Loading...
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/regset.h>
22#include <linux/elf.h>
23#include <linux/tracehook.h>
24
25#include <asm/pgtable.h>
26#include <asm/processor.h>
27#include <asm/ptrace_offsets.h>
28#include <asm/rse.h>
29#include <asm/system.h>
30#include <asm/uaccess.h>
31#include <asm/unwind.h>
32#ifdef CONFIG_PERFMON
33#include <asm/perfmon.h>
34#endif
35
36#include "entry.h"
37
38/*
39 * Bits in the PSR that we allow ptrace() to change:
40 * be, up, ac, mfl, mfh (the user mask; five bits total)
41 * db (debug breakpoint fault; one bit)
42 * id (instruction debug fault disable; one bit)
43 * dd (data debug fault disable; one bit)
44 * ri (restart instruction; two bits)
45 * is (instruction set; one bit)
46 */
47#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
48 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
49
50#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
51#define PFM_MASK MASK(38)
52
53#define PTRACE_DEBUG 0
54
55#if PTRACE_DEBUG
56# define dprintk(format...) printk(format)
57# define inline
58#else
59# define dprintk(format...)
60#endif
61
62/* Return TRUE if PT was created due to kernel-entry via a system-call. */
63
64static inline int
65in_syscall (struct pt_regs *pt)
66{
67 return (long) pt->cr_ifs >= 0;
68}
69
70/*
71 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
72 * bitset where bit i is set iff the NaT bit of register i is set.
73 */
74unsigned long
75ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
76{
77# define GET_BITS(first, last, unat) \
78 ({ \
79 unsigned long bit = ia64_unat_pos(&pt->r##first); \
80 unsigned long nbits = (last - first + 1); \
81 unsigned long mask = MASK(nbits) << first; \
82 unsigned long dist; \
83 if (bit < first) \
84 dist = 64 + bit - first; \
85 else \
86 dist = bit - first; \
87 ia64_rotr(unat, dist) & mask; \
88 })
89 unsigned long val;
90
91 /*
92 * Registers that are stored consecutively in struct pt_regs
93 * can be handled in parallel. If the register order in
94 * struct_pt_regs changes, this code MUST be updated.
95 */
96 val = GET_BITS( 1, 1, scratch_unat);
97 val |= GET_BITS( 2, 3, scratch_unat);
98 val |= GET_BITS(12, 13, scratch_unat);
99 val |= GET_BITS(14, 14, scratch_unat);
100 val |= GET_BITS(15, 15, scratch_unat);
101 val |= GET_BITS( 8, 11, scratch_unat);
102 val |= GET_BITS(16, 31, scratch_unat);
103 return val;
104
105# undef GET_BITS
106}
107
108/*
109 * Set the NaT bits for the scratch registers according to NAT and
110 * return the resulting unat (assuming the scratch registers are
111 * stored in PT).
112 */
113unsigned long
114ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
115{
116# define PUT_BITS(first, last, nat) \
117 ({ \
118 unsigned long bit = ia64_unat_pos(&pt->r##first); \
119 unsigned long nbits = (last - first + 1); \
120 unsigned long mask = MASK(nbits) << first; \
121 long dist; \
122 if (bit < first) \
123 dist = 64 + bit - first; \
124 else \
125 dist = bit - first; \
126 ia64_rotl(nat & mask, dist); \
127 })
128 unsigned long scratch_unat;
129
130 /*
131 * Registers that are stored consecutively in struct pt_regs
132 * can be handled in parallel. If the register order in
133 * struct_pt_regs changes, this code MUST be updated.
134 */
135 scratch_unat = PUT_BITS( 1, 1, nat);
136 scratch_unat |= PUT_BITS( 2, 3, nat);
137 scratch_unat |= PUT_BITS(12, 13, nat);
138 scratch_unat |= PUT_BITS(14, 14, nat);
139 scratch_unat |= PUT_BITS(15, 15, nat);
140 scratch_unat |= PUT_BITS( 8, 11, nat);
141 scratch_unat |= PUT_BITS(16, 31, nat);
142
143 return scratch_unat;
144
145# undef PUT_BITS
146}
147
148#define IA64_MLX_TEMPLATE 0x2
149#define IA64_MOVL_OPCODE 6
150
151void
152ia64_increment_ip (struct pt_regs *regs)
153{
154 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
155
156 if (ri > 2) {
157 ri = 0;
158 regs->cr_iip += 16;
159 } else if (ri == 2) {
160 get_user(w0, (char __user *) regs->cr_iip + 0);
161 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
162 /*
163 * rfi'ing to slot 2 of an MLX bundle causes
164 * an illegal operation fault. We don't want
165 * that to happen...
166 */
167 ri = 0;
168 regs->cr_iip += 16;
169 }
170 }
171 ia64_psr(regs)->ri = ri;
172}
173
174void
175ia64_decrement_ip (struct pt_regs *regs)
176{
177 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
178
179 if (ia64_psr(regs)->ri == 0) {
180 regs->cr_iip -= 16;
181 ri = 2;
182 get_user(w0, (char __user *) regs->cr_iip + 0);
183 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
184 /*
185 * rfi'ing to slot 2 of an MLX bundle causes
186 * an illegal operation fault. We don't want
187 * that to happen...
188 */
189 ri = 1;
190 }
191 }
192 ia64_psr(regs)->ri = ri;
193}
194
195/*
196 * This routine is used to read an rnat bits that are stored on the
197 * kernel backing store. Since, in general, the alignment of the user
198 * and kernel are different, this is not completely trivial. In
199 * essence, we need to construct the user RNAT based on up to two
200 * kernel RNAT values and/or the RNAT value saved in the child's
201 * pt_regs.
202 *
203 * user rbs
204 *
205 * +--------+ <-- lowest address
206 * | slot62 |
207 * +--------+
208 * | rnat | 0x....1f8
209 * +--------+
210 * | slot00 | \
211 * +--------+ |
212 * | slot01 | > child_regs->ar_rnat
213 * +--------+ |
214 * | slot02 | / kernel rbs
215 * +--------+ +--------+
216 * <- child_regs->ar_bspstore | slot61 | <-- krbs
217 * +- - - - + +--------+
218 * | slot62 |
219 * +- - - - + +--------+
220 * | rnat |
221 * +- - - - + +--------+
222 * vrnat | slot00 |
223 * +- - - - + +--------+
224 * = =
225 * +--------+
226 * | slot00 | \
227 * +--------+ |
228 * | slot01 | > child_stack->ar_rnat
229 * +--------+ |
230 * | slot02 | /
231 * +--------+
232 * <--- child_stack->ar_bspstore
233 *
234 * The way to think of this code is as follows: bit 0 in the user rnat
235 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
236 * value. The kernel rnat value holding this bit is stored in
237 * variable rnat0. rnat1 is loaded with the kernel rnat value that
238 * form the upper bits of the user rnat value.
239 *
240 * Boundary cases:
241 *
242 * o when reading the rnat "below" the first rnat slot on the kernel
243 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
244 * merged in from pt->ar_rnat.
245 *
246 * o when reading the rnat "above" the last rnat slot on the kernel
247 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
248 */
249static unsigned long
250get_rnat (struct task_struct *task, struct switch_stack *sw,
251 unsigned long *krbs, unsigned long *urnat_addr,
252 unsigned long *urbs_end)
253{
254 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
255 unsigned long umask = 0, mask, m;
256 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
257 long num_regs, nbits;
258 struct pt_regs *pt;
259
260 pt = task_pt_regs(task);
261 kbsp = (unsigned long *) sw->ar_bspstore;
262 ubspstore = (unsigned long *) pt->ar_bspstore;
263
264 if (urbs_end < urnat_addr)
265 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
266 else
267 nbits = 63;
268 mask = MASK(nbits);
269 /*
270 * First, figure out which bit number slot 0 in user-land maps
271 * to in the kernel rnat. Do this by figuring out how many
272 * register slots we're beyond the user's backingstore and
273 * then computing the equivalent address in kernel space.
274 */
275 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
276 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
277 shift = ia64_rse_slot_num(slot0_kaddr);
278 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
279 rnat0_kaddr = rnat1_kaddr - 64;
280
281 if (ubspstore + 63 > urnat_addr) {
282 /* some bits need to be merged in from pt->ar_rnat */
283 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
284 urnat = (pt->ar_rnat & umask);
285 mask &= ~umask;
286 if (!mask)
287 return urnat;
288 }
289
290 m = mask << shift;
291 if (rnat0_kaddr >= kbsp)
292 rnat0 = sw->ar_rnat;
293 else if (rnat0_kaddr > krbs)
294 rnat0 = *rnat0_kaddr;
295 urnat |= (rnat0 & m) >> shift;
296
297 m = mask >> (63 - shift);
298 if (rnat1_kaddr >= kbsp)
299 rnat1 = sw->ar_rnat;
300 else if (rnat1_kaddr > krbs)
301 rnat1 = *rnat1_kaddr;
302 urnat |= (rnat1 & m) << (63 - shift);
303 return urnat;
304}
305
306/*
307 * The reverse of get_rnat.
308 */
309static void
310put_rnat (struct task_struct *task, struct switch_stack *sw,
311 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
312 unsigned long *urbs_end)
313{
314 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
315 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
316 long num_regs, nbits;
317 struct pt_regs *pt;
318 unsigned long cfm, *urbs_kargs;
319
320 pt = task_pt_regs(task);
321 kbsp = (unsigned long *) sw->ar_bspstore;
322 ubspstore = (unsigned long *) pt->ar_bspstore;
323
324 urbs_kargs = urbs_end;
325 if (in_syscall(pt)) {
326 /*
327 * If entered via syscall, don't allow user to set rnat bits
328 * for syscall args.
329 */
330 cfm = pt->cr_ifs;
331 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
332 }
333
334 if (urbs_kargs >= urnat_addr)
335 nbits = 63;
336 else {
337 if ((urnat_addr - 63) >= urbs_kargs)
338 return;
339 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
340 }
341 mask = MASK(nbits);
342
343 /*
344 * First, figure out which bit number slot 0 in user-land maps
345 * to in the kernel rnat. Do this by figuring out how many
346 * register slots we're beyond the user's backingstore and
347 * then computing the equivalent address in kernel space.
348 */
349 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
350 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
351 shift = ia64_rse_slot_num(slot0_kaddr);
352 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
353 rnat0_kaddr = rnat1_kaddr - 64;
354
355 if (ubspstore + 63 > urnat_addr) {
356 /* some bits need to be place in pt->ar_rnat: */
357 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
358 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
359 mask &= ~umask;
360 if (!mask)
361 return;
362 }
363 /*
364 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
365 * rnat slot is ignored. so we don't have to clear it here.
366 */
367 rnat0 = (urnat << shift);
368 m = mask << shift;
369 if (rnat0_kaddr >= kbsp)
370 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
371 else if (rnat0_kaddr > krbs)
372 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
373
374 rnat1 = (urnat >> (63 - shift));
375 m = mask >> (63 - shift);
376 if (rnat1_kaddr >= kbsp)
377 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
378 else if (rnat1_kaddr > krbs)
379 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
380}
381
382static inline int
383on_kernel_rbs (unsigned long addr, unsigned long bspstore,
384 unsigned long urbs_end)
385{
386 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
387 urbs_end);
388 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
389}
390
391/*
392 * Read a word from the user-level backing store of task CHILD. ADDR
393 * is the user-level address to read the word from, VAL a pointer to
394 * the return value, and USER_BSP gives the end of the user-level
395 * backing store (i.e., it's the address that would be in ar.bsp after
396 * the user executed a "cover" instruction).
397 *
398 * This routine takes care of accessing the kernel register backing
399 * store for those registers that got spilled there. It also takes
400 * care of calculating the appropriate RNaT collection words.
401 */
402long
403ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
404 unsigned long user_rbs_end, unsigned long addr, long *val)
405{
406 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
407 struct pt_regs *child_regs;
408 size_t copied;
409 long ret;
410
411 urbs_end = (long *) user_rbs_end;
412 laddr = (unsigned long *) addr;
413 child_regs = task_pt_regs(child);
414 bspstore = (unsigned long *) child_regs->ar_bspstore;
415 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
416 if (on_kernel_rbs(addr, (unsigned long) bspstore,
417 (unsigned long) urbs_end))
418 {
419 /*
420 * Attempt to read the RBS in an area that's actually
421 * on the kernel RBS => read the corresponding bits in
422 * the kernel RBS.
423 */
424 rnat_addr = ia64_rse_rnat_addr(laddr);
425 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
426
427 if (laddr == rnat_addr) {
428 /* return NaT collection word itself */
429 *val = ret;
430 return 0;
431 }
432
433 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
434 /*
435 * It is implementation dependent whether the
436 * data portion of a NaT value gets saved on a
437 * st8.spill or RSE spill (e.g., see EAS 2.6,
438 * 4.4.4.6 Register Spill and Fill). To get
439 * consistent behavior across all possible
440 * IA-64 implementations, we return zero in
441 * this case.
442 */
443 *val = 0;
444 return 0;
445 }
446
447 if (laddr < urbs_end) {
448 /*
449 * The desired word is on the kernel RBS and
450 * is not a NaT.
451 */
452 regnum = ia64_rse_num_regs(bspstore, laddr);
453 *val = *ia64_rse_skip_regs(krbs, regnum);
454 return 0;
455 }
456 }
457 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
458 if (copied != sizeof(ret))
459 return -EIO;
460 *val = ret;
461 return 0;
462}
463
464long
465ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
466 unsigned long user_rbs_end, unsigned long addr, long val)
467{
468 unsigned long *bspstore, *krbs, regnum, *laddr;
469 unsigned long *urbs_end = (long *) user_rbs_end;
470 struct pt_regs *child_regs;
471
472 laddr = (unsigned long *) addr;
473 child_regs = task_pt_regs(child);
474 bspstore = (unsigned long *) child_regs->ar_bspstore;
475 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
476 if (on_kernel_rbs(addr, (unsigned long) bspstore,
477 (unsigned long) urbs_end))
478 {
479 /*
480 * Attempt to write the RBS in an area that's actually
481 * on the kernel RBS => write the corresponding bits
482 * in the kernel RBS.
483 */
484 if (ia64_rse_is_rnat_slot(laddr))
485 put_rnat(child, child_stack, krbs, laddr, val,
486 urbs_end);
487 else {
488 if (laddr < urbs_end) {
489 regnum = ia64_rse_num_regs(bspstore, laddr);
490 *ia64_rse_skip_regs(krbs, regnum) = val;
491 }
492 }
493 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
494 != sizeof(val))
495 return -EIO;
496 return 0;
497}
498
499/*
500 * Calculate the address of the end of the user-level register backing
501 * store. This is the address that would have been stored in ar.bsp
502 * if the user had executed a "cover" instruction right before
503 * entering the kernel. If CFMP is not NULL, it is used to return the
504 * "current frame mask" that was active at the time the kernel was
505 * entered.
506 */
507unsigned long
508ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
509 unsigned long *cfmp)
510{
511 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
512 long ndirty;
513
514 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
515 bspstore = (unsigned long *) pt->ar_bspstore;
516 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
517
518 if (in_syscall(pt))
519 ndirty += (cfm & 0x7f);
520 else
521 cfm &= ~(1UL << 63); /* clear valid bit */
522
523 if (cfmp)
524 *cfmp = cfm;
525 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
526}
527
528/*
529 * Synchronize (i.e, write) the RSE backing store living in kernel
530 * space to the VM of the CHILD task. SW and PT are the pointers to
531 * the switch_stack and pt_regs structures, respectively.
532 * USER_RBS_END is the user-level address at which the backing store
533 * ends.
534 */
535long
536ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
537 unsigned long user_rbs_start, unsigned long user_rbs_end)
538{
539 unsigned long addr, val;
540 long ret;
541
542 /* now copy word for word from kernel rbs to user rbs: */
543 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
544 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
545 if (ret < 0)
546 return ret;
547 if (access_process_vm(child, addr, &val, sizeof(val), 1)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552}
553
554static long
555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557{
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val), 0)
564 != sizeof(val))
565 return -EIO;
566
567 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572}
573
574typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
575 unsigned long, unsigned long);
576
577static void do_sync_rbs(struct unw_frame_info *info, void *arg)
578{
579 struct pt_regs *pt;
580 unsigned long urbs_end;
581 syncfunc_t fn = arg;
582
583 if (unw_unwind_to_user(info) < 0)
584 return;
585 pt = task_pt_regs(info->task);
586 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
587
588 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
589}
590
591/*
592 * when a thread is stopped (ptraced), debugger might change thread's user
593 * stack (change memory directly), and we must avoid the RSE stored in kernel
594 * to override user stack (user space's RSE is newer than kernel's in the
595 * case). To workaround the issue, we copy kernel RSE to user RSE before the
596 * task is stopped, so user RSE has updated data. we then copy user RSE to
597 * kernel after the task is resummed from traced stop and kernel will use the
598 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
599 * synchronize user RSE to kernel.
600 */
601void ia64_ptrace_stop(void)
602{
603 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
604 return;
605 set_notify_resume(current);
606 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
607}
608
609/*
610 * This is called to read back the register backing store.
611 */
612void ia64_sync_krbs(void)
613{
614 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
615
616 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
617}
618
619/*
620 * After PTRACE_ATTACH, a thread's register backing store area in user
621 * space is assumed to contain correct data whenever the thread is
622 * stopped. arch_ptrace_stop takes care of this on tracing stops.
623 * But if the child was already stopped for job control when we attach
624 * to it, then it might not ever get into ptrace_stop by the time we
625 * want to examine the user memory containing the RBS.
626 */
627void
628ptrace_attach_sync_user_rbs (struct task_struct *child)
629{
630 int stopped = 0;
631 struct unw_frame_info info;
632
633 /*
634 * If the child is in TASK_STOPPED, we need to change that to
635 * TASK_TRACED momentarily while we operate on it. This ensures
636 * that the child won't be woken up and return to user mode while
637 * we are doing the sync. (It can only be woken up for SIGKILL.)
638 */
639
640 read_lock(&tasklist_lock);
641 if (child->sighand) {
642 spin_lock_irq(&child->sighand->siglock);
643 if (child->state == TASK_STOPPED &&
644 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
645 set_notify_resume(child);
646
647 child->state = TASK_TRACED;
648 stopped = 1;
649 }
650 spin_unlock_irq(&child->sighand->siglock);
651 }
652 read_unlock(&tasklist_lock);
653
654 if (!stopped)
655 return;
656
657 unw_init_from_blocked_task(&info, child);
658 do_sync_rbs(&info, ia64_sync_user_rbs);
659
660 /*
661 * Now move the child back into TASK_STOPPED if it should be in a
662 * job control stop, so that SIGCONT can be used to wake it up.
663 */
664 read_lock(&tasklist_lock);
665 if (child->sighand) {
666 spin_lock_irq(&child->sighand->siglock);
667 if (child->state == TASK_TRACED &&
668 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
669 child->state = TASK_STOPPED;
670 }
671 spin_unlock_irq(&child->sighand->siglock);
672 }
673 read_unlock(&tasklist_lock);
674}
675
676static inline int
677thread_matches (struct task_struct *thread, unsigned long addr)
678{
679 unsigned long thread_rbs_end;
680 struct pt_regs *thread_regs;
681
682 if (ptrace_check_attach(thread, 0) < 0)
683 /*
684 * If the thread is not in an attachable state, we'll
685 * ignore it. The net effect is that if ADDR happens
686 * to overlap with the portion of the thread's
687 * register backing store that is currently residing
688 * on the thread's kernel stack, then ptrace() may end
689 * up accessing a stale value. But if the thread
690 * isn't stopped, that's a problem anyhow, so we're
691 * doing as well as we can...
692 */
693 return 0;
694
695 thread_regs = task_pt_regs(thread);
696 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
697 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
698 return 0;
699
700 return 1; /* looks like we've got a winner */
701}
702
703/*
704 * Write f32-f127 back to task->thread.fph if it has been modified.
705 */
706inline void
707ia64_flush_fph (struct task_struct *task)
708{
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
710
711 /*
712 * Prevent migrating this task while
713 * we're fiddling with the FPU state
714 */
715 preempt_disable();
716 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
717 psr->mfh = 0;
718 task->thread.flags |= IA64_THREAD_FPH_VALID;
719 ia64_save_fpu(&task->thread.fph[0]);
720 }
721 preempt_enable();
722}
723
724/*
725 * Sync the fph state of the task so that it can be manipulated
726 * through thread.fph. If necessary, f32-f127 are written back to
727 * thread.fph or, if the fph state hasn't been used before, thread.fph
728 * is cleared to zeroes. Also, access to f32-f127 is disabled to
729 * ensure that the task picks up the state from thread.fph when it
730 * executes again.
731 */
732void
733ia64_sync_fph (struct task_struct *task)
734{
735 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
736
737 ia64_flush_fph(task);
738 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
739 task->thread.flags |= IA64_THREAD_FPH_VALID;
740 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
741 }
742 ia64_drop_fpu(task);
743 psr->dfh = 1;
744}
745
746/*
747 * Change the machine-state of CHILD such that it will return via the normal
748 * kernel exit-path, rather than the syscall-exit path.
749 */
750static void
751convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
752 unsigned long cfm)
753{
754 struct unw_frame_info info, prev_info;
755 unsigned long ip, sp, pr;
756
757 unw_init_from_blocked_task(&info, child);
758 while (1) {
759 prev_info = info;
760 if (unw_unwind(&info) < 0)
761 return;
762
763 unw_get_sp(&info, &sp);
764 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
765 < IA64_PT_REGS_SIZE) {
766 dprintk("ptrace.%s: ran off the top of the kernel "
767 "stack\n", __func__);
768 return;
769 }
770 if (unw_get_pr (&prev_info, &pr) < 0) {
771 unw_get_rp(&prev_info, &ip);
772 dprintk("ptrace.%s: failed to read "
773 "predicate register (ip=0x%lx)\n",
774 __func__, ip);
775 return;
776 }
777 if (unw_is_intr_frame(&info)
778 && (pr & (1UL << PRED_USER_STACK)))
779 break;
780 }
781
782 /*
783 * Note: at the time of this call, the target task is blocked
784 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
785 * (aka, "pLvSys") we redirect execution from
786 * .work_pending_syscall_end to .work_processed_kernel.
787 */
788 unw_get_pr(&prev_info, &pr);
789 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
790 pr |= (1UL << PRED_NON_SYSCALL);
791 unw_set_pr(&prev_info, pr);
792
793 pt->cr_ifs = (1UL << 63) | cfm;
794 /*
795 * Clear the memory that is NOT written on syscall-entry to
796 * ensure we do not leak kernel-state to user when execution
797 * resumes.
798 */
799 pt->r2 = 0;
800 pt->r3 = 0;
801 pt->r14 = 0;
802 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
803 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
804 pt->b7 = 0;
805 pt->ar_ccv = 0;
806 pt->ar_csd = 0;
807 pt->ar_ssd = 0;
808}
809
810static int
811access_nat_bits (struct task_struct *child, struct pt_regs *pt,
812 struct unw_frame_info *info,
813 unsigned long *data, int write_access)
814{
815 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
816 char nat = 0;
817
818 if (write_access) {
819 nat_bits = *data;
820 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
821 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
822 dprintk("ptrace: failed to set ar.unat\n");
823 return -1;
824 }
825 for (regnum = 4; regnum <= 7; ++regnum) {
826 unw_get_gr(info, regnum, &dummy, &nat);
827 unw_set_gr(info, regnum, dummy,
828 (nat_bits >> regnum) & 1);
829 }
830 } else {
831 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
832 dprintk("ptrace: failed to read ar.unat\n");
833 return -1;
834 }
835 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
836 for (regnum = 4; regnum <= 7; ++regnum) {
837 unw_get_gr(info, regnum, &dummy, &nat);
838 nat_bits |= (nat != 0) << regnum;
839 }
840 *data = nat_bits;
841 }
842 return 0;
843}
844
845static int
846access_uarea (struct task_struct *child, unsigned long addr,
847 unsigned long *data, int write_access);
848
849static long
850ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
851{
852 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
853 struct unw_frame_info info;
854 struct ia64_fpreg fpval;
855 struct switch_stack *sw;
856 struct pt_regs *pt;
857 long ret, retval = 0;
858 char nat = 0;
859 int i;
860
861 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
862 return -EIO;
863
864 pt = task_pt_regs(child);
865 sw = (struct switch_stack *) (child->thread.ksp + 16);
866 unw_init_from_blocked_task(&info, child);
867 if (unw_unwind_to_user(&info) < 0) {
868 return -EIO;
869 }
870
871 if (((unsigned long) ppr & 0x7) != 0) {
872 dprintk("ptrace:unaligned register address %p\n", ppr);
873 return -EIO;
874 }
875
876 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
877 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
878 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
879 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
880 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
881 || access_uarea(child, PT_CFM, &cfm, 0)
882 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
883 return -EIO;
884
885 /* control regs */
886
887 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
888 retval |= __put_user(psr, &ppr->cr_ipsr);
889
890 /* app regs */
891
892 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
893 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
894 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
895 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
896 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
897 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
898
899 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
900 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
901 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
902 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
903 retval |= __put_user(cfm, &ppr->cfm);
904
905 /* gr1-gr3 */
906
907 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
908 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
909
910 /* gr4-gr7 */
911
912 for (i = 4; i < 8; i++) {
913 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
914 return -EIO;
915 retval |= __put_user(val, &ppr->gr[i]);
916 }
917
918 /* gr8-gr11 */
919
920 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
921
922 /* gr12-gr15 */
923
924 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
925 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
926 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
927
928 /* gr16-gr31 */
929
930 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
931
932 /* b0 */
933
934 retval |= __put_user(pt->b0, &ppr->br[0]);
935
936 /* b1-b5 */
937
938 for (i = 1; i < 6; i++) {
939 if (unw_access_br(&info, i, &val, 0) < 0)
940 return -EIO;
941 __put_user(val, &ppr->br[i]);
942 }
943
944 /* b6-b7 */
945
946 retval |= __put_user(pt->b6, &ppr->br[6]);
947 retval |= __put_user(pt->b7, &ppr->br[7]);
948
949 /* fr2-fr5 */
950
951 for (i = 2; i < 6; i++) {
952 if (unw_get_fr(&info, i, &fpval) < 0)
953 return -EIO;
954 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
955 }
956
957 /* fr6-fr11 */
958
959 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
960 sizeof(struct ia64_fpreg) * 6);
961
962 /* fp scratch regs(12-15) */
963
964 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
965 sizeof(struct ia64_fpreg) * 4);
966
967 /* fr16-fr31 */
968
969 for (i = 16; i < 32; i++) {
970 if (unw_get_fr(&info, i, &fpval) < 0)
971 return -EIO;
972 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
973 }
974
975 /* fph */
976
977 ia64_flush_fph(child);
978 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
979 sizeof(ppr->fr[32]) * 96);
980
981 /* preds */
982
983 retval |= __put_user(pt->pr, &ppr->pr);
984
985 /* nat bits */
986
987 retval |= __put_user(nat_bits, &ppr->nat);
988
989 ret = retval ? -EIO : 0;
990 return ret;
991}
992
993static long
994ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
995{
996 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
997 struct unw_frame_info info;
998 struct switch_stack *sw;
999 struct ia64_fpreg fpval;
1000 struct pt_regs *pt;
1001 long ret, retval = 0;
1002 int i;
1003
1004 memset(&fpval, 0, sizeof(fpval));
1005
1006 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1007 return -EIO;
1008
1009 pt = task_pt_regs(child);
1010 sw = (struct switch_stack *) (child->thread.ksp + 16);
1011 unw_init_from_blocked_task(&info, child);
1012 if (unw_unwind_to_user(&info) < 0) {
1013 return -EIO;
1014 }
1015
1016 if (((unsigned long) ppr & 0x7) != 0) {
1017 dprintk("ptrace:unaligned register address %p\n", ppr);
1018 return -EIO;
1019 }
1020
1021 /* control regs */
1022
1023 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1024 retval |= __get_user(psr, &ppr->cr_ipsr);
1025
1026 /* app regs */
1027
1028 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1029 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1030 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1031 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1032 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1033 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1034
1035 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1036 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1037 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1038 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1039 retval |= __get_user(cfm, &ppr->cfm);
1040
1041 /* gr1-gr3 */
1042
1043 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1044 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1045
1046 /* gr4-gr7 */
1047
1048 for (i = 4; i < 8; i++) {
1049 retval |= __get_user(val, &ppr->gr[i]);
1050 /* NaT bit will be set via PT_NAT_BITS: */
1051 if (unw_set_gr(&info, i, val, 0) < 0)
1052 return -EIO;
1053 }
1054
1055 /* gr8-gr11 */
1056
1057 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1058
1059 /* gr12-gr15 */
1060
1061 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1062 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1063 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1064
1065 /* gr16-gr31 */
1066
1067 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1068
1069 /* b0 */
1070
1071 retval |= __get_user(pt->b0, &ppr->br[0]);
1072
1073 /* b1-b5 */
1074
1075 for (i = 1; i < 6; i++) {
1076 retval |= __get_user(val, &ppr->br[i]);
1077 unw_set_br(&info, i, val);
1078 }
1079
1080 /* b6-b7 */
1081
1082 retval |= __get_user(pt->b6, &ppr->br[6]);
1083 retval |= __get_user(pt->b7, &ppr->br[7]);
1084
1085 /* fr2-fr5 */
1086
1087 for (i = 2; i < 6; i++) {
1088 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1089 if (unw_set_fr(&info, i, fpval) < 0)
1090 return -EIO;
1091 }
1092
1093 /* fr6-fr11 */
1094
1095 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1096 sizeof(ppr->fr[6]) * 6);
1097
1098 /* fp scratch regs(12-15) */
1099
1100 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1101 sizeof(ppr->fr[12]) * 4);
1102
1103 /* fr16-fr31 */
1104
1105 for (i = 16; i < 32; i++) {
1106 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1107 sizeof(fpval));
1108 if (unw_set_fr(&info, i, fpval) < 0)
1109 return -EIO;
1110 }
1111
1112 /* fph */
1113
1114 ia64_sync_fph(child);
1115 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1116 sizeof(ppr->fr[32]) * 96);
1117
1118 /* preds */
1119
1120 retval |= __get_user(pt->pr, &ppr->pr);
1121
1122 /* nat bits */
1123
1124 retval |= __get_user(nat_bits, &ppr->nat);
1125
1126 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1127 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1128 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1129 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1130 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1131 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1132 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1133 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1134
1135 ret = retval ? -EIO : 0;
1136 return ret;
1137}
1138
1139void
1140user_enable_single_step (struct task_struct *child)
1141{
1142 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1143
1144 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1145 child_psr->ss = 1;
1146}
1147
1148void
1149user_enable_block_step (struct task_struct *child)
1150{
1151 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1152
1153 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1154 child_psr->tb = 1;
1155}
1156
1157void
1158user_disable_single_step (struct task_struct *child)
1159{
1160 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1161
1162 /* make sure the single step/taken-branch trap bits are not set: */
1163 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1164 child_psr->ss = 0;
1165 child_psr->tb = 0;
1166}
1167
1168/*
1169 * Called by kernel/ptrace.c when detaching..
