_mmureg(); psr = get_psr();
2035	mod_typ = (mreg & 0xf0000000) >> 28;
2036	mod_rev = (mreg & 0x0f000000) >> 24;
2037	psr_typ = (psr >> 28) & 0xf;
2038	psr_vers = (psr >> 24) & 0xf;
2039
2040	/* First, check for sparc-leon. */
2041	if (sparc_cpu_model == sparc_leon) {
2042		init_leon();
2043		return;
2044	}
2045
2046	/* Second, check for HyperSparc or Cypress. */
2047	if(mod_typ == 1) {
2048		switch(mod_rev) {
2049		case 7:
2050			/* UP or MP Hypersparc */
2051			init_hypersparc();
2052			break;
2053		case 0:
2054		case 2:
2055			/* Uniprocessor Cypress */
2056			init_cypress_604();
2057			break;
2058		case 10:
2059		case 11:
2060		case 12:
2061			/* _REALLY OLD_ Cypress MP chips... */
2062		case 13:
2063		case 14:
2064		case 15:
2065			/* MP Cypress mmu/cache-controller */
2066			init_cypress_605(mod_rev);
2067			break;
2068		default:
2069			/* Some other Cypress revision, assume a 605. */
2070			init_cypress_605(mod_rev);
2071			break;
2072		}
2073		return;
2074	}
2075	
2076	/*
2077	 * Now Fujitsu TurboSparc. It might happen that it is
2078	 * in Swift emulation mode, so we will check later...
2079	 */
2080	if (psr_typ == 0 && psr_vers == 5) {
2081		init_turbosparc();
2082		return;
2083	}
2084
2085	/* Next check for Fujitsu Swift. */
2086	if(psr_typ == 0 && psr_vers == 4) {
2087		phandle cpunode;
2088		char node_str[128];
2089
2090		/* Look if it is not a TurboSparc emulating Swift... */
2091		cpunode = prom_getchild(prom_root_node);
2092		while((cpunode = prom_getsibling(cpunode)) != 0) {
2093			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094			if(!strcmp(node_str, "cpu")) {
2095				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097					init_turbosparc();
2098					return;
2099				}
2100				break;
2101			}
2102		}
2103		
2104		init_swift();
2105		return;
2106	}
2107
2108	/* Now the Viking family of srmmu. */
2109	if(psr_typ == 4 &&
2110	   ((psr_vers == 0) ||
2111	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112		init_viking();
2113		return;
2114	}
2115
2116	/* Finally the Tsunami. */
2117	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118		init_tsunami();
2119		return;
2120	}
2121
2122	/* Oh well */
2123	srmmu_is_bad();
2124}
2125
2126/* don't laugh, static pagetables */
2127static void srmmu_check_pgt_cache(int low, int high)
 
2128{
 
 
2129}
2130
2131extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132	tsetup_mmu_patchme, rtrap_mmu_patchme;
2133
2134extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2136
2137extern unsigned long srmmu_fault;
2138
2139#define PATCH_BRANCH(insn, dest) do { \
2140		iaddr = &(insn); \
2141		daddr = &(dest); \
2142		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143	} while(0)
2144
2145static void __init patch_window_trap_handlers(void)
2146{
2147	unsigned long *iaddr, *daddr;
2148	
2149	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2156}
2157
2158#ifdef CONFIG_SMP
2159/* Local cross-calls. */
2160static void smp_flush_page_for_dma(unsigned long page)
2161{
2162	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163	local_flush_page_for_dma(page);
2164}
2165
2166#endif
2167
2168static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2169{
2170	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
 
 
 
 
 
 
 
2171}
2172
2173static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2174{
2175	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
2176}
2177
2178static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
 
 
2179{
2180	prot &= ~__pgprot(SRMMU_CACHE);
2181
2182	return prot;
 
 
 
 
 
 
 
 
2183}
2184
2185/* Load up routines and constants for sun4m and sun4d mmu */
2186void __init ld_mmu_srmmu(void)
 
