Loading...
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/regset.h>
22#include <linux/elf.h>
23#include <linux/tracehook.h>
24
25#include <asm/pgtable.h>
26#include <asm/processor.h>
27#include <asm/ptrace_offsets.h>
28#include <asm/rse.h>
29#include <asm/system.h>
30#include <asm/uaccess.h>
31#include <asm/unwind.h>
32#ifdef CONFIG_PERFMON
33#include <asm/perfmon.h>
34#endif
35
36#include "entry.h"
37
38/*
39 * Bits in the PSR that we allow ptrace() to change:
40 * be, up, ac, mfl, mfh (the user mask; five bits total)
41 * db (debug breakpoint fault; one bit)
42 * id (instruction debug fault disable; one bit)
43 * dd (data debug fault disable; one bit)
44 * ri (restart instruction; two bits)
45 * is (instruction set; one bit)
46 */
47#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
48 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
49
50#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
51#define PFM_MASK MASK(38)
52
53#define PTRACE_DEBUG 0
54
55#if PTRACE_DEBUG
56# define dprintk(format...) printk(format)
57# define inline
58#else
59# define dprintk(format...)
60#endif
61
62/* Return TRUE if PT was created due to kernel-entry via a system-call. */
63
64static inline int
65in_syscall (struct pt_regs *pt)
66{
67 return (long) pt->cr_ifs >= 0;
68}
69
70/*
71 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
72 * bitset where bit i is set iff the NaT bit of register i is set.
73 */
74unsigned long
75ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
76{
77# define GET_BITS(first, last, unat) \
78 ({ \
79 unsigned long bit = ia64_unat_pos(&pt->r##first); \
80 unsigned long nbits = (last - first + 1); \
81 unsigned long mask = MASK(nbits) << first; \
82 unsigned long dist; \
83 if (bit < first) \
84 dist = 64 + bit - first; \
85 else \
86 dist = bit - first; \
87 ia64_rotr(unat, dist) & mask; \
88 })
89 unsigned long val;
90
91 /*
92 * Registers that are stored consecutively in struct pt_regs
93 * can be handled in parallel. If the register order in
94 * struct_pt_regs changes, this code MUST be updated.
95 */
96 val = GET_BITS( 1, 1, scratch_unat);
97 val |= GET_BITS( 2, 3, scratch_unat);
98 val |= GET_BITS(12, 13, scratch_unat);
99 val |= GET_BITS(14, 14, scratch_unat);
100 val |= GET_BITS(15, 15, scratch_unat);
101 val |= GET_BITS( 8, 11, scratch_unat);
102 val |= GET_BITS(16, 31, scratch_unat);
103 return val;
104
105# undef GET_BITS
106}
107
108/*
109 * Set the NaT bits for the scratch registers according to NAT and
110 * return the resulting unat (assuming the scratch registers are
111 * stored in PT).
112 */
113unsigned long
114ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
115{
116# define PUT_BITS(first, last, nat) \
117 ({ \
118 unsigned long bit = ia64_unat_pos(&pt->r##first); \
119 unsigned long nbits = (last - first + 1); \
120 unsigned long mask = MASK(nbits) << first; \
121 long dist; \
122 if (bit < first) \
123 dist = 64 + bit - first; \
124 else \
125 dist = bit - first; \
126 ia64_rotl(nat & mask, dist); \
127 })
128 unsigned long scratch_unat;
129
130 /*
131 * Registers that are stored consecutively in struct pt_regs
132 * can be handled in parallel. If the register order in
133 * struct_pt_regs changes, this code MUST be updated.
134 */
135 scratch_unat = PUT_BITS( 1, 1, nat);
136 scratch_unat |= PUT_BITS( 2, 3, nat);
137 scratch_unat |= PUT_BITS(12, 13, nat);
138 scratch_unat |= PUT_BITS(14, 14, nat);
139 scratch_unat |= PUT_BITS(15, 15, nat);
140 scratch_unat |= PUT_BITS( 8, 11, nat);
141 scratch_unat |= PUT_BITS(16, 31, nat);
142
143 return scratch_unat;
144
145# undef PUT_BITS
146}
147
148#define IA64_MLX_TEMPLATE 0x2
149#define IA64_MOVL_OPCODE 6
150
151void
152ia64_increment_ip (struct pt_regs *regs)
153{
154 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
155
156 if (ri > 2) {
157 ri = 0;
158 regs->cr_iip += 16;
159 } else if (ri == 2) {
160 get_user(w0, (char __user *) regs->cr_iip + 0);
161 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
162 /*
163 * rfi'ing to slot 2 of an MLX bundle causes
164 * an illegal operation fault. We don't want
165 * that to happen...
166 */
167 ri = 0;
168 regs->cr_iip += 16;
169 }
170 }
171 ia64_psr(regs)->ri = ri;
172}
173
174void
175ia64_decrement_ip (struct pt_regs *regs)
176{
177 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
178
179 if (ia64_psr(regs)->ri == 0) {
180 regs->cr_iip -= 16;
181 ri = 2;
182 get_user(w0, (char __user *) regs->cr_iip + 0);
183 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
184 /*
185 * rfi'ing to slot 2 of an MLX bundle causes
186 * an illegal operation fault. We don't want
187 * that to happen...
188 */
189 ri = 1;
190 }
191 }
192 ia64_psr(regs)->ri = ri;
193}
194
195/*
196 * This routine is used to read an rnat bits that are stored on the
197 * kernel backing store. Since, in general, the alignment of the user
198 * and kernel are different, this is not completely trivial. In
199 * essence, we need to construct the user RNAT based on up to two
200 * kernel RNAT values and/or the RNAT value saved in the child's
201 * pt_regs.
202 *
203 * user rbs
204 *
205 * +--------+ <-- lowest address
206 * | slot62 |
207 * +--------+
208 * | rnat | 0x....1f8
209 * +--------+
210 * | slot00 | \
211 * +--------+ |
212 * | slot01 | > child_regs->ar_rnat
213 * +--------+ |
214 * | slot02 | / kernel rbs
215 * +--------+ +--------+
216 * <- child_regs->ar_bspstore | slot61 | <-- krbs
217 * +- - - - + +--------+
218 * | slot62 |
219 * +- - - - + +--------+
220 * | rnat |
221 * +- - - - + +--------+
222 * vrnat | slot00 |
223 * +- - - - + +--------+
224 * = =
225 * +--------+
226 * | slot00 | \
227 * +--------+ |
228 * | slot01 | > child_stack->ar_rnat
229 * +--------+ |
230 * | slot02 | /
231 * +--------+
232 * <--- child_stack->ar_bspstore
233 *
234 * The way to think of this code is as follows: bit 0 in the user rnat
235 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
236 * value. The kernel rnat value holding this bit is stored in
237 * variable rnat0. rnat1 is loaded with the kernel rnat value that
238 * form the upper bits of the user rnat value.
239 *
240 * Boundary cases:
241 *
242 * o when reading the rnat "below" the first rnat slot on the kernel
243 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
244 * merged in from pt->ar_rnat.
245 *
246 * o when reading the rnat "above" the last rnat slot on the kernel
247 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
248 */
249static unsigned long
250get_rnat (struct task_struct *task, struct switch_stack *sw,
251 unsigned long *krbs, unsigned long *urnat_addr,
252 unsigned long *urbs_end)
253{
254 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
255 unsigned long umask = 0, mask, m;
256 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
257 long num_regs, nbits;
258 struct pt_regs *pt;
259
260 pt = task_pt_regs(task);
261 kbsp = (unsigned long *) sw->ar_bspstore;
262 ubspstore = (unsigned long *) pt->ar_bspstore;
263
264 if (urbs_end < urnat_addr)
265 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
266 else
267 nbits = 63;
268 mask = MASK(nbits);
269 /*
270 * First, figure out which bit number slot 0 in user-land maps
271 * to in the kernel rnat. Do this by figuring out how many
272 * register slots we're beyond the user's backingstore and
273 * then computing the equivalent address in kernel space.
274 */
275 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
276 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
277 shift = ia64_rse_slot_num(slot0_kaddr);
278 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
279 rnat0_kaddr = rnat1_kaddr - 64;
280
281 if (ubspstore + 63 > urnat_addr) {
282 /* some bits need to be merged in from pt->ar_rnat */
283 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
284 urnat = (pt->ar_rnat & umask);
285 mask &= ~umask;
286 if (!mask)
287 return urnat;
288 }
289
290 m = mask << shift;
291 if (rnat0_kaddr >= kbsp)
292 rnat0 = sw->ar_rnat;
293 else if (rnat0_kaddr > krbs)
294 rnat0 = *rnat0_kaddr;
295 urnat |= (rnat0 & m) >> shift;
296
297 m = mask >> (63 - shift);
298 if (rnat1_kaddr >= kbsp)
299 rnat1 = sw->ar_rnat;
300 else if (rnat1_kaddr > krbs)
301 rnat1 = *rnat1_kaddr;
302 urnat |= (rnat1 & m) << (63 - shift);
303 return urnat;
304}
305
306/*
307 * The reverse of get_rnat.
308 */
309static void
310put_rnat (struct task_struct *task, struct switch_stack *sw,
311 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
312 unsigned long *urbs_end)
313{
314 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
315 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
316 long num_regs, nbits;
317 struct pt_regs *pt;
318 unsigned long cfm, *urbs_kargs;
319
320 pt = task_pt_regs(task);
321 kbsp = (unsigned long *) sw->ar_bspstore;
322 ubspstore = (unsigned long *) pt->ar_bspstore;
323
324 urbs_kargs = urbs_end;
325 if (in_syscall(pt)) {
326 /*
327 * If entered via syscall, don't allow user to set rnat bits
328 * for syscall args.
329 */
330 cfm = pt->cr_ifs;
331 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
332 }
333
334 if (urbs_kargs >= urnat_addr)
335 nbits = 63;
336 else {
337 if ((urnat_addr - 63) >= urbs_kargs)
338 return;
339 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
340 }
341 mask = MASK(nbits);
342
343 /*
344 * First, figure out which bit number slot 0 in user-land maps
345 * to in the kernel rnat. Do this by figuring out how many
346 * register slots we're beyond the user's backingstore and
347 * then computing the equivalent address in kernel space.
348 */
349 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
350 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
351 shift = ia64_rse_slot_num(slot0_kaddr);
352 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
353 rnat0_kaddr = rnat1_kaddr - 64;
354
355 if (ubspstore + 63 > urnat_addr) {
356 /* some bits need to be place in pt->ar_rnat: */
357 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
358 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
359 mask &= ~umask;
360 if (!mask)
361 return;
362 }
363 /*
364 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
365 * rnat slot is ignored. so we don't have to clear it here.
366 */
367 rnat0 = (urnat << shift);
368 m = mask << shift;
369 if (rnat0_kaddr >= kbsp)
370 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
371 else if (rnat0_kaddr > krbs)
372 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
373
374 rnat1 = (urnat >> (63 - shift));
375 m = mask >> (63 - shift);
376 if (rnat1_kaddr >= kbsp)
377 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
378 else if (rnat1_kaddr > krbs)
379 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
380}
381
382static inline int
383on_kernel_rbs (unsigned long addr, unsigned long bspstore,
384 unsigned long urbs_end)
385{
386 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
387 urbs_end);
388 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
389}
390
391/*
392 * Read a word from the user-level backing store of task CHILD. ADDR
393 * is the user-level address to read the word from, VAL a pointer to
394 * the return value, and USER_BSP gives the end of the user-level
395 * backing store (i.e., it's the address that would be in ar.bsp after
396 * the user executed a "cover" instruction).
397 *
398 * This routine takes care of accessing the kernel register backing
399 * store for those registers that got spilled there. It also takes
400 * care of calculating the appropriate RNaT collection words.
401 */
402long
403ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
404 unsigned long user_rbs_end, unsigned long addr, long *val)
405{
406 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
407 struct pt_regs *child_regs;
408 size_t copied;
409 long ret;
410
411 urbs_end = (long *) user_rbs_end;
412 laddr = (unsigned long *) addr;
413 child_regs = task_pt_regs(child);
414 bspstore = (unsigned long *) child_regs->ar_bspstore;
415 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
416 if (on_kernel_rbs(addr, (unsigned long) bspstore,
417 (unsigned long) urbs_end))
418 {
419 /*
420 * Attempt to read the RBS in an area that's actually
421 * on the kernel RBS => read the corresponding bits in
422 * the kernel RBS.
423 */
424 rnat_addr = ia64_rse_rnat_addr(laddr);
425 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
426
427 if (laddr == rnat_addr) {
428 /* return NaT collection word itself */
429 *val = ret;
430 return 0;
431 }
432
433 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
434 /*
435 * It is implementation dependent whether the
436 * data portion of a NaT value gets saved on a
437 * st8.spill or RSE spill (e.g., see EAS 2.6,
438 * 4.4.4.6 Register Spill and Fill). To get
439 * consistent behavior across all possible
440 * IA-64 implementations, we return zero in
441 * this case.
442 */
443 *val = 0;
444 return 0;
445 }
446
447 if (laddr < urbs_end) {
448 /*
449 * The desired word is on the kernel RBS and
450 * is not a NaT.
451 */
452 regnum = ia64_rse_num_regs(bspstore, laddr);
453 *val = *ia64_rse_skip_regs(krbs, regnum);
454 return 0;
455 }
456 }
457 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
458 if (copied != sizeof(ret))
459 return -EIO;
460 *val = ret;
461 return 0;
462}
463
464long
465ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
466 unsigned long user_rbs_end, unsigned long addr, long val)
467{
468 unsigned long *bspstore, *krbs, regnum, *laddr;
469 unsigned long *urbs_end = (long *) user_rbs_end;
470 struct pt_regs *child_regs;
471
472 laddr = (unsigned long *) addr;
473 child_regs = task_pt_regs(child);
474 bspstore = (unsigned long *) child_regs->ar_bspstore;
475 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
476 if (on_kernel_rbs(addr, (unsigned long) bspstore,
477 (unsigned long) urbs_end))
478 {
479 /*
480 * Attempt to write the RBS in an area that's actually
481 * on the kernel RBS => write the corresponding bits
482 * in the kernel RBS.