1170 *
1171 * Make sure the single step bit is not set.
1172 */
1173void
1174ptrace_disable (struct task_struct *child)
1175{
1176 user_disable_single_step(child);
1177}
1178
1179long
1180arch_ptrace (struct task_struct *child, long request,
1181 unsigned long addr, unsigned long data)
1182{
1183 switch (request) {
1184 case PTRACE_PEEKTEXT:
1185 case PTRACE_PEEKDATA:
1186 /* read word at location addr */
1187 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1188 != sizeof(data))
1189 return -EIO;
1190 /* ensure return value is not mistaken for error code */
1191 force_successful_syscall_return();
1192 return data;
1193
1194 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1195 * by the generic ptrace_request().
1196 */
1197
1198 case PTRACE_PEEKUSR:
1199 /* read the word at addr in the USER area */
1200 if (access_uarea(child, addr, &data, 0) < 0)
1201 return -EIO;
1202 /* ensure return value is not mistaken for error code */
1203 force_successful_syscall_return();
1204 return data;
1205
1206 case PTRACE_POKEUSR:
1207 /* write the word at addr in the USER area */
1208 if (access_uarea(child, addr, &data, 1) < 0)
1209 return -EIO;
1210 return 0;
1211
1212 case PTRACE_OLD_GETSIGINFO:
1213 /* for backwards-compatibility */
1214 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1215
1216 case PTRACE_OLD_SETSIGINFO:
1217 /* for backwards-compatibility */
1218 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1219
1220 case PTRACE_GETREGS:
1221 return ptrace_getregs(child,
1222 (struct pt_all_user_regs __user *) data);
1223
1224 case PTRACE_SETREGS:
1225 return ptrace_setregs(child,
1226 (struct pt_all_user_regs __user *) data);
1227
1228 default:
1229 return ptrace_request(child, request, addr, data);
1230 }
1231}
1232
1233
1234/* "asmlinkage" so the input arguments are preserved... */
1235
1236asmlinkage long
1237syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1238 long arg4, long arg5, long arg6, long arg7,
1239 struct pt_regs regs)
1240{
1241 if (test_thread_flag(TIF_SYSCALL_TRACE))
1242 if (tracehook_report_syscall_entry(®s))
1243 return -ENOSYS;
1244
1245 /* copy user rbs to kernel rbs */
1246 if (test_thread_flag(TIF_RESTORE_RSE))
1247 ia64_sync_krbs();
1248
1249 if (unlikely(current->audit_context)) {
1250 long syscall;
1251 int arch;
1252
1253 syscall = regs.r15;
1254 arch = AUDIT_ARCH_IA64;
1255
1256 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1257 }
1258
1259 return 0;
1260}
1261
1262/* "asmlinkage" so the input arguments are preserved... */
1263
1264asmlinkage void
1265syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1266 long arg4, long arg5, long arg6, long arg7,
1267 struct pt_regs regs)
1268{
1269 int step;
1270
1271 if (unlikely(current->audit_context)) {
1272 int success = AUDITSC_RESULT(regs.r10);
1273 long result = regs.r8;
1274
1275 if (success != AUDITSC_SUCCESS)
1276 result = -result;
1277 audit_syscall_exit(success, result);
1278 }
1279
1280 step = test_thread_flag(TIF_SINGLESTEP);
1281 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1282 tracehook_report_syscall_exit(®s, step);
1283
1284 /* copy user rbs to kernel rbs */
1285 if (test_thread_flag(TIF_RESTORE_RSE))
1286 ia64_sync_krbs();
1287}
1288
1289/* Utrace implementation starts here */
1290struct regset_get {
1291 void *kbuf;
1292 void __user *ubuf;
1293};
1294
1295struct regset_set {
1296 const void *kbuf;
1297 const void __user *ubuf;
1298};
1299
1300struct regset_getset {
1301 struct task_struct *target;
1302 const struct user_regset *regset;
1303 union {
1304 struct regset_get get;
1305 struct regset_set set;
1306 } u;
1307 unsigned int pos;
1308 unsigned int count;
1309 int ret;
1310};
1311
1312static int
1313access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1314 unsigned long addr, unsigned long *data, int write_access)
1315{
1316 struct pt_regs *pt;
1317 unsigned long *ptr = NULL;
1318 int ret;
1319 char nat = 0;
1320
1321 pt = task_pt_regs(target);
1322 switch (addr) {
1323 case ELF_GR_OFFSET(1):
1324 ptr = &pt->r1;
1325 break;
1326 case ELF_GR_OFFSET(2):
1327 case ELF_GR_OFFSET(3):
1328 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1329 break;
1330 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1331 if (write_access) {
1332 /* read NaT bit first: */
1333 unsigned long dummy;
1334
1335 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1336 if (ret < 0)
1337 return ret;
1338 }
1339 return unw_access_gr(info, addr/8, data, &nat, write_access);
1340 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1341 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1342 break;
1343 case ELF_GR_OFFSET(12):
1344 case ELF_GR_OFFSET(13):
1345 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1346 break;
1347 case ELF_GR_OFFSET(14):
1348 ptr = &pt->r14;
1349 break;
1350 case ELF_GR_OFFSET(15):
1351 ptr = &pt->r15;
1352 }
1353 if (write_access)
1354 *ptr = *data;
1355 else
1356 *data = *ptr;
1357 return 0;
1358}
1359
1360static int
1361access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1362 unsigned long addr, unsigned long *data, int write_access)
1363{
1364 struct pt_regs *pt;
1365 unsigned long *ptr = NULL;
1366
1367 pt = task_pt_regs(target);
1368 switch (addr) {
1369 case ELF_BR_OFFSET(0):
1370 ptr = &pt->b0;
1371 break;
1372 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1373 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1374 data, write_access);
1375 case ELF_BR_OFFSET(6):
1376 ptr = &pt->b6;
1377 break;
1378 case ELF_BR_OFFSET(7):
1379 ptr = &pt->b7;
1380 }
1381 if (write_access)
1382 *ptr = *data;
1383 else
1384 *data = *ptr;
1385 return 0;
1386}
1387
1388static int
1389access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1390 unsigned long addr, unsigned long *data, int write_access)
1391{
1392 struct pt_regs *pt;
1393 unsigned long cfm, urbs_end;
1394 unsigned long *ptr = NULL;
1395
1396 pt = task_pt_regs(target);
1397 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1398 switch (addr) {
1399 case ELF_AR_RSC_OFFSET:
1400 /* force PL3 */
1401 if (write_access)
1402 pt->ar_rsc = *data | (3 << 2);
1403 else
1404 *data = pt->ar_rsc;
1405 return 0;
1406 case ELF_AR_BSP_OFFSET:
1407 /*
1408 * By convention, we use PT_AR_BSP to refer to
1409 * the end of the user-level backing store.
1410 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1411 * to get the real value of ar.bsp at the time
1412 * the kernel was entered.
1413 *
1414 * Furthermore, when changing the contents of
1415 * PT_AR_BSP (or PT_CFM) while the task is
1416 * blocked in a system call, convert the state
1417 * so that the non-system-call exit
1418 * path is used. This ensures that the proper
1419 * state will be picked up when resuming
1420 * execution. However, it *also* means that
1421 * once we write PT_AR_BSP/PT_CFM, it won't be
1422 * possible to modify the syscall arguments of
1423 * the pending system call any longer. This
1424 * shouldn't be an issue because modifying
1425 * PT_AR_BSP/PT_CFM generally implies that
1426 * we're either abandoning the pending system
1427 * call or that we defer it's re-execution
1428 * (e.g., due to GDB doing an inferior
1429 * function call).
1430 */
1431 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1432 if (write_access) {
1433 if (*data != urbs_end) {
1434 if (in_syscall(pt))
1435 convert_to_non_syscall(target,
1436 pt,
1437 cfm);
1438 /*
1439 * Simulate user-level write
1440 * of ar.bsp:
1441 */
1442 pt->loadrs = 0;
1443 pt->ar_bspstore = *data;
1444 }
1445 } else
1446 *data = urbs_end;
1447 return 0;
1448 case ELF_AR_BSPSTORE_OFFSET:
1449 ptr = &pt->ar_bspstore;
1450 break;
1451 case ELF_AR_RNAT_OFFSET:
1452 ptr = &pt->ar_rnat;
1453 break;
1454 case ELF_AR_CCV_OFFSET:
1455 ptr = &pt->ar_ccv;
1456 break;
1457 case ELF_AR_UNAT_OFFSET:
1458 ptr = &pt->ar_unat;
1459 break;
1460 case ELF_AR_FPSR_OFFSET:
1461 ptr = &pt->ar_fpsr;
1462 break;
1463 case ELF_AR_PFS_OFFSET:
1464 ptr = &pt->ar_pfs;
1465 break;
1466 case ELF_AR_LC_OFFSET:
1467 return unw_access_ar(info, UNW_AR_LC, data,
1468 write_access);
1469 case ELF_AR_EC_OFFSET:
1470 return unw_access_ar(info, UNW_AR_EC, data,
1471 write_access);
1472 case ELF_AR_CSD_OFFSET:
1473 ptr = &pt->ar_csd;
1474 break;
1475 case ELF_AR_SSD_OFFSET:
1476 ptr = &pt->ar_ssd;
1477 }
1478 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1479 switch (addr) {
1480 case ELF_CR_IIP_OFFSET:
1481 ptr = &pt->cr_iip;
1482 break;
1483 case ELF_CFM_OFFSET:
1484 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1485 if (write_access) {
1486 if (((cfm ^ *data) & PFM_MASK) != 0) {
1487 if (in_syscall(pt))
1488 convert_to_non_syscall(target,
1489 pt,
1490 cfm);
1491 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1492 | (*data & PFM_MASK));
1493 }
1494 } else
1495 *data = cfm;
1496 return 0;
1497 case ELF_CR_IPSR_OFFSET:
1498 if (write_access) {
1499 unsigned long tmp = *data;
1500 /* psr.ri==3 is a reserved value: SDM 2:25 */
1501 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1502 tmp &= ~IA64_PSR_RI;
1503 pt->cr_ipsr = ((tmp & IPSR_MASK)
1504 | (pt->cr_ipsr & ~IPSR_MASK));
1505 } else
1506 *data = (pt->cr_ipsr & IPSR_MASK);
1507 return 0;
1508 }
1509 } else if (addr == ELF_NAT_OFFSET)
1510 return access_nat_bits(target, pt, info,
1511 data, write_access);
1512 else if (addr == ELF_PR_OFFSET)
1513 ptr = &pt->pr;
1514 else
1515 return -1;
1516
1517 if (write_access)
1518 *ptr = *data;
1519 else
1520 *data = *ptr;
1521
1522 return 0;
1523}
1524
1525static int
1526access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1527 unsigned long addr, unsigned long *data, int write_access)
1528{
1529 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1530 return access_elf_gpreg(target, info, addr, data, write_access);
1531 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1532 return access_elf_breg(target, info, addr, data, write_access);
1533 else
1534 return access_elf_areg(target, info, addr, data, write_access);
1535}
1536
1537void do_gpregs_get(struct unw_frame_info *info, void *arg)
1538{
1539 struct pt_regs *pt;
1540 struct regset_getset *dst = arg;
1541 elf_greg_t tmp[16];
1542 unsigned int i, index, min_copy;
1543
1544 if (unw_unwind_to_user(info) < 0)
1545 return;
1546
1547 /*
1548 * coredump format:
1549 * r0-r31
1550 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1551 * predicate registers (p0-p63)
1552 * b0-b7
1553 * ip cfm user-mask
1554 * ar.rsc ar.bsp ar.bspstore ar.rnat
1555 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1556 */
1557
1558
1559 /* Skip r0 */
1560 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1561 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1562 &dst->u.get.kbuf,
1563 &dst->u.get.ubuf,
1564 0, ELF_GR_OFFSET(1));
1565 if (dst->ret || dst->count == 0)
1566 return;
1567 }
1568
1569 /* gr1 - gr15 */
1570 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1571 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1572 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1573 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1574 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1575 index++)
1576 if (access_elf_reg(dst->target, info, i,
1577 &tmp[index], 0) < 0) {
1578 dst->ret = -EIO;
1579 return;
1580 }
1581 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1582 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1583 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1584 if (dst->ret || dst->count == 0)
1585 return;
1586 }
1587
1588 /* r16-r31 */
1589 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1590 pt = task_pt_regs(dst->target);
1591 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1592 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1593 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1594 if (dst->ret || dst->count == 0)
1595 return;
1596 }
1597
1598 /* nat, pr, b0 - b7 */
1599 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1600 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1601 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1602 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1603 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1604 index++)
1605 if (access_elf_reg(dst->target, info, i,
1606 &tmp[index], 0) < 0) {
1607 dst->ret = -EIO;
1608 return;
1609 }
1610 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1611 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1612 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1613 if (dst->ret || dst->count == 0)
1614 return;
1615 }
1616
1617 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1618 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1619 */
1620 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1621 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1622 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1623 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1624 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1625 index++)
1626 if (access_elf_reg(dst->target, info, i,
1627 &tmp[index], 0) < 0) {
1628 dst->ret = -EIO;
1629 return;
1630 }
1631 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1632 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1633 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1634 }
1635}
1636
1637void do_gpregs_set(struct unw_frame_info *info, void *arg)
1638{
1639 struct pt_regs *pt;
1640 struct regset_getset *dst = arg;
1641 elf_greg_t tmp[16];
1642 unsigned int i, index;
1643
1644 if (unw_unwind_to_user(info) < 0)
1645 return;
1646
1647 /* Skip r0 */