2187{
2188	extern void ld_mmu_iommu(void);
2189	extern void ld_mmu_iounit(void);
2190	extern void ___xchg32_sun4md(void);
2191
2192	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2195
2196	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2198
2199	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2205
2206	/* Functions */
2207	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208#ifndef CONFIG_SMP	
2209	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210#endif
2211	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
 
 
 
 
2212
2213	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
 
 
 
2215
2216	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2219
2220	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2222
2223	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2226
2227	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2231
2232	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2238	
2239	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2242
2243	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2251
2252	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2264
2265	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2267
2268	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2271
2272	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
2273
2274	BTFIXUPSET_CALL(alloc_thread_info_node, srmmu_alloc_thread_info_node, BTFIXUPCALL_NORM);
2275	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
 
 
2276
2277	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
 
 
 
 
2280	get_srmmu_type();
2281	patch_window_trap_handlers();
2282
2283#ifdef CONFIG_SMP
2284	/* El switcheroo... */
 
2285
2286	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2297
2298	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302	if (sparc_cpu_model != sun4d &&
2303	    sparc_cpu_model != sparc_leon) {
2304		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2308	}
2309	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2312
2313	if (poke_srmmu == poke_viking) {
2314		/* Avoid unnecessary cross calls. */
2315		BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316		BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317		BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318		BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319		BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320		BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321		BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
 
2322	}
 
 
 
 
2323#endif
2324
2325	if (sparc_cpu_model == sun4d)
2326		ld_mmu_iounit();
2327	else
2328		ld_mmu_iommu();
2329#ifdef CONFIG_SMP
2330	if (sparc_cpu_model == sun4d)
2331		sun4d_init_smp();
2332	else if (sparc_cpu_model == sparc_leon)
2333		leon_init_smp();
2334	else
2335		sun4m_init_smp();
2336#endif
2337}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
 
 
 
 
 
 
 
 
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
 
 
 
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
 
 
 
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
 
 
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
 
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
 
 
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
 
 
 
  79int flush_page_for_dma_global = 1;
  80
 
 
 
 
 
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 
 104static struct bit_map srmmu_nocache_map;
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 
 
 
 
 
 
 111{
 112	pte_t pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 
 
 
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 
 
 
 
 
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if (!(ptep = pte_alloc_one_kernel(mm)))
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 
 368{
 
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 
 
 
 
 
 
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 
 
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pudp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*__nocache_fix(ptep) = __pte(probed);
 
 
 
 
 
 
 
 
 
 
 
 
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 
 
 
 
 
 
 
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 
 
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 
 
 
 
 
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 
 
 974	{
 975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 
 
 
 
 
 
 
 
 976
 977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981		free_area_init(max_zone_pfn);
 
 
 
 
 982	}
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987	seq_printf(m,
 988		   "MMU type\t: %s\n"
 989		   "contexts\t: %d\n"
 990		   "nocache total\t: %ld\n"
 991		   "nocache used\t: %d\n",
 992		   srmmu_name,
 993		   num_contexts,
 994		   srmmu_nocache_size,
 995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000	mm->context = NO_CONTEXT;
1001	return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006	unsigned long flags;
1007
1008	if (mm->context != NO_CONTEXT) {
1009		flush_cache_mm(mm);
1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011		flush_tlb_mm(mm);
1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013		free_context(mm->context);
1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015		mm->context = NO_CONTEXT;
1016	}
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022	prom_printf("Could not determine SRMMU chip type.\n");
1023	prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028	phandle nd;
1029	int cache_lines;
1030	char node_str[128];
1031#ifdef CONFIG_SMP
1032	int cpu = 0;
1033	unsigned long max_size = 0;
1034	unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037	nd = prom_getchild(prom_root_node);
1038	while ((nd = prom_getsibling(nd)) != 0) {
1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040		if (!strcmp(node_str, "cpu")) {
1041			vac_line_size = prom_getint(nd, "cache-line-size");
1042			if (vac_line_size == -1) {
1043				prom_printf("can't determine cache-line-size, halting.\n");
 