483 */
484 if (ia64_rse_is_rnat_slot(laddr))
485 put_rnat(child, child_stack, krbs, laddr, val,
486 urbs_end);
487 else {
488 if (laddr < urbs_end) {
489 regnum = ia64_rse_num_regs(bspstore, laddr);
490 *ia64_rse_skip_regs(krbs, regnum) = val;
491 }
492 }
493 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
494 != sizeof(val))
495 return -EIO;
496 return 0;
497}
498
499/*
500 * Calculate the address of the end of the user-level register backing
501 * store. This is the address that would have been stored in ar.bsp
502 * if the user had executed a "cover" instruction right before
503 * entering the kernel. If CFMP is not NULL, it is used to return the
504 * "current frame mask" that was active at the time the kernel was
505 * entered.
506 */
507unsigned long
508ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
509 unsigned long *cfmp)
510{
511 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
512 long ndirty;
513
514 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
515 bspstore = (unsigned long *) pt->ar_bspstore;
516 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
517
518 if (in_syscall(pt))
519 ndirty += (cfm & 0x7f);
520 else
521 cfm &= ~(1UL << 63); /* clear valid bit */
522
523 if (cfmp)
524 *cfmp = cfm;
525 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
526}
527
528/*
529 * Synchronize (i.e, write) the RSE backing store living in kernel
530 * space to the VM of the CHILD task. SW and PT are the pointers to
531 * the switch_stack and pt_regs structures, respectively.
532 * USER_RBS_END is the user-level address at which the backing store
533 * ends.
534 */
535long
536ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
537 unsigned long user_rbs_start, unsigned long user_rbs_end)
538{
539 unsigned long addr, val;
540 long ret;
541
542 /* now copy word for word from kernel rbs to user rbs: */
543 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
544 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
545 if (ret < 0)
546 return ret;
547 if (access_process_vm(child, addr, &val, sizeof(val), 1)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552}
553
554static long
555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557{
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val), 0)
564 != sizeof(val))
565 return -EIO;
566
567 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572}
573
574typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
575 unsigned long, unsigned long);
576
577static void do_sync_rbs(struct unw_frame_info *info, void *arg)
578{
579 struct pt_regs *pt;
580 unsigned long urbs_end;
581 syncfunc_t fn = arg;
582
583 if (unw_unwind_to_user(info) < 0)
584 return;
585 pt = task_pt_regs(info->task);
586 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
587
588 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
589}
590
591/*
592 * when a thread is stopped (ptraced), debugger might change thread's user
593 * stack (change memory directly), and we must avoid the RSE stored in kernel
594 * to override user stack (user space's RSE is newer than kernel's in the
595 * case). To workaround the issue, we copy kernel RSE to user RSE before the
596 * task is stopped, so user RSE has updated data. we then copy user RSE to
597 * kernel after the task is resummed from traced stop and kernel will use the
598 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
599 * synchronize user RSE to kernel.
600 */
601void ia64_ptrace_stop(void)
602{
603 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
604 return;
605 set_notify_resume(current);
606 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
607}
608
609/*
610 * This is called to read back the register backing store.
611 */
612void ia64_sync_krbs(void)
613{
614 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
615
616 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
617}
618
619/*
620 * After PTRACE_ATTACH, a thread's register backing store area in user
621 * space is assumed to contain correct data whenever the thread is
622 * stopped. arch_ptrace_stop takes care of this on tracing stops.
623 * But if the child was already stopped for job control when we attach
624 * to it, then it might not ever get into ptrace_stop by the time we
625 * want to examine the user memory containing the RBS.
626 */
627void
628ptrace_attach_sync_user_rbs (struct task_struct *child)
629{
630 int stopped = 0;
631 struct unw_frame_info info;
632
633 /*
634 * If the child is in TASK_STOPPED, we need to change that to
635 * TASK_TRACED momentarily while we operate on it. This ensures
636 * that the child won't be woken up and return to user mode while
637 * we are doing the sync. (It can only be woken up for SIGKILL.)
638 */
639
640 read_lock(&tasklist_lock);
641 if (child->sighand) {
642 spin_lock_irq(&child->sighand->siglock);
643 if (child->state == TASK_STOPPED &&
644 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
645 set_notify_resume(child);
646
647 child->state = TASK_TRACED;
648 stopped = 1;
649 }
650 spin_unlock_irq(&child->sighand->siglock);
651 }
652 read_unlock(&tasklist_lock);
653
654 if (!stopped)
655 return;
656
657 unw_init_from_blocked_task(&info, child);
658 do_sync_rbs(&info, ia64_sync_user_rbs);
659
660 /*
661 * Now move the child back into TASK_STOPPED if it should be in a
662 * job control stop, so that SIGCONT can be used to wake it up.
663 */
664 read_lock(&tasklist_lock);
665 if (child->sighand) {
666 spin_lock_irq(&child->sighand->siglock);
667 if (child->state == TASK_TRACED &&
668 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
669 child->state = TASK_STOPPED;
670 }
671 spin_unlock_irq(&child->sighand->siglock);
672 }
673 read_unlock(&tasklist_lock);
674}
675
676static inline int
677thread_matches (struct task_struct *thread, unsigned long addr)
678{
679 unsigned long thread_rbs_end;
680 struct pt_regs *thread_regs;
681
682 if (ptrace_check_attach(thread, 0) < 0)
683 /*
684 * If the thread is not in an attachable state, we'll
685 * ignore it. The net effect is that if ADDR happens
686 * to overlap with the portion of the thread's
687 * register backing store that is currently residing
688 * on the thread's kernel stack, then ptrace() may end
689 * up accessing a stale value. But if the thread
690 * isn't stopped, that's a problem anyhow, so we're
691 * doing as well as we can...
692 */
693 return 0;
694
695 thread_regs = task_pt_regs(thread);
696 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
697 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
698 return 0;
699
700 return 1; /* looks like we've got a winner */
701}
702
703/*
704 * Write f32-f127 back to task->thread.fph if it has been modified.
705 */
706inline void
707ia64_flush_fph (struct task_struct *task)
708{
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
710
711 /*
712 * Prevent migrating this task while
713 * we're fiddling with the FPU state
714 */
715 preempt_disable();
716 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
717 psr->mfh = 0;
718 task->thread.flags |= IA64_THREAD_FPH_VALID;
719 ia64_save_fpu(&task->thread.fph[0]);
720 }
721 preempt_enable();
722}
723
724/*
725 * Sync the fph state of the task so that it can be manipulated
726 * through thread.fph. If necessary, f32-f127 are written back to
727 * thread.fph or, if the fph state hasn't been used before, thread.fph
728 * is cleared to zeroes. Also, access to f32-f127 is disabled to
729 * ensure that the task picks up the state from thread.fph when it
730 * executes again.
731 */
732void
733ia64_sync_fph (struct task_struct *task)
734{
735 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
736
737 ia64_flush_fph(task);
738 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
739 task->thread.flags |= IA64_THREAD_FPH_VALID;
740 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
741 }
742 ia64_drop_fpu(task);
743 psr->dfh = 1;
744}
745
746/*
747 * Change the machine-state of CHILD such that it will return via the normal
748 * kernel exit-path, rather than the syscall-exit path.
749 */
750static void
751convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
752 unsigned long cfm)
753{
754 struct unw_frame_info info, prev_info;
755 unsigned long ip, sp, pr;
756
757 unw_init_from_blocked_task(&info, child);
758 while (1) {
759 prev_info = info;
760 if (unw_unwind(&info) < 0)
761 return;
762
763 unw_get_sp(&info, &sp);
764 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
765 < IA64_PT_REGS_SIZE) {
766 dprintk("ptrace.%s: ran off the top of the kernel "
767 "stack\n", __func__);
768 return;
769 }
770 if (unw_get_pr (&prev_info, &pr) < 0) {
771 unw_get_rp(&prev_info, &ip);
772 dprintk("ptrace.%s: failed to read "
773 "predicate register (ip=0x%lx)\n",
774 __func__, ip);
775 return;
776 }
777 if (unw_is_intr_frame(&info)
778 && (pr & (1UL << PRED_USER_STACK)))
779 break;
780 }
781
782 /*
783 * Note: at the time of this call, the target task is blocked
784 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
785 * (aka, "pLvSys") we redirect execution from
786 * .work_pending_syscall_end to .work_processed_kernel.
787 */
788 unw_get_pr(&prev_info, &pr);
789 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
790 pr |= (1UL << PRED_NON_SYSCALL);
791 unw_set_pr(&prev_info, pr);
792
793 pt->cr_ifs = (1UL << 63) | cfm;
794 /*
795 * Clear the memory that is NOT written on syscall-entry to
796 * ensure we do not leak kernel-state to user when execution
797 * resumes.
798 */
799 pt->r2 = 0;
800 pt->r3 = 0;
801 pt->r14 = 0;
802 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
803 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
804 pt->b7 = 0;
805 pt->ar_ccv = 0;
806 pt->ar_csd = 0;
807 pt->ar_ssd = 0;
808}
809
810static int
811access_nat_bits (struct task_struct *child, struct pt_regs *pt,
812 struct unw_frame_info *info,
813 unsigned long *data, int write_access)
814{
815 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
816 char nat = 0;
817
818 if (write_access) {
819 nat_bits = *data;
820 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
821 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
822 dprintk("ptrace: failed to set ar.unat\n");
823 return -1;
824 }
825 for (regnum = 4; regnum <= 7; ++regnum) {
826 unw_get_gr(info, regnum, &dummy, &nat);
827 unw_set_gr(info, regnum, dummy,
828 (nat_bits >> regnum) & 1);
829 }
830 } else {
831 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
832 dprintk("ptrace: failed to read ar.unat\n");
833 return -1;
834 }
835 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
836 for (regnum = 4; regnum <= 7; ++regnum) {
837 unw_get_gr(info, regnum, &dummy, &nat);
838 nat_bits |= (nat != 0) << regnum;
839 }
840 *data = nat_bits;
841 }
842 return 0;
843}
844
845static int
846access_uarea (struct task_struct *child, unsigned long addr,
847 unsigned long *data, int write_access);
848
849static long
850ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
851{
852 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
853 struct unw_frame_info info;
854 struct ia64_fpreg fpval;
855 struct switch_stack *sw;
856 struct pt_regs *pt;
857 long ret, retval = 0;
858 char nat = 0;
859 int i;
860
861 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
862 return -EIO;
863
864 pt = task_pt_regs(child);
865 sw = (struct switch_stack *) (child->thread.ksp + 16);
866 unw_init_from_blocked_task(&info, child);
867 if (unw_unwind_to_user(&info) < 0) {
868 return -EIO;
869 }
870
871 if (((unsigned long) ppr & 0x7) != 0) {
872 dprintk("ptrace:unaligned register address %p\n", ppr);
873 return -EIO;
874 }
875
876 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
877 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
878 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
879 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
880 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
881 || access_uarea(child, PT_CFM, &cfm, 0)
882 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
883 return -EIO;
884
885 /* control regs */
886
887 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
888 retval |= __put_user(psr, &ppr->cr_ipsr);
889
890 /* app regs */
891
892 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
893 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
894 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
895 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
896 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
897 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
898
899 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
900 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
901 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
902 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
903 retval |= __put_user(cfm, &ppr->cfm);
904
905 /* gr1-gr3 */
906
907 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
908 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
909
910 /* gr4-gr7 */
911
912 for (i = 4; i < 8; i++) {
913 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
914 return -EIO;
915 retval |= __put_user(val, &ppr->gr[i]);
916 }
917
918 /* gr8-gr11 */
919
920 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
921
922 /* gr12-gr15 */
923
924 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
925 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
926 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
927
928 /* gr16-gr31 */
929
930 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
931
932 /* b0 */
933
934 retval |= __put_user(pt->b0, &ppr->br[0]);
935
936 /* b1-b5 */
937
938 for (i = 1; i < 6; i++) {
939 if (unw_access_br(&info, i, &val, 0) < 0)
940 return -EIO;
941 __put_user(val, &ppr->br[i]);
942 }
943
944 /* b6-b7 */
945
946 retval |= __put_user(pt->b6, &ppr->br[6]);
947 retval |= __put_user(pt->b7, &ppr->br[7]);
948
949 /* fr2-fr5 */
950
951 for (i = 2; i < 6; i++) {
952 if (unw_get_fr(&info, i, &fpval) < 0)
953 return -EIO;
954 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
955 }
956
957 /* fr6-fr11 */
958
959 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
960 sizeof(struct ia64_fpreg) * 6);
961
962 /* fp scratch regs(12-15) */
963
964 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
965 sizeof(struct ia64_fpreg) * 4);
966
967 /* fr16-fr31 */
968
969 for (i = 16; i < 32; i++) {
970 if (unw_get_fr(&info, i, &fpval) < 0)
971 return -EIO;
972 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
973 }
974
975 /* fph */
976
977 ia64_flush_fph(child);
978 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
979 sizeof(ppr->fr[32]) * 96);
980
981 /* preds */
982
983 retval |= __put_user(pt->pr, &ppr->pr);
984
985 /* nat bits */
986
987 retval |= __put_user(nat_bits, &ppr->nat);
988
989 ret = retval ? -EIO : 0;
990 return ret;
991}
992
993static long
994ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
995{
996 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
997 struct unw_frame_info info;
998 struct switch_stack *sw;
999 struct ia64_fpreg fpval;
1000 struct pt_regs *pt;
1001 long ret, retval = 0;
1002 int i;
1003
1004 memset(&fpval, 0, sizeof(fpval));
1005
1006 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1007 return -EIO;
1008
1009 pt = task_pt_regs(child);
1010 sw = (struct switch_stack *) (child->thread.ksp + 16);
1011 unw_init_from_blocked_task(&info, child);
1012 if (unw_unwind_to_user(&info) < 0) {
1013 return -EIO;
1014 }
1015
1016 if (((unsigned long) ppr & 0x7) != 0) {
1017 dprintk("ptrace:unaligned register address %p\n", ppr);
1018 return -EIO;
1019 }
1020
1021 /* control regs */
1022
1023 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1024 retval |= __get_user(psr, &ppr->cr_ipsr);
1025
1026 /* app regs */
1027
1028 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1029 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1030 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1031 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1032 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1033 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1034
1035 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1036 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1037 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1038 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1039 retval |= __get_user(cfm, &ppr->cfm);
1040
1041 /* gr1-gr3 */
1042
1043 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1044 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1045
1046 /* gr4-gr7 */
1047
1048 for (i = 4; i < 8; i++) {
1049 retval |= __get_user(val, &ppr->gr[i]);
1050 /* NaT bit will be set via PT_NAT_BITS: */
1051 if (unw_set_gr(&info, i, val, 0) < 0)
1052 return -EIO;
1053 }
1054
1055 /* gr8-gr11 */
1056
1057 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1058
1059 /* gr12-gr15 */
1060
1061 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1062 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1063 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1064
1065 /* gr16-gr31 */
1066
1067 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1068
1069 /* b0 */
1070
1071 retval |= __get_user(pt->b0, &ppr->br[0]);
1072
1073 /* b1-b5 */
1074
1075 for (i = 1; i < 6; i++) {
1076 retval |= __get_user(val, &ppr->br[i]);
1077 unw_set_br(&info, i, val);
1078 }
1079
1080 /* b6-b7 */
1081
1082 retval |= __get_user(pt->b6, &ppr->br[6]);
1083 retval |= __get_user(pt->b7, &ppr->br[7]);
1084
1085 /* fr2-fr5 */
1086
1087 for (i = 2; i < 6; i++) {
1088 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1089 if (unw_set_fr(&info, i, fpval) < 0)
1090 return -EIO;
1091 }
1092
1093 /* fr6-fr11 */
1094
1095 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1096 sizeof(ppr->fr[6]) * 6);
1097
1098 /* fp scratch regs(12-15) */
1099
1100 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1101 sizeof(ppr->fr[12]) * 4);
1102
1103 /* fr16-fr31 */
1104
1105 for (i = 16; i < 32; i++) {
1106 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1107 sizeof(fpval));
1108 if (unw_set_fr(&info, i, fpval) < 0)
1109 return -EIO;
1110 }
1111
1112 /* fph */
1113
1114 ia64_sync_fph(child);
1115 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1116 sizeof(ppr->fr[32]) * 96);
1117
1118 /* preds */
1119
1120 retval |= __get_user(pt->pr, &ppr->pr);
1121
1122 /* nat bits */
1123
1124 retval |= __get_user(nat_bits, &ppr->nat);
1125
1126 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1127 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1128 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1129 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1130 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1131 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1132 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1133 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1134
1135 ret = retval ? -EIO : 0;
1136 return ret;
1137}
1138
1139void
1140user_enable_single_step (struct task_struct *child)
1141{
1142 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1143
1144 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1145 child_psr->ss = 1;
1146}
1147
1148void
1149user_enable_block_step (struct task_struct *child)
1150{
1151 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1152
1153 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1154 child_psr->tb = 1;
1155}
1156
1157void
1158user_disable_single_step (struct task_struct *child)
1159{
1160 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1161
1162 /* make sure the single step/taken-branch trap bits are not set: */
1163 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1164 child_psr->ss = 0;
1165 child_psr->tb = 0;
1166}
1167
1168/*
1169 * Called by kernel/ptrace.c when detaching..
