Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.1
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
 
  28#include <linux/pagemap.h>
  29#include <linux/file.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/swap.h>
 
 
  33
  34static struct vfsmount *shm_mnt;
  35
  36#ifdef CONFIG_SHMEM
  37/*
  38 * This virtual memory filesystem is heavily based on the ramfs. It
  39 * extends ramfs by the ability to use swap and honor resource limits
  40 * which makes it a completely usable filesystem.
  41 */
  42
  43#include <linux/xattr.h>
  44#include <linux/exportfs.h>
  45#include <linux/posix_acl.h>
  46#include <linux/generic_acl.h>
  47#include <linux/mman.h>
  48#include <linux/string.h>
  49#include <linux/slab.h>
  50#include <linux/backing-dev.h>
  51#include <linux/shmem_fs.h>
  52#include <linux/writeback.h>
  53#include <linux/blkdev.h>
  54#include <linux/pagevec.h>
  55#include <linux/percpu_counter.h>
 
  56#include <linux/splice.h>
  57#include <linux/security.h>
  58#include <linux/swapops.h>
  59#include <linux/mempolicy.h>
  60#include <linux/namei.h>
  61#include <linux/ctype.h>
  62#include <linux/migrate.h>
  63#include <linux/highmem.h>
  64#include <linux/seq_file.h>
  65#include <linux/magic.h>
 
 
 
  66
  67#include <asm/uaccess.h>
  68#include <asm/pgtable.h>
  69
  70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
 
 
  72
  73/* Pretend that each entry is of this size in directory's i_size */
  74#define BOGO_DIRENT_SIZE 20
  75
  76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  77#define SHORT_SYMLINK_LEN 128
  78
  79struct shmem_xattr {
  80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
  81	char *name;		/* xattr name */
  82	size_t size;
  83	char value[0];
  84};
  85
  86/* Flag allocation requirements to shmem_getpage */
  87enum sgp_type {
  88	SGP_READ,	/* don't exceed i_size, don't allocate page */
  89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
  90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
  91	SGP_WRITE,	/* may exceed i_size, may allocate page */
  92};
  93
  94#ifdef CONFIG_TMPFS
  95static unsigned long shmem_default_max_blocks(void)
  96{
  97	return totalram_pages / 2;
  98}
  99
 100static unsigned long shmem_default_max_inodes(void)
 101{
 102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 103}
 104#endif
 105
 
 
 
 106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 
 108
 109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 110	struct page **pagep, enum sgp_type sgp, int *fault_type)
 111{
 112	return shmem_getpage_gfp(inode, index, pagep, sgp,
 113			mapping_gfp_mask(inode->i_mapping), fault_type);
 114}
 115
 116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 117{
 118	return sb->s_fs_info;
 119}
 120
 121/*
 122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 123 * for shared memory and for shared anonymous (/dev/zero) mappings
 124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 125 * consistent with the pre-accounting of private mappings ...
 126 */
 127static inline int shmem_acct_size(unsigned long flags, loff_t size)
 128{
 129	return (flags & VM_NORESERVE) ?
 130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
 131}
 132
 133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 134{
 135	if (!(flags & VM_NORESERVE))
 136		vm_unacct_memory(VM_ACCT(size));
 137}
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/*
 140 * ... whereas tmpfs objects are accounted incrementally as
 141 * pages are allocated, in order to allow huge sparse files.
 142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 144 */
 145static inline int shmem_acct_block(unsigned long flags)
 146{
 147	return (flags & VM_NORESERVE) ?
 148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 
 
 
 149}
 150
 151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 152{
 153	if (flags & VM_NORESERVE)
 154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 155}
 156
 157static const struct super_operations shmem_ops;
 158static const struct address_space_operations shmem_aops;
 159static const struct file_operations shmem_file_operations;
 160static const struct inode_operations shmem_inode_operations;
 161static const struct inode_operations shmem_dir_inode_operations;
 162static const struct inode_operations shmem_special_inode_operations;
 163static const struct vm_operations_struct shmem_vm_ops;
 164
 165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 166	.ra_pages	= 0,	/* No readahead */
 167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 168};
 169
 170static LIST_HEAD(shmem_swaplist);
 171static DEFINE_MUTEX(shmem_swaplist_mutex);
 172
 173static int shmem_reserve_inode(struct super_block *sb)
 174{
 175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 176	if (sbinfo->max_inodes) {
 177		spin_lock(&sbinfo->stat_lock);
 178		if (!sbinfo->free_inodes) {
 179			spin_unlock(&sbinfo->stat_lock);
 180			return -ENOSPC;
 181		}
 182		sbinfo->free_inodes--;
 183		spin_unlock(&sbinfo->stat_lock);
 184	}
 185	return 0;
 186}
 187
 188static void shmem_free_inode(struct super_block *sb)
 189{
 190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 191	if (sbinfo->max_inodes) {
 192		spin_lock(&sbinfo->stat_lock);
 193		sbinfo->free_inodes++;
 194		spin_unlock(&sbinfo->stat_lock);
 195	}
 196}
 197
 198/**
 199 * shmem_recalc_inode - recalculate the block usage of an inode
 200 * @inode: inode to recalc
 201 *
 202 * We have to calculate the free blocks since the mm can drop
 203 * undirtied hole pages behind our back.
 204 *
 205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 207 *
 208 * It has to be called with the spinlock held.
 209 */
 210static void shmem_recalc_inode(struct inode *inode)
 211{
 212	struct shmem_inode_info *info = SHMEM_I(inode);
 213	long freed;
 214
 215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 216	if (freed > 0) {
 217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 218		if (sbinfo->max_blocks)
 219			percpu_counter_add(&sbinfo->used_blocks, -freed);
 220		info->alloced -= freed;
 221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 222		shmem_unacct_blocks(info->flags, freed);
 223	}
 224}
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226/*
 227 * Replace item expected in radix tree by a new item, while holding tree lock.
 228 */
 229static int shmem_radix_tree_replace(struct address_space *mapping,
 230			pgoff_t index, void *expected, void *replacement)
 231{
 
 232	void **pslot;
 233	void *item = NULL;
 234
 235	VM_BUG_ON(!expected);
 236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 237	if (pslot)
 238		item = radix_tree_deref_slot_protected(pslot,
 239							&mapping->tree_lock);
 240	if (item != expected)
 241		return -ENOENT;
 242	if (replacement)
 243		radix_tree_replace_slot(pslot, replacement);
 244	else
 245		radix_tree_delete(&mapping->page_tree, index);
 246	return 0;
 247}
 248
 249/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250 * Like add_to_page_cache_locked, but error if expected item has gone.
 251 */
 252static int shmem_add_to_page_cache(struct page *page,
 253				   struct address_space *mapping,
 254				   pgoff_t index, gfp_t gfp, void *expected)
 255{
 256	int error = 0;
 257
 258	VM_BUG_ON(!PageLocked(page));
 259	VM_BUG_ON(!PageSwapBacked(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260
 261	if (!expected)
 262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
 263	if (!error) {
 264		page_cache_get(page);
 265		page->mapping = mapping;
 266		page->index = index;
 267
 268		spin_lock_irq(&mapping->tree_lock);
 269		if (!expected)
 270			error = radix_tree_insert(&mapping->page_tree,
 271							index, page);
 272		else
 273			error = shmem_radix_tree_replace(mapping, index,
 274							expected, page);
 275		if (!error) {
 276			mapping->nrpages++;
 277			__inc_zone_page_state(page, NR_FILE_PAGES);
 278			__inc_zone_page_state(page, NR_SHMEM);
 279			spin_unlock_irq(&mapping->tree_lock);
 280		} else {
 281			page->mapping = NULL;
 282			spin_unlock_irq(&mapping->tree_lock);
 283			page_cache_release(page);
 284		}
 285		if (!expected)
 286			radix_tree_preload_end();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287	}
 288	if (error)
 289		mem_cgroup_uncharge_cache_page(page);
 290	return error;
 291}
 292
 293/*
 294 * Like delete_from_page_cache, but substitutes swap for page.
 295 */
 296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 297{
 298	struct address_space *mapping = page->mapping;
 299	int error;
 300
 
 
 301	spin_lock_irq(&mapping->tree_lock);
 302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 303	page->mapping = NULL;
 304	mapping->nrpages--;
 305	__dec_zone_page_state(page, NR_FILE_PAGES);
 306	__dec_zone_page_state(page, NR_SHMEM);
 307	spin_unlock_irq(&mapping->tree_lock);
 308	page_cache_release(page);
 309	BUG_ON(error);
 310}
 311
 312/*
 313 * Like find_get_pages, but collecting swap entries as well as pages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314 */
 315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
 316					pgoff_t start, unsigned int nr_pages,
 317					struct page **pages, pgoff_t *indices)
 318{
 319	unsigned int i;
 320	unsigned int ret;
 321	unsigned int nr_found;
 322
 323	rcu_read_lock();
 324restart:
 325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 326				(void ***)pages, indices, start, nr_pages);
 327	ret = 0;
 328	for (i = 0; i < nr_found; i++) {
 329		struct page *page;
 330repeat:
 331		page = radix_tree_deref_slot((void **)pages[i]);
 332		if (unlikely(!page))
 333			continue;
 334		if (radix_tree_exception(page)) {
 335			if (radix_tree_deref_retry(page))
 336				goto restart;
 337			/*
 338			 * Otherwise, we must be storing a swap entry
 339			 * here as an exceptional entry: so return it
 340			 * without attempting to raise page count.
 341			 */
 342			goto export;
 343		}
 344		if (!page_cache_get_speculative(page))
 345			goto repeat;
 346
 347		/* Has the page moved? */
 348		if (unlikely(page != *((void **)pages[i]))) {
 349			page_cache_release(page);
 350			goto repeat;
 351		}
 352export:
 353		indices[ret] = indices[i];
 354		pages[ret] = page;
 355		ret++;
 356	}
 357	if (unlikely(!ret && nr_found))
 358		goto restart;
 359	rcu_read_unlock();
 360	return ret;
 
 361}
 362
 363/*
 364 * Remove swap entry from radix tree, free the swap and its page cache.
 
 
 
 
 365 */
 366static int shmem_free_swap(struct address_space *mapping,
 367			   pgoff_t index, void *radswap)
 368{
 369	int error;
 
 
 
 370
 371	spin_lock_irq(&mapping->tree_lock);
 372	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
 373	spin_unlock_irq(&mapping->tree_lock);
 374	if (!error)
 375		free_swap_and_cache(radix_to_swp_entry(radswap));
 376	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379/*
 380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
 381 */
 382static void shmem_pagevec_release(struct pagevec *pvec)
 383{
 384	int i, j;
 
 
 385
 386	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 387		struct page *page = pvec->pages[i];
 388		if (!radix_tree_exceptional_entry(page))
 389			pvec->pages[j++] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390	}
 391	pvec->nr = j;
 392	pagevec_release(pvec);
 393}
 394
 395/*
 396 * Remove range of pages and swap entries from radix tree, and free them.
 
 397 */
 398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 399{
 400	struct address_space *mapping = inode->i_mapping;
 401	struct shmem_inode_info *info = SHMEM_I(inode);
 402	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 403	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 404	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
 
 405	struct pagevec pvec;
 406	pgoff_t indices[PAGEVEC_SIZE];
 407	long nr_swaps_freed = 0;
 408	pgoff_t index;
 409	int i;
 410
 411	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 
 412
 413	pagevec_init(&pvec, 0);
 414	index = start;
 415	while (index <= end) {
 416		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 417			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 418							pvec.pages, indices);
 419		if (!pvec.nr)
 420			break;
 421		mem_cgroup_uncharge_start();
 422		for (i = 0; i < pagevec_count(&pvec); i++) {
 423			struct page *page = pvec.pages[i];
 424
 425			index = indices[i];
 426			if (index > end)
 427				break;
 428
 429			if (radix_tree_exceptional_entry(page)) {
 
 
 430				nr_swaps_freed += !shmem_free_swap(mapping,
 431								index, page);
 432				continue;
 433			}
 434
 
 
 435			if (!trylock_page(page))
 436				continue;
 437			if (page->mapping == mapping) {
 438				VM_BUG_ON(PageWriteback(page));
 439				truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440			}
 441			unlock_page(page);
 442		}
 443		shmem_pagevec_release(&pvec);
 444		mem_cgroup_uncharge_end();
 445		cond_resched();
 446		index++;
 447	}
 448
 449	if (partial) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450		struct page *page = NULL;
 451		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 452		if (page) {
 453			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 454			set_page_dirty(page);
 455			unlock_page(page);
 456			page_cache_release(page);
 457		}
 458	}
 
 
 459
 460	index = start;
 461	for ( ; ; ) {
 462		cond_resched();
 463		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
 464			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 465							pvec.pages, indices);
 
 466		if (!pvec.nr) {
 467			if (index == start)
 
 468				break;
 
 469			index = start;
 470			continue;
 471		}
 472		if (index == start && indices[0] > end) {
 473			shmem_pagevec_release(&pvec);
 474			break;
 475		}
 476		mem_cgroup_uncharge_start();
 477		for (i = 0; i < pagevec_count(&pvec); i++) {
 478			struct page *page = pvec.pages[i];
 479
 480			index = indices[i];
 481			if (index > end)
 482				break;
 483
 484			if (radix_tree_exceptional_entry(page)) {
 485				nr_swaps_freed += !shmem_free_swap(mapping,
 486								index, page);
 
 
 
 
 
 
 487				continue;
 488			}
 489
 490			lock_page(page);
 491			if (page->mapping == mapping) {
 492				VM_BUG_ON(PageWriteback(page));
 493				truncate_inode_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494			}
 495			unlock_page(page);
 496		}
 497		shmem_pagevec_release(&pvec);
 498		mem_cgroup_uncharge_end();
 499		index++;
 500	}
 501
 502	spin_lock(&info->lock);
 503	info->swapped -= nr_swaps_freed;
 504	shmem_recalc_inode(inode);
 505	spin_unlock(&info->lock);
 
 506
 507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 
 
 
 508}
 509EXPORT_SYMBOL_GPL(shmem_truncate_range);
 510
 511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 
 512{
 513	struct inode *inode = dentry->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514	int error;
 515
 516	error = inode_change_ok(inode, attr);
 517	if (error)
 518		return error;
 519
 520	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 521		loff_t oldsize = inode->i_size;
 522		loff_t newsize = attr->ia_size;
 523
 
 
 
 
 
 524		if (newsize != oldsize) {
 
 
 
 
 525			i_size_write(inode, newsize);
 526			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 527		}
 528		if (newsize < oldsize) {
 529			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 530			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 531			shmem_truncate_range(inode, newsize, (loff_t)-1);
 
 
 
 
 532			/* unmap again to remove racily COWed private pages */
 533			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534		}
 535	}
 536
 537	setattr_copy(inode, attr);
 538#ifdef CONFIG_TMPFS_POSIX_ACL
 539	if (attr->ia_valid & ATTR_MODE)
 540		error = generic_acl_chmod(inode);
 541#endif
 542	return error;
 543}
 544
 545static void shmem_evict_inode(struct inode *inode)
 546{
 547	struct shmem_inode_info *info = SHMEM_I(inode);
 548	struct shmem_xattr *xattr, *nxattr;
 549
 550	if (inode->i_mapping->a_ops == &shmem_aops) {
 551		shmem_unacct_size(info->flags, inode->i_size);
 552		inode->i_size = 0;
 553		shmem_truncate_range(inode, 0, (loff_t)-1);
 
 
 
 
 
 
 
 
 554		if (!list_empty(&info->swaplist)) {
 555			mutex_lock(&shmem_swaplist_mutex);
 556			list_del_init(&info->swaplist);
 557			mutex_unlock(&shmem_swaplist_mutex);
 558		}
 559	} else
 560		kfree(info->symlink);
 561
 562	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
 563		kfree(xattr->name);
 564		kfree(xattr);
 565	}
 566	BUG_ON(inode->i_blocks);
 
 
 567	shmem_free_inode(inode->i_sb);
 568	end_writeback(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/*
 572 * If swap found in inode, free it and move page from swapcache to filecache.
 573 */
 574static int shmem_unuse_inode(struct shmem_inode_info *info,
 575			     swp_entry_t swap, struct page *page)
 576{
 577	struct address_space *mapping = info->vfs_inode.i_mapping;
 578	void *radswap;
 579	pgoff_t index;
 580	int error;
 
 581
 582	radswap = swp_to_radix_entry(swap);
 583	index = radix_tree_locate_item(&mapping->page_tree, radswap);
 584	if (index == -1)
 585		return 0;
 586
 587	/*
 588	 * Move _head_ to start search for next from here.
 589	 * But be careful: shmem_evict_inode checks list_empty without taking
 590	 * mutex, and there's an instant in list_move_tail when info->swaplist
 591	 * would appear empty, if it were the only one on shmem_swaplist.
 592	 */
 593	if (shmem_swaplist.next != &info->swaplist)
 594		list_move_tail(&shmem_swaplist, &info->swaplist);
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	/*
 597	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 598	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
 599	 * beneath us (pagelock doesn't help until the page is in pagecache).
 600	 */
 601	error = shmem_add_to_page_cache(page, mapping, index,
 602						GFP_NOWAIT, radswap);
 603	/* which does mem_cgroup_uncharge_cache_page on error */
 604
 605	if (error != -ENOMEM) {
 606		/*
 607		 * Truncation and eviction use free_swap_and_cache(), which
 608		 * only does trylock page: if we raced, best clean up here.
 609		 */
 610		delete_from_swap_cache(page);
 611		set_page_dirty(page);
 612		if (!error) {
 613			spin_lock(&info->lock);
 614			info->swapped--;
 615			spin_unlock(&info->lock);
 616			swap_free(swap);
 617		}
 618		error = 1;	/* not an error, but entry was found */
 619	}
 620	return error;
 621}
 622
 623/*
 624 * Search through swapped inodes to find and replace swap by page.
 625 */
 626int shmem_unuse(swp_entry_t swap, struct page *page)
 627{
 628	struct list_head *this, *next;
 629	struct shmem_inode_info *info;
 630	int found = 0;
 631	int error;
 
 
 
 
 
 
 
 632
 633	/*
 634	 * Charge page using GFP_KERNEL while we can wait, before taking
 635	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
 636	 * Charged back to the user (not to caller) when swap account is used.
 637	 */
 638	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 
 639	if (error)
 640		goto out;
 641	/* No radix_tree_preload: swap entry keeps a place for page in tree */
 
 642
 643	mutex_lock(&shmem_swaplist_mutex);
 644	list_for_each_safe(this, next, &shmem_swaplist) {
 645		info = list_entry(this, struct shmem_inode_info, swaplist);
 646		if (info->swapped)
 647			found = shmem_unuse_inode(info, swap, page);
 648		else
 649			list_del_init(&info->swaplist);
 650		cond_resched();
 651		if (found)
 652			break;
 
 653	}
 654	mutex_unlock(&shmem_swaplist_mutex);
 655
 656	if (!found)
 657		mem_cgroup_uncharge_cache_page(page);
 658	if (found < 0)
 659		error = found;
 
 
 660out:
 661	unlock_page(page);
 662	page_cache_release(page);
 663	return error;
 664}
 665
 666/*
 667 * Move the page from the page cache to the swap cache.
 668 */
 669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 670{
 671	struct shmem_inode_info *info;
 672	struct address_space *mapping;
 673	struct inode *inode;
 674	swp_entry_t swap;
 675	pgoff_t index;
 676
 
 677	BUG_ON(!PageLocked(page));
 678	mapping = page->mapping;
 679	index = page->index;
 680	inode = mapping->host;
 681	info = SHMEM_I(inode);
 682	if (info->flags & VM_LOCKED)
 683		goto redirty;
 684	if (!total_swap_pages)
 685		goto redirty;
 686
 687	/*
 688	 * shmem_backing_dev_info's capabilities prevent regular writeback or
 689	 * sync from ever calling shmem_writepage; but a stacking filesystem
 690	 * might use ->writepage of its underlying filesystem, in which case
 691	 * tmpfs should write out to swap only in response to memory pressure,
 692	 * and not for the writeback threads or sync.
 693	 */
 694	if (!wbc->for_reclaim) {
 695		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
 696		goto redirty;
 697	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698	swap = get_swap_page();
 699	if (!swap.val)
 700		goto redirty;
 701
 
 
 
 702	/*
 703	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
 704	 * if it's not already there.  Do it now before the page is
 705	 * moved to swap cache, when its pagelock no longer protects
 706	 * the inode from eviction.  But don't unlock the mutex until
 707	 * we've incremented swapped, because shmem_unuse_inode() will
 708	 * prune a !swapped inode from the swaplist under this mutex.
 709	 */
 710	mutex_lock(&shmem_swaplist_mutex);
 711	if (list_empty(&info->swaplist))
 712		list_add_tail(&info->swaplist, &shmem_swaplist);
 713
 714	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 
 
 
 
 
 715		swap_shmem_alloc(swap);
 716		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 717
 718		spin_lock(&info->lock);
 719		info->swapped++;
 720		shmem_recalc_inode(inode);
 721		spin_unlock(&info->lock);
 722
 723		mutex_unlock(&shmem_swaplist_mutex);
 724		BUG_ON(page_mapped(page));
 725		swap_writepage(page, wbc);
 726		return 0;
 727	}
 728
 729	mutex_unlock(&shmem_swaplist_mutex);
 730	swapcache_free(swap, NULL);
 
 731redirty:
 732	set_page_dirty(page);
 733	if (wbc->for_reclaim)
 734		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
 735	unlock_page(page);
 736	return 0;
 737}
 738
 739#ifdef CONFIG_NUMA
 740#ifdef CONFIG_TMPFS
 741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 742{
 743	char buffer[64];
 744
 745	if (!mpol || mpol->mode == MPOL_DEFAULT)
 746		return;		/* show nothing */
 747
 748	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
 749
 750	seq_printf(seq, ",mpol=%s", buffer);
 751}
 752
 753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 754{
 755	struct mempolicy *mpol = NULL;
 756	if (sbinfo->mpol) {
 757		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
 758		mpol = sbinfo->mpol;
 759		mpol_get(mpol);
 760		spin_unlock(&sbinfo->stat_lock);
 761	}
 762	return mpol;
 763}
 764#endif /* CONFIG_TMPFS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 767			struct shmem_inode_info *info, pgoff_t index)
 768{
 769	struct mempolicy mpol, *spol;
 770	struct vm_area_struct pvma;
 