1648 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1649 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1650 &dst->u.set.kbuf,
1651 &dst->u.set.ubuf,
1652 0, ELF_GR_OFFSET(1));
1653 if (dst->ret || dst->count == 0)
1654 return;
1655 }
1656
1657 /* gr1-gr15 */
1658 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1659 i = dst->pos;
1660 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1661 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1662 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1663 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1664 if (dst->ret)
1665 return;
1666 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1667 if (access_elf_reg(dst->target, info, i,
1668 &tmp[index], 1) < 0) {
1669 dst->ret = -EIO;
1670 return;
1671 }
1672 if (dst->count == 0)
1673 return;
1674 }
1675
1676 /* gr16-gr31 */
1677 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1678 pt = task_pt_regs(dst->target);
1679 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1680 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1681 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1682 if (dst->ret || dst->count == 0)
1683 return;
1684 }
1685
1686 /* nat, pr, b0 - b7 */
1687 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1688 i = dst->pos;
1689 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1690 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1691 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1692 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1693 if (dst->ret)
1694 return;
1695 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1696 if (access_elf_reg(dst->target, info, i,
1697 &tmp[index], 1) < 0) {
1698 dst->ret = -EIO;
1699 return;
1700 }
1701 if (dst->count == 0)
1702 return;
1703 }
1704
1705 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1706 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1707 */
1708 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1709 i = dst->pos;
1710 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1711 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1712 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1713 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1714 if (dst->ret)
1715 return;
1716 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1717 if (access_elf_reg(dst->target, info, i,
1718 &tmp[index], 1) < 0) {
1719 dst->ret = -EIO;
1720 return;
1721 }
1722 }
1723}
1724
1725#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1726
1727void do_fpregs_get(struct unw_frame_info *info, void *arg)
1728{
1729 struct regset_getset *dst = arg;
1730 struct task_struct *task = dst->target;
1731 elf_fpreg_t tmp[30];
1732 int index, min_copy, i;
1733
1734 if (unw_unwind_to_user(info) < 0)
1735 return;
1736
1737 /* Skip pos 0 and 1 */
1738 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1739 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1740 &dst->u.get.kbuf,
1741 &dst->u.get.ubuf,
1742 0, ELF_FP_OFFSET(2));
1743 if (dst->count == 0 || dst->ret)
1744 return;
1745 }
1746
1747 /* fr2-fr31 */
1748 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1749 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1750
1751 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1752 dst->pos + dst->count);
1753 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1754 index++)
1755 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1756 &tmp[index])) {
1757 dst->ret = -EIO;
1758 return;
1759 }
1760 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1761 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1762 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1763 if (dst->count == 0 || dst->ret)
1764 return;
1765 }
1766
1767 /* fph */
1768 if (dst->count > 0) {
1769 ia64_flush_fph(dst->target);
1770 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1771 dst->ret = user_regset_copyout(
1772 &dst->pos, &dst->count,
1773 &dst->u.get.kbuf, &dst->u.get.ubuf,
1774 &dst->target->thread.fph,
1775 ELF_FP_OFFSET(32), -1);
1776 else
1777 /* Zero fill instead. */
1778 dst->ret = user_regset_copyout_zero(
1779 &dst->pos, &dst->count,
1780 &dst->u.get.kbuf, &dst->u.get.ubuf,
1781 ELF_FP_OFFSET(32), -1);
1782 }
1783}
1784
1785void do_fpregs_set(struct unw_frame_info *info, void *arg)
1786{
1787 struct regset_getset *dst = arg;
1788 elf_fpreg_t fpreg, tmp[30];
1789 int index, start, end;
1790
1791 if (unw_unwind_to_user(info) < 0)
1792 return;
1793
1794 /* Skip pos 0 and 1 */
1795 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1796 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1797 &dst->u.set.kbuf,
1798 &dst->u.set.ubuf,
1799 0, ELF_FP_OFFSET(2));
1800 if (dst->count == 0 || dst->ret)
1801 return;
1802 }
1803
1804 /* fr2-fr31 */
1805 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1806 start = dst->pos;
1807 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1808 dst->pos + dst->count);
1809 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1810 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1811 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1812 if (dst->ret)
1813 return;
1814
1815 if (start & 0xF) { /* only write high part */
1816 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1817 &fpreg)) {
1818 dst->ret = -EIO;
1819 return;
1820 }
1821 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1822 = fpreg.u.bits[0];
1823 start &= ~0xFUL;
1824 }
1825 if (end & 0xF) { /* only write low part */
1826 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1827 &fpreg)) {
1828 dst->ret = -EIO;
1829 return;
1830 }
1831 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1832 = fpreg.u.bits[1];
1833 end = (end + 0xF) & ~0xFUL;
1834 }
1835
1836 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1837 index = start / sizeof(elf_fpreg_t);
1838 if (unw_set_fr(info, index, tmp[index - 2])) {
1839 dst->ret = -EIO;
1840 return;
1841 }
1842 }
1843 if (dst->ret || dst->count == 0)
1844 return;
1845 }
1846
1847 /* fph */
1848 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1849 ia64_sync_fph(dst->target);
1850 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1851 &dst->u.set.kbuf,
1852 &dst->u.set.ubuf,
1853 &dst->target->thread.fph,
1854 ELF_FP_OFFSET(32), -1);
1855 }
1856}
1857
1858static int
1859do_regset_call(void (*call)(struct unw_frame_info *, void *),
1860 struct task_struct *target,
1861 const struct user_regset *regset,
1862 unsigned int pos, unsigned int count,
1863 const void *kbuf, const void __user *ubuf)
1864{
1865 struct regset_getset info = { .target = target, .regset = regset,
1866 .pos = pos, .count = count,
1867 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1868 .ret = 0 };
1869
1870 if (target == current)
1871 unw_init_running(call, &info);
1872 else {
1873 struct unw_frame_info ufi;
1874 memset(&ufi, 0, sizeof(ufi));
1875 unw_init_from_blocked_task(&ufi, target);
1876 (*call)(&ufi, &info);
1877 }
1878
1879 return info.ret;
1880}
1881
1882static int
1883gpregs_get(struct task_struct *target,
1884 const struct user_regset *regset,
1885 unsigned int pos, unsigned int count,
1886 void *kbuf, void __user *ubuf)
1887{
1888 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1889 kbuf, ubuf);
1890}
1891
1892static int gpregs_set(struct task_struct *target,
1893 const struct user_regset *regset,
1894 unsigned int pos, unsigned int count,
1895 const void *kbuf, const void __user *ubuf)
1896{
1897 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1898 kbuf, ubuf);
1899}
1900
1901static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1902{
1903 do_sync_rbs(info, ia64_sync_user_rbs);
1904}
1905
1906/*
1907 * This is called to write back the register backing store.
1908 * ptrace does this before it stops, so that a tracer reading the user
1909 * memory after the thread stops will get the current register data.
1910 */
1911static int
1912gpregs_writeback(struct task_struct *target,
1913 const struct user_regset *regset,
1914 int now)
1915{
1916 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1917 return 0;
1918 set_notify_resume(target);
1919 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1920 NULL, NULL);
1921}
1922
1923static int
1924fpregs_active(struct task_struct *target, const struct user_regset *regset)
1925{
1926 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1927}
1928
1929static int fpregs_get(struct task_struct *target,
1930 const struct user_regset *regset,
1931 unsigned int pos, unsigned int count,
1932 void *kbuf, void __user *ubuf)
1933{
1934 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1935 kbuf, ubuf);
1936}
1937
1938static int fpregs_set(struct task_struct *target,
1939 const struct user_regset *regset,
1940 unsigned int pos, unsigned int count,
1941 const void *kbuf, const void __user *ubuf)
1942{
1943 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1944 kbuf, ubuf);
1945}
1946
1947static int
1948access_uarea(struct task_struct *child, unsigned long addr,
1949 unsigned long *data, int write_access)
1950{
1951 unsigned int pos = -1; /* an invalid value */
1952 int ret;
1953 unsigned long *ptr, regnum;
1954
1955 if ((addr & 0x7) != 0) {
1956 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1957 return -1;
1958 }
1959 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1960 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1961 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1962 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1963 dprintk("ptrace: rejecting access to register "
1964 "address 0x%lx\n", addr);
1965 return -1;
1966 }
1967
1968 switch (addr) {
1969 case PT_F32 ... (PT_F127 + 15):
1970 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1971 break;
1972 case PT_F2 ... (PT_F5 + 15):
1973 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1974 break;
1975 case PT_F10 ... (PT_F31 + 15):
1976 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1977 break;
1978 case PT_F6 ... (PT_F9 + 15):
1979 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1980 break;
1981 }
1982
1983 if (pos != -1) {
1984 if (write_access)
1985 ret = fpregs_set(child, NULL, pos,
1986 sizeof(unsigned long), data, NULL);
1987 else
1988 ret = fpregs_get(child, NULL, pos,
1989 sizeof(unsigned long), data, NULL);
1990 if (ret != 0)
1991 return -1;
1992 return 0;
1993 }
1994
1995 switch (addr) {
1996 case PT_NAT_BITS:
1997 pos = ELF_NAT_OFFSET;
1998 break;
1999 case PT_R4 ... PT_R7:
2000 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2001 break;
2002 case PT_B1 ... PT_B5:
2003 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2004 break;
2005 case PT_AR_EC:
2006 pos = ELF_AR_EC_OFFSET;
2007 break;
2008 case PT_AR_LC:
2009 pos = ELF_AR_LC_OFFSET;
2010 break;
2011 case PT_CR_IPSR:
2012 pos = ELF_CR_IPSR_OFFSET;
2013 break;
2014 case PT_CR_IIP:
2015 pos = ELF_CR_IIP_OFFSET;
2016 break;
2017 case PT_CFM:
2018 pos = ELF_CFM_OFFSET;
2019 break;
2020 case PT_AR_UNAT:
2021 pos = ELF_AR_UNAT_OFFSET;
2022 break;
2023 case PT_AR_PFS:
2024 pos = ELF_AR_PFS_OFFSET;
2025 break;
2026 case PT_AR_RSC:
2027 pos = ELF_AR_RSC_OFFSET;
2028 break;
2029 case PT_AR_RNAT:
2030 pos = ELF_AR_RNAT_OFFSET;
2031 break;
2032 case PT_AR_BSPSTORE:
2033 pos = ELF_AR_BSPSTORE_OFFSET;
2034 break;
2035 case PT_PR:
2036 pos = ELF_PR_OFFSET;
2037 break;
2038 case PT_B6:
2039 pos = ELF_BR_OFFSET(6);
2040 break;
2041 case PT_AR_BSP:
2042 pos = ELF_AR_BSP_OFFSET;
2043 break;
2044 case PT_R1 ... PT_R3:
2045 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2046 break;
2047 case PT_R12 ... PT_R15:
2048 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2049 break;
2050 case PT_R8 ... PT_R11:
2051 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2052 break;
2053 case PT_R16 ... PT_R31:
2054 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2055 break;
2056 case PT_AR_CCV:
2057 pos = ELF_AR_CCV_OFFSET;
2058 break;
2059 case PT_AR_FPSR:
2060 pos = ELF_AR_FPSR_OFFSET;
2061 break;
2062 case PT_B0:
2063 pos = ELF_BR_OFFSET(0);
2064 break;
2065 case PT_B7:
2066 pos = ELF_BR_OFFSET(7);
2067 break;
2068 case PT_AR_CSD:
2069 pos = ELF_AR_CSD_OFFSET;
2070 break;
2071 case PT_AR_SSD:
2072 pos = ELF_AR_SSD_OFFSET;
2073 break;
2074 }
2075
2076 if (pos != -1) {
2077 if (write_access)
2078 ret = gpregs_set(child, NULL, pos,
2079 sizeof(unsigned long), data, NULL);
2080 else
2081 ret = gpregs_get(child, NULL, pos,
2082 sizeof(unsigned long), data, NULL);
2083 if (ret != 0)
2084 return -1;
2085 return 0;
2086 }
2087
2088 /* access debug registers */
2089 if (addr >= PT_IBR) {
2090 regnum = (addr - PT_IBR) >> 3;
2091 ptr = &child->thread.ibr[0];
2092 } else {
2093 regnum = (addr - PT_DBR) >> 3;
2094 ptr = &child->thread.dbr[0];
2095 }
2096
2097 if (regnum >= 8) {
2098 dprintk("ptrace: rejecting access to register "
2099 "address 0x%lx\n", addr);
2100 return -1;
2101 }
2102#ifdef CONFIG_PERFMON
2103 /*
2104 * Check if debug registers are used by perfmon. This
2105 * test must be done once we know that we can do the
2106 * operation, i.e. the arguments are all valid, but
2107 * before we start modifying the state.
2108 *
2109 * Perfmon needs to keep a count of how many processes
2110 * are trying to modify the debug registers for system
2111 * wide monitoring sessions.
2112 *
2113 * We also include read access here, because they may
2114 * cause the PMU-installed debug register state
2115 * (dbr[], ibr[]) to be reset. The two arrays are also
2116 * used by perfmon, but we do not use
2117 * IA64_THREAD_DBG_VALID. The registers are restored
2118 * by the PMU context switch code.
2119 */
2120 if (pfm_use_debug_registers(child))
2121 return -1;
2122#endif
2123
2124 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2125 child->thread.flags |= IA64_THREAD_DBG_VALID;
2126 memset(child->thread.dbr, 0,
2127 sizeof(child->thread.dbr));
2128 memset(child->thread.ibr, 0,
2129 sizeof(child->thread.ibr));
2130 }
2131
2132 ptr += regnum;
2133
2134 if ((regnum & 1) && write_access) {
2135 /* don't let the user set kernel-level breakpoints: */
2136 *ptr = *data & ~(7UL << 56);
2137 return 0;
2138 }
2139 if (write_access)
2140 *ptr = *data;
2141 else
2142 *data = *ptr;
2143 return 0;
2144}
2145
2146static const struct user_regset native_regsets[] = {
2147 {
2148 .core_note_type = NT_PRSTATUS,
2149 .n = ELF_NGREG,
2150 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2151 .get = gpregs_get, .set = gpregs_set,
2152 .writeback = gpregs_writeback
2153 },
2154 {
2155 .core_note_type = NT_PRFPREG,
2156 .n = ELF_NFPREG,
2157 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2158 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2159 },
2160};
2161
2162static const struct user_regset_view user_ia64_view = {
2163 .name = "ia64",
2164 .e_machine = EM_IA_64,
2165 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2166};
2167
2168const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2169{
2170 return &user_ia64_view;
2171}
2172
2173struct syscall_get_set_args {
2174 unsigned int i;
2175 unsigned int n;
2176 unsigned long *args;
2177 struct pt_regs *regs;
2178 int rw;
2179};
2180
2181static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2182{
2183 struct syscall_get_set_args *args = data;
2184 struct pt_regs *pt = args->regs;
2185 unsigned long *krbs, cfm, ndirty;
2186 int i, count;
2187
2188 if (unw_unwind_to_user(info) < 0)
2189 return;
2190
2191 cfm = pt->cr_ifs;
2192 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2193 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2194
2195 count = 0;
2196 if (in_syscall(pt))
2197 count = min_t(int, args->n, cfm & 0x7f);
2198
2199 for (i = 0; i < count; i++) {
2200 if (args->rw)
2201 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2202 args->args[i];
2203 else
2204 args->args[i] = *ia64_rse_skip_regs(krbs,
2205 ndirty + i + args->i);
2206 }
2207
2208 if (!args->rw) {
2209 while (i < args->n) {
2210 args->args[i] = 0;
2211 i++;
2212 }
2213 }
2214}
2215
2216void ia64_syscall_get_set_arguments(struct task_struct *task,
2217 struct pt_regs *regs, unsigned int i, unsigned int n,
2218 unsigned long *args, int rw)
2219{
2220 struct syscall_get_set_args data = {
2221 .i = i,
2222 .n = n,
2223 .args = args,
2224 .regs = regs,
2225 .rw = rw,
2226 };
2227
2228 if (task == current)
2229 unw_init_running(syscall_get_set_args_cb, &data);
2230 else {
2231 struct unw_frame_info ufi;
2232 memset(&ufi, 0, sizeof(ufi));
2233 unw_init_from_blocked_task(&ufi, task);
2234 syscall_get_set_args_cb(&ufi, &data);
2235 }
2236}
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/regset.h>
22#include <linux/elf.h>
23#include <linux/tracehook.h>
24
25#include <asm/pgtable.h>
26#include <asm/processor.h>
27#include <asm/ptrace_offsets.h>
28#include <asm/rse.h>
29#include <asm/uaccess.h>
30#include <asm/unwind.h>
31#ifdef CONFIG_PERFMON
32#include <asm/perfmon.h>
33#endif
34
35#include "entry.h"
36
37/*
38 * Bits in the PSR that we allow ptrace() to change:
39 * be, up, ac, mfl, mfh (the user mask; five bits total)
40 * db (debug breakpoint fault; one bit)
41 * id (instruction debug fault disable; one bit)
42 * dd (data debug fault disable; one bit)
43 * ri (restart instruction; two bits)
44 * is (instruction set; one bit)
45 */
46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48
49#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
50#define PFM_MASK MASK(38)
51
52#define PTRACE_DEBUG 0
53
54#if PTRACE_DEBUG
55# define dprintk(format...) printk(format)
56# define inline
57#else
58# define dprintk(format...)
59#endif
60
61/* Return TRUE if PT was created due to kernel-entry via a system-call. */
62
63static inline int
64in_syscall (struct pt_regs *pt)
65{
66 return (long) pt->cr_ifs >= 0;
67}
68
69/*
70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71 * bitset where bit i is set iff the NaT bit of register i is set.
72 */
73unsigned long
74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
75{
76# define GET_BITS(first, last, unat) \
77 ({ \
78 unsigned long bit = ia64_unat_pos(&pt->r##first); \
79 unsigned long nbits = (last - first + 1); \
80 unsigned long mask = MASK(nbits) << first; \
81 unsigned long dist; \
82 if (bit < first) \
83 dist = 64 + bit - first; \
84 else \
85 dist = bit - first; \
86 ia64_rotr(unat, dist) & mask; \
87 })
88 unsigned long val;
89
90 /*
91 * Registers that are stored consecutively in struct pt_regs
92 * can be handled in parallel. If the register order in
93 * struct_pt_regs changes, this code MUST be updated.
94 */
95 val = GET_BITS( 1, 1, scratch_unat);
96 val |= GET_BITS( 2, 3, scratch_unat);
97 val |= GET_BITS(12, 13, scratch_unat);
98 val |= GET_BITS(14, 14, scratch_unat);
99 val |= GET_BITS(15, 15, scratch_unat);
100 val |= GET_BITS( 8, 11, scratch_unat);
101 val |= GET_BITS(16, 31, scratch_unat);
102 return val;
103
104# undef GET_BITS
105}
106
107/*
108 * Set the NaT bits for the scratch registers according to NAT and
109 * return the resulting unat (assuming the scratch registers are
110 * stored in PT).
111 */
112unsigned long
113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
114{
115# define PUT_BITS(first, last, nat) \
116 ({ \
117 unsigned long bit = ia64_unat_pos(&pt->r##first); \
118 unsigned long nbits = (last - first + 1); \
119 unsigned long mask = MASK(nbits) << first; \
120 long dist; \
121 if (bit < first) \
122 dist = 64 + bit - first; \
123 else \
124 dist = bit - first; \
125 ia64_rotl(nat & mask, dist); \
126 })
127 unsigned long scratch_unat;
128
129 /*
130 * Registers that are stored consecutively in struct pt_regs
131 * can be handled in parallel. If the register order in
132 * struct_pt_regs changes, this code MUST be updated.
133 */
134 scratch_unat = PUT_BITS( 1, 1, nat);
135 scratch_unat |= PUT_BITS( 2, 3, nat);
136 scratch_unat |= PUT_BITS(12, 13, nat);
137 scratch_unat |= PUT_BITS(14, 14, nat);
138 scratch_unat |= PUT_BITS(15, 15, nat);
139 scratch_unat |= PUT_BITS( 8, 11, nat);
140 scratch_unat |= PUT_BITS(16, 31, nat);
141
142 return scratch_unat;
143
144# undef PUT_BITS
145}
146
147#define IA64_MLX_TEMPLATE 0x2
148#define IA64_MOVL_OPCODE 6
149
150void
151ia64_increment_ip (struct pt_regs *regs)
152{
153 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
154
155 if (ri > 2) {
156 ri = 0;
157 regs->cr_iip += 16;
158 } else if (ri == 2) {
159 get_user(w0, (char __user *) regs->cr_iip + 0);
160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
161 /*
162 * rfi'ing to slot 2 of an MLX bundle causes
163 * an illegal operation fault. We don't want
164 * that to happen...
165 */
166 ri = 0;
167 regs->cr_iip += 16;
168 }
169 }
170 ia64_psr(regs)->ri = ri;
171}
172
173void
174ia64_decrement_ip (struct pt_regs *regs)
175{
176 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
177
178 if (ia64_psr(regs)->ri == 0) {
179 regs->cr_iip -= 16;
180 ri = 2;
181 get_user(w0, (char __user *) regs->cr_iip + 0);
182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
183 /*
184 * rfi'ing to slot 2 of an MLX bundle causes
185 * an illegal operation fault. We don't want
186 * that to happen...
187 */
188 ri = 1;
189 }
190 }
191 ia64_psr(regs)->ri = ri;
192}
193
194/*
195 * This routine is used to read an rnat bits that are stored on the
196 * kernel backing store. Since, in general, the alignment of the user
197 * and kernel are different, this is not completely trivial. In
198 * essence, we need to construct the user RNAT based on up to two
199 * kernel RNAT values and/or the RNAT value saved in the child's
200 * pt_regs.
201 *
202 * user rbs
203 *
204 * +--------+ <-- lowest address
205 * | slot62 |
206 * +--------+
207 * | rnat | 0x....1f8
208 * +--------+
209 * | slot00 | \
210 * +--------+ |
211 * | slot01 | > child_regs->ar_rnat
212 * +--------+ |
213 * | slot02 | / kernel rbs
214 * +--------+ +--------+
215 * <- child_regs->ar_bspstore | slot61 | <-- krbs
216 * +- - - - + +--------+
217 * | slot62 |
218 * +- - - - + +--------+
219 * | rnat |
220 * +- - - - + +--------+
221 * vrnat | slot00 |
222 * +- - - - + +--------+
223 * = =
224 * +--------+
225 * | slot00 | \
226 * +--------+ |
227 * | slot01 | > child_stack->ar_rnat
228 * +--------+ |
229 * | slot02 | /
230 * +--------+
231 * <--- child_stack->ar_bspstore
232 *
233 * The way to think of this code is as follows: bit 0 in the user rnat
234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235 * value. The kernel rnat value holding this bit is stored in
236 * variable rnat0. rnat1 is loaded with the kernel rnat value that
237 * form the upper bits of the user rnat value.
238 *
239 * Boundary cases:
240 *
241 * o when reading the rnat "below" the first rnat slot on the kernel
242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
243 * merged in from pt->ar_rnat.
244 *
245 * o when reading the rnat "above" the last rnat slot on the kernel
246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247 */
248static unsigned long
249get_rnat (struct task_struct *task, struct switch_stack *sw,
250 unsigned long *krbs, unsigned long *urnat_addr,
251 unsigned long *urbs_end)
252{
253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 unsigned long umask = 0, mask, m;
255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 long num_regs, nbits;
257 struct pt_regs *pt;
258
259 pt = task_pt_regs(task);
260 kbsp = (unsigned long *) sw->ar_bspstore;
261 ubspstore = (unsigned long *) pt->ar_bspstore;
262
263 if (urbs_end < urnat_addr)
264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 else
266 nbits = 63;
267 mask = MASK(nbits);
268 /*
269 * First, figure out which bit number slot 0 in user-land maps
270 * to in the kernel rnat. Do this by figuring out how many
271 * register slots we're beyond the user's backingstore and
272 * then computing the equivalent address in kernel space.
273 */
274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 shift = ia64_rse_slot_num(slot0_kaddr);
277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 rnat0_kaddr = rnat1_kaddr - 64;
279
280 if (ubspstore + 63 > urnat_addr) {
281 /* some bits need to be merged in from pt->ar_rnat */
282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 urnat = (pt->ar_rnat & umask);
284 mask &= ~umask;
285 if (!mask)
286 return urnat;
287 }
288
289 m = mask << shift;
290 if (rnat0_kaddr >= kbsp)
291 rnat0 = sw->ar_rnat;
292 else if (rnat0_kaddr > krbs)
293 rnat0 = *rnat0_kaddr;
294 urnat |= (rnat0 & m) >> shift;
295
296 m = mask >> (63 - shift);
297 if (rnat1_kaddr >= kbsp)
298 rnat1 = sw->ar_rnat;
299 else if (rnat1_kaddr > krbs)
300 rnat1 = *rnat1_kaddr;
301 urnat |= (rnat1 & m) << (63 - shift);
302 return urnat;
303}
304
305/*
306 * The reverse of get_rnat.
307 */
308static void
309put_rnat (struct task_struct *task, struct switch_stack *sw,
310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 unsigned long *urbs_end)
312{
313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 long num_regs, nbits;
316 struct pt_regs *pt;
317 unsigned long cfm, *urbs_kargs;
318
319 pt = task_pt_regs(task);
320 kbsp = (unsigned long *) sw->ar_bspstore;
321 ubspstore = (unsigned long *) pt->ar_bspstore;
322
323 urbs_kargs = urbs_end;
324 if (in_syscall(pt)) {
325 /*
326 * If entered via syscall, don't allow user to set rnat bits
327 * for syscall args.
328 */
329 cfm = pt->cr_ifs;
330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
331 }
332
333 if (urbs_kargs >= urnat_addr)
334 nbits = 63;
335 else {
336 if ((urnat_addr - 63) >= urbs_kargs)
337 return;
338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
339 }
340 mask = MASK(nbits);
341
342 /*
343 * First, figure out which bit number slot 0 in user-land maps
344 * to in the kernel rnat. Do this by figuring out how many
345 * register slots we're beyond the user's backingstore and
346 * then computing the equivalent address in kernel space.
347 */
348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 shift = ia64_rse_slot_num(slot0_kaddr);
351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 rnat0_kaddr = rnat1_kaddr - 64;
353
354 if (ubspstore + 63 > urnat_addr) {
355 /* some bits need to be place in pt->ar_rnat: */
356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 mask &= ~umask;
359 if (!mask)
360 return;
361 }
362 /*
363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 * rnat slot is ignored. so we don't have to clear it here.
365 */
366 rnat0 = (urnat << shift);
367 m = mask << shift;
368 if (rnat0_kaddr >= kbsp)
369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 else if (rnat0_kaddr > krbs)
371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
372
373 rnat1 = (urnat >> (63 - shift));
374 m = mask >> (63 - shift);
375 if (rnat1_kaddr >= kbsp)
376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 else if (rnat1_kaddr > krbs)
378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
379}
380
381static inline int
382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 unsigned long urbs_end)
384{
385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 urbs_end);
387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
388}
389
390/*
391 * Read a word from the user-level backing store of task CHILD. ADDR
392 * is the user-level address to read the word from, VAL a pointer to
393 * the return value, and USER_BSP gives the end of the user-level
394 * backing store (i.e., it's the address that would be in ar.bsp after
395 * the user executed a "cover" instruction).
396 *
397 * This routine takes care of accessing the kernel register backing
398 * store for those registers that got spilled there. It also takes
399 * care of calculating the appropriate RNaT collection words.
400 */
401long
402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 unsigned long user_rbs_end, unsigned long addr, long *val)
404{
405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 struct pt_regs *child_regs;
407 size_t copied;
408 long ret;
409
410 urbs_end = (long *) user_rbs_end;
411 laddr = (unsigned long *) addr;
412 child_regs = task_pt_regs(child);
413 bspstore = (unsigned long *) child_regs->ar_bspstore;
414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 (unsigned long) urbs_end))
417 {
418 /*
419 * Attempt to read the RBS in an area that's actually
420 * on the kernel RBS => read the corresponding bits in
421 * the kernel RBS.
422 */
423 rnat_addr = ia64_rse_rnat_addr(laddr);
424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
425
426 if (laddr == rnat_addr) {
427 /* return NaT collection word itself */
428 *val = ret;
429 return 0;
430 }
431
432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
433 /*
434 * It is implementation dependent whether the
435 * data portion of a NaT value gets saved on a
436 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 * 4.4.4.6 Register Spill and Fill). To get
438 * consistent behavior across all possible
439 * IA-64 implementations, we return zero in
440 * this case.
441 */
442 *val = 0;
443 return 0;
444 }
445
446 if (laddr < urbs_end) {
447 /*
448 * The desired word is on the kernel RBS and
449 * is not a NaT.
450 */
451 regnum = ia64_rse_num_regs(bspstore, laddr);
452 *val = *ia64_rse_skip_regs(krbs, regnum);
453 return 0;
454 }
455 }
456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
457 if (copied != sizeof(ret))
458 return -EIO;
459 *val = ret;
460 return 0;
461}
462
463long
464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 unsigned long user_rbs_end, unsigned long addr, long val)
466{
467 unsigned long *bspstore, *krbs, regnum, *laddr;
468 unsigned long *urbs_end = (long *) user_rbs_end;
469 struct pt_regs *child_regs;
470
471 laddr = (unsigned long *) addr;
472 child_regs = task_pt_regs(child);
473 bspstore = (unsigned long *) child_regs->ar_bspstore;
474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 (unsigned long) urbs_end))
477 {
478 /*
479 * Attempt to write the RBS in an area that's actually
480 * on the kernel RBS => write the corresponding bits
481 * in the kernel RBS.