1170 *
1171 * Make sure the single step bit is not set.
1172 */
1173void
1174ptrace_disable (struct task_struct *child)
1175{
1176 user_disable_single_step(child);
1177}
1178
1179long
1180arch_ptrace (struct task_struct *child, long request,
1181 unsigned long addr, unsigned long data)
1182{
1183 switch (request) {
1184 case PTRACE_PEEKTEXT:
1185 case PTRACE_PEEKDATA:
1186 /* read word at location addr */
1187 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1188 != sizeof(data))
1189 return -EIO;
1190 /* ensure return value is not mistaken for error code */
1191 force_successful_syscall_return();
1192 return data;
1193
1194 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1195 * by the generic ptrace_request().
1196 */
1197
1198 case PTRACE_PEEKUSR:
1199 /* read the word at addr in the USER area */
1200 if (access_uarea(child, addr, &data, 0) < 0)
1201 return -EIO;
1202 /* ensure return value is not mistaken for error code */
1203 force_successful_syscall_return();
1204 return data;
1205
1206 case PTRACE_POKEUSR:
1207 /* write the word at addr in the USER area */
1208 if (access_uarea(child, addr, &data, 1) < 0)
1209 return -EIO;
1210 return 0;
1211
1212 case PTRACE_OLD_GETSIGINFO:
1213 /* for backwards-compatibility */
1214 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1215
1216 case PTRACE_OLD_SETSIGINFO:
1217 /* for backwards-compatibility */
1218 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1219
1220 case PTRACE_GETREGS:
1221 return ptrace_getregs(child,
1222 (struct pt_all_user_regs __user *) data);
1223
1224 case PTRACE_SETREGS:
1225 return ptrace_setregs(child,
1226 (struct pt_all_user_regs __user *) data);
1227
1228 default:
1229 return ptrace_request(child, request, addr, data);
1230 }
1231}
1232
1233
1234/* "asmlinkage" so the input arguments are preserved... */
1235
1236asmlinkage long
1237syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1238 long arg4, long arg5, long arg6, long arg7,
1239 struct pt_regs regs)
1240{
1241 if (test_thread_flag(TIF_SYSCALL_TRACE))
1242 if (tracehook_report_syscall_entry(®s))
1243 return -ENOSYS;
1244
1245 /* copy user rbs to kernel rbs */
1246 if (test_thread_flag(TIF_RESTORE_RSE))
1247 ia64_sync_krbs();
1248
1249 if (unlikely(current->audit_context)) {
1250 long syscall;
1251 int arch;
1252
1253 syscall = regs.r15;
1254 arch = AUDIT_ARCH_IA64;
1255
1256 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1257 }
1258
1259 return 0;
1260}
1261
1262/* "asmlinkage" so the input arguments are preserved... */
1263
1264asmlinkage void
1265syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1266 long arg4, long arg5, long arg6, long arg7,
1267 struct pt_regs regs)
1268{
1269 int step;
1270
1271 if (unlikely(current->audit_context)) {
1272 int success = AUDITSC_RESULT(regs.r10);
1273 long result = regs.r8;
1274
1275 if (success != AUDITSC_SUCCESS)
1276 result = -result;
1277 audit_syscall_exit(success, result);
1278 }
1279
1280 step = test_thread_flag(TIF_SINGLESTEP);
1281 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1282 tracehook_report_syscall_exit(®s, step);
1283
1284 /* copy user rbs to kernel rbs */
1285 if (test_thread_flag(TIF_RESTORE_RSE))
1286 ia64_sync_krbs();
1287}
1288
1289/* Utrace implementation starts here */
1290struct regset_get {
1291 void *kbuf;
1292 void __user *ubuf;
1293};
1294
1295struct regset_set {
1296 const void *kbuf;
1297 const void __user *ubuf;
1298};
1299
1300struct regset_getset {
1301 struct task_struct *target;
1302 const struct user_regset *regset;
1303 union {
1304 struct regset_get get;
1305 struct regset_set set;
1306 } u;
1307 unsigned int pos;
1308 unsigned int count;
1309 int ret;
1310};
1311
1312static int
1313access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1314 unsigned long addr, unsigned long *data, int write_access)
1315{
1316 struct pt_regs *pt;
1317 unsigned long *ptr = NULL;
1318 int ret;
1319 char nat = 0;
1320
1321 pt = task_pt_regs(target);
1322 switch (addr) {
1323 case ELF_GR_OFFSET(1):
1324 ptr = &pt->r1;
1325 break;
1326 case ELF_GR_OFFSET(2):
1327 case ELF_GR_OFFSET(3):
1328 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1329 break;
1330 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1331 if (write_access) {
1332 /* read NaT bit first: */
1333 unsigned long dummy;
1334
1335 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1336 if (ret < 0)
1337 return ret;
1338 }
1339 return unw_access_gr(info, addr/8, data, &nat, write_access);
1340 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1341 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1342 break;
1343 case ELF_GR_OFFSET(12):
1344 case ELF_GR_OFFSET(13):
1345 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1346 break;
1347 case ELF_GR_OFFSET(14):
1348 ptr = &pt->r14;
1349 break;
1350 case ELF_GR_OFFSET(15):
1351 ptr = &pt->r15;
1352 }
1353 if (write_access)
1354 *ptr = *data;
1355 else
1356 *data = *ptr;
1357 return 0;
1358}
1359
1360static int
1361access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1362 unsigned long addr, unsigned long *data, int write_access)
1363{
1364 struct pt_regs *pt;
1365 unsigned long *ptr = NULL;
1366
1367 pt = task_pt_regs(target);
1368 switch (addr) {
1369 case ELF_BR_OFFSET(0):
1370 ptr = &pt->b0;
1371 break;
1372 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1373 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1374 data, write_access);
1375 case ELF_BR_OFFSET(6):
1376 ptr = &pt->b6;
1377 break;
1378 case ELF_BR_OFFSET(7):
1379 ptr = &pt->b7;
1380 }
1381 if (write_access)
1382 *ptr = *data;
1383 else
1384 *data = *ptr;
1385 return 0;
1386}
1387
1388static int
1389access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1390 unsigned long addr, unsigned long *data, int write_access)
1391{
1392 struct pt_regs *pt;
1393 unsigned long cfm, urbs_end;
1394 unsigned long *ptr = NULL;
1395
1396 pt = task_pt_regs(target);
1397 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1398 switch (addr) {
1399 case ELF_AR_RSC_OFFSET:
1400 /* force PL3 */
1401 if (write_access)
1402 pt->ar_rsc = *data | (3 << 2);
1403 else
1404 *data = pt->ar_rsc;
1405 return 0;
1406 case ELF_AR_BSP_OFFSET:
1407 /*
1408 * By convention, we use PT_AR_BSP to refer to
1409 * the end of the user-level backing store.
1410 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1411 * to get the real value of ar.bsp at the time
1412 * the kernel was entered.
1413 *
1414 * Furthermore, when changing the contents of
1415 * PT_AR_BSP (or PT_CFM) while the task is
1416 * blocked in a system call, convert the state
1417 * so that the non-system-call exit
1418 * path is used. This ensures that the proper
1419 * state will be picked up when resuming
1420 * execution. However, it *also* means that
1421 * once we write PT_AR_BSP/PT_CFM, it won't be
1422 * possible to modify the syscall arguments of
1423 * the pending system call any longer. This
1424 * shouldn't be an issue because modifying
1425 * PT_AR_BSP/PT_CFM generally implies that
1426 * we're either abandoning the pending system
1427 * call or that we defer it's re-execution
1428 * (e.g., due to GDB doing an inferior
1429 * function call).
1430 */
1431 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1432 if (write_access) {
1433 if (*data != urbs_end) {
1434 if (in_syscall(pt))
1435 convert_to_non_syscall(target,
1436 pt,
1437 cfm);
1438 /*
1439 * Simulate user-level write
1440 * of ar.bsp:
1441 */
1442 pt->loadrs = 0;
1443 pt->ar_bspstore = *data;
1444 }
1445 } else
1446 *data = urbs_end;
1447 return 0;
1448 case ELF_AR_BSPSTORE_OFFSET:
1449 ptr = &pt->ar_bspstore;
1450 break;
1451 case ELF_AR_RNAT_OFFSET:
1452 ptr = &pt->ar_rnat;
1453 break;
1454 case ELF_AR_CCV_OFFSET:
1455 ptr = &pt->ar_ccv;
1456 break;
1457 case ELF_AR_UNAT_OFFSET:
1458 ptr = &pt->ar_unat;
1459 break;
1460 case ELF_AR_FPSR_OFFSET:
1461 ptr = &pt->ar_fpsr;
1462 break;
1463 case ELF_AR_PFS_OFFSET:
1464 ptr = &pt->ar_pfs;
1465 break;
1466 case ELF_AR_LC_OFFSET:
1467 return unw_access_ar(info, UNW_AR_LC, data,
1468 write_access);
1469 case ELF_AR_EC_OFFSET:
1470 return unw_access_ar(info, UNW_AR_EC, data,
1471 write_access);
1472 case ELF_AR_CSD_OFFSET:
1473 ptr = &pt->ar_csd;
1474 break;
1475 case ELF_AR_SSD_OFFSET:
1476 ptr = &pt->ar_ssd;
1477 }
1478 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1479 switch (addr) {
1480 case ELF_CR_IIP_OFFSET:
1481 ptr = &pt->cr_iip;
1482 break;
1483 case ELF_CFM_OFFSET:
1484 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1485 if (write_access) {
1486 if (((cfm ^ *data) & PFM_MASK) != 0) {
1487 if (in_syscall(pt))
1488 convert_to_non_syscall(target,
1489 pt,
1490 cfm);
1491 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1492 | (*data & PFM_MASK));
1493 }
1494 } else
1495 *data = cfm;
1496 return 0;
1497 case ELF_CR_IPSR_OFFSET:
1498 if (write_access) {
1499 unsigned long tmp = *data;
1500 /* psr.ri==3 is a reserved value: SDM 2:25 */
1501 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1502 tmp &= ~IA64_PSR_RI;
1503 pt->cr_ipsr = ((tmp & IPSR_MASK)
1504 | (pt->cr_ipsr & ~IPSR_MASK));
1505 } else
1506 *data = (pt->cr_ipsr & IPSR_MASK);
1507 return 0;
1508 }
1509 } else if (addr == ELF_NAT_OFFSET)
1510 return access_nat_bits(target, pt, info,
1511 data, write_access);
1512 else if (addr == ELF_PR_OFFSET)
1513 ptr = &pt->pr;
1514 else
1515 return -1;
1516
1517 if (write_access)
1518 *ptr = *data;
1519 else
1520 *data = *ptr;
1521
1522 return 0;
1523}
1524
1525static int
1526access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1527 unsigned long addr, unsigned long *data, int write_access)
1528{
1529 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1530 return access_elf_gpreg(target, info, addr, data, write_access);
1531 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1532 return access_elf_breg(target, info, addr, data, write_access);
1533 else
1534 return access_elf_areg(target, info, addr, data, write_access);
1535}
1536
1537void do_gpregs_get(struct unw_frame_info *info, void *arg)
1538{
1539 struct pt_regs *pt;
1540 struct regset_getset *dst = arg;
1541 elf_greg_t tmp[16];
1542 unsigned int i, index, min_copy;
1543
1544 if (unw_unwind_to_user(info) < 0)
1545 return;
1546
1547 /*
1548 * coredump format:
1549 * r0-r31
1550 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1551 * predicate registers (p0-p63)
1552 * b0-b7
1553 * ip cfm user-mask
1554 * ar.rsc ar.bsp ar.bspstore ar.rnat
1555 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1556 */
1557
1558
1559 /* Skip r0 */
1560 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1561 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1562 &dst->u.get.kbuf,
1563 &dst->u.get.ubuf,
1564 0, ELF_GR_OFFSET(1));
1565 if (dst->ret || dst->count == 0)
1566 return;
1567 }
1568
1569 /* gr1 - gr15 */
1570 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1571 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1572 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1573 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1574 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1575 index++)
1576 if (access_elf_reg(dst->target, info, i,
1577 &tmp[index], 0) < 0) {
1578 dst->ret = -EIO;
1579 return;
1580 }
1581 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1582 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1583 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1584 if (dst->ret || dst->count == 0)
1585 return;
1586 }
1587
1588 /* r16-r31 */
1589 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1590 pt = task_pt_regs(dst->target);
1591 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1592 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1593 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1594 if (dst->ret || dst->count == 0)
1595 return;
1596 }
1597
1598 /* nat, pr, b0 - b7 */
1599 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1600 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1601 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1602 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1603 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1604 index++)
1605 if (access_elf_reg(dst->target, info, i,
1606 &tmp[index], 0) < 0) {
1607 dst->ret = -EIO;
1608 return;
1609 }
1610 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1611 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1612 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1613 if (dst->ret || dst->count == 0)
1614 return;
1615 }
1616
1617 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1618 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1619 */
1620 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1621 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1622 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1623 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1624 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1625 index++)
1626 if (access_elf_reg(dst->target, info, i,
1627 &tmp[index], 0) < 0) {
1628 dst->ret = -EIO;
1629 return;
1630 }
1631 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1632 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1633 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1634 }
1635}
1636
1637void do_gpregs_set(struct unw_frame_info *info, void *arg)
1638{
1639 struct pt_regs *pt;
1640 struct regset_getset *dst = arg;
1641 elf_greg_t tmp[16];
1642 unsigned int i, index;
1643
1644 if (unw_unwind_to_user(info) < 0)
1645 return;
1646
1647 /* Skip r0 */
1648 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1649 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1650 &dst->u.set.kbuf,
1651 &dst->u.set.ubuf,
1652 0, ELF_GR_OFFSET(1));
1653 if (dst->ret || dst->count == 0)
1654 return;
1655 }
1656
1657 /* gr1-gr15 */
1658 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1659 i = dst->pos;
1660 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1661 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1662 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1663 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1664 if (dst->ret)
1665 return;
1666 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1667 if (access_elf_reg(dst->target, info, i,
1668 &tmp[index], 1) < 0) {
1669 dst->ret = -EIO;
1670 return;
1671 }
1672 if (dst->count == 0)
1673 return;
1674 }
1675
1676 /* gr16-gr31 */
1677 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1678 pt = task_pt_regs(dst->target);
1679 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1680 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1681 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1682 if (dst->ret || dst->count == 0)
1683 return;
1684 }
1685
1686 /* nat, pr, b0 - b7 */
1687 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1688 i = dst->pos;
1689 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1690 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1691 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1692 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1693 if (dst->ret)
1694 return;
1695 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1696 if (access_elf_reg(dst->target, info, i,
1697 &tmp[index], 1) < 0) {
1698 dst->ret = -EIO;
1699 return;
1700 }
1701 if (dst->count == 0)
1702 return;
1703 }
1704
1705 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1706 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1707 */
1708 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1709 i = dst->pos;
1710 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1711 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1712 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1713 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1714 if (dst->ret)
1715 return;
1716 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1717 if (access_elf_reg(dst->target, info, i,
1718 &tmp[index], 1) < 0) {
1719 dst->ret = -EIO;
1720 return;
1721 }
1722 }
1723}
1724
1725#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1726
1727void do_fpregs_get(struct unw_frame_info *info, void *arg)
1728{
1729 struct regset_getset *dst = arg;
1730 struct task_struct *task = dst->target;
1731 elf_fpreg_t tmp[30];
1732 int index, min_copy, i;
1733
1734 if (unw_unwind_to_user(info) < 0)
1735 return;
1736
1737 /* Skip pos 0 and 1 */
1738 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1739 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1740 &dst->u.get.kbuf,
1741 &dst->u.get.ubuf,
1742 0, ELF_FP_OFFSET(2));
1743 if (dst->count == 0 || dst->ret)
1744 return;
1745 }
1746
1747 /* fr2-fr31 */
1748 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1749 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1750
1751 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1752 dst->pos + dst->count);
1753 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1754 index++)
1755 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1756 &tmp[index])) {
1757 dst->ret = -EIO;
1758 return;
1759 }
1760 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1761 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1762 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1763 if (dst->count == 0 || dst->ret)
1764 return;
1765 }
1766
1767 /* fph */
1768 if (dst->count > 0) {
1769 ia64_flush_fph(dst->target);
1770 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1771 dst->ret = user_regset_copyout(
1772 &dst->pos, &dst->count,
1773 &dst->u.get.kbuf, &dst->u.get.ubuf,
1774 &dst->target->thread.fph,
1775 ELF_FP_OFFSET(32), -1);
1776 else
1777 /* Zero fill instead. */
1778 dst->ret = user_regset_copyout_zero(
1779 &dst->pos, &dst->count,
1780 &dst->u.get.kbuf, &dst->u.get.ubuf,
1781 ELF_FP_OFFSET(32), -1);
1782 }
1783}
1784
1785void do_fpregs_set(struct unw_frame_info *info, void *arg)
1786{
1787 struct regset_getset *dst = arg;
1788 elf_fpreg_t fpreg, tmp[30];
1789 int index, start, end;
1790
1791 if (unw_unwind_to_user(info) < 0)
1792 return;
1793
1794 /* Skip pos 0 and 1 */
1795 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1796 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1797 &dst->u.set.kbuf,
1798 &dst->u.set.ubuf,
1799 0, ELF_FP_OFFSET(2));
1800 if (dst->count == 0 || dst->ret)
1801 return;
1802 }
1803
1804 /* fr2-fr31 */
1805 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1806 start = dst->pos;
1807 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1808 dst->pos + dst->count);
1809 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1810 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1811 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1812 if (dst->ret)
1813 return;
1814
1815 if (start & 0xF) { /* only write high part */
1816 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1817 &fpreg)) {
1818 dst->ret = -EIO;
1819 return;
1820 }
1821 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1822 = fpreg.u.bits[0];
1823 start &= ~0xFUL;
1824 }
1825 if (end & 0xF) { /* only write low part */
1826 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1827 &fpreg)) {
1828 dst->ret = -EIO;
1829 return;
1830 }
1831 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1832 = fpreg.u.bits[1];
1833 end = (end + 0xF) & ~0xFUL;
1834 }
1835
1836 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1837 index = start / sizeof(elf_fpreg_t);
1838 if (unw_set_fr(info, index, tmp[index - 2])) {
1839 dst->ret = -EIO;
1840 return;
1841 }
1842 }
1843 if (dst->ret || dst->count == 0)
1844 return;
1845 }
1846
1847 /* fph */
1848 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1849 ia64_sync_fph(dst->target);
1850 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1851 &dst->u.set.kbuf,
1852 &dst->u.set.ubuf,
1853 &dst->target->thread.fph,
1854 ELF_FP_OFFSET(32), -1);
1855 }
1856}
1857
1858static int
1859do_regset_call(void (*call)(struct unw_frame_info *, void *),
1860 struct task_struct *target,
1861 const struct user_regset *regset,
1862 unsigned int pos, unsigned int count,
1863 const void *kbuf, const void __user *ubuf)
1864{
1865 struct regset_getset info = { .target = target, .regset = regset,
1866 .pos = pos, .count = count,
1867 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1868 .ret = 0 };
1869
1870 if (target == current)
1871 unw_init_running(call, &info);
1872 else {
1873 struct unw_frame_info ufi;
1874 memset(&ufi, 0, sizeof(ufi));
1875 unw_init_from_blocked_task(&ufi, target);
1876 (*call)(&ufi, &info);
1877 }
1878
1879 return info.ret;
1880}
1881
1882static int
1883gpregs_get(struct task_struct *target,
1884 const struct user_regset *regset,
1885 unsigned int pos, unsigned int count,
1886 void *kbuf, void __user *ubuf)
1887{
1888 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1889 kbuf, ubuf);
1890}
1891
1892static int gpregs_set(struct task_struct *target,
1893 const struct user_regset *regset,
1894 unsigned int pos, unsigned int count,
1895 const void *kbuf, const void __user *ubuf)
1896{
1897 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1898 kbuf, ubuf);
1899}
1900
1901static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1902{
1903 do_sync_rbs(info, ia64_sync_user_rbs);
1904}
1905
1906/*
1907 * This is called to write back the register backing store.
1908 * ptrace does this before it stops, so that a tracer reading the user
1909 * memory after the thread stops will get the current register data.
1910 */
1911static int
1912gpregs_writeback(struct task_struct *target,
1913 const struct user_regset *regset,
1914 int now)
1915{
1916 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1917 return 0;
1918 set_notify_resume(target);
1919 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1920 NULL, NULL);
1921}
1922
1923static int
1924fpregs_active(struct task_struct *target, const struct user_regset *regset)
1925{
1926 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1927}
1928
1929static int fpregs_get(struct task_struct *target,
1930 const struct user_regset *regset,
1931 unsigned int pos, unsigned int count,
1932 void *kbuf, void __user *ubuf)
1933{
1934 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1935 kbuf, ubuf);
1936}
1937
1938static int fpregs_set(struct task_struct *target,
1939 const struct user_regset *regset,
1940 unsigned int pos, unsigned int count,
1941 const void *kbuf, const void __user *ubuf)
1942{
1943 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1944 kbuf, ubuf);
1945}
1946
1947static int
1948access_uarea(struct task_struct *child, unsigned long addr,
1949 unsigned long *data, int write_access)
1950{
1951 unsigned int pos = -1; /* an invalid value */
1952 int ret;
1953 unsigned long *ptr, regnum;
1954
1955 if ((addr & 0x7) != 0) {
1956 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1957 return -1;
1958 }
1959 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1960 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1961 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1962 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1963 dprintk("ptrace: rejecting access to register "
1964 "address 0x%lx\n", addr);
1965 return -1;
1966 }
1967
1968 switch (addr) {
1969 case PT_F32 ... (PT_F127 + 15):
1970 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1971 break;
1972 case PT_F2 ... (PT_F5 + 15):
1973 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1974 break;
1975 case PT_F10 ... (PT_F31 + 15):
1976 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1977 break;
1978 case PT_F6 ... (PT_F9 + 15):
1979 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1980 break;
1981 }
1982
1983 if (pos != -1) {
1984 if (write_access)
1985 ret = fpregs_set(child, NULL, pos,
1986 sizeof(unsigned long), data, NULL);
1987 else
1988 ret = fpregs_get(child, NULL, pos,
1989 sizeof(unsigned long), data, NULL);
1990 if (ret != 0)
1991 return -1;
1992 return 0;
1993 }
1994
1995 switch (addr) {
1996 case PT_NAT_BITS:
1997 pos = ELF_NAT_OFFSET;
1998 break;
1999 case PT_R4 ... PT_R7:
2000 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2001 break;
2002 case PT_B1 ... PT_B5:
2003 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2004 break;
2005 case PT_AR_EC:
2006 pos = ELF_AR_EC_OFFSET;
2007 break;
2008 case PT_AR_LC:
2009 pos = ELF_AR_LC_OFFSET;
2010 break;
2011 case PT_CR_IPSR:
2012 pos = ELF_CR_IPSR_OFFSET;
2013 break;
2014 case PT_CR_IIP:
2015 pos = ELF_CR_IIP_OFFSET;
2016 break;
2017 case PT_CFM:
2018 pos = ELF_CFM_OFFSET;
2019 break;
2020 case PT_AR_UNAT:
2021 pos = ELF_AR_UNAT_OFFSET;
2022 break;
2023 case PT_AR_PFS:
2024 pos = ELF_AR_PFS_OFFSET;
2025 break;
2026 case PT_AR_RSC:
2027 pos = ELF_AR_RSC_OFFSET;
2028 break;
2029 case PT_AR_RNAT:
2030 pos = ELF_AR_RNAT_OFFSET;
2031 break;
2032 case PT_AR_BSPSTORE:
2033 pos = ELF_AR_BSPSTORE_OFFSET;
2034 break;
2035 case PT_PR:
2036 pos = ELF_PR_OFFSET;
2037 break;
2038 case PT_B6:
2039 pos = ELF_BR_OFFSET(6);
2040 break;
2041 case PT_AR_BSP:
2042 pos = ELF_AR_BSP_OFFSET;
2043 break;
2044 case PT_R1 ... PT_R3:
2045 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2046 break;
2047 case PT_R12 ... PT_R15:
2048 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2049 break;
2050 case PT_R8 ... PT_R11:
2051 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2052 break;
2053 case PT_R16 ... PT_R31:
2054 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2055 break;
2056 case PT_AR_CCV:
2057 pos = ELF_AR_CCV_OFFSET;
2058 break;
2059 case PT_AR_FPSR:
2060 pos = ELF_AR_FPSR_OFFSET;
2061 break;
2062 case PT_B0:
2063 pos = ELF_BR_OFFSET(0);
2064 break;
2065 case PT_B7:
2066 pos = ELF_BR_OFFSET(7);
2067 break;
2068 case PT_AR_CSD:
2069 pos = ELF_AR_CSD_OFFSET;
2070 break;
2071 case PT_AR_SSD:
2072 pos = ELF_AR_SSD_OFFSET;
2073 break;
2074 }
2075
2076 if (pos != -1) {
2077 if (write_access)
2078 ret = gpregs_set(child, NULL, pos,
2079 sizeof(unsigned long), data, NULL);
2080 else
2081 ret = gpregs_get(child, NULL, pos,
2082 sizeof(unsigned long), data, NULL);
2083 if (ret != 0)
2084 return -1;
2085 return 0;
2086 }
2087
2088 /* access debug registers */
2089 if (addr >= PT_IBR) {
2090 regnum = (addr - PT_IBR) >> 3;
2091 ptr = &child->thread.ibr[0];
2092 } else {
2093 regnum = (addr - PT_DBR) >> 3;
2094 ptr = &child->thread.dbr[0];
2095 }
2096
2097 if (regnum >= 8) {
2098 dprintk("ptrace: rejecting access to register "
2099 "address 0x%lx\n", addr);
2100 return -1;
2101 }
2102#ifdef CONFIG_PERFMON
2103 /*
2104 * Check if debug registers are used by perfmon. This
2105 * test must be done once we know that we can do the
2106 * operation, i.e. the arguments are all valid, but
2107 * before we start modifying the state.
2108 *
2109 * Perfmon needs to keep a count of how many processes
2110 * are trying to modify the debug registers for system
2111 * wide monitoring sessions.
2112 *
2113 * We also include read access here, because they may
2114 * cause the PMU-installed debug register state
2115 * (dbr[], ibr[]) to be reset. The two arrays are also
2116 * used by perfmon, but we do not use
2117 * IA64_THREAD_DBG_VALID. The registers are restored
2118 * by the PMU context switch code.
2119 */
2120 if (pfm_use_debug_registers(child))
2121 return -1;
2122#endif
2123
2124 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2125 child->thread.flags |= IA64_THREAD_DBG_VALID;
2126 memset(child->thread.dbr, 0,
2127 sizeof(child->thread.dbr));
2128 memset(child->thread.ibr, 0,
2129 sizeof(child->thread.ibr));
2130 }
2131
2132 ptr += regnum;
2133
2134 if ((regnum & 1) && write_access) {
2135 /* don't let the user set kernel-level breakpoints: */
2136 *ptr = *data & ~(7UL << 56);
2137 return 0;
2138 }
2139 if (write_access)
2140 *ptr = *data;
2141 else
2142 *data = *ptr;
2143 return 0;
2144}
2145
2146static const struct user_regset native_regsets[] = {
2147 {
2148 .core_note_type = NT_PRSTATUS,
2149 .n = ELF_NGREG,
2150 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2151 .get = gpregs_get, .set = gpregs_set,
2152 .writeback = gpregs_writeback
2153 },
2154 {
2155 .core_note_type = NT_PRFPREG,
2156 .n = ELF_NFPREG,
2157 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2158 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2159 },
2160};
2161
2162static const struct user_regset_view user_ia64_view = {
2163 .name = "ia64",
2164 .e_machine = EM_IA_64,
2165 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2166};
2167
2168const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2169{
2170 return &user_ia64_view;
2171}
2172
2173struct syscall_get_set_args {
2174 unsigned int i;
2175 unsigned int n;
2176 unsigned long *args;
2177 struct pt_regs *regs;
2178 int rw;
2179};
2180
2181static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2182{
2183 struct syscall_get_set_args *args = data;
2184 struct pt_regs *pt = args->regs;
2185 unsigned long *krbs, cfm, ndirty;
2186 int i, count;
2187
2188 if (unw_unwind_to_user(info) < 0)
2189 return;
2190
2191 cfm = pt->cr_ifs;
2192 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2193 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2194
2195 count = 0;
2196 if (in_syscall(pt))
2197 count = min_t(int, args->n, cfm & 0x7f);
2198
2199 for (i = 0; i < count; i++) {
2200 if (args->rw)
2201 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2202 args->args[i];
2203 else
2204 args->args[i] = *ia64_rse_skip_regs(krbs,
2205 ndirty + i + args->i);
2206 }
2207
2208 if (!args->rw) {
2209 while (i < args->n) {
2210 args->args[i] = 0;
2211 i++;
2212 }
2213 }
2214}
2215
2216void ia64_syscall_get_set_arguments(struct task_struct *task,
2217 struct pt_regs *regs, unsigned int i, unsigned int n,
2218 unsigned long *args, int rw)
2219{
2220 struct syscall_get_set_args data = {
2221 .i = i,
2222 .n = n,
2223 .args = args,
2224 .regs = regs,
2225 .rw = rw,
2226 };
2227
2228 if (task == current)
2229 unw_init_running(syscall_get_set_args_cb, &data);
2230 else {
2231 struct unw_frame_info ufi;
2232 memset(&ufi, 0, sizeof(ufi));
2233 unw_init_from_blocked_task(&ufi, task);
2234 syscall_get_set_args_cb(&ufi, &data);
2235 }
2236}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/mm.h>
18#include <linux/errno.h>
19#include <linux/ptrace.h>
20#include <linux/user.h>
21#include <linux/security.h>
22#include <linux/audit.h>
23#include <linux/signal.h>
24#include <linux/regset.h>
25#include <linux/elf.h>
26#include <linux/tracehook.h>
27
28#include <asm/processor.h>
29#include <asm/ptrace_offsets.h>
30#include <asm/rse.h>
31#include <linux/uaccess.h>
32#include <asm/unwind.h>
33
34#include "entry.h"
35
36/*
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
44 */
45#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47
48#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49#define PFM_MASK MASK(38)
50
51#define PTRACE_DEBUG 0
52
53#if PTRACE_DEBUG
54# define dprintk(format...) printk(format)
55# define inline
56#else
57# define dprintk(format...)
58#endif
59
60/* Return TRUE if PT was created due to kernel-entry via a system-call. */
61
62static inline int
63in_syscall (struct pt_regs *pt)
64{
65 return (long) pt->cr_ifs >= 0;
66}
67
68/*
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
71 */
72unsigned long
73ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74{
75# define GET_BITS(first, last, unat) \
76 ({ \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
80 unsigned long dist; \
81 if (bit < first) \
82 dist = 64 + bit - first; \
83 else \
84 dist = bit - first; \
85 ia64_rotr(unat, dist) & mask; \
86 })
87 unsigned long val;
88
89 /*
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
93 */
94 val = GET_BITS( 1, 1, scratch_unat);
95 val |= GET_BITS( 2, 3, scratch_unat);
96 val |= GET_BITS(12, 13, scratch_unat);
97 val |= GET_BITS(14, 14, scratch_unat);
98 val |= GET_BITS(15, 15, scratch_unat);
99 val |= GET_BITS( 8, 11, scratch_unat);
100 val |= GET_BITS(16, 31, scratch_unat);
101 return val;
102
103# undef GET_BITS
104}
105
106/*
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
109 * stored in PT).
110 */
111unsigned long
112ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113{
114# define PUT_BITS(first, last, nat) \
115 ({ \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
119 long dist; \
120 if (bit < first) \
121 dist = 64 + bit - first; \
122 else \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
125 })
126 unsigned long scratch_unat;
127
128 /*
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
132 */
133 scratch_unat = PUT_BITS( 1, 1, nat);
134 scratch_unat |= PUT_BITS( 2, 3, nat);
135 scratch_unat |= PUT_BITS(12, 13, nat);
136 scratch_unat |= PUT_BITS(14, 14, nat);
137 scratch_unat |= PUT_BITS(15, 15, nat);
138 scratch_unat |= PUT_BITS( 8, 11, nat);
139 scratch_unat |= PUT_BITS(16, 31, nat);
140
141 return scratch_unat;
142
143# undef PUT_BITS
144}
145
146#define IA64_MLX_TEMPLATE 0x2
147#define IA64_MOVL_OPCODE 6
148
149void
150ia64_increment_ip (struct pt_regs *regs)
151{
152 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153
154 if (ri > 2) {
155 ri = 0;
156 regs->cr_iip += 16;
157 } else if (ri == 2) {
158 get_user(w0, (char __user *) regs->cr_iip + 0);
159 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 /*
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
163 * that to happen...
164 */
165 ri = 0;
166 regs->cr_iip += 16;
167 }
168 }
169 ia64_psr(regs)->ri = ri;
170}
171
172void
173ia64_decrement_ip (struct pt_regs *regs)
174{
175 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176
177 if (ia64_psr(regs)->ri == 0) {
178 regs->cr_iip -= 16;
179 ri = 2;
180 get_user(w0, (char __user *) regs->cr_iip + 0);
181 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 /*
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
185 * that to happen...
186 */
187 ri = 1;
188 }
189 }
190 ia64_psr(regs)->ri = ri;
191}
192
193/*
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
199 * pt_regs.
200 *
201 * user rbs
202 *
203 * +--------+ <-- lowest address
204 * | slot62 |
205 * +--------+
206 * | rnat | 0x....1f8
207 * +--------+
208 * | slot00 | \
209 * +--------+ |
210 * | slot01 | > child_regs->ar_rnat
211 * +--------+ |
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
216 * | slot62 |
217 * +- - - - + +--------+
218 * | rnat |
219 * +- - - - + +--------+
220 * vrnat | slot00 |
221 * +- - - - + +--------+
222 * = =
223 * +--------+
224 * | slot00 | \
225 * +--------+ |
226 * | slot01 | > child_stack->ar_rnat
227 * +--------+ |
228 * | slot02 | /
229 * +--------+
230 * <--- child_stack->ar_bspstore
231 *
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
237 *
238 * Boundary cases:
239 *
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
243 *
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246 */
247static unsigned long
248get_rnat (struct task_struct *task, struct switch_stack *sw,
249 unsigned long *krbs, unsigned long *urnat_addr,
250 unsigned long *urbs_end)
251{
252 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 unsigned long umask = 0, mask, m;
254 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 long num_regs, nbits;
256 struct pt_regs *pt;
257
258 pt = task_pt_regs(task);
259 kbsp = (unsigned long *) sw->ar_bspstore;
260 ubspstore = (unsigned long *) pt->ar_bspstore;
261
262 if (urbs_end < urnat_addr)
263 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 else
265 nbits = 63;
266 mask = MASK(nbits);
267 /*
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
272 */
273 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 shift = ia64_rse_slot_num(slot0_kaddr);
276 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 rnat0_kaddr = rnat1_kaddr - 64;
278
279 if (ubspstore + 63 > urnat_addr) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 urnat = (pt->ar_rnat & umask);
283 mask &= ~umask;
284 if (!mask)
285 return urnat;
286 }
287
288 m = mask << shift;
289 if (rnat0_kaddr >= kbsp)
290 rnat0 = sw->ar_rnat;
291 else if (rnat0_kaddr > krbs)
292 rnat0 = *rnat0_kaddr;
293 urnat |= (rnat0 & m) >> shift;
294
295 m = mask >> (63 - shift);
296 if (rnat1_kaddr >= kbsp)
297 rnat1 = sw->ar_rnat;
298 else if (rnat1_kaddr > krbs)
299 rnat1 = *rnat1_kaddr;
300 urnat |= (rnat1 & m) << (63 - shift);
301 return urnat;
302}
303
304/*
305 * The reverse of get_rnat.
306 */
307static void
308put_rnat (struct task_struct *task, struct switch_stack *sw,
309 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 unsigned long *urbs_end)
311{
312 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 long num_regs, nbits;
315 struct pt_regs *pt;
316 unsigned long cfm, *urbs_kargs;
317
318 pt = task_pt_regs(task);
319 kbsp = (unsigned long *) sw->ar_bspstore;
320 ubspstore = (unsigned long *) pt->ar_bspstore;
321
322 urbs_kargs = urbs_end;
323 if (in_syscall(pt)) {
324 /*
325 * If entered via syscall, don't allow user to set rnat bits
326 * for syscall args.
327 */
328 cfm = pt->cr_ifs;
329 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 }
331
332 if (urbs_kargs >= urnat_addr)
333 nbits = 63;
334 else {
335 if ((urnat_addr - 63) >= urbs_kargs)
336 return;
337 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 }
339 mask = MASK(nbits);
340
341 /*
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
346 */
347 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 shift = ia64_rse_slot_num(slot0_kaddr);
350 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 rnat0_kaddr = rnat1_kaddr - 64;
352
353 if (ubspstore + 63 > urnat_addr) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 mask &= ~umask;
358 if (!mask)
359 return;
360 }
361 /*
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
364 */
365 rnat0 = (urnat << shift);
366 m = mask << shift;
367 if (rnat0_kaddr >= kbsp)
368 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 else if (rnat0_kaddr > krbs)
370 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371
372 rnat1 = (urnat >> (63 - shift));
373 m = mask >> (63 - shift);
374 if (rnat1_kaddr >= kbsp)
375 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 else if (rnat1_kaddr > krbs)
377 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378}
379
380static inline int
381on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 unsigned long urbs_end)
383{
384 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 urbs_end);
386 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387}
388
389/*
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
395 *
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
399 */
400long
401ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 unsigned long user_rbs_end, unsigned long addr, long *val)
403{
404 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 struct pt_regs *child_regs;
406 size_t copied;
407 long ret;
408
409 urbs_end = (long *) user_rbs_end;
410 laddr = (unsigned long *) addr;
411 child_regs = task_pt_regs(child);
412 bspstore = (unsigned long *) child_regs->ar_bspstore;
413 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 (unsigned long) urbs_end))
416 {
417 /*
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
420 * the kernel RBS.
421 */
422 rnat_addr = ia64_rse_rnat_addr(laddr);
423 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424
425 if (laddr == rnat_addr) {
426 /* return NaT collection word itself */
427 *val = ret;
428 return 0;
429 }
430
431 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 /*
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
439 * this case.