1044				prom_halt();
1045			}
1046			cache_lines = prom_getint(nd, "cache-nlines");
1047			if (cache_lines == -1) {
1048				prom_printf("can't determine cache-nlines, halting.\n");
1049				prom_halt();
1050			}
1051
1052			vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054			if (vac_cache_size > max_size)
1055				max_size = vac_cache_size;
1056			if (vac_line_size < min_line_size)
1057				min_line_size = vac_line_size;
1058			//FIXME: cpus not contiguous!!
1059			cpu++;
1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061				break;
1062#else
1063			break;
1064#endif
1065		}
1066	}
1067	if (nd == 0) {
1068		prom_printf("No CPU nodes found, halting.\n");
1069		prom_halt();
1070	}
1071#ifdef CONFIG_SMP
1072	vac_cache_size = max_size;
1073	vac_line_size = min_line_size;
1074#endif
1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076	       (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081	volatile unsigned long clear;
1082	unsigned long mreg = srmmu_get_mmureg();
1083
1084	hyper_flush_unconditional_combined();
1085
1086	mreg &= ~(HYPERSPARC_CWENABLE);
1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088	mreg |= (HYPERSPARC_CMODE);
1089
1090	srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093	hyper_clear_all_tags();
1094#endif
1095
1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097	hyper_flush_whole_icache();
1098	clear = srmmu_get_faddr();
1099	clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103	.cache_all	= hypersparc_flush_cache_all,
1104	.cache_mm	= hypersparc_flush_cache_mm,
1105	.cache_page	= hypersparc_flush_cache_page,
1106	.cache_range	= hypersparc_flush_cache_range,
1107	.tlb_all	= hypersparc_flush_tlb_all,
1108	.tlb_mm		= hypersparc_flush_tlb_mm,
1109	.tlb_page	= hypersparc_flush_tlb_page,
1110	.tlb_range	= hypersparc_flush_tlb_range,
1111	.page_to_ram	= hypersparc_flush_page_to_ram,
1112	.sig_insns	= hypersparc_flush_sig_insns,
1113	.page_for_dma	= hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118	srmmu_name = "ROSS HyperSparc";
1119	srmmu_modtype = HyperSparc;
1120
1121	init_vac_layout();
1122
1123	is_hypersparc = 1;
1124	sparc32_cachetlb_ops = &hypersparc_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126	poke_srmmu = poke_hypersparc;
1127
1128	hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132{
1133	unsigned long mreg;
1134
1135	/* Clear any crap from the cache or else... */
1136	swift_flush_cache_all();
1137
1138	/* Enable I & D caches */
1139	mreg = srmmu_get_mmureg();
1140	mreg |= (SWIFT_IE | SWIFT_DE);
1141	/*
1142	 * The Swift branch folding logic is completely broken.  At
1143	 * trap time, if things are just right, if can mistakenly
1144	 * think that a trap is coming from kernel mode when in fact
1145	 * it is coming from user mode (it mis-executes the branch in
1146	 * the trap code).  So you see things like crashme completely
1147	 * hosing your machine which is completely unacceptable.  Turn
1148	 * this shit off... nice job Fujitsu.
1149	 */
1150	mreg &= ~(SWIFT_BF);
1151	srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155	.cache_all	= swift_flush_cache_all,
1156	.cache_mm	= swift_flush_cache_mm,
1157	.cache_page	= swift_flush_cache_page,
1158	.cache_range	= swift_flush_cache_range,
1159	.tlb_all	= swift_flush_tlb_all,
1160	.tlb_mm		= swift_flush_tlb_mm,
1161	.tlb_page	= swift_flush_tlb_page,
1162	.tlb_range	= swift_flush_tlb_range,
1163	.page_to_ram	= swift_flush_page_to_ram,
1164	.sig_insns	= swift_flush_sig_insns,
1165	.page_for_dma	= swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171	unsigned long swift_rev;
1172
1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1174			     "srl %0, 0x18, %0\n\t" :
1175			     "=r" (swift_rev) :
1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177	srmmu_name = "Fujitsu Swift";
1178	switch (swift_rev) {
1179	case 0x11:
1180	case 0x20:
1181	case 0x23:
1182	case 0x30:
1183		srmmu_modtype = Swift_lots_o_bugs;
1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185		/*
1186		 * Gee george, I wonder why Sun is so hush hush about
1187		 * this hardware bug... really braindamage stuff going
1188		 * on here.  However I think we can find a way to avoid
1189		 * all of the workaround overhead under Linux.  Basically,
1190		 * any page fault can cause kernel pages to become user
1191		 * accessible (the mmu gets confused and clears some of
1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193		 * horrible eh?  But wait, after extensive testing it appears
1194		 * that if you use pgd_t level large kernel pte's (like the
1195		 * 4MB pages on the Pentium) the bug does not get tripped
1196		 * at all.  This avoids almost all of the major overhead.
1197		 * Welcome to a world where your vendor tells you to,
1198		 * "apply this kernel patch" instead of "sorry for the
1199		 * broken hardware, send it back and we'll give you
1200		 * properly functioning parts"
1201		 */
1202		break;
1203	case 0x25:
1204	case 0x31:
1205		srmmu_modtype = Swift_bad_c;
1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207		/*
1208		 * You see Sun allude to this hardware bug but never
1209		 * admit things directly, they'll say things like,
1210		 * "the Swift chip cache problems" or similar.
1211		 */
1212		break;
1213	default:
1214		srmmu_modtype = Swift_ok;
1215		break;
1216	}
1217
1218	sparc32_cachetlb_ops = &swift_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219	flush_page_for_dma_global = 0;
1220
1221	/*
1222	 * Are you now convinced that the Swift is one of the
1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225	 * you examined the microcode of the Swift you'd find
1226	 * XXX's all over the place.
1227	 */
1228	poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239	FLUSH_BEGIN(mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	turbosparc_idflash_clear();
1250	FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255	FLUSH_BEGIN(vma->vm_mm)
1256	flush_user_windows();
1257	if (vma->vm_flags & VM_EXEC)
1258		turbosparc_flush_icache();
1259	turbosparc_flush_dcache();
1260	FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267	volatile unsigned long clear;
1268
1269	if (srmmu_probe(page))
1270		turbosparc_flush_page_cache(page);
1271	clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281	turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286	srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291	FLUSH_BEGIN(mm)
1292	srmmu_flush_whole_tlb();
1293	FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298	FLUSH_BEGIN(vma->vm_mm)
1299	srmmu_flush_whole_tlb();
1300	FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305	FLUSH_BEGIN(vma->vm_mm)
1306	srmmu_flush_whole_tlb();
1307	FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313	unsigned long mreg = srmmu_get_mmureg();
1314	unsigned long ccreg;
1315
1316	/* Clear any crap from the cache or else... */
1317	turbosparc_flush_cache_all();
1318	/* Temporarily disable I & D caches */
1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1321	srmmu_set_mmureg(mreg);
1322
1323	ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328			/* Write-back D-cache, emulate VLSI
1329			 * abortion number three, not number one */
1330#else
1331	/* For now let's play safe, optimize later */
1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1334	ccreg &= ~(TURBOSPARC_uS2);
1335			/* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338	switch (ccreg & 7) {
1339	case 0: /* No SE cache */
1340	case 7: /* Test mode */
1341		break;
1342	default:
1343		ccreg |= (TURBOSPARC_SCENABLE);
1344	}
1345	turbosparc_set_ccreg(ccreg);
1346
1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1349	srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353	.cache_all	= turbosparc_flush_cache_all,
1354	.cache_mm	= turbosparc_flush_cache_mm,
1355	.cache_page	= turbosparc_flush_cache_page,
1356	.cache_range	= turbosparc_flush_cache_range,
1357	.tlb_all	= turbosparc_flush_tlb_all,
1358	.tlb_mm		= turbosparc_flush_tlb_mm,
1359	.tlb_page	= turbosparc_flush_tlb_page,
1360	.tlb_range	= turbosparc_flush_tlb_range,
1361	.page_to_ram	= turbosparc_flush_page_to_ram,
1362	.sig_insns	= turbosparc_flush_sig_insns,
1363	.page_for_dma	= turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368	srmmu_name = "Fujitsu TurboSparc";
1369	srmmu_modtype = TurboSparc;
1370	sparc32_cachetlb_ops = &turbosparc_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376	unsigned long mreg = srmmu_get_mmureg();
1377
1378	tsunami_flush_icache();
1379	tsunami_flush_dcache();
1380	mreg &= ~TSUNAMI_ITD;
1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382	srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386	.cache_all	= tsunami_flush_cache_all,
1387	.cache_mm	= tsunami_flush_cache_mm,
1388	.cache_page	= tsunami_flush_cache_page,
1389	.cache_range	= tsunami_flush_cache_range,
1390	.tlb_all	= tsunami_flush_tlb_all,
1391	.tlb_mm		= tsunami_flush_tlb_mm,
1392	.tlb_page	= tsunami_flush_tlb_page,
1393	.tlb_range	= tsunami_flush_tlb_range,
1394	.page_to_ram	= tsunami_flush_page_to_ram,
1395	.sig_insns	= tsunami_flush_sig_insns,
1396	.page_for_dma	= tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401	/*
1402	 * Tsunami's pretty sane, Sun and TI actually got it
1403	 * somewhat right this time.  Fujitsu should have
1404	 * taken some lessons from them.
1405	 */
1406
1407	srmmu_name = "TI Tsunami";
1408	srmmu_modtype = Tsunami;
1409	sparc32_cachetlb_ops = &tsunami_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410	poke_srmmu = poke_tsunami;
1411
1412	tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417	unsigned long mreg = srmmu_get_mmureg();
1418	static int smp_catch;
1419
1420	if (viking_mxcc_present) {
1421		unsigned long mxcc_control = mxcc_get_creg();
1422
1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424		mxcc_control &= ~(MXCC_CTL_RRC);
1425		mxcc_set_creg(mxcc_control);
1426
1427		/*
1428		 * We don't need memory parity checks.
1429		 * XXX This is a mess, have to dig out later. ecd.
1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431		 */
1432
1433		/* We do cache ptables on MXCC. */
1434		mreg |= VIKING_TCENABLE;
1435	} else {
1436		unsigned long bpreg;
1437
1438		mreg &= ~(VIKING_TCENABLE);
1439		if (smp_catch++) {
1440			/* Must disable mixed-cmd mode here for other cpu's. */
1441			bpreg = viking_get_bpreg();
1442			bpreg &= ~(VIKING_ACTION_MIX);
1443			viking_set_bpreg(bpreg);
1444
1445			/* Just in case PROM does something funny. */
1446			msi_set_sync();
1447		}
1448	}
1449
1450	mreg |= VIKING_SPENABLE;
1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452	mreg |= VIKING_SBENABLE;
1453	mreg &= ~(VIKING_ACENABLE);
1454	srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458	.cache_all	= viking_flush_cache_all,
1459	.cache_mm	= viking_flush_cache_mm,
1460	.cache_page	= viking_flush_cache_page,
1461	.cache_range	= viking_flush_cache_range,
1462	.tlb_all	= viking_flush_tlb_all,
1463	.tlb_mm		= viking_flush_tlb_mm,
1464	.tlb_page	= viking_flush_tlb_page,
1465	.tlb_range	= viking_flush_tlb_range,
1466	.page_to_ram	= viking_flush_page_to_ram,
1467	.sig_insns	= viking_flush_sig_insns,
1468	.page_for_dma	= viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489	.cache_all	= viking_flush_cache_all,
1490	.cache_mm	= viking_flush_cache_mm,
1491	.cache_page	= viking_flush_cache_page,
1492	.cache_range	= viking_flush_cache_range,
1493	.tlb_all	= sun4dsmp_flush_tlb_all,
1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1495	.tlb_page	= sun4dsmp_flush_tlb_page,
1496	.tlb_range	= sun4dsmp_flush_tlb_range,
1497	.page_to_ram	= viking_flush_page_to_ram,
1498	.sig_insns	= viking_flush_sig_insns,
1499	.page_for_dma	= viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505	unsigned long mreg = srmmu_get_mmureg();
1506
1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508	if (mreg & VIKING_MMODE) {
1509		srmmu_name = "TI Viking";
1510		viking_mxcc_present = 0;
1511		msi_set_sync();
1512
 
 
 
 
1513		/*
1514		 * We need this to make sure old viking takes no hits
1515		 * on it's cache for dma snoops to workaround the
1516		 * "load from non-cacheable memory" interrupt bug.
1517		 * This is only necessary because of the new way in
1518		 * which we use the IOMMU.
1519		 */
1520		viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524		flush_page_for_dma_global = 0;
1525	} else {
1526		srmmu_name = "TI Viking/MXCC";
1527		viking_mxcc_present = 1;
 
1528		srmmu_cache_pagetables = 1;
 
 
 
1529	}
1530
1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532		&viking_ops;
 
 
 
1533#ifdef CONFIG_SMP
1534	if (sparc_cpu_model == sun4d)
1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536			&viking_sun4d_smp_ops;
 
 
 
1537#endif
 
 
 
 
 
 
 
 
 
1538
1539	poke_srmmu = poke_viking;
1540}
1541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545	unsigned long mreg, psr;
1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548	srmmu_modtype = SRMMU_INVAL_MOD;
1549	hwbug_bitmask = 0;
1550
1551	mreg = srmmu_get_mmureg(); psr = get_psr();
1552	mod_typ = (mreg & 0xf0000000) >> 28;
1553	mod_rev = (mreg & 0x0f000000) >> 24;
1554	psr_typ = (psr >> 28) & 0xf;
1555	psr_vers = (psr >> 24) & 0xf;
1556
1557	/* First, check for sparc-leon. */
1558	if (sparc_cpu_model == sparc_leon) {
1559		init_leon();
1560		return;
1561	}
1562
1563	/* Second, check for HyperSparc or Cypress. */
1564	if (mod_typ == 1) {
1565		switch (mod_rev) {
1566		case 7:
1567			/* UP or MP Hypersparc */
1568			init_hypersparc();
1569			break;
1570		case 0:
1571		case 2:
 
 
 
1572		case 10:
1573		case 11:
1574		case 12:
 
1575		case 13:
1576		case 14:
1577		case 15:
 
 
 
1578		default:
1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580			prom_halt();
1581			break;
1582		}
1583		return;
1584	}
1585
1586	/* Now Fujitsu TurboSparc. It might happen that it is
 
1587	 * in Swift emulation mode, so we will check later...
1588	 */
1589	if (psr_typ == 0 && psr_vers == 5) {
1590		init_turbosparc();
1591		return;
1592	}
1593
1594	/* Next check for Fujitsu Swift. */
1595	if (psr_typ == 0 && psr_vers == 4) {
1596		phandle cpunode;
1597		char node_str[128];
1598
1599		/* Look if it is not a TurboSparc emulating Swift... */
1600		cpunode = prom_getchild(prom_root_node);
1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603			if (!strcmp(node_str, "cpu")) {
1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606					init_turbosparc();
1607					return;
1608				}
1609				break;
1610			}
1611		}
1612
1613		init_swift();
1614		return;
1615	}
1616
1617	/* Now the Viking family of srmmu. */
1618	if (psr_typ == 4 &&
1619	   ((psr_vers == 0) ||
1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621		init_viking();
1622		return;
1623	}
1624
1625	/* Finally the Tsunami. */
1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627		init_tsunami();
1628		return;
1629	}
1630
1631	/* Oh well */
1632	srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639	xc1((smpfunc_t) local_ops->page_for_dma, page);
1640	local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644{
1645	xc0((smpfunc_t) local_ops->cache_all);
1646	local_ops->cache_all();
 
 
 
 
 
 
 
1647}
1648
1649static void smp_flush_tlb_all(void)
 
 
1650{
1651	xc0((smpfunc_t) local_ops->tlb_all);
1652	local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
 