 771
 772	spol = mpol_cond_copy(&mpol,
 773			mpol_shared_policy_lookup(&info->policy, index));
 
 774
 775	/* Create a pseudo vma that just contains the policy */
 776	pvma.vm_start = 0;
 777	pvma.vm_pgoff = index;
 778	pvma.vm_ops = NULL;
 779	pvma.vm_policy = spol;
 780	return swapin_readahead(swap, gfp, &pvma, 0);
 781}
 782
 783static struct page *shmem_alloc_page(gfp_t gfp,
 784			struct shmem_inode_info *info, pgoff_t index)
 785{
 786	struct vm_area_struct pvma;
 
 
 
 
 
 787
 788	/* Create a pseudo vma that just contains the policy */
 789	pvma.vm_start = 0;
 790	pvma.vm_pgoff = index;
 791	pvma.vm_ops = NULL;
 792	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 793
 794	/*
 795	 * alloc_page_vma() will drop the shared policy reference
 796	 */
 797	return alloc_page_vma(gfp, &pvma, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799#else /* !CONFIG_NUMA */
 800#ifdef CONFIG_TMPFS
 801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 802{
 
 
 
 
 
 
 
 
 803}
 804#endif /* CONFIG_TMPFS */
 805
 806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 807			struct shmem_inode_info *info, pgoff_t index)
 
 808{
 809	return swapin_readahead(swap, gfp, NULL, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810}
 811
 812static inline struct page *shmem_alloc_page(gfp_t gfp,
 813			struct shmem_inode_info *info, pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 814{
 815	return alloc_page(gfp);
 816}
 817#endif /* CONFIG_NUMA */
 818
 819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 821{
 822	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824#endif
 825
 826/*
 827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 828 *
 829 * If we allocate a new one we do not mark it dirty. That's up to the
 830 * vm. If we swap it in we mark it dirty since we also free the swap
 831 * entry since a page cannot live in both the swap and page cache
 
 
 
 832 */
 833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 834	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
 
 835{
 836	struct address_space *mapping = inode->i_mapping;
 837	struct shmem_inode_info *info;
 838	struct shmem_sb_info *sbinfo;
 
 
 839	struct page *page;
 840	swp_entry_t swap;
 
 
 841	int error;
 842	int once = 0;
 
 843
 844	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
 845		return -EFBIG;
 
 
 846repeat:
 847	swap.val = 0;
 848	page = find_lock_page(mapping, index);
 849	if (radix_tree_exceptional_entry(page)) {
 850		swap = radix_to_swp_entry(page);
 851		page = NULL;
 852	}
 853
 854	if (sgp != SGP_WRITE &&
 855	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 856		error = -EINVAL;
 857		goto failed;
 858	}
 859
 
 
 
 
 
 
 
 
 
 
 
 860	if (page || (sgp == SGP_READ && !swap.val)) {
 861		/*
 862		 * Once we can get the page lock, it must be uptodate:
 863		 * if there were an error in reading back from swap,
 864		 * the page would not be inserted into the filecache.
 865		 */
 866		BUG_ON(page && !PageUptodate(page));
 867		*pagep = page;
 868		return 0;
 869	}
 870
 871	/*
 872	 * Fast cache lookup did not find it:
 873	 * bring it back from swap or allocate.
 874	 */
 875	info = SHMEM_I(inode);
 876	sbinfo = SHMEM_SB(inode->i_sb);
 
 877
 878	if (swap.val) {
 879		/* Look it up and read it in.. */
 880		page = lookup_swap_cache(swap);
 881		if (!page) {
 882			/* here we actually do the io */
 883			if (fault_type)
 884				*fault_type |= VM_FAULT_MAJOR;
 
 
 
 
 885			page = shmem_swapin(swap, gfp, info, index);
 886			if (!page) {
 887				error = -ENOMEM;
 888				goto failed;
 889			}
 890		}
 891
 892		/* We have to do this with page locked to prevent races */
 893		lock_page(page);
 
 
 
 
 
 894		if (!PageUptodate(page)) {
 895			error = -EIO;
 896			goto failed;
 897		}
 898		wait_on_page_writeback(page);
 899
 900		/* Someone may have already done it for us */
 901		if (page->mapping) {
 902			if (page->mapping == mapping &&
 903			    page->index == index)
 904				goto done;
 905			error = -EEXIST;
 906			goto failed;
 907		}
 908
 909		error = mem_cgroup_cache_charge(page, current->mm,
 910						gfp & GFP_RECLAIM_MASK);
 911		if (!error)
 912			error = shmem_add_to_page_cache(page, mapping, index,
 913						gfp, swp_to_radix_entry(swap));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		if (error)
 915			goto failed;
 916
 917		spin_lock(&info->lock);
 
 
 918		info->swapped--;
 919		shmem_recalc_inode(inode);
 920		spin_unlock(&info->lock);
 
 
 
 921
 922		delete_from_swap_cache(page);
 923		set_page_dirty(page);
 924		swap_free(swap);
 925
 926	} else {
 927		if (shmem_acct_block(info->flags)) {
 928			error = -ENOSPC;
 929			goto failed;
 930		}
 931		if (sbinfo->max_blocks) {
 932			if (percpu_counter_compare(&sbinfo->used_blocks,
 933						sbinfo->max_blocks) >= 0) {
 934				error = -ENOSPC;
 935				goto unacct;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936			}
 937			percpu_counter_inc(&sbinfo->used_blocks);
 938		}
 939
 940		page = shmem_alloc_page(gfp, info, index);
 941		if (!page) {
 942			error = -ENOMEM;
 943			goto decused;
 944		}
 945
 946		SetPageSwapBacked(page);
 947		__set_page_locked(page);
 948		error = mem_cgroup_cache_charge(page, current->mm,
 949						gfp & GFP_RECLAIM_MASK);
 950		if (!error)
 951			error = shmem_add_to_page_cache(page, mapping, index,
 952						gfp, NULL);
 953		if (error)
 954			goto decused;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955		lru_cache_add_anon(page);
 956
 957		spin_lock(&info->lock);
 958		info->alloced++;
 959		inode->i_blocks += BLOCKS_PER_PAGE;
 960		shmem_recalc_inode(inode);
 961		spin_unlock(&info->lock);
 
 962
 963		clear_highpage(page);
 964		flush_dcache_page(page);
 965		SetPageUptodate(page);
 966		if (sgp == SGP_DIRTY)
 967			set_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968	}
 969done:
 970	/* Perhaps the file has been truncated since we checked */
 971	if (sgp != SGP_WRITE &&
 972	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
 
 
 
 
 
 
 
 973		error = -EINVAL;
 974		goto trunc;
 975	}
 976	*pagep = page;
 977	return 0;
 978
 979	/*
 980	 * Error recovery.
 981	 */
 982trunc:
 983	ClearPageDirty(page);
 984	delete_from_page_cache(page);
 985	spin_lock(&info->lock);
 986	info->alloced--;
 987	inode->i_blocks -= BLOCKS_PER_PAGE;
 988	spin_unlock(&info->lock);
 989decused:
 990	if (sbinfo->max_blocks)
 991		percpu_counter_add(&sbinfo->used_blocks, -1);
 992unacct:
 993	shmem_unacct_blocks(info->flags, 1);
 994failed:
 995	if (swap.val && error != -EINVAL) {
 996		struct page *test = find_get_page(mapping, index);
 997		if (test && !radix_tree_exceptional_entry(test))
 998			page_cache_release(test);
 999		/* Have another try if the entry has changed */
1000		if (test != swp_to_radix_entry(swap))
1001			error = -EEXIST;
1002	}
 
 
 
 
1003	if (page) {
1004		unlock_page(page);
1005		page_cache_release(page);
1006	}
1007	if (error == -ENOSPC && !once++) {
1008		info = SHMEM_I(inode);
1009		spin_lock(&info->lock);
1010		shmem_recalc_inode(inode);
1011		spin_unlock(&info->lock);
1012		goto repeat;
1013	}
1014	if (error == -EEXIST)
1015		goto repeat;
1016	return error;
1017}
1018
 
 
 
 
 
 
 
 
 
 
 
 
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 
 
1022	int error;
1023	int ret = VM_FAULT_LOCKED;
1024
1025	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026	if (error)
1027		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029	if (ret & VM_FAULT_MAJOR) {
1030		count_vm_event(PGMAJFAULT);
1031		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032	}
1033	return ret;
1034}
1035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044					  unsigned long addr)
1045{
1046	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047	pgoff_t index;
1048
1049	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056	struct inode *inode = file->f_path.dentry->d_inode;
1057	struct shmem_inode_info *info = SHMEM_I(inode);
1058	int retval = -ENOMEM;
1059
1060	spin_lock(&info->lock);
1061	if (lock && !(info->flags & VM_LOCKED)) {
1062		if (!user_shm_lock(inode->i_size, user))
1063			goto out_nomem;
1064		info->flags |= VM_LOCKED;
1065		mapping_set_unevictable(file->f_mapping);
1066	}
1067	if (!lock && (info->flags & VM_LOCKED) && user) {
1068		user_shm_unlock(inode->i_size, user);
1069		info->flags &= ~VM_LOCKED;
1070		mapping_clear_unevictable(file->f_mapping);
1071		scan_mapping_unevictable_pages(file->f_mapping);
1072	}
1073	retval = 0;
1074
1075out_nomem:
1076	spin_unlock(&info->lock);
1077	return retval;
1078}
1079
1080static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081{
1082	file_accessed(file);
1083	vma->vm_ops = &shmem_vm_ops;
1084	vma->vm_flags |= VM_CAN_NONLINEAR;
 
 
 
 
1085	return 0;
1086}
1087
1088static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089				     int mode, dev_t dev, unsigned long flags)
1090{
1091	struct inode *inode;
1092	struct shmem_inode_info *info;
1093	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094
1095	if (shmem_reserve_inode(sb))
1096		return NULL;
1097
1098	inode = new_inode(sb);
1099	if (inode) {
1100		inode->i_ino = get_next_ino();
1101		inode_init_owner(inode, dir, mode);
1102		inode->i_blocks = 0;
1103		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105		inode->i_generation = get_seconds();
1106		info = SHMEM_I(inode);
1107		memset(info, 0, (char *)inode - (char *)info);
1108		spin_lock_init(&info->lock);
 
1109		info->flags = flags & VM_NORESERVE;
 
1110		INIT_LIST_HEAD(&info->swaplist);
1111		INIT_LIST_HEAD(&info->xattr_list);
1112		cache_no_acl(inode);
1113
1114		switch (mode & S_IFMT) {
1115		default:
1116			inode->i_op = &shmem_special_inode_operations;
1117			init_special_inode(inode, mode, dev);
1118			break;
1119		case S_IFREG:
1120			inode->i_mapping->a_ops = &shmem_aops;
1121			inode->i_op = &shmem_inode_operations;
1122			inode->i_fop = &shmem_file_operations;
1123			mpol_shared_policy_init(&info->policy,
1124						 shmem_get_sbmpol(sbinfo));
1125			break;
1126		case S_IFDIR:
1127			inc_nlink(inode);
1128			/* Some things misbehave if size == 0 on a directory */
1129			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130			inode->i_op = &shmem_dir_inode_operations;
1131			inode->i_fop = &simple_dir_operations;
1132			break;
1133		case S_IFLNK:
1134			/*
1135			 * Must not load anything in the rbtree,
1136			 * mpol_free_shared_policy will not be called.
1137			 */
1138			mpol_shared_policy_init(&info->policy, NULL);
1139			break;
1140		}
1141	} else
1142		shmem_free_inode(sb);
1143	return inode;
1144}
1145
 
 
 
 
 
 
 
 
1146#ifdef CONFIG_TMPFS
1147static const struct inode_operations shmem_symlink_inode_operations;
1148static const struct inode_operations shmem_short_symlink_operations;
1149
 
 
 
 
 
 
1150static int
1151shmem_write_begin(struct file *file, struct address_space *mapping,
1152			loff_t pos, unsigned len, unsigned flags,
1153			struct page **pagep, void **fsdata)
1154{
1155	struct inode *inode = mapping->host;
1156	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
 
 
 
 
 
 
 
 
 
 
1158}
1159
1160static int
1161shmem_write_end(struct file *file, struct address_space *mapping,
1162			loff_t pos, unsigned len, unsigned copied,
1163			struct page *page, void *fsdata)
1164{
1165	struct inode *inode = mapping->host;
1166
1167	if (pos + copied > inode->i_size)
1168		i_size_write(inode, pos + copied);
1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170	set_page_dirty(page);
1171	unlock_page(page);
1172	page_cache_release(page);
1173
1174	return copied;
1175}
1176
1177static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178{
1179	struct inode *inode = filp->f_path.dentry->d_inode;
 
1180	struct address_space *mapping = inode->i_mapping;
1181	pgoff_t index;
1182	unsigned long offset;
1183	enum sgp_type sgp = SGP_READ;
 
 
 
1184
1185	/*
1186	 * Might this read be for a stacking filesystem?  Then when reading
1187	 * holes of a sparse file, we actually need to allocate those pages,
1188	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189	 */
1190	if (segment_eq(get_fs(), KERNEL_DS))
1191		sgp = SGP_DIRTY;
1192
1193	index = *ppos >> PAGE_CACHE_SHIFT;
1194	offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196	for (;;) {
1197		struct page *page = NULL;
1198		pgoff_t end_index;
1199		unsigned long nr, ret;
1200		loff_t i_size = i_size_read(inode);
1201
1202		end_index = i_size >> PAGE_CACHE_SHIFT;
1203		if (index > end_index)
1204			break;
1205		if (index == end_index) {
1206			nr = i_size & ~PAGE_CACHE_MASK;
1207			if (nr <= offset)
1208				break;
1209		}
1210
1211		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212		if (desc->error) {
1213			if (desc->error == -EINVAL)
1214				desc->error = 0;
1215			break;
1216		}
1217		if (page)
 
 
1218			unlock_page(page);
 
1219
1220		/*
1221		 * We must evaluate after, since reads (unlike writes)
1222		 * are called without i_mutex protection against truncate
1223		 */
1224		nr = PAGE_CACHE_SIZE;
1225		i_size = i_size_read(inode);
1226		end_index = i_size >> PAGE_CACHE_SHIFT;
1227		if (index == end_index) {
1228			nr = i_size & ~PAGE_CACHE_MASK;
1229			if (nr <= offset) {
1230				if (page)
1231					page_cache_release(page);
1232				break;
1233			}
1234		}
1235		nr -= offset;
1236
1237		if (page) {
1238			/*
1239			 * If users can be writing to this page using arbitrary
1240			 * virtual addresses, take care about potential aliasing
1241			 * before reading the page on the kernel side.
1242			 */
1243			if (mapping_writably_mapped(mapping))
1244				flush_dcache_page(page);
1245			/*
1246			 * Mark the page accessed if we read the beginning.
1247			 */
1248			if (!offset)
1249				mark_page_accessed(page);
1250		} else {
1251			page = ZERO_PAGE(0);
1252			page_cache_get(page);
1253		}
1254
1255		/*
1256		 * Ok, we have the page, and it's up-to-date, so
1257		 * now we can copy it to user space...
1258		 *
1259		 * The actor routine returns how many bytes were actually used..
1260		 * NOTE! This may not be the same as how much of a user buffer
1261		 * we filled up (we may be padding etc), so we can only update
1262		 * "pos" here (the actor routine has to update the user buffer
1263		 * pointers and the remaining count).
1264		 */
1265		ret = actor(desc, page, offset, nr);
 
1266		offset += ret;
1267		index += offset >> PAGE_CACHE_SHIFT;
1268		offset &= ~PAGE_CACHE_MASK;
1269
1270		page_cache_release(page);
1271		if (ret != nr || !desc->count)
1272			break;
1273
 
 
 
1274		cond_resched();
1275	}
1276
1277	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278	file_accessed(filp);
 
1279}
1280
1281static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
 
 
 
1283{
1284	struct file *filp = iocb->ki_filp;
1285	ssize_t retval;
1286	unsigned long seg;
1287	size_t count;
1288	loff_t *ppos = &iocb->ki_pos;
1289
1290	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291	if (retval)
1292		return retval;
1293
1294	for (seg = 0; seg < nr_segs; seg++) {
1295		read_descriptor_t desc;
1296
1297		desc.written = 0;
1298		desc.arg.buf = iov[seg].iov_base;
1299		desc.count = iov[seg].iov_len;
1300		if (desc.count == 0)
1301			continue;
1302		desc.error = 0;
1303		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304		retval += desc.written;
1305		if (desc.error) {
1306			retval = retval ?: desc.error;
1307			break;
1308		}
1309		if (desc.count > 0)
1310			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	}
1312	return retval;
1313}
1314
1315static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316				struct pipe_inode_info *pipe, size_t len,
1317				unsigned int flags)
1318{
1319	struct address_space *mapping = in->f_mapping;
1320	struct inode *inode = mapping->host;
1321	unsigned int loff, nr_pages, req_pages;
1322	struct page *pages[PIPE_DEF_BUFFERS];
1323	struct partial_page partial[PIPE_DEF_BUFFERS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	struct page *page;
1325	pgoff_t index, end_index;
1326	loff_t isize, left;
1327	int error, page_nr;
1328	struct splice_pipe_desc spd = {
1329		.pages = pages,
1330		.partial = partial,
1331		.flags = flags,
1332		.ops = &page_cache_pipe_buf_ops,
1333		.spd_release = spd_release_page,
1334	};
1335
1336	isize = i_size_read(inode);
1337	if (unlikely(*ppos >= isize))
1338		return 0;
1339
1340	left = isize - *ppos;
1341	if (unlikely(left < len))
1342		len = left;
 
 
 
 
 
 
 
 
 
 
1343
1344	if (splice_grow_spd(pipe, &spd))
1345		return -ENOMEM;
 
 
 
 
 
1346
1347	index = *ppos >> PAGE_CACHE_SHIFT;
1348	loff = *ppos & ~PAGE_CACHE_MASK;
1349	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350	nr_pages = min(req_pages, pipe->buffers);
1351
1352	spd.nr_pages = find_get_pages_contig(mapping, index,
1353						nr_pages, spd.pages);
1354	index += spd.nr_pages;
1355	error = 0;
 
 
 
 
 
 
 
1356
1357	while (spd.nr_pages < nr_pages) {
1358		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359		if (error)
 
 
1360			break;
1361		unlock_page(page);
1362		spd.pages[spd.nr_pages++] = page;
1363		index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364	}
1365
1366	index = *ppos >> PAGE_CACHE_SHIFT;
1367	nr_pages = spd.nr_pages;
1368	spd.nr_pages = 0;
 
 
 
 
1369
1370	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371		unsigned int this_len;
 
 
 
1372
1373		if (!len)
1374			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377		page = spd.pages[page_nr];
 
 
 
 
 
 
 
 
 
 
 
1378
1379		if (!PageUptodate(page) || page->mapping != mapping) {
1380			error = shmem_getpage(inode, index, &page,
1381							SGP_CACHE, NULL);
1382			if (error)
1383				break;
1384			unlock_page(page);
1385			page_cache_release(spd.pages[page_nr]);
1386			spd.pages[page_nr] = page;
 
1387		}
 
1388
1389		isize = i_size_read(inode);
1390		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391		if (unlikely(!isize || index > end_index))
1392			break;
1393
1394		if (end_index == index) {
1395			unsigned int plen;
 
 
 
1396
1397			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398			if (plen <= loff)
1399				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400
1401			this_len = min(this_len, plen - loff);
1402			len = this_len;
 
 
 
 
 
 
 
 
1403		}
1404
1405		spd.partial[page_nr].offset = loff;
1406		spd.partial[page_nr].len = this_len;
1407		len -= this_len;
1408		loff = 0;
1409		spd.nr_pages++;
1410		index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411	}
1412
1413	while (page_nr < nr_pages)
1414		page_cache_release(spd.pages[page_nr++]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	if (spd.nr_pages)
1417		error = splice_to_pipe(pipe, &spd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418
1419	splice_shrink_spd(pipe, &spd);
 
 
 
 
 
 
1420
1421	if (error > 0) {
1422		*ppos += error;
1423		file_accessed(in);
 
 
 
 
 
 
 
 
1424	}
 
 
 
 
 
 
 
 
 
 
1425	return error;
1426}
1427
1428static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429{
1430	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432	buf->f_type = TMPFS_MAGIC;
1433	buf->f_bsize = PAGE_CACHE_SIZE;
1434	buf->f_namelen = NAME_MAX;
1435	if (sbinfo->max_blocks) {
1436		buf->f_blocks = sbinfo->max_blocks;
1437		buf->f_bavail =
1438		buf->f_bfree  = sbinfo->max_blocks -
1439				percpu_counter_sum(&sbinfo->used_blocks);
1440	}
1441	if (sbinfo->max_inodes) {
1442		buf->f_files = sbinfo->max_inodes;
1443		buf->f_ffree = sbinfo->free_inodes;
1444	}
1445	/* else leave those fields 0 like simple_statfs */
1446	return 0;
1447}
1448
1449/*
1450 * File creation. Allocate an inode, and we're done..
1451 */
1452static int
1453shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454{
1455	struct inode *inode;
1456	int error = -ENOSPC;
1457
1458	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459	if (inode) {
 
 
 