440 */
441 *val = 0;
442 return 0;
443 }
444
445 if (laddr < urbs_end) {
446 /*
447 * The desired word is on the kernel RBS and
448 * is not a NaT.
449 */
450 regnum = ia64_rse_num_regs(bspstore, laddr);
451 *val = *ia64_rse_skip_regs(krbs, regnum);
452 return 0;
453 }
454 }
455 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 if (copied != sizeof(ret))
457 return -EIO;
458 *val = ret;
459 return 0;
460}
461
462long
463ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 unsigned long user_rbs_end, unsigned long addr, long val)
465{
466 unsigned long *bspstore, *krbs, regnum, *laddr;
467 unsigned long *urbs_end = (long *) user_rbs_end;
468 struct pt_regs *child_regs;
469
470 laddr = (unsigned long *) addr;
471 child_regs = task_pt_regs(child);
472 bspstore = (unsigned long *) child_regs->ar_bspstore;
473 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 (unsigned long) urbs_end))
476 {
477 /*
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
480 * in the kernel RBS.
481 */
482 if (ia64_rse_is_rnat_slot(laddr))
483 put_rnat(child, child_stack, krbs, laddr, val,
484 urbs_end);
485 else {
486 if (laddr < urbs_end) {
487 regnum = ia64_rse_num_regs(bspstore, laddr);
488 *ia64_rse_skip_regs(krbs, regnum) = val;
489 }
490 }
491 } else if (access_process_vm(child, addr, &val, sizeof(val),
492 FOLL_FORCE | FOLL_WRITE)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val),
547 FOLL_FORCE | FOLL_WRITE)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552}
553
554static long
555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557{
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val),
564 FOLL_FORCE)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573}
574
575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579{
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590}
591
592/*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
602void ia64_ptrace_stop(void)
603{
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608}
609
610/*
611 * This is called to read back the register backing store.
612 */
613void ia64_sync_krbs(void)
614{
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618}
619
620/*
621 * After PTRACE_ATTACH, a thread's register backing store area in user
622 * space is assumed to contain correct data whenever the thread is
623 * stopped. arch_ptrace_stop takes care of this on tracing stops.
624 * But if the child was already stopped for job control when we attach
625 * to it, then it might not ever get into ptrace_stop by the time we
626 * want to examine the user memory containing the RBS.
627 */
628void
629ptrace_attach_sync_user_rbs (struct task_struct *child)
630{
631 int stopped = 0;
632 struct unw_frame_info info;
633
634 /*
635 * If the child is in TASK_STOPPED, we need to change that to
636 * TASK_TRACED momentarily while we operate on it. This ensures
637 * that the child won't be woken up and return to user mode while
638 * we are doing the sync. (It can only be woken up for SIGKILL.)
639 */
640
641 read_lock(&tasklist_lock);
642 if (child->sighand) {
643 spin_lock_irq(&child->sighand->siglock);
644 if (READ_ONCE(child->__state) == TASK_STOPPED &&
645 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
646 set_notify_resume(child);
647
648 WRITE_ONCE(child->__state, TASK_TRACED);
649 stopped = 1;
650 }
651 spin_unlock_irq(&child->sighand->siglock);
652 }
653 read_unlock(&tasklist_lock);
654
655 if (!stopped)
656 return;
657
658 unw_init_from_blocked_task(&info, child);
659 do_sync_rbs(&info, ia64_sync_user_rbs);
660
661 /*
662 * Now move the child back into TASK_STOPPED if it should be in a
663 * job control stop, so that SIGCONT can be used to wake it up.
664 */
665 read_lock(&tasklist_lock);
666 if (child->sighand) {
667 spin_lock_irq(&child->sighand->siglock);
668 if (READ_ONCE(child->__state) == TASK_TRACED &&
669 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
670 WRITE_ONCE(child->__state, TASK_STOPPED);
671 }
672 spin_unlock_irq(&child->sighand->siglock);
673 }
674 read_unlock(&tasklist_lock);
675}
676
677/*
678 * Write f32-f127 back to task->thread.fph if it has been modified.
679 */
680inline void
681ia64_flush_fph (struct task_struct *task)
682{
683 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
684
685 /*
686 * Prevent migrating this task while
687 * we're fiddling with the FPU state
688 */
689 preempt_disable();
690 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
691 psr->mfh = 0;
692 task->thread.flags |= IA64_THREAD_FPH_VALID;
693 ia64_save_fpu(&task->thread.fph[0]);
694 }
695 preempt_enable();
696}
697
698/*
699 * Sync the fph state of the task so that it can be manipulated
700 * through thread.fph. If necessary, f32-f127 are written back to
701 * thread.fph or, if the fph state hasn't been used before, thread.fph
702 * is cleared to zeroes. Also, access to f32-f127 is disabled to
703 * ensure that the task picks up the state from thread.fph when it
704 * executes again.
705 */
706void
707ia64_sync_fph (struct task_struct *task)
708{
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
710
711 ia64_flush_fph(task);
712 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
713 task->thread.flags |= IA64_THREAD_FPH_VALID;
714 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
715 }
716 ia64_drop_fpu(task);
717 psr->dfh = 1;
718}
719
720/*
721 * Change the machine-state of CHILD such that it will return via the normal
722 * kernel exit-path, rather than the syscall-exit path.
723 */
724static void
725convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
726 unsigned long cfm)
727{
728 struct unw_frame_info info, prev_info;
729 unsigned long ip, sp, pr;
730
731 unw_init_from_blocked_task(&info, child);
732 while (1) {
733 prev_info = info;
734 if (unw_unwind(&info) < 0)
735 return;
736
737 unw_get_sp(&info, &sp);
738 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
739 < IA64_PT_REGS_SIZE) {
740 dprintk("ptrace.%s: ran off the top of the kernel "
741 "stack\n", __func__);
742 return;
743 }
744 if (unw_get_pr (&prev_info, &pr) < 0) {
745 unw_get_rp(&prev_info, &ip);
746 dprintk("ptrace.%s: failed to read "
747 "predicate register (ip=0x%lx)\n",
748 __func__, ip);
749 return;
750 }
751 if (unw_is_intr_frame(&info)
752 && (pr & (1UL << PRED_USER_STACK)))
753 break;
754 }
755
756 /*
757 * Note: at the time of this call, the target task is blocked
758 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
759 * (aka, "pLvSys") we redirect execution from
760 * .work_pending_syscall_end to .work_processed_kernel.
761 */
762 unw_get_pr(&prev_info, &pr);
763 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
764 pr |= (1UL << PRED_NON_SYSCALL);
765 unw_set_pr(&prev_info, pr);
766
767 pt->cr_ifs = (1UL << 63) | cfm;
768 /*
769 * Clear the memory that is NOT written on syscall-entry to
770 * ensure we do not leak kernel-state to user when execution
771 * resumes.
772 */
773 pt->r2 = 0;
774 pt->r3 = 0;
775 pt->r14 = 0;
776 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
777 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
778 pt->b7 = 0;
779 pt->ar_ccv = 0;
780 pt->ar_csd = 0;
781 pt->ar_ssd = 0;
782}
783
784static int
785access_nat_bits (struct task_struct *child, struct pt_regs *pt,
786 struct unw_frame_info *info,
787 unsigned long *data, int write_access)
788{
789 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
790 char nat = 0;
791
792 if (write_access) {
793 nat_bits = *data;
794 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
795 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
796 dprintk("ptrace: failed to set ar.unat\n");
797 return -1;
798 }
799 for (regnum = 4; regnum <= 7; ++regnum) {
800 unw_get_gr(info, regnum, &dummy, &nat);
801 unw_set_gr(info, regnum, dummy,
802 (nat_bits >> regnum) & 1);
803 }
804 } else {
805 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
806 dprintk("ptrace: failed to read ar.unat\n");
807 return -1;
808 }
809 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
810 for (regnum = 4; regnum <= 7; ++regnum) {
811 unw_get_gr(info, regnum, &dummy, &nat);
812 nat_bits |= (nat != 0) << regnum;
813 }
814 *data = nat_bits;
815 }
816 return 0;
817}
818
819static int
820access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
821 unsigned long addr, unsigned long *data, int write_access);
822
823static long
824ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
825{
826 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
827 struct unw_frame_info info;
828 struct ia64_fpreg fpval;
829 struct switch_stack *sw;
830 struct pt_regs *pt;
831 long ret, retval = 0;
832 char nat = 0;
833 int i;
834
835 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
836 return -EIO;
837
838 pt = task_pt_regs(child);
839 sw = (struct switch_stack *) (child->thread.ksp + 16);
840 unw_init_from_blocked_task(&info, child);
841 if (unw_unwind_to_user(&info) < 0) {
842 return -EIO;
843 }
844
845 if (((unsigned long) ppr & 0x7) != 0) {
846 dprintk("ptrace:unaligned register address %p\n", ppr);
847 return -EIO;
848 }
849
850 if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
851 access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
852 access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
853 access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
854 access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
855 access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
856 access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
857 return -EIO;
858
859 /* control regs */
860
861 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
862 retval |= __put_user(psr, &ppr->cr_ipsr);
863
864 /* app regs */
865
866 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
867 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
868 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
869 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
870 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
871 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
872
873 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
874 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
875 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
876 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
877 retval |= __put_user(cfm, &ppr->cfm);
878
879 /* gr1-gr3 */
880
881 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
882 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
883
884 /* gr4-gr7 */
885
886 for (i = 4; i < 8; i++) {
887 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
888 return -EIO;
889 retval |= __put_user(val, &ppr->gr[i]);
890 }
891
892 /* gr8-gr11 */
893
894 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
895
896 /* gr12-gr15 */
897
898 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
899 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
900 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
901
902 /* gr16-gr31 */
903
904 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
905
906 /* b0 */
907
908 retval |= __put_user(pt->b0, &ppr->br[0]);
909
910 /* b1-b5 */
911
912 for (i = 1; i < 6; i++) {
913 if (unw_access_br(&info, i, &val, 0) < 0)
914 return -EIO;
915 __put_user(val, &ppr->br[i]);
916 }
917
918 /* b6-b7 */
919
920 retval |= __put_user(pt->b6, &ppr->br[6]);
921 retval |= __put_user(pt->b7, &ppr->br[7]);
922
923 /* fr2-fr5 */
924
925 for (i = 2; i < 6; i++) {
926 if (unw_get_fr(&info, i, &fpval) < 0)
927 return -EIO;
928 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
929 }
930
931 /* fr6-fr11 */
932
933 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
934 sizeof(struct ia64_fpreg) * 6);
935
936 /* fp scratch regs(12-15) */
937
938 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
939 sizeof(struct ia64_fpreg) * 4);
940
941 /* fr16-fr31 */
942
943 for (i = 16; i < 32; i++) {
944 if (unw_get_fr(&info, i, &fpval) < 0)
945 return -EIO;
946 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
947 }
948
949 /* fph */
950
951 ia64_flush_fph(child);
952 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
953 sizeof(ppr->fr[32]) * 96);
954
955 /* preds */
956
957 retval |= __put_user(pt->pr, &ppr->pr);
958
959 /* nat bits */
960
961 retval |= __put_user(nat_bits, &ppr->nat);
962
963 ret = retval ? -EIO : 0;
964 return ret;
965}
966
967static long
968ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
969{
970 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
971 struct unw_frame_info info;
972 struct switch_stack *sw;
973 struct ia64_fpreg fpval;
974 struct pt_regs *pt;
975 long retval = 0;
976 int i;
977
978 memset(&fpval, 0, sizeof(fpval));
979
980 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
981 return -EIO;
982
983 pt = task_pt_regs(child);
984 sw = (struct switch_stack *) (child->thread.ksp + 16);
985 unw_init_from_blocked_task(&info, child);
986 if (unw_unwind_to_user(&info) < 0) {
987 return -EIO;
988 }
989
990 if (((unsigned long) ppr & 0x7) != 0) {
991 dprintk("ptrace:unaligned register address %p\n", ppr);
992 return -EIO;
993 }
994
995 /* control regs */
996
997 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
998 retval |= __get_user(psr, &ppr->cr_ipsr);
999
1000 /* app regs */
1001
1002 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1003 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1004 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1005 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1006 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1007 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1008
1009 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1010 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1011 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1012 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1013 retval |= __get_user(cfm, &ppr->cfm);
1014
1015 /* gr1-gr3 */
1016
1017 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1018 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1019
1020 /* gr4-gr7 */
1021
1022 for (i = 4; i < 8; i++) {
1023 retval |= __get_user(val, &ppr->gr[i]);
1024 /* NaT bit will be set via PT_NAT_BITS: */
1025 if (unw_set_gr(&info, i, val, 0) < 0)
1026 return -EIO;
1027 }
1028
1029 /* gr8-gr11 */
1030
1031 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1032
1033 /* gr12-gr15 */
1034
1035 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1036 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1037 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1038
1039 /* gr16-gr31 */
1040
1041 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1042
1043 /* b0 */
1044
1045 retval |= __get_user(pt->b0, &ppr->br[0]);
1046
1047 /* b1-b5 */
1048
1049 for (i = 1; i < 6; i++) {
1050 retval |= __get_user(val, &ppr->br[i]);
1051 unw_set_br(&info, i, val);
1052 }
1053
1054 /* b6-b7 */
1055
1056 retval |= __get_user(pt->b6, &ppr->br[6]);
1057 retval |= __get_user(pt->b7, &ppr->br[7]);
1058
1059 /* fr2-fr5 */
1060
1061 for (i = 2; i < 6; i++) {
1062 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1063 if (unw_set_fr(&info, i, fpval) < 0)
1064 return -EIO;
1065 }
1066
1067 /* fr6-fr11 */
1068
1069 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1070 sizeof(ppr->fr[6]) * 6);
1071
1072 /* fp scratch regs(12-15) */
1073
1074 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1075 sizeof(ppr->fr[12]) * 4);
1076
1077 /* fr16-fr31 */
1078
1079 for (i = 16; i < 32; i++) {
1080 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1081 sizeof(fpval));
1082 if (unw_set_fr(&info, i, fpval) < 0)
1083 return -EIO;
1084 }
1085
1086 /* fph */
1087
1088 ia64_sync_fph(child);
1089 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1090 sizeof(ppr->fr[32]) * 96);
1091
1092 /* preds */
1093
1094 retval |= __get_user(pt->pr, &ppr->pr);
1095
1096 /* nat bits */
1097
1098 retval |= __get_user(nat_bits, &ppr->nat);
1099
1100 retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1101 retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1102 retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1103 retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1104 retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1105 retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1106 retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1107 retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1108
1109 return retval ? -EIO : 0;
1110}
1111
1112void
1113user_enable_single_step (struct task_struct *child)
1114{
1115 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1116
1117 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1118 child_psr->ss = 1;
1119}
1120
1121void
1122user_enable_block_step (struct task_struct *child)
1123{
1124 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1125
1126 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1127 child_psr->tb = 1;
1128}
1129
1130void
1131user_disable_single_step (struct task_struct *child)
1132{
1133 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1134
1135 /* make sure the single step/taken-branch trap bits are not set: */
1136 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1137 child_psr->ss = 0;
1138 child_psr->tb = 0;
1139}
1140
1141/*
1142 * Called by kernel/ptrace.c when detaching..
1143 *
1144 * Make sure the single step bit is not set.
1145 */
1146void
1147ptrace_disable (struct task_struct *child)
1148{
1149 user_disable_single_step(child);
1150}
1151
1152static int
1153access_uarea (struct task_struct *child, unsigned long addr,
1154 unsigned long *data, int write_access);
1155
1156long
1157arch_ptrace (struct task_struct *child, long request,
1158 unsigned long addr, unsigned long data)
1159{
1160 switch (request) {
1161 case PTRACE_PEEKTEXT:
1162 case PTRACE_PEEKDATA:
1163 /* read word at location addr */
1164 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1165 FOLL_FORCE)
1166 != sizeof(data))
1167 return -EIO;
1168 /* ensure return value is not mistaken for error code */
1169 force_successful_syscall_return();
1170 return data;
1171
1172 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173 * by the generic ptrace_request().
1174 */
1175
1176 case PTRACE_PEEKUSR:
1177 /* read the word at addr in the USER area */
1178 if (access_uarea(child, addr, &data, 0) < 0)
1179 return -EIO;
1180 /* ensure return value is not mistaken for error code */
1181 force_successful_syscall_return();
1182 return data;
1183
1184 case PTRACE_POKEUSR:
1185 /* write the word at addr in the USER area */
1186 if (access_uarea(child, addr, &data, 1) < 0)
1187 return -EIO;
1188 return 0;
1189
1190 case PTRACE_OLD_GETSIGINFO:
1191 /* for backwards-compatibility */
1192 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1193
1194 case PTRACE_OLD_SETSIGINFO:
1195 /* for backwards-compatibility */
1196 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1197
1198 case PTRACE_GETREGS:
1199 return ptrace_getregs(child,
1200 (struct pt_all_user_regs __user *) data);
1201
1202 case PTRACE_SETREGS:
1203 return ptrace_setregs(child,
1204 (struct pt_all_user_regs __user *) data);
1205
1206 default:
1207 return ptrace_request(child, request, addr, data);
1208 }
1209}
1210
1211
1212/* "asmlinkage" so the input arguments are preserved... */
1213
1214asmlinkage long
1215syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1216 long arg4, long arg5, long arg6, long arg7,
1217 struct pt_regs regs)
1218{
1219 if (test_thread_flag(TIF_SYSCALL_TRACE))
1220 if (tracehook_report_syscall_entry(®s))
1221 return -ENOSYS;
1222
1223 /* copy user rbs to kernel rbs */
1224 if (test_thread_flag(TIF_RESTORE_RSE))
1225 ia64_sync_krbs();
1226
1227
1228 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1229
1230 return 0;
1231}
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage void
1236syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1237 long arg4, long arg5, long arg6, long arg7,
1238 struct pt_regs regs)
1239{
1240 int step;
1241
1242 audit_syscall_exit(®s);
1243
1244 step = test_thread_flag(TIF_SINGLESTEP);
1245 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1246 tracehook_report_syscall_exit(®s, step);
1247
1248 /* copy user rbs to kernel rbs */
1249 if (test_thread_flag(TIF_RESTORE_RSE))
1250 ia64_sync_krbs();
1251}
1252
1253/* Utrace implementation starts here */
1254struct regset_get {
1255 void *kbuf;
1256 void __user *ubuf;
1257};
1258
1259struct regset_set {
1260 const void *kbuf;
1261 const void __user *ubuf;
1262};
1263
1264struct regset_getset {
1265 struct task_struct *target;
1266 const struct user_regset *regset;
1267 union {
1268 struct regset_get get;
1269 struct regset_set set;
1270 } u;
1271 unsigned int pos;
1272 unsigned int count;
1273 int ret;
1274};
1275
1276static const ptrdiff_t pt_offsets[32] =
1277{
1278#define R(n) offsetof(struct pt_regs, r##n)
1279 [0] = -1, R(1), R(2), R(3),
1280 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1281 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1282 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1283 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1284#undef R
1285};
1286
1287static int
1288access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1289 unsigned long addr, unsigned long *data, int write_access)
1290{
1291 struct pt_regs *pt = task_pt_regs(target);
1292 unsigned reg = addr / sizeof(unsigned long);
1293 ptrdiff_t d = pt_offsets[reg];
1294
1295 if (d >= 0) {
1296 unsigned long *ptr = (void *)pt + d;
1297 if (write_access)
1298 *ptr = *data;
1299 else
1300 *data = *ptr;
1301 return 0;
1302 } else {
1303 char nat = 0;
1304 if (write_access) {
1305 /* read NaT bit first: */
1306 unsigned long dummy;
1307 int ret = unw_get_gr(info, reg, &dummy, &nat);
1308 if (ret < 0)
1309 return ret;
1310 }
1311 return unw_access_gr(info, reg, data, &nat, write_access);
1312 }
1313}
1314
1315static int
1316access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1317 unsigned long addr, unsigned long *data, int write_access)
1318{
1319 struct pt_regs *pt;
1320 unsigned long *ptr = NULL;
1321
1322 pt = task_pt_regs(target);
1323 switch (addr) {
1324 case ELF_BR_OFFSET(0):
1325 ptr = &pt->b0;
1326 break;
1327 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1328 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1329 data, write_access);
1330 case ELF_BR_OFFSET(6):
1331 ptr = &pt->b6;
1332 break;
1333 case ELF_BR_OFFSET(7):
1334 ptr = &pt->b7;
1335 }
1336 if (write_access)
1337 *ptr = *data;
1338 else
1339 *data = *ptr;
1340 return 0;
1341}
1342
1343static int
1344access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1345 unsigned long addr, unsigned long *data, int write_access)
1346{
1347 struct pt_regs *pt;
1348 unsigned long cfm, urbs_end;
1349 unsigned long *ptr = NULL;
1350
1351 pt = task_pt_regs(target);
1352 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1353 switch (addr) {
1354 case ELF_AR_RSC_OFFSET:
1355 /* force PL3 */
1356 if (write_access)
1357 pt->ar_rsc = *data | (3 << 2);
1358 else
1359 *data = pt->ar_rsc;
1360 return 0;
1361 case ELF_AR_BSP_OFFSET:
1362 /*
1363 * By convention, we use PT_AR_BSP to refer to
1364 * the end of the user-level backing store.
1365 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1366 * to get the real value of ar.bsp at the time
1367 * the kernel was entered.
1368 *
1369 * Furthermore, when changing the contents of
1370 * PT_AR_BSP (or PT_CFM) while the task is
1371 * blocked in a system call, convert the state
1372 * so that the non-system-call exit
1373 * path is used. This ensures that the proper
1374 * state will be picked up when resuming
1375 * execution. However, it *also* means that
1376 * once we write PT_AR_BSP/PT_CFM, it won't be
1377 * possible to modify the syscall arguments of
1378 * the pending system call any longer. This
1379 * shouldn't be an issue because modifying
1380 * PT_AR_BSP/PT_CFM generally implies that
1381 * we're either abandoning the pending system
1382 * call or that we defer it's re-execution
1383 * (e.g., due to GDB doing an inferior
1384 * function call).
1385 */
1386 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1387 if (write_access) {
1388 if (*data != urbs_end) {
1389 if (in_syscall(pt))
1390 convert_to_non_syscall(target,
1391 pt,
1392 cfm);
1393 /*
1394 * Simulate user-level write
1395 * of ar.bsp:
1396 */
1397 pt->loadrs = 0;
1398 pt->ar_bspstore = *data;
1399 }
1400 } else
1401 *data = urbs_end;
1402 return 0;
1403 case ELF_AR_BSPSTORE_OFFSET:
1404 ptr = &pt->ar_bspstore;
1405 break;
1406 case ELF_AR_RNAT_OFFSET:
1407 ptr = &pt->ar_rnat;
1408 break;
1409 case ELF_AR_CCV_OFFSET:
1410 ptr = &pt->ar_ccv;
1411 break;
1412 case ELF_AR_UNAT_OFFSET:
1413 ptr = &pt->ar_unat;
1414 break;
1415 case ELF_AR_FPSR_OFFSET:
1416 ptr = &pt->ar_fpsr;
1417 break;
1418 case ELF_AR_PFS_OFFSET:
1419 ptr = &pt->ar_pfs;
1420 break;
1421 case ELF_AR_LC_OFFSET:
1422 return unw_access_ar(info, UNW_AR_LC, data,
1423 write_access);
1424 case ELF_AR_EC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_EC, data,
1426 write_access);
1427 case ELF_AR_CSD_OFFSET:
1428 ptr = &pt->ar_csd;
1429 break;
1430 case ELF_AR_SSD_OFFSET:
1431 ptr = &pt->ar_ssd;
1432 }
1433 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1434 switch (addr) {
1435 case ELF_CR_IIP_OFFSET:
1436 ptr = &pt->cr_iip;
1437 break;
1438 case ELF_CFM_OFFSET:
1439 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1440 if (write_access) {
1441 if (((cfm ^ *data) & PFM_MASK) != 0) {
1442 if (in_syscall(pt))
1443 convert_to_non_syscall(target,
1444 pt,
1445 cfm);
1446 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1447 | (*data & PFM_MASK));
1448 }
1449 } else
1450 *data = cfm;
1451 return 0;
1452 case ELF_CR_IPSR_OFFSET:
1453 if (write_access) {
1454 unsigned long tmp = *data;
1455 /* psr.ri==3 is a reserved value: SDM 2:25 */
1456 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1457 tmp &= ~IA64_PSR_RI;
1458 pt->cr_ipsr = ((tmp & IPSR_MASK)
1459 | (pt->cr_ipsr & ~IPSR_MASK));
1460 } else
1461 *data = (pt->cr_ipsr & IPSR_MASK);
1462 return 0;
1463 }
1464 } else if (addr == ELF_NAT_OFFSET)
1465 return access_nat_bits(target, pt, info,
1466 data, write_access);
1467 else if (addr == ELF_PR_OFFSET)
1468 ptr = &pt->pr;
1469 else
1470 return -1;
1471
1472 if (write_access)
1473 *ptr = *data;
1474 else
1475 *data = *ptr;
1476
1477 return 0;
1478}
1479
1480static int
1481access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1482 unsigned long addr, unsigned long *data, int write_access)
1483{
1484 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1485 return access_elf_gpreg(target, info, addr, data, write_access);
1486 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1487 return access_elf_breg(target, info, addr, data, write_access);
1488 else
1489 return access_elf_areg(target, info, addr, data, write_access);
1490}
1491
1492struct regset_membuf {
1493 struct membuf to;
1494 int ret;
1495};
1496
1497static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1498{
1499 struct regset_membuf *dst = arg;
1500 struct membuf to = dst->to;
1501 unsigned int n;
1502 elf_greg_t reg;
1503
1504 if (unw_unwind_to_user(info) < 0)
1505 return;
1506
1507 /*
1508 * coredump format:
1509 * r0-r31
1510 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1511 * predicate registers (p0-p63)
1512 * b0-b7
1513 * ip cfm user-mask
1514 * ar.rsc ar.bsp ar.bspstore ar.rnat
1515 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1516 */
1517
1518
1519 /* Skip r0 */
1520 membuf_zero(&to, 8);
1521 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1522 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1523 dst->ret = -EIO;
1524 return;
1525 }
1526 membuf_store(&to, reg);
1527 }
1528}
1529
1530static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1531{
1532 struct regset_getset *dst = arg;
1533
1534 if (unw_unwind_to_user(info) < 0)
1535 return;
1536
1537 if (!dst->count)
1538 return;
1539 /* Skip r0 */
1540 if (dst->pos < ELF_GR_OFFSET(1)) {
1541 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1542 &dst->u.set.kbuf,
1543 &dst->u.set.ubuf,
1544 0, ELF_GR_OFFSET(1));
1545 if (dst->ret)
1546 return;
1547 }
1548
1549 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1550 unsigned int n, from, to;
1551 elf_greg_t tmp[16];
1552
1553 from = dst->pos;
1554 to = from + sizeof(tmp);
1555 if (to > ELF_AR_END_OFFSET)
1556 to = ELF_AR_END_OFFSET;
1557 /* get up to 16 values */
1558 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1559 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1560 from, to);
1561 if (dst->ret)
1562 return;
1563 /* now copy them into registers */
1564 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1565 if (access_elf_reg(dst->target, info, from,
1566 &tmp[n], 1) < 0) {
1567 dst->ret = -EIO;
1568 return;
1569 }
1570 }
1571}
1572
1573#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1574
1575static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1576{
1577 struct task_struct *task = info->task;
1578 struct regset_membuf *dst = arg;
1579 struct membuf to = dst->to;
1580 elf_fpreg_t reg;
1581 unsigned int n;
1582
1583 if (unw_unwind_to_user(info) < 0)
1584 return;
1585
1586 /* Skip pos 0 and 1 */
1587 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1588
1589 /* fr2-fr31 */
1590 for (n = 2; to.left && n < 32; n++) {
1591 if (unw_get_fr(info, n, ®)) {
1592 dst->ret = -EIO;
1593 return;
1594 }
1595 membuf_write(&to, ®, sizeof(reg));
1596 }
1597
1598 /* fph */
1599 if (!to.left)
1600 return;
1601
1602 ia64_flush_fph(task);
1603 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1604 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1605 else
1606 membuf_zero(&to, 96 * sizeof(reg));
1607}
1608
1609static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1610{
1611 struct regset_getset *dst = arg;
1612 elf_fpreg_t fpreg, tmp[30];
1613 int index, start, end;
1614
1615 if (unw_unwind_to_user(info) < 0)
1616 return;
1617
1618 /* Skip pos 0 and 1 */
1619 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1620 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1621 &dst->u.set.kbuf,
1622 &dst->u.set.ubuf,
1623 0, ELF_FP_OFFSET(2));
1624 if (dst->count == 0 || dst->ret)
1625 return;
1626 }
1627
1628 /* fr2-fr31 */
1629 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1630 start = dst->pos;
1631 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1632 dst->pos + dst->count);
1633 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1634 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1635 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1636 if (dst->ret)
1637 return;
1638
1639 if (start & 0xF) { /* only write high part */
1640 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1641 &fpreg)) {
1642 dst->ret = -EIO;
1643 return;
1644 }
1645 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1646 = fpreg.u.bits[0];
1647 start &= ~0xFUL;
1648 }
1649 if (end & 0xF) { /* only write low part */
1650 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1651 &fpreg)) {
1652 dst->ret = -EIO;
1653 return;
1654 }
1655 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1656 = fpreg.u.bits[1];
1657 end = (end + 0xF) & ~0xFUL;
1658 }
1659
1660 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1661 index = start / sizeof(elf_fpreg_t);
1662 if (unw_set_fr(info, index, tmp[index - 2])) {
1663 dst->ret = -EIO;
1664 return;
1665 }
1666 }
1667 if (dst->ret || dst->count == 0)
1668 return;
1669 }
1670
1671 /* fph */
1672 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1673 ia64_sync_fph(dst->target);
1674 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1675 &dst->u.set.kbuf,
1676 &dst->u.set.ubuf,
1677 &dst->target->thread.fph,
1678 ELF_FP_OFFSET(32), -1);
1679 }
1680}
1681
1682static void
1683unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1684 struct task_struct *target, void *data)
1685{
1686 if (target == current)
1687 unw_init_running(call, data);
1688 else {
1689 struct unw_frame_info info;
1690 memset(&info, 0, sizeof(info));
1691 unw_init_from_blocked_task(&info, target);
1692 (*call)(&info, data);
1693 }
1694}
1695
1696static int
1697do_regset_call(void (*call)(struct unw_frame_info *, void *),
1698 struct task_struct *target,
1699 const struct user_regset *regset,
1700 unsigned int pos, unsigned int count,
1701 const void *kbuf, const void __user *ubuf)
1702{
1703 struct regset_getset info = { .target = target, .regset = regset,
1704 .pos = pos, .count = count,
1705 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1706 .ret = 0 };
1707 unwind_and_call(call, target, &info);
1708 return info.ret;
1709}
1710
1711static int
1712gpregs_get(struct task_struct *target,
1713 const struct user_regset *regset,
1714 struct membuf to)
1715{
1716 struct regset_membuf info = {.to = to};
1717 unwind_and_call(do_gpregs_get, target, &info);
1718 return info.ret;
1719}
1720
1721static int gpregs_set(struct task_struct *target,
1722 const struct user_regset *regset,
1723 unsigned int pos, unsigned int count,
1724 const void *kbuf, const void __user *ubuf)
1725{
1726 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1727 kbuf, ubuf);
1728}
1729
1730static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1731{
1732 do_sync_rbs(info, ia64_sync_user_rbs);
1733}
1734
1735/*
1736 * This is called to write back the register backing store.
1737 * ptrace does this before it stops, so that a tracer reading the user
1738 * memory after the thread stops will get the current register data.
1739 */
1740static int
1741gpregs_writeback(struct task_struct *target,
1742 const struct user_regset *regset,
1743 int now)
1744{
1745 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1746 return 0;
1747 set_notify_resume(target);
1748 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1749 NULL, NULL);
1750}
1751
1752static int
1753fpregs_active(struct task_struct *target, const struct user_regset *regset)
1754{
1755 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1756}
1757
1758static int fpregs_get(struct task_struct *target,
1759 const struct user_regset *regset,
1760 struct membuf to)
1761{
1762 struct regset_membuf info = {.to = to};
1763 unwind_and_call(do_fpregs_get, target, &info);
1764 return info.ret;
1765}
1766
1767static int fpregs_set(struct task_struct *target,
1768 const struct user_regset *regset,
1769 unsigned int pos, unsigned int count,
1770 const void *kbuf, const void __user *ubuf)
1771{
1772 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1773 kbuf, ubuf);
1774}
1775
1776static int
1777access_uarea(struct task_struct *child, unsigned long addr,
1778 unsigned long *data, int write_access)
1779{
1780 unsigned int pos = -1; /* an invalid value */
1781 unsigned long *ptr, regnum;
1782
1783 if ((addr & 0x7) != 0) {
1784 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1785 return -1;
1786 }
1787 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1788 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1789 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1790 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1791 dprintk("ptrace: rejecting access to register "
1792 "address 0x%lx\n", addr);
1793 return -1;
1794 }
1795
1796 switch (addr) {
1797 case PT_F32 ... (PT_F127 + 15):
1798 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1799 break;
1800 case PT_F2 ... (PT_F5 + 15):
1801 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1802 break;
1803 case PT_F10 ... (PT_F31 + 15):
1804 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1805 break;
1806 case PT_F6 ... (PT_F9 + 15):
1807 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1808 break;
1809 }
1810
1811 if (pos != -1) {
1812 unsigned reg = pos / sizeof(elf_fpreg_t);
1813 int which_half = (pos / sizeof(unsigned long)) & 1;
1814
1815 if (reg < 32) { /* fr2-fr31 */
1816 struct unw_frame_info info;
1817 elf_fpreg_t fpreg;
1818
1819 memset(&info, 0, sizeof(info));
1820 unw_init_from_blocked_task(&info, child);
1821 if (unw_unwind_to_user(&info) < 0)
1822 return 0;
1823
1824 if (unw_get_fr(&info, reg, &fpreg))
1825 return -1;
1826 if (write_access) {
1827 fpreg.u.bits[which_half] = *data;
1828 if (unw_set_fr(&info, reg, fpreg))
1829 return -1;
1830 } else {
1831 *data = fpreg.u.bits[which_half];
1832 }
1833 } else { /* fph */
1834 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1835 unsigned long *bits = &p->u.bits[which_half];
1836
1837 ia64_sync_fph(child);
1838 if (write_access)
1839 *bits = *data;
1840 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1841 *data = *bits;
1842 else
1843 *data = 0;
1844 }
1845 return 0;
1846 }
1847
1848 switch (addr) {
1849 case PT_NAT_BITS:
1850 pos = ELF_NAT_OFFSET;
1851 break;
1852 case PT_R4 ... PT_R7:
1853 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1854 break;
1855 case PT_B1 ... PT_B5:
1856 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1857 break;
1858 case PT_AR_EC:
1859 pos = ELF_AR_EC_OFFSET;
1860 break;
1861 case PT_AR_LC:
1862 pos = ELF_AR_LC_OFFSET;
1863 break;
1864 case PT_CR_IPSR:
1865 pos = ELF_CR_IPSR_OFFSET;
1866 break;
1867 case PT_CR_IIP:
1868 pos = ELF_CR_IIP_OFFSET;
1869 break;
1870 case PT_CFM:
1871 pos = ELF_CFM_OFFSET;
1872 break;
1873 case PT_AR_UNAT:
1874 pos = ELF_AR_UNAT_OFFSET;
1875 break;
1876 case PT_AR_PFS:
1877 pos = ELF_AR_PFS_OFFSET;
1878 break;
1879 case PT_AR_RSC:
1880 pos = ELF_AR_RSC_OFFSET;
1881 break;
1882 case PT_AR_RNAT:
1883 pos = ELF_AR_RNAT_OFFSET;
1884 break;
1885 case PT_AR_BSPSTORE:
1886 pos = ELF_AR_BSPSTORE_OFFSET;
1887 break;
1888 case PT_PR:
1889 pos = ELF_PR_OFFSET;
1890 break;
1891 case PT_B6:
1892 pos = ELF_BR_OFFSET(6);
1893 break;
1894 case PT_AR_BSP:
1895 pos = ELF_AR_BSP_OFFSET;
1896 break;
1897 case PT_R1 ... PT_R3:
1898 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1899 break;
1900 case PT_R12 ... PT_R15:
1901 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1902 break;
1903 case PT_R8 ... PT_R11:
1904 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1905 break;
1906 case PT_R16 ... PT_R31:
1907 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1908 break;
1909 case PT_AR_CCV:
1910 pos = ELF_AR_CCV_OFFSET;
1911 break;
1912 case PT_AR_FPSR:
1913 pos = ELF_AR_FPSR_OFFSET;
1914 break;
1915 case PT_B0:
1916 pos = ELF_BR_OFFSET(0);
1917 break;
1918 case PT_B7:
1919 pos = ELF_BR_OFFSET(7);
1920 break;
1921 case PT_AR_CSD:
1922 pos = ELF_AR_CSD_OFFSET;
1923 break;
1924 case PT_AR_SSD:
1925 pos = ELF_AR_SSD_OFFSET;
1926 break;
1927 }
1928
1929 if (pos != -1) {
1930 struct unw_frame_info info;
1931
1932 memset(&info, 0, sizeof(info));
1933 unw_init_from_blocked_task(&info, child);
1934 if (unw_unwind_to_user(&info) < 0)
1935 return 0;
1936
1937 return access_elf_reg(child, &info, pos, data, write_access);
1938 }
1939
1940 /* access debug registers */
1941 if (addr >= PT_IBR) {
1942 regnum = (addr - PT_IBR) >> 3;
1943 ptr = &child->thread.ibr[0];
1944 } else {
1945 regnum = (addr - PT_DBR) >> 3;
1946 ptr = &child->thread.dbr[0];
1947 }
1948
1949 if (regnum >= 8) {
1950 dprintk("ptrace: rejecting access to register "
1951 "address 0x%lx\n", addr);
1952 return -1;
1953 }
1954
1955 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1956 child->thread.flags |= IA64_THREAD_DBG_VALID;
1957 memset(child->thread.dbr, 0,
1958 sizeof(child->thread.dbr));
1959 memset(child->thread.ibr, 0,
1960 sizeof(child->thread.ibr));
1961 }
1962
1963 ptr += regnum;
1964
1965 if ((regnum & 1) && write_access) {
1966 /* don't let the user set kernel-level breakpoints: */
1967 *ptr = *data & ~(7UL << 56);
1968 return 0;
1969 }
1970 if (write_access)
1971 *ptr = *data;
1972 else
1973 *data = *ptr;
1974 return 0;
1975}
1976
1977static const struct user_regset native_regsets[] = {
1978 {
1979 .core_note_type = NT_PRSTATUS,
1980 .n = ELF_NGREG,
1981 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1982 .regset_get = gpregs_get, .set = gpregs_set,
1983 .writeback = gpregs_writeback
1984 },
1985 {
1986 .core_note_type = NT_PRFPREG,
1987 .n = ELF_NFPREG,
1988 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1989 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1990 },
1991};
1992
1993static const struct user_regset_view user_ia64_view = {
1994 .name = "ia64",
1995 .e_machine = EM_IA_64,
1996 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1997};
1998
1999const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2000{
2001 return &user_ia64_view;
2002}
2003
2004struct syscall_get_set_args {
2005 unsigned int i;
2006 unsigned int n;
2007 unsigned long *args;
2008 struct pt_regs *regs;
2009 int rw;
2010};
2011
2012static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2013{
2014 struct syscall_get_set_args *args = data;
2015 struct pt_regs *pt = args->regs;
2016 unsigned long *krbs, cfm, ndirty, nlocals, nouts;
2017 int i, count;
2018
2019 if (unw_unwind_to_user(info) < 0)
2020 return;
2021
2022 /*
2023 * We get here via a few paths:
2024 * - break instruction: cfm is shared with caller.
2025 * syscall args are in out= regs, locals are non-empty.
2026 * - epsinstruction: cfm is set by br.call
2027 * locals don't exist.
2028 *
2029 * For both cases argguments are reachable in cfm.sof - cfm.sol.
2030 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
2031 */
2032 cfm = pt->cr_ifs;
2033 nlocals = (cfm >> 7) & 0x7f; /* aka sol */
2034 nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
2035 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2036 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2037
2038 count = 0;
2039 if (in_syscall(pt))
2040 count = min_t(int, args->n, nouts);
2041
2042 /* Iterate over outs. */
2043 for (i = 0; i < count; i++) {
2044 int j = ndirty + nlocals + i + args->i;
2045 if (args->rw)
2046 *ia64_rse_skip_regs(krbs, j) = args->args[i];
2047 else
2048 args->args[i] = *ia64_rse_skip_regs(krbs, j);
2049 }
2050
2051 if (!args->rw) {
2052 while (i < args->n) {
2053 args->args[i] = 0;
2054 i++;
2055 }
2056 }
2057}
2058
2059void ia64_syscall_get_set_arguments(struct task_struct *task,
2060 struct pt_regs *regs, unsigned long *args, int rw)
2061{
2062 struct syscall_get_set_args data = {
2063 .i = 0,
2064 .n = 6,
2065 .args = args,
2066 .regs = regs,
2067 .rw = rw,
2068 };
2069
2070 if (task == current)
2071 unw_init_running(syscall_get_set_args_cb, &data);
2072 else {
2073 struct unw_frame_info ufi;
2074 memset(&ufi, 0, sizeof(ufi));
2075 unw_init_from_blocked_task(&ufi, task);
2076 syscall_get_set_args_cb(&ufi, &data);
2077 }
2078}