 
1656{
1657	if (mm->context != NO_CONTEXT) {
1658		cpumask_t cpu_mask;
1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661		if (!cpumask_empty(&cpu_mask))
1662			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1663		local_ops->cache_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669	if (mm->context != NO_CONTEXT) {
1670		cpumask_t cpu_mask;
1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673		if (!cpumask_empty(&cpu_mask)) {
1674			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676				cpumask_copy(mm_cpumask(mm),
1677					     cpumask_of(smp_processor_id()));
1678		}
1679		local_ops->tlb_mm(mm);
1680	}
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684				  unsigned long start,
1685				  unsigned long end)
1686{
1687	struct mm_struct *mm = vma->vm_mm;
1688
1689	if (mm->context != NO_CONTEXT) {
1690		cpumask_t cpu_mask;
1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693		if (!cpumask_empty(&cpu_mask))
1694			xc3((smpfunc_t) local_ops->cache_range,
1695			    (unsigned long) vma, start, end);
1696		local_ops->cache_range(vma, start, end);
1697	}
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701				unsigned long start,
1702				unsigned long end)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc3((smpfunc_t) local_ops->tlb_range,
1712			    (unsigned long) vma, start, end);
1713		local_ops->tlb_range(vma, start, end);
1714	}
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2((smpfunc_t) local_ops->cache_page,
1727			    (unsigned long) vma, page);
1728		local_ops->cache_page(vma, page);
1729	}
1730}
1731
1732static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1733{
1734	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735
1736	if (mm->context != NO_CONTEXT) {
1737		cpumask_t cpu_mask;
1738		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740		if (!cpumask_empty(&cpu_mask))
1741			xc2((smpfunc_t) local_ops->tlb_page,
1742			    (unsigned long) vma, page);
1743		local_ops->tlb_page(vma, page);
1744	}
1745}
1746
1747static void smp_flush_page_to_ram(unsigned long page)
1748{
1749	/* Current theory is that those who call this are the one's
1750	 * who have just dirtied their cache with the pages contents
1751	 * in kernel space, therefore we only run this on local cpu.
1752	 *
1753	 * XXX This experiment failed, research further... -DaveM
1754	 */
1755#if 1
1756	xc1((smpfunc_t) local_ops->page_to_ram, page);
1757#endif
1758	local_ops->page_to_ram(page);
1759}
1760
1761static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1762{
1763	cpumask_t cpu_mask;
1764	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1765	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1766	if (!cpumask_empty(&cpu_mask))
1767		xc2((smpfunc_t) local_ops->sig_insns,
1768		    (unsigned long) mm, insn_addr);
1769	local_ops->sig_insns(mm, insn_addr);
1770}
1771
1772static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1773	.cache_all	= smp_flush_cache_all,
1774	.cache_mm	= smp_flush_cache_mm,
1775	.cache_page	= smp_flush_cache_page,
1776	.cache_range	= smp_flush_cache_range,
1777	.tlb_all	= smp_flush_tlb_all,
1778	.tlb_mm		= smp_flush_tlb_mm,
1779	.tlb_page	= smp_flush_tlb_page,
1780	.tlb_range	= smp_flush_tlb_range,
1781	.page_to_ram	= smp_flush_page_to_ram,
1782	.sig_insns	= smp_flush_sig_insns,
1783	.page_for_dma	= smp_flush_page_for_dma,
1784};
1785#endif
1786
1787/* Load up routines and constants for sun4m and sun4d mmu */
1788void __init load_mmu(void)
1789{
1790	/* Functions */
1791	get_srmmu_type();
 
1792
1793#ifdef CONFIG_SMP
1794	/* El switcheroo... */
1795	local_ops = sparc32_cachetlb_ops;
1796
1797	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1798		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1799		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1800		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1801		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1802	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804	if (poke_srmmu == poke_viking) {
1805		/* Avoid unnecessary cross calls. */
1806		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1807		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1808		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1809		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1810
1811		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1812		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1813		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1814	}
1815
1816	/* It really is const after this point. */
1817	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1818		&smp_cachetlb_ops;
1819#endif
1820
1821	if (sparc_cpu_model != sun4d)
 
 
1822		ld_mmu_iommu();
1823#ifdef CONFIG_SMP
1824	if (sparc_cpu_model == sun4d)
1825		sun4d_init_smp();
1826	else if (sparc_cpu_model == sparc_leon)
1827		leon_init_smp();
1828	else
1829		sun4m_init_smp();
1830#endif
1831}