482 */
483 if (ia64_rse_is_rnat_slot(laddr))
484 put_rnat(child, child_stack, krbs, laddr, val,
485 urbs_end);
486 else {
487 if (laddr < urbs_end) {
488 regnum = ia64_rse_num_regs(bspstore, laddr);
489 *ia64_rse_skip_regs(krbs, regnum) = val;
490 }
491 }
492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val), 1)
547 != sizeof(val))
548 return -EIO;
549 }
550 return 0;
551}
552
553static long
554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
555 unsigned long user_rbs_start, unsigned long user_rbs_end)
556{
557 unsigned long addr, val;
558 long ret;
559
560 /* now copy word for word from user rbs to kernel rbs: */
561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
562 if (access_process_vm(child, addr, &val, sizeof(val), 0)
563 != sizeof(val))
564 return -EIO;
565
566 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
567 if (ret < 0)
568 return ret;
569 }
570 return 0;
571}
572
573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
574 unsigned long, unsigned long);
575
576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
577{
578 struct pt_regs *pt;
579 unsigned long urbs_end;
580 syncfunc_t fn = arg;
581
582 if (unw_unwind_to_user(info) < 0)
583 return;
584 pt = task_pt_regs(info->task);
585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
586
587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
588}
589
590/*
591 * when a thread is stopped (ptraced), debugger might change thread's user
592 * stack (change memory directly), and we must avoid the RSE stored in kernel
593 * to override user stack (user space's RSE is newer than kernel's in the
594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
595 * task is stopped, so user RSE has updated data. we then copy user RSE to
596 * kernel after the task is resummed from traced stop and kernel will use the
597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598 * synchronize user RSE to kernel.
599 */
600void ia64_ptrace_stop(void)
601{
602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
603 return;
604 set_notify_resume(current);
605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
606}
607
608/*
609 * This is called to read back the register backing store.
610 */
611void ia64_sync_krbs(void)
612{
613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
614
615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
616}
617
618/*
619 * After PTRACE_ATTACH, a thread's register backing store area in user
620 * space is assumed to contain correct data whenever the thread is
621 * stopped. arch_ptrace_stop takes care of this on tracing stops.
622 * But if the child was already stopped for job control when we attach
623 * to it, then it might not ever get into ptrace_stop by the time we
624 * want to examine the user memory containing the RBS.
625 */
626void
627ptrace_attach_sync_user_rbs (struct task_struct *child)
628{
629 int stopped = 0;
630 struct unw_frame_info info;
631
632 /*
633 * If the child is in TASK_STOPPED, we need to change that to
634 * TASK_TRACED momentarily while we operate on it. This ensures
635 * that the child won't be woken up and return to user mode while
636 * we are doing the sync. (It can only be woken up for SIGKILL.)
637 */
638
639 read_lock(&tasklist_lock);
640 if (child->sighand) {
641 spin_lock_irq(&child->sighand->siglock);
642 if (child->state == TASK_STOPPED &&
643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
644 set_notify_resume(child);
645
646 child->state = TASK_TRACED;
647 stopped = 1;
648 }
649 spin_unlock_irq(&child->sighand->siglock);
650 }
651 read_unlock(&tasklist_lock);
652
653 if (!stopped)
654 return;
655
656 unw_init_from_blocked_task(&info, child);
657 do_sync_rbs(&info, ia64_sync_user_rbs);
658
659 /*
660 * Now move the child back into TASK_STOPPED if it should be in a
661 * job control stop, so that SIGCONT can be used to wake it up.
662 */
663 read_lock(&tasklist_lock);
664 if (child->sighand) {
665 spin_lock_irq(&child->sighand->siglock);
666 if (child->state == TASK_TRACED &&
667 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
668 child->state = TASK_STOPPED;
669 }
670 spin_unlock_irq(&child->sighand->siglock);
671 }
672 read_unlock(&tasklist_lock);
673}
674
675static inline int
676thread_matches (struct task_struct *thread, unsigned long addr)
677{
678 unsigned long thread_rbs_end;
679 struct pt_regs *thread_regs;
680
681 if (ptrace_check_attach(thread, 0) < 0)
682 /*
683 * If the thread is not in an attachable state, we'll
684 * ignore it. The net effect is that if ADDR happens
685 * to overlap with the portion of the thread's
686 * register backing store that is currently residing
687 * on the thread's kernel stack, then ptrace() may end
688 * up accessing a stale value. But if the thread
689 * isn't stopped, that's a problem anyhow, so we're
690 * doing as well as we can...
691 */
692 return 0;
693
694 thread_regs = task_pt_regs(thread);
695 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
696 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
697 return 0;
698
699 return 1; /* looks like we've got a winner */
700}
701
702/*
703 * Write f32-f127 back to task->thread.fph if it has been modified.
704 */
705inline void
706ia64_flush_fph (struct task_struct *task)
707{
708 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
709
710 /*
711 * Prevent migrating this task while
712 * we're fiddling with the FPU state
713 */
714 preempt_disable();
715 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
716 psr->mfh = 0;
717 task->thread.flags |= IA64_THREAD_FPH_VALID;
718 ia64_save_fpu(&task->thread.fph[0]);
719 }
720 preempt_enable();
721}
722
723/*
724 * Sync the fph state of the task so that it can be manipulated
725 * through thread.fph. If necessary, f32-f127 are written back to
726 * thread.fph or, if the fph state hasn't been used before, thread.fph
727 * is cleared to zeroes. Also, access to f32-f127 is disabled to
728 * ensure that the task picks up the state from thread.fph when it
729 * executes again.
730 */
731void
732ia64_sync_fph (struct task_struct *task)
733{
734 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
735
736 ia64_flush_fph(task);
737 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
738 task->thread.flags |= IA64_THREAD_FPH_VALID;
739 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
740 }
741 ia64_drop_fpu(task);
742 psr->dfh = 1;
743}
744
745/*
746 * Change the machine-state of CHILD such that it will return via the normal
747 * kernel exit-path, rather than the syscall-exit path.
748 */
749static void
750convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
751 unsigned long cfm)
752{
753 struct unw_frame_info info, prev_info;
754 unsigned long ip, sp, pr;
755
756 unw_init_from_blocked_task(&info, child);
757 while (1) {
758 prev_info = info;
759 if (unw_unwind(&info) < 0)
760 return;
761
762 unw_get_sp(&info, &sp);
763 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
764 < IA64_PT_REGS_SIZE) {
765 dprintk("ptrace.%s: ran off the top of the kernel "
766 "stack\n", __func__);
767 return;
768 }
769 if (unw_get_pr (&prev_info, &pr) < 0) {
770 unw_get_rp(&prev_info, &ip);
771 dprintk("ptrace.%s: failed to read "
772 "predicate register (ip=0x%lx)\n",
773 __func__, ip);
774 return;
775 }
776 if (unw_is_intr_frame(&info)
777 && (pr & (1UL << PRED_USER_STACK)))
778 break;
779 }
780
781 /*
782 * Note: at the time of this call, the target task is blocked
783 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
784 * (aka, "pLvSys") we redirect execution from
785 * .work_pending_syscall_end to .work_processed_kernel.
786 */
787 unw_get_pr(&prev_info, &pr);
788 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
789 pr |= (1UL << PRED_NON_SYSCALL);
790 unw_set_pr(&prev_info, pr);
791
792 pt->cr_ifs = (1UL << 63) | cfm;
793 /*
794 * Clear the memory that is NOT written on syscall-entry to
795 * ensure we do not leak kernel-state to user when execution
796 * resumes.
797 */
798 pt->r2 = 0;
799 pt->r3 = 0;
800 pt->r14 = 0;
801 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
802 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
803 pt->b7 = 0;
804 pt->ar_ccv = 0;
805 pt->ar_csd = 0;
806 pt->ar_ssd = 0;
807}
808
809static int
810access_nat_bits (struct task_struct *child, struct pt_regs *pt,
811 struct unw_frame_info *info,
812 unsigned long *data, int write_access)
813{
814 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
815 char nat = 0;
816
817 if (write_access) {
818 nat_bits = *data;
819 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
820 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
821 dprintk("ptrace: failed to set ar.unat\n");
822 return -1;
823 }
824 for (regnum = 4; regnum <= 7; ++regnum) {
825 unw_get_gr(info, regnum, &dummy, &nat);
826 unw_set_gr(info, regnum, dummy,
827 (nat_bits >> regnum) & 1);
828 }
829 } else {
830 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
831 dprintk("ptrace: failed to read ar.unat\n");
832 return -1;
833 }
834 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
835 for (regnum = 4; regnum <= 7; ++regnum) {
836 unw_get_gr(info, regnum, &dummy, &nat);
837 nat_bits |= (nat != 0) << regnum;
838 }
839 *data = nat_bits;
840 }
841 return 0;
842}
843
844static int
845access_uarea (struct task_struct *child, unsigned long addr,
846 unsigned long *data, int write_access);
847
848static long
849ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
850{
851 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
852 struct unw_frame_info info;
853 struct ia64_fpreg fpval;
854 struct switch_stack *sw;
855 struct pt_regs *pt;
856 long ret, retval = 0;
857 char nat = 0;
858 int i;
859
860 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
861 return -EIO;
862
863 pt = task_pt_regs(child);
864 sw = (struct switch_stack *) (child->thread.ksp + 16);
865 unw_init_from_blocked_task(&info, child);
866 if (unw_unwind_to_user(&info) < 0) {
867 return -EIO;
868 }
869
870 if (((unsigned long) ppr & 0x7) != 0) {
871 dprintk("ptrace:unaligned register address %p\n", ppr);
872 return -EIO;
873 }
874
875 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
876 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
877 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
878 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
879 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
880 || access_uarea(child, PT_CFM, &cfm, 0)
881 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
882 return -EIO;
883
884 /* control regs */
885
886 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
887 retval |= __put_user(psr, &ppr->cr_ipsr);
888
889 /* app regs */
890
891 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
892 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
893 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
894 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
895 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
896 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
897
898 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
899 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
900 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
901 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
902 retval |= __put_user(cfm, &ppr->cfm);
903
904 /* gr1-gr3 */
905
906 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
907 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
908
909 /* gr4-gr7 */
910
911 for (i = 4; i < 8; i++) {
912 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
913 return -EIO;
914 retval |= __put_user(val, &ppr->gr[i]);
915 }
916
917 /* gr8-gr11 */
918
919 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
920
921 /* gr12-gr15 */
922
923 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
924 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
925 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
926
927 /* gr16-gr31 */
928
929 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
930
931 /* b0 */
932
933 retval |= __put_user(pt->b0, &ppr->br[0]);
934
935 /* b1-b5 */
936
937 for (i = 1; i < 6; i++) {
938 if (unw_access_br(&info, i, &val, 0) < 0)
939 return -EIO;
940 __put_user(val, &ppr->br[i]);
941 }
942
943 /* b6-b7 */
944
945 retval |= __put_user(pt->b6, &ppr->br[6]);
946 retval |= __put_user(pt->b7, &ppr->br[7]);
947
948 /* fr2-fr5 */
949
950 for (i = 2; i < 6; i++) {
951 if (unw_get_fr(&info, i, &fpval) < 0)
952 return -EIO;
953 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
954 }
955
956 /* fr6-fr11 */
957
958 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
959 sizeof(struct ia64_fpreg) * 6);
960
961 /* fp scratch regs(12-15) */
962
963 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
964 sizeof(struct ia64_fpreg) * 4);
965
966 /* fr16-fr31 */
967
968 for (i = 16; i < 32; i++) {
969 if (unw_get_fr(&info, i, &fpval) < 0)
970 return -EIO;
971 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
972 }
973
974 /* fph */
975
976 ia64_flush_fph(child);
977 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
978 sizeof(ppr->fr[32]) * 96);
979
980 /* preds */
981
982 retval |= __put_user(pt->pr, &ppr->pr);
983
984 /* nat bits */
985
986 retval |= __put_user(nat_bits, &ppr->nat);
987
988 ret = retval ? -EIO : 0;
989 return ret;
990}
991
992static long
993ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
994{
995 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
996 struct unw_frame_info info;
997 struct switch_stack *sw;
998 struct ia64_fpreg fpval;
999 struct pt_regs *pt;
1000 long ret, retval = 0;
1001 int i;
1002
1003 memset(&fpval, 0, sizeof(fpval));
1004
1005 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1006 return -EIO;
1007
1008 pt = task_pt_regs(child);
1009 sw = (struct switch_stack *) (child->thread.ksp + 16);
1010 unw_init_from_blocked_task(&info, child);
1011 if (unw_unwind_to_user(&info) < 0) {
1012 return -EIO;
1013 }
1014
1015 if (((unsigned long) ppr & 0x7) != 0) {
1016 dprintk("ptrace:unaligned register address %p\n", ppr);
1017 return -EIO;
1018 }
1019
1020 /* control regs */
1021
1022 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1023 retval |= __get_user(psr, &ppr->cr_ipsr);
1024
1025 /* app regs */
1026
1027 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1028 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1029 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1030 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1031 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1032 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1033
1034 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1035 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1036 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1037 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1038 retval |= __get_user(cfm, &ppr->cfm);
1039
1040 /* gr1-gr3 */
1041
1042 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1043 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1044
1045 /* gr4-gr7 */
1046
1047 for (i = 4; i < 8; i++) {
1048 retval |= __get_user(val, &ppr->gr[i]);
1049 /* NaT bit will be set via PT_NAT_BITS: */
1050 if (unw_set_gr(&info, i, val, 0) < 0)
1051 return -EIO;
1052 }
1053
1054 /* gr8-gr11 */
1055
1056 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1057
1058 /* gr12-gr15 */
1059
1060 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1061 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1062 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1063
1064 /* gr16-gr31 */
1065
1066 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1067
1068 /* b0 */
1069
1070 retval |= __get_user(pt->b0, &ppr->br[0]);
1071
1072 /* b1-b5 */
1073
1074 for (i = 1; i < 6; i++) {
1075 retval |= __get_user(val, &ppr->br[i]);
1076 unw_set_br(&info, i, val);
1077 }
1078
1079 /* b6-b7 */
1080
1081 retval |= __get_user(pt->b6, &ppr->br[6]);
1082 retval |= __get_user(pt->b7, &ppr->br[7]);
1083
1084 /* fr2-fr5 */
1085
1086 for (i = 2; i < 6; i++) {
1087 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1088 if (unw_set_fr(&info, i, fpval) < 0)
1089 return -EIO;
1090 }
1091
1092 /* fr6-fr11 */
1093
1094 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1095 sizeof(ppr->fr[6]) * 6);
1096
1097 /* fp scratch regs(12-15) */
1098
1099 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1100 sizeof(ppr->fr[12]) * 4);
1101
1102 /* fr16-fr31 */
1103
1104 for (i = 16; i < 32; i++) {
1105 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1106 sizeof(fpval));
1107 if (unw_set_fr(&info, i, fpval) < 0)
1108 return -EIO;
1109 }
1110
1111 /* fph */
1112
1113 ia64_sync_fph(child);
1114 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1115 sizeof(ppr->fr[32]) * 96);
1116
1117 /* preds */
1118
1119 retval |= __get_user(pt->pr, &ppr->pr);
1120
1121 /* nat bits */
1122
1123 retval |= __get_user(nat_bits, &ppr->nat);
1124
1125 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1126 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1127 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1128 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1129 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1130 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1131 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1132 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1133
1134 ret = retval ? -EIO : 0;
1135 return ret;
1136}
1137
1138void
1139user_enable_single_step (struct task_struct *child)
1140{
1141 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1142
1143 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1144 child_psr->ss = 1;
1145}
1146
1147void
1148user_enable_block_step (struct task_struct *child)
1149{
1150 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1151
1152 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1153 child_psr->tb = 1;
1154}
1155
1156void
1157user_disable_single_step (struct task_struct *child)
1158{
1159 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1160
1161 /* make sure the single step/taken-branch trap bits are not set: */
1162 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1163 child_psr->ss = 0;
1164 child_psr->tb = 0;
1165}
1166
1167/*
1168 * Called by kernel/ptrace.c when detaching..
1169 *
1170 * Make sure the single step bit is not set.
1171 */
1172void
1173ptrace_disable (struct task_struct *child)
1174{
1175 user_disable_single_step(child);
1176}
1177
1178long
1179arch_ptrace (struct task_struct *child, long request,
1180 unsigned long addr, unsigned long data)
1181{
1182 switch (request) {
1183 case PTRACE_PEEKTEXT:
1184 case PTRACE_PEEKDATA:
1185 /* read word at location addr */
1186 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1187 != sizeof(data))
1188 return -EIO;
1189 /* ensure return value is not mistaken for error code */
1190 force_successful_syscall_return();
1191 return data;
1192
1193 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1194 * by the generic ptrace_request().
1195 */
1196
1197 case PTRACE_PEEKUSR:
1198 /* read the word at addr in the USER area */
1199 if (access_uarea(child, addr, &data, 0) < 0)
1200 return -EIO;
1201 /* ensure return value is not mistaken for error code */
1202 force_successful_syscall_return();
1203 return data;
1204
1205 case PTRACE_POKEUSR:
1206 /* write the word at addr in the USER area */
1207 if (access_uarea(child, addr, &data, 1) < 0)
1208 return -EIO;
1209 return 0;
1210
1211 case PTRACE_OLD_GETSIGINFO:
1212 /* for backwards-compatibility */
1213 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1214
1215 case PTRACE_OLD_SETSIGINFO:
1216 /* for backwards-compatibility */
1217 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1218
1219 case PTRACE_GETREGS:
1220 return ptrace_getregs(child,
1221 (struct pt_all_user_regs __user *) data);
1222
1223 case PTRACE_SETREGS:
1224 return ptrace_setregs(child,
1225 (struct pt_all_user_regs __user *) data);
1226
1227 default:
1228 return ptrace_request(child, request, addr, data);
1229 }
1230}
1231
1232
1233/* "asmlinkage" so the input arguments are preserved... */
1234
1235asmlinkage long
1236syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1237 long arg4, long arg5, long arg6, long arg7,
1238 struct pt_regs regs)
1239{
1240 if (test_thread_flag(TIF_SYSCALL_TRACE))
1241 if (tracehook_report_syscall_entry(®s))
1242 return -ENOSYS;
1243
1244 /* copy user rbs to kernel rbs */
1245 if (test_thread_flag(TIF_RESTORE_RSE))
1246 ia64_sync_krbs();
1247
1248
1249 audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1250
1251 return 0;
1252}
1253
1254/* "asmlinkage" so the input arguments are preserved... */
1255
1256asmlinkage void
1257syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1258 long arg4, long arg5, long arg6, long arg7,
1259 struct pt_regs regs)
1260{
1261 int step;
1262
1263 audit_syscall_exit(®s);
1264
1265 step = test_thread_flag(TIF_SINGLESTEP);
1266 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1267 tracehook_report_syscall_exit(®s, step);
1268
1269 /* copy user rbs to kernel rbs */
1270 if (test_thread_flag(TIF_RESTORE_RSE))
1271 ia64_sync_krbs();
1272}
1273
1274/* Utrace implementation starts here */
1275struct regset_get {
1276 void *kbuf;
1277 void __user *ubuf;
1278};
1279
1280struct regset_set {
1281 const void *kbuf;
1282 const void __user *ubuf;
1283};
1284
1285struct regset_getset {
1286 struct task_struct *target;
1287 const struct user_regset *regset;
1288 union {
1289 struct regset_get get;
1290 struct regset_set set;
1291 } u;
1292 unsigned int pos;
1293 unsigned int count;
1294 int ret;
1295};
1296
1297static int
1298access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1299 unsigned long addr, unsigned long *data, int write_access)
1300{
1301 struct pt_regs *pt;
1302 unsigned long *ptr = NULL;
1303 int ret;
1304 char nat = 0;
1305
1306 pt = task_pt_regs(target);
1307 switch (addr) {
1308 case ELF_GR_OFFSET(1):
1309 ptr = &pt->r1;
1310 break;
1311 case ELF_GR_OFFSET(2):
1312 case ELF_GR_OFFSET(3):
1313 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1314 break;
1315 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1316 if (write_access) {
1317 /* read NaT bit first: */
1318 unsigned long dummy;
1319
1320 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1321 if (ret < 0)
1322 return ret;
1323 }
1324 return unw_access_gr(info, addr/8, data, &nat, write_access);
1325 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1326 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1327 break;
1328 case ELF_GR_OFFSET(12):
1329 case ELF_GR_OFFSET(13):
1330 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1331 break;
1332 case ELF_GR_OFFSET(14):
1333 ptr = &pt->r14;
1334 break;
1335 case ELF_GR_OFFSET(15):
1336 ptr = &pt->r15;
1337 }
1338 if (write_access)
1339 *ptr = *data;
1340 else
1341 *data = *ptr;
1342 return 0;
1343}
1344
1345static int
1346access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1347 unsigned long addr, unsigned long *data, int write_access)
1348{
1349 struct pt_regs *pt;
1350 unsigned long *ptr = NULL;
1351
1352 pt = task_pt_regs(target);
1353 switch (addr) {
1354 case ELF_BR_OFFSET(0):
1355 ptr = &pt->b0;
1356 break;
1357 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1358 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1359 data, write_access);
1360 case ELF_BR_OFFSET(6):
1361 ptr = &pt->b6;
1362 break;
1363 case ELF_BR_OFFSET(7):
1364 ptr = &pt->b7;
1365 }
1366 if (write_access)
1367 *ptr = *data;
1368 else
1369 *data = *ptr;
1370 return 0;
1371}
1372
1373static int
1374access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1375 unsigned long addr, unsigned long *data, int write_access)
1376{
1377 struct pt_regs *pt;
1378 unsigned long cfm, urbs_end;
1379 unsigned long *ptr = NULL;
1380
1381 pt = task_pt_regs(target);
1382 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1383 switch (addr) {
1384 case ELF_AR_RSC_OFFSET:
1385 /* force PL3 */
1386 if (write_access)
1387 pt->ar_rsc = *data | (3 << 2);
1388 else
1389 *data = pt->ar_rsc;
1390 return 0;
1391 case ELF_AR_BSP_OFFSET:
1392 /*
1393 * By convention, we use PT_AR_BSP to refer to
1394 * the end of the user-level backing store.
1395 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1396 * to get the real value of ar.bsp at the time
1397 * the kernel was entered.
1398 *
1399 * Furthermore, when changing the contents of
1400 * PT_AR_BSP (or PT_CFM) while the task is
1401 * blocked in a system call, convert the state
1402 * so that the non-system-call exit
1403 * path is used. This ensures that the proper
1404 * state will be picked up when resuming
1405 * execution. However, it *also* means that
1406 * once we write PT_AR_BSP/PT_CFM, it won't be
1407 * possible to modify the syscall arguments of
1408 * the pending system call any longer. This
1409 * shouldn't be an issue because modifying
1410 * PT_AR_BSP/PT_CFM generally implies that
1411 * we're either abandoning the pending system
1412 * call or that we defer it's re-execution
1413 * (e.g., due to GDB doing an inferior
1414 * function call).
1415 */
1416 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1417 if (write_access) {
1418 if (*data != urbs_end) {
1419 if (in_syscall(pt))
1420 convert_to_non_syscall(target,
1421 pt,
1422 cfm);
1423 /*
1424 * Simulate user-level write
1425 * of ar.bsp:
1426 */
1427 pt->loadrs = 0;
1428 pt->ar_bspstore = *data;
1429 }
1430 } else
1431 *data = urbs_end;
1432 return 0;
1433 case ELF_AR_BSPSTORE_OFFSET:
1434 ptr = &pt->ar_bspstore;
1435 break;
1436 case ELF_AR_RNAT_OFFSET:
1437 ptr = &pt->ar_rnat;
1438 break;
1439 case ELF_AR_CCV_OFFSET:
1440 ptr = &pt->ar_ccv;
1441 break;
1442 case ELF_AR_UNAT_OFFSET:
1443 ptr = &pt->ar_unat;
1444 break;
1445 case ELF_AR_FPSR_OFFSET:
1446 ptr = &pt->ar_fpsr;
1447 break;
1448 case ELF_AR_PFS_OFFSET:
1449 ptr = &pt->ar_pfs;
1450 break;
1451 case ELF_AR_LC_OFFSET:
1452 return unw_access_ar(info, UNW_AR_LC, data,
1453 write_access);
1454 case ELF_AR_EC_OFFSET:
1455 return unw_access_ar(info, UNW_AR_EC, data,
1456 write_access);
1457 case ELF_AR_CSD_OFFSET:
1458 ptr = &pt->ar_csd;
1459 break;
1460 case ELF_AR_SSD_OFFSET:
1461 ptr = &pt->ar_ssd;
1462 }
1463 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1464 switch (addr) {
1465 case ELF_CR_IIP_OFFSET:
1466 ptr = &pt->cr_iip;
1467 break;
1468 case ELF_CFM_OFFSET:
1469 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1470 if (write_access) {
1471 if (((cfm ^ *data) & PFM_MASK) != 0) {
1472 if (in_syscall(pt))
1473 convert_to_non_syscall(target,
1474 pt,
1475 cfm);
1476 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1477 | (*data & PFM_MASK));
1478 }
1479 } else
1480 *data = cfm;
1481 return 0;
1482 case ELF_CR_IPSR_OFFSET:
1483 if (write_access) {
1484 unsigned long tmp = *data;
1485 /* psr.ri==3 is a reserved value: SDM 2:25 */
1486 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1487 tmp &= ~IA64_PSR_RI;
1488 pt->cr_ipsr = ((tmp & IPSR_MASK)
1489 | (pt->cr_ipsr & ~IPSR_MASK));
1490 } else
1491 *data = (pt->cr_ipsr & IPSR_MASK);
1492 return 0;
1493 }
1494 } else if (addr == ELF_NAT_OFFSET)
1495 return access_nat_bits(target, pt, info,
1496 data, write_access);
1497 else if (addr == ELF_PR_OFFSET)
1498 ptr = &pt->pr;
1499 else
1500 return -1;
1501
1502 if (write_access)
1503 *ptr = *data;
1504 else
1505 *data = *ptr;
1506
1507 return 0;
1508}
1509
1510static int
1511access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1512 unsigned long addr, unsigned long *data, int write_access)
1513{
1514 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1515 return access_elf_gpreg(target, info, addr, data, write_access);
1516 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1517 return access_elf_breg(target, info, addr, data, write_access);
1518 else
1519 return access_elf_areg(target, info, addr, data, write_access);
1520}
1521
1522void do_gpregs_get(struct unw_frame_info *info, void *arg)
1523{
1524 struct pt_regs *pt;
1525 struct regset_getset *dst = arg;
1526 elf_greg_t tmp[16];
1527 unsigned int i, index, min_copy;
1528
1529 if (unw_unwind_to_user(info) < 0)
1530 return;
1531
1532 /*
1533 * coredump format:
1534 * r0-r31
1535 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1536 * predicate registers (p0-p63)
1537 * b0-b7
1538 * ip cfm user-mask
1539 * ar.rsc ar.bsp ar.bspstore ar.rnat
1540 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1541 */
1542
1543
1544 /* Skip r0 */
1545 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1546 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1547 &dst->u.get.kbuf,
1548 &dst->u.get.ubuf,
1549 0, ELF_GR_OFFSET(1));
1550 if (dst->ret || dst->count == 0)
1551 return;
1552 }
1553
1554 /* gr1 - gr15 */
1555 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1556 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1557 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1558 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1559 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1560 index++)
1561 if (access_elf_reg(dst->target, info, i,
1562 &tmp[index], 0) < 0) {
1563 dst->ret = -EIO;
1564 return;
1565 }
1566 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1567 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1568 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1569 if (dst->ret || dst->count == 0)
1570 return;
1571 }
1572
1573 /* r16-r31 */
1574 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1575 pt = task_pt_regs(dst->target);
1576 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1577 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1578 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1579 if (dst->ret || dst->count == 0)
1580 return;
1581 }
1582
1583 /* nat, pr, b0 - b7 */
1584 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1585 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1586 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1587 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1588 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1589 index++)
1590 if (access_elf_reg(dst->target, info, i,
1591 &tmp[index], 0) < 0) {
1592 dst->ret = -EIO;
1593 return;
1594 }
1595 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1596 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1597 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1598 if (dst->ret || dst->count == 0)
1599 return;
1600 }
1601
1602 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1603 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1604 */
1605 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1606 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1607 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1608 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1609 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610 index++)
1611 if (access_elf_reg(dst->target, info, i,
1612 &tmp[index], 0) < 0) {
1613 dst->ret = -EIO;
1614 return;
1615 }
1616 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1619 }
1620}
1621
1622void do_gpregs_set(struct unw_frame_info *info, void *arg)
1623{
1624 struct pt_regs *pt;
1625 struct regset_getset *dst = arg;
1626 elf_greg_t tmp[16];
1627 unsigned int i, index;
1628
1629 if (unw_unwind_to_user(info) < 0)
1630 return;
1631
1632 /* Skip r0 */
1633 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1634 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1635 &dst->u.set.kbuf,
1636 &dst->u.set.ubuf,
1637 0, ELF_GR_OFFSET(1));
1638 if (dst->ret || dst->count == 0)
1639 return;
1640 }
1641
1642 /* gr1-gr15 */
1643 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1644 i = dst->pos;
1645 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1646 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1647 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1648 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1649 if (dst->ret)
1650 return;
1651 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1652 if (access_elf_reg(dst->target, info, i,
1653 &tmp[index], 1) < 0) {
1654 dst->ret = -EIO;
1655 return;
1656 }
1657 if (dst->count == 0)
1658 return;
1659 }
1660
1661 /* gr16-gr31 */
1662 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1663 pt = task_pt_regs(dst->target);
1664 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1665 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1666 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1667 if (dst->ret || dst->count == 0)
1668 return;
1669 }
1670
1671 /* nat, pr, b0 - b7 */
1672 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1673 i = dst->pos;
1674 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1675 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1676 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1677 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1678 if (dst->ret)
1679 return;
1680 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1681 if (access_elf_reg(dst->target, info, i,
1682 &tmp[index], 1) < 0) {
1683 dst->ret = -EIO;
1684 return;
1685 }
1686 if (dst->count == 0)
1687 return;
1688 }
1689
1690 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1691 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1692 */
1693 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1694 i = dst->pos;
1695 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1696 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1699 if (dst->ret)
1700 return;
1701 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702 if (access_elf_reg(dst->target, info, i,
1703 &tmp[index], 1) < 0) {
1704 dst->ret = -EIO;
1705 return;
1706 }
1707 }
1708}
1709
1710#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1711
1712void do_fpregs_get(struct unw_frame_info *info, void *arg)
1713{
1714 struct regset_getset *dst = arg;
1715 struct task_struct *task = dst->target;
1716 elf_fpreg_t tmp[30];
1717 int index, min_copy, i;
1718
1719 if (unw_unwind_to_user(info) < 0)
1720 return;
1721
1722 /* Skip pos 0 and 1 */
1723 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1724 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1725 &dst->u.get.kbuf,
1726 &dst->u.get.ubuf,
1727 0, ELF_FP_OFFSET(2));
1728 if (dst->count == 0 || dst->ret)
1729 return;
1730 }
1731
1732 /* fr2-fr31 */
1733 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1734 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1735
1736 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1737 dst->pos + dst->count);
1738 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1739 index++)
1740 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1741 &tmp[index])) {
1742 dst->ret = -EIO;
1743 return;
1744 }
1745 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1746 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1747 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1748 if (dst->count == 0 || dst->ret)
1749 return;
1750 }
1751
1752 /* fph */
1753 if (dst->count > 0) {
1754 ia64_flush_fph(dst->target);
1755 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1756 dst->ret = user_regset_copyout(
1757 &dst->pos, &dst->count,
1758 &dst->u.get.kbuf, &dst->u.get.ubuf,
1759 &dst->target->thread.fph,
1760 ELF_FP_OFFSET(32), -1);
1761 else
1762 /* Zero fill instead. */
1763 dst->ret = user_regset_copyout_zero(
1764 &dst->pos, &dst->count,
1765 &dst->u.get.kbuf, &dst->u.get.ubuf,
1766 ELF_FP_OFFSET(32), -1);
1767 }
1768}
1769
1770void do_fpregs_set(struct unw_frame_info *info, void *arg)
1771{
1772 struct regset_getset *dst = arg;
1773 elf_fpreg_t fpreg, tmp[30];
1774 int index, start, end;
1775
1776 if (unw_unwind_to_user(info) < 0)
1777 return;
1778
1779 /* Skip pos 0 and 1 */
1780 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1781 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1782 &dst->u.set.kbuf,
1783 &dst->u.set.ubuf,
1784 0, ELF_FP_OFFSET(2));
1785 if (dst->count == 0 || dst->ret)
1786 return;
1787 }
1788
1789 /* fr2-fr31 */
1790 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1791 start = dst->pos;
1792 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1793 dst->pos + dst->count);
1794 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1795 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1796 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1797 if (dst->ret)
1798 return;
1799
1800 if (start & 0xF) { /* only write high part */
1801 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1802 &fpreg)) {
1803 dst->ret = -EIO;
1804 return;
1805 }
1806 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1807 = fpreg.u.bits[0];
1808 start &= ~0xFUL;
1809 }
1810 if (end & 0xF) { /* only write low part */
1811 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1812 &fpreg)) {
1813 dst->ret = -EIO;
1814 return;
1815 }
1816 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1817 = fpreg.u.bits[1];
1818 end = (end + 0xF) & ~0xFUL;
1819 }
1820
1821 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1822 index = start / sizeof(elf_fpreg_t);
1823 if (unw_set_fr(info, index, tmp[index - 2])) {
1824 dst->ret = -EIO;
1825 return;
1826 }
1827 }
1828 if (dst->ret || dst->count == 0)
1829 return;
1830 }
1831
1832 /* fph */
1833 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1834 ia64_sync_fph(dst->target);
1835 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1836 &dst->u.set.kbuf,
1837 &dst->u.set.ubuf,
1838 &dst->target->thread.fph,
1839 ELF_FP_OFFSET(32), -1);
1840 }
1841}
1842
1843static int
1844do_regset_call(void (*call)(struct unw_frame_info *, void *),
1845 struct task_struct *target,
1846 const struct user_regset *regset,
1847 unsigned int pos, unsigned int count,
1848 const void *kbuf, const void __user *ubuf)
1849{
1850 struct regset_getset info = { .target = target, .regset = regset,
1851 .pos = pos, .count = count,
1852 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1853 .ret = 0 };
1854
1855 if (target == current)
1856 unw_init_running(call, &info);
1857 else {
1858 struct unw_frame_info ufi;
1859 memset(&ufi, 0, sizeof(ufi));
1860 unw_init_from_blocked_task(&ufi, target);
1861 (*call)(&ufi, &info);
1862 }
1863
1864 return info.ret;
1865}
1866
1867static int
1868gpregs_get(struct task_struct *target,
1869 const struct user_regset *regset,
1870 unsigned int pos, unsigned int count,
1871 void *kbuf, void __user *ubuf)
1872{
1873 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1874 kbuf, ubuf);
1875}
1876
1877static int gpregs_set(struct task_struct *target,
1878 const struct user_regset *regset,
1879 unsigned int pos, unsigned int count,
1880 const void *kbuf, const void __user *ubuf)
1881{
1882 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1883 kbuf, ubuf);
1884}
1885
1886static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1887{
1888 do_sync_rbs(info, ia64_sync_user_rbs);
1889}
1890
1891/*
1892 * This is called to write back the register backing store.
1893 * ptrace does this before it stops, so that a tracer reading the user
1894 * memory after the thread stops will get the current register data.
1895 */
1896static int
1897gpregs_writeback(struct task_struct *target,
1898 const struct user_regset *regset,
1899 int now)
1900{
1901 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1902 return 0;
1903 set_notify_resume(target);
1904 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1905 NULL, NULL);
1906}
1907
1908static int
1909fpregs_active(struct task_struct *target, const struct user_regset *regset)
1910{
1911 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1912}
1913
1914static int fpregs_get(struct task_struct *target,
1915 const struct user_regset *regset,
1916 unsigned int pos, unsigned int count,
1917 void *kbuf, void __user *ubuf)
1918{
1919 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1920 kbuf, ubuf);
1921}
1922
1923static int fpregs_set(struct task_struct *target,
1924 const struct user_regset *regset,
1925 unsigned int pos, unsigned int count,
1926 const void *kbuf, const void __user *ubuf)
1927{
1928 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1929 kbuf, ubuf);
1930}
1931
1932static int
1933access_uarea(struct task_struct *child, unsigned long addr,
1934 unsigned long *data, int write_access)
1935{
1936 unsigned int pos = -1; /* an invalid value */
1937 int ret;
1938 unsigned long *ptr, regnum;
1939
1940 if ((addr & 0x7) != 0) {
1941 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1942 return -1;
1943 }
1944 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1945 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1946 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1947 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1948 dprintk("ptrace: rejecting access to register "
1949 "address 0x%lx\n", addr);
1950 return -1;
1951 }
1952
1953 switch (addr) {
1954 case PT_F32 ... (PT_F127 + 15):
1955 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1956 break;
1957 case PT_F2 ... (PT_F5 + 15):
1958 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1959 break;
1960 case PT_F10 ... (PT_F31 + 15):
1961 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1962 break;
1963 case PT_F6 ... (PT_F9 + 15):
1964 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1965 break;
1966 }
1967
1968 if (pos != -1) {
1969 if (write_access)
1970 ret = fpregs_set(child, NULL, pos,
1971 sizeof(unsigned long), data, NULL);
1972 else
1973 ret = fpregs_get(child, NULL, pos,
1974 sizeof(unsigned long), data, NULL);
1975 if (ret != 0)
1976 return -1;
1977 return 0;
1978 }
1979
1980 switch (addr) {
1981 case PT_NAT_BITS:
1982 pos = ELF_NAT_OFFSET;
1983 break;
1984 case PT_R4 ... PT_R7:
1985 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1986 break;
1987 case PT_B1 ... PT_B5:
1988 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1989 break;
1990 case PT_AR_EC:
1991 pos = ELF_AR_EC_OFFSET;
1992 break;
1993 case PT_AR_LC:
1994 pos = ELF_AR_LC_OFFSET;
1995 break;
1996 case PT_CR_IPSR:
1997 pos = ELF_CR_IPSR_OFFSET;
1998 break;
1999 case PT_CR_IIP:
2000 pos = ELF_CR_IIP_OFFSET;
2001 break;
2002 case PT_CFM:
2003 pos = ELF_CFM_OFFSET;
2004 break;
2005 case PT_AR_UNAT:
2006 pos = ELF_AR_UNAT_OFFSET;
2007 break;
2008 case PT_AR_PFS:
2009 pos = ELF_AR_PFS_OFFSET;
2010 break;
2011 case PT_AR_RSC:
2012 pos = ELF_AR_RSC_OFFSET;
2013 break;
2014 case PT_AR_RNAT:
2015 pos = ELF_AR_RNAT_OFFSET;
2016 break;
2017 case PT_AR_BSPSTORE:
2018 pos = ELF_AR_BSPSTORE_OFFSET;
2019 break;
2020 case PT_PR:
2021 pos = ELF_PR_OFFSET;
2022 break;
2023 case PT_B6:
2024 pos = ELF_BR_OFFSET(6);
2025 break;
2026 case PT_AR_BSP:
2027 pos = ELF_AR_BSP_OFFSET;
2028 break;
2029 case PT_R1 ... PT_R3:
2030 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2031 break;
2032 case PT_R12 ... PT_R15:
2033 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2034 break;
2035 case PT_R8 ... PT_R11:
2036 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2037 break;
2038 case PT_R16 ... PT_R31:
2039 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2040 break;
2041 case PT_AR_CCV:
2042 pos = ELF_AR_CCV_OFFSET;
2043 break;
2044 case PT_AR_FPSR:
2045 pos = ELF_AR_FPSR_OFFSET;
2046 break;
2047 case PT_B0:
2048 pos = ELF_BR_OFFSET(0);
2049 break;
2050 case PT_B7:
2051 pos = ELF_BR_OFFSET(7);
2052 break;
2053 case PT_AR_CSD:
2054 pos = ELF_AR_CSD_OFFSET;
2055 break;
2056 case PT_AR_SSD:
2057 pos = ELF_AR_SSD_OFFSET;
2058 break;
2059 }
2060
2061 if (pos != -1) {
2062 if (write_access)
2063 ret = gpregs_set(child, NULL, pos,
2064 sizeof(unsigned long), data, NULL);
2065 else
2066 ret = gpregs_get(child, NULL, pos,
2067 sizeof(unsigned long), data, NULL);
2068 if (ret != 0)
2069 return -1;
2070 return 0;
2071 }
2072
2073 /* access debug registers */
2074 if (addr >= PT_IBR) {
2075 regnum = (addr - PT_IBR) >> 3;
2076 ptr = &child->thread.ibr[0];
2077 } else {
2078 regnum = (addr - PT_DBR) >> 3;
2079 ptr = &child->thread.dbr[0];
2080 }
2081
2082 if (regnum >= 8) {
2083 dprintk("ptrace: rejecting access to register "
2084 "address 0x%lx\n", addr);
2085 return -1;
2086 }
2087#ifdef CONFIG_PERFMON
2088 /*
2089 * Check if debug registers are used by perfmon. This
2090 * test must be done once we know that we can do the
2091 * operation, i.e. the arguments are all valid, but
2092 * before we start modifying the state.
2093 *
2094 * Perfmon needs to keep a count of how many processes
2095 * are trying to modify the debug registers for system
2096 * wide monitoring sessions.
2097 *
2098 * We also include read access here, because they may
2099 * cause the PMU-installed debug register state
2100 * (dbr[], ibr[]) to be reset. The two arrays are also
2101 * used by perfmon, but we do not use
2102 * IA64_THREAD_DBG_VALID. The registers are restored
2103 * by the PMU context switch code.
2104 */
2105 if (pfm_use_debug_registers(child))
2106 return -1;
2107#endif
2108
2109 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2110 child->thread.flags |= IA64_THREAD_DBG_VALID;
2111 memset(child->thread.dbr, 0,
2112 sizeof(child->thread.dbr));
2113 memset(child->thread.ibr, 0,
2114 sizeof(child->thread.ibr));
2115 }
2116
2117 ptr += regnum;
2118
2119 if ((regnum & 1) && write_access) {
2120 /* don't let the user set kernel-level breakpoints: */
2121 *ptr = *data & ~(7UL << 56);
2122 return 0;
2123 }
2124 if (write_access)
2125 *ptr = *data;
2126 else
2127 *data = *ptr;
2128 return 0;
2129}
2130
2131static const struct user_regset native_regsets[] = {
2132 {
2133 .core_note_type = NT_PRSTATUS,
2134 .n = ELF_NGREG,
2135 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2136 .get = gpregs_get, .set = gpregs_set,
2137 .writeback = gpregs_writeback
2138 },
2139 {
2140 .core_note_type = NT_PRFPREG,
2141 .n = ELF_NFPREG,
2142 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2143 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2144 },
2145};
2146
2147static const struct user_regset_view user_ia64_view = {
2148 .name = "ia64",
2149 .e_machine = EM_IA_64,
2150 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2151};
2152
2153const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2154{
2155 return &user_ia64_view;
2156}
2157
2158struct syscall_get_set_args {
2159 unsigned int i;
2160 unsigned int n;
2161 unsigned long *args;
2162 struct pt_regs *regs;
2163 int rw;
2164};
2165
2166static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2167{
2168 struct syscall_get_set_args *args = data;
2169 struct pt_regs *pt = args->regs;
2170 unsigned long *krbs, cfm, ndirty;
2171 int i, count;
2172
2173 if (unw_unwind_to_user(info) < 0)
2174 return;
2175
2176 cfm = pt->cr_ifs;
2177 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2178 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2179
2180 count = 0;
2181 if (in_syscall(pt))
2182 count = min_t(int, args->n, cfm & 0x7f);
2183
2184 for (i = 0; i < count; i++) {
2185 if (args->rw)
2186 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2187 args->args[i];
2188 else
2189 args->args[i] = *ia64_rse_skip_regs(krbs,
2190 ndirty + i + args->i);
2191 }
2192
2193 if (!args->rw) {
2194 while (i < args->n) {
2195 args->args[i] = 0;
2196 i++;
2197 }
2198 }
2199}
2200
2201void ia64_syscall_get_set_arguments(struct task_struct *task,
2202 struct pt_regs *regs, unsigned int i, unsigned int n,
2203 unsigned long *args, int rw)
2204{
2205 struct syscall_get_set_args data = {
2206 .i = i,
2207 .n = n,
2208 .args = args,
2209 .regs = regs,
2210 .rw = rw,
2211 };
2212
2213 if (task == current)
2214 unw_init_running(syscall_get_set_args_cb, &data);
2215 else {
2216 struct unw_frame_info ufi;
2217 memset(&ufi, 0, sizeof(ufi));
2218 unw_init_from_blocked_task(&ufi, task);
2219 syscall_get_set_args_cb(&ufi, &data);
2220 }
2221}