1460		error = security_inode_init_security(inode, dir,
1461						     &dentry->d_name, NULL,
1462						     NULL, NULL);
1463		if (error) {
1464			if (error != -EOPNOTSUPP) {
1465				iput(inode);
1466				return error;
1467			}
1468		}
1469#ifdef CONFIG_TMPFS_POSIX_ACL
1470		error = generic_acl_init(inode, dir);
1471		if (error) {
1472			iput(inode);
1473			return error;
1474		}
1475#else
1476		error = 0;
1477#endif
1478		dir->i_size += BOGO_DIRENT_SIZE;
1479		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480		d_instantiate(dentry, inode);
1481		dget(dentry); /* Extra count - pin the dentry in core */
1482	}
1483	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484}
1485
1486static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1487{
1488	int error;
1489
1490	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491		return error;
1492	inc_nlink(dir);
1493	return 0;
1494}
1495
1496static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497		struct nameidata *nd)
1498{
1499	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500}
1501
1502/*
1503 * Link a file..
1504 */
1505static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506{
1507	struct inode *inode = old_dentry->d_inode;
1508	int ret;
1509
1510	/*
1511	 * No ordinary (disk based) filesystem counts links as inodes;
1512	 * but each new link needs a new dentry, pinning lowmem, and
1513	 * tmpfs dentries cannot be pruned until they are unlinked.
1514	 */
1515	ret = shmem_reserve_inode(inode->i_sb);
1516	if (ret)
1517		goto out;
1518
1519	dir->i_size += BOGO_DIRENT_SIZE;
1520	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521	inc_nlink(inode);
1522	ihold(inode);	/* New dentry reference */
1523	dget(dentry);		/* Extra pinning count for the created dentry */
1524	d_instantiate(dentry, inode);
1525out:
1526	return ret;
1527}
1528
1529static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530{
1531	struct inode *inode = dentry->d_inode;
1532
1533	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534		shmem_free_inode(inode->i_sb);
1535
1536	dir->i_size -= BOGO_DIRENT_SIZE;
1537	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538	drop_nlink(inode);
1539	dput(dentry);	/* Undo the count from "create" - this does all the work */
1540	return 0;
1541}
1542
1543static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544{
1545	if (!simple_empty(dentry))
1546		return -ENOTEMPTY;
1547
1548	drop_nlink(dentry->d_inode);
1549	drop_nlink(dir);
1550	return shmem_unlink(dir, dentry);
1551}
1552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553/*
1554 * The VFS layer already does all the dentry stuff for rename,
1555 * we just have to decrement the usage count for the target if
1556 * it exists so that the VFS layer correctly free's it when it
1557 * gets overwritten.
1558 */
1559static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560{
1561	struct inode *inode = old_dentry->d_inode;
1562	int they_are_dirs = S_ISDIR(inode->i_mode);
1563
 
 
 
 
 
 
1564	if (!simple_empty(new_dentry))
1565		return -ENOTEMPTY;
1566
1567	if (new_dentry->d_inode) {
 
 
 
 
 
 
 
 
1568		(void) shmem_unlink(new_dir, new_dentry);
1569		if (they_are_dirs)
 
1570			drop_nlink(old_dir);
 
1571	} else if (they_are_dirs) {
1572		drop_nlink(old_dir);
1573		inc_nlink(new_dir);
1574	}
1575
1576	old_dir->i_size -= BOGO_DIRENT_SIZE;
1577	new_dir->i_size += BOGO_DIRENT_SIZE;
1578	old_dir->i_ctime = old_dir->i_mtime =
1579	new_dir->i_ctime = new_dir->i_mtime =
1580	inode->i_ctime = CURRENT_TIME;
1581	return 0;
1582}
1583
1584static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585{
1586	int error;
1587	int len;
1588	struct inode *inode;
1589	struct page *page;
1590	char *kaddr;
1591	struct shmem_inode_info *info;
1592
1593	len = strlen(symname) + 1;
1594	if (len > PAGE_CACHE_SIZE)
1595		return -ENAMETOOLONG;
1596
1597	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598	if (!inode)
1599		return -ENOSPC;
1600
1601	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602					     NULL, NULL);
1603	if (error) {
1604		if (error != -EOPNOTSUPP) {
1605			iput(inode);
1606			return error;
1607		}
1608		error = 0;
1609	}
1610
1611	info = SHMEM_I(inode);
1612	inode->i_size = len-1;
1613	if (len <= SHORT_SYMLINK_LEN) {
1614		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615		if (!info->symlink) {
1616			iput(inode);
1617			return -ENOMEM;
1618		}
1619		inode->i_op = &shmem_short_symlink_operations;
1620	} else {
1621		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
 
1622		if (error) {
1623			iput(inode);
1624			return error;
1625		}
1626		inode->i_mapping->a_ops = &shmem_aops;
1627		inode->i_op = &shmem_symlink_inode_operations;
1628		kaddr = kmap_atomic(page, KM_USER0);
1629		memcpy(kaddr, symname, len);
1630		kunmap_atomic(kaddr, KM_USER0);
1631		set_page_dirty(page);
1632		unlock_page(page);
1633		page_cache_release(page);
1634	}
1635	dir->i_size += BOGO_DIRENT_SIZE;
1636	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637	d_instantiate(dentry, inode);
1638	dget(dentry);
1639	return 0;
1640}
1641
1642static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643{
1644	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645	return NULL;
1646}
1647
1648static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1649{
1650	struct page *page = NULL;
1651	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653	if (page)
 
 
 
 
 
 
 
 
 
 
1654		unlock_page(page);
1655	return page;
1656}
1657
1658static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659{
1660	if (!IS_ERR(nd_get_link(nd))) {
1661		struct page *page = cookie;
1662		kunmap(page);
1663		mark_page_accessed(page);
1664		page_cache_release(page);
1665	}
 
 
1666}
1667
1668#ifdef CONFIG_TMPFS_XATTR
1669/*
1670 * Superblocks without xattr inode operations may get some security.* xattr
1671 * support from the LSM "for free". As soon as we have any other xattrs
1672 * like ACLs, we also need to implement the security.* handlers at
1673 * filesystem level, though.
1674 */
1675
1676static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677			   void *buffer, size_t size)
1678{
1679	struct shmem_inode_info *info;
1680	struct shmem_xattr *xattr;
1681	int ret = -ENODATA;
1682
1683	info = SHMEM_I(dentry->d_inode);
1684
1685	spin_lock(&info->lock);
1686	list_for_each_entry(xattr, &info->xattr_list, list) {
1687		if (strcmp(name, xattr->name))
1688			continue;
1689
1690		ret = xattr->size;
1691		if (buffer) {
1692			if (size < xattr->size)
1693				ret = -ERANGE;
1694			else
1695				memcpy(buffer, xattr->value, xattr->size);
1696		}
1697		break;
1698	}
1699	spin_unlock(&info->lock);
1700	return ret;
1701}
1702
1703static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704			   const void *value, size_t size, int flags)
1705{
1706	struct inode *inode = dentry->d_inode;
1707	struct shmem_inode_info *info = SHMEM_I(inode);
1708	struct shmem_xattr *xattr;
1709	struct shmem_xattr *new_xattr = NULL;
1710	size_t len;
1711	int err = 0;
1712
1713	/* value == NULL means remove */
1714	if (value) {
1715		/* wrap around? */
1716		len = sizeof(*new_xattr) + size;
1717		if (len <= sizeof(*new_xattr))
1718			return -ENOMEM;
1719
1720		new_xattr = kmalloc(len, GFP_KERNEL);
1721		if (!new_xattr)
1722			return -ENOMEM;
1723
1724		new_xattr->name = kstrdup(name, GFP_KERNEL);
 
 
1725		if (!new_xattr->name) {
1726			kfree(new_xattr);
1727			return -ENOMEM;
1728		}
1729
1730		new_xattr->size = size;
1731		memcpy(new_xattr->value, value, size);
1732	}
 
1733
1734	spin_lock(&info->lock);
1735	list_for_each_entry(xattr, &info->xattr_list, list) {
1736		if (!strcmp(name, xattr->name)) {
1737			if (flags & XATTR_CREATE) {
1738				xattr = new_xattr;
1739				err = -EEXIST;
1740			} else if (new_xattr) {
1741				list_replace(&xattr->list, &new_xattr->list);
1742			} else {
1743				list_del(&xattr->list);
1744			}
1745			goto out;
1746		}
1747	}
1748	if (flags & XATTR_REPLACE) {
1749		xattr = new_xattr;
1750		err = -ENODATA;
1751	} else {
1752		list_add(&new_xattr->list, &info->xattr_list);
1753		xattr = NULL;
1754	}
1755out:
1756	spin_unlock(&info->lock);
1757	if (xattr)
1758		kfree(xattr->name);
1759	kfree(xattr);
1760	return err;
1761}
1762
1763static const struct xattr_handler *shmem_xattr_handlers[] = {
1764#ifdef CONFIG_TMPFS_POSIX_ACL
1765	&generic_acl_access_handler,
1766	&generic_acl_default_handler,
1767#endif
1768	NULL
1769};
1770
1771static int shmem_xattr_validate(const char *name)
1772{
1773	struct { const char *prefix; size_t len; } arr[] = {
1774		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776	};
1777	int i;
1778
1779	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780		size_t preflen = arr[i].len;
1781		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782			if (!name[preflen])
1783				return -EINVAL;
1784			return 0;
1785		}
1786	}
1787	return -EOPNOTSUPP;
1788}
1789
1790static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791			      void *buffer, size_t size)
 
1792{
1793	int err;
1794
1795	/*
1796	 * If this is a request for a synthetic attribute in the system.*
1797	 * namespace use the generic infrastructure to resolve a handler
1798	 * for it via sb->s_xattr.
1799	 */
1800	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801		return generic_getxattr(dentry, name, buffer, size);
1802
1803	err = shmem_xattr_validate(name);
1804	if (err)
1805		return err;
1806
1807	return shmem_xattr_get(dentry, name, buffer, size);
 
1808}
1809
1810static int shmem_setxattr(struct dentry *dentry, const char *name,
1811			  const void *value, size_t size, int flags)
 
 
1812{
1813	int err;
1814
1815	/*
1816	 * If this is a request for a synthetic attribute in the system.*
1817	 * namespace use the generic infrastructure to resolve a handler
1818	 * for it via sb->s_xattr.
1819	 */
1820	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821		return generic_setxattr(dentry, name, value, size, flags);
1822
1823	err = shmem_xattr_validate(name);
1824	if (err)
1825		return err;
1826
1827	if (size == 0)
1828		value = "";  /* empty EA, do not remove */
1829
1830	return shmem_xattr_set(dentry, name, value, size, flags);
1831
 
 
1832}
1833
1834static int shmem_removexattr(struct dentry *dentry, const char *name)
1835{
1836	int err;
1837
1838	/*
1839	 * If this is a request for a synthetic attribute in the system.*
1840	 * namespace use the generic infrastructure to resolve a handler
1841	 * for it via sb->s_xattr.
1842	 */
1843	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844		return generic_removexattr(dentry, name);
1845
1846	err = shmem_xattr_validate(name);
1847	if (err)
1848		return err;
1849
1850	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851}
 
 
 
1852
1853static bool xattr_is_trusted(const char *name)
1854{
1855	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856}
 
 
 
 
 
1857
1858static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859{
1860	bool trusted = capable(CAP_SYS_ADMIN);
1861	struct shmem_xattr *xattr;
1862	struct shmem_inode_info *info;
1863	size_t used = 0;
1864
1865	info = SHMEM_I(dentry->d_inode);
1866
1867	spin_lock(&info->lock);
1868	list_for_each_entry(xattr, &info->xattr_list, list) {
1869		size_t len;
1870
1871		/* skip "trusted." attributes for unprivileged callers */
1872		if (!trusted && xattr_is_trusted(xattr->name))
1873			continue;
1874
1875		len = strlen(xattr->name) + 1;
1876		used += len;
1877		if (buffer) {
1878			if (size < used) {
1879				used = -ERANGE;
1880				break;
1881			}
1882			memcpy(buffer, xattr->name, len);
1883			buffer += len;
1884		}
1885	}
1886	spin_unlock(&info->lock);
1887
1888	return used;
1889}
1890#endif /* CONFIG_TMPFS_XATTR */
1891
1892static const struct inode_operations shmem_short_symlink_operations = {
1893	.readlink	= generic_readlink,
1894	.follow_link	= shmem_follow_short_symlink,
1895#ifdef CONFIG_TMPFS_XATTR
1896	.setxattr	= shmem_setxattr,
1897	.getxattr	= shmem_getxattr,
1898	.listxattr	= shmem_listxattr,
1899	.removexattr	= shmem_removexattr,
1900#endif
1901};
1902
1903static const struct inode_operations shmem_symlink_inode_operations = {
1904	.readlink	= generic_readlink,
1905	.follow_link	= shmem_follow_link,
1906	.put_link	= shmem_put_link,
1907#ifdef CONFIG_TMPFS_XATTR
1908	.setxattr	= shmem_setxattr,
1909	.getxattr	= shmem_getxattr,
1910	.listxattr	= shmem_listxattr,
1911	.removexattr	= shmem_removexattr,
1912#endif
1913};
1914
1915static struct dentry *shmem_get_parent(struct dentry *child)
1916{
1917	return ERR_PTR(-ESTALE);
1918}
1919
1920static int shmem_match(struct inode *ino, void *vfh)
1921{
1922	__u32 *fh = vfh;
1923	__u64 inum = fh[2];
1924	inum = (inum << 32) | fh[1];
1925	return ino->i_ino == inum && fh[0] == ino->i_generation;
1926}
1927
1928static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929		struct fid *fid, int fh_len, int fh_type)
1930{
1931	struct inode *inode;
1932	struct dentry *dentry = NULL;
1933	u64 inum = fid->raw[2];
1934	inum = (inum << 32) | fid->raw[1];
1935
1936	if (fh_len < 3)
1937		return NULL;
1938
 
 
 
1939	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940			shmem_match, fid->raw);
1941	if (inode) {
1942		dentry = d_find_alias(inode);
1943		iput(inode);
1944	}
1945
1946	return dentry;
1947}
1948
1949static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950				int connectable)
1951{
1952	struct inode *inode = dentry->d_inode;
1953
1954	if (*len < 3) {
1955		*len = 3;
1956		return 255;
1957	}
1958
1959	if (inode_unhashed(inode)) {
1960		/* Unfortunately insert_inode_hash is not idempotent,
1961		 * so as we hash inodes here rather than at creation
1962		 * time, we need a lock to ensure we only try
1963		 * to do it once
1964		 */
1965		static DEFINE_SPINLOCK(lock);
1966		spin_lock(&lock);
1967		if (inode_unhashed(inode))
1968			__insert_inode_hash(inode,
1969					    inode->i_ino + inode->i_generation);
1970		spin_unlock(&lock);
1971	}
1972
1973	fh[0] = inode->i_generation;
1974	fh[1] = inode->i_ino;
1975	fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977	*len = 3;
1978	return 1;
1979}
1980
1981static const struct export_operations shmem_export_ops = {
1982	.get_parent     = shmem_get_parent,
1983	.encode_fh      = shmem_encode_fh,
1984	.fh_to_dentry	= shmem_fh_to_dentry,
1985};
1986
1987static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988			       bool remount)
1989{
1990	char *this_char, *value, *rest;
 
 
 
1991
1992	while (options != NULL) {
1993		this_char = options;
1994		for (;;) {
1995			/*
1996			 * NUL-terminate this option: unfortunately,
1997			 * mount options form a comma-separated list,
1998			 * but mpol's nodelist may also contain commas.
1999			 */
2000			options = strchr(options, ',');
2001			if (options == NULL)
2002				break;
2003			options++;
2004			if (!isdigit(*options)) {
2005				options[-1] = '\0';
2006				break;
2007			}
2008		}
2009		if (!*this_char)
2010			continue;
2011		if ((value = strchr(this_char,'=')) != NULL) {
2012			*value++ = 0;
2013		} else {
2014			printk(KERN_ERR
2015			    "tmpfs: No value for mount option '%s'\n",
2016			    this_char);
2017			return 1;
2018		}
2019
2020		if (!strcmp(this_char,"size")) {
2021			unsigned long long size;
2022			size = memparse(value,&rest);
2023			if (*rest == '%') {
2024				size <<= PAGE_SHIFT;
2025				size *= totalram_pages;
2026				do_div(size, 100);
2027				rest++;
2028			}
2029			if (*rest)
2030				goto bad_val;
2031			sbinfo->max_blocks =
2032				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033		} else if (!strcmp(this_char,"nr_blocks")) {
2034			sbinfo->max_blocks = memparse(value, &rest);
2035			if (*rest)
2036				goto bad_val;
2037		} else if (!strcmp(this_char,"nr_inodes")) {
2038			sbinfo->max_inodes = memparse(value, &rest);
2039			if (*rest)
2040				goto bad_val;
2041		} else if (!strcmp(this_char,"mode")) {
2042			if (remount)
2043				continue;
2044			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045			if (*rest)
2046				goto bad_val;
2047		} else if (!strcmp(this_char,"uid")) {
2048			if (remount)
2049				continue;
2050			sbinfo->uid = simple_strtoul(value, &rest, 0);
2051			if (*rest)
2052				goto bad_val;
 
 
 
2053		} else if (!strcmp(this_char,"gid")) {
2054			if (remount)
2055				continue;
2056			sbinfo->gid = simple_strtoul(value, &rest, 0);
2057			if (*rest)
2058				goto bad_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059		} else if (!strcmp(this_char,"mpol")) {
2060			if (mpol_parse_str(value, &sbinfo->mpol, 1))
 
 
2061				goto bad_val;
 
2062		} else {
2063			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064			       this_char);
2065			return 1;
2066		}
2067	}
 
2068	return 0;
2069
2070bad_val:
2071	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072	       value, this_char);
 
 
2073	return 1;
2074
2075}
2076
2077static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078{
2079	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080	struct shmem_sb_info config = *sbinfo;
2081	unsigned long inodes;
2082	int error = -EINVAL;
2083
 
2084	if (shmem_parse_options(data, &config, true))
2085		return error;
2086
2087	spin_lock(&sbinfo->stat_lock);
2088	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090		goto out;
2091	if (config.max_inodes < inodes)
2092		goto out;
2093	/*
2094	 * Those tests disallow limited->unlimited while any are in use;
2095	 * but we must separately disallow unlimited->limited, because
2096	 * in that case we have no record of how much is already in use.
2097	 */
2098	if (config.max_blocks && !sbinfo->max_blocks)
2099		goto out;
2100	if (config.max_inodes && !sbinfo->max_inodes)
2101		goto out;
2102
2103	error = 0;
 
2104	sbinfo->max_blocks  = config.max_blocks;
2105	sbinfo->max_inodes  = config.max_inodes;
2106	sbinfo->free_inodes = config.max_inodes - inodes;
2107
2108	mpol_put(sbinfo->mpol);
2109	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
 
 
 
 
 
2110out:
2111	spin_unlock(&sbinfo->stat_lock);
2112	return error;
2113}
2114
2115static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116{
2117	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119	if (sbinfo->max_blocks != shmem_default_max_blocks())
2120		seq_printf(seq, ",size=%luk",
2121			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122	if (sbinfo->max_inodes != shmem_default_max_inodes())
2123		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126	if (sbinfo->uid != 0)
2127		seq_printf(seq, ",uid=%u", sbinfo->uid);
2128	if (sbinfo->gid != 0)
2129		seq_printf(seq, ",gid=%u", sbinfo->gid);
 
 
 
 
 
 
 
2130	shmem_show_mpol(seq, sbinfo->mpol);
2131	return 0;
2132}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133#endif /* CONFIG_TMPFS */
2134
2135static void shmem_put_super(struct super_block *sb)
2136{
2137	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139	percpu_counter_destroy(&sbinfo->used_blocks);
 
2140	kfree(sbinfo);
2141	sb->s_fs_info = NULL;
2142}
2143
2144int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145{
2146	struct inode *inode;
2147	struct dentry *root;
2148	struct shmem_sb_info *sbinfo;
2149	int err = -ENOMEM;
2150
2151	/* Round up to L1_CACHE_BYTES to resist false sharing */
2152	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153				L1_CACHE_BYTES), GFP_KERNEL);
2154	if (!sbinfo)
2155		return -ENOMEM;
2156
2157	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158	sbinfo->uid = current_fsuid();
2159	sbinfo->gid = current_fsgid();
2160	sb->s_fs_info = sbinfo;
2161
2162#ifdef CONFIG_TMPFS
2163	/*
2164	 * Per default we only allow half of the physical ram per
2165	 * tmpfs instance, limiting inodes to one per page of lowmem;
2166	 * but the internal instance is left unlimited.
2167	 */
2168	if (!(sb->s_flags & MS_NOUSER)) {
2169		sbinfo->max_blocks = shmem_default_max_blocks();
2170		sbinfo->max_inodes = shmem_default_max_inodes();
2171		if (shmem_parse_options(data, sbinfo, false)) {
2172			err = -EINVAL;
2173			goto failed;
2174		}
 
 
2175	}
2176	sb->s_export_op = &shmem_export_ops;
 
2177#else
2178	sb->s_flags |= MS_NOUSER;
2179#endif
2180
2181	spin_lock_init(&sbinfo->stat_lock);
2182	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183		goto failed;
2184	sbinfo->free_inodes = sbinfo->max_inodes;
 
 
2185
2186	sb->s_maxbytes = MAX_LFS_FILESIZE;
2187	sb->s_blocksize = PAGE_CACHE_SIZE;
2188	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189	sb->s_magic = TMPFS_MAGIC;
2190	sb->s_op = &shmem_ops;
2191	sb->s_time_gran = 1;
2192#ifdef CONFIG_TMPFS_XATTR
2193	sb->s_xattr = shmem_xattr_handlers;
2194#endif
2195#ifdef CONFIG_TMPFS_POSIX_ACL
2196	sb->s_flags |= MS_POSIXACL;
2197#endif
2198
2199	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200	if (!inode)
2201		goto failed;
2202	inode->i_uid = sbinfo->uid;
2203	inode->i_gid = sbinfo->gid;
2204	root = d_alloc_root(inode);
2205	if (!root)
2206		goto failed_iput;
2207	sb->s_root = root;
2208	return 0;
2209
2210failed_iput:
2211	iput(inode);
2212failed:
2213	shmem_put_super(sb);
2214	return err;
2215}
2216
2217static struct kmem_cache *shmem_inode_cachep;
2218
2219static struct inode *shmem_alloc_inode(struct super_block *sb)
2220{
2221	struct shmem_inode_info *info;
2222	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223	if (!info)
2224		return NULL;
2225	return &info->vfs_inode;
2226}
2227
2228static void shmem_destroy_callback(struct rcu_head *head)
2229{
2230	struct inode *inode = container_of(head, struct inode, i_rcu);
2231	INIT_LIST_HEAD(&inode->i_dentry);
 
2232	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233}
2234
2235static void shmem_destroy_inode(struct inode *inode)
2236{
2237	if ((inode->i_mode & S_IFMT) == S_IFREG)
2238		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240}
2241
2242static void shmem_init_inode(void *foo)
2243{
2244	struct shmem_inode_info *info = foo;
2245	inode_init_once(&info->vfs_inode);
2246}
2247
2248static int shmem_init_inodecache(void)
2249{
2250	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251				sizeof(struct shmem_inode_info),
2252				0, SLAB_PANIC, shmem_init_inode);
2253	return 0;
2254}
2255
2256static void shmem_destroy_inodecache(void)
2257{
2258	kmem_cache_destroy(shmem_inode_cachep);
2259}
2260
2261static const struct address_space_operations shmem_aops = {
2262	.writepage	= shmem_writepage,
2263	.set_page_dirty	= __set_page_dirty_no_writeback,
2264#ifdef CONFIG_TMPFS
2265	.write_begin	= shmem_write_begin,
2266	.write_end	= shmem_write_end,
2267#endif
 
2268	.migratepage	= migrate_page,
 
2269	.error_remove_page = generic_error_remove_page,
2270};
2271
2272static const struct file_operations shmem_file_operations = {
2273	.mmap		= shmem_mmap,
 
2274#ifdef CONFIG_TMPFS
2275	.llseek		= generic_file_llseek,
2276	.read		= do_sync_read,
2277	.write		= do_sync_write,
2278	.aio_read	= shmem_file_aio_read,
2279	.aio_write	= generic_file_aio_write,
2280	.fsync		= noop_fsync,
2281	.splice_read	= shmem_file_splice_read,
2282	.splice_write	= generic_file_splice_write,
 
2283#endif
2284};
2285
2286static const struct inode_operations shmem_inode_operations = {
 
2287	.setattr	= shmem_setattr,
2288	.truncate_range	= shmem_truncate_range,
2289#ifdef CONFIG_TMPFS_XATTR
2290	.setxattr	= shmem_setxattr,
2291	.getxattr	= shmem_getxattr,
2292	.listxattr	= shmem_listxattr,
2293	.removexattr	= shmem_removexattr,
2294#endif
2295};
2296
2297static const struct inode_operations shmem_dir_inode_operations = {
2298#ifdef CONFIG_TMPFS
2299	.create		= shmem_create,
2300	.lookup		= simple_lookup,
2301	.link		= shmem_link,
2302	.unlink		= shmem_unlink,
2303	.symlink	= shmem_symlink,
2304	.mkdir		= shmem_mkdir,
2305	.rmdir		= shmem_rmdir,
2306	.mknod		= shmem_mknod,
2307	.rename		= shmem_rename,
 
2308#endif
2309#ifdef CONFIG_TMPFS_XATTR
2310	.setxattr	= shmem_setxattr,
2311	.getxattr	= shmem_getxattr,
2312	.listxattr	= shmem_listxattr,
2313	.removexattr	= shmem_removexattr,
2314#endif
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316	.setattr	= shmem_setattr,
 
2317#endif
2318};
2319
2320static const struct inode_operations shmem_special_inode_operations = {
2321#ifdef CONFIG_TMPFS_XATTR
2322	.setxattr	= shmem_setxattr,
2323	.getxattr	= shmem_getxattr,
2324	.listxattr	= shmem_listxattr,
2325	.removexattr	= shmem_removexattr,
2326#endif
2327#ifdef CONFIG_TMPFS_POSIX_ACL
2328	.setattr	= shmem_setattr,
 
2329#endif
2330};
2331
2332static const struct super_operations shmem_ops = {
2333	.alloc_inode	= shmem_alloc_inode,
2334	.destroy_inode	= shmem_destroy_inode,
2335#ifdef CONFIG_TMPFS
2336	.statfs		= shmem_statfs,
2337	.remount_fs	= shmem_remount_fs,
2338	.show_options	= shmem_show_options,
2339#endif
2340	.evict_inode	= shmem_evict_inode,
2341	.drop_inode	= generic_delete_inode,
2342	.put_super	= shmem_put_super,
 
 
 
 
2343};
2344
2345static const struct vm_operations_struct shmem_vm_ops = {
2346	.fault		= shmem_fault,
 
2347#ifdef CONFIG_NUMA
2348	.set_policy     = shmem_set_policy,
2349	.get_policy     = shmem_get_policy,
2350#endif
2351};
2352
2353static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354	int flags, const char *dev_name, void *data)
2355{
2356	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357}
2358
2359static struct file_system_type shmem_fs_type = {
2360	.owner		= THIS_MODULE,
2361	.name		= "tmpfs",
2362	.mount		= shmem_mount,
2363	.kill_sb	= kill_litter_super,
 
2364};
2365
2366int __init shmem_init(void)
2367{
2368	int error;
2369
2370	error = bdi_init(&shmem_backing_dev_info);
2371	if (error)
2372		goto out4;
2373
2374	error = shmem_init_inodecache();
2375	if (error)
2376		goto out3;
2377
2378	error = register_filesystem(&shmem_fs_type);
2379	if (error) {
2380		printk(KERN_ERR "Could not register tmpfs\n");
2381		goto out2;
2382	}
2383
2384	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385				 shmem_fs_type.name, NULL);
2386	if (IS_ERR(shm_mnt)) {
2387		error = PTR_ERR(shm_mnt);
2388		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389		goto out1;
2390	}
 
 
 
 
 
 
 
2391	return 0;
2392
2393out1:
2394	unregister_filesystem(&shmem_fs_type);
2395out2:
2396	shmem_destroy_inodecache();
2397out3:
2398	bdi_destroy(&shmem_backing_dev_info);
2399out4:
2400	shm_mnt = ERR_PTR(error);
2401	return error;
2402}
2403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404#else /* !CONFIG_SHMEM */
2405
2406/*
2407 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408 *
2409 * This is intended for small system where the benefits of the full
2410 * shmem code (swap-backed and resource-limited) are outweighed by
2411 * their complexity. On systems without swap this code should be
2412 * effectively equivalent, but much lighter weight.
2413 */
2414
2415#include <linux/ramfs.h>
2416
2417static struct file_system_type shmem_fs_type = {
2418	.name		= "tmpfs",
2419	.mount		= ramfs_mount,
2420	.kill_sb	= kill_litter_super,
 
2421};
2422
2423int __init shmem_init(void)
2424{
2425	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427	shm_mnt = kern_mount(&shmem_fs_type);
2428	BUG_ON(IS_ERR(shm_mnt));
2429
2430	return 0;
2431}
2432
2433int shmem_unuse(swp_entry_t swap, struct page *page)
2434{
2435	return 0;
2436}
2437
2438int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439{
2440	return 0;
2441}
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
2443void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444{
2445	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446}
2447EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449#define shmem_vm_ops				generic_file_vm_ops
2450#define shmem_file_operations			ramfs_file_operations
2451#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2452#define shmem_acct_size(flags, size)		0
2453#define shmem_unacct_size(flags, size)		do {} while (0)
2454
2455#endif /* CONFIG_SHMEM */
2456
2457/* common code */
2458
2459/**
2460 * shmem_file_setup - get an unlinked file living in tmpfs
2461 * @name: name for dentry (to be seen in /proc/<pid>/maps
2462 * @size: size to be set for the file
2463 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464 */
2465struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466{
2467	int error;
2468	struct file *file;
2469	struct inode *inode;
2470	struct path path;
2471	struct dentry *root;
2472	struct qstr this;
2473
2474	if (IS_ERR(shm_mnt))
2475		return (void *)shm_mnt;
2476
2477	if (size < 0 || size > MAX_LFS_FILESIZE)
2478		return ERR_PTR(-EINVAL);
2479
2480	if (shmem_acct_size(flags, size))
2481		return ERR_PTR(-ENOMEM);
2482
2483	error = -ENOMEM;
2484	this.name = name;
2485	this.len = strlen(name);
2486	this.hash = 0; /* will go */
2487	root = shm_mnt->mnt_root;
2488	path.dentry = d_alloc(root, &this);
 
2489	if (!path.dentry)
2490		goto put_memory;
2491	path.mnt = mntget(shm_mnt);
2492
2493	error = -ENOSPC;
2494	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495	if (!inode)
2496		goto put_dentry;
2497
 
2498	d_instantiate(path.dentry, inode);
2499	inode->i_size = size;
2500	inode->i_nlink = 0;	/* It is unlinked */
2501#ifndef CONFIG_MMU
2502	error = ramfs_nommu_expand_for_mapping(inode, size);
2503	if (error)
2504		goto put_dentry;
2505#endif
2506
2507	error = -ENFILE;
2508	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509		  &shmem_file_operations);
2510	if (!file)
2511		goto put_dentry;
2512
2513	return file;
2514
2515put_dentry:
2516	path_put(&path);
2517put_memory:
2518	shmem_unacct_size(flags, size);
2519	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520}
2521EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523/**
2524 * shmem_zero_setup - setup a shared anonymous mapping
2525 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526 */
2527int shmem_zero_setup(struct vm_area_struct *vma)
2528{
2529	struct file *file;
2530	loff_t size = vma->vm_end - vma->vm_start;
2531
2532	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
 
 
 
 
 
 
2533	if (IS_ERR(file))
2534		return PTR_ERR(file);
2535
2536	if (vma->vm_file)
2537		fput(vma->vm_file);
2538	vma->vm_file = file;
2539	vma->vm_ops = &shmem_vm_ops;
2540	vma->vm_flags |= VM_CAN_NONLINEAR;
 
 
 
 
 
 
2541	return 0;
2542}
2543
2544/**
2545 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546 * @mapping:	the page's address_space
2547 * @index:	the page index
2548 * @gfp:	the page allocator flags to use if allocating
2549 *
2550 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551 * with any new page allocations done using the specified allocation flags.
2552 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555 *
2556 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558 */
2559struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560					 pgoff_t index, gfp_t gfp)
2561{
2562#ifdef CONFIG_SHMEM
2563	struct inode *inode = mapping->host;
2564	struct page *page;
2565	int error;
2566
2567	BUG_ON(mapping->a_ops != &shmem_aops);
2568	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
 
2569	if (error)
2570		page = ERR_PTR(error);
2571	else
2572		unlock_page(page);
2573	return page;
2574#else
2575	/*
2576	 * The tiny !SHMEM case uses ramfs without swap
2577	 */
2578	return read_cache_page_gfp(mapping, index, gfp);
2579#endif
2580}
2581EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v4.10.11
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/uio.h>
  35#include <linux/khugepaged.h>
  36
  37static struct vfsmount *shm_mnt;
  38
  39#ifdef CONFIG_SHMEM
  40/*
  41 * This virtual memory filesystem is heavily based on the ramfs. It
  42 * extends ramfs by the ability to use swap and honor resource limits
  43 * which makes it a completely usable filesystem.
  44 */
  45
  46#include <linux/xattr.h>
  47#include <linux/exportfs.h>
  48#include <linux/posix_acl.h>
  49#include <linux/posix_acl_xattr.h>
  50#include <linux/mman.h>
  51#include <linux/string.h>
  52#include <linux/slab.h>
  53#include <linux/backing-dev.h>
  54#include <linux/shmem_fs.h>
  55#include <linux/writeback.h>
  56#include <linux/blkdev.h>
  57#include <linux/pagevec.h>
  58#include <linux/percpu_counter.h>
  59#include <linux/falloc.h>
  60#include <linux/splice.h>
  61#include <linux/security.h>
  62#include <linux/swapops.h>
  63#include <linux/mempolicy.h>
  64#include <linux/namei.h>
  65#include <linux/ctype.h>
  66#include <linux/migrate.h>
  67#include <linux/highmem.h>
  68#include <linux/seq_file.h>
  69#include <linux/magic.h>
  70#include <linux/syscalls.h>
  71#include <linux/fcntl.h>
  72#include <uapi/linux/memfd.h>
  73
  74#include <linux/uaccess.h>
  75#include <asm/pgtable.h>
  76
  77#include "internal.h"
  78
  79#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  80#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  81
  82/* Pretend that each entry is of this size in directory's i_size */
  83#define BOGO_DIRENT_SIZE 20
  84
  85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  86#define SHORT_SYMLINK_LEN 128
  87
  88/*
  89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  90 * inode->i_private (with i_mutex making sure that it has only one user at
  91 * a time): we would prefer not to enlarge the shmem inode just for that.
  92 */
  93struct shmem_falloc {
  94	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  95	pgoff_t start;		/* start of range currently being fallocated */
  96	pgoff_t next;		/* the next page offset to be fallocated */
  97	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
  98	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 
 
  99};
 100
 101#ifdef CONFIG_TMPFS
 102static unsigned long shmem_default_max_blocks(void)
 103{
 104	return totalram_pages / 2;
 105}
 106
 107static unsigned long shmem_default_max_inodes(void)
 108{
 109	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 110}
 111#endif
 112
 113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 115				struct shmem_inode_info *info, pgoff_t index);
 116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 117		struct page **pagep, enum sgp_type sgp,
 118		gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
 119
 120int shmem_getpage(struct inode *inode, pgoff_t index,
 121		struct page **pagep, enum sgp_type sgp)
 122{
 123	return shmem_getpage_gfp(inode, index, pagep, sgp,
 124		mapping_gfp_mask(inode->i_mapping), NULL, NULL);
 125}
 126
 127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 128{
 129	return sb->s_fs_info;
 130}
 131
 132/*
 133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 134 * for shared memory and for shared anonymous (/dev/zero) mappings
 135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 136 * consistent with the pre-accounting of private mappings ...
 137 */
 138static inline int shmem_acct_size(unsigned long flags, loff_t size)
 139{
 140	return (flags & VM_NORESERVE) ?
 141		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 142}
 143
 144static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 145{
 146	if (!(flags & VM_NORESERVE))
 147		vm_unacct_memory(VM_ACCT(size));
 148}
 149
 150static inline int shmem_reacct_size(unsigned long flags,
 151		loff_t oldsize, loff_t newsize)
 152{
 153	if (!(flags & VM_NORESERVE)) {
 154		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 155			return security_vm_enough_memory_mm(current->mm,
 156					VM_ACCT(newsize) - VM_ACCT(oldsize));
 157		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 158			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 159	}
 160	return 0;
 161}
 162
 163/*
 164 * ... whereas tmpfs objects are accounted incrementally as
 165 * pages are allocated, in order to allow large sparse files.
 166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 168 */
 169static inline int shmem_acct_block(unsigned long flags, long pages)
 170{
 171	if (!(flags & VM_NORESERVE))
 172		return 0;
 173
 174	return security_vm_enough_memory_mm(current->mm,
 175			pages * VM_ACCT(PAGE_SIZE));
 176}
 177
 178static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 179{
 180	if (flags & VM_NORESERVE)
 181		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 182}
 183
 184static const struct super_operations shmem_ops;
 185static const struct address_space_operations shmem_aops;
 186static const struct file_operations shmem_file_operations;
 187static const struct inode_operations shmem_inode_operations;
 188static const struct inode_operations shmem_dir_inode_operations;
 189static const struct inode_operations shmem_special_inode_operations;
 190static const struct vm_operations_struct shmem_vm_ops;
 191static struct file_system_type shmem_fs_type;
 
 
 
 
 192
 193static LIST_HEAD(shmem_swaplist);
 194static DEFINE_MUTEX(shmem_swaplist_mutex);
 195
 196static int shmem_reserve_inode(struct super_block *sb)
 197{
 198	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 199	if (sbinfo->max_inodes) {
 200		spin_lock(&sbinfo->stat_lock);
 201		if (!sbinfo->free_inodes) {
 202			spin_unlock(&sbinfo->stat_lock);
 203			return -ENOSPC;
 204		}
 205		sbinfo->free_inodes--;
 206		spin_unlock(&sbinfo->stat_lock);
 207	}
 208	return 0;
 209}
 210
 211static void shmem_free_inode(struct super_block *sb)
 212{
 213	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 214	if (sbinfo->max_inodes) {
 215		spin_lock(&sbinfo->stat_lock);
 216		sbinfo->free_inodes++;
 217		spin_unlock(&sbinfo->stat_lock);
 218	}
 219}
 220
 221/**
 222 * shmem_recalc_inode - recalculate the block usage of an inode
 223 * @inode: inode to recalc
 224 *
 225 * We have to calculate the free blocks since the mm can drop
 226 * undirtied hole pages behind our back.
 227 *
 228 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 230 *
 231 * It has to be called with the spinlock held.
 232 */
 233static void shmem_recalc_inode(struct inode *inode)
 234{
 235	struct shmem_inode_info *info = SHMEM_I(inode);
 236	long freed;
 237
 238	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 239	if (freed > 0) {
 240		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 241		if (sbinfo->max_blocks)
 242			percpu_counter_add(&sbinfo->used_blocks, -freed);
 243		info->alloced -= freed;
 244		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 245		shmem_unacct_blocks(info->flags, freed);
 246	}
 247}
 248
 249bool shmem_charge(struct inode *inode, long pages)
 250{
 251	struct shmem_inode_info *info = SHMEM_I(inode);
 252	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 253	unsigned long flags;
 254
 255	if (shmem_acct_block(info->flags, pages))
 256		return false;
 257	spin_lock_irqsave(&info->lock, flags);
 258	info->alloced += pages;
 259	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 260	shmem_recalc_inode(inode);
 261	spin_unlock_irqrestore(&info->lock, flags);
 262	inode->i_mapping->nrpages += pages;
 263
 264	if (!sbinfo->max_blocks)
 265		return true;
 266	if (percpu_counter_compare(&sbinfo->used_blocks,
 267				sbinfo->max_blocks - pages) > 0) {
 268		inode->i_mapping->nrpages -= pages;
 269		spin_lock_irqsave(&info->lock, flags);
 270		info->alloced -= pages;
 271		shmem_recalc_inode(inode);
 272		spin_unlock_irqrestore(&info->lock, flags);
 273		shmem_unacct_blocks(info->flags, pages);
 274		return false;
 275	}
 276	percpu_counter_add(&sbinfo->used_blocks, pages);
 277	return true;
 278}
 279
 280void shmem_uncharge(struct inode *inode, long pages)
 281{
 282	struct shmem_inode_info *info = SHMEM_I(inode);
 283	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 284	unsigned long flags;
 285
 286	spin_lock_irqsave(&info->lock, flags);
 287	info->alloced -= pages;
 288	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 289	shmem_recalc_inode(inode);
 290	spin_unlock_irqrestore(&info->lock, flags);
 291
 292	if (sbinfo->max_blocks)
 293		percpu_counter_sub(&sbinfo->used_blocks, pages);
 294	shmem_unacct_blocks(info->flags, pages);
 295}
 296
 297/*
 298 * Replace item expected in radix tree by a new item, while holding tree lock.
 299 */
 300static int shmem_radix_tree_replace(struct address_space *mapping,
 301			pgoff_t index, void *expected, void *replacement)
 302{
 303	struct radix_tree_node *node;
 304	void **pslot;
 305	void *item;
 306
 307	VM_BUG_ON(!expected);
 308	VM_BUG_ON(!replacement);
 309	item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
 310	if (!item)
 311		return -ENOENT;
 312	if (item != expected)
 313		return -ENOENT;
 314	__radix_tree_replace(&mapping->page_tree, node, pslot,
 315			     replacement, NULL, NULL);
 
 
 316	return 0;
 317}
 318
 319/*
 320 * Sometimes, before we decide whether to proceed or to fail, we must check
 321 * that an entry was not already brought back from swap by a racing thread.
 322 *
 323 * Checking page is not enough: by the time a SwapCache page is locked, it
 324 * might be reused, and again be SwapCache, using the same swap as before.
 325 */
 326static bool shmem_confirm_swap(struct address_space *mapping,
 327			       pgoff_t index, swp_entry_t swap)
 328{
 329	void *item;
 330
 331	rcu_read_lock();
 332	item = radix_tree_lookup(&mapping->page_tree, index);
 333	rcu_read_unlock();
 334	return item == swp_to_radix_entry(swap);
 335}
 336
 337/*
 338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 339 *
 340 * SHMEM_HUGE_NEVER:
 341 *	disables huge pages for the mount;
 342 * SHMEM_HUGE_ALWAYS:
 343 *	enables huge pages for the mount;
 344 * SHMEM_HUGE_WITHIN_SIZE:
 345 *	only allocate huge pages if the page will be fully within i_size,
 346 *	also respect fadvise()/madvise() hints;
 347 * SHMEM_HUGE_ADVISE:
 348 *	only allocate huge pages if requested with fadvise()/madvise();
 349 */
 350
 351#define SHMEM_HUGE_NEVER	0
 352#define SHMEM_HUGE_ALWAYS	1
 353#define SHMEM_HUGE_WITHIN_SIZE	2
 354#define SHMEM_HUGE_ADVISE	3
 355
 356/*
 357 * Special values.
 358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 359 *
 360 * SHMEM_HUGE_DENY:
 361 *	disables huge on shm_mnt and all mounts, for emergency use;
 362 * SHMEM_HUGE_FORCE:
 363 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 364 *
 365 */
 366#define SHMEM_HUGE_DENY		(-1)
 367#define SHMEM_HUGE_FORCE	(-2)
 368
 369#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 370/* ifdef here to avoid bloating shmem.o when not necessary */
 371
 372int shmem_huge __read_mostly;
 373
 374#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 375static int shmem_parse_huge(const char *str)
 376{
 377	if (!strcmp(str, "never"))
 378		return SHMEM_HUGE_NEVER;
 379	if (!strcmp(str, "always"))
 380		return SHMEM_HUGE_ALWAYS;
 381	if (!strcmp(str, "within_size"))
 382		return SHMEM_HUGE_WITHIN_SIZE;
 383	if (!strcmp(str, "advise"))
 384		return SHMEM_HUGE_ADVISE;
 385	if (!strcmp(str, "deny"))
 386		return SHMEM_HUGE_DENY;
 387	if (!strcmp(str, "force"))
 388		return SHMEM_HUGE_FORCE;
 389	return -EINVAL;
 390}
 391
 392static const char *shmem_format_huge(int huge)
 393{
 394	switch (huge) {
 395	case SHMEM_HUGE_NEVER:
 396		return "never";
 397	case SHMEM_HUGE_ALWAYS:
 398		return "always";
 399	case SHMEM_HUGE_WITHIN_SIZE:
 400		return "within_size";
 401	case SHMEM_HUGE_ADVISE:
 402		return "advise";
 403	case SHMEM_HUGE_DENY:
 404		return "deny";
 405	case SHMEM_HUGE_FORCE:
 406		return "force";
 407	default:
 408		VM_BUG_ON(1);
 409		return "bad_val";
 410	}
 411}
 412#endif
 413
 414static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 415		struct shrink_control *sc, unsigned long nr_to_split)
 416{
 417	LIST_HEAD(list), *pos, *next;
 418	LIST_HEAD(to_remove);
 419	struct inode *inode;
 420	struct shmem_inode_info *info;
 421	struct page *page;
 422	unsigned long batch = sc ? sc->nr_to_scan : 128;
 423	int removed = 0, split = 0;
 424
 425	if (list_empty(&sbinfo->shrinklist))
 426		return SHRINK_STOP;
 427
 428	spin_lock(&sbinfo->shrinklist_lock);
 429	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 430		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 431
 432		/* pin the inode */
 433		inode = igrab(&info->vfs_inode);
 434
 435		/* inode is about to be evicted */
 436		if (!inode) {
 437			list_del_init(&info->shrinklist);
 438			removed++;
 439			goto next;
 440		}
 441
 442		/* Check if there's anything to gain */
 443		if (round_up(inode->i_size, PAGE_SIZE) ==
 444				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 445			list_move(&info->shrinklist, &to_remove);
 446			removed++;
 447			goto next;
 448		}
 449
 450		list_move(&info->shrinklist, &list);
 451next:
 452		if (!--batch)
 453			break;
 454	}
 455	spin_unlock(&sbinfo->shrinklist_lock);
 456
 457	list_for_each_safe(pos, next, &to_remove) {
 458		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 459		inode = &info->vfs_inode;
 460		list_del_init(&info->shrinklist);
 461		iput(inode);
 462	}
 463
 464	list_for_each_safe(pos, next, &list) {
 465		int ret;
 466
 467		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 468		inode = &info->vfs_inode;
 469
 470		if (nr_to_split && split >= nr_to_split) {
 471			iput(inode);
 472			continue;
 473		}
 474
 475		page = find_lock_page(inode->i_mapping,
 476				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 477		if (!page)
 478			goto drop;
 479
 480		if (!PageTransHuge(page)) {
 481			unlock_page(page);
 482			put_page(page);
 483			goto drop;
 484		}
 485
 486		ret = split_huge_page(page);
 487		unlock_page(page);
 488		put_page(page);
 489
 490		if (ret) {
 491			/* split failed: leave it on the list */
 492			iput(inode);
 493			continue;
 494		}
 495
 496		split++;
 497drop:
 498		list_del_init(&info->shrinklist);
 499		removed++;
 500		iput(inode);
 501	}
 502
 503	spin_lock(&sbinfo->shrinklist_lock);
 504	list_splice_tail(&list, &sbinfo->shrinklist);
 505	sbinfo->shrinklist_len -= removed;
 506	spin_unlock(&sbinfo->shrinklist_lock);
 507
 508	return split;
 509}
 510
 511static long shmem_unused_huge_scan(struct super_block *sb,
 512		struct shrink_control *sc)
 513{
 514	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 515
 516	if (!READ_ONCE(sbinfo->shrinklist_len))
 517		return SHRINK_STOP;
 518
 519	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 520}
 521
 522static long shmem_unused_huge_count(struct super_block *sb,
 523		struct shrink_control *sc)
 524{
 525	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 526	return READ_ONCE(sbinfo->shrinklist_len);
 527}
 528#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 529
 530#define shmem_huge SHMEM_HUGE_DENY
 531
 532static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 533		struct shrink_control *sc, unsigned long nr_to_split)
 534{
 535	return 0;
 536}
 537#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 538
 539/*
 540 * Like add_to_page_cache_locked, but error if expected item has gone.
 541 */
 542static int shmem_add_to_page_cache(struct page *page,
 543				   struct address_space *mapping,
 544				   pgoff_t index, void *expected)
 545{
 546	int error, nr = hpage_nr_pages(page);
 547
 548	VM_BUG_ON_PAGE(PageTail(page), page);
 549	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 550	VM_BUG_ON_PAGE(!PageLocked(page), page);
 551	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 552	VM_BUG_ON(expected && PageTransHuge(page));
 553
 554	page_ref_add(page, nr);
 555	page->mapping = mapping;
 556	page->index = index;
 557
 558	spin_lock_irq(&mapping->tree_lock);
 559	if (PageTransHuge(page)) {
 560		void __rcu **results;
 561		pgoff_t idx;
 562		int i;
 563
 564		error = 0;
 565		if (radix_tree_gang_lookup_slot(&mapping->page_tree,
 566					&results, &idx, index, 1) &&
 567				idx < index + HPAGE_PMD_NR) {
 568			error = -EEXIST;
 569		}
 570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571		if (!error) {
 572			for (i = 0; i < HPAGE_PMD_NR; i++) {
 573				error = radix_tree_insert(&mapping->page_tree,
 574						index + i, page + i);
 575				VM_BUG_ON(error);
 576			}
 577			count_vm_event(THP_FILE_ALLOC);
 
 
 578		}
 579	} else if (!expected) {
 580		error = radix_tree_insert(&mapping->page_tree, index, page);
 581	} else {
 582		error = shmem_radix_tree_replace(mapping, index, expected,
 583								 page);
 584	}
 585
 586	if (!error) {
 587		mapping->nrpages += nr;
 588		if (PageTransHuge(page))
 589			__inc_node_page_state(page, NR_SHMEM_THPS);
 590		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 591		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 592		spin_unlock_irq(&mapping->tree_lock);
 593	} else {
 594		page->mapping = NULL;
 595		spin_unlock_irq(&mapping->tree_lock);
 596		page_ref_sub(page, nr);
 597	}
 
 
 598	return error;
 599}
 600
 601/*
 602 * Like delete_from_page_cache, but substitutes swap for page.
 603 */
 604static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 605{
 606	struct address_space *mapping = page->mapping;
 607	int error;
 608
 609	VM_BUG_ON_PAGE(PageCompound(page), page);
 610
 611	spin_lock_irq(&mapping->tree_lock);
 612	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 613	page->mapping = NULL;
 614	mapping->nrpages--;
 615	__dec_node_page_state(page, NR_FILE_PAGES);
 616	__dec_node_page_state(page, NR_SHMEM);
 617	spin_unlock_irq(&mapping->tree_lock);
 618	put_page(page);
 619	BUG_ON(error);
 620}
 621
 622/*
 623 * Remove swap entry from radix tree, free the swap and its page cache.
 624 */
 625static int shmem_free_swap(struct address_space *mapping,
 626			   pgoff_t index, void *radswap)
 627{
 628	void *old;
 629
 630	spin_lock_irq(&mapping->tree_lock);
 631	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 632	spin_unlock_irq(&mapping->tree_lock);
 633	if (old != radswap)
 634		return -ENOENT;
 635	free_swap_and_cache(radix_to_swp_entry(radswap));
 636	return 0;
 637}
 638
 639/*
 640 * Determine (in bytes) how many of the shmem object's pages mapped by the
 641 * given offsets are swapped out.
 642 *
 643 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 644 * as long as the inode doesn't go away and racy results are not a problem.
 645 */
 646unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 647						pgoff_t start, pgoff_t end)
 648{
 649	struct radix_tree_iter iter;
 650	void **slot;
 651	struct page *page;
 652	unsigned long swapped = 0;
 653
 654	rcu_read_lock();
 655
 656	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 657		if (iter.index >= end)
 658			break;
 659
 660		page = radix_tree_deref_slot(slot);
 661
 662		if (radix_tree_deref_retry(page)) {
 663			slot = radix_tree_iter_retry(&iter);
 664			continue;
 
 
 
 
 
 
 
 
 
 665		}
 
 
 666
 667		if (radix_tree_exceptional_entry(page))
 668			swapped++;
 669
 670		if (need_resched()) {
 671			slot = radix_tree_iter_resume(slot, &iter);
 672			cond_resched_rcu();
 673		}
 
 
 674	}
 675
 
 676	rcu_read_unlock();
 677
 678	return swapped << PAGE_SHIFT;
 679}
 680
 681/*
 682 * Determine (in bytes) how many of the shmem object's pages mapped by the
 683 * given vma is swapped out.
 684 *
 685 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 686 * as long as the inode doesn't go away and racy results are not a problem.
 687 */
 688unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 
 689{
 690	struct inode *inode = file_inode(vma->vm_file);
 691	struct shmem_inode_info *info = SHMEM_I(inode);
 692	struct address_space *mapping = inode->i_mapping;
 693	unsigned long swapped;
 694
 695	/* Be careful as we don't hold info->lock */
 696	swapped = READ_ONCE(info->swapped);
 697
 698	/*
 699	 * The easier cases are when the shmem object has nothing in swap, or
 700	 * the vma maps it whole. Then we can simply use the stats that we
 701	 * already track.
 702	 */
 703	if (!swapped)
 704		return 0;
 705
 706	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 707		return swapped << PAGE_SHIFT;
 708
 709	/* Here comes the more involved part */
 710	return shmem_partial_swap_usage(mapping,
 711			linear_page_index(vma, vma->vm_start),
 712			linear_page_index(vma, vma->vm_end));
 713}
 714
 715/*
 716 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 717 */
 718void shmem_unlock_mapping(struct address_space *mapping)
 719{
 720	struct pagevec pvec;
 721	pgoff_t indices[PAGEVEC_SIZE];
 722	pgoff_t index = 0;
 723
 724	pagevec_init(&pvec, 0);
 725	/*
 726	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 727	 */
 728	while (!mapping_unevictable(mapping)) {
 729		/*
 730		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 731		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 732		 */
 733		pvec.nr = find_get_entries(mapping, index,
 734					   PAGEVEC_SIZE, pvec.pages, indices);
 735		if (!pvec.nr)
 736			break;
 737		index = indices[pvec.nr - 1] + 1;
 738		pagevec_remove_exceptionals(&pvec);
 739		check_move_unevictable_pages(pvec.pages, pvec.nr);
 740		pagevec_release(&pvec);
 741		cond_resched();
 742	}
 
 
 743}
 744
 745/*
 746 * Remove range of pages and swap entries from radix tree, and free them.
 747 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 748 */
 749static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 750								 bool unfalloc)
 751{
 752	struct address_space *mapping = inode->i_mapping;
 753	struct shmem_inode_info *info = SHMEM_I(inode);
 754	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 755	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 756	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 757	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 758	struct pagevec pvec;
 759	pgoff_t indices[PAGEVEC_SIZE];
 760	long nr_swaps_freed = 0;
 761	pgoff_t index;
 762	int i;
 763
 764	if (lend == -1)
 765		end = -1;	/* unsigned, so actually very big */
 766
 767	pagevec_init(&pvec, 0);
 768	index = start;
 769	while (index < end) {
 770		pvec.nr = find_get_entries(mapping, index,
 771			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 772			pvec.pages, indices);
 773		if (!pvec.nr)
 774			break;
 
 775		for (i = 0; i < pagevec_count(&pvec); i++) {
 776			struct page *page = pvec.pages[i];
 777
 778			index = indices[i];
 779			if (index >= end)
 780				break;
 781
 782			if (radix_tree_exceptional_entry(page)) {
 783				if (unfalloc)
 784					continue;
 785				nr_swaps_freed += !shmem_free_swap(mapping,
 786								index, page);
 787				continue;
 788			}
 789
 790			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 791
 792			if (!trylock_page(page))
 793				continue;
 794
 795			if (PageTransTail(page)) {
 796				/* Middle of THP: zero out the page */
 797				clear_highpage(page);
 798				unlock_page(page);
 799				continue;
 800			} else if (PageTransHuge(page)) {
 801				if (index == round_down(end, HPAGE_PMD_NR)) {
 802					/*
 803					 * Range ends in the middle of THP:
 804					 * zero out the page
 805					 */
 806					clear_highpage(page);
 807					unlock_page(page);
 808					continue;
 809				}
 810				index += HPAGE_PMD_NR - 1;
 811				i += HPAGE_PMD_NR - 1;
 812			}
 813
 814			if (!unfalloc || !PageUptodate(page)) {
 815				VM_BUG_ON_PAGE(PageTail(page), page);
 816				if (page_mapping(page) == mapping) {
 817					VM_BUG_ON_PAGE(PageWriteback(page), page);
 818					truncate_inode_page(mapping, page);
 819				}
 820			}
 821			unlock_page(page);
 822		}
 823		pagevec_remove_exceptionals(&pvec);
 824		pagevec_release(&pvec);
 825		cond_resched();
 826		index++;
 827	}
 828
 829	if (partial_start) {
 830		struct page *page = NULL;
 831		shmem_getpage(inode, start - 1, &page, SGP_READ);
 832		if (page) {
 833			unsigned int top = PAGE_SIZE;
 834			if (start > end) {
 835				top = partial_end;
 836				partial_end = 0;
 837			}
 838			zero_user_segment(page, partial_start, top);
 839			set_page_dirty(page);
 840			unlock_page(page);
 841			put_page(page);
 842		}
 843	}
 844	if (partial_end) {
 845		struct page *page = NULL;
 846		shmem_getpage(inode, end, &page, SGP_READ);
 847		if (page) {
 848			zero_user_segment(page, 0, partial_end);
 849			set_page_dirty(page);
 850			unlock_page(page);
 851			put_page(page);
 852		}
 853	}
 854	if (start >= end)
 855		return;
 856
 857	index = start;
 858	while (index < end) {
 859		cond_resched();
 860
 861		pvec.nr = find_get_entries(mapping, index,
 862				min(end - index, (pgoff_t)PAGEVEC_SIZE),
 863				pvec.pages, indices);
 864		if (!pvec.nr) {
 865			/* If all gone or hole-punch or unfalloc, we're done */
 866			if (index == start || end != -1)
 867				break;
 868			/* But if truncating, restart to make sure all gone */
 869			index = start;
 870			continue;
 871		}
 
 
 
 
 
 872		for (i = 0; i < pagevec_count(&pvec); i++) {
 873			struct page *page = pvec.pages[i];
 874
 875			index = indices[i];
 876			if (index >= end)
 877				break;
 878
 879			if (radix_tree_exceptional_entry(page)) {
 880				if (unfalloc)
 881					continue;
 882				if (shmem_free_swap(mapping, index, page)) {
 883					/* Swap was replaced by page: retry */
 884					index--;
 885					break;
 886				}
 887				nr_swaps_freed++;
 888				continue;
 889			}
 890
 891			lock_page(page);
 892
 893			if (PageTransTail(page)) {
 894				/* Middle of THP: zero out the page */
 895				clear_highpage(page);
 896				unlock_page(page);
 897				/*
 898				 * Partial thp truncate due 'start' in middle
 899				 * of THP: don't need to look on these pages
 900				 * again on !pvec.nr restart.
 901				 */
 902				if (index != round_down(end, HPAGE_PMD_NR))
 903					start++;
 904				continue;
 905			} else if (PageTransHuge(page)) {
 906				if (index == round_down(end, HPAGE_PMD_NR)) {
 907					/*
 908					 * Range ends in the middle of THP:
 909					 * zero out the page
 910					 */
 911					clear_highpage(page);
 912					unlock_page(page);
 913					continue;
 914				}
 915				index += HPAGE_PMD_NR - 1;
 916				i += HPAGE_PMD_NR - 1;
 917			}
 918
 919			if (!unfalloc || !PageUptodate(page)) {
 920				VM_BUG_ON_PAGE(PageTail(page), page);
 921				if (page_mapping(page) == mapping) {
 922					VM_BUG_ON_PAGE(PageWriteback(page), page);
 923					truncate_inode_page(mapping, page);
 924				} else {
 925					/* Page was replaced by swap: retry */
 926					unlock_page(page);
 927					index--;
 928					break;
 929				}
 930			}
 931			unlock_page(page);
 932		}
 933		pagevec_remove_exceptionals(&pvec);
 934		pagevec_release(&pvec);
 935		index++;
 936	}
 937
 938	spin_lock_irq(&info->lock);
 939	info->swapped -= nr_swaps_freed;
 940	shmem_recalc_inode(inode);
 941	spin_unlock_irq(&info->lock);
 942}
 943
 944void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 945{
 946	shmem_undo_range(inode, lstart, lend, false);
 947	inode->i_ctime = inode->i_mtime = current_time(inode);
 948}
 949EXPORT_SYMBOL_GPL(shmem_truncate_range);
 950
 951static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
 952			 struct kstat *stat)
 953{
 954	struct inode *inode = dentry->d_inode;
 955	struct shmem_inode_info *info = SHMEM_I(inode);
 956
 957	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
 958		spin_lock_irq(&info->lock);
 959		shmem_recalc_inode(inode);
 960		spin_unlock_irq(&info->lock);
 961	}
 962	generic_fillattr(inode, stat);
 963	return 0;
 964}
 965
 966static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 967{
 968	struct inode *inode = d_inode(dentry);
 969	struct shmem_inode_info *info = SHMEM_I(inode);
 970	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 971	int error;
 972
 973	error = setattr_prepare(dentry, attr);
 974	if (error)
 975		return error;
 976
 977	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 978		loff_t oldsize = inode->i_size;
 979		loff_t newsize = attr->ia_size;
 980
 981		/* protected by i_mutex */
 982		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 983		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 984			return -EPERM;
 985
 986		if (newsize != oldsize) {
 987			error = shmem_reacct_size(SHMEM_I(inode)->flags,
 988					oldsize, newsize);
 989			if (error)
 990				return error;
 991			i_size_write(inode, newsize);
 992			inode->i_ctime = inode->i_mtime = current_time(inode);
 993		}
 994		if (newsize <= oldsize) {
 995			loff_t holebegin = round_up(newsize, PAGE_SIZE);
 996			if (oldsize > holebegin)
 997				unmap_mapping_range(inode->i_mapping,
 998							holebegin, 0, 1);
 999			if (info->alloced)
1000				shmem_truncate_range(inode,
1001							newsize, (loff_t)-1);
1002			/* unmap again to remove racily COWed private pages */
1003			if (oldsize > holebegin)
1004				unmap_mapping_range(inode->i_mapping,
1005							holebegin, 0, 1);
1006
1007			/*
1008			 * Part of the huge page can be beyond i_size: subject
1009			 * to shrink under memory pressure.
1010			 */
1011			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1012				spin_lock(&sbinfo->shrinklist_lock);
1013				if (list_empty(&info->shrinklist)) {
1014					list_add_tail(&info->shrinklist,
1015							&sbinfo->shrinklist);
1016					sbinfo->shrinklist_len++;
1017				}
1018				spin_unlock(&sbinfo->shrinklist_lock);
1019			}
1020		}
1021	}
1022
1023	setattr_copy(inode, attr);
 
1024	if (attr->ia_valid & ATTR_MODE)
1025		error = posix_acl_chmod(inode, inode->i_mode);
 
1026	return error;
1027}
1028
1029static void shmem_evict_inode(struct inode *inode)
1030{
1031	struct shmem_inode_info *info = SHMEM_I(inode);
1032	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1033
1034	if (inode->i_mapping->a_ops == &shmem_aops) {
1035		shmem_unacct_size(info->flags, inode->i_size);
1036		inode->i_size = 0;
1037		shmem_truncate_range(inode, 0, (loff_t)-1);
1038		if (!list_empty(&info->shrinklist)) {
1039			spin_lock(&sbinfo->shrinklist_lock);
1040			if (!list_empty(&info->shrinklist)) {
1041				list_del_init(&info->shrinklist);
1042				sbinfo->shrinklist_len--;
1043			}
1044			spin_unlock(&sbinfo->shrinklist_lock);
1045		}
1046		if (!list_empty(&info->swaplist)) {
1047			mutex_lock(&shmem_swaplist_mutex);
1048			list_del_init(&info->swaplist);
1049			mutex_unlock(&shmem_swaplist_mutex);
1050		}
 
 
 
 
 
 
1051	}
1052
1053	simple_xattrs_free(&info->xattrs);
1054	WARN_ON(inode->i_blocks);
1055	shmem_free_inode(inode->i_sb);
1056	clear_inode(inode);
1057}
1058
1059static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1060{
1061	struct radix_tree_iter iter;
1062	void **slot;
1063	unsigned long found = -1;
1064	unsigned int checked = 0;
1065
1066	rcu_read_lock();
1067	radix_tree_for_each_slot(slot, root, &iter, 0) {
1068		if (*slot == item) {
1069			found = iter.index;
1070			break;
1071		}
1072		checked++;
1073		if ((checked % 4096) != 0)
1074			continue;
1075		slot = radix_tree_iter_resume(slot, &iter);
1076		cond_resched_rcu();
1077	}
1078
1079	rcu_read_unlock();
1080	return found;
1081}
1082
1083/*
1084 * If swap found in inode, free it and move page from swapcache to filecache.
1085 */
1086static int shmem_unuse_inode(struct shmem_inode_info *info,
1087			     swp_entry_t swap, struct page **pagep)
1088{
1089	struct address_space *mapping = info->vfs_inode.i_mapping;
1090	void *radswap;
1091	pgoff_t index;
1092	gfp_t gfp;
1093	int error = 0;
1094
1095	radswap = swp_to_radix_entry(swap);
1096	index = find_swap_entry(&mapping->page_tree, radswap);
1097	if (index == -1)
1098		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1099
1100	/*
1101	 * Move _head_ to start search for next from here.
1102	 * But be careful: shmem_evict_inode checks list_empty without taking
1103	 * mutex, and there's an instant in list_move_tail when info->swaplist
1104	 * would appear empty, if it were the only one on shmem_swaplist.
1105	 */
1106	if (shmem_swaplist.next != &info->swaplist)
1107		list_move_tail(&shmem_swaplist, &info->swaplist);
1108
1109	gfp = mapping_gfp_mask(mapping);
1110	if (shmem_should_replace_page(*pagep, gfp)) {
1111		mutex_unlock(&shmem_swaplist_mutex);
1112		error = shmem_replace_page(pagep, gfp, info, index);
1113		mutex_lock(&shmem_swaplist_mutex);
1114		/*
1115		 * We needed to drop mutex to make that restrictive page
1116		 * allocation, but the inode might have been freed while we
1117		 * dropped it: although a racing shmem_evict_inode() cannot
1118		 * complete without emptying the radix_tree, our page lock
1119		 * on this swapcache page is not enough to prevent that -
1120		 * free_swap_and_cache() of our swap entry will only
1121		 * trylock_page(), removing swap from radix_tree whatever.
1122		 *
1123		 * We must not proceed to shmem_add_to_page_cache() if the
1124		 * inode has been freed, but of course we cannot rely on
1125		 * inode or mapping or info to check that.  However, we can
1126		 * safely check if our swap entry is still in use (and here
1127		 * it can't have got reused for another page): if it's still
1128		 * in use, then the inode cannot have been freed yet, and we
1129		 * can safely proceed (if it's no longer in use, that tells
1130		 * nothing about the inode, but we don't need to unuse swap).
1131		 */
1132		if (!page_swapcount(*pagep))
1133			error = -ENOENT;
1134	}
1135
1136	/*
1137	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1138	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1139	 * beneath us (pagelock doesn't help until the page is in pagecache).
1140	 */
1141	if (!error)
1142		error = shmem_add_to_page_cache(*pagep, mapping, index,
1143						radswap);
 
1144	if (error != -ENOMEM) {
1145		/*
1146		 * Truncation and eviction use free_swap_and_cache(), which
1147		 * only does trylock page: if we raced, best clean up here.
1148		 */
1149		delete_from_swap_cache(*pagep);
1150		set_page_dirty(*pagep);
1151		if (!error) {
1152			spin_lock_irq(&info->lock);
1153			info->swapped--;
1154			spin_unlock_irq(&info->lock);
1155			swap_free(swap);
1156		}
 
1157	}
1158	return error;
1159}
1160
1161/*
1162 * Search through swapped inodes to find and replace swap by page.
1163 */
1164int shmem_unuse(swp_entry_t swap, struct page *page)
1165{
1166	struct list_head *this, *next;
1167	struct shmem_inode_info *info;
1168	struct mem_cgroup *memcg;
1169	int error = 0;
1170
1171	/*
1172	 * There's a faint possibility that swap page was replaced before
1173	 * caller locked it: caller will come back later with the right page.
1174	 */
1175	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1176		goto out;
1177
1178	/*
1179	 * Charge page using GFP_KERNEL while we can wait, before taking
1180	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1181	 * Charged back to the user (not to caller) when swap account is used.
1182	 */
1183	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1184			false);
1185	if (error)
1186		goto out;
1187	/* No radix_tree_preload: swap entry keeps a place for page in tree */
1188	error = -EAGAIN;
1189
1190	mutex_lock(&shmem_swaplist_mutex);
1191	list_for_each_safe(this, next, &shmem_swaplist) {
1192		info = list_entry(this, struct shmem_inode_info, swaplist);
1193		if (info->swapped)
1194			error = shmem_unuse_inode(info, swap, &page);
1195		else
1196			list_del_init(&info->swaplist);
1197		cond_resched();
1198		if (error != -EAGAIN)
1199			break;
1200		/* found nothing in this: move on to search the next */
1201	}
1202	mutex_unlock(&shmem_swaplist_mutex);
1203
1204	if (error) {
1205		if (error != -ENOMEM)
1206			error = 0;
1207		mem_cgroup_cancel_charge(page, memcg, false);
1208	} else
1209		mem_cgroup_commit_charge(page, memcg, true, false);
1210out:
1211	unlock_page(page);
1212	put_page(page);
1213	return error;
1214}
1215
1216/*
1217 * Move the page from the page cache to the swap cache.
1218 */
1219static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1220{
1221	struct shmem_inode_info *info;
1222	struct address_space *mapping;
1223	struct inode *inode;
1224	swp_entry_t swap;
1225	pgoff_t index;
1226
1227	VM_BUG_ON_PAGE(PageCompound(page), page);
1228	BUG_ON(!PageLocked(page));
1229	mapping = page->mapping;
1230	index = page->index;
1231	inode = mapping->host;
1232	info = SHMEM_I(inode);
1233	if (info->flags & VM_LOCKED)
1234		goto redirty;
1235	if (!total_swap_pages)
1236		goto redirty;
1237
1238	/*
1239	 * Our capabilities prevent regular writeback or sync from ever calling
1240	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1241	 * its underlying filesystem, in which case tmpfs should write out to
1242	 * swap only in response to memory pressure, and not for the writeback
1243	 * threads or sync.
1244	 */
1245	if (!wbc->for_reclaim) {
1246		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1247		goto redirty;
1248	}
1249
1250	/*
1251	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1252	 * value into swapfile.c, the only way we can correctly account for a
1253	 * fallocated page arriving here is now to initialize it and write it.
1254	 *
1255	 * That's okay for a page already fallocated earlier, but if we have
1256	 * not yet completed the fallocation, then (a) we want to keep track
1257	 * of this page in case we have to undo it, and (b) it may not be a
1258	 * good idea to continue anyway, once we're pushing into swap.  So
1259	 * reactivate the page, and let shmem_fallocate() quit when too many.
1260	 */
1261	if (!PageUptodate(page)) {
1262		if (inode->i_private) {
1263			struct shmem_falloc *shmem_falloc;
1264			spin_lock(&inode->i_lock);
1265			shmem_falloc = inode->i_private;
1266			if (shmem_falloc &&
1267			    !shmem_falloc->waitq &&
1268			    index >= shmem_falloc->start &&
1269			    index < shmem_falloc->next)
1270				shmem_falloc->nr_unswapped++;
1271			else
1272				shmem_falloc = NULL;
1273			spin_unlock(&inode->i_lock);
1274			if (shmem_falloc)
1275				goto redirty;
1276		}
1277		clear_highpage(page);
1278		flush_dcache_page(page);
1279		SetPageUptodate(page);
1280	}
1281
1282	swap = get_swap_page();
1283	if (!swap.val)
1284		goto redirty;
1285
1286	if (mem_cgroup_try_charge_swap(page, swap))
1287		goto free_swap;
1288
1289	/*
1290	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1291	 * if it's not already there.  Do it now before the page is
1292	 * moved to swap cache, when its pagelock no longer protects
1293	 * the inode from eviction.  But don't unlock the mutex until
1294	 * we've incremented swapped, because shmem_unuse_inode() will
1295	 * prune a !swapped inode from the swaplist under this mutex.
1296	 */
1297	mutex_lock(&shmem_swaplist_mutex);
1298	if (list_empty(&info->swaplist))
1299		list_add_tail(&info->swaplist, &shmem_swaplist);
1300
1301	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1302		spin_lock_irq(&info->lock);
1303		shmem_recalc_inode(inode);
1304		info->swapped++;
1305		spin_unlock_irq(&info->lock);
1306
1307		swap_shmem_alloc(swap);
1308		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1309
 
 
 
 
 
1310		mutex_unlock(&shmem_swaplist_mutex);
1311		BUG_ON(page_mapped(page));
1312		swap_writepage(page, wbc);
1313		return 0;
1314	}
1315
1316	mutex_unlock(&shmem_swaplist_mutex);
1317free_swap:
1318	swapcache_free(swap);
1319redirty:
1320	set_page_dirty(page);
1321	if (wbc->for_reclaim)
1322		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1323	unlock_page(page);
1324	return 0;
1325}
1326
1327#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
 
1328static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1329{
1330	char buffer[64];
1331
1332	if (!mpol || mpol->mode == MPOL_DEFAULT)
1333		return;		/* show nothing */
1334
1335	mpol_to_str(buffer, sizeof(buffer), mpol);
1336
1337	seq_printf(seq, ",mpol=%s", buffer);
1338}
1339
1340static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1341{
1342	struct mempolicy *mpol = NULL;
1343	if (sbinfo->mpol) {
1344		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1345		mpol = sbinfo->mpol;
1346		mpol_get(mpol);
1347		spin_unlock(&sbinfo->stat_lock);
1348	}
1349	return mpol;
1350}
1351#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1352static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1353{
1354}
1355static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1356{
1357	return NULL;
1358}
1359#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1360#ifndef CONFIG_NUMA
1361#define vm_policy vm_private_data
1362#endif
1363
1364static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1365		struct shmem_inode_info *info, pgoff_t index)
1366{
1367	/* Create a pseudo vma that just contains the policy */
1368	vma->vm_start = 0;
1369	/* Bias interleave by inode number to distribute better across nodes */
1370	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1371	vma->vm_ops = NULL;
1372	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1373}
1374
1375static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1376{
1377	/* Drop reference taken by mpol_shared_policy_lookup() */
1378	mpol_cond_put(vma->vm_policy);
1379}
1380
1381static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1382			struct shmem_inode_info *info, pgoff_t index)
1383{
 
1384	struct vm_area_struct pvma;
1385	struct page *page;
1386
1387	shmem_pseudo_vma_init(&pvma, info, index);
1388	page = swapin_readahead(swap, gfp, &pvma, 0);
1389	shmem_pseudo_vma_destroy(&pvma);
1390
1391	return page;
 
 
 
 
 
1392}
1393
1394static struct page *shmem_alloc_hugepage(gfp_t gfp,
1395		struct shmem_inode_info *info, pgoff_t index)
1396{
1397	struct vm_area_struct pvma;
1398	struct inode *inode = &info->vfs_inode;
1399	struct address_space *mapping = inode->i_mapping;
1400	pgoff_t idx, hindex;
1401	void __rcu **results;
1402	struct page *page;
1403
1404	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1405		return NULL;
 
 
 
1406
1407	hindex = round_down(index, HPAGE_PMD_NR);
1408	rcu_read_lock();
1409	if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1410				hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1411		rcu_read_unlock();
1412		return NULL;
1413	}
1414	rcu_read_unlock();
1415
1416	shmem_pseudo_vma_init(&pvma, info, hindex);
1417	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1418			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1419	shmem_pseudo_vma_destroy(&pvma);
1420	if (page)
1421		prep_transhuge_page(page);
1422	return page;
1423}
1424
1425static struct page *shmem_alloc_page(gfp_t gfp,
1426			struct shmem_inode_info *info, pgoff_t index)
1427{
1428	struct vm_area_struct pvma;
1429	struct page *page;
1430
1431	shmem_pseudo_vma_init(&pvma, info, index);
1432	page = alloc_page_vma(gfp, &pvma, 0);
1433	shmem_pseudo_vma_destroy(&pvma);
1434
1435	return page;
1436}
 
1437
1438static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1439		struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1440		pgoff_t index, bool huge)
1441{
1442	struct page *page;
1443	int nr;
1444	int err = -ENOSPC;
1445
1446	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1447		huge = false;
1448	nr = huge ? HPAGE_PMD_NR : 1;
1449
1450	if (shmem_acct_block(info->flags, nr))
1451		goto failed;
1452	if (sbinfo->max_blocks) {
1453		if (percpu_counter_compare(&sbinfo->used_blocks,
1454					sbinfo->max_blocks - nr) > 0)
1455			goto unacct;
1456		percpu_counter_add(&sbinfo->used_blocks, nr);
1457	}
1458
1459	if (huge)
1460		page = shmem_alloc_hugepage(gfp, info, index);
1461	else
1462		page = shmem_alloc_page(gfp, info, index);
1463	if (page) {
1464		__SetPageLocked(page);
1465		__SetPageSwapBacked(page);
1466		return page;
1467	}
1468
1469	err = -ENOMEM;
1470	if (sbinfo->max_blocks)
1471		percpu_counter_add(&sbinfo->used_blocks, -nr);
1472unacct:
1473	shmem_unacct_blocks(info->flags, nr);
1474failed:
1475	return ERR_PTR(err);
1476}
1477
1478/*
1479 * When a page is moved from swapcache to shmem filecache (either by the
1480 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1481 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1482 * ignorance of the mapping it belongs to.  If that mapping has special
1483 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1484 * we may need to copy to a suitable page before moving to filecache.
1485 *
1486 * In a future release, this may well be extended to respect cpuset and
1487 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1488 * but for now it is a simple matter of zone.
1489 */
1490static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1491{
1492	return page_zonenum(page) > gfp_zone(gfp);
1493}
 
1494
1495static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1496				struct shmem_inode_info *info, pgoff_t index)
1497{
1498	struct page *oldpage, *newpage;
1499	struct address_space *swap_mapping;
1500	pgoff_t swap_index;
1501	int error;
1502
1503	oldpage = *pagep;
1504	swap_index = page_private(oldpage);
1505	swap_mapping = page_mapping(oldpage);
1506
1507	/*
1508	 * We have arrived here because our zones are constrained, so don't
1509	 * limit chance of success by further cpuset and node constraints.
1510	 */
1511	gfp &= ~GFP_CONSTRAINT_MASK;
1512	newpage = shmem_alloc_page(gfp, info, index);
1513	if (!newpage)
1514		return -ENOMEM;
1515
1516	get_page(newpage);
1517	copy_highpage(newpage, oldpage);
1518	flush_dcache_page(newpage);
1519
1520	__SetPageLocked(newpage);
1521	__SetPageSwapBacked(newpage);
1522	SetPageUptodate(newpage);
1523	set_page_private(newpage, swap_index);
1524	SetPageSwapCache(newpage);
1525
1526	/*
1527	 * Our caller will very soon move newpage out of swapcache, but it's
1528	 * a nice clean interface for us to replace oldpage by newpage there.
1529	 */
1530	spin_lock_irq(&swap_mapping->tree_lock);
1531	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1532								   newpage);
1533	if (!error) {
1534		__inc_node_page_state(newpage, NR_FILE_PAGES);
1535		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1536	}
1537	spin_unlock_irq(&swap_mapping->tree_lock);
1538
1539	if (unlikely(error)) {
1540		/*
1541		 * Is this possible?  I think not, now that our callers check
1542		 * both PageSwapCache and page_private after getting page lock;
1543		 * but be defensive.  Reverse old to newpage for clear and free.
1544		 */
1545		oldpage = newpage;
1546	} else {
1547		mem_cgroup_migrate(oldpage, newpage);
1548		lru_cache_add_anon(newpage);
1549		*pagep = newpage;
1550	}
1551
1552	ClearPageSwapCache(oldpage);
1553	set_page_private(oldpage, 0);
1554
1555	unlock_page(oldpage);
1556	put_page(oldpage);
1557	put_page(oldpage);
1558	return error;
1559}
 
1560
1561/*
1562 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1563 *
1564 * If we allocate a new one we do not mark it dirty. That's up to the
1565 * vm. If we swap it in we mark it dirty since we also free the swap
1566 * entry since a page cannot live in both the swap and page cache.
1567 *
1568 * fault_mm and fault_type are only supplied by shmem_fault:
1569 * otherwise they are NULL.
1570 */
1571static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1572	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1573	struct mm_struct *fault_mm, int *fault_type)
1574{
1575	struct address_space *mapping = inode->i_mapping;
1576	struct shmem_inode_info *info = SHMEM_I(inode);
1577	struct shmem_sb_info *sbinfo;
1578	struct mm_struct *charge_mm;
1579	struct mem_cgroup *memcg;
1580	struct page *page;
1581	swp_entry_t swap;
1582	enum sgp_type sgp_huge = sgp;
1583	pgoff_t hindex = index;
1584	int error;
1585	int once = 0;
1586	int alloced = 0;
1587
1588	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1589		return -EFBIG;
1590	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1591		sgp = SGP_CACHE;
1592repeat:
1593	swap.val = 0;
1594	page = find_lock_entry(mapping, index);
1595	if (radix_tree_exceptional_entry(page)) {
1596		swap = radix_to_swp_entry(page);
1597		page = NULL;
1598	}
1599
1600	if (sgp <= SGP_CACHE &&
1601	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1602		error = -EINVAL;
1603		goto unlock;
1604	}
1605
1606	if (page && sgp == SGP_WRITE)
1607		mark_page_accessed(page);
1608
1609	/* fallocated page? */
1610	if (page && !PageUptodate(page)) {
1611		if (sgp != SGP_READ)
1612			goto clear;
1613		unlock_page(page);
1614		put_page(page);
1615		page = NULL;
1616	}
1617	if (page || (sgp == SGP_READ && !swap.val)) {
 
 
 
 
 
 
1618		*pagep = page;
1619		return 0;
1620	}
1621
1622	/*
1623	 * Fast cache lookup did not find it:
1624	 * bring it back from swap or allocate.
1625	 */
 
1626	sbinfo = SHMEM_SB(inode->i_sb);
1627	charge_mm = fault_mm ? : current->mm;
1628
1629	if (swap.val) {
1630		/* Look it up and read it in.. */
1631		page = lookup_swap_cache(swap);
1632		if (!page) {
1633			/* Or update major stats only when swapin succeeds?? */
1634			if (fault_type) {
1635				*fault_type |= VM_FAULT_MAJOR;
1636				count_vm_event(PGMAJFAULT);
1637				mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1638			}
1639			/* Here we actually start the io */
1640			page = shmem_swapin(swap, gfp, info, index);
1641			if (!page) {
1642				error = -ENOMEM;
1643				goto failed;
1644			}
1645		}
1646
1647		/* We have to do this with page locked to prevent races */
1648		lock_page(page);
1649		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1650		    !shmem_confirm_swap(mapping, index, swap)) {
1651			error = -EEXIST;	/* try again */
1652			goto unlock;
1653		}
1654		if (!PageUptodate(page)) {
1655			error = -EIO;
1656			goto failed;
1657		}
1658		wait_on_page_writeback(page);
1659
1660		if (shmem_should_replace_page(page, gfp)) {
1661			error = shmem_replace_page(&page, gfp, info, index);
1662			if (error)
1663				goto failed;
 
 
 
1664		}
1665
1666		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1667				false);
1668		if (!error) {
1669			error = shmem_add_to_page_cache(page, mapping, index,
1670						swp_to_radix_entry(swap));
1671			/*
1672			 * We already confirmed swap under page lock, and make
1673			 * no memory allocation here, so usually no possibility
1674			 * of error; but free_swap_and_cache() only trylocks a
1675			 * page, so it is just possible that the entry has been
1676			 * truncated or holepunched since swap was confirmed.
1677			 * shmem_undo_range() will have done some of the
1678			 * unaccounting, now delete_from_swap_cache() will do
1679			 * the rest.
1680			 * Reset swap.val? No, leave it so "failed" goes back to
1681			 * "repeat": reading a hole and writing should succeed.
1682			 */
1683			if (error) {
1684				mem_cgroup_cancel_charge(page, memcg, false);
1685				delete_from_swap_cache(page);
1686			}
1687		}
1688		if (error)
1689			goto failed;
1690
1691		mem_cgroup_commit_charge(page, memcg, true, false);
1692
1693		spin_lock_irq(&info->lock);
1694		info->swapped--;
1695		shmem_recalc_inode(inode);
1696		spin_unlock_irq(&info->lock);
1697
1698		if (sgp == SGP_WRITE)
1699			mark_page_accessed(page);
1700
1701		delete_from_swap_cache(page);
1702		set_page_dirty(page);
1703		swap_free(swap);
1704
1705	} else {
1706		/* shmem_symlink() */
1707		if (mapping->a_ops != &shmem_aops)
1708			goto alloc_nohuge;
1709		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1710			goto alloc_nohuge;
1711		if (shmem_huge == SHMEM_HUGE_FORCE)
1712			goto alloc_huge;
1713		switch (sbinfo->huge) {
1714			loff_t i_size;
1715			pgoff_t off;
1716		case SHMEM_HUGE_NEVER:
1717			goto alloc_nohuge;
1718		case SHMEM_HUGE_WITHIN_SIZE:
1719			off = round_up(index, HPAGE_PMD_NR);
1720			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1721			if (i_size >= HPAGE_PMD_SIZE &&
1722					i_size >> PAGE_SHIFT >= off)
1723				goto alloc_huge;
1724			/* fallthrough */
1725		case SHMEM_HUGE_ADVISE:
1726			if (sgp_huge == SGP_HUGE)
1727				goto alloc_huge;
1728			/* TODO: implement fadvise() hints */
1729			goto alloc_nohuge;
1730		}
1731
1732alloc_huge:
1733		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1734				index, true);
1735		if (IS_ERR(page)) {
1736alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1737					index, false);
1738		}
1739		if (IS_ERR(page)) {
1740			int retry = 5;
1741			error = PTR_ERR(page);
1742			page = NULL;
1743			if (error != -ENOSPC)
1744				goto failed;
1745			/*
1746			 * Try to reclaim some spece by splitting a huge page
1747			 * beyond i_size on the filesystem.
1748			 */
1749			while (retry--) {
1750				int ret;
1751				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1752				if (ret == SHRINK_STOP)
1753					break;
1754				if (ret)
1755					goto alloc_nohuge;
1756			}
1757			goto failed;
1758		}
1759
1760		if (PageTransHuge(page))
1761			hindex = round_down(index, HPAGE_PMD_NR);
1762		else
1763			hindex = index;
 
1764
1765		if (sgp == SGP_WRITE)
1766			__SetPageReferenced(page);
1767
1768		error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1769				PageTransHuge(page));
 
 
1770		if (error)
1771			goto unacct;
1772		error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1773				compound_order(page));
1774		if (!error) {
1775			error = shmem_add_to_page_cache(page, mapping, hindex,
1776							NULL);
1777			radix_tree_preload_end();
1778		}
1779		if (error) {
1780			mem_cgroup_cancel_charge(page, memcg,
1781					PageTransHuge(page));
1782			goto unacct;
1783		}
1784		mem_cgroup_commit_charge(page, memcg, false,
1785				PageTransHuge(page));
1786		lru_cache_add_anon(page);
1787
1788		spin_lock_irq(&info->lock);
1789		info->alloced += 1 << compound_order(page);
1790		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1791		shmem_recalc_inode(inode);
1792		spin_unlock_irq(&info->lock);
1793		alloced = true;
1794
1795		if (PageTransHuge(page) &&
1796				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1797				hindex + HPAGE_PMD_NR - 1) {
1798			/*
1799			 * Part of the huge page is beyond i_size: subject
1800			 * to shrink under memory pressure.
1801			 */
1802			spin_lock(&sbinfo->shrinklist_lock);
1803			if (list_empty(&info->shrinklist)) {
1804				list_add_tail(&info->shrinklist,
1805						&sbinfo->shrinklist);
1806				sbinfo->shrinklist_len++;
1807			}
1808			spin_unlock(&sbinfo->shrinklist_lock);
1809		}
1810
1811		/*
1812		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1813		 */
1814		if (sgp == SGP_FALLOC)
1815			sgp = SGP_WRITE;
1816clear:
1817		/*
1818		 * Let SGP_WRITE caller clear ends if write does not fill page;
1819		 * but SGP_FALLOC on a page fallocated earlier must initialize
1820		 * it now, lest undo on failure cancel our earlier guarantee.
1821		 */
1822		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1823			struct page *head = compound_head(page);
1824			int i;
1825
1826			for (i = 0; i < (1 << compound_order(head)); i++) {
1827				clear_highpage(head + i);
1828				flush_dcache_page(head + i);
1829			}
1830			SetPageUptodate(head);
1831		}
1832	}
1833
1834	/* Perhaps the file has been truncated since we checked */
1835	if (sgp <= SGP_CACHE &&
1836	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1837		if (alloced) {
1838			ClearPageDirty(page);
1839			delete_from_page_cache(page);
1840			spin_lock_irq(&info->lock);
1841			shmem_recalc_inode(inode);
1842			spin_unlock_irq(&info->lock);
1843		}
1844		error = -EINVAL;
1845		goto unlock;
1846	}
1847	*pagep = page + index - hindex;
1848	return 0;
1849
1850	/*
1851	 * Error recovery.
1852	 */
 
 
 
 
 
 
 
 
 
 
1853unacct:
1854	if (sbinfo->max_blocks)
1855		percpu_counter_sub(&sbinfo->used_blocks,
1856				1 << compound_order(page));
1857	shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1858
1859	if (PageTransHuge(page)) {
1860		unlock_page(page);
1861		put_page(page);
1862		goto alloc_nohuge;
1863	}
1864failed:
1865	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1866		error = -EEXIST;
1867unlock:
1868	if (page) {
1869		unlock_page(page);
1870		put_page(page);
1871	}
1872	if (error == -ENOSPC && !once++) {
1873		spin_lock_irq(&info->lock);
 
1874		shmem_recalc_inode(inode);
1875		spin_unlock_irq(&info->lock);
1876		goto repeat;
1877	}
1878	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1879		goto repeat;
1880	return error;
1881}
1882
1883/*
1884 * This is like autoremove_wake_function, but it removes the wait queue
1885 * entry unconditionally - even if something else had already woken the
1886 * target.
1887 */
1888static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1889{
1890	int ret = default_wake_function(wait, mode, sync, key);
1891	list_del_init(&wait->task_list);
1892	return ret;
1893}
1894
1895static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1896{
1897	struct inode *inode = file_inode(vma->vm_file);
1898	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1899	enum sgp_type sgp;
1900	int error;
1901	int ret = VM_FAULT_LOCKED;
1902
1903	/*
1904	 * Trinity finds that probing a hole which tmpfs is punching can
1905	 * prevent the hole-punch from ever completing: which in turn
1906	 * locks writers out with its hold on i_mutex.  So refrain from
1907	 * faulting pages into the hole while it's being punched.  Although
1908	 * shmem_undo_range() does remove the additions, it may be unable to
1909	 * keep up, as each new page needs its own unmap_mapping_range() call,
1910	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1911	 *
1912	 * It does not matter if we sometimes reach this check just before the
1913	 * hole-punch begins, so that one fault then races with the punch:
1914	 * we just need to make racing faults a rare case.
1915	 *
1916	 * The implementation below would be much simpler if we just used a
1917	 * standard mutex or completion: but we cannot take i_mutex in fault,
1918	 * and bloating every shmem inode for this unlikely case would be sad.
1919	 */
1920	if (unlikely(inode->i_private)) {
1921		struct shmem_falloc *shmem_falloc;
1922
1923		spin_lock(&inode->i_lock);
1924		shmem_falloc = inode->i_private;
1925		if (shmem_falloc &&
1926		    shmem_falloc->waitq &&
1927		    vmf->pgoff >= shmem_falloc->start &&
1928		    vmf->pgoff < shmem_falloc->next) {
1929			wait_queue_head_t *shmem_falloc_waitq;
1930			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1931
1932			ret = VM_FAULT_NOPAGE;
1933			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1934			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1935				/* It's polite to up mmap_sem if we can */
1936				up_read(&vma->vm_mm->mmap_sem);
1937				ret = VM_FAULT_RETRY;
1938			}
1939
1940			shmem_falloc_waitq = shmem_falloc->waitq;
1941			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1942					TASK_UNINTERRUPTIBLE);
1943			spin_unlock(&inode->i_lock);
1944			schedule();
1945
1946			/*
1947			 * shmem_falloc_waitq points into the shmem_fallocate()
1948			 * stack of the hole-punching task: shmem_falloc_waitq
1949			 * is usually invalid by the time we reach here, but
1950			 * finish_wait() does not dereference it in that case;
1951			 * though i_lock needed lest racing with wake_up_all().
1952			 */
1953			spin_lock(&inode->i_lock);
1954			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1955			spin_unlock(&inode->i_lock);
1956			return ret;
1957		}
1958		spin_unlock(&inode->i_lock);
1959	}
1960
1961	sgp = SGP_CACHE;
1962	if (vma->vm_flags & VM_HUGEPAGE)
1963		sgp = SGP_HUGE;
1964	else if (vma->vm_flags & VM_NOHUGEPAGE)
1965		sgp = SGP_NOHUGE;
1966
1967	error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1968				  gfp, vma->vm_mm, &ret);
1969	if (error)
1970		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
 
 
 
 
 
1971	return ret;
1972}
1973
1974unsigned long shmem_get_unmapped_area(struct file *file,
1975				      unsigned long uaddr, unsigned long len,
1976				      unsigned long pgoff, unsigned long flags)
1977{
1978	unsigned long (*get_area)(struct file *,
1979		unsigned long, unsigned long, unsigned long, unsigned long);
1980	unsigned long addr;
1981	unsigned long offset;
1982	unsigned long inflated_len;
1983	unsigned long inflated_addr;
1984	unsigned long inflated_offset;
1985
1986	if (len > TASK_SIZE)
1987		return -ENOMEM;
1988
1989	get_area = current->mm->get_unmapped_area;
1990	addr = get_area(file, uaddr, len, pgoff, flags);
1991
1992	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1993		return addr;
1994	if (IS_ERR_VALUE(addr))
1995		return addr;
1996	if (addr & ~PAGE_MASK)
1997		return addr;
1998	if (addr > TASK_SIZE - len)
1999		return addr;
2000
2001	if (shmem_huge == SHMEM_HUGE_DENY)
2002		return addr;
2003	if (len < HPAGE_PMD_SIZE)
2004		return addr;
2005	if (flags & MAP_FIXED)
2006		return addr;
2007	/*
2008	 * Our priority is to support MAP_SHARED mapped hugely;
2009	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2010	 * But if caller specified an address hint, respect that as before.
2011	 */
2012	if (uaddr)
2013		return addr;
2014
2015	if (shmem_huge != SHMEM_HUGE_FORCE) {
2016		struct super_block *sb;
2017
2018		if (file) {
2019			VM_BUG_ON(file->f_op != &shmem_file_operations);
2020			sb = file_inode(file)->i_sb;
2021		} else {
2022			/*
2023			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2024			 * for "/dev/zero", to create a shared anonymous object.
2025			 */
2026			if (IS_ERR(shm_mnt))
2027				return addr;
2028			sb = shm_mnt->mnt_sb;
2029		}
2030		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2031			return addr;
2032	}
2033
2034	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2035	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2036		return addr;
2037	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2038		return addr;
2039
2040	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2041	if (inflated_len > TASK_SIZE)
2042		return addr;
2043	if (inflated_len < len)
2044		return addr;
2045
2046	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2047	if (IS_ERR_VALUE(inflated_addr))
2048		return addr;
2049	if (inflated_addr & ~PAGE_MASK)
2050		return addr;
2051
2052	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2053	inflated_addr += offset - inflated_offset;
2054	if (inflated_offset > offset)
2055		inflated_addr += HPAGE_PMD_SIZE;
2056
2057	if (inflated_addr > TASK_SIZE - len)
2058		return addr;
2059	return inflated_addr;
2060}
2061
2062#ifdef CONFIG_NUMA
2063static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2064{
2065	struct inode *inode = file_inode(vma->vm_file);
2066	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2067}
2068
2069static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2070					  unsigned long addr)
2071{
2072	struct inode *inode = file_inode(vma->vm_file);
2073	pgoff_t index;
2074
2075	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2076	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2077}
2078#endif
2079
2080int shmem_lock(struct file *file, int lock, struct user_struct *user)
2081{
2082	struct inode *inode = file_inode(file);
2083	struct shmem_inode_info *info = SHMEM_I(inode);
2084	int retval = -ENOMEM;
2085
2086	spin_lock_irq(&info->lock);
2087	if (lock && !(info->flags & VM_LOCKED)) {
2088		if (!user_shm_lock(inode->i_size, user))
2089			goto out_nomem;
2090		info->flags |= VM_LOCKED;
2091		mapping_set_unevictable(file->f_mapping);
2092	}
2093	if (!lock && (info->flags & VM_LOCKED) && user) {
2094		user_shm_unlock(inode->i_size, user);
2095		info->flags &= ~VM_LOCKED;
2096		mapping_clear_unevictable(file->f_mapping);
 
2097	}
2098	retval = 0;
2099
2100out_nomem:
2101	spin_unlock_irq(&info->lock);
2102	return retval;
2103}
2104
2105static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2106{
2107	file_accessed(file);
2108	vma->vm_ops = &shmem_vm_ops;
2109	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2110			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2111			(vma->vm_end & HPAGE_PMD_MASK)) {
2112		khugepaged_enter(vma, vma->vm_flags);
2113	}
2114	return 0;
2115}
2116
2117static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2118				     umode_t mode, dev_t dev, unsigned long flags)
2119{
2120	struct inode *inode;
2121	struct shmem_inode_info *info;
2122	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2123
2124	if (shmem_reserve_inode(sb))
2125		return NULL;
2126
2127	inode = new_inode(sb);
2128	if (inode) {
2129		inode->i_ino = get_next_ino();
2130		inode_init_owner(inode, dir, mode);
2131		inode->i_blocks = 0;
2132		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 
2133		inode->i_generation = get_seconds();
2134		info = SHMEM_I(inode);
2135		memset(info, 0, (char *)inode - (char *)info);
2136		spin_lock_init(&info->lock);
2137		info->seals = F_SEAL_SEAL;
2138		info->flags = flags & VM_NORESERVE;
2139		INIT_LIST_HEAD(&info->shrinklist);
2140		INIT_LIST_HEAD(&info->swaplist);
2141		simple_xattrs_init(&info->xattrs);
2142		cache_no_acl(inode);
2143
2144		switch (mode & S_IFMT) {
2145		default:
2146			inode->i_op = &shmem_special_inode_operations;
2147			init_special_inode(inode, mode, dev);
2148			break;
2149		case S_IFREG:
2150			inode->i_mapping->a_ops = &shmem_aops;
2151			inode->i_op = &shmem_inode_operations;
2152			inode->i_fop = &shmem_file_operations;
2153			mpol_shared_policy_init(&info->policy,
2154						 shmem_get_sbmpol(sbinfo));
2155			break;
2156		case S_IFDIR:
2157			inc_nlink(inode);
2158			/* Some things misbehave if size == 0 on a directory */
2159			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2160			inode->i_op = &shmem_dir_inode_operations;
2161			inode->i_fop = &simple_dir_operations;
2162			break;
2163		case S_IFLNK:
2164			/*
2165			 * Must not load anything in the rbtree,
2166			 * mpol_free_shared_policy will not be called.
2167			 */
2168			mpol_shared_policy_init(&info->policy, NULL);
2169			break;
2170		}
2171	} else
2172		shmem_free_inode(sb);
2173	return inode;
2174}
2175
2176bool shmem_mapping(struct address_space *mapping)
2177{
2178	if (!mapping->host)
2179		return false;
2180
2181	return mapping->host->i_sb->s_op == &shmem_ops;
2182}
2183
2184#ifdef CONFIG_TMPFS
2185static const struct inode_operations shmem_symlink_inode_operations;
2186static const struct inode_operations shmem_short_symlink_operations;
2187
2188#ifdef CONFIG_TMPFS_XATTR
2189static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2190#else
2191#define shmem_initxattrs NULL
2192#endif
2193
2194static int
2195shmem_write_begin(struct file *file, struct address_space *mapping,
2196			loff_t pos, unsigned len, unsigned flags,
2197			struct page **pagep, void **fsdata)
2198{
2199	struct inode *inode = mapping->host;
2200	struct shmem_inode_info *info = SHMEM_I(inode);
2201	pgoff_t index = pos >> PAGE_SHIFT;
2202
2203	/* i_mutex is held by caller */
2204	if (unlikely(info->seals)) {
2205		if (info->seals & F_SEAL_WRITE)
2206			return -EPERM;
2207		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2208			return -EPERM;
2209	}
2210
2211	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2212}
2213
2214static int
2215shmem_write_end(struct file *file, struct address_space *mapping,
2216			loff_t pos, unsigned len, unsigned copied,
2217			struct page *page, void *fsdata)
2218{
2219	struct inode *inode = mapping->host;
2220
2221	if (pos + copied > inode->i_size)
2222		i_size_write(inode, pos + copied);
2223
2224	if (!PageUptodate(page)) {
2225		struct page *head = compound_head(page);
2226		if (PageTransCompound(page)) {
2227			int i;
2228
2229			for (i = 0; i < HPAGE_PMD_NR; i++) {
2230				if (head + i == page)
2231					continue;
2232				clear_highpage(head + i);
2233				flush_dcache_page(head + i);
2234			}
2235		}
2236		if (copied < PAGE_SIZE) {
2237			unsigned from = pos & (PAGE_SIZE - 1);
2238			zero_user_segments(page, 0, from,
2239					from + copied, PAGE_SIZE);
2240		}
2241		SetPageUptodate(head);
2242	}
2243	set_page_dirty(page);
2244	unlock_page(page);
2245	put_page(page);
2246
2247	return copied;
2248}
2249
2250static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2251{
2252	struct file *file = iocb->ki_filp;
2253	struct inode *inode = file_inode(file);
2254	struct address_space *mapping = inode->i_mapping;
2255	pgoff_t index;
2256	unsigned long offset;
2257	enum sgp_type sgp = SGP_READ;
2258	int error = 0;
2259	ssize_t retval = 0;
2260	loff_t *ppos = &iocb->ki_pos;
2261
2262	/*
2263	 * Might this read be for a stacking filesystem?  Then when reading
2264	 * holes of a sparse file, we actually need to allocate those pages,
2265	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2266	 */
2267	if (!iter_is_iovec(to))
2268		sgp = SGP_CACHE;
2269
2270	index = *ppos >> PAGE_SHIFT;
2271	offset = *ppos & ~PAGE_MASK;
2272
2273	for (;;) {
2274		struct page *page = NULL;
2275		pgoff_t end_index;
2276		unsigned long nr, ret;
2277		loff_t i_size = i_size_read(inode);
2278
2279		end_index = i_size >> PAGE_SHIFT;
2280		if (index > end_index)
2281			break;
2282		if (index == end_index) {
2283			nr = i_size & ~PAGE_MASK;
2284			if (nr <= offset)
2285				break;
2286		}
2287
2288		error = shmem_getpage(inode, index, &page, sgp);
2289		if (error) {
2290			if (error == -EINVAL)
2291				error = 0;
2292			break;
2293		}
2294		if (page) {
2295			if (sgp == SGP_CACHE)
2296				set_page_dirty(page);
2297			unlock_page(page);
2298		}
2299
2300		/*
2301		 * We must evaluate after, since reads (unlike writes)
2302		 * are called without i_mutex protection against truncate
2303		 */
2304		nr = PAGE_SIZE;
2305		i_size = i_size_read(inode);
2306		end_index = i_size >> PAGE_SHIFT;
2307		if (index == end_index) {
2308			nr = i_size & ~PAGE_MASK;
2309			if (nr <= offset) {
2310				if (page)
2311					put_page(page);
2312				break;
2313			}
2314		}
2315		nr -= offset;
2316
2317		if (page) {
2318			/*
2319			 * If users can be writing to this page using arbitrary
2320			 * virtual addresses, take care about potential aliasing
2321			 * before reading the page on the kernel side.
2322			 */
2323			if (mapping_writably_mapped(mapping))
2324				flush_dcache_page(page);
2325			/*
2326			 * Mark the page accessed if we read the beginning.
2327			 */
2328			if (!offset)
2329				mark_page_accessed(page);
2330		} else {
2331			page = ZERO_PAGE(0);
2332			get_page(page);
2333		}
2334
2335		/*
2336		 * Ok, we have the page, and it's up-to-date, so
2337		 * now we can copy it to user space...
 
 
 
 
 
 
2338		 */
2339		ret = copy_page_to_iter(page, offset, nr, to);
2340		retval += ret;
2341		offset += ret;
2342		index += offset >> PAGE_SHIFT;
2343		offset &= ~PAGE_MASK;
2344
2345		put_page(page);
2346		if (!iov_iter_count(to))
2347			break;
2348		if (ret < nr) {
2349			error = -EFAULT;
2350			break;
2351		}
2352		cond_resched();
2353	}
2354
2355	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2356	file_accessed(file);
2357	return retval ? retval : error;
2358}
2359
2360/*
2361 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2362 */
2363static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2364				    pgoff_t index, pgoff_t end, int whence)
2365{
2366	struct page *page;
2367	struct pagevec pvec;
2368	pgoff_t indices[PAGEVEC_SIZE];
2369	bool done = false;
2370	int i;
2371
2372	pagevec_init(&pvec, 0);
2373	pvec.nr = 1;		/* start small: we may be there already */
2374	while (!done) {
2375		pvec.nr = find_get_entries(mapping, index,
2376					pvec.nr, pvec.pages, indices);
2377		if (!pvec.nr) {
2378			if (whence == SEEK_DATA)
2379				index = end;
 
 
 
 
 
 
 
 
 
2380			break;
2381		}
2382		for (i = 0; i < pvec.nr; i++, index++) {
2383			if (index < indices[i]) {
2384				if (whence == SEEK_HOLE) {
2385					done = true;
2386					break;
2387				}
2388				index = indices[i];
2389			}
2390			page = pvec.pages[i];
2391			if (page && !radix_tree_exceptional_entry(page)) {
2392				if (!PageUptodate(page))
2393					page = NULL;
2394			}
2395			if (index >= end ||
2396			    (page && whence == SEEK_DATA) ||
2397			    (!page && whence == SEEK_HOLE)) {
2398				done = true;
2399				break;
2400			}
2401		}
2402		pagevec_remove_exceptionals(&pvec);
2403		pagevec_release(&pvec);
2404		pvec.nr = PAGEVEC_SIZE;
2405		cond_resched();
2406	}
2407	return index;
2408}
2409
2410static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
 
 
2411{
2412	struct address_space *mapping = file->f_mapping;
2413	struct inode *inode = mapping->host;
2414	pgoff_t start, end;
2415	loff_t new_offset;
2416
2417	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2418		return generic_file_llseek_size(file, offset, whence,
2419					MAX_LFS_FILESIZE, i_size_read(inode));
2420	inode_lock(inode);
2421	/* We're holding i_mutex so we can access i_size directly */
2422
2423	if (offset < 0)
2424		offset = -EINVAL;
2425	else if (offset >= inode->i_size)
2426		offset = -ENXIO;
2427	else {
2428		start = offset >> PAGE_SHIFT;
2429		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2431		new_offset <<= PAGE_SHIFT;
2432		if (new_offset > offset) {
2433			if (new_offset < inode->i_size)
2434				offset = new_offset;
2435			else if (whence == SEEK_DATA)
2436				offset = -ENXIO;
2437			else
2438				offset = inode->i_size;
2439		}
2440	}
2441
2442	if (offset >= 0)
2443		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2444	inode_unlock(inode);
2445	return offset;
2446}
2447
2448/*
2449 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2450 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2451 */
2452#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2453#define LAST_SCAN               4       /* about 150ms max */
2454
2455static void shmem_tag_pins(struct address_space *mapping)
2456{
2457	struct radix_tree_iter iter;
2458	void **slot;
2459	pgoff_t start;
2460	struct page *page;
 
 
 
 
 
 
 
 
 
 
2461
2462	lru_add_drain();
2463	start = 0;
2464	rcu_read_lock();
2465
2466	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2467		page = radix_tree_deref_slot(slot);
2468		if (!page || radix_tree_exception(page)) {
2469			if (radix_tree_deref_retry(page)) {
2470				slot = radix_tree_iter_retry(&iter);
2471				continue;
2472			}
2473		} else if (page_count(page) - page_mapcount(page) > 1) {
2474			spin_lock_irq(&mapping->tree_lock);
2475			radix_tree_tag_set(&mapping->page_tree, iter.index,
2476					   SHMEM_TAG_PINNED);
2477			spin_unlock_irq(&mapping->tree_lock);
2478		}
2479
2480		if (need_resched()) {
2481			slot = radix_tree_iter_resume(slot, &iter);
2482			cond_resched_rcu();
2483		}
2484	}
2485	rcu_read_unlock();
2486}
2487
2488/*
2489 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2490 * via get_user_pages(), drivers might have some pending I/O without any active
2491 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2492 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2493 * them to be dropped.
2494 * The caller must guarantee that no new user will acquire writable references
2495 * to those pages to avoid races.
2496 */
2497static int shmem_wait_for_pins(struct address_space *mapping)
2498{
2499	struct radix_tree_iter iter;
2500	void **slot;
2501	pgoff_t start;
2502	struct page *page;
2503	int error, scan;
2504
2505	shmem_tag_pins(mapping);
2506
2507	error = 0;
2508	for (scan = 0; scan <= LAST_SCAN; scan++) {
2509		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2510			break;
2511
2512		if (!scan)
2513			lru_add_drain_all();
2514		else if (schedule_timeout_killable((HZ << scan) / 200))
2515			scan = LAST_SCAN;
2516
2517		start = 0;
2518		rcu_read_lock();
2519		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2520					   start, SHMEM_TAG_PINNED) {
2521
2522			page = radix_tree_deref_slot(slot);
2523			if (radix_tree_exception(page)) {
2524				if (radix_tree_deref_retry(page)) {
2525					slot = radix_tree_iter_retry(&iter);
2526					continue;
2527				}
2528
2529				page = NULL;
2530			}
2531
2532			if (page &&
2533			    page_count(page) - page_mapcount(page) != 1) {
2534				if (scan < LAST_SCAN)
2535					goto continue_resched;
2536
2537				/*
2538				 * On the last scan, we clean up all those tags
2539				 * we inserted; but make a note that we still
2540				 * found pages pinned.
2541				 */
2542				error = -EBUSY;
2543			}
2544
2545			spin_lock_irq(&mapping->tree_lock);
2546			radix_tree_tag_clear(&mapping->page_tree,
2547					     iter.index, SHMEM_TAG_PINNED);
2548			spin_unlock_irq(&mapping->tree_lock);
2549continue_resched:
2550			if (need_resched()) {
2551				slot = radix_tree_iter_resume(slot, &iter);
2552				cond_resched_rcu();
2553			}
2554		}
2555		rcu_read_unlock();
2556	}
2557
2558	return error;
2559}
2560
2561#define F_ALL_SEALS (F_SEAL_SEAL | \
2562		     F_SEAL_SHRINK | \
2563		     F_SEAL_GROW | \
2564		     F_SEAL_WRITE)
2565
2566int shmem_add_seals(struct file *file, unsigned int seals)
2567{
2568	struct inode *inode = file_inode(file);
2569	struct shmem_inode_info *info = SHMEM_I(inode);
2570	int error;
2571
2572	/*
2573	 * SEALING
2574	 * Sealing allows multiple parties to share a shmem-file but restrict
2575	 * access to a specific subset of file operations. Seals can only be
2576	 * added, but never removed. This way, mutually untrusted parties can
2577	 * share common memory regions with a well-defined policy. A malicious
2578	 * peer can thus never perform unwanted operations on a shared object.
2579	 *
2580	 * Seals are only supported on special shmem-files and always affect
2581	 * the whole underlying inode. Once a seal is set, it may prevent some
2582	 * kinds of access to the file. Currently, the following seals are
2583	 * defined:
2584	 *   SEAL_SEAL: Prevent further seals from being set on this file
2585	 *   SEAL_SHRINK: Prevent the file from shrinking
2586	 *   SEAL_GROW: Prevent the file from growing
2587	 *   SEAL_WRITE: Prevent write access to the file
2588	 *
2589	 * As we don't require any trust relationship between two parties, we
2590	 * must prevent seals from being removed. Therefore, sealing a file
2591	 * only adds a given set of seals to the file, it never touches
2592	 * existing seals. Furthermore, the "setting seals"-operation can be
2593	 * sealed itself, which basically prevents any further seal from being
2594	 * added.
2595	 *
2596	 * Semantics of sealing are only defined on volatile files. Only
2597	 * anonymous shmem files support sealing. More importantly, seals are
2598	 * never written to disk. Therefore, there's no plan to support it on
2599	 * other file types.
2600	 */
2601
2602	if (file->f_op != &shmem_file_operations)
2603		return -EINVAL;
2604	if (!(file->f_mode & FMODE_WRITE))
2605		return -EPERM;
2606	if (seals & ~(unsigned int)F_ALL_SEALS)
2607		return -EINVAL;
2608
2609	inode_lock(inode);
2610
2611	if (info->seals & F_SEAL_SEAL) {
2612		error = -EPERM;
2613		goto unlock;
2614	}
2615
2616	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2617		error = mapping_deny_writable(file->f_mapping);
2618		if (error)
2619			goto unlock;
2620
2621		error = shmem_wait_for_pins(file->f_mapping);
2622		if (error) {
2623			mapping_allow_writable(file->f_mapping);
2624			goto unlock;
2625		}
2626	}
2627
2628	info->seals |= seals;
2629	error = 0;
 
 
2630
2631unlock:
2632	inode_unlock(inode);
2633	return error;
2634}
2635EXPORT_SYMBOL_GPL(shmem_add_seals);
2636
2637int shmem_get_seals(struct file *file)
2638{
2639	if (file->f_op != &shmem_file_operations)
2640		return -EINVAL;
2641
2642	return SHMEM_I(file_inode(file))->seals;
2643}
2644EXPORT_SYMBOL_GPL(shmem_get_seals);
2645
2646long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2647{
2648	long error;
2649
2650	switch (cmd) {
2651	case F_ADD_SEALS:
2652		/* disallow upper 32bit */
2653		if (arg > UINT_MAX)
2654			return -EINVAL;
2655
2656		error = shmem_add_seals(file, arg);
2657		break;
2658	case F_GET_SEALS:
2659		error = shmem_get_seals(file);
2660		break;
2661	default:
2662		error = -EINVAL;
2663		break;
2664	}
2665
2666	return error;
2667}
2668
2669static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2670							 loff_t len)
2671{
2672	struct inode *inode = file_inode(file);
2673	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2674	struct shmem_inode_info *info = SHMEM_I(inode);
2675	struct shmem_falloc shmem_falloc;
2676	pgoff_t start, index, end;
2677	int error;
2678
2679	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2680		return -EOPNOTSUPP;
2681
2682	inode_lock(inode);
2683
2684	if (mode & FALLOC_FL_PUNCH_HOLE) {
2685		struct address_space *mapping = file->f_mapping;
2686		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2687		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2688		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2689
2690		/* protected by i_mutex */
2691		if (info->seals & F_SEAL_WRITE) {
2692			error = -EPERM;
2693			goto out;
2694		}
2695
2696		shmem_falloc.waitq = &shmem_falloc_waitq;
2697		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2698		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2699		spin_lock(&inode->i_lock);
2700		inode->i_private = &shmem_falloc;
2701		spin_unlock(&inode->i_lock);
2702
2703		if ((u64)unmap_end > (u64)unmap_start)
2704			unmap_mapping_range(mapping, unmap_start,
2705					    1 + unmap_end - unmap_start, 0);
2706		shmem_truncate_range(inode, offset, offset + len - 1);
2707		/* No need to unmap again: hole-punching leaves COWed pages */
2708
2709		spin_lock(&inode->i_lock);
2710		inode->i_private = NULL;
2711		wake_up_all(&shmem_falloc_waitq);
2712		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2713		spin_unlock(&inode->i_lock);
2714		error = 0;
2715		goto out;
2716	}
2717
2718	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2719	error = inode_newsize_ok(inode, offset + len);
2720	if (error)
2721		goto out;
2722
2723	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2724		error = -EPERM;
2725		goto out;
2726	}
2727
2728	start = offset >> PAGE_SHIFT;
2729	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2730	/* Try to avoid a swapstorm if len is impossible to satisfy */
2731	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2732		error = -ENOSPC;
2733		goto out;
2734	}
2735
2736	shmem_falloc.waitq = NULL;
2737	shmem_falloc.start = start;
2738	shmem_falloc.next  = start;
2739	shmem_falloc.nr_falloced = 0;
2740	shmem_falloc.nr_unswapped = 0;
2741	spin_lock(&inode->i_lock);
2742	inode->i_private = &shmem_falloc;
2743	spin_unlock(&inode->i_lock);
2744
2745	for (index = start; index < end; index++) {
2746		struct page *page;
2747
2748		/*
2749		 * Good, the fallocate(2) manpage permits EINTR: we may have
2750		 * been interrupted because we are using up too much memory.
2751		 */
2752		if (signal_pending(current))
2753			error = -EINTR;
2754		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2755			error = -ENOMEM;
2756		else
2757			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2758		if (error) {
2759			/* Remove the !PageUptodate pages we added */
2760			if (index > start) {
2761				shmem_undo_range(inode,
2762				    (loff_t)start << PAGE_SHIFT,
2763				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2764			}
2765			goto undone;
2766		}
2767
2768		/*
2769		 * Inform shmem_writepage() how far we have reached.
2770		 * No need for lock or barrier: we have the page lock.
2771		 */
2772		shmem_falloc.next++;
2773		if (!PageUptodate(page))
2774			shmem_falloc.nr_falloced++;
2775
2776		/*
2777		 * If !PageUptodate, leave it that way so that freeable pages
2778		 * can be recognized if we need to rollback on error later.
2779		 * But set_page_dirty so that memory pressure will swap rather
2780		 * than free the pages we are allocating (and SGP_CACHE pages
2781		 * might still be clean: we now need to mark those dirty too).
2782		 */
2783		set_page_dirty(page);
2784		unlock_page(page);
2785		put_page(page);
2786		cond_resched();
2787	}
2788
2789	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2790		i_size_write(inode, offset + len);
2791	inode->i_ctime = current_time(inode);
2792undone:
2793	spin_lock(&inode->i_lock);
2794	inode->i_private = NULL;
2795	spin_unlock(&inode->i_lock);
2796out:
2797	inode_unlock(inode);
2798	return error;
2799}
2800
2801static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2802{
2803	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2804
2805	buf->f_type = TMPFS_MAGIC;
2806	buf->f_bsize = PAGE_SIZE;
2807	buf->f_namelen = NAME_MAX;
2808	if (sbinfo->max_blocks) {
2809		buf->f_blocks = sbinfo->max_blocks;
2810		buf->f_bavail =
2811		buf->f_bfree  = sbinfo->max_blocks -
2812				percpu_counter_sum(&sbinfo->used_blocks);
2813	}
2814	if (sbinfo->max_inodes) {
2815		buf->f_files = sbinfo->max_inodes;
2816		buf->f_ffree = sbinfo->free_inodes;
2817	}
2818	/* else leave those fields 0 like simple_statfs */
2819	return 0;
2820}
2821
2822/*
2823 * File creation. Allocate an inode, and we're done..
2824 */
2825static int
2826shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2827{
2828	struct inode *inode;
2829	int error = -ENOSPC;
2830
2831	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2832	if (inode) {
2833		error = simple_acl_create(dir, inode);
2834		if (error)
2835			goto out_iput;
2836		error = security_inode_init_security(inode, dir,
2837						     &dentry->d_name,
2838						     shmem_initxattrs, NULL);
2839		if (error && error != -EOPNOTSUPP)
2840			goto out_iput;
2841
 
 
 
 
 
 
 
 
 
 
2842		error = 0;
 
2843		dir->i_size += BOGO_DIRENT_SIZE;
2844		dir->i_ctime = dir->i_mtime = current_time(dir);
2845		d_instantiate(dentry, inode);
2846		dget(dentry); /* Extra count - pin the dentry in core */
2847	}
2848	return error;
2849out_iput:
2850	iput(inode);
2851	return error;
2852}
2853
2854static int
2855shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2856{
2857	struct inode *inode;
2858	int error = -ENOSPC;
2859
2860	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2861	if (inode) {
2862		error = security_inode_init_security(inode, dir,
2863						     NULL,
2864						     shmem_initxattrs, NULL);
2865		if (error && error != -EOPNOTSUPP)
2866			goto out_iput;
2867		error = simple_acl_create(dir, inode);
2868		if (error)
2869			goto out_iput;
2870		d_tmpfile(dentry, inode);
2871	}
2872	return error;
2873out_iput:
2874	iput(inode);
2875	return error;
2876}
2877
2878static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2879{
2880	int error;
2881
2882	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2883		return error;
2884	inc_nlink(dir);
2885	return 0;
2886}
2887
2888static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool excl)
2890{
2891	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2892}
2893
2894/*
2895 * Link a file..
2896 */
2897static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2898{
2899	struct inode *inode = d_inode(old_dentry);
2900	int ret;
2901
2902	/*
2903	 * No ordinary (disk based) filesystem counts links as inodes;
2904	 * but each new link needs a new dentry, pinning lowmem, and
2905	 * tmpfs dentries cannot be pruned until they are unlinked.
2906	 */
2907	ret = shmem_reserve_inode(inode->i_sb);
2908	if (ret)
2909		goto out;
2910
2911	dir->i_size += BOGO_DIRENT_SIZE;
2912	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2913	inc_nlink(inode);
2914	ihold(inode);	/* New dentry reference */
2915	dget(dentry);		/* Extra pinning count for the created dentry */
2916	d_instantiate(dentry, inode);
2917out:
2918	return ret;
2919}
2920
2921static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2922{
2923	struct inode *inode = d_inode(dentry);
2924
2925	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2926		shmem_free_inode(inode->i_sb);
2927
2928	dir->i_size -= BOGO_DIRENT_SIZE;
2929	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2930	drop_nlink(inode);
2931	dput(dentry);	/* Undo the count from "create" - this does all the work */
2932	return 0;
2933}
2934
2935static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2936{
2937	if (!simple_empty(dentry))
2938		return -ENOTEMPTY;
2939
2940	drop_nlink(d_inode(dentry));
2941	drop_nlink(dir);
2942	return shmem_unlink(dir, dentry);
2943}
2944
2945static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2946{
2947	bool old_is_dir = d_is_dir(old_dentry);
2948	bool new_is_dir = d_is_dir(new_dentry);
2949
2950	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2951		if (old_is_dir) {
2952			drop_nlink(old_dir);
2953			inc_nlink(new_dir);
2954		} else {
2955			drop_nlink(new_dir);
2956			inc_nlink(old_dir);
2957		}
2958	}
2959	old_dir->i_ctime = old_dir->i_mtime =
2960	new_dir->i_ctime = new_dir->i_mtime =
2961	d_inode(old_dentry)->i_ctime =
2962	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2963
2964	return 0;
2965}
2966
2967static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2968{
2969	struct dentry *whiteout;
2970	int error;
2971
2972	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2973	if (!whiteout)
2974		return -ENOMEM;
2975
2976	error = shmem_mknod(old_dir, whiteout,
2977			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2978	dput(whiteout);
2979	if (error)
2980		return error;
2981
2982	/*
2983	 * Cheat and hash the whiteout while the old dentry is still in
2984	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2985	 *
2986	 * d_lookup() will consistently find one of them at this point,
2987	 * not sure which one, but that isn't even important.
2988	 */
2989	d_rehash(whiteout);
2990	return 0;
2991}
2992
2993/*
2994 * The VFS layer already does all the dentry stuff for rename,
2995 * we just have to decrement the usage count for the target if
2996 * it exists so that the VFS layer correctly free's it when it
2997 * gets overwritten.
2998 */
2999static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3000{
3001	struct inode *inode = d_inode(old_dentry);
3002	int they_are_dirs = S_ISDIR(inode->i_mode);
3003
3004	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3005		return -EINVAL;
3006
3007	if (flags & RENAME_EXCHANGE)
3008		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3009
3010	if (!simple_empty(new_dentry))
3011		return -ENOTEMPTY;
3012
3013	if (flags & RENAME_WHITEOUT) {
3014		int error;
3015
3016		error = shmem_whiteout(old_dir, old_dentry);
3017		if (error)
3018			return error;
3019	}
3020
3021	if (d_really_is_positive(new_dentry)) {
3022		(void) shmem_unlink(new_dir, new_dentry);
3023		if (they_are_dirs) {
3024			drop_nlink(d_inode(new_dentry));
3025			drop_nlink(old_dir);
3026		}
3027	} else if (they_are_dirs) {
3028		drop_nlink(old_dir);
3029		inc_nlink(new_dir);
3030	}
3031
3032	old_dir->i_size -= BOGO_DIRENT_SIZE;
3033	new_dir->i_size += BOGO_DIRENT_SIZE;
3034	old_dir->i_ctime = old_dir->i_mtime =
3035	new_dir->i_ctime = new_dir->i_mtime =
3036	inode->i_ctime = current_time(old_dir);
3037	return 0;
3038}
3039
3040static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3041{
3042	int error;
3043	int len;
3044	struct inode *inode;
3045	struct page *page;
 
3046	struct shmem_inode_info *info;
3047
3048	len = strlen(symname) + 1;
3049	if (len > PAGE_SIZE)
3050		return -ENAMETOOLONG;
3051
3052	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3053	if (!inode)
3054		return -ENOSPC;
3055
3056	error = security_inode_init_security(inode, dir, &dentry->d_name,
3057					     shmem_initxattrs, NULL);
3058	if (error) {
3059		if (error != -EOPNOTSUPP) {
3060			iput(inode);
3061			return error;
3062		}
3063		error = 0;
3064	}
3065
3066	info = SHMEM_I(inode);
3067	inode->i_size = len-1;
3068	if (len <= SHORT_SYMLINK_LEN) {
3069		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3070		if (!inode->i_link) {
3071			iput(inode);
3072			return -ENOMEM;
3073		}
3074		inode->i_op = &shmem_short_symlink_operations;
3075	} else {
3076		inode_nohighmem(inode);
3077		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3078		if (error) {
3079			iput(inode);
3080			return error;
3081		}
3082		inode->i_mapping->a_ops = &shmem_aops;
3083		inode->i_op = &shmem_symlink_inode_operations;
3084		memcpy(page_address(page), symname, len);
3085		SetPageUptodate(page);
 
3086		set_page_dirty(page);
3087		unlock_page(page);
3088		put_page(page);
3089	}
3090	dir->i_size += BOGO_DIRENT_SIZE;
3091	dir->i_ctime = dir->i_mtime = current_time(dir);
3092	d_instantiate(dentry, inode);
3093	dget(dentry);
3094	return 0;
3095}
3096
3097static void shmem_put_link(void *arg)
3098{
3099	mark_page_accessed(arg);
3100	put_page(arg);
3101}
3102
3103static const char *shmem_get_link(struct dentry *dentry,
3104				  struct inode *inode,
3105				  struct delayed_call *done)
3106{
3107	struct page *page = NULL;
3108	int error;
3109	if (!dentry) {
3110		page = find_get_page(inode->i_mapping, 0);
3111		if (!page)
3112			return ERR_PTR(-ECHILD);
3113		if (!PageUptodate(page)) {
3114			put_page(page);
3115			return ERR_PTR(-ECHILD);
3116		}
3117	} else {
3118		error = shmem_getpage(inode, 0, &page, SGP_READ);
3119		if (error)
3120			return ERR_PTR(error);
3121		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
3122	}
3123	set_delayed_call(done, shmem_put_link, page);
3124	return page_address(page);
3125}
3126
3127#ifdef CONFIG_TMPFS_XATTR
3128/*
3129 * Superblocks without xattr inode operations may get some security.* xattr
3130 * support from the LSM "for free". As soon as we have any other xattrs
3131 * like ACLs, we also need to implement the security.* handlers at
3132 * filesystem level, though.
3133 */
3134
3135/*
3136 * Callback for security_inode_init_security() for acquiring xattrs.
3137 */
3138static int shmem_initxattrs(struct inode *inode,
3139			    const struct xattr *xattr_array,
3140			    void *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141{
 
3142	struct shmem_inode_info *info = SHMEM_I(inode);
3143	const struct xattr *xattr;
3144	struct simple_xattr *new_xattr;
3145	size_t len;
 
3146
3147	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3148		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
 
 
 
 
 
 
3149		if (!new_xattr)
3150			return -ENOMEM;
3151
3152		len = strlen(xattr->name) + 1;
3153		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3154					  GFP_KERNEL);
3155		if (!new_xattr->name) {
3156			kfree(new_xattr);
3157			return -ENOMEM;
3158		}
3159
3160		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3161		       XATTR_SECURITY_PREFIX_LEN);
3162		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3163		       xattr->name, len);
3164
3165		simple_xattr_list_add(&info->xattrs, new_xattr);
 
 
 
 
 
 
 
 
 
 
 
 
3166	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167
3168	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3169}
3170
3171static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3172				   struct dentry *unused, struct inode *inode,
3173				   const char *name, void *buffer, size_t size)
3174{
3175	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
3176
3177	name = xattr_full_name(handler, name);
3178	return simple_xattr_get(&info->xattrs, name, buffer, size);
3179}
3180
3181static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3182				   struct dentry *unused, struct inode *inode,
3183				   const char *name, const void *value,
3184				   size_t size, int flags)
3185{
3186	struct shmem_inode_info *info = SHMEM_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	name = xattr_full_name(handler, name);
3189	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3190}
3191
3192static const struct xattr_handler shmem_security_xattr_handler = {
3193	.prefix = XATTR_SECURITY_PREFIX,
3194	.get = shmem_xattr_handler_get,
3195	.set = shmem_xattr_handler_set,
3196};
 
 
 
 
 
 
 
 
 
 
3197
3198static const struct xattr_handler shmem_trusted_xattr_handler = {
3199	.prefix = XATTR_TRUSTED_PREFIX,
3200	.get = shmem_xattr_handler_get,
3201	.set = shmem_xattr_handler_set,
3202};
3203
3204static const struct xattr_handler *shmem_xattr_handlers[] = {
3205#ifdef CONFIG_TMPFS_POSIX_ACL
3206	&posix_acl_access_xattr_handler,
3207	&posix_acl_default_xattr_handler,
3208#endif
3209	&shmem_security_xattr_handler,
3210	&shmem_trusted_xattr_handler,
3211	NULL
3212};
3213
3214static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3215{
3216	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3217	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218}
3219#endif /* CONFIG_TMPFS_XATTR */
3220
3221static const struct inode_operations shmem_short_symlink_operations = {
3222	.get_link	= simple_get_link,
 
3223#ifdef CONFIG_TMPFS_XATTR
 
 
3224	.listxattr	= shmem_listxattr,
 
3225#endif
3226};
3227
3228static const struct inode_operations shmem_symlink_inode_operations = {
3229	.get_link	= shmem_get_link,
 
 
3230#ifdef CONFIG_TMPFS_XATTR
 
 
3231	.listxattr	= shmem_listxattr,
 
3232#endif
3233};
3234
3235static struct dentry *shmem_get_parent(struct dentry *child)
3236{
3237	return ERR_PTR(-ESTALE);
3238}
3239
3240static int shmem_match(struct inode *ino, void *vfh)
3241{
3242	__u32 *fh = vfh;
3243	__u64 inum = fh[2];
3244	inum = (inum << 32) | fh[1];
3245	return ino->i_ino == inum && fh[0] == ino->i_generation;
3246}
3247
3248static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3249		struct fid *fid, int fh_len, int fh_type)
3250{
3251	struct inode *inode;
3252	struct dentry *dentry = NULL;
3253	u64 inum;
 
3254
3255	if (fh_len < 3)
3256		return NULL;
3257
3258	inum = fid->raw[2];
3259	inum = (inum << 32) | fid->raw[1];
3260
3261	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3262			shmem_match, fid->raw);
3263	if (inode) {
3264		dentry = d_find_alias(inode);
3265		iput(inode);
3266	}
3267
3268	return dentry;
3269}
3270
3271static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3272				struct inode *parent)
3273{
 
 
3274	if (*len < 3) {
3275		*len = 3;
3276		return FILEID_INVALID;
3277	}
3278
3279	if (inode_unhashed(inode)) {
3280		/* Unfortunately insert_inode_hash is not idempotent,
3281		 * so as we hash inodes here rather than at creