Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
 
  28#include <linux/pagemap.h>
  29#include <linux/file.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
 
 
  32#include <linux/swap.h>
 
 
 
 
 
 
 
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/posix_acl.h>
  46#include <linux/generic_acl.h>
  47#include <linux/mman.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/backing-dev.h>
  51#include <linux/shmem_fs.h>
  52#include <linux/writeback.h>
  53#include <linux/blkdev.h>
  54#include <linux/pagevec.h>
  55#include <linux/percpu_counter.h>
 
  56#include <linux/splice.h>
  57#include <linux/security.h>
  58#include <linux/swapops.h>
  59#include <linux/mempolicy.h>
  60#include <linux/namei.h>
  61#include <linux/ctype.h>
  62#include <linux/migrate.h>
  63#include <linux/highmem.h>
  64#include <linux/seq_file.h>
  65#include <linux/magic.h>
 
 
 
 
 
 
 
 
  66
  67#include <asm/uaccess.h>
  68#include <asm/pgtable.h>
  69
  70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  72
  73/* Pretend that each entry is of this size in directory's i_size */
  74#define BOGO_DIRENT_SIZE 20
  75
  76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  77#define SHORT_SYMLINK_LEN 128
  78
  79struct shmem_xattr {
  80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
  81	char *name;		/* xattr name */
  82	size_t size;
  83	char value[0];
 
 
 
 
 
 
  84};
  85
  86/* Flag allocation requirements to shmem_getpage */
  87enum sgp_type {
  88	SGP_READ,	/* don't exceed i_size, don't allocate page */
  89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
  90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
  91	SGP_WRITE,	/* may exceed i_size, may allocate page */
 
 
 
 
 
 
 
 
  92};
  93
  94#ifdef CONFIG_TMPFS
  95static unsigned long shmem_default_max_blocks(void)
  96{
  97	return totalram_pages / 2;
  98}
  99
 100static unsigned long shmem_default_max_inodes(void)
 101{
 102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 
 
 103}
 104#endif
 105
 
 
 
 
 
 
 
 106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 
 
 108
 109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 110	struct page **pagep, enum sgp_type sgp, int *fault_type)
 111{
 112	return shmem_getpage_gfp(inode, index, pagep, sgp,
 113			mapping_gfp_mask(inode->i_mapping), fault_type);
 114}
 115
 116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 117{
 118	return sb->s_fs_info;
 119}
 120
 121/*
 122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 123 * for shared memory and for shared anonymous (/dev/zero) mappings
 124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 125 * consistent with the pre-accounting of private mappings ...
 126 */
 127static inline int shmem_acct_size(unsigned long flags, loff_t size)
 128{
 129	return (flags & VM_NORESERVE) ?
 130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
 131}
 132
 133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 134{
 135	if (!(flags & VM_NORESERVE))
 136		vm_unacct_memory(VM_ACCT(size));
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * ... whereas tmpfs objects are accounted incrementally as
 141 * pages are allocated, in order to allow huge sparse files.
 142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 144 */
 145static inline int shmem_acct_block(unsigned long flags)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 
 
 
 149}
 150
 151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 152{
 153	if (flags & VM_NORESERVE)
 154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155}
 156
 157static const struct super_operations shmem_ops;
 158static const struct address_space_operations shmem_aops;
 159static const struct file_operations shmem_file_operations;
 160static const struct inode_operations shmem_inode_operations;
 161static const struct inode_operations shmem_dir_inode_operations;
 162static const struct inode_operations shmem_special_inode_operations;
 163static const struct vm_operations_struct shmem_vm_ops;
 
 164
 165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 166	.ra_pages	= 0,	/* No readahead */
 167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 168};
 169
 170static LIST_HEAD(shmem_swaplist);
 171static DEFINE_MUTEX(shmem_swaplist_mutex);
 172
 173static int shmem_reserve_inode(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 174{
 175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 176	if (sbinfo->max_inodes) {
 
 
 177		spin_lock(&sbinfo->stat_lock);
 178		if (!sbinfo->free_inodes) {
 179			spin_unlock(&sbinfo->stat_lock);
 180			return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181		}
 182		sbinfo->free_inodes--;
 183		spin_unlock(&sbinfo->stat_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184	}
 
 185	return 0;
 186}
 187
 188static void shmem_free_inode(struct super_block *sb)
 189{
 190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 191	if (sbinfo->max_inodes) {
 192		spin_lock(&sbinfo->stat_lock);
 193		sbinfo->free_inodes++;
 194		spin_unlock(&sbinfo->stat_lock);
 195	}
 196}
 197
 198/**
 199 * shmem_recalc_inode - recalculate the block usage of an inode
 200 * @inode: inode to recalc
 201 *
 202 * We have to calculate the free blocks since the mm can drop
 203 * undirtied hole pages behind our back.
 204 *
 205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 207 *
 208 * It has to be called with the spinlock held.
 209 */
 210static void shmem_recalc_inode(struct inode *inode)
 211{
 212	struct shmem_inode_info *info = SHMEM_I(inode);
 213	long freed;
 214
 215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 216	if (freed > 0) {
 217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218		if (sbinfo->max_blocks)
 219			percpu_counter_add(&sbinfo->used_blocks, -freed);
 220		info->alloced -= freed;
 221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 222		shmem_unacct_blocks(info->flags, freed);
 223	}
 224}
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226/*
 227 * Replace item expected in radix tree by a new item, while holding tree lock.
 228 */
 229static int shmem_radix_tree_replace(struct address_space *mapping,
 230			pgoff_t index, void *expected, void *replacement)
 231{
 232	void **pslot;
 233	void *item = NULL;
 234
 235	VM_BUG_ON(!expected);
 236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 237	if (pslot)
 238		item = radix_tree_deref_slot_protected(pslot,
 239							&mapping->tree_lock);
 240	if (item != expected)
 241		return -ENOENT;
 242	if (replacement)
 243		radix_tree_replace_slot(pslot, replacement);
 244	else
 245		radix_tree_delete(&mapping->page_tree, index);
 246	return 0;
 247}
 248
 249/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250 * Like add_to_page_cache_locked, but error if expected item has gone.
 251 */
 252static int shmem_add_to_page_cache(struct page *page,
 253				   struct address_space *mapping,
 254				   pgoff_t index, gfp_t gfp, void *expected)
 
 255{
 256	int error = 0;
 
 
 
 257
 258	VM_BUG_ON(!PageLocked(page));
 259	VM_BUG_ON(!PageSwapBacked(page));
 
 
 
 
 
 
 
 260
 261	if (!expected)
 262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
 263	if (!error) {
 264		page_cache_get(page);
 265		page->mapping = mapping;
 266		page->index = index;
 267
 268		spin_lock_irq(&mapping->tree_lock);
 269		if (!expected)
 270			error = radix_tree_insert(&mapping->page_tree,
 271							index, page);
 272		else
 273			error = shmem_radix_tree_replace(mapping, index,
 274							expected, page);
 275		if (!error) {
 276			mapping->nrpages++;
 277			__inc_zone_page_state(page, NR_FILE_PAGES);
 278			__inc_zone_page_state(page, NR_SHMEM);
 279			spin_unlock_irq(&mapping->tree_lock);
 280		} else {
 281			page->mapping = NULL;
 282			spin_unlock_irq(&mapping->tree_lock);
 283			page_cache_release(page);
 284		}
 285		if (!expected)
 286			radix_tree_preload_end();
 287	}
 288	if (error)
 289		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290	return error;
 291}
 292
 293/*
 294 * Like delete_from_page_cache, but substitutes swap for page.
 295 */
 296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 297{
 298	struct address_space *mapping = page->mapping;
 299	int error;
 300
 301	spin_lock_irq(&mapping->tree_lock);
 302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 
 
 303	page->mapping = NULL;
 304	mapping->nrpages--;
 305	__dec_zone_page_state(page, NR_FILE_PAGES);
 306	__dec_zone_page_state(page, NR_SHMEM);
 307	spin_unlock_irq(&mapping->tree_lock);
 308	page_cache_release(page);
 309	BUG_ON(error);
 310}
 311
 312/*
 313 * Like find_get_pages, but collecting swap entries as well as pages.
 314 */
 315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
 316					pgoff_t start, unsigned int nr_pages,
 317					struct page **pages, pgoff_t *indices)
 318{
 319	unsigned int i;
 320	unsigned int ret;
 321	unsigned int nr_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322
 323	rcu_read_lock();
 324restart:
 325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 326				(void ***)pages, indices, start, nr_pages);
 327	ret = 0;
 328	for (i = 0; i < nr_found; i++) {
 329		struct page *page;
 330repeat:
 331		page = radix_tree_deref_slot((void **)pages[i]);
 332		if (unlikely(!page))
 333			continue;
 334		if (radix_tree_exception(page)) {
 335			if (radix_tree_deref_retry(page))
 336				goto restart;
 337			/*
 338			 * Otherwise, we must be storing a swap entry
 339			 * here as an exceptional entry: so return it
 340			 * without attempting to raise page count.
 341			 */
 342			goto export;
 343		}
 344		if (!page_cache_get_speculative(page))
 345			goto repeat;
 346
 347		/* Has the page moved? */
 348		if (unlikely(page != *((void **)pages[i]))) {
 349			page_cache_release(page);
 350			goto repeat;
 351		}
 352export:
 353		indices[ret] = indices[i];
 354		pages[ret] = page;
 355		ret++;
 356	}
 357	if (unlikely(!ret && nr_found))
 358		goto restart;
 359	rcu_read_unlock();
 360	return ret;
 
 361}
 362
 363/*
 364 * Remove swap entry from radix tree, free the swap and its page cache.
 
 
 
 
 365 */
 366static int shmem_free_swap(struct address_space *mapping,
 367			   pgoff_t index, void *radswap)
 368{
 369	int error;
 
 
 
 370
 371	spin_lock_irq(&mapping->tree_lock);
 372	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
 373	spin_unlock_irq(&mapping->tree_lock);
 374	if (!error)
 375		free_swap_and_cache(radix_to_swp_entry(radswap));
 376	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379/*
 380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
 381 */
 382static void shmem_pagevec_release(struct pagevec *pvec)
 383{
 384	int i, j;
 
 385
 386	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 387		struct page *page = pvec->pages[i];
 388		if (!radix_tree_exceptional_entry(page))
 389			pvec->pages[j++] = page;
 
 
 
 
 
 
 390	}
 391	pvec->nr = j;
 392	pagevec_release(pvec);
 393}
 394
 395/*
 396 * Remove range of pages and swap entries from radix tree, and free them.
 
 
 
 
 
 
 
 
 
 397 */
 398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399{
 400	struct address_space *mapping = inode->i_mapping;
 401	struct shmem_inode_info *info = SHMEM_I(inode);
 402	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 403	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 404	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
 
 405	struct pagevec pvec;
 406	pgoff_t indices[PAGEVEC_SIZE];
 407	long nr_swaps_freed = 0;
 408	pgoff_t index;
 409	int i;
 410
 411	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 
 412
 413	pagevec_init(&pvec, 0);
 414	index = start;
 415	while (index <= end) {
 416		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 417			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 418							pvec.pages, indices);
 419		if (!pvec.nr)
 420			break;
 421		mem_cgroup_uncharge_start();
 422		for (i = 0; i < pagevec_count(&pvec); i++) {
 423			struct page *page = pvec.pages[i];
 424
 425			index = indices[i];
 426			if (index > end)
 427				break;
 428
 429			if (radix_tree_exceptional_entry(page)) {
 
 
 430				nr_swaps_freed += !shmem_free_swap(mapping,
 431								index, page);
 432				continue;
 433			}
 
 434
 435			if (!trylock_page(page))
 436				continue;
 437			if (page->mapping == mapping) {
 438				VM_BUG_ON(PageWriteback(page));
 439				truncate_inode_page(mapping, page);
 440			}
 441			unlock_page(page);
 442		}
 443		shmem_pagevec_release(&pvec);
 444		mem_cgroup_uncharge_end();
 445		cond_resched();
 446		index++;
 447	}
 448
 449	if (partial) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450		struct page *page = NULL;
 451		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 452		if (page) {
 453			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 454			set_page_dirty(page);
 455			unlock_page(page);
 456			page_cache_release(page);
 457		}
 458	}
 
 
 459
 460	index = start;
 461	for ( ; ; ) {
 462		cond_resched();
 463		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 464			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 465							pvec.pages, indices);
 466		if (!pvec.nr) {
 467			if (index == start)
 468				break;
 
 469			index = start;
 470			continue;
 471		}
 472		if (index == start && indices[0] > end) {
 473			shmem_pagevec_release(&pvec);
 474			break;
 475		}
 476		mem_cgroup_uncharge_start();
 477		for (i = 0; i < pagevec_count(&pvec); i++) {
 478			struct page *page = pvec.pages[i];
 479
 480			index = indices[i];
 481			if (index > end)
 482				break;
 483
 484			if (radix_tree_exceptional_entry(page)) {
 485				nr_swaps_freed += !shmem_free_swap(mapping,
 486								index, page);
 
 
 
 487				continue;
 488			}
 489
 490			lock_page(page);
 491			if (page->mapping == mapping) {
 492				VM_BUG_ON(PageWriteback(page));
 493				truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494			}
 495			unlock_page(page);
 496		}
 497		shmem_pagevec_release(&pvec);
 498		mem_cgroup_uncharge_end();
 499		index++;
 500	}
 501
 502	spin_lock(&info->lock);
 503	info->swapped -= nr_swaps_freed;
 504	shmem_recalc_inode(inode);
 505	spin_unlock(&info->lock);
 
 506
 507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 
 
 508}
 509EXPORT_SYMBOL_GPL(shmem_truncate_range);
 510
 511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512{
 513	struct inode *inode = dentry->d_inode;
 
 
 514	int error;
 515
 516	error = inode_change_ok(inode, attr);
 517	if (error)
 518		return error;
 519
 520	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 521		loff_t oldsize = inode->i_size;
 522		loff_t newsize = attr->ia_size;
 523
 
 
 
 
 
 524		if (newsize != oldsize) {
 
 
 
 
 525			i_size_write(inode, newsize);
 526			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 527		}
 528		if (newsize < oldsize) {
 529			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 530			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 531			shmem_truncate_range(inode, newsize, (loff_t)-1);
 
 
 
 
 532			/* unmap again to remove racily COWed private pages */
 533			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534		}
 535	}
 536
 537	setattr_copy(inode, attr);
 538#ifdef CONFIG_TMPFS_POSIX_ACL
 539	if (attr->ia_valid & ATTR_MODE)
 540		error = generic_acl_chmod(inode);
 541#endif
 542	return error;
 543}
 544
 545static void shmem_evict_inode(struct inode *inode)
 546{
 547	struct shmem_inode_info *info = SHMEM_I(inode);
 548	struct shmem_xattr *xattr, *nxattr;
 549
 550	if (inode->i_mapping->a_ops == &shmem_aops) {
 551		shmem_unacct_size(info->flags, inode->i_size);
 552		inode->i_size = 0;
 553		shmem_truncate_range(inode, 0, (loff_t)-1);
 554		if (!list_empty(&info->swaplist)) {
 
 
 
 
 
 
 
 
 
 
 
 555			mutex_lock(&shmem_swaplist_mutex);
 556			list_del_init(&info->swaplist);
 
 
 557			mutex_unlock(&shmem_swaplist_mutex);
 558		}
 559	} else
 560		kfree(info->symlink);
 561
 562	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
 563		kfree(xattr->name);
 564		kfree(xattr);
 565	}
 566	BUG_ON(inode->i_blocks);
 
 
 567	shmem_free_inode(inode->i_sb);
 568	end_writeback(inode);
 569}
 570
 571/*
 572 * If swap found in inode, free it and move page from swapcache to filecache.
 573 */
 574static int shmem_unuse_inode(struct shmem_inode_info *info,
 575			     swp_entry_t swap, struct page *page)
 
 576{
 577	struct address_space *mapping = info->vfs_inode.i_mapping;
 578	void *radswap;
 579	pgoff_t index;
 580	int error;
 581
 582	radswap = swp_to_radix_entry(swap);
 583	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 584	if (index == -1)
 585		return 0;
 586
 587	/*
 588	 * Move _head_ to start search for next from here.
 589	 * But be careful: shmem_evict_inode checks list_empty without taking
 590	 * mutex, and there's an instant in list_move_tail when info->swaplist
 591	 * would appear empty, if it were the only one on shmem_swaplist.
 592	 */
 593	if (shmem_swaplist.next != &info->swaplist)
 594		list_move_tail(&shmem_swaplist, &info->swaplist);
 595
 596	/*
 597	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 598	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 599	 * beneath us (pagelock doesn't help until the page is in pagecache).
 600	 */
 601	error = shmem_add_to_page_cache(page, mapping, index,
 602						GFP_NOWAIT, radswap);
 603	/* which does mem_cgroup_uncharge_cache_page on error */
 604
 605	if (error != -ENOMEM) {
 606		/*
 607		 * Truncation and eviction use free_swap_and_cache(), which
 608		 * only does trylock page: if we raced, best clean up here.
 609		 */
 610		delete_from_swap_cache(page);
 611		set_page_dirty(page);
 612		if (!error) {
 613			spin_lock(&info->lock);
 614			info->swapped--;
 615			spin_unlock(&info->lock);
 616			swap_free(swap);
 
 617		}
 618		error = 1;	/* not an error, but entry was found */
 
 619	}
 620	return error;
 
 
 621}
 622
 623/*
 624 * Search through swapped inodes to find and replace swap by page.
 
 625 */
 626int shmem_unuse(swp_entry_t swap, struct page *page)
 
 627{
 628	struct list_head *this, *next;
 629	struct shmem_inode_info *info;
 630	int found = 0;
 631	int error;
 632
 633	/*
 634	 * Charge page using GFP_KERNEL while we can wait, before taking
 635	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 636	 * Charged back to the user (not to caller) when swap account is used.
 637	 */
 638	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 639	if (error)
 640		goto out;
 641	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	mutex_lock(&shmem_swaplist_mutex);
 644	list_for_each_safe(this, next, &shmem_swaplist) {
 645		info = list_entry(this, struct shmem_inode_info, swaplist);
 646		if (info->swapped)
 647			found = shmem_unuse_inode(info, swap, page);
 648		else
 649			list_del_init(&info->swaplist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 650		cond_resched();
 651		if (found)
 
 
 
 
 
 
 
 652			break;
 653	}
 654	mutex_unlock(&shmem_swaplist_mutex);
 655
 656	if (!found)
 657		mem_cgroup_uncharge_cache_page(page);
 658	if (found < 0)
 659		error = found;
 660out:
 661	unlock_page(page);
 662	page_cache_release(page);
 663	return error;
 664}
 665
 666/*
 667 * Move the page from the page cache to the swap cache.
 668 */
 669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 670{
 671	struct shmem_inode_info *info;
 672	struct address_space *mapping;
 673	struct inode *inode;
 674	swp_entry_t swap;
 675	pgoff_t index;
 676
 
 677	BUG_ON(!PageLocked(page));
 678	mapping = page->mapping;
 679	index = page->index;
 680	inode = mapping->host;
 681	info = SHMEM_I(inode);
 682	if (info->flags & VM_LOCKED)
 683		goto redirty;
 684	if (!total_swap_pages)
 685		goto redirty;
 686
 687	/*
 688	 * shmem_backing_dev_info's capabilities prevent regular writeback or
 689	 * sync from ever calling shmem_writepage; but a stacking filesystem
 690	 * might use ->writepage of its underlying filesystem, in which case
 691	 * tmpfs should write out to swap only in response to memory pressure,
 692	 * and not for the writeback threads or sync.
 693	 */
 694	if (!wbc->for_reclaim) {
 695		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 696		goto redirty;
 697	}
 698	swap = get_swap_page();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	if (!swap.val)
 700		goto redirty;
 701
 702	/*
 703	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 704	 * if it's not already there.  Do it now before the page is
 705	 * moved to swap cache, when its pagelock no longer protects
 706	 * the inode from eviction.  But don't unlock the mutex until
 707	 * we've incremented swapped, because shmem_unuse_inode() will
 708	 * prune a !swapped inode from the swaplist under this mutex.
 709	 */
 710	mutex_lock(&shmem_swaplist_mutex);
 711	if (list_empty(&info->swaplist))
 712		list_add_tail(&info->swaplist, &shmem_swaplist);
 
 
 
 
 
 
 
 
 713
 714	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 715		swap_shmem_alloc(swap);
 716		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 717
 718		spin_lock(&info->lock);
 719		info->swapped++;
 720		shmem_recalc_inode(inode);
 721		spin_unlock(&info->lock);
 722
 723		mutex_unlock(&shmem_swaplist_mutex);
 724		BUG_ON(page_mapped(page));
 725		swap_writepage(page, wbc);
 726		return 0;
 727	}
 728
 729	mutex_unlock(&shmem_swaplist_mutex);
 730	swapcache_free(swap, NULL);
 731redirty:
 732	set_page_dirty(page);
 733	if (wbc->for_reclaim)
 734		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 735	unlock_page(page);
 736	return 0;
 737}
 738
 739#ifdef CONFIG_NUMA
 740#ifdef CONFIG_TMPFS
 741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 742{
 743	char buffer[64];
 744
 745	if (!mpol || mpol->mode == MPOL_DEFAULT)
 746		return;		/* show nothing */
 747
 748	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
 749
 750	seq_printf(seq, ",mpol=%s", buffer);
 751}
 752
 753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 754{
 755	struct mempolicy *mpol = NULL;
 756	if (sbinfo->mpol) {
 757		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 758		mpol = sbinfo->mpol;
 759		mpol_get(mpol);
 760		spin_unlock(&sbinfo->stat_lock);
 761	}
 762	return mpol;
 763}
 764#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 767			struct shmem_inode_info *info, pgoff_t index)
 768{
 769	struct mempolicy mpol, *spol;
 770	struct vm_area_struct pvma;
 
 
 
 
 771
 772	spol = mpol_cond_copy(&mpol,
 773			mpol_shared_policy_lookup(&info->policy, index));
 
 774
 775	/* Create a pseudo vma that just contains the policy */
 776	pvma.vm_start = 0;
 777	pvma.vm_pgoff = index;
 778	pvma.vm_ops = NULL;
 779	pvma.vm_policy = spol;
 780	return swapin_readahead(swap, gfp, &pvma, 0);
 781}
 782
 783static struct page *shmem_alloc_page(gfp_t gfp,
 784			struct shmem_inode_info *info, pgoff_t index)
 
 
 
 785{
 786	struct vm_area_struct pvma;
 
 
 
 787
 788	/* Create a pseudo vma that just contains the policy */
 789	pvma.vm_start = 0;
 790	pvma.vm_pgoff = index;
 791	pvma.vm_ops = NULL;
 792	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 793
 794	/*
 795	 * alloc_page_vma() will drop the shared policy reference
 
 796	 */
 797	return alloc_page_vma(gfp, &pvma, 0);
 
 
 
 798}
 799#else /* !CONFIG_NUMA */
 800#ifdef CONFIG_TMPFS
 801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 802{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803}
 804#endif /* CONFIG_TMPFS */
 805
 806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 807			struct shmem_inode_info *info, pgoff_t index)
 808{
 809	return swapin_readahead(swap, gfp, NULL, 0);
 
 
 
 
 
 
 
 810}
 811
 812static inline struct page *shmem_alloc_page(gfp_t gfp,
 813			struct shmem_inode_info *info, pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814{
 815	return alloc_page(gfp);
 816}
 817#endif /* CONFIG_NUMA */
 818
 819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 821{
 822	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824#endif
 825
 826/*
 827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 828 *
 829 * If we allocate a new one we do not mark it dirty. That's up to the
 830 * vm. If we swap it in we mark it dirty since we also free the swap
 831 * entry since a page cannot live in both the swap and page cache
 
 
 
 832 */
 833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 834	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 
 
 835{
 836	struct address_space *mapping = inode->i_mapping;
 837	struct shmem_inode_info *info;
 838	struct shmem_sb_info *sbinfo;
 
 839	struct page *page;
 840	swp_entry_t swap;
 
 
 841	int error;
 842	int once = 0;
 
 843
 844	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
 845		return -EFBIG;
 
 
 846repeat:
 847	swap.val = 0;
 848	page = find_lock_page(mapping, index);
 849	if (radix_tree_exceptional_entry(page)) {
 850		swap = radix_to_swp_entry(page);
 851		page = NULL;
 852	}
 853
 854	if (sgp != SGP_WRITE &&
 855	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 856		error = -EINVAL;
 857		goto failed;
 
 
 
 
 
 
 
 
 
 858	}
 859
 860	if (page || (sgp == SGP_READ && !swap.val)) {
 861		/*
 862		 * Once we can get the page lock, it must be uptodate:
 863		 * if there were an error in reading back from swap,
 864		 * the page would not be inserted into the filecache.
 865		 */
 866		BUG_ON(page && !PageUptodate(page));
 867		*pagep = page;
 868		return 0;
 869	}
 870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	/*
 872	 * Fast cache lookup did not find it:
 873	 * bring it back from swap or allocate.
 874	 */
 875	info = SHMEM_I(inode);
 876	sbinfo = SHMEM_SB(inode->i_sb);
 877
 878	if (swap.val) {
 879		/* Look it up and read it in.. */
 880		page = lookup_swap_cache(swap);
 881		if (!page) {
 882			/* here we actually do the io */
 883			if (fault_type)
 884				*fault_type |= VM_FAULT_MAJOR;
 885			page = shmem_swapin(swap, gfp, info, index);
 886			if (!page) {
 887				error = -ENOMEM;
 888				goto failed;
 889			}
 890		}
 891
 892		/* We have to do this with page locked to prevent races */
 893		lock_page(page);
 894		if (!PageUptodate(page)) {
 895			error = -EIO;
 896			goto failed;
 897		}
 898		wait_on_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900		/* Someone may have already done it for us */
 901		if (page->mapping) {
 902			if (page->mapping == mapping &&
 903			    page->index == index)
 904				goto done;
 905			error = -EEXIST;
 906			goto failed;
 
 
 
 
 
 
 
 
 
 907		}
 
 
 908
 909		error = mem_cgroup_cache_charge(page, current->mm,
 910						gfp & GFP_RECLAIM_MASK);
 911		if (!error)
 912			error = shmem_add_to_page_cache(page, mapping, index,
 913						gfp, swp_to_radix_entry(swap));
 914		if (error)
 915			goto failed;
 916
 917		spin_lock(&info->lock);
 918		info->swapped--;
 919		shmem_recalc_inode(inode);
 920		spin_unlock(&info->lock);
 921
 922		delete_from_swap_cache(page);
 923		set_page_dirty(page);
 924		swap_free(swap);
 
 
 
 925
 926	} else {
 927		if (shmem_acct_block(info->flags)) {
 928			error = -ENOSPC;
 929			goto failed;
 930		}
 931		if (sbinfo->max_blocks) {
 932			if (percpu_counter_compare(&sbinfo->used_blocks,
 933						sbinfo->max_blocks) >= 0) {
 934				error = -ENOSPC;
 935				goto unacct;
 936			}
 937			percpu_counter_inc(&sbinfo->used_blocks);
 938		}
 939
 940		page = shmem_alloc_page(gfp, info, index);
 941		if (!page) {
 942			error = -ENOMEM;
 943			goto decused;
 
 
 
 
 
 
 
 
 
 
 
 
 944		}
 
 
 945
 946		SetPageSwapBacked(page);
 947		__set_page_locked(page);
 948		error = mem_cgroup_cache_charge(page, current->mm,
 949						gfp & GFP_RECLAIM_MASK);
 950		if (!error)
 951			error = shmem_add_to_page_cache(page, mapping, index,
 952						gfp, NULL);
 953		if (error)
 954			goto decused;
 955		lru_cache_add_anon(page);
 956
 957		spin_lock(&info->lock);
 958		info->alloced++;
 959		inode->i_blocks += BLOCKS_PER_PAGE;
 960		shmem_recalc_inode(inode);
 961		spin_unlock(&info->lock);
 962
 963		clear_highpage(page);
 964		flush_dcache_page(page);
 
 
 965		SetPageUptodate(page);
 966		if (sgp == SGP_DIRTY)
 967			set_page_dirty(page);
 968	}
 969done:
 970	/* Perhaps the file has been truncated since we checked */
 971	if (sgp != SGP_WRITE &&
 972	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 
 
 
 
 
 
 
 973		error = -EINVAL;
 974		goto trunc;
 975	}
 976	*pagep = page;
 
 977	return 0;
 978
 979	/*
 980	 * Error recovery.
 981	 */
 982trunc:
 983	ClearPageDirty(page);
 984	delete_from_page_cache(page);
 985	spin_lock(&info->lock);
 986	info->alloced--;
 987	inode->i_blocks -= BLOCKS_PER_PAGE;
 988	spin_unlock(&info->lock);
 989decused:
 990	if (sbinfo->max_blocks)
 991		percpu_counter_add(&sbinfo->used_blocks, -1);
 992unacct:
 993	shmem_unacct_blocks(info->flags, 1);
 994failed:
 995	if (swap.val && error != -EINVAL) {
 996		struct page *test = find_get_page(mapping, index);
 997		if (test && !radix_tree_exceptional_entry(test))
 998			page_cache_release(test);
 999		/* Have another try if the entry has changed */
1000		if (test != swp_to_radix_entry(swap))
1001			error = -EEXIST;
1002	}
 
1003	if (page) {
1004		unlock_page(page);
1005		page_cache_release(page);
1006	}
1007	if (error == -ENOSPC && !once++) {
1008		info = SHMEM_I(inode);
1009		spin_lock(&info->lock);
1010		shmem_recalc_inode(inode);
1011		spin_unlock(&info->lock);
1012		goto repeat;
1013	}
1014	if (error == -EEXIST)
1015		goto repeat;
1016	return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
1020{
1021	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022	int error;
1023	int ret = VM_FAULT_LOCKED;
 
1024
1025	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026	if (error)
1027		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 
 
 
 
 
1028
1029	if (ret & VM_FAULT_MAJOR) {
1030		count_vm_event(PGMAJFAULT);
1031		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	return ret;
1034}
1035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044					  unsigned long addr)
1045{
1046	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047	pgoff_t index;
1048
1049	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056	struct inode *inode = file->f_path.dentry->d_inode;
1057	struct shmem_inode_info *info = SHMEM_I(inode);
1058	int retval = -ENOMEM;
1059
1060	spin_lock(&info->lock);
 
 
 
 
1061	if (lock && !(info->flags & VM_LOCKED)) {
1062		if (!user_shm_lock(inode->i_size, user))
1063			goto out_nomem;
1064		info->flags |= VM_LOCKED;
1065		mapping_set_unevictable(file->f_mapping);
1066	}
1067	if (!lock && (info->flags & VM_LOCKED) && user) {
1068		user_shm_unlock(inode->i_size, user);
1069		info->flags &= ~VM_LOCKED;
1070		mapping_clear_unevictable(file->f_mapping);
1071		scan_mapping_unevictable_pages(file->f_mapping);
1072	}
1073	retval = 0;
1074
1075out_nomem:
1076	spin_unlock(&info->lock);
1077	return retval;
1078}
1079
1080static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081{
 
 
 
 
 
 
 
 
 
 
1082	file_accessed(file);
1083	vma->vm_ops = &shmem_vm_ops;
1084	vma->vm_flags |= VM_CAN_NONLINEAR;
 
 
 
 
1085	return 0;
1086}
1087
1088static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089				     int mode, dev_t dev, unsigned long flags)
1090{
1091	struct inode *inode;
1092	struct shmem_inode_info *info;
1093	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 
1094
1095	if (shmem_reserve_inode(sb))
1096		return NULL;
1097
1098	inode = new_inode(sb);
1099	if (inode) {
1100		inode->i_ino = get_next_ino();
1101		inode_init_owner(inode, dir, mode);
1102		inode->i_blocks = 0;
1103		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105		inode->i_generation = get_seconds();
1106		info = SHMEM_I(inode);
1107		memset(info, 0, (char *)inode - (char *)info);
1108		spin_lock_init(&info->lock);
 
 
1109		info->flags = flags & VM_NORESERVE;
 
1110		INIT_LIST_HEAD(&info->swaplist);
1111		INIT_LIST_HEAD(&info->xattr_list);
1112		cache_no_acl(inode);
1113
1114		switch (mode & S_IFMT) {
1115		default:
1116			inode->i_op = &shmem_special_inode_operations;
1117			init_special_inode(inode, mode, dev);
1118			break;
1119		case S_IFREG:
1120			inode->i_mapping->a_ops = &shmem_aops;
1121			inode->i_op = &shmem_inode_operations;
1122			inode->i_fop = &shmem_file_operations;
1123			mpol_shared_policy_init(&info->policy,
1124						 shmem_get_sbmpol(sbinfo));
1125			break;
1126		case S_IFDIR:
1127			inc_nlink(inode);
1128			/* Some things misbehave if size == 0 on a directory */
1129			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130			inode->i_op = &shmem_dir_inode_operations;
1131			inode->i_fop = &simple_dir_operations;
1132			break;
1133		case S_IFLNK:
1134			/*
1135			 * Must not load anything in the rbtree,
1136			 * mpol_free_shared_policy will not be called.
1137			 */
1138			mpol_shared_policy_init(&info->policy, NULL);
1139			break;
1140		}
 
 
1141	} else
1142		shmem_free_inode(sb);
1143	return inode;
1144}
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146#ifdef CONFIG_TMPFS
1147static const struct inode_operations shmem_symlink_inode_operations;
1148static const struct inode_operations shmem_short_symlink_operations;
1149
 
 
 
 
 
 
1150static int
1151shmem_write_begin(struct file *file, struct address_space *mapping,
1152			loff_t pos, unsigned len, unsigned flags,
1153			struct page **pagep, void **fsdata)
1154{
1155	struct inode *inode = mapping->host;
1156	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
 
 
 
 
 
 
 
 
 
 
 
1158}
1159
1160static int
1161shmem_write_end(struct file *file, struct address_space *mapping,
1162			loff_t pos, unsigned len, unsigned copied,
1163			struct page *page, void *fsdata)
1164{
1165	struct inode *inode = mapping->host;
1166
1167	if (pos + copied > inode->i_size)
1168		i_size_write(inode, pos + copied);
1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170	set_page_dirty(page);
1171	unlock_page(page);
1172	page_cache_release(page);
1173
1174	return copied;
1175}
1176
1177static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178{
1179	struct inode *inode = filp->f_path.dentry->d_inode;
 
1180	struct address_space *mapping = inode->i_mapping;
1181	pgoff_t index;
1182	unsigned long offset;
1183	enum sgp_type sgp = SGP_READ;
 
 
 
1184
1185	/*
1186	 * Might this read be for a stacking filesystem?  Then when reading
1187	 * holes of a sparse file, we actually need to allocate those pages,
1188	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189	 */
1190	if (segment_eq(get_fs(), KERNEL_DS))
1191		sgp = SGP_DIRTY;
1192
1193	index = *ppos >> PAGE_CACHE_SHIFT;
1194	offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196	for (;;) {
1197		struct page *page = NULL;
1198		pgoff_t end_index;
1199		unsigned long nr, ret;
1200		loff_t i_size = i_size_read(inode);
1201
1202		end_index = i_size >> PAGE_CACHE_SHIFT;
1203		if (index > end_index)
1204			break;
1205		if (index == end_index) {
1206			nr = i_size & ~PAGE_CACHE_MASK;
1207			if (nr <= offset)
1208				break;
1209		}
1210
1211		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212		if (desc->error) {
1213			if (desc->error == -EINVAL)
1214				desc->error = 0;
1215			break;
1216		}
1217		if (page)
 
 
1218			unlock_page(page);
 
1219
1220		/*
1221		 * We must evaluate after, since reads (unlike writes)
1222		 * are called without i_mutex protection against truncate
1223		 */
1224		nr = PAGE_CACHE_SIZE;
1225		i_size = i_size_read(inode);
1226		end_index = i_size >> PAGE_CACHE_SHIFT;
1227		if (index == end_index) {
1228			nr = i_size & ~PAGE_CACHE_MASK;
1229			if (nr <= offset) {
1230				if (page)
1231					page_cache_release(page);
1232				break;
1233			}
1234		}
1235		nr -= offset;
1236
1237		if (page) {
1238			/*
1239			 * If users can be writing to this page using arbitrary
1240			 * virtual addresses, take care about potential aliasing
1241			 * before reading the page on the kernel side.
1242			 */
1243			if (mapping_writably_mapped(mapping))
1244				flush_dcache_page(page);
1245			/*
1246			 * Mark the page accessed if we read the beginning.
1247			 */
1248			if (!offset)
1249				mark_page_accessed(page);
1250		} else {
1251			page = ZERO_PAGE(0);
1252			page_cache_get(page);
1253		}
1254
1255		/*
1256		 * Ok, we have the page, and it's up-to-date, so
1257		 * now we can copy it to user space...
1258		 *
1259		 * The actor routine returns how many bytes were actually used..
1260		 * NOTE! This may not be the same as how much of a user buffer
1261		 * we filled up (we may be padding etc), so we can only update
1262		 * "pos" here (the actor routine has to update the user buffer
1263		 * pointers and the remaining count).
1264		 */
1265		ret = actor(desc, page, offset, nr);
 
1266		offset += ret;
1267		index += offset >> PAGE_CACHE_SHIFT;
1268		offset &= ~PAGE_CACHE_MASK;
1269
1270		page_cache_release(page);
1271		if (ret != nr || !desc->count)
1272			break;
1273
 
 
 
1274		cond_resched();
1275	}
1276
1277	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278	file_accessed(filp);
 
1279}
1280
1281static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283{
1284	struct file *filp = iocb->ki_filp;
1285	ssize_t retval;
1286	unsigned long seg;
1287	size_t count;
1288	loff_t *ppos = &iocb->ki_pos;
1289
1290	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291	if (retval)
1292		return retval;
1293
1294	for (seg = 0; seg < nr_segs; seg++) {
1295		read_descriptor_t desc;
1296
1297		desc.written = 0;
1298		desc.arg.buf = iov[seg].iov_base;
1299		desc.count = iov[seg].iov_len;
1300		if (desc.count == 0)
1301			continue;
1302		desc.error = 0;
1303		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304		retval += desc.written;
1305		if (desc.error) {
1306			retval = retval ?: desc.error;
1307			break;
1308		}
1309		if (desc.count > 0)
1310			break;
1311	}
1312	return retval;
1313}
1314
1315static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316				struct pipe_inode_info *pipe, size_t len,
1317				unsigned int flags)
1318{
1319	struct address_space *mapping = in->f_mapping;
1320	struct inode *inode = mapping->host;
1321	unsigned int loff, nr_pages, req_pages;
1322	struct page *pages[PIPE_DEF_BUFFERS];
1323	struct partial_page partial[PIPE_DEF_BUFFERS];
1324	struct page *page;
1325	pgoff_t index, end_index;
1326	loff_t isize, left;
1327	int error, page_nr;
1328	struct splice_pipe_desc spd = {
1329		.pages = pages,
1330		.partial = partial,
1331		.flags = flags,
1332		.ops = &page_cache_pipe_buf_ops,
1333		.spd_release = spd_release_page,
1334	};
1335
1336	isize = i_size_read(inode);
1337	if (unlikely(*ppos >= isize))
1338		return 0;
1339
1340	left = isize - *ppos;
1341	if (unlikely(left < len))
1342		len = left;
1343
1344	if (splice_grow_spd(pipe, &spd))
1345		return -ENOMEM;
1346
1347	index = *ppos >> PAGE_CACHE_SHIFT;
1348	loff = *ppos & ~PAGE_CACHE_MASK;
1349	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350	nr_pages = min(req_pages, pipe->buffers);
1351
1352	spd.nr_pages = find_get_pages_contig(mapping, index,
1353						nr_pages, spd.pages);
1354	index += spd.nr_pages;
1355	error = 0;
 
 
1356
1357	while (spd.nr_pages < nr_pages) {
1358		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359		if (error)
1360			break;
1361		unlock_page(page);
1362		spd.pages[spd.nr_pages++] = page;
1363		index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
1364	}
1365
1366	index = *ppos >> PAGE_CACHE_SHIFT;
1367	nr_pages = spd.nr_pages;
1368	spd.nr_pages = 0;
1369
1370	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371		unsigned int this_len;
1372
1373		if (!len)
1374			break;
1375
1376		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377		page = spd.pages[page_nr];
1378
1379		if (!PageUptodate(page) || page->mapping != mapping) {
1380			error = shmem_getpage(inode, index, &page,
1381							SGP_CACHE, NULL);
1382			if (error)
1383				break;
1384			unlock_page(page);
1385			page_cache_release(spd.pages[page_nr]);
1386			spd.pages[page_nr] = page;
1387		}
1388
1389		isize = i_size_read(inode);
1390		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391		if (unlikely(!isize || index > end_index))
1392			break;
 
 
 
1393
1394		if (end_index == index) {
1395			unsigned int plen;
 
 
 
 
 
 
1396
1397			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398			if (plen <= loff)
1399				break;
1400
1401			this_len = min(this_len, plen - loff);
1402			len = this_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403		}
1404
1405		spd.partial[page_nr].offset = loff;
1406		spd.partial[page_nr].len = this_len;
1407		len -= this_len;
1408		loff = 0;
1409		spd.nr_pages++;
1410		index++;
1411	}
1412
1413	while (page_nr < nr_pages)
1414		page_cache_release(spd.pages[page_nr++]);
1415
1416	if (spd.nr_pages)
1417		error = splice_to_pipe(pipe, &spd);
1418
1419	splice_shrink_spd(pipe, &spd);
1420
1421	if (error > 0) {
1422		*ppos += error;
1423		file_accessed(in);
 
 
 
 
 
 
 
 
1424	}
 
 
 
 
 
 
 
 
 
 
1425	return error;
1426}
1427
1428static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429{
1430	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432	buf->f_type = TMPFS_MAGIC;
1433	buf->f_bsize = PAGE_CACHE_SIZE;
1434	buf->f_namelen = NAME_MAX;
1435	if (sbinfo->max_blocks) {
1436		buf->f_blocks = sbinfo->max_blocks;
1437		buf->f_bavail =
1438		buf->f_bfree  = sbinfo->max_blocks -
1439				percpu_counter_sum(&sbinfo->used_blocks);
1440	}
1441	if (sbinfo->max_inodes) {
1442		buf->f_files = sbinfo->max_inodes;
1443		buf->f_ffree = sbinfo->free_inodes;
1444	}
1445	/* else leave those fields 0 like simple_statfs */
 
 
 
1446	return 0;
1447}
1448
1449/*
1450 * File creation. Allocate an inode, and we're done..
1451 */
1452static int
1453shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
 
1454{
1455	struct inode *inode;
1456	int error = -ENOSPC;
1457
1458	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459	if (inode) {
 
 
 
1460		error = security_inode_init_security(inode, dir,
1461						     &dentry->d_name, NULL,
1462						     NULL, NULL);
1463		if (error) {
1464			if (error != -EOPNOTSUPP) {
1465				iput(inode);
1466				return error;
1467			}
1468		}
1469#ifdef CONFIG_TMPFS_POSIX_ACL
1470		error = generic_acl_init(inode, dir);
1471		if (error) {
1472			iput(inode);
1473			return error;
1474		}
1475#else
1476		error = 0;
1477#endif
1478		dir->i_size += BOGO_DIRENT_SIZE;
1479		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480		d_instantiate(dentry, inode);
1481		dget(dentry); /* Extra count - pin the dentry in core */
1482	}
1483	return error;
 
 
 
1484}
1485
1486static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487{
1488	int error;
1489
1490	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
 
1491		return error;
1492	inc_nlink(dir);
1493	return 0;
1494}
1495
1496static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497		struct nameidata *nd)
1498{
1499	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500}
1501
1502/*
1503 * Link a file..
1504 */
1505static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506{
1507	struct inode *inode = old_dentry->d_inode;
1508	int ret;
1509
1510	/*
1511	 * No ordinary (disk based) filesystem counts links as inodes;
1512	 * but each new link needs a new dentry, pinning lowmem, and
1513	 * tmpfs dentries cannot be pruned until they are unlinked.
 
 
1514	 */
1515	ret = shmem_reserve_inode(inode->i_sb);
1516	if (ret)
1517		goto out;
 
 
1518
1519	dir->i_size += BOGO_DIRENT_SIZE;
1520	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521	inc_nlink(inode);
1522	ihold(inode);	/* New dentry reference */
1523	dget(dentry);		/* Extra pinning count for the created dentry */
1524	d_instantiate(dentry, inode);
1525out:
1526	return ret;
1527}
1528
1529static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530{
1531	struct inode *inode = dentry->d_inode;
1532
1533	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534		shmem_free_inode(inode->i_sb);
1535
1536	dir->i_size -= BOGO_DIRENT_SIZE;
1537	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538	drop_nlink(inode);
1539	dput(dentry);	/* Undo the count from "create" - this does all the work */
1540	return 0;
1541}
1542
1543static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544{
1545	if (!simple_empty(dentry))
1546		return -ENOTEMPTY;
1547
1548	drop_nlink(dentry->d_inode);
1549	drop_nlink(dir);
1550	return shmem_unlink(dir, dentry);
1551}
1552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553/*
1554 * The VFS layer already does all the dentry stuff for rename,
1555 * we just have to decrement the usage count for the target if
1556 * it exists so that the VFS layer correctly free's it when it
1557 * gets overwritten.
1558 */
1559static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
 
 
 
1560{
1561	struct inode *inode = old_dentry->d_inode;
1562	int they_are_dirs = S_ISDIR(inode->i_mode);
1563
 
 
 
 
 
 
1564	if (!simple_empty(new_dentry))
1565		return -ENOTEMPTY;
1566
1567	if (new_dentry->d_inode) {
 
 
 
 
 
 
 
 
1568		(void) shmem_unlink(new_dir, new_dentry);
1569		if (they_are_dirs)
 
1570			drop_nlink(old_dir);
 
1571	} else if (they_are_dirs) {
1572		drop_nlink(old_dir);
1573		inc_nlink(new_dir);
1574	}
1575
1576	old_dir->i_size -= BOGO_DIRENT_SIZE;
1577	new_dir->i_size += BOGO_DIRENT_SIZE;
1578	old_dir->i_ctime = old_dir->i_mtime =
1579	new_dir->i_ctime = new_dir->i_mtime =
1580	inode->i_ctime = CURRENT_TIME;
1581	return 0;
1582}
1583
1584static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
1585{
1586	int error;
1587	int len;
1588	struct inode *inode;
1589	struct page *page;
1590	char *kaddr;
1591	struct shmem_inode_info *info;
1592
1593	len = strlen(symname) + 1;
1594	if (len > PAGE_CACHE_SIZE)
1595		return -ENAMETOOLONG;
1596
1597	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
 
1598	if (!inode)
1599		return -ENOSPC;
1600
1601	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602					     NULL, NULL);
1603	if (error) {
1604		if (error != -EOPNOTSUPP) {
1605			iput(inode);
1606			return error;
1607		}
1608		error = 0;
1609	}
1610
1611	info = SHMEM_I(inode);
1612	inode->i_size = len-1;
1613	if (len <= SHORT_SYMLINK_LEN) {
1614		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615		if (!info->symlink) {
1616			iput(inode);
1617			return -ENOMEM;
1618		}
1619		inode->i_op = &shmem_short_symlink_operations;
1620	} else {
1621		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
 
1622		if (error) {
1623			iput(inode);
1624			return error;
1625		}
1626		inode->i_mapping->a_ops = &shmem_aops;
1627		inode->i_op = &shmem_symlink_inode_operations;
1628		kaddr = kmap_atomic(page, KM_USER0);
1629		memcpy(kaddr, symname, len);
1630		kunmap_atomic(kaddr, KM_USER0);
1631		set_page_dirty(page);
1632		unlock_page(page);
1633		page_cache_release(page);
1634	}
1635	dir->i_size += BOGO_DIRENT_SIZE;
1636	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637	d_instantiate(dentry, inode);
1638	dget(dentry);
1639	return 0;
1640}
1641
1642static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643{
1644	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645	return NULL;
1646}
1647
1648static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1649{
1650	struct page *page = NULL;
1651	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653	if (page)
 
 
 
 
 
 
 
 
 
 
1654		unlock_page(page);
1655	return page;
1656}
1657
1658static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659{
1660	if (!IS_ERR(nd_get_link(nd))) {
1661		struct page *page = cookie;
1662		kunmap(page);
1663		mark_page_accessed(page);
1664		page_cache_release(page);
1665	}
 
 
1666}
1667
1668#ifdef CONFIG_TMPFS_XATTR
1669/*
1670 * Superblocks without xattr inode operations may get some security.* xattr
1671 * support from the LSM "for free". As soon as we have any other xattrs
1672 * like ACLs, we also need to implement the security.* handlers at
1673 * filesystem level, though.
1674 */
1675
1676static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677			   void *buffer, size_t size)
1678{
1679	struct shmem_inode_info *info;
1680	struct shmem_xattr *xattr;
1681	int ret = -ENODATA;
1682
1683	info = SHMEM_I(dentry->d_inode);
1684
1685	spin_lock(&info->lock);
1686	list_for_each_entry(xattr, &info->xattr_list, list) {
1687		if (strcmp(name, xattr->name))
1688			continue;
1689
1690		ret = xattr->size;
1691		if (buffer) {
1692			if (size < xattr->size)
1693				ret = -ERANGE;
1694			else
1695				memcpy(buffer, xattr->value, xattr->size);
1696		}
1697		break;
1698	}
1699	spin_unlock(&info->lock);
1700	return ret;
1701}
1702
1703static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704			   const void *value, size_t size, int flags)
1705{
1706	struct inode *inode = dentry->d_inode;
1707	struct shmem_inode_info *info = SHMEM_I(inode);
1708	struct shmem_xattr *xattr;
1709	struct shmem_xattr *new_xattr = NULL;
1710	size_t len;
1711	int err = 0;
1712
1713	/* value == NULL means remove */
1714	if (value) {
1715		/* wrap around? */
1716		len = sizeof(*new_xattr) + size;
1717		if (len <= sizeof(*new_xattr))
1718			return -ENOMEM;
1719
1720		new_xattr = kmalloc(len, GFP_KERNEL);
1721		if (!new_xattr)
1722			return -ENOMEM;
1723
1724		new_xattr->name = kstrdup(name, GFP_KERNEL);
 
 
1725		if (!new_xattr->name) {
1726			kfree(new_xattr);
1727			return -ENOMEM;
1728		}
1729
1730		new_xattr->size = size;
1731		memcpy(new_xattr->value, value, size);
1732	}
 
1733
1734	spin_lock(&info->lock);
1735	list_for_each_entry(xattr, &info->xattr_list, list) {
1736		if (!strcmp(name, xattr->name)) {
1737			if (flags & XATTR_CREATE) {
1738				xattr = new_xattr;
1739				err = -EEXIST;
1740			} else if (new_xattr) {
1741				list_replace(&xattr->list, &new_xattr->list);
1742			} else {
1743				list_del(&xattr->list);
1744			}
1745			goto out;
1746		}
1747	}
1748	if (flags & XATTR_REPLACE) {
1749		xattr = new_xattr;
1750		err = -ENODATA;
1751	} else {
1752		list_add(&new_xattr->list, &info->xattr_list);
1753		xattr = NULL;
1754	}
1755out:
1756	spin_unlock(&info->lock);
1757	if (xattr)
1758		kfree(xattr->name);
1759	kfree(xattr);
1760	return err;
1761}
1762
1763static const struct xattr_handler *shmem_xattr_handlers[] = {
1764#ifdef CONFIG_TMPFS_POSIX_ACL
1765	&generic_acl_access_handler,
1766	&generic_acl_default_handler,
1767#endif
1768	NULL
1769};
1770
1771static int shmem_xattr_validate(const char *name)
1772{
1773	struct { const char *prefix; size_t len; } arr[] = {
1774		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776	};
1777	int i;
1778
1779	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780		size_t preflen = arr[i].len;
1781		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782			if (!name[preflen])
1783				return -EINVAL;
1784			return 0;
1785		}
1786	}
1787	return -EOPNOTSUPP;
1788}
1789
1790static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791			      void *buffer, size_t size)
 
1792{
1793	int err;
1794
1795	/*
1796	 * If this is a request for a synthetic attribute in the system.*
1797	 * namespace use the generic infrastructure to resolve a handler
1798	 * for it via sb->s_xattr.
1799	 */
1800	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801		return generic_getxattr(dentry, name, buffer, size);
1802
1803	err = shmem_xattr_validate(name);
1804	if (err)
1805		return err;
1806
1807	return shmem_xattr_get(dentry, name, buffer, size);
 
1808}
1809
1810static int shmem_setxattr(struct dentry *dentry, const char *name,
1811			  const void *value, size_t size, int flags)
 
 
 
1812{
1813	int err;
1814
1815	/*
1816	 * If this is a request for a synthetic attribute in the system.*
1817	 * namespace use the generic infrastructure to resolve a handler
1818	 * for it via sb->s_xattr.
1819	 */
1820	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821		return generic_setxattr(dentry, name, value, size, flags);
1822
1823	err = shmem_xattr_validate(name);
1824	if (err)
1825		return err;
1826
1827	if (size == 0)
1828		value = "";  /* empty EA, do not remove */
1829
1830	return shmem_xattr_set(dentry, name, value, size, flags);
1831
 
 
1832}
1833
1834static int shmem_removexattr(struct dentry *dentry, const char *name)
1835{
1836	int err;
1837
1838	/*
1839	 * If this is a request for a synthetic attribute in the system.*
1840	 * namespace use the generic infrastructure to resolve a handler
1841	 * for it via sb->s_xattr.
1842	 */
1843	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844		return generic_removexattr(dentry, name);
1845
1846	err = shmem_xattr_validate(name);
1847	if (err)
1848		return err;
1849
1850	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851}
 
 
 
1852
1853static bool xattr_is_trusted(const char *name)
1854{
1855	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856}
 
 
 
 
 
1857
1858static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859{
1860	bool trusted = capable(CAP_SYS_ADMIN);
1861	struct shmem_xattr *xattr;
1862	struct shmem_inode_info *info;
1863	size_t used = 0;
1864
1865	info = SHMEM_I(dentry->d_inode);
1866
1867	spin_lock(&info->lock);
1868	list_for_each_entry(xattr, &info->xattr_list, list) {
1869		size_t len;
1870
1871		/* skip "trusted." attributes for unprivileged callers */
1872		if (!trusted && xattr_is_trusted(xattr->name))
1873			continue;
1874
1875		len = strlen(xattr->name) + 1;
1876		used += len;
1877		if (buffer) {
1878			if (size < used) {
1879				used = -ERANGE;
1880				break;
1881			}
1882			memcpy(buffer, xattr->name, len);
1883			buffer += len;
1884		}
1885	}
1886	spin_unlock(&info->lock);
1887
1888	return used;
1889}
1890#endif /* CONFIG_TMPFS_XATTR */
1891
1892static const struct inode_operations shmem_short_symlink_operations = {
1893	.readlink	= generic_readlink,
1894	.follow_link	= shmem_follow_short_symlink,
1895#ifdef CONFIG_TMPFS_XATTR
1896	.setxattr	= shmem_setxattr,
1897	.getxattr	= shmem_getxattr,
1898	.listxattr	= shmem_listxattr,
1899	.removexattr	= shmem_removexattr,
1900#endif
1901};
1902
1903static const struct inode_operations shmem_symlink_inode_operations = {
1904	.readlink	= generic_readlink,
1905	.follow_link	= shmem_follow_link,
1906	.put_link	= shmem_put_link,
1907#ifdef CONFIG_TMPFS_XATTR
1908	.setxattr	= shmem_setxattr,
1909	.getxattr	= shmem_getxattr,
1910	.listxattr	= shmem_listxattr,
1911	.removexattr	= shmem_removexattr,
1912#endif
1913};
1914
1915static struct dentry *shmem_get_parent(struct dentry *child)
1916{
1917	return ERR_PTR(-ESTALE);
1918}
1919
1920static int shmem_match(struct inode *ino, void *vfh)
1921{
1922	__u32 *fh = vfh;
1923	__u64 inum = fh[2];
1924	inum = (inum << 32) | fh[1];
1925	return ino->i_ino == inum && fh[0] == ino->i_generation;
1926}
1927
 
 
 
 
 
 
 
 
 
1928static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929		struct fid *fid, int fh_len, int fh_type)
1930{
1931	struct inode *inode;
1932	struct dentry *dentry = NULL;
1933	u64 inum = fid->raw[2];
1934	inum = (inum << 32) | fid->raw[1];
1935
1936	if (fh_len < 3)
1937		return NULL;
1938
 
 
 
1939	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940			shmem_match, fid->raw);
1941	if (inode) {
1942		dentry = d_find_alias(inode);
1943		iput(inode);
1944	}
1945
1946	return dentry;
1947}
1948
1949static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950				int connectable)
1951{
1952	struct inode *inode = dentry->d_inode;
1953
1954	if (*len < 3) {
1955		*len = 3;
1956		return 255;
1957	}
1958
1959	if (inode_unhashed(inode)) {
1960		/* Unfortunately insert_inode_hash is not idempotent,
1961		 * so as we hash inodes here rather than at creation
1962		 * time, we need a lock to ensure we only try
1963		 * to do it once
1964		 */
1965		static DEFINE_SPINLOCK(lock);
1966		spin_lock(&lock);
1967		if (inode_unhashed(inode))
1968			__insert_inode_hash(inode,
1969					    inode->i_ino + inode->i_generation);
1970		spin_unlock(&lock);
1971	}
1972
1973	fh[0] = inode->i_generation;
1974	fh[1] = inode->i_ino;
1975	fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977	*len = 3;
1978	return 1;
1979}
1980
1981static const struct export_operations shmem_export_ops = {
1982	.get_parent     = shmem_get_parent,
1983	.encode_fh      = shmem_encode_fh,
1984	.fh_to_dentry	= shmem_fh_to_dentry,
1985};
1986
1987static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988			       bool remount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1989{
1990	char *this_char, *value, *rest;
 
 
 
 
 
 
1991
1992	while (options != NULL) {
1993		this_char = options;
1994		for (;;) {
1995			/*
1996			 * NUL-terminate this option: unfortunately,
1997			 * mount options form a comma-separated list,
1998			 * but mpol's nodelist may also contain commas.
1999			 */
2000			options = strchr(options, ',');
2001			if (options == NULL)
2002				break;
2003			options++;
2004			if (!isdigit(*options)) {
2005				options[-1] = '\0';
2006				break;
2007			}
2008		}
2009		if (!*this_char)
2010			continue;
2011		if ((value = strchr(this_char,'=')) != NULL) {
2012			*value++ = 0;
2013		} else {
2014			printk(KERN_ERR
2015			    "tmpfs: No value for mount option '%s'\n",
2016			    this_char);
2017			return 1;
2018		}
2019
2020		if (!strcmp(this_char,"size")) {
2021			unsigned long long size;
2022			size = memparse(value,&rest);
2023			if (*rest == '%') {
2024				size <<= PAGE_SHIFT;
2025				size *= totalram_pages;
2026				do_div(size, 100);
2027				rest++;
2028			}
2029			if (*rest)
2030				goto bad_val;
2031			sbinfo->max_blocks =
2032				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033		} else if (!strcmp(this_char,"nr_blocks")) {
2034			sbinfo->max_blocks = memparse(value, &rest);
2035			if (*rest)
2036				goto bad_val;
2037		} else if (!strcmp(this_char,"nr_inodes")) {
2038			sbinfo->max_inodes = memparse(value, &rest);
2039			if (*rest)
2040				goto bad_val;
2041		} else if (!strcmp(this_char,"mode")) {
2042			if (remount)
2043				continue;
2044			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045			if (*rest)
2046				goto bad_val;
2047		} else if (!strcmp(this_char,"uid")) {
2048			if (remount)
2049				continue;
2050			sbinfo->uid = simple_strtoul(value, &rest, 0);
2051			if (*rest)
2052				goto bad_val;
2053		} else if (!strcmp(this_char,"gid")) {
2054			if (remount)
2055				continue;
2056			sbinfo->gid = simple_strtoul(value, &rest, 0);
2057			if (*rest)
2058				goto bad_val;
2059		} else if (!strcmp(this_char,"mpol")) {
2060			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2061				goto bad_val;
2062		} else {
2063			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064			       this_char);
2065			return 1;
2066		}
2067	}
2068	return 0;
2069
2070bad_val:
2071	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072	       value, this_char);
2073	return 1;
2074
2075}
2076
2077static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
 
 
 
 
 
 
 
2078{
2079	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080	struct shmem_sb_info config = *sbinfo;
2081	unsigned long inodes;
2082	int error = -EINVAL;
2083
2084	if (shmem_parse_options(data, &config, true))
2085		return error;
2086
2087	spin_lock(&sbinfo->stat_lock);
2088	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090		goto out;
2091	if (config.max_inodes < inodes)
2092		goto out;
2093	/*
2094	 * Those tests disallow limited->unlimited while any are in use;
2095	 * but we must separately disallow unlimited->limited, because
2096	 * in that case we have no record of how much is already in use.
2097	 */
2098	if (config.max_blocks && !sbinfo->max_blocks)
2099		goto out;
2100	if (config.max_inodes && !sbinfo->max_inodes)
 
 
 
 
 
 
 
 
 
 
 
 
 
2101		goto out;
 
2102
2103	error = 0;
2104	sbinfo->max_blocks  = config.max_blocks;
2105	sbinfo->max_inodes  = config.max_inodes;
2106	sbinfo->free_inodes = config.max_inodes - inodes;
 
 
 
 
 
 
2107
2108	mpol_put(sbinfo->mpol);
2109	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
 
 
 
 
 
 
 
 
2110out:
2111	spin_unlock(&sbinfo->stat_lock);
2112	return error;
2113}
2114
2115static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116{
2117	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119	if (sbinfo->max_blocks != shmem_default_max_blocks())
2120		seq_printf(seq, ",size=%luk",
2121			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122	if (sbinfo->max_inodes != shmem_default_max_inodes())
2123		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126	if (sbinfo->uid != 0)
2127		seq_printf(seq, ",uid=%u", sbinfo->uid);
2128	if (sbinfo->gid != 0)
2129		seq_printf(seq, ",gid=%u", sbinfo->gid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130	shmem_show_mpol(seq, sbinfo->mpol);
2131	return 0;
2132}
 
2133#endif /* CONFIG_TMPFS */
2134
2135static void shmem_put_super(struct super_block *sb)
2136{
2137	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
 
2139	percpu_counter_destroy(&sbinfo->used_blocks);
 
2140	kfree(sbinfo);
2141	sb->s_fs_info = NULL;
2142}
2143
2144int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145{
 
2146	struct inode *inode;
2147	struct dentry *root;
2148	struct shmem_sb_info *sbinfo;
2149	int err = -ENOMEM;
2150
2151	/* Round up to L1_CACHE_BYTES to resist false sharing */
2152	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153				L1_CACHE_BYTES), GFP_KERNEL);
2154	if (!sbinfo)
2155		return -ENOMEM;
2156
2157	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158	sbinfo->uid = current_fsuid();
2159	sbinfo->gid = current_fsgid();
2160	sb->s_fs_info = sbinfo;
2161
2162#ifdef CONFIG_TMPFS
2163	/*
2164	 * Per default we only allow half of the physical ram per
2165	 * tmpfs instance, limiting inodes to one per page of lowmem;
2166	 * but the internal instance is left unlimited.
2167	 */
2168	if (!(sb->s_flags & MS_NOUSER)) {
2169		sbinfo->max_blocks = shmem_default_max_blocks();
2170		sbinfo->max_inodes = shmem_default_max_inodes();
2171		if (shmem_parse_options(data, sbinfo, false)) {
2172			err = -EINVAL;
2173			goto failed;
2174		}
 
 
2175	}
2176	sb->s_export_op = &shmem_export_ops;
 
2177#else
2178	sb->s_flags |= MS_NOUSER;
2179#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180
2181	spin_lock_init(&sbinfo->stat_lock);
2182	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183		goto failed;
2184	sbinfo->free_inodes = sbinfo->max_inodes;
 
2185
2186	sb->s_maxbytes = MAX_LFS_FILESIZE;
2187	sb->s_blocksize = PAGE_CACHE_SIZE;
2188	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189	sb->s_magic = TMPFS_MAGIC;
2190	sb->s_op = &shmem_ops;
2191	sb->s_time_gran = 1;
2192#ifdef CONFIG_TMPFS_XATTR
2193	sb->s_xattr = shmem_xattr_handlers;
2194#endif
2195#ifdef CONFIG_TMPFS_POSIX_ACL
2196	sb->s_flags |= MS_POSIXACL;
2197#endif
 
2198
2199	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200	if (!inode)
2201		goto failed;
2202	inode->i_uid = sbinfo->uid;
2203	inode->i_gid = sbinfo->gid;
2204	root = d_alloc_root(inode);
2205	if (!root)
2206		goto failed_iput;
2207	sb->s_root = root;
2208	return 0;
2209
2210failed_iput:
2211	iput(inode);
2212failed:
2213	shmem_put_super(sb);
2214	return err;
2215}
2216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2217static struct kmem_cache *shmem_inode_cachep;
2218
2219static struct inode *shmem_alloc_inode(struct super_block *sb)
2220{
2221	struct shmem_inode_info *info;
2222	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223	if (!info)
2224		return NULL;
2225	return &info->vfs_inode;
2226}
2227
2228static void shmem_destroy_callback(struct rcu_head *head)
2229{
2230	struct inode *inode = container_of(head, struct inode, i_rcu);
2231	INIT_LIST_HEAD(&inode->i_dentry);
2232	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233}
2234
2235static void shmem_destroy_inode(struct inode *inode)
2236{
2237	if ((inode->i_mode & S_IFMT) == S_IFREG)
2238		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240}
2241
2242static void shmem_init_inode(void *foo)
2243{
2244	struct shmem_inode_info *info = foo;
2245	inode_init_once(&info->vfs_inode);
2246}
2247
2248static int shmem_init_inodecache(void)
2249{
2250	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251				sizeof(struct shmem_inode_info),
2252				0, SLAB_PANIC, shmem_init_inode);
2253	return 0;
2254}
2255
2256static void shmem_destroy_inodecache(void)
2257{
2258	kmem_cache_destroy(shmem_inode_cachep);
2259}
2260
2261static const struct address_space_operations shmem_aops = {
2262	.writepage	= shmem_writepage,
2263	.set_page_dirty	= __set_page_dirty_no_writeback,
2264#ifdef CONFIG_TMPFS
2265	.write_begin	= shmem_write_begin,
2266	.write_end	= shmem_write_end,
2267#endif
 
2268	.migratepage	= migrate_page,
 
2269	.error_remove_page = generic_error_remove_page,
2270};
 
2271
2272static const struct file_operations shmem_file_operations = {
2273	.mmap		= shmem_mmap,
 
2274#ifdef CONFIG_TMPFS
2275	.llseek		= generic_file_llseek,
2276	.read		= do_sync_read,
2277	.write		= do_sync_write,
2278	.aio_read	= shmem_file_aio_read,
2279	.aio_write	= generic_file_aio_write,
2280	.fsync		= noop_fsync,
2281	.splice_read	= shmem_file_splice_read,
2282	.splice_write	= generic_file_splice_write,
 
2283#endif
2284};
2285
2286static const struct inode_operations shmem_inode_operations = {
 
2287	.setattr	= shmem_setattr,
2288	.truncate_range	= shmem_truncate_range,
2289#ifdef CONFIG_TMPFS_XATTR
2290	.setxattr	= shmem_setxattr,
2291	.getxattr	= shmem_getxattr,
2292	.listxattr	= shmem_listxattr,
2293	.removexattr	= shmem_removexattr,
2294#endif
2295};
2296
2297static const struct inode_operations shmem_dir_inode_operations = {
2298#ifdef CONFIG_TMPFS
2299	.create		= shmem_create,
2300	.lookup		= simple_lookup,
2301	.link		= shmem_link,
2302	.unlink		= shmem_unlink,
2303	.symlink	= shmem_symlink,
2304	.mkdir		= shmem_mkdir,
2305	.rmdir		= shmem_rmdir,
2306	.mknod		= shmem_mknod,
2307	.rename		= shmem_rename,
 
2308#endif
2309#ifdef CONFIG_TMPFS_XATTR
2310	.setxattr	= shmem_setxattr,
2311	.getxattr	= shmem_getxattr,
2312	.listxattr	= shmem_listxattr,
2313	.removexattr	= shmem_removexattr,
2314#endif
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316	.setattr	= shmem_setattr,
 
2317#endif
2318};
2319
2320static const struct inode_operations shmem_special_inode_operations = {
2321#ifdef CONFIG_TMPFS_XATTR
2322	.setxattr	= shmem_setxattr,
2323	.getxattr	= shmem_getxattr,
2324	.listxattr	= shmem_listxattr,
2325	.removexattr	= shmem_removexattr,
2326#endif
2327#ifdef CONFIG_TMPFS_POSIX_ACL
2328	.setattr	= shmem_setattr,
 
2329#endif
2330};
2331
2332static const struct super_operations shmem_ops = {
2333	.alloc_inode	= shmem_alloc_inode,
 
2334	.destroy_inode	= shmem_destroy_inode,
2335#ifdef CONFIG_TMPFS
2336	.statfs		= shmem_statfs,
2337	.remount_fs	= shmem_remount_fs,
2338	.show_options	= shmem_show_options,
2339#endif
2340	.evict_inode	= shmem_evict_inode,
2341	.drop_inode	= generic_delete_inode,
2342	.put_super	= shmem_put_super,
 
 
 
 
2343};
2344
2345static const struct vm_operations_struct shmem_vm_ops = {
2346	.fault		= shmem_fault,
 
2347#ifdef CONFIG_NUMA
2348	.set_policy     = shmem_set_policy,
2349	.get_policy     = shmem_get_policy,
2350#endif
2351};
2352
2353static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354	int flags, const char *dev_name, void *data)
2355{
2356	return mount_nodev(fs_type, flags, data, shmem_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
2357}
2358
2359static struct file_system_type shmem_fs_type = {
2360	.owner		= THIS_MODULE,
2361	.name		= "tmpfs",
2362	.mount		= shmem_mount,
 
 
 
2363	.kill_sb	= kill_litter_super,
 
2364};
2365
2366int __init shmem_init(void)
2367{
2368	int error;
2369
2370	error = bdi_init(&shmem_backing_dev_info);
2371	if (error)
2372		goto out4;
2373
2374	error = shmem_init_inodecache();
2375	if (error)
2376		goto out3;
2377
2378	error = register_filesystem(&shmem_fs_type);
2379	if (error) {
2380		printk(KERN_ERR "Could not register tmpfs\n");
2381		goto out2;
2382	}
2383
2384	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385				 shmem_fs_type.name, NULL);
2386	if (IS_ERR(shm_mnt)) {
2387		error = PTR_ERR(shm_mnt);
2388		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389		goto out1;
2390	}
 
 
 
 
 
 
 
2391	return 0;
2392
2393out1:
2394	unregister_filesystem(&shmem_fs_type);
2395out2:
2396	shmem_destroy_inodecache();
2397out3:
2398	bdi_destroy(&shmem_backing_dev_info);
2399out4:
2400	shm_mnt = ERR_PTR(error);
2401	return error;
2402}
2403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404#else /* !CONFIG_SHMEM */
2405
2406/*
2407 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408 *
2409 * This is intended for small system where the benefits of the full
2410 * shmem code (swap-backed and resource-limited) are outweighed by
2411 * their complexity. On systems without swap this code should be
2412 * effectively equivalent, but much lighter weight.
2413 */
2414
2415#include <linux/ramfs.h>
2416
2417static struct file_system_type shmem_fs_type = {
2418	.name		= "tmpfs",
2419	.mount		= ramfs_mount,
 
2420	.kill_sb	= kill_litter_super,
 
2421};
2422
2423int __init shmem_init(void)
2424{
2425	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427	shm_mnt = kern_mount(&shmem_fs_type);
2428	BUG_ON(IS_ERR(shm_mnt));
2429
2430	return 0;
2431}
2432
2433int shmem_unuse(swp_entry_t swap, struct page *page)
 
2434{
2435	return 0;
2436}
2437
2438int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439{
2440	return 0;
2441}
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
2443void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444{
2445	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446}
2447EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449#define shmem_vm_ops				generic_file_vm_ops
2450#define shmem_file_operations			ramfs_file_operations
2451#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2452#define shmem_acct_size(flags, size)		0
2453#define shmem_unacct_size(flags, size)		do {} while (0)
2454
2455#endif /* CONFIG_SHMEM */
2456
2457/* common code */
2458
2459/**
2460 * shmem_file_setup - get an unlinked file living in tmpfs
2461 * @name: name for dentry (to be seen in /proc/<pid>/maps
2462 * @size: size to be set for the file
2463 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464 */
2465struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466{
2467	int error;
2468	struct file *file;
2469	struct inode *inode;
2470	struct path path;
2471	struct dentry *root;
2472	struct qstr this;
2473
2474	if (IS_ERR(shm_mnt))
2475		return (void *)shm_mnt;
2476
2477	if (size < 0 || size > MAX_LFS_FILESIZE)
2478		return ERR_PTR(-EINVAL);
2479
2480	if (shmem_acct_size(flags, size))
2481		return ERR_PTR(-ENOMEM);
2482
2483	error = -ENOMEM;
2484	this.name = name;
2485	this.len = strlen(name);
2486	this.hash = 0; /* will go */
2487	root = shm_mnt->mnt_root;
2488	path.dentry = d_alloc(root, &this);
2489	if (!path.dentry)
2490		goto put_memory;
2491	path.mnt = mntget(shm_mnt);
2492
2493	error = -ENOSPC;
2494	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495	if (!inode)
2496		goto put_dentry;
2497
2498	d_instantiate(path.dentry, inode);
2499	inode->i_size = size;
2500	inode->i_nlink = 0;	/* It is unlinked */
2501#ifndef CONFIG_MMU
2502	error = ramfs_nommu_expand_for_mapping(inode, size);
2503	if (error)
2504		goto put_dentry;
2505#endif
 
 
 
2506
2507	error = -ENFILE;
2508	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509		  &shmem_file_operations);
2510	if (!file)
2511		goto put_dentry;
2512
2513	return file;
2514
2515put_dentry:
2516	path_put(&path);
2517put_memory:
2518	shmem_unacct_size(flags, size);
2519	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
2520}
2521EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2524 * shmem_zero_setup - setup a shared anonymous mapping
2525 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526 */
2527int shmem_zero_setup(struct vm_area_struct *vma)
2528{
2529	struct file *file;
2530	loff_t size = vma->vm_end - vma->vm_start;
2531
2532	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
 
 
 
 
 
 
2533	if (IS_ERR(file))
2534		return PTR_ERR(file);
2535
2536	if (vma->vm_file)
2537		fput(vma->vm_file);
2538	vma->vm_file = file;
2539	vma->vm_ops = &shmem_vm_ops;
2540	vma->vm_flags |= VM_CAN_NONLINEAR;
 
 
 
 
 
 
2541	return 0;
2542}
2543
2544/**
2545 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546 * @mapping:	the page's address_space
2547 * @index:	the page index
2548 * @gfp:	the page allocator flags to use if allocating
2549 *
2550 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551 * with any new page allocations done using the specified allocation flags.
2552 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555 *
2556 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558 */
2559struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560					 pgoff_t index, gfp_t gfp)
2561{
2562#ifdef CONFIG_SHMEM
2563	struct inode *inode = mapping->host;
2564	struct page *page;
2565	int error;
2566
2567	BUG_ON(mapping->a_ops != &shmem_aops);
2568	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
 
2569	if (error)
2570		page = ERR_PTR(error);
2571	else
2572		unlock_page(page);
2573	return page;
2574#else
2575	/*
2576	 * The tiny !SHMEM case uses ramfs without swap
2577	 */
2578	return read_cache_page_gfp(mapping, index, gfp);
2579#endif
2580}
2581EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v5.14.15
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
 
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  95#define SHORT_SYMLINK_LEN 128
  96
  97/*
  98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  99 * inode->i_private (with i_mutex making sure that it has only one user at
 100 * a time): we would prefer not to enlarge the shmem inode just for that.
 101 */
 102struct shmem_falloc {
 103	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 104	pgoff_t start;		/* start of range currently being fallocated */
 105	pgoff_t next;		/* the next page offset to be fallocated */
 106	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 107	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 108};
 109
 110struct shmem_options {
 111	unsigned long long blocks;
 112	unsigned long long inodes;
 113	struct mempolicy *mpol;
 114	kuid_t uid;
 115	kgid_t gid;
 116	umode_t mode;
 117	bool full_inums;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123#define SHMEM_SEEN_INUMS 8
 124};
 125
 126#ifdef CONFIG_TMPFS
 127static unsigned long shmem_default_max_blocks(void)
 128{
 129	return totalram_pages() / 2;
 130}
 131
 132static unsigned long shmem_default_max_inodes(void)
 133{
 134	unsigned long nr_pages = totalram_pages();
 135
 136	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 137}
 138#endif
 139
 140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 142				struct shmem_inode_info *info, pgoff_t index);
 143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 144			     struct page **pagep, enum sgp_type sgp,
 145			     gfp_t gfp, struct vm_area_struct *vma,
 146			     vm_fault_t *fault_type);
 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 148		struct page **pagep, enum sgp_type sgp,
 149		gfp_t gfp, struct vm_area_struct *vma,
 150		struct vm_fault *vmf, vm_fault_t *fault_type);
 151
 152int shmem_getpage(struct inode *inode, pgoff_t index,
 153		struct page **pagep, enum sgp_type sgp)
 154{
 155	return shmem_getpage_gfp(inode, index, pagep, sgp,
 156		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 157}
 158
 159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 160{
 161	return sb->s_fs_info;
 162}
 163
 164/*
 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 166 * for shared memory and for shared anonymous (/dev/zero) mappings
 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 168 * consistent with the pre-accounting of private mappings ...
 169 */
 170static inline int shmem_acct_size(unsigned long flags, loff_t size)
 171{
 172	return (flags & VM_NORESERVE) ?
 173		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 174}
 175
 176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 177{
 178	if (!(flags & VM_NORESERVE))
 179		vm_unacct_memory(VM_ACCT(size));
 180}
 181
 182static inline int shmem_reacct_size(unsigned long flags,
 183		loff_t oldsize, loff_t newsize)
 184{
 185	if (!(flags & VM_NORESERVE)) {
 186		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 187			return security_vm_enough_memory_mm(current->mm,
 188					VM_ACCT(newsize) - VM_ACCT(oldsize));
 189		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 190			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 191	}
 192	return 0;
 193}
 194
 195/*
 196 * ... whereas tmpfs objects are accounted incrementally as
 197 * pages are allocated, in order to allow large sparse files.
 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 200 */
 201static inline int shmem_acct_block(unsigned long flags, long pages)
 202{
 203	if (!(flags & VM_NORESERVE))
 204		return 0;
 205
 206	return security_vm_enough_memory_mm(current->mm,
 207			pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212	if (flags & VM_NORESERVE)
 213		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 214}
 215
 216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 217{
 218	struct shmem_inode_info *info = SHMEM_I(inode);
 219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 220
 221	if (shmem_acct_block(info->flags, pages))
 222		return false;
 223
 224	if (sbinfo->max_blocks) {
 225		if (percpu_counter_compare(&sbinfo->used_blocks,
 226					   sbinfo->max_blocks - pages) > 0)
 227			goto unacct;
 228		percpu_counter_add(&sbinfo->used_blocks, pages);
 229	}
 230
 231	return true;
 232
 233unacct:
 234	shmem_unacct_blocks(info->flags, pages);
 235	return false;
 236}
 237
 238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 239{
 240	struct shmem_inode_info *info = SHMEM_I(inode);
 241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 242
 243	if (sbinfo->max_blocks)
 244		percpu_counter_sub(&sbinfo->used_blocks, pages);
 245	shmem_unacct_blocks(info->flags, pages);
 246}
 247
 248static const struct super_operations shmem_ops;
 249const struct address_space_operations shmem_aops;
 250static const struct file_operations shmem_file_operations;
 251static const struct inode_operations shmem_inode_operations;
 252static const struct inode_operations shmem_dir_inode_operations;
 253static const struct inode_operations shmem_special_inode_operations;
 254static const struct vm_operations_struct shmem_vm_ops;
 255static struct file_system_type shmem_fs_type;
 256
 257bool vma_is_shmem(struct vm_area_struct *vma)
 258{
 259	return vma->vm_ops == &shmem_vm_ops;
 260}
 261
 262static LIST_HEAD(shmem_swaplist);
 263static DEFINE_MUTEX(shmem_swaplist_mutex);
 264
 265/*
 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 267 * produces a novel ino for the newly allocated inode.
 268 *
 269 * It may also be called when making a hard link to permit the space needed by
 270 * each dentry. However, in that case, no new inode number is needed since that
 271 * internally draws from another pool of inode numbers (currently global
 272 * get_next_ino()). This case is indicated by passing NULL as inop.
 273 */
 274#define SHMEM_INO_BATCH 1024
 275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 276{
 277	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 278	ino_t ino;
 279
 280	if (!(sb->s_flags & SB_KERNMOUNT)) {
 281		spin_lock(&sbinfo->stat_lock);
 282		if (sbinfo->max_inodes) {
 283			if (!sbinfo->free_inodes) {
 284				spin_unlock(&sbinfo->stat_lock);
 285				return -ENOSPC;
 286			}
 287			sbinfo->free_inodes--;
 288		}
 289		if (inop) {
 290			ino = sbinfo->next_ino++;
 291			if (unlikely(is_zero_ino(ino)))
 292				ino = sbinfo->next_ino++;
 293			if (unlikely(!sbinfo->full_inums &&
 294				     ino > UINT_MAX)) {
 295				/*
 296				 * Emulate get_next_ino uint wraparound for
 297				 * compatibility
 298				 */
 299				if (IS_ENABLED(CONFIG_64BIT))
 300					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 301						__func__, MINOR(sb->s_dev));
 302				sbinfo->next_ino = 1;
 303				ino = sbinfo->next_ino++;
 304			}
 305			*inop = ino;
 306		}
 
 307		spin_unlock(&sbinfo->stat_lock);
 308	} else if (inop) {
 309		/*
 310		 * __shmem_file_setup, one of our callers, is lock-free: it
 311		 * doesn't hold stat_lock in shmem_reserve_inode since
 312		 * max_inodes is always 0, and is called from potentially
 313		 * unknown contexts. As such, use a per-cpu batched allocator
 314		 * which doesn't require the per-sb stat_lock unless we are at
 315		 * the batch boundary.
 316		 *
 317		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 318		 * shmem mounts are not exposed to userspace, so we don't need
 319		 * to worry about things like glibc compatibility.
 320		 */
 321		ino_t *next_ino;
 322		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 323		ino = *next_ino;
 324		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 325			spin_lock(&sbinfo->stat_lock);
 326			ino = sbinfo->next_ino;
 327			sbinfo->next_ino += SHMEM_INO_BATCH;
 328			spin_unlock(&sbinfo->stat_lock);
 329			if (unlikely(is_zero_ino(ino)))
 330				ino++;
 331		}
 332		*inop = ino;
 333		*next_ino = ++ino;
 334		put_cpu();
 335	}
 336
 337	return 0;
 338}
 339
 340static void shmem_free_inode(struct super_block *sb)
 341{
 342	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 343	if (sbinfo->max_inodes) {
 344		spin_lock(&sbinfo->stat_lock);
 345		sbinfo->free_inodes++;
 346		spin_unlock(&sbinfo->stat_lock);
 347	}
 348}
 349
 350/**
 351 * shmem_recalc_inode - recalculate the block usage of an inode
 352 * @inode: inode to recalc
 353 *
 354 * We have to calculate the free blocks since the mm can drop
 355 * undirtied hole pages behind our back.
 356 *
 357 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 359 *
 360 * It has to be called with the spinlock held.
 361 */
 362static void shmem_recalc_inode(struct inode *inode)
 363{
 364	struct shmem_inode_info *info = SHMEM_I(inode);
 365	long freed;
 366
 367	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 368	if (freed > 0) {
 
 
 
 369		info->alloced -= freed;
 370		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 371		shmem_inode_unacct_blocks(inode, freed);
 372	}
 373}
 374
 375bool shmem_charge(struct inode *inode, long pages)
 376{
 377	struct shmem_inode_info *info = SHMEM_I(inode);
 378	unsigned long flags;
 379
 380	if (!shmem_inode_acct_block(inode, pages))
 381		return false;
 382
 383	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 384	inode->i_mapping->nrpages += pages;
 385
 386	spin_lock_irqsave(&info->lock, flags);
 387	info->alloced += pages;
 388	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 389	shmem_recalc_inode(inode);
 390	spin_unlock_irqrestore(&info->lock, flags);
 391
 392	return true;
 393}
 394
 395void shmem_uncharge(struct inode *inode, long pages)
 396{
 397	struct shmem_inode_info *info = SHMEM_I(inode);
 398	unsigned long flags;
 399
 400	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 401
 402	spin_lock_irqsave(&info->lock, flags);
 403	info->alloced -= pages;
 404	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 405	shmem_recalc_inode(inode);
 406	spin_unlock_irqrestore(&info->lock, flags);
 407
 408	shmem_inode_unacct_blocks(inode, pages);
 409}
 410
 411/*
 412 * Replace item expected in xarray by a new item, while holding xa_lock.
 413 */
 414static int shmem_replace_entry(struct address_space *mapping,
 415			pgoff_t index, void *expected, void *replacement)
 416{
 417	XA_STATE(xas, &mapping->i_pages, index);
 418	void *item;
 419
 420	VM_BUG_ON(!expected);
 421	VM_BUG_ON(!replacement);
 422	item = xas_load(&xas);
 
 
 423	if (item != expected)
 424		return -ENOENT;
 425	xas_store(&xas, replacement);
 
 
 
 426	return 0;
 427}
 428
 429/*
 430 * Sometimes, before we decide whether to proceed or to fail, we must check
 431 * that an entry was not already brought back from swap by a racing thread.
 432 *
 433 * Checking page is not enough: by the time a SwapCache page is locked, it
 434 * might be reused, and again be SwapCache, using the same swap as before.
 435 */
 436static bool shmem_confirm_swap(struct address_space *mapping,
 437			       pgoff_t index, swp_entry_t swap)
 438{
 439	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 440}
 441
 442/*
 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 444 *
 445 * SHMEM_HUGE_NEVER:
 446 *	disables huge pages for the mount;
 447 * SHMEM_HUGE_ALWAYS:
 448 *	enables huge pages for the mount;
 449 * SHMEM_HUGE_WITHIN_SIZE:
 450 *	only allocate huge pages if the page will be fully within i_size,
 451 *	also respect fadvise()/madvise() hints;
 452 * SHMEM_HUGE_ADVISE:
 453 *	only allocate huge pages if requested with fadvise()/madvise();
 454 */
 455
 456#define SHMEM_HUGE_NEVER	0
 457#define SHMEM_HUGE_ALWAYS	1
 458#define SHMEM_HUGE_WITHIN_SIZE	2
 459#define SHMEM_HUGE_ADVISE	3
 460
 461/*
 462 * Special values.
 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 464 *
 465 * SHMEM_HUGE_DENY:
 466 *	disables huge on shm_mnt and all mounts, for emergency use;
 467 * SHMEM_HUGE_FORCE:
 468 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 469 *
 470 */
 471#define SHMEM_HUGE_DENY		(-1)
 472#define SHMEM_HUGE_FORCE	(-2)
 473
 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 475/* ifdef here to avoid bloating shmem.o when not necessary */
 476
 477static int shmem_huge __read_mostly;
 478
 479#if defined(CONFIG_SYSFS)
 480static int shmem_parse_huge(const char *str)
 481{
 482	if (!strcmp(str, "never"))
 483		return SHMEM_HUGE_NEVER;
 484	if (!strcmp(str, "always"))
 485		return SHMEM_HUGE_ALWAYS;
 486	if (!strcmp(str, "within_size"))
 487		return SHMEM_HUGE_WITHIN_SIZE;
 488	if (!strcmp(str, "advise"))
 489		return SHMEM_HUGE_ADVISE;
 490	if (!strcmp(str, "deny"))
 491		return SHMEM_HUGE_DENY;
 492	if (!strcmp(str, "force"))
 493		return SHMEM_HUGE_FORCE;
 494	return -EINVAL;
 495}
 496#endif
 497
 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 499static const char *shmem_format_huge(int huge)
 500{
 501	switch (huge) {
 502	case SHMEM_HUGE_NEVER:
 503		return "never";
 504	case SHMEM_HUGE_ALWAYS:
 505		return "always";
 506	case SHMEM_HUGE_WITHIN_SIZE:
 507		return "within_size";
 508	case SHMEM_HUGE_ADVISE:
 509		return "advise";
 510	case SHMEM_HUGE_DENY:
 511		return "deny";
 512	case SHMEM_HUGE_FORCE:
 513		return "force";
 514	default:
 515		VM_BUG_ON(1);
 516		return "bad_val";
 517	}
 518}
 519#endif
 520
 521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 522		struct shrink_control *sc, unsigned long nr_to_split)
 523{
 524	LIST_HEAD(list), *pos, *next;
 525	LIST_HEAD(to_remove);
 526	struct inode *inode;
 527	struct shmem_inode_info *info;
 528	struct page *page;
 529	unsigned long batch = sc ? sc->nr_to_scan : 128;
 530	int removed = 0, split = 0;
 531
 532	if (list_empty(&sbinfo->shrinklist))
 533		return SHRINK_STOP;
 534
 535	spin_lock(&sbinfo->shrinklist_lock);
 536	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 537		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 538
 539		/* pin the inode */
 540		inode = igrab(&info->vfs_inode);
 541
 542		/* inode is about to be evicted */
 543		if (!inode) {
 544			list_del_init(&info->shrinklist);
 545			removed++;
 546			goto next;
 547		}
 548
 549		/* Check if there's anything to gain */
 550		if (round_up(inode->i_size, PAGE_SIZE) ==
 551				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 552			list_move(&info->shrinklist, &to_remove);
 553			removed++;
 554			goto next;
 555		}
 556
 557		list_move(&info->shrinklist, &list);
 558next:
 559		if (!--batch)
 560			break;
 561	}
 562	spin_unlock(&sbinfo->shrinklist_lock);
 563
 564	list_for_each_safe(pos, next, &to_remove) {
 565		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 566		inode = &info->vfs_inode;
 567		list_del_init(&info->shrinklist);
 568		iput(inode);
 569	}
 570
 571	list_for_each_safe(pos, next, &list) {
 572		int ret;
 573
 574		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 575		inode = &info->vfs_inode;
 576
 577		if (nr_to_split && split >= nr_to_split)
 578			goto leave;
 579
 580		page = find_get_page(inode->i_mapping,
 581				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 582		if (!page)
 583			goto drop;
 584
 585		/* No huge page at the end of the file: nothing to split */
 586		if (!PageTransHuge(page)) {
 587			put_page(page);
 588			goto drop;
 589		}
 590
 591		/*
 592		 * Leave the inode on the list if we failed to lock
 593		 * the page at this time.
 594		 *
 595		 * Waiting for the lock may lead to deadlock in the
 596		 * reclaim path.
 597		 */
 598		if (!trylock_page(page)) {
 599			put_page(page);
 600			goto leave;
 601		}
 602
 603		ret = split_huge_page(page);
 604		unlock_page(page);
 605		put_page(page);
 606
 607		/* If split failed leave the inode on the list */
 608		if (ret)
 609			goto leave;
 610
 611		split++;
 612drop:
 613		list_del_init(&info->shrinklist);
 614		removed++;
 615leave:
 616		iput(inode);
 617	}
 618
 619	spin_lock(&sbinfo->shrinklist_lock);
 620	list_splice_tail(&list, &sbinfo->shrinklist);
 621	sbinfo->shrinklist_len -= removed;
 622	spin_unlock(&sbinfo->shrinklist_lock);
 623
 624	return split;
 625}
 626
 627static long shmem_unused_huge_scan(struct super_block *sb,
 628		struct shrink_control *sc)
 629{
 630	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 631
 632	if (!READ_ONCE(sbinfo->shrinklist_len))
 633		return SHRINK_STOP;
 634
 635	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 636}
 637
 638static long shmem_unused_huge_count(struct super_block *sb,
 639		struct shrink_control *sc)
 640{
 641	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 642	return READ_ONCE(sbinfo->shrinklist_len);
 643}
 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 645
 646#define shmem_huge SHMEM_HUGE_DENY
 647
 648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 649		struct shrink_control *sc, unsigned long nr_to_split)
 650{
 651	return 0;
 652}
 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 654
 655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 656{
 657	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 658	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 659	    shmem_huge != SHMEM_HUGE_DENY)
 660		return true;
 661	return false;
 662}
 663
 664/*
 665 * Like add_to_page_cache_locked, but error if expected item has gone.
 666 */
 667static int shmem_add_to_page_cache(struct page *page,
 668				   struct address_space *mapping,
 669				   pgoff_t index, void *expected, gfp_t gfp,
 670				   struct mm_struct *charge_mm)
 671{
 672	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 673	unsigned long i = 0;
 674	unsigned long nr = compound_nr(page);
 675	int error;
 676
 677	VM_BUG_ON_PAGE(PageTail(page), page);
 678	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 679	VM_BUG_ON_PAGE(!PageLocked(page), page);
 680	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 681	VM_BUG_ON(expected && PageTransHuge(page));
 682
 683	page_ref_add(page, nr);
 684	page->mapping = mapping;
 685	page->index = index;
 686
 687	if (!PageSwapCache(page)) {
 688		error = mem_cgroup_charge(page, charge_mm, gfp);
 689		if (error) {
 690			if (PageTransHuge(page)) {
 691				count_vm_event(THP_FILE_FALLBACK);
 692				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 693			}
 694			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695		}
 
 
 696	}
 697	cgroup_throttle_swaprate(page, gfp);
 698
 699	do {
 700		void *entry;
 701		xas_lock_irq(&xas);
 702		entry = xas_find_conflict(&xas);
 703		if (entry != expected)
 704			xas_set_err(&xas, -EEXIST);
 705		xas_create_range(&xas);
 706		if (xas_error(&xas))
 707			goto unlock;
 708next:
 709		xas_store(&xas, page);
 710		if (++i < nr) {
 711			xas_next(&xas);
 712			goto next;
 713		}
 714		if (PageTransHuge(page)) {
 715			count_vm_event(THP_FILE_ALLOC);
 716			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
 717		}
 718		mapping->nrpages += nr;
 719		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
 720		__mod_lruvec_page_state(page, NR_SHMEM, nr);
 721unlock:
 722		xas_unlock_irq(&xas);
 723	} while (xas_nomem(&xas, gfp));
 724
 725	if (xas_error(&xas)) {
 726		error = xas_error(&xas);
 727		goto error;
 728	}
 729
 730	return 0;
 731error:
 732	page->mapping = NULL;
 733	page_ref_sub(page, nr);
 734	return error;
 735}
 736
 737/*
 738 * Like delete_from_page_cache, but substitutes swap for page.
 739 */
 740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 741{
 742	struct address_space *mapping = page->mapping;
 743	int error;
 744
 745	VM_BUG_ON_PAGE(PageCompound(page), page);
 746
 747	xa_lock_irq(&mapping->i_pages);
 748	error = shmem_replace_entry(mapping, page->index, page, radswap);
 749	page->mapping = NULL;
 750	mapping->nrpages--;
 751	__dec_lruvec_page_state(page, NR_FILE_PAGES);
 752	__dec_lruvec_page_state(page, NR_SHMEM);
 753	xa_unlock_irq(&mapping->i_pages);
 754	put_page(page);
 755	BUG_ON(error);
 756}
 757
 758/*
 759 * Remove swap entry from page cache, free the swap and its page cache.
 760 */
 761static int shmem_free_swap(struct address_space *mapping,
 762			   pgoff_t index, void *radswap)
 763{
 764	void *old;
 765
 766	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 767	if (old != radswap)
 768		return -ENOENT;
 769	free_swap_and_cache(radix_to_swp_entry(radswap));
 770	return 0;
 771}
 772
 773/*
 774 * Determine (in bytes) how many of the shmem object's pages mapped by the
 775 * given offsets are swapped out.
 776 *
 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 778 * as long as the inode doesn't go away and racy results are not a problem.
 779 */
 780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 781						pgoff_t start, pgoff_t end)
 782{
 783	XA_STATE(xas, &mapping->i_pages, start);
 784	struct page *page;
 785	unsigned long swapped = 0;
 786
 787	rcu_read_lock();
 788	xas_for_each(&xas, page, end - 1) {
 789		if (xas_retry(&xas, page))
 
 
 
 
 
 
 
 790			continue;
 791		if (xa_is_value(page))
 792			swapped++;
 
 
 
 
 
 
 
 
 
 
 793
 794		if (need_resched()) {
 795			xas_pause(&xas);
 796			cond_resched_rcu();
 
 797		}
 
 
 
 
 798	}
 799
 
 800	rcu_read_unlock();
 801
 802	return swapped << PAGE_SHIFT;
 803}
 804
 805/*
 806 * Determine (in bytes) how many of the shmem object's pages mapped by the
 807 * given vma is swapped out.
 808 *
 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 810 * as long as the inode doesn't go away and racy results are not a problem.
 811 */
 812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 
 813{
 814	struct inode *inode = file_inode(vma->vm_file);
 815	struct shmem_inode_info *info = SHMEM_I(inode);
 816	struct address_space *mapping = inode->i_mapping;
 817	unsigned long swapped;
 818
 819	/* Be careful as we don't hold info->lock */
 820	swapped = READ_ONCE(info->swapped);
 821
 822	/*
 823	 * The easier cases are when the shmem object has nothing in swap, or
 824	 * the vma maps it whole. Then we can simply use the stats that we
 825	 * already track.
 826	 */
 827	if (!swapped)
 828		return 0;
 829
 830	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 831		return swapped << PAGE_SHIFT;
 832
 833	/* Here comes the more involved part */
 834	return shmem_partial_swap_usage(mapping,
 835			linear_page_index(vma, vma->vm_start),
 836			linear_page_index(vma, vma->vm_end));
 837}
 838
 839/*
 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 841 */
 842void shmem_unlock_mapping(struct address_space *mapping)
 843{
 844	struct pagevec pvec;
 845	pgoff_t index = 0;
 846
 847	pagevec_init(&pvec);
 848	/*
 849	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 850	 */
 851	while (!mapping_unevictable(mapping)) {
 852		if (!pagevec_lookup(&pvec, mapping, &index))
 853			break;
 854		check_move_unevictable_pages(&pvec);
 855		pagevec_release(&pvec);
 856		cond_resched();
 857	}
 
 
 858}
 859
 860/*
 861 * Check whether a hole-punch or truncation needs to split a huge page,
 862 * returning true if no split was required, or the split has been successful.
 863 *
 864 * Eviction (or truncation to 0 size) should never need to split a huge page;
 865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
 866 * head, and then succeeded to trylock on tail.
 867 *
 868 * A split can only succeed when there are no additional references on the
 869 * huge page: so the split below relies upon find_get_entries() having stopped
 870 * when it found a subpage of the huge page, without getting further references.
 871 */
 872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
 873{
 874	if (!PageTransCompound(page))
 875		return true;
 876
 877	/* Just proceed to delete a huge page wholly within the range punched */
 878	if (PageHead(page) &&
 879	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
 880		return true;
 881
 882	/* Try to split huge page, so we can truly punch the hole or truncate */
 883	return split_huge_page(page) >= 0;
 884}
 885
 886/*
 887 * Remove range of pages and swap entries from page cache, and free them.
 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 889 */
 890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 891								 bool unfalloc)
 892{
 893	struct address_space *mapping = inode->i_mapping;
 894	struct shmem_inode_info *info = SHMEM_I(inode);
 895	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 896	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 897	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 898	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 899	struct pagevec pvec;
 900	pgoff_t indices[PAGEVEC_SIZE];
 901	long nr_swaps_freed = 0;
 902	pgoff_t index;
 903	int i;
 904
 905	if (lend == -1)
 906		end = -1;	/* unsigned, so actually very big */
 907
 908	pagevec_init(&pvec);
 909	index = start;
 910	while (index < end && find_lock_entries(mapping, index, end - 1,
 911			&pvec, indices)) {
 
 
 
 
 
 912		for (i = 0; i < pagevec_count(&pvec); i++) {
 913			struct page *page = pvec.pages[i];
 914
 915			index = indices[i];
 
 
 916
 917			if (xa_is_value(page)) {
 918				if (unfalloc)
 919					continue;
 920				nr_swaps_freed += !shmem_free_swap(mapping,
 921								index, page);
 922				continue;
 923			}
 924			index += thp_nr_pages(page) - 1;
 925
 926			if (!unfalloc || !PageUptodate(page))
 
 
 
 927				truncate_inode_page(mapping, page);
 
 928			unlock_page(page);
 929		}
 930		pagevec_remove_exceptionals(&pvec);
 931		pagevec_release(&pvec);
 932		cond_resched();
 933		index++;
 934	}
 935
 936	if (partial_start) {
 937		struct page *page = NULL;
 938		shmem_getpage(inode, start - 1, &page, SGP_READ);
 939		if (page) {
 940			unsigned int top = PAGE_SIZE;
 941			if (start > end) {
 942				top = partial_end;
 943				partial_end = 0;
 944			}
 945			zero_user_segment(page, partial_start, top);
 946			set_page_dirty(page);
 947			unlock_page(page);
 948			put_page(page);
 949		}
 950	}
 951	if (partial_end) {
 952		struct page *page = NULL;
 953		shmem_getpage(inode, end, &page, SGP_READ);
 954		if (page) {
 955			zero_user_segment(page, 0, partial_end);
 956			set_page_dirty(page);
 957			unlock_page(page);
 958			put_page(page);
 959		}
 960	}
 961	if (start >= end)
 962		return;
 963
 964	index = start;
 965	while (index < end) {
 966		cond_resched();
 967
 968		if (!find_get_entries(mapping, index, end - 1, &pvec,
 969				indices)) {
 970			/* If all gone or hole-punch or unfalloc, we're done */
 971			if (index == start || end != -1)
 972				break;
 973			/* But if truncating, restart to make sure all gone */
 974			index = start;
 975			continue;
 976		}
 
 
 
 
 
 977		for (i = 0; i < pagevec_count(&pvec); i++) {
 978			struct page *page = pvec.pages[i];
 979
 980			index = indices[i];
 981			if (xa_is_value(page)) {
 982				if (unfalloc)
 983					continue;
 984				if (shmem_free_swap(mapping, index, page)) {
 985					/* Swap was replaced by page: retry */
 986					index--;
 987					break;
 988				}
 989				nr_swaps_freed++;
 990				continue;
 991			}
 992
 993			lock_page(page);
 994
 995			if (!unfalloc || !PageUptodate(page)) {
 996				if (page_mapping(page) != mapping) {
 997					/* Page was replaced by swap: retry */
 998					unlock_page(page);
 999					index--;
1000					break;
1001				}
1002				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003				if (shmem_punch_compound(page, start, end))
1004					truncate_inode_page(mapping, page);
1005				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006					/* Wipe the page and don't get stuck */
1007					clear_highpage(page);
1008					flush_dcache_page(page);
1009					set_page_dirty(page);
1010					if (index <
1011					    round_up(start, HPAGE_PMD_NR))
1012						start = index + 1;
1013				}
1014			}
1015			unlock_page(page);
1016		}
1017		pagevec_remove_exceptionals(&pvec);
1018		pagevec_release(&pvec);
1019		index++;
1020	}
1021
1022	spin_lock_irq(&info->lock);
1023	info->swapped -= nr_swaps_freed;
1024	shmem_recalc_inode(inode);
1025	spin_unlock_irq(&info->lock);
1026}
1027
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030	shmem_undo_range(inode, lstart, lend, false);
1031	inode->i_ctime = inode->i_mtime = current_time(inode);
1032}
1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036			 const struct path *path, struct kstat *stat,
1037			 u32 request_mask, unsigned int query_flags)
1038{
1039	struct inode *inode = path->dentry->d_inode;
1040	struct shmem_inode_info *info = SHMEM_I(inode);
1041	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044		spin_lock_irq(&info->lock);
1045		shmem_recalc_inode(inode);
1046		spin_unlock_irq(&info->lock);
1047	}
1048	generic_fillattr(&init_user_ns, inode, stat);
1049
1050	if (is_huge_enabled(sb_info))
1051		stat->blksize = HPAGE_PMD_SIZE;
1052
1053	return 0;
1054}
1055
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057			 struct dentry *dentry, struct iattr *attr)
1058{
1059	struct inode *inode = d_inode(dentry);
1060	struct shmem_inode_info *info = SHMEM_I(inode);
1061	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062	int error;
1063
1064	error = setattr_prepare(&init_user_ns, dentry, attr);
1065	if (error)
1066		return error;
1067
1068	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069		loff_t oldsize = inode->i_size;
1070		loff_t newsize = attr->ia_size;
1071
1072		/* protected by i_mutex */
1073		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075			return -EPERM;
1076
1077		if (newsize != oldsize) {
1078			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079					oldsize, newsize);
1080			if (error)
1081				return error;
1082			i_size_write(inode, newsize);
1083			inode->i_ctime = inode->i_mtime = current_time(inode);
1084		}
1085		if (newsize <= oldsize) {
1086			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087			if (oldsize > holebegin)
1088				unmap_mapping_range(inode->i_mapping,
1089							holebegin, 0, 1);
1090			if (info->alloced)
1091				shmem_truncate_range(inode,
1092							newsize, (loff_t)-1);
1093			/* unmap again to remove racily COWed private pages */
1094			if (oldsize > holebegin)
1095				unmap_mapping_range(inode->i_mapping,
1096							holebegin, 0, 1);
1097
1098			/*
1099			 * Part of the huge page can be beyond i_size: subject
1100			 * to shrink under memory pressure.
1101			 */
1102			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103				spin_lock(&sbinfo->shrinklist_lock);
1104				/*
1105				 * _careful to defend against unlocked access to
1106				 * ->shrink_list in shmem_unused_huge_shrink()
1107				 */
1108				if (list_empty_careful(&info->shrinklist)) {
1109					list_add_tail(&info->shrinklist,
1110							&sbinfo->shrinklist);
1111					sbinfo->shrinklist_len++;
1112				}
1113				spin_unlock(&sbinfo->shrinklist_lock);
1114			}
1115		}
1116	}
1117
1118	setattr_copy(&init_user_ns, inode, attr);
 
1119	if (attr->ia_valid & ATTR_MODE)
1120		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
 
1121	return error;
1122}
1123
1124static void shmem_evict_inode(struct inode *inode)
1125{
1126	struct shmem_inode_info *info = SHMEM_I(inode);
1127	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129	if (shmem_mapping(inode->i_mapping)) {
1130		shmem_unacct_size(info->flags, inode->i_size);
1131		inode->i_size = 0;
1132		shmem_truncate_range(inode, 0, (loff_t)-1);
1133		if (!list_empty(&info->shrinklist)) {
1134			spin_lock(&sbinfo->shrinklist_lock);
1135			if (!list_empty(&info->shrinklist)) {
1136				list_del_init(&info->shrinklist);
1137				sbinfo->shrinklist_len--;
1138			}
1139			spin_unlock(&sbinfo->shrinklist_lock);
1140		}
1141		while (!list_empty(&info->swaplist)) {
1142			/* Wait while shmem_unuse() is scanning this inode... */
1143			wait_var_event(&info->stop_eviction,
1144				       !atomic_read(&info->stop_eviction));
1145			mutex_lock(&shmem_swaplist_mutex);
1146			/* ...but beware of the race if we peeked too early */
1147			if (!atomic_read(&info->stop_eviction))
1148				list_del_init(&info->swaplist);
1149			mutex_unlock(&shmem_swaplist_mutex);
1150		}
 
 
 
 
 
 
1151	}
1152
1153	simple_xattrs_free(&info->xattrs);
1154	WARN_ON(inode->i_blocks);
1155	shmem_free_inode(inode->i_sb);
1156	clear_inode(inode);
1157}
1158
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162				   pgoff_t start, unsigned int nr_entries,
1163				   struct page **entries, pgoff_t *indices,
1164				   unsigned int type, bool frontswap)
1165{
1166	XA_STATE(xas, &mapping->i_pages, start);
1167	struct page *page;
1168	swp_entry_t entry;
1169	unsigned int ret = 0;
1170
1171	if (!nr_entries)
 
 
1172		return 0;
1173
1174	rcu_read_lock();
1175	xas_for_each(&xas, page, ULONG_MAX) {
1176		if (xas_retry(&xas, page))
1177			continue;
 
 
 
 
1178
1179		if (!xa_is_value(page))
1180			continue;
 
 
 
 
 
 
1181
1182		entry = radix_to_swp_entry(page);
1183		if (swp_type(entry) != type)
1184			continue;
1185		if (frontswap &&
1186		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187			continue;
1188
1189		indices[ret] = xas.xa_index;
1190		entries[ret] = page;
1191
1192		if (need_resched()) {
1193			xas_pause(&xas);
1194			cond_resched_rcu();
1195		}
1196		if (++ret == nr_entries)
1197			break;
1198	}
1199	rcu_read_unlock();
1200
1201	return ret;
1202}
1203
1204/*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209				    pgoff_t *indices)
1210{
1211	int i = 0;
1212	int ret = 0;
1213	int error = 0;
1214	struct address_space *mapping = inode->i_mapping;
1215
1216	for (i = 0; i < pvec.nr; i++) {
1217		struct page *page = pvec.pages[i];
1218
1219		if (!xa_is_value(page))
1220			continue;
1221		error = shmem_swapin_page(inode, indices[i],
1222					  &page, SGP_CACHE,
1223					  mapping_gfp_mask(mapping),
1224					  NULL, NULL);
1225		if (error == 0) {
1226			unlock_page(page);
1227			put_page(page);
1228			ret++;
1229		}
1230		if (error == -ENOMEM)
1231			break;
1232		error = 0;
1233	}
1234	return error ? error : ret;
1235}
1236
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243	struct address_space *mapping = inode->i_mapping;
1244	pgoff_t start = 0;
1245	struct pagevec pvec;
1246	pgoff_t indices[PAGEVEC_SIZE];
1247	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248	int ret = 0;
1249
1250	pagevec_init(&pvec);
1251	do {
1252		unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255			nr_entries = *fs_pages_to_unuse;
1256
1257		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258						  pvec.pages, indices,
1259						  type, frontswap);
1260		if (pvec.nr == 0) {
1261			ret = 0;
1262			break;
1263		}
1264
1265		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266		if (ret < 0)
1267			break;
1268
1269		if (frontswap_partial) {
1270			*fs_pages_to_unuse -= ret;
1271			if (*fs_pages_to_unuse == 0) {
1272				ret = FRONTSWAP_PAGES_UNUSED;
1273				break;
1274			}
1275		}
1276
1277		start = indices[pvec.nr - 1];
1278	} while (true);
1279
1280	return ret;
1281}
1282
1283/*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288int shmem_unuse(unsigned int type, bool frontswap,
1289		unsigned long *fs_pages_to_unuse)
1290{
1291	struct shmem_inode_info *info, *next;
1292	int error = 0;
1293
1294	if (list_empty(&shmem_swaplist))
1295		return 0;
1296
1297	mutex_lock(&shmem_swaplist_mutex);
1298	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299		if (!info->swapped) {
 
 
 
1300			list_del_init(&info->swaplist);
1301			continue;
1302		}
1303		/*
1304		 * Drop the swaplist mutex while searching the inode for swap;
1305		 * but before doing so, make sure shmem_evict_inode() will not
1306		 * remove placeholder inode from swaplist, nor let it be freed
1307		 * (igrab() would protect from unlink, but not from unmount).
1308		 */
1309		atomic_inc(&info->stop_eviction);
1310		mutex_unlock(&shmem_swaplist_mutex);
1311
1312		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313					  fs_pages_to_unuse);
1314		cond_resched();
1315
1316		mutex_lock(&shmem_swaplist_mutex);
1317		next = list_next_entry(info, swaplist);
1318		if (!info->swapped)
1319			list_del_init(&info->swaplist);
1320		if (atomic_dec_and_test(&info->stop_eviction))
1321			wake_up_var(&info->stop_eviction);
1322		if (error)
1323			break;
1324	}
1325	mutex_unlock(&shmem_swaplist_mutex);
1326
 
 
 
 
 
 
 
1327	return error;
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
1335	struct shmem_inode_info *info;
1336	struct address_space *mapping;
1337	struct inode *inode;
1338	swp_entry_t swap;
1339	pgoff_t index;
1340
1341	VM_BUG_ON_PAGE(PageCompound(page), page);
1342	BUG_ON(!PageLocked(page));
1343	mapping = page->mapping;
1344	index = page->index;
1345	inode = mapping->host;
1346	info = SHMEM_I(inode);
1347	if (info->flags & VM_LOCKED)
1348		goto redirty;
1349	if (!total_swap_pages)
1350		goto redirty;
1351
1352	/*
1353	 * Our capabilities prevent regular writeback or sync from ever calling
1354	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355	 * its underlying filesystem, in which case tmpfs should write out to
1356	 * swap only in response to memory pressure, and not for the writeback
1357	 * threads or sync.
1358	 */
1359	if (!wbc->for_reclaim) {
1360		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361		goto redirty;
1362	}
1363
1364	/*
1365	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366	 * value into swapfile.c, the only way we can correctly account for a
1367	 * fallocated page arriving here is now to initialize it and write it.
1368	 *
1369	 * That's okay for a page already fallocated earlier, but if we have
1370	 * not yet completed the fallocation, then (a) we want to keep track
1371	 * of this page in case we have to undo it, and (b) it may not be a
1372	 * good idea to continue anyway, once we're pushing into swap.  So
1373	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374	 */
1375	if (!PageUptodate(page)) {
1376		if (inode->i_private) {
1377			struct shmem_falloc *shmem_falloc;
1378			spin_lock(&inode->i_lock);
1379			shmem_falloc = inode->i_private;
1380			if (shmem_falloc &&
1381			    !shmem_falloc->waitq &&
1382			    index >= shmem_falloc->start &&
1383			    index < shmem_falloc->next)
1384				shmem_falloc->nr_unswapped++;
1385			else
1386				shmem_falloc = NULL;
1387			spin_unlock(&inode->i_lock);
1388			if (shmem_falloc)
1389				goto redirty;
1390		}
1391		clear_highpage(page);
1392		flush_dcache_page(page);
1393		SetPageUptodate(page);
1394	}
1395
1396	swap = get_swap_page(page);
1397	if (!swap.val)
1398		goto redirty;
1399
1400	/*
1401	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402	 * if it's not already there.  Do it now before the page is
1403	 * moved to swap cache, when its pagelock no longer protects
1404	 * the inode from eviction.  But don't unlock the mutex until
1405	 * we've incremented swapped, because shmem_unuse_inode() will
1406	 * prune a !swapped inode from the swaplist under this mutex.
1407	 */
1408	mutex_lock(&shmem_swaplist_mutex);
1409	if (list_empty(&info->swaplist))
1410		list_add(&info->swaplist, &shmem_swaplist);
1411
1412	if (add_to_swap_cache(page, swap,
1413			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414			NULL) == 0) {
1415		spin_lock_irq(&info->lock);
1416		shmem_recalc_inode(inode);
1417		info->swapped++;
1418		spin_unlock_irq(&info->lock);
1419
 
1420		swap_shmem_alloc(swap);
1421		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
 
 
 
 
 
1423		mutex_unlock(&shmem_swaplist_mutex);
1424		BUG_ON(page_mapped(page));
1425		swap_writepage(page, wbc);
1426		return 0;
1427	}
1428
1429	mutex_unlock(&shmem_swaplist_mutex);
1430	put_swap_page(page, swap);
1431redirty:
1432	set_page_dirty(page);
1433	if (wbc->for_reclaim)
1434		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435	unlock_page(page);
1436	return 0;
1437}
1438
1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
 
1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441{
1442	char buffer[64];
1443
1444	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445		return;		/* show nothing */
1446
1447	mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449	seq_printf(seq, ",mpol=%s", buffer);
1450}
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454	struct mempolicy *mpol = NULL;
1455	if (sbinfo->mpol) {
1456		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457		mpol = sbinfo->mpol;
1458		mpol_get(mpol);
1459		spin_unlock(&sbinfo->stat_lock);
1460	}
1461	return mpol;
1462}
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469	return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
1475
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477		struct shmem_inode_info *info, pgoff_t index)
1478{
1479	/* Create a pseudo vma that just contains the policy */
1480	vma_init(vma, NULL);
1481	/* Bias interleave by inode number to distribute better across nodes */
1482	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488	/* Drop reference taken by mpol_shared_policy_lookup() */
1489	mpol_cond_put(vma->vm_policy);
1490}
1491
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493			struct shmem_inode_info *info, pgoff_t index)
1494{
 
1495	struct vm_area_struct pvma;
1496	struct page *page;
1497	struct vm_fault vmf = {
1498		.vma = &pvma,
1499	};
1500
1501	shmem_pseudo_vma_init(&pvma, info, index);
1502	page = swap_cluster_readahead(swap, gfp, &vmf);
1503	shmem_pseudo_vma_destroy(&pvma);
1504
1505	return page;
 
 
 
 
 
1506}
1507
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519	/* Allow allocations only from the originally specified zones. */
1520	result |= zoneflags;
 
 
 
1521
1522	/*
1523	 * Minimize the result gfp by taking the union with the deny flags,
1524	 * and the intersection of the allow flags.
1525	 */
1526	result |= (limit_gfp & denyflags);
1527	result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529	return result;
1530}
1531
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533		struct shmem_inode_info *info, pgoff_t index)
1534{
1535	struct vm_area_struct pvma;
1536	struct address_space *mapping = info->vfs_inode.i_mapping;
1537	pgoff_t hindex;
1538	struct page *page;
1539
1540	hindex = round_down(index, HPAGE_PMD_NR);
1541	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542								XA_PRESENT))
1543		return NULL;
1544
1545	shmem_pseudo_vma_init(&pvma, info, hindex);
1546	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547			       true);
1548	shmem_pseudo_vma_destroy(&pvma);
1549	if (page)
1550		prep_transhuge_page(page);
1551	else
1552		count_vm_event(THP_FILE_FALLBACK);
1553	return page;
1554}
 
1555
1556static struct page *shmem_alloc_page(gfp_t gfp,
1557			struct shmem_inode_info *info, pgoff_t index)
1558{
1559	struct vm_area_struct pvma;
1560	struct page *page;
1561
1562	shmem_pseudo_vma_init(&pvma, info, index);
1563	page = alloc_page_vma(gfp, &pvma, 0);
1564	shmem_pseudo_vma_destroy(&pvma);
1565
1566	return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570		struct inode *inode,
1571		pgoff_t index, bool huge)
1572{
1573	struct shmem_inode_info *info = SHMEM_I(inode);
1574	struct page *page;
1575	int nr;
1576	int err = -ENOSPC;
1577
1578	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579		huge = false;
1580	nr = huge ? HPAGE_PMD_NR : 1;
1581
1582	if (!shmem_inode_acct_block(inode, nr))
1583		goto failed;
1584
1585	if (huge)
1586		page = shmem_alloc_hugepage(gfp, info, index);
1587	else
1588		page = shmem_alloc_page(gfp, info, index);
1589	if (page) {
1590		__SetPageLocked(page);
1591		__SetPageSwapBacked(page);
1592		return page;
1593	}
1594
1595	err = -ENOMEM;
1596	shmem_inode_unacct_blocks(inode, nr);
1597failed:
1598	return ERR_PTR(err);
1599}
1600
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to.  If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615	return page_zonenum(page) > gfp_zone(gfp);
1616}
 
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619				struct shmem_inode_info *info, pgoff_t index)
1620{
1621	struct page *oldpage, *newpage;
1622	struct address_space *swap_mapping;
1623	swp_entry_t entry;
1624	pgoff_t swap_index;
1625	int error;
1626
1627	oldpage = *pagep;
1628	entry.val = page_private(oldpage);
1629	swap_index = swp_offset(entry);
1630	swap_mapping = page_mapping(oldpage);
1631
1632	/*
1633	 * We have arrived here because our zones are constrained, so don't
1634	 * limit chance of success by further cpuset and node constraints.
1635	 */
1636	gfp &= ~GFP_CONSTRAINT_MASK;
1637	newpage = shmem_alloc_page(gfp, info, index);
1638	if (!newpage)
1639		return -ENOMEM;
1640
1641	get_page(newpage);
1642	copy_highpage(newpage, oldpage);
1643	flush_dcache_page(newpage);
1644
1645	__SetPageLocked(newpage);
1646	__SetPageSwapBacked(newpage);
1647	SetPageUptodate(newpage);
1648	set_page_private(newpage, entry.val);
1649	SetPageSwapCache(newpage);
1650
1651	/*
1652	 * Our caller will very soon move newpage out of swapcache, but it's
1653	 * a nice clean interface for us to replace oldpage by newpage there.
1654	 */
1655	xa_lock_irq(&swap_mapping->i_pages);
1656	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657	if (!error) {
1658		mem_cgroup_migrate(oldpage, newpage);
1659		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661	}
1662	xa_unlock_irq(&swap_mapping->i_pages);
1663
1664	if (unlikely(error)) {
1665		/*
1666		 * Is this possible?  I think not, now that our callers check
1667		 * both PageSwapCache and page_private after getting page lock;
1668		 * but be defensive.  Reverse old to newpage for clear and free.
1669		 */
1670		oldpage = newpage;
1671	} else {
1672		lru_cache_add(newpage);
1673		*pagep = newpage;
1674	}
1675
1676	ClearPageSwapCache(oldpage);
1677	set_page_private(oldpage, 0);
1678
1679	unlock_page(oldpage);
1680	put_page(oldpage);
1681	put_page(oldpage);
1682	return error;
1683}
1684
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692			     struct page **pagep, enum sgp_type sgp,
1693			     gfp_t gfp, struct vm_area_struct *vma,
1694			     vm_fault_t *fault_type)
1695{
1696	struct address_space *mapping = inode->i_mapping;
1697	struct shmem_inode_info *info = SHMEM_I(inode);
1698	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699	struct page *page;
1700	swp_entry_t swap;
1701	int error;
1702
1703	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704	swap = radix_to_swp_entry(*pagep);
1705	*pagep = NULL;
1706
1707	/* Look it up and read it in.. */
1708	page = lookup_swap_cache(swap, NULL, 0);
1709	if (!page) {
1710		/* Or update major stats only when swapin succeeds?? */
1711		if (fault_type) {
1712			*fault_type |= VM_FAULT_MAJOR;
1713			count_vm_event(PGMAJFAULT);
1714			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715		}
1716		/* Here we actually start the io */
1717		page = shmem_swapin(swap, gfp, info, index);
1718		if (!page) {
1719			error = -ENOMEM;
1720			goto failed;
1721		}
1722	}
1723
1724	/* We have to do this with page locked to prevent races */
1725	lock_page(page);
1726	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727	    !shmem_confirm_swap(mapping, index, swap)) {
1728		error = -EEXIST;
1729		goto unlock;
1730	}
1731	if (!PageUptodate(page)) {
1732		error = -EIO;
1733		goto failed;
1734	}
1735	wait_on_page_writeback(page);
1736
1737	/*
1738	 * Some architectures may have to restore extra metadata to the
1739	 * physical page after reading from swap.
1740	 */
1741	arch_swap_restore(swap, page);
1742
1743	if (shmem_should_replace_page(page, gfp)) {
1744		error = shmem_replace_page(&page, gfp, info, index);
1745		if (error)
1746			goto failed;
1747	}
1748
1749	error = shmem_add_to_page_cache(page, mapping, index,
1750					swp_to_radix_entry(swap), gfp,
1751					charge_mm);
1752	if (error)
1753		goto failed;
1754
1755	spin_lock_irq(&info->lock);
1756	info->swapped--;
1757	shmem_recalc_inode(inode);
1758	spin_unlock_irq(&info->lock);
1759
1760	if (sgp == SGP_WRITE)
1761		mark_page_accessed(page);
1762
1763	delete_from_swap_cache(page);
1764	set_page_dirty(page);
1765	swap_free(swap);
1766
1767	*pagep = page;
1768	return 0;
1769failed:
1770	if (!shmem_confirm_swap(mapping, index, swap))
1771		error = -EEXIST;
1772unlock:
1773	if (page) {
1774		unlock_page(page);
1775		put_page(page);
1776	}
1777
1778	return error;
1779}
 
1780
1781/*
1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
1788 * vma, vmf, and fault_type are only supplied by shmem_fault:
1789 * otherwise they are NULL.
1790 */
1791static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793	struct vm_area_struct *vma, struct vm_fault *vmf,
1794			vm_fault_t *fault_type)
1795{
1796	struct address_space *mapping = inode->i_mapping;
1797	struct shmem_inode_info *info = SHMEM_I(inode);
1798	struct shmem_sb_info *sbinfo;
1799	struct mm_struct *charge_mm;
1800	struct page *page;
1801	enum sgp_type sgp_huge = sgp;
1802	pgoff_t hindex = index;
1803	gfp_t huge_gfp;
1804	int error;
1805	int once = 0;
1806	int alloced = 0;
1807
1808	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809		return -EFBIG;
1810	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811		sgp = SGP_CACHE;
1812repeat:
1813	if (sgp <= SGP_CACHE &&
1814	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815		return -EINVAL;
 
 
1816	}
1817
1818	sbinfo = SHMEM_SB(inode->i_sb);
1819	charge_mm = vma ? vma->vm_mm : NULL;
1820
1821	page = pagecache_get_page(mapping, index,
1822					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823
1824	if (page && vma && userfaultfd_minor(vma)) {
1825		if (!xa_is_value(page)) {
1826			unlock_page(page);
1827			put_page(page);
1828		}
1829		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1830		return 0;
1831	}
1832
1833	if (xa_is_value(page)) {
1834		error = shmem_swapin_page(inode, index, &page,
1835					  sgp, gfp, vma, fault_type);
1836		if (error == -EEXIST)
1837			goto repeat;
1838
 
1839		*pagep = page;
1840		return error;
1841	}
1842
1843	if (page)
1844		hindex = page->index;
1845	if (page && sgp == SGP_WRITE)
1846		mark_page_accessed(page);
1847
1848	/* fallocated page? */
1849	if (page && !PageUptodate(page)) {
1850		if (sgp != SGP_READ)
1851			goto clear;
1852		unlock_page(page);
1853		put_page(page);
1854		page = NULL;
1855		hindex = index;
1856	}
1857	if (page || sgp == SGP_READ)
1858		goto out;
1859
1860	/*
1861	 * Fast cache lookup did not find it:
1862	 * bring it back from swap or allocate.
1863	 */
 
 
1864
1865	if (vma && userfaultfd_missing(vma)) {
1866		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1867		return 0;
1868	}
 
 
 
 
 
 
 
 
 
1869
1870	/* shmem_symlink() */
1871	if (!shmem_mapping(mapping))
1872		goto alloc_nohuge;
1873	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1874		goto alloc_nohuge;
1875	if (shmem_huge == SHMEM_HUGE_FORCE)
1876		goto alloc_huge;
1877	switch (sbinfo->huge) {
1878	case SHMEM_HUGE_NEVER:
1879		goto alloc_nohuge;
1880	case SHMEM_HUGE_WITHIN_SIZE: {
1881		loff_t i_size;
1882		pgoff_t off;
1883
1884		off = round_up(index, HPAGE_PMD_NR);
1885		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1886		if (i_size >= HPAGE_PMD_SIZE &&
1887		    i_size >> PAGE_SHIFT >= off)
1888			goto alloc_huge;
1889
1890		fallthrough;
1891	}
1892	case SHMEM_HUGE_ADVISE:
1893		if (sgp_huge == SGP_HUGE)
1894			goto alloc_huge;
1895		/* TODO: implement fadvise() hints */
1896		goto alloc_nohuge;
1897	}
1898
1899alloc_huge:
1900	huge_gfp = vma_thp_gfp_mask(vma);
1901	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1902	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1903	if (IS_ERR(page)) {
1904alloc_nohuge:
1905		page = shmem_alloc_and_acct_page(gfp, inode,
1906						 index, false);
1907	}
1908	if (IS_ERR(page)) {
1909		int retry = 5;
1910
1911		error = PTR_ERR(page);
1912		page = NULL;
1913		if (error != -ENOSPC)
1914			goto unlock;
1915		/*
1916		 * Try to reclaim some space by splitting a huge page
1917		 * beyond i_size on the filesystem.
1918		 */
1919		while (retry--) {
1920			int ret;
1921
1922			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1923			if (ret == SHRINK_STOP)
1924				break;
1925			if (ret)
1926				goto alloc_nohuge;
1927		}
1928		goto unlock;
1929	}
1930
1931	if (PageTransHuge(page))
1932		hindex = round_down(index, HPAGE_PMD_NR);
1933	else
1934		hindex = index;
 
 
 
1935
1936	if (sgp == SGP_WRITE)
1937		__SetPageReferenced(page);
 
 
1938
1939	error = shmem_add_to_page_cache(page, mapping, hindex,
1940					NULL, gfp & GFP_RECLAIM_MASK,
1941					charge_mm);
1942	if (error)
1943		goto unacct;
1944	lru_cache_add(page);
1945
1946	spin_lock_irq(&info->lock);
1947	info->alloced += compound_nr(page);
1948	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1949	shmem_recalc_inode(inode);
1950	spin_unlock_irq(&info->lock);
1951	alloced = true;
 
 
 
 
 
 
 
1952
1953	if (PageTransHuge(page) &&
1954	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955			hindex + HPAGE_PMD_NR - 1) {
1956		/*
1957		 * Part of the huge page is beyond i_size: subject
1958		 * to shrink under memory pressure.
1959		 */
1960		spin_lock(&sbinfo->shrinklist_lock);
1961		/*
1962		 * _careful to defend against unlocked access to
1963		 * ->shrink_list in shmem_unused_huge_shrink()
1964		 */
1965		if (list_empty_careful(&info->shrinklist)) {
1966			list_add_tail(&info->shrinklist,
1967				      &sbinfo->shrinklist);
1968			sbinfo->shrinklist_len++;
1969		}
1970		spin_unlock(&sbinfo->shrinklist_lock);
1971	}
1972
1973	/*
1974	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1975	 */
1976	if (sgp == SGP_FALLOC)
1977		sgp = SGP_WRITE;
1978clear:
1979	/*
1980	 * Let SGP_WRITE caller clear ends if write does not fill page;
1981	 * but SGP_FALLOC on a page fallocated earlier must initialize
1982	 * it now, lest undo on failure cancel our earlier guarantee.
1983	 */
1984	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1985		int i;
 
 
 
1986
1987		for (i = 0; i < compound_nr(page); i++) {
1988			clear_highpage(page + i);
1989			flush_dcache_page(page + i);
1990		}
1991		SetPageUptodate(page);
 
 
1992	}
1993
1994	/* Perhaps the file has been truncated since we checked */
1995	if (sgp <= SGP_CACHE &&
1996	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997		if (alloced) {
1998			ClearPageDirty(page);
1999			delete_from_page_cache(page);
2000			spin_lock_irq(&info->lock);
2001			shmem_recalc_inode(inode);
2002			spin_unlock_irq(&info->lock);
2003		}
2004		error = -EINVAL;
2005		goto unlock;
2006	}
2007out:
2008	*pagep = page + index - hindex;
2009	return 0;
2010
2011	/*
2012	 * Error recovery.
2013	 */
 
 
 
 
 
 
 
 
 
 
2014unacct:
2015	shmem_inode_unacct_blocks(inode, compound_nr(page));
2016
2017	if (PageTransHuge(page)) {
2018		unlock_page(page);
2019		put_page(page);
2020		goto alloc_nohuge;
 
 
 
2021	}
2022unlock:
2023	if (page) {
2024		unlock_page(page);
2025		put_page(page);
2026	}
2027	if (error == -ENOSPC && !once++) {
2028		spin_lock_irq(&info->lock);
 
2029		shmem_recalc_inode(inode);
2030		spin_unlock_irq(&info->lock);
2031		goto repeat;
2032	}
2033	if (error == -EEXIST)
2034		goto repeat;
2035	return error;
2036}
2037
2038/*
2039 * This is like autoremove_wake_function, but it removes the wait queue
2040 * entry unconditionally - even if something else had already woken the
2041 * target.
2042 */
2043static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044{
2045	int ret = default_wake_function(wait, mode, sync, key);
2046	list_del_init(&wait->entry);
2047	return ret;
2048}
2049
2050static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051{
2052	struct vm_area_struct *vma = vmf->vma;
2053	struct inode *inode = file_inode(vma->vm_file);
2054	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055	enum sgp_type sgp;
2056	int err;
2057	vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059	/*
2060	 * Trinity finds that probing a hole which tmpfs is punching can
2061	 * prevent the hole-punch from ever completing: which in turn
2062	 * locks writers out with its hold on i_mutex.  So refrain from
2063	 * faulting pages into the hole while it's being punched.  Although
2064	 * shmem_undo_range() does remove the additions, it may be unable to
2065	 * keep up, as each new page needs its own unmap_mapping_range() call,
2066	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067	 *
2068	 * It does not matter if we sometimes reach this check just before the
2069	 * hole-punch begins, so that one fault then races with the punch:
2070	 * we just need to make racing faults a rare case.
2071	 *
2072	 * The implementation below would be much simpler if we just used a
2073	 * standard mutex or completion: but we cannot take i_mutex in fault,
2074	 * and bloating every shmem inode for this unlikely case would be sad.
2075	 */
2076	if (unlikely(inode->i_private)) {
2077		struct shmem_falloc *shmem_falloc;
2078
2079		spin_lock(&inode->i_lock);
2080		shmem_falloc = inode->i_private;
2081		if (shmem_falloc &&
2082		    shmem_falloc->waitq &&
2083		    vmf->pgoff >= shmem_falloc->start &&
2084		    vmf->pgoff < shmem_falloc->next) {
2085			struct file *fpin;
2086			wait_queue_head_t *shmem_falloc_waitq;
2087			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089			ret = VM_FAULT_NOPAGE;
2090			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091			if (fpin)
2092				ret = VM_FAULT_RETRY;
2093
2094			shmem_falloc_waitq = shmem_falloc->waitq;
2095			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096					TASK_UNINTERRUPTIBLE);
2097			spin_unlock(&inode->i_lock);
2098			schedule();
2099
2100			/*
2101			 * shmem_falloc_waitq points into the shmem_fallocate()
2102			 * stack of the hole-punching task: shmem_falloc_waitq
2103			 * is usually invalid by the time we reach here, but
2104			 * finish_wait() does not dereference it in that case;
2105			 * though i_lock needed lest racing with wake_up_all().
2106			 */
2107			spin_lock(&inode->i_lock);
2108			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109			spin_unlock(&inode->i_lock);
2110
2111			if (fpin)
2112				fput(fpin);
2113			return ret;
2114		}
2115		spin_unlock(&inode->i_lock);
2116	}
2117
2118	sgp = SGP_CACHE;
2119
2120	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2121	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2122		sgp = SGP_NOHUGE;
2123	else if (vma->vm_flags & VM_HUGEPAGE)
2124		sgp = SGP_HUGE;
2125
2126	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2127				  gfp, vma, vmf, &ret);
2128	if (err)
2129		return vmf_error(err);
2130	return ret;
2131}
2132
2133unsigned long shmem_get_unmapped_area(struct file *file,
2134				      unsigned long uaddr, unsigned long len,
2135				      unsigned long pgoff, unsigned long flags)
2136{
2137	unsigned long (*get_area)(struct file *,
2138		unsigned long, unsigned long, unsigned long, unsigned long);
2139	unsigned long addr;
2140	unsigned long offset;
2141	unsigned long inflated_len;
2142	unsigned long inflated_addr;
2143	unsigned long inflated_offset;
2144
2145	if (len > TASK_SIZE)
2146		return -ENOMEM;
2147
2148	get_area = current->mm->get_unmapped_area;
2149	addr = get_area(file, uaddr, len, pgoff, flags);
2150
2151	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2152		return addr;
2153	if (IS_ERR_VALUE(addr))
2154		return addr;
2155	if (addr & ~PAGE_MASK)
2156		return addr;
2157	if (addr > TASK_SIZE - len)
2158		return addr;
2159
2160	if (shmem_huge == SHMEM_HUGE_DENY)
2161		return addr;
2162	if (len < HPAGE_PMD_SIZE)
2163		return addr;
2164	if (flags & MAP_FIXED)
2165		return addr;
2166	/*
2167	 * Our priority is to support MAP_SHARED mapped hugely;
2168	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2169	 * But if caller specified an address hint and we allocated area there
2170	 * successfully, respect that as before.
2171	 */
2172	if (uaddr == addr)
2173		return addr;
2174
2175	if (shmem_huge != SHMEM_HUGE_FORCE) {
2176		struct super_block *sb;
2177
2178		if (file) {
2179			VM_BUG_ON(file->f_op != &shmem_file_operations);
2180			sb = file_inode(file)->i_sb;
2181		} else {
2182			/*
2183			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2184			 * for "/dev/zero", to create a shared anonymous object.
2185			 */
2186			if (IS_ERR(shm_mnt))
2187				return addr;
2188			sb = shm_mnt->mnt_sb;
2189		}
2190		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2191			return addr;
2192	}
2193
2194	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2195	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2196		return addr;
2197	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2198		return addr;
2199
2200	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2201	if (inflated_len > TASK_SIZE)
2202		return addr;
2203	if (inflated_len < len)
2204		return addr;
2205
2206	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2207	if (IS_ERR_VALUE(inflated_addr))
2208		return addr;
2209	if (inflated_addr & ~PAGE_MASK)
2210		return addr;
2211
2212	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2213	inflated_addr += offset - inflated_offset;
2214	if (inflated_offset > offset)
2215		inflated_addr += HPAGE_PMD_SIZE;
2216
2217	if (inflated_addr > TASK_SIZE - len)
2218		return addr;
2219	return inflated_addr;
2220}
2221
2222#ifdef CONFIG_NUMA
2223static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2224{
2225	struct inode *inode = file_inode(vma->vm_file);
2226	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2227}
2228
2229static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2230					  unsigned long addr)
2231{
2232	struct inode *inode = file_inode(vma->vm_file);
2233	pgoff_t index;
2234
2235	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2236	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2237}
2238#endif
2239
2240int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2241{
2242	struct inode *inode = file_inode(file);
2243	struct shmem_inode_info *info = SHMEM_I(inode);
2244	int retval = -ENOMEM;
2245
2246	/*
2247	 * What serializes the accesses to info->flags?
2248	 * ipc_lock_object() when called from shmctl_do_lock(),
2249	 * no serialization needed when called from shm_destroy().
2250	 */
2251	if (lock && !(info->flags & VM_LOCKED)) {
2252		if (!user_shm_lock(inode->i_size, ucounts))
2253			goto out_nomem;
2254		info->flags |= VM_LOCKED;
2255		mapping_set_unevictable(file->f_mapping);
2256	}
2257	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2258		user_shm_unlock(inode->i_size, ucounts);
2259		info->flags &= ~VM_LOCKED;
2260		mapping_clear_unevictable(file->f_mapping);
 
2261	}
2262	retval = 0;
2263
2264out_nomem:
 
2265	return retval;
2266}
2267
2268static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2269{
2270	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2271	int ret;
2272
2273	ret = seal_check_future_write(info->seals, vma);
2274	if (ret)
2275		return ret;
2276
2277	/* arm64 - allow memory tagging on RAM-based files */
2278	vma->vm_flags |= VM_MTE_ALLOWED;
2279
2280	file_accessed(file);
2281	vma->vm_ops = &shmem_vm_ops;
2282	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2283			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2284			(vma->vm_end & HPAGE_PMD_MASK)) {
2285		khugepaged_enter(vma, vma->vm_flags);
2286	}
2287	return 0;
2288}
2289
2290static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2291				     umode_t mode, dev_t dev, unsigned long flags)
2292{
2293	struct inode *inode;
2294	struct shmem_inode_info *info;
2295	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2296	ino_t ino;
2297
2298	if (shmem_reserve_inode(sb, &ino))
2299		return NULL;
2300
2301	inode = new_inode(sb);
2302	if (inode) {
2303		inode->i_ino = ino;
2304		inode_init_owner(&init_user_ns, inode, dir, mode);
2305		inode->i_blocks = 0;
2306		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2307		inode->i_generation = prandom_u32();
 
2308		info = SHMEM_I(inode);
2309		memset(info, 0, (char *)inode - (char *)info);
2310		spin_lock_init(&info->lock);
2311		atomic_set(&info->stop_eviction, 0);
2312		info->seals = F_SEAL_SEAL;
2313		info->flags = flags & VM_NORESERVE;
2314		INIT_LIST_HEAD(&info->shrinklist);
2315		INIT_LIST_HEAD(&info->swaplist);
2316		simple_xattrs_init(&info->xattrs);
2317		cache_no_acl(inode);
2318
2319		switch (mode & S_IFMT) {
2320		default:
2321			inode->i_op = &shmem_special_inode_operations;
2322			init_special_inode(inode, mode, dev);
2323			break;
2324		case S_IFREG:
2325			inode->i_mapping->a_ops = &shmem_aops;
2326			inode->i_op = &shmem_inode_operations;
2327			inode->i_fop = &shmem_file_operations;
2328			mpol_shared_policy_init(&info->policy,
2329						 shmem_get_sbmpol(sbinfo));
2330			break;
2331		case S_IFDIR:
2332			inc_nlink(inode);
2333			/* Some things misbehave if size == 0 on a directory */
2334			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2335			inode->i_op = &shmem_dir_inode_operations;
2336			inode->i_fop = &simple_dir_operations;
2337			break;
2338		case S_IFLNK:
2339			/*
2340			 * Must not load anything in the rbtree,
2341			 * mpol_free_shared_policy will not be called.
2342			 */
2343			mpol_shared_policy_init(&info->policy, NULL);
2344			break;
2345		}
2346
2347		lockdep_annotate_inode_mutex_key(inode);
2348	} else
2349		shmem_free_inode(sb);
2350	return inode;
2351}
2352
2353#ifdef CONFIG_USERFAULTFD
2354int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2355			   pmd_t *dst_pmd,
2356			   struct vm_area_struct *dst_vma,
2357			   unsigned long dst_addr,
2358			   unsigned long src_addr,
2359			   bool zeropage,
2360			   struct page **pagep)
2361{
2362	struct inode *inode = file_inode(dst_vma->vm_file);
2363	struct shmem_inode_info *info = SHMEM_I(inode);
2364	struct address_space *mapping = inode->i_mapping;
2365	gfp_t gfp = mapping_gfp_mask(mapping);
2366	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2367	void *page_kaddr;
2368	struct page *page;
2369	int ret;
2370	pgoff_t max_off;
2371
2372	if (!shmem_inode_acct_block(inode, 1)) {
2373		/*
2374		 * We may have got a page, returned -ENOENT triggering a retry,
2375		 * and now we find ourselves with -ENOMEM. Release the page, to
2376		 * avoid a BUG_ON in our caller.
2377		 */
2378		if (unlikely(*pagep)) {
2379			put_page(*pagep);
2380			*pagep = NULL;
2381		}
2382		return -ENOMEM;
2383	}
2384
2385	if (!*pagep) {
2386		ret = -ENOMEM;
2387		page = shmem_alloc_page(gfp, info, pgoff);
2388		if (!page)
2389			goto out_unacct_blocks;
2390
2391		if (!zeropage) {	/* COPY */
2392			page_kaddr = kmap_atomic(page);
2393			ret = copy_from_user(page_kaddr,
2394					     (const void __user *)src_addr,
2395					     PAGE_SIZE);
2396			kunmap_atomic(page_kaddr);
2397
2398			/* fallback to copy_from_user outside mmap_lock */
2399			if (unlikely(ret)) {
2400				*pagep = page;
2401				ret = -ENOENT;
2402				/* don't free the page */
2403				goto out_unacct_blocks;
2404			}
2405		} else {		/* ZEROPAGE */
2406			clear_highpage(page);
2407		}
2408	} else {
2409		page = *pagep;
2410		*pagep = NULL;
2411	}
2412
2413	VM_BUG_ON(PageLocked(page));
2414	VM_BUG_ON(PageSwapBacked(page));
2415	__SetPageLocked(page);
2416	__SetPageSwapBacked(page);
2417	__SetPageUptodate(page);
2418
2419	ret = -EFAULT;
2420	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421	if (unlikely(pgoff >= max_off))
2422		goto out_release;
2423
2424	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2425				      gfp & GFP_RECLAIM_MASK, dst_mm);
2426	if (ret)
2427		goto out_release;
2428
2429	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2430				       page, true, false);
2431	if (ret)
2432		goto out_delete_from_cache;
2433
2434	spin_lock_irq(&info->lock);
2435	info->alloced++;
2436	inode->i_blocks += BLOCKS_PER_PAGE;
2437	shmem_recalc_inode(inode);
2438	spin_unlock_irq(&info->lock);
2439
2440	SetPageDirty(page);
2441	unlock_page(page);
2442	return 0;
2443out_delete_from_cache:
2444	delete_from_page_cache(page);
2445out_release:
2446	unlock_page(page);
2447	put_page(page);
2448out_unacct_blocks:
2449	shmem_inode_unacct_blocks(inode, 1);
2450	return ret;
2451}
2452#endif /* CONFIG_USERFAULTFD */
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466			loff_t pos, unsigned len, unsigned flags,
2467			struct page **pagep, void **fsdata)
2468{
2469	struct inode *inode = mapping->host;
2470	struct shmem_inode_info *info = SHMEM_I(inode);
2471	pgoff_t index = pos >> PAGE_SHIFT;
2472
2473	/* i_mutex is held by caller */
2474	if (unlikely(info->seals & (F_SEAL_GROW |
2475				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477			return -EPERM;
2478		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479			return -EPERM;
2480	}
2481
2482	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487			loff_t pos, unsigned len, unsigned copied,
2488			struct page *page, void *fsdata)
2489{
2490	struct inode *inode = mapping->host;
2491
2492	if (pos + copied > inode->i_size)
2493		i_size_write(inode, pos + copied);
2494
2495	if (!PageUptodate(page)) {
2496		struct page *head = compound_head(page);
2497		if (PageTransCompound(page)) {
2498			int i;
2499
2500			for (i = 0; i < HPAGE_PMD_NR; i++) {
2501				if (head + i == page)
2502					continue;
2503				clear_highpage(head + i);
2504				flush_dcache_page(head + i);
2505			}
2506		}
2507		if (copied < PAGE_SIZE) {
2508			unsigned from = pos & (PAGE_SIZE - 1);
2509			zero_user_segments(page, 0, from,
2510					from + copied, PAGE_SIZE);
2511		}
2512		SetPageUptodate(head);
2513	}
2514	set_page_dirty(page);
2515	unlock_page(page);
2516	put_page(page);
2517
2518	return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523	struct file *file = iocb->ki_filp;
2524	struct inode *inode = file_inode(file);
2525	struct address_space *mapping = inode->i_mapping;
2526	pgoff_t index;
2527	unsigned long offset;
2528	enum sgp_type sgp = SGP_READ;
2529	int error = 0;
2530	ssize_t retval = 0;
2531	loff_t *ppos = &iocb->ki_pos;
2532
2533	/*
2534	 * Might this read be for a stacking filesystem?  Then when reading
2535	 * holes of a sparse file, we actually need to allocate those pages,
2536	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537	 */
2538	if (!iter_is_iovec(to))
2539		sgp = SGP_CACHE;
2540
2541	index = *ppos >> PAGE_SHIFT;
2542	offset = *ppos & ~PAGE_MASK;
2543
2544	for (;;) {
2545		struct page *page = NULL;
2546		pgoff_t end_index;
2547		unsigned long nr, ret;
2548		loff_t i_size = i_size_read(inode);
2549
2550		end_index = i_size >> PAGE_SHIFT;
2551		if (index > end_index)
2552			break;
2553		if (index == end_index) {
2554			nr = i_size & ~PAGE_MASK;
2555			if (nr <= offset)
2556				break;
2557		}
2558
2559		error = shmem_getpage(inode, index, &page, sgp);
2560		if (error) {
2561			if (error == -EINVAL)
2562				error = 0;
2563			break;
2564		}
2565		if (page) {
2566			if (sgp == SGP_CACHE)
2567				set_page_dirty(page);
2568			unlock_page(page);
2569		}
2570
2571		/*
2572		 * We must evaluate after, since reads (unlike writes)
2573		 * are called without i_mutex protection against truncate
2574		 */
2575		nr = PAGE_SIZE;
2576		i_size = i_size_read(inode);
2577		end_index = i_size >> PAGE_SHIFT;
2578		if (index == end_index) {
2579			nr = i_size & ~PAGE_MASK;
2580			if (nr <= offset) {
2581				if (page)
2582					put_page(page);
2583				break;
2584			}
2585		}
2586		nr -= offset;
2587
2588		if (page) {
2589			/*
2590			 * If users can be writing to this page using arbitrary
2591			 * virtual addresses, take care about potential aliasing
2592			 * before reading the page on the kernel side.
2593			 */
2594			if (mapping_writably_mapped(mapping))
2595				flush_dcache_page(page);
2596			/*
2597			 * Mark the page accessed if we read the beginning.
2598			 */
2599			if (!offset)
2600				mark_page_accessed(page);
2601		} else {
2602			page = ZERO_PAGE(0);
2603			get_page(page);
2604		}
2605
2606		/*
2607		 * Ok, we have the page, and it's up-to-date, so
2608		 * now we can copy it to user space...
 
 
 
 
 
 
2609		 */
2610		ret = copy_page_to_iter(page, offset, nr, to);
2611		retval += ret;
2612		offset += ret;
2613		index += offset >> PAGE_SHIFT;
2614		offset &= ~PAGE_MASK;
2615
2616		put_page(page);
2617		if (!iov_iter_count(to))
2618			break;
2619		if (ret < nr) {
2620			error = -EFAULT;
2621			break;
2622		}
2623		cond_resched();
2624	}
2625
2626	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627	file_accessed(file);
2628	return retval ? retval : error;
2629}
2630
2631static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
 
2632{
2633	struct address_space *mapping = file->f_mapping;
2634	struct inode *inode = mapping->host;
 
 
 
2635
2636	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2637		return generic_file_llseek_size(file, offset, whence,
2638					MAX_LFS_FILESIZE, i_size_read(inode));
2639	if (offset < 0)
2640		return -ENXIO;
2641
2642	inode_lock(inode);
2643	/* We're holding i_mutex so we can access i_size directly */
2644	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2645	if (offset >= 0)
2646		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2647	inode_unlock(inode);
2648	return offset;
 
 
 
 
 
 
 
 
 
 
2649}
2650
2651static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2652							 loff_t len)
 
2653{
2654	struct inode *inode = file_inode(file);
2655	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2656	struct shmem_inode_info *info = SHMEM_I(inode);
2657	struct shmem_falloc shmem_falloc;
2658	pgoff_t start, index, end;
2659	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660
2661	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2662		return -EOPNOTSUPP;
 
2663
2664	inode_lock(inode);
 
2665
2666	if (mode & FALLOC_FL_PUNCH_HOLE) {
2667		struct address_space *mapping = file->f_mapping;
2668		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2669		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2670		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2671
2672		/* protected by i_mutex */
2673		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2674			error = -EPERM;
2675			goto out;
2676		}
2677
2678		shmem_falloc.waitq = &shmem_falloc_waitq;
2679		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2680		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2681		spin_lock(&inode->i_lock);
2682		inode->i_private = &shmem_falloc;
2683		spin_unlock(&inode->i_lock);
2684
2685		if ((u64)unmap_end > (u64)unmap_start)
2686			unmap_mapping_range(mapping, unmap_start,
2687					    1 + unmap_end - unmap_start, 0);
2688		shmem_truncate_range(inode, offset, offset + len - 1);
2689		/* No need to unmap again: hole-punching leaves COWed pages */
2690
2691		spin_lock(&inode->i_lock);
2692		inode->i_private = NULL;
2693		wake_up_all(&shmem_falloc_waitq);
2694		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2695		spin_unlock(&inode->i_lock);
2696		error = 0;
2697		goto out;
2698	}
2699
2700	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2701	error = inode_newsize_ok(inode, offset + len);
2702	if (error)
2703		goto out;
 
 
 
 
 
 
 
 
2704
2705	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2706		error = -EPERM;
2707		goto out;
2708	}
 
 
 
 
 
2709
2710	start = offset >> PAGE_SHIFT;
2711	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712	/* Try to avoid a swapstorm if len is impossible to satisfy */
2713	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2714		error = -ENOSPC;
2715		goto out;
2716	}
2717
2718	shmem_falloc.waitq = NULL;
2719	shmem_falloc.start = start;
2720	shmem_falloc.next  = start;
2721	shmem_falloc.nr_falloced = 0;
2722	shmem_falloc.nr_unswapped = 0;
2723	spin_lock(&inode->i_lock);
2724	inode->i_private = &shmem_falloc;
2725	spin_unlock(&inode->i_lock);
2726
2727	for (index = start; index < end; index++) {
2728		struct page *page;
 
2729
2730		/*
2731		 * Good, the fallocate(2) manpage permits EINTR: we may have
2732		 * been interrupted because we are using up too much memory.
2733		 */
2734		if (signal_pending(current))
2735			error = -EINTR;
2736		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2737			error = -ENOMEM;
2738		else
2739			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2740		if (error) {
2741			/* Remove the !PageUptodate pages we added */
2742			if (index > start) {
2743				shmem_undo_range(inode,
2744				    (loff_t)start << PAGE_SHIFT,
2745				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2746			}
2747			goto undone;
2748		}
2749
2750		/*
2751		 * Inform shmem_writepage() how far we have reached.
2752		 * No need for lock or barrier: we have the page lock.
2753		 */
2754		shmem_falloc.next++;
2755		if (!PageUptodate(page))
2756			shmem_falloc.nr_falloced++;
 
 
 
 
 
 
 
 
2757
2758		/*
2759		 * If !PageUptodate, leave it that way so that freeable pages
2760		 * can be recognized if we need to rollback on error later.
2761		 * But set_page_dirty so that memory pressure will swap rather
2762		 * than free the pages we are allocating (and SGP_CACHE pages
2763		 * might still be clean: we now need to mark those dirty too).
2764		 */
2765		set_page_dirty(page);
2766		unlock_page(page);
2767		put_page(page);
2768		cond_resched();
2769	}
2770
2771	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2772		i_size_write(inode, offset + len);
2773	inode->i_ctime = current_time(inode);
2774undone:
2775	spin_lock(&inode->i_lock);
2776	inode->i_private = NULL;
2777	spin_unlock(&inode->i_lock);
2778out:
2779	inode_unlock(inode);
2780	return error;
2781}
2782
2783static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2784{
2785	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2786
2787	buf->f_type = TMPFS_MAGIC;
2788	buf->f_bsize = PAGE_SIZE;
2789	buf->f_namelen = NAME_MAX;
2790	if (sbinfo->max_blocks) {
2791		buf->f_blocks = sbinfo->max_blocks;
2792		buf->f_bavail =
2793		buf->f_bfree  = sbinfo->max_blocks -
2794				percpu_counter_sum(&sbinfo->used_blocks);
2795	}
2796	if (sbinfo->max_inodes) {
2797		buf->f_files = sbinfo->max_inodes;
2798		buf->f_ffree = sbinfo->free_inodes;
2799	}
2800	/* else leave those fields 0 like simple_statfs */
2801
2802	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2803
2804	return 0;
2805}
2806
2807/*
2808 * File creation. Allocate an inode, and we're done..
2809 */
2810static int
2811shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2812	    struct dentry *dentry, umode_t mode, dev_t dev)
2813{
2814	struct inode *inode;
2815	int error = -ENOSPC;
2816
2817	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2818	if (inode) {
2819		error = simple_acl_create(dir, inode);
2820		if (error)
2821			goto out_iput;
2822		error = security_inode_init_security(inode, dir,
2823						     &dentry->d_name,
2824						     shmem_initxattrs, NULL);
2825		if (error && error != -EOPNOTSUPP)
2826			goto out_iput;
2827
 
 
 
 
 
 
 
 
 
 
2828		error = 0;
 
2829		dir->i_size += BOGO_DIRENT_SIZE;
2830		dir->i_ctime = dir->i_mtime = current_time(dir);
2831		d_instantiate(dentry, inode);
2832		dget(dentry); /* Extra count - pin the dentry in core */
2833	}
2834	return error;
2835out_iput:
2836	iput(inode);
2837	return error;
2838}
2839
2840static int
2841shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2842	      struct dentry *dentry, umode_t mode)
2843{
2844	struct inode *inode;
2845	int error = -ENOSPC;
2846
2847	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2848	if (inode) {
2849		error = security_inode_init_security(inode, dir,
2850						     NULL,
2851						     shmem_initxattrs, NULL);
2852		if (error && error != -EOPNOTSUPP)
2853			goto out_iput;
2854		error = simple_acl_create(dir, inode);
2855		if (error)
2856			goto out_iput;
2857		d_tmpfile(dentry, inode);
2858	}
2859	return error;
2860out_iput:
2861	iput(inode);
2862	return error;
2863}
2864
2865static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2866		       struct dentry *dentry, umode_t mode)
2867{
2868	int error;
2869
2870	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2871				 mode | S_IFDIR, 0)))
2872		return error;
2873	inc_nlink(dir);
2874	return 0;
2875}
2876
2877static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2878			struct dentry *dentry, umode_t mode, bool excl)
2879{
2880	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2881}
2882
2883/*
2884 * Link a file..
2885 */
2886static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2887{
2888	struct inode *inode = d_inode(old_dentry);
2889	int ret = 0;
2890
2891	/*
2892	 * No ordinary (disk based) filesystem counts links as inodes;
2893	 * but each new link needs a new dentry, pinning lowmem, and
2894	 * tmpfs dentries cannot be pruned until they are unlinked.
2895	 * But if an O_TMPFILE file is linked into the tmpfs, the
2896	 * first link must skip that, to get the accounting right.
2897	 */
2898	if (inode->i_nlink) {
2899		ret = shmem_reserve_inode(inode->i_sb, NULL);
2900		if (ret)
2901			goto out;
2902	}
2903
2904	dir->i_size += BOGO_DIRENT_SIZE;
2905	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2906	inc_nlink(inode);
2907	ihold(inode);	/* New dentry reference */
2908	dget(dentry);		/* Extra pinning count for the created dentry */
2909	d_instantiate(dentry, inode);
2910out:
2911	return ret;
2912}
2913
2914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915{
2916	struct inode *inode = d_inode(dentry);
2917
2918	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919		shmem_free_inode(inode->i_sb);
2920
2921	dir->i_size -= BOGO_DIRENT_SIZE;
2922	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2923	drop_nlink(inode);
2924	dput(dentry);	/* Undo the count from "create" - this does all the work */
2925	return 0;
2926}
2927
2928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929{
2930	if (!simple_empty(dentry))
2931		return -ENOTEMPTY;
2932
2933	drop_nlink(d_inode(dentry));
2934	drop_nlink(dir);
2935	return shmem_unlink(dir, dentry);
2936}
2937
2938static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939{
2940	bool old_is_dir = d_is_dir(old_dentry);
2941	bool new_is_dir = d_is_dir(new_dentry);
2942
2943	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944		if (old_is_dir) {
2945			drop_nlink(old_dir);
2946			inc_nlink(new_dir);
2947		} else {
2948			drop_nlink(new_dir);
2949			inc_nlink(old_dir);
2950		}
2951	}
2952	old_dir->i_ctime = old_dir->i_mtime =
2953	new_dir->i_ctime = new_dir->i_mtime =
2954	d_inode(old_dentry)->i_ctime =
2955	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956
2957	return 0;
2958}
2959
2960static int shmem_whiteout(struct user_namespace *mnt_userns,
2961			  struct inode *old_dir, struct dentry *old_dentry)
2962{
2963	struct dentry *whiteout;
2964	int error;
2965
2966	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2967	if (!whiteout)
2968		return -ENOMEM;
2969
2970	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2971			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2972	dput(whiteout);
2973	if (error)
2974		return error;
2975
2976	/*
2977	 * Cheat and hash the whiteout while the old dentry is still in
2978	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2979	 *
2980	 * d_lookup() will consistently find one of them at this point,
2981	 * not sure which one, but that isn't even important.
2982	 */
2983	d_rehash(whiteout);
2984	return 0;
2985}
2986
2987/*
2988 * The VFS layer already does all the dentry stuff for rename,
2989 * we just have to decrement the usage count for the target if
2990 * it exists so that the VFS layer correctly free's it when it
2991 * gets overwritten.
2992 */
2993static int shmem_rename2(struct user_namespace *mnt_userns,
2994			 struct inode *old_dir, struct dentry *old_dentry,
2995			 struct inode *new_dir, struct dentry *new_dentry,
2996			 unsigned int flags)
2997{
2998	struct inode *inode = d_inode(old_dentry);
2999	int they_are_dirs = S_ISDIR(inode->i_mode);
3000
3001	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3002		return -EINVAL;
3003
3004	if (flags & RENAME_EXCHANGE)
3005		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3006
3007	if (!simple_empty(new_dentry))
3008		return -ENOTEMPTY;
3009
3010	if (flags & RENAME_WHITEOUT) {
3011		int error;
3012
3013		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3014		if (error)
3015			return error;
3016	}
3017
3018	if (d_really_is_positive(new_dentry)) {
3019		(void) shmem_unlink(new_dir, new_dentry);
3020		if (they_are_dirs) {
3021			drop_nlink(d_inode(new_dentry));
3022			drop_nlink(old_dir);
3023		}
3024	} else if (they_are_dirs) {
3025		drop_nlink(old_dir);
3026		inc_nlink(new_dir);
3027	}
3028
3029	old_dir->i_size -= BOGO_DIRENT_SIZE;
3030	new_dir->i_size += BOGO_DIRENT_SIZE;
3031	old_dir->i_ctime = old_dir->i_mtime =
3032	new_dir->i_ctime = new_dir->i_mtime =
3033	inode->i_ctime = current_time(old_dir);
3034	return 0;
3035}
3036
3037static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3038			 struct dentry *dentry, const char *symname)
3039{
3040	int error;
3041	int len;
3042	struct inode *inode;
3043	struct page *page;
 
 
3044
3045	len = strlen(symname) + 1;
3046	if (len > PAGE_SIZE)
3047		return -ENAMETOOLONG;
3048
3049	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3050				VM_NORESERVE);
3051	if (!inode)
3052		return -ENOSPC;
3053
3054	error = security_inode_init_security(inode, dir, &dentry->d_name,
3055					     shmem_initxattrs, NULL);
3056	if (error && error != -EOPNOTSUPP) {
3057		iput(inode);
3058		return error;
 
 
 
3059	}
3060
 
3061	inode->i_size = len-1;
3062	if (len <= SHORT_SYMLINK_LEN) {
3063		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3064		if (!inode->i_link) {
3065			iput(inode);
3066			return -ENOMEM;
3067		}
3068		inode->i_op = &shmem_short_symlink_operations;
3069	} else {
3070		inode_nohighmem(inode);
3071		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3072		if (error) {
3073			iput(inode);
3074			return error;
3075		}
3076		inode->i_mapping->a_ops = &shmem_aops;
3077		inode->i_op = &shmem_symlink_inode_operations;
3078		memcpy(page_address(page), symname, len);
3079		SetPageUptodate(page);
 
3080		set_page_dirty(page);
3081		unlock_page(page);
3082		put_page(page);
3083	}
3084	dir->i_size += BOGO_DIRENT_SIZE;
3085	dir->i_ctime = dir->i_mtime = current_time(dir);
3086	d_instantiate(dentry, inode);
3087	dget(dentry);
3088	return 0;
3089}
3090
3091static void shmem_put_link(void *arg)
3092{
3093	mark_page_accessed(arg);
3094	put_page(arg);
3095}
3096
3097static const char *shmem_get_link(struct dentry *dentry,
3098				  struct inode *inode,
3099				  struct delayed_call *done)
3100{
3101	struct page *page = NULL;
3102	int error;
3103	if (!dentry) {
3104		page = find_get_page(inode->i_mapping, 0);
3105		if (!page)
3106			return ERR_PTR(-ECHILD);
3107		if (!PageUptodate(page)) {
3108			put_page(page);
3109			return ERR_PTR(-ECHILD);
3110		}
3111	} else {
3112		error = shmem_getpage(inode, 0, &page, SGP_READ);
3113		if (error)
3114			return ERR_PTR(error);
3115		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
3116	}
3117	set_delayed_call(done, shmem_put_link, page);
3118	return page_address(page);
3119}
3120
3121#ifdef CONFIG_TMPFS_XATTR
3122/*
3123 * Superblocks without xattr inode operations may get some security.* xattr
3124 * support from the LSM "for free". As soon as we have any other xattrs
3125 * like ACLs, we also need to implement the security.* handlers at
3126 * filesystem level, though.
3127 */
3128
3129/*
3130 * Callback for security_inode_init_security() for acquiring xattrs.
3131 */
3132static int shmem_initxattrs(struct inode *inode,
3133			    const struct xattr *xattr_array,
3134			    void *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3135{
 
3136	struct shmem_inode_info *info = SHMEM_I(inode);
3137	const struct xattr *xattr;
3138	struct simple_xattr *new_xattr;
3139	size_t len;
 
3140
3141	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3142		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
 
 
 
 
 
 
3143		if (!new_xattr)
3144			return -ENOMEM;
3145
3146		len = strlen(xattr->name) + 1;
3147		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3148					  GFP_KERNEL);
3149		if (!new_xattr->name) {
3150			kvfree(new_xattr);
3151			return -ENOMEM;
3152		}
3153
3154		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3155		       XATTR_SECURITY_PREFIX_LEN);
3156		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3157		       xattr->name, len);
3158
3159		simple_xattr_list_add(&info->xattrs, new_xattr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160	}
 
 
 
 
 
 
 
3161
3162	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3163}
3164
3165static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3166				   struct dentry *unused, struct inode *inode,
3167				   const char *name, void *buffer, size_t size)
3168{
3169	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
3170
3171	name = xattr_full_name(handler, name);
3172	return simple_xattr_get(&info->xattrs, name, buffer, size);
3173}
3174
3175static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3176				   struct user_namespace *mnt_userns,
3177				   struct dentry *unused, struct inode *inode,
3178				   const char *name, const void *value,
3179				   size_t size, int flags)
3180{
3181	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3182
3183	name = xattr_full_name(handler, name);
3184	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3185}
3186
3187static const struct xattr_handler shmem_security_xattr_handler = {
3188	.prefix = XATTR_SECURITY_PREFIX,
3189	.get = shmem_xattr_handler_get,
3190	.set = shmem_xattr_handler_set,
3191};
 
 
 
 
 
 
 
 
 
 
3192
3193static const struct xattr_handler shmem_trusted_xattr_handler = {
3194	.prefix = XATTR_TRUSTED_PREFIX,
3195	.get = shmem_xattr_handler_get,
3196	.set = shmem_xattr_handler_set,
3197};
3198
3199static const struct xattr_handler *shmem_xattr_handlers[] = {
3200#ifdef CONFIG_TMPFS_POSIX_ACL
3201	&posix_acl_access_xattr_handler,
3202	&posix_acl_default_xattr_handler,
3203#endif
3204	&shmem_security_xattr_handler,
3205	&shmem_trusted_xattr_handler,
3206	NULL
3207};
3208
3209static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3210{
3211	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3212	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213}
3214#endif /* CONFIG_TMPFS_XATTR */
3215
3216static const struct inode_operations shmem_short_symlink_operations = {
3217	.get_link	= simple_get_link,
 
3218#ifdef CONFIG_TMPFS_XATTR
 
 
3219	.listxattr	= shmem_listxattr,
 
3220#endif
3221};
3222
3223static const struct inode_operations shmem_symlink_inode_operations = {
3224	.get_link	= shmem_get_link,
 
 
3225#ifdef CONFIG_TMPFS_XATTR
 
 
3226	.listxattr	= shmem_listxattr,
 
3227#endif
3228};
3229
3230static struct dentry *shmem_get_parent(struct dentry *child)
3231{
3232	return ERR_PTR(-ESTALE);
3233}
3234
3235static int shmem_match(struct inode *ino, void *vfh)
3236{
3237	__u32 *fh = vfh;
3238	__u64 inum = fh[2];
3239	inum = (inum << 32) | fh[1];
3240	return ino->i_ino == inum && fh[0] == ino->i_generation;
3241}
3242
3243/* Find any alias of inode, but prefer a hashed alias */
3244static struct dentry *shmem_find_alias(struct inode *inode)
3245{
3246	struct dentry *alias = d_find_alias(inode);
3247
3248	return alias ?: d_find_any_alias(inode);
3249}
3250
3251
3252static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3253		struct fid *fid, int fh_len, int fh_type)
3254{
3255	struct inode *inode;
3256	struct dentry *dentry = NULL;
3257	u64 inum;
 
3258
3259	if (fh_len < 3)
3260		return NULL;
3261
3262	inum = fid->raw[2];
3263	inum = (inum << 32) | fid->raw[1];
3264
3265	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3266			shmem_match, fid->raw);
3267	if (inode) {
3268		dentry = shmem_find_alias(inode);
3269		iput(inode);
3270	}
3271
3272	return dentry;
3273}
3274
3275static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3276				struct inode *parent)
3277{
 
 
3278	if (*len < 3) {
3279		*len = 3;
3280		return FILEID_INVALID;
3281	}
3282
3283	if (inode_unhashed(inode)) {
3284		/* Unfortunately insert_inode_hash is not idempotent,
3285		 * so as we hash inodes here rather than at creation
3286		 * time, we need a lock to ensure we only try
3287		 * to do it once
3288		 */
3289		static DEFINE_SPINLOCK(lock);
3290		spin_lock(&lock);
3291		if (inode_unhashed(inode))
3292			__insert_inode_hash(inode,
3293					    inode->i_ino + inode->i_generation);
3294		spin_unlock(&lock);
3295	}
3296
3297	fh[0] = inode->i_generation;
3298	fh[1] = inode->i_ino;
3299	fh[2] = ((__u64)inode->i_ino) >> 32;
3300
3301	*len = 3;
3302	return 1;
3303}
3304
3305static const struct export_operations shmem_export_ops = {
3306	.get_parent     = shmem_get_parent,
3307	.encode_fh      = shmem_encode_fh,
3308	.fh_to_dentry	= shmem_fh_to_dentry,
3309};
3310
3311enum shmem_param {
3312	Opt_gid,
3313	Opt_huge,
3314	Opt_mode,
3315	Opt_mpol,
3316	Opt_nr_blocks,
3317	Opt_nr_inodes,
3318	Opt_size,
3319	Opt_uid,
3320	Opt_inode32,
3321	Opt_inode64,
3322};
3323
3324static const struct constant_table shmem_param_enums_huge[] = {
3325	{"never",	SHMEM_HUGE_NEVER },
3326	{"always",	SHMEM_HUGE_ALWAYS },
3327	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3328	{"advise",	SHMEM_HUGE_ADVISE },
3329	{}
3330};
3331
3332const struct fs_parameter_spec shmem_fs_parameters[] = {
3333	fsparam_u32   ("gid",		Opt_gid),
3334	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3335	fsparam_u32oct("mode",		Opt_mode),
3336	fsparam_string("mpol",		Opt_mpol),
3337	fsparam_string("nr_blocks",	Opt_nr_blocks),
3338	fsparam_string("nr_inodes",	Opt_nr_inodes),
3339	fsparam_string("size",		Opt_size),
3340	fsparam_u32   ("uid",		Opt_uid),
3341	fsparam_flag  ("inode32",	Opt_inode32),
3342	fsparam_flag  ("inode64",	Opt_inode64),
3343	{}
3344};
3345
3346static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3347{
3348	struct shmem_options *ctx = fc->fs_private;
3349	struct fs_parse_result result;
3350	unsigned long long size;
3351	char *rest;
3352	int opt;
3353
3354	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3355	if (opt < 0)
3356		return opt;
3357
3358	switch (opt) {
3359	case Opt_size:
3360		size = memparse(param->string, &rest);
3361		if (*rest == '%') {
3362			size <<= PAGE_SHIFT;
3363			size *= totalram_pages();
3364			do_div(size, 100);
3365			rest++;
3366		}
3367		if (*rest)
3368			goto bad_value;
3369		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3370		ctx->seen |= SHMEM_SEEN_BLOCKS;
3371		break;
3372	case Opt_nr_blocks:
3373		ctx->blocks = memparse(param->string, &rest);
3374		if (*rest)
3375			goto bad_value;
3376		ctx->seen |= SHMEM_SEEN_BLOCKS;
3377		break;
3378	case Opt_nr_inodes:
3379		ctx->inodes = memparse(param->string, &rest);
3380		if (*rest)
3381			goto bad_value;
3382		ctx->seen |= SHMEM_SEEN_INODES;
3383		break;
3384	case Opt_mode:
3385		ctx->mode = result.uint_32 & 07777;
3386		break;
3387	case Opt_uid:
3388		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3389		if (!uid_valid(ctx->uid))
3390			goto bad_value;
3391		break;
3392	case Opt_gid:
3393		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3394		if (!gid_valid(ctx->gid))
3395			goto bad_value;
3396		break;
3397	case Opt_huge:
3398		ctx->huge = result.uint_32;
3399		if (ctx->huge != SHMEM_HUGE_NEVER &&
3400		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3401		      has_transparent_hugepage()))
3402			goto unsupported_parameter;
3403		ctx->seen |= SHMEM_SEEN_HUGE;
3404		break;
3405	case Opt_mpol:
3406		if (IS_ENABLED(CONFIG_NUMA)) {
3407			mpol_put(ctx->mpol);
3408			ctx->mpol = NULL;
3409			if (mpol_parse_str(param->string, &ctx->mpol))
3410				goto bad_value;
3411			break;
3412		}
3413		goto unsupported_parameter;
3414	case Opt_inode32:
3415		ctx->full_inums = false;
3416		ctx->seen |= SHMEM_SEEN_INUMS;
3417		break;
3418	case Opt_inode64:
3419		if (sizeof(ino_t) < 8) {
3420			return invalfc(fc,
3421				       "Cannot use inode64 with <64bit inums in kernel\n");
3422		}
3423		ctx->full_inums = true;
3424		ctx->seen |= SHMEM_SEEN_INUMS;
3425		break;
3426	}
3427	return 0;
3428
3429unsupported_parameter:
3430	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3431bad_value:
3432	return invalfc(fc, "Bad value for '%s'", param->key);
3433}
3434
3435static int shmem_parse_options(struct fs_context *fc, void *data)
3436{
3437	char *options = data;
3438
3439	if (options) {
3440		int err = security_sb_eat_lsm_opts(options, &fc->security);
3441		if (err)
3442			return err;
3443	}
3444
3445	while (options != NULL) {
3446		char *this_char = options;
3447		for (;;) {
3448			/*
3449			 * NUL-terminate this option: unfortunately,
3450			 * mount options form a comma-separated list,
3451			 * but mpol's nodelist may also contain commas.
3452			 */
3453			options = strchr(options, ',');
3454			if (options == NULL)
3455				break;
3456			options++;
3457			if (!isdigit(*options)) {
3458				options[-1] = '\0';
3459				break;
3460			}
3461		}
3462		if (*this_char) {
3463			char *value = strchr(this_char, '=');
3464			size_t len = 0;
3465			int err;
3466
3467			if (value) {
3468				*value++ = '\0';
3469				len = strlen(value);
 
 
 
 
 
 
 
 
 
 
 
3470			}
3471			err = vfs_parse_fs_string(fc, this_char, value, len);
3472			if (err < 0)
3473				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3474		}
3475	}
3476	return 0;
 
 
 
 
 
 
3477}
3478
3479/*
3480 * Reconfigure a shmem filesystem.
3481 *
3482 * Note that we disallow change from limited->unlimited blocks/inodes while any
3483 * are in use; but we must separately disallow unlimited->limited, because in
3484 * that case we have no record of how much is already in use.
3485 */
3486static int shmem_reconfigure(struct fs_context *fc)
3487{
3488	struct shmem_options *ctx = fc->fs_private;
3489	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3490	unsigned long inodes;
3491	const char *err;
 
 
 
3492
3493	spin_lock(&sbinfo->stat_lock);
3494	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3495	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3496		if (!sbinfo->max_blocks) {
3497			err = "Cannot retroactively limit size";
3498			goto out;
3499		}
3500		if (percpu_counter_compare(&sbinfo->used_blocks,
3501					   ctx->blocks) > 0) {
3502			err = "Too small a size for current use";
3503			goto out;
3504		}
3505	}
3506	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3507		if (!sbinfo->max_inodes) {
3508			err = "Cannot retroactively limit inodes";
3509			goto out;
3510		}
3511		if (ctx->inodes < inodes) {
3512			err = "Too few inodes for current use";
3513			goto out;
3514		}
3515	}
3516
3517	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3518	    sbinfo->next_ino > UINT_MAX) {
3519		err = "Current inum too high to switch to 32-bit inums";
3520		goto out;
3521	}
3522
3523	if (ctx->seen & SHMEM_SEEN_HUGE)
3524		sbinfo->huge = ctx->huge;
3525	if (ctx->seen & SHMEM_SEEN_INUMS)
3526		sbinfo->full_inums = ctx->full_inums;
3527	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3528		sbinfo->max_blocks  = ctx->blocks;
3529	if (ctx->seen & SHMEM_SEEN_INODES) {
3530		sbinfo->max_inodes  = ctx->inodes;
3531		sbinfo->free_inodes = ctx->inodes - inodes;
3532	}
3533
3534	/*
3535	 * Preserve previous mempolicy unless mpol remount option was specified.
3536	 */
3537	if (ctx->mpol) {
3538		mpol_put(sbinfo->mpol);
3539		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3540		ctx->mpol = NULL;
3541	}
3542	spin_unlock(&sbinfo->stat_lock);
3543	return 0;
3544out:
3545	spin_unlock(&sbinfo->stat_lock);
3546	return invalfc(fc, "%s", err);
3547}
3548
3549static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3550{
3551	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3552
3553	if (sbinfo->max_blocks != shmem_default_max_blocks())
3554		seq_printf(seq, ",size=%luk",
3555			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3556	if (sbinfo->max_inodes != shmem_default_max_inodes())
3557		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3558	if (sbinfo->mode != (0777 | S_ISVTX))
3559		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3560	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3561		seq_printf(seq, ",uid=%u",
3562				from_kuid_munged(&init_user_ns, sbinfo->uid));
3563	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3564		seq_printf(seq, ",gid=%u",
3565				from_kgid_munged(&init_user_ns, sbinfo->gid));
3566
3567	/*
3568	 * Showing inode{64,32} might be useful even if it's the system default,
3569	 * since then people don't have to resort to checking both here and
3570	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3571	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3572	 *
3573	 * We hide it when inode64 isn't the default and we are using 32-bit
3574	 * inodes, since that probably just means the feature isn't even under
3575	 * consideration.
3576	 *
3577	 * As such:
3578	 *
3579	 *                     +-----------------+-----------------+
3580	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3581	 *  +------------------+-----------------+-----------------+
3582	 *  | full_inums=true  | show            | show            |
3583	 *  | full_inums=false | show            | hide            |
3584	 *  +------------------+-----------------+-----------------+
3585	 *
3586	 */
3587	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3588		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3589#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3590	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3591	if (sbinfo->huge)
3592		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3593#endif
3594	shmem_show_mpol(seq, sbinfo->mpol);
3595	return 0;
3596}
3597
3598#endif /* CONFIG_TMPFS */
3599
3600static void shmem_put_super(struct super_block *sb)
3601{
3602	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3603
3604	free_percpu(sbinfo->ino_batch);
3605	percpu_counter_destroy(&sbinfo->used_blocks);
3606	mpol_put(sbinfo->mpol);
3607	kfree(sbinfo);
3608	sb->s_fs_info = NULL;
3609}
3610
3611static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612{
3613	struct shmem_options *ctx = fc->fs_private;
3614	struct inode *inode;
 
3615	struct shmem_sb_info *sbinfo;
3616	int err = -ENOMEM;
3617
3618	/* Round up to L1_CACHE_BYTES to resist false sharing */
3619	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3620				L1_CACHE_BYTES), GFP_KERNEL);
3621	if (!sbinfo)
3622		return -ENOMEM;
3623
 
 
 
3624	sb->s_fs_info = sbinfo;
3625
3626#ifdef CONFIG_TMPFS
3627	/*
3628	 * Per default we only allow half of the physical ram per
3629	 * tmpfs instance, limiting inodes to one per page of lowmem;
3630	 * but the internal instance is left unlimited.
3631	 */
3632	if (!(sb->s_flags & SB_KERNMOUNT)) {
3633		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3634			ctx->blocks = shmem_default_max_blocks();
3635		if (!(ctx->seen & SHMEM_SEEN_INODES))
3636			ctx->inodes = shmem_default_max_inodes();
3637		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3638			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3639	} else {
3640		sb->s_flags |= SB_NOUSER;
3641	}
3642	sb->s_export_op = &shmem_export_ops;
3643	sb->s_flags |= SB_NOSEC;
3644#else
3645	sb->s_flags |= SB_NOUSER;
3646#endif
3647	sbinfo->max_blocks = ctx->blocks;
3648	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3649	if (sb->s_flags & SB_KERNMOUNT) {
3650		sbinfo->ino_batch = alloc_percpu(ino_t);
3651		if (!sbinfo->ino_batch)
3652			goto failed;
3653	}
3654	sbinfo->uid = ctx->uid;
3655	sbinfo->gid = ctx->gid;
3656	sbinfo->full_inums = ctx->full_inums;
3657	sbinfo->mode = ctx->mode;
3658	sbinfo->huge = ctx->huge;
3659	sbinfo->mpol = ctx->mpol;
3660	ctx->mpol = NULL;
3661
3662	spin_lock_init(&sbinfo->stat_lock);
3663	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3664		goto failed;
3665	spin_lock_init(&sbinfo->shrinklist_lock);
3666	INIT_LIST_HEAD(&sbinfo->shrinklist);
3667
3668	sb->s_maxbytes = MAX_LFS_FILESIZE;
3669	sb->s_blocksize = PAGE_SIZE;
3670	sb->s_blocksize_bits = PAGE_SHIFT;
3671	sb->s_magic = TMPFS_MAGIC;
3672	sb->s_op = &shmem_ops;
3673	sb->s_time_gran = 1;
3674#ifdef CONFIG_TMPFS_XATTR
3675	sb->s_xattr = shmem_xattr_handlers;
3676#endif
3677#ifdef CONFIG_TMPFS_POSIX_ACL
3678	sb->s_flags |= SB_POSIXACL;
3679#endif
3680	uuid_gen(&sb->s_uuid);
3681
3682	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3683	if (!inode)
3684		goto failed;
3685	inode->i_uid = sbinfo->uid;
3686	inode->i_gid = sbinfo->gid;
3687	sb->s_root = d_make_root(inode);
3688	if (!sb->s_root)
3689		goto failed;
 
3690	return 0;
3691
 
 
3692failed:
3693	shmem_put_super(sb);
3694	return err;
3695}
3696
3697static int shmem_get_tree(struct fs_context *fc)
3698{
3699	return get_tree_nodev(fc, shmem_fill_super);
3700}
3701
3702static void shmem_free_fc(struct fs_context *fc)
3703{
3704	struct shmem_options *ctx = fc->fs_private;
3705
3706	if (ctx) {
3707		mpol_put(ctx->mpol);
3708		kfree(ctx);
3709	}
3710}
3711
3712static const struct fs_context_operations shmem_fs_context_ops = {
3713	.free			= shmem_free_fc,
3714	.get_tree		= shmem_get_tree,
3715#ifdef CONFIG_TMPFS
3716	.parse_monolithic	= shmem_parse_options,
3717	.parse_param		= shmem_parse_one,
3718	.reconfigure		= shmem_reconfigure,
3719#endif
3720};
3721
3722static struct kmem_cache *shmem_inode_cachep;
3723
3724static struct inode *shmem_alloc_inode(struct super_block *sb)
3725{
3726	struct shmem_inode_info *info;
3727	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728	if (!info)
3729		return NULL;
3730	return &info->vfs_inode;
3731}
3732
3733static void shmem_free_in_core_inode(struct inode *inode)
3734{
3735	if (S_ISLNK(inode->i_mode))
3736		kfree(inode->i_link);
3737	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738}
3739
3740static void shmem_destroy_inode(struct inode *inode)
3741{
3742	if (S_ISREG(inode->i_mode))
3743		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
 
3744}
3745
3746static void shmem_init_inode(void *foo)
3747{
3748	struct shmem_inode_info *info = foo;
3749	inode_init_once(&info->vfs_inode);
3750}
3751
3752static void shmem_init_inodecache(void)
3753{
3754	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3755				sizeof(struct shmem_inode_info),
3756				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
 
3757}
3758
3759static void shmem_destroy_inodecache(void)
3760{
3761	kmem_cache_destroy(shmem_inode_cachep);
3762}
3763
3764const struct address_space_operations shmem_aops = {
3765	.writepage	= shmem_writepage,
3766	.set_page_dirty	= __set_page_dirty_no_writeback,
3767#ifdef CONFIG_TMPFS
3768	.write_begin	= shmem_write_begin,
3769	.write_end	= shmem_write_end,
3770#endif
3771#ifdef CONFIG_MIGRATION
3772	.migratepage	= migrate_page,
3773#endif
3774	.error_remove_page = generic_error_remove_page,
3775};
3776EXPORT_SYMBOL(shmem_aops);
3777
3778static const struct file_operations shmem_file_operations = {
3779	.mmap		= shmem_mmap,
3780	.get_unmapped_area = shmem_get_unmapped_area,
3781#ifdef CONFIG_TMPFS
3782	.llseek		= shmem_file_llseek,
3783	.read_iter	= shmem_file_read_iter,
3784	.write_iter	= generic_file_write_iter,
 
 
3785	.fsync		= noop_fsync,
3786	.splice_read	= generic_file_splice_read,
3787	.splice_write	= iter_file_splice_write,
3788	.fallocate	= shmem_fallocate,
3789#endif
3790};
3791
3792static const struct inode_operations shmem_inode_operations = {
3793	.getattr	= shmem_getattr,
3794	.setattr	= shmem_setattr,
 
3795#ifdef CONFIG_TMPFS_XATTR
 
 
3796	.listxattr	= shmem_listxattr,
3797	.set_acl	= simple_set_acl,
3798#endif
3799};
3800
3801static const struct inode_operations shmem_dir_inode_operations = {
3802#ifdef CONFIG_TMPFS
3803	.create		= shmem_create,
3804	.lookup		= simple_lookup,
3805	.link		= shmem_link,
3806	.unlink		= shmem_unlink,
3807	.symlink	= shmem_symlink,
3808	.mkdir		= shmem_mkdir,
3809	.rmdir		= shmem_rmdir,
3810	.mknod		= shmem_mknod,
3811	.rename		= shmem_rename2,
3812	.tmpfile	= shmem_tmpfile,
3813#endif
3814#ifdef CONFIG_TMPFS_XATTR
 
 
3815	.listxattr	= shmem_listxattr,
 
3816#endif
3817#ifdef CONFIG_TMPFS_POSIX_ACL
3818	.setattr	= shmem_setattr,
3819	.set_acl	= simple_set_acl,
3820#endif
3821};
3822
3823static const struct inode_operations shmem_special_inode_operations = {
3824#ifdef CONFIG_TMPFS_XATTR
 
 
3825	.listxattr	= shmem_listxattr,
 
3826#endif
3827#ifdef CONFIG_TMPFS_POSIX_ACL
3828	.setattr	= shmem_setattr,
3829	.set_acl	= simple_set_acl,
3830#endif
3831};
3832
3833static const struct super_operations shmem_ops = {
3834	.alloc_inode	= shmem_alloc_inode,
3835	.free_inode	= shmem_free_in_core_inode,
3836	.destroy_inode	= shmem_destroy_inode,
3837#ifdef CONFIG_TMPFS
3838	.statfs		= shmem_statfs,
 
3839	.show_options	= shmem_show_options,
3840#endif
3841	.evict_inode	= shmem_evict_inode,
3842	.drop_inode	= generic_delete_inode,
3843	.put_super	= shmem_put_super,
3844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845	.nr_cached_objects	= shmem_unused_huge_count,
3846	.free_cached_objects	= shmem_unused_huge_scan,
3847#endif
3848};
3849
3850static const struct vm_operations_struct shmem_vm_ops = {
3851	.fault		= shmem_fault,
3852	.map_pages	= filemap_map_pages,
3853#ifdef CONFIG_NUMA
3854	.set_policy     = shmem_set_policy,
3855	.get_policy     = shmem_get_policy,
3856#endif
3857};
3858
3859int shmem_init_fs_context(struct fs_context *fc)
 
3860{
3861	struct shmem_options *ctx;
3862
3863	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864	if (!ctx)
3865		return -ENOMEM;
3866
3867	ctx->mode = 0777 | S_ISVTX;
3868	ctx->uid = current_fsuid();
3869	ctx->gid = current_fsgid();
3870
3871	fc->fs_private = ctx;
3872	fc->ops = &shmem_fs_context_ops;
3873	return 0;
3874}
3875
3876static struct file_system_type shmem_fs_type = {
3877	.owner		= THIS_MODULE,
3878	.name		= "tmpfs",
3879	.init_fs_context = shmem_init_fs_context,
3880#ifdef CONFIG_TMPFS
3881	.parameters	= shmem_fs_parameters,
3882#endif
3883	.kill_sb	= kill_litter_super,
3884	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3885};
3886
3887int __init shmem_init(void)
3888{
3889	int error;
3890
3891	shmem_init_inodecache();
 
 
 
 
 
 
3892
3893	error = register_filesystem(&shmem_fs_type);
3894	if (error) {
3895		pr_err("Could not register tmpfs\n");
3896		goto out2;
3897	}
3898
3899	shm_mnt = kern_mount(&shmem_fs_type);
 
3900	if (IS_ERR(shm_mnt)) {
3901		error = PTR_ERR(shm_mnt);
3902		pr_err("Could not kern_mount tmpfs\n");
3903		goto out1;
3904	}
3905
3906#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909	else
3910		shmem_huge = 0; /* just in case it was patched */
3911#endif
3912	return 0;
3913
3914out1:
3915	unregister_filesystem(&shmem_fs_type);
3916out2:
3917	shmem_destroy_inodecache();
 
 
 
3918	shm_mnt = ERR_PTR(error);
3919	return error;
3920}
3921
3922#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923static ssize_t shmem_enabled_show(struct kobject *kobj,
3924				  struct kobj_attribute *attr, char *buf)
3925{
3926	static const int values[] = {
3927		SHMEM_HUGE_ALWAYS,
3928		SHMEM_HUGE_WITHIN_SIZE,
3929		SHMEM_HUGE_ADVISE,
3930		SHMEM_HUGE_NEVER,
3931		SHMEM_HUGE_DENY,
3932		SHMEM_HUGE_FORCE,
3933	};
3934	int len = 0;
3935	int i;
3936
3937	for (i = 0; i < ARRAY_SIZE(values); i++) {
3938		len += sysfs_emit_at(buf, len,
3939				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3940				     i ? " " : "",
3941				     shmem_format_huge(values[i]));
3942	}
3943
3944	len += sysfs_emit_at(buf, len, "\n");
3945
3946	return len;
3947}
3948
3949static ssize_t shmem_enabled_store(struct kobject *kobj,
3950		struct kobj_attribute *attr, const char *buf, size_t count)
3951{
3952	char tmp[16];
3953	int huge;
3954
3955	if (count + 1 > sizeof(tmp))
3956		return -EINVAL;
3957	memcpy(tmp, buf, count);
3958	tmp[count] = '\0';
3959	if (count && tmp[count - 1] == '\n')
3960		tmp[count - 1] = '\0';
3961
3962	huge = shmem_parse_huge(tmp);
3963	if (huge == -EINVAL)
3964		return -EINVAL;
3965	if (!has_transparent_hugepage() &&
3966			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967		return -EINVAL;
3968
3969	shmem_huge = huge;
3970	if (shmem_huge > SHMEM_HUGE_DENY)
3971		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972	return count;
3973}
3974
3975struct kobj_attribute shmem_enabled_attr =
3976	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3978
3979#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980bool shmem_huge_enabled(struct vm_area_struct *vma)
3981{
3982	struct inode *inode = file_inode(vma->vm_file);
3983	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3984	loff_t i_size;
3985	pgoff_t off;
3986
3987	if (!transhuge_vma_enabled(vma, vma->vm_flags))
3988		return false;
3989	if (shmem_huge == SHMEM_HUGE_FORCE)
3990		return true;
3991	if (shmem_huge == SHMEM_HUGE_DENY)
3992		return false;
3993	switch (sbinfo->huge) {
3994		case SHMEM_HUGE_NEVER:
3995			return false;
3996		case SHMEM_HUGE_ALWAYS:
3997			return true;
3998		case SHMEM_HUGE_WITHIN_SIZE:
3999			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4000			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4001			if (i_size >= HPAGE_PMD_SIZE &&
4002					i_size >> PAGE_SHIFT >= off)
4003				return true;
4004			fallthrough;
4005		case SHMEM_HUGE_ADVISE:
4006			/* TODO: implement fadvise() hints */
4007			return (vma->vm_flags & VM_HUGEPAGE);
4008		default:
4009			VM_BUG_ON(1);
4010			return false;
4011	}
4012}
4013#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4014
4015#else /* !CONFIG_SHMEM */
4016
4017/*
4018 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4019 *
4020 * This is intended for small system where the benefits of the full
4021 * shmem code (swap-backed and resource-limited) are outweighed by
4022 * their complexity. On systems without swap this code should be
4023 * effectively equivalent, but much lighter weight.
4024 */
4025
 
 
4026static struct file_system_type shmem_fs_type = {
4027	.name		= "tmpfs",
4028	.init_fs_context = ramfs_init_fs_context,
4029	.parameters	= ramfs_fs_parameters,
4030	.kill_sb	= kill_litter_super,
4031	.fs_flags	= FS_USERNS_MOUNT,
4032};
4033
4034int __init shmem_init(void)
4035{
4036	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4037
4038	shm_mnt = kern_mount(&shmem_fs_type);
4039	BUG_ON(IS_ERR(shm_mnt));
4040
4041	return 0;
4042}
4043
4044int shmem_unuse(unsigned int type, bool frontswap,
4045		unsigned long *fs_pages_to_unuse)
4046{
4047	return 0;
4048}
4049
4050int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4051{
4052	return 0;
4053}
4054
4055void shmem_unlock_mapping(struct address_space *mapping)
4056{
4057}
4058
4059#ifdef CONFIG_MMU
4060unsigned long shmem_get_unmapped_area(struct file *file,
4061				      unsigned long addr, unsigned long len,
4062				      unsigned long pgoff, unsigned long flags)
4063{
4064	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4065}
4066#endif
4067
4068void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4069{
4070	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4071}
4072EXPORT_SYMBOL_GPL(shmem_truncate_range);
4073
4074#define shmem_vm_ops				generic_file_vm_ops
4075#define shmem_file_operations			ramfs_file_operations
4076#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4077#define shmem_acct_size(flags, size)		0
4078#define shmem_unacct_size(flags, size)		do {} while (0)
4079
4080#endif /* CONFIG_SHMEM */
4081
4082/* common code */
4083
4084static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4085				       unsigned long flags, unsigned int i_flags)
 
 
 
 
 
4086{
 
 
4087	struct inode *inode;
4088	struct file *res;
 
 
4089
4090	if (IS_ERR(mnt))
4091		return ERR_CAST(mnt);
4092
4093	if (size < 0 || size > MAX_LFS_FILESIZE)
4094		return ERR_PTR(-EINVAL);
4095
4096	if (shmem_acct_size(flags, size))
4097		return ERR_PTR(-ENOMEM);
4098
4099	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4100				flags);
4101	if (unlikely(!inode)) {
4102		shmem_unacct_size(flags, size);
4103		return ERR_PTR(-ENOSPC);
4104	}
4105	inode->i_flags |= i_flags;
 
 
 
 
 
 
 
 
 
4106	inode->i_size = size;
4107	clear_nlink(inode);	/* It is unlinked */
4108	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4109	if (!IS_ERR(res))
4110		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4111				&shmem_file_operations);
4112	if (IS_ERR(res))
4113		iput(inode);
4114	return res;
4115}
4116
4117/**
4118 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4119 * 	kernel internal.  There will be NO LSM permission checks against the
4120 * 	underlying inode.  So users of this interface must do LSM checks at a
4121 *	higher layer.  The users are the big_key and shm implementations.  LSM
4122 *	checks are provided at the key or shm level rather than the inode.
4123 * @name: name for dentry (to be seen in /proc/<pid>/maps
4124 * @size: size to be set for the file
4125 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4126 */
4127struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4128{
4129	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4130}
4131
4132/**
4133 * shmem_file_setup - get an unlinked file living in tmpfs
4134 * @name: name for dentry (to be seen in /proc/<pid>/maps
4135 * @size: size to be set for the file
4136 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4137 */
4138struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4139{
4140	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4141}
4142EXPORT_SYMBOL_GPL(shmem_file_setup);
4143
4144/**
4145 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4146 * @mnt: the tmpfs mount where the file will be created
4147 * @name: name for dentry (to be seen in /proc/<pid>/maps
4148 * @size: size to be set for the file
4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4150 */
4151struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4152				       loff_t size, unsigned long flags)
4153{
4154	return __shmem_file_setup(mnt, name, size, flags, 0);
4155}
4156EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4157
4158/**
4159 * shmem_zero_setup - setup a shared anonymous mapping
4160 * @vma: the vma to be mmapped is prepared by do_mmap
4161 */
4162int shmem_zero_setup(struct vm_area_struct *vma)
4163{
4164	struct file *file;
4165	loff_t size = vma->vm_end - vma->vm_start;
4166
4167	/*
4168	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4169	 * between XFS directory reading and selinux: since this file is only
4170	 * accessible to the user through its mapping, use S_PRIVATE flag to
4171	 * bypass file security, in the same way as shmem_kernel_file_setup().
4172	 */
4173	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4174	if (IS_ERR(file))
4175		return PTR_ERR(file);
4176
4177	if (vma->vm_file)
4178		fput(vma->vm_file);
4179	vma->vm_file = file;
4180	vma->vm_ops = &shmem_vm_ops;
4181
4182	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4183			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4184			(vma->vm_end & HPAGE_PMD_MASK)) {
4185		khugepaged_enter(vma, vma->vm_flags);
4186	}
4187
4188	return 0;
4189}
4190
4191/**
4192 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4193 * @mapping:	the page's address_space
4194 * @index:	the page index
4195 * @gfp:	the page allocator flags to use if allocating
4196 *
4197 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4198 * with any new page allocations done using the specified allocation flags.
4199 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4200 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4201 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4202 *
4203 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4204 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4205 */
4206struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4207					 pgoff_t index, gfp_t gfp)
4208{
4209#ifdef CONFIG_SHMEM
4210	struct inode *inode = mapping->host;
4211	struct page *page;
4212	int error;
4213
4214	BUG_ON(!shmem_mapping(mapping));
4215	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4216				  gfp, NULL, NULL, NULL);
4217	if (error)
4218		page = ERR_PTR(error);
4219	else
4220		unlock_page(page);
4221	return page;
4222#else
4223	/*
4224	 * The tiny !SHMEM case uses ramfs without swap
4225	 */
4226	return read_cache_page_gfp(mapping, index, gfp);
4227#endif
4228}
4229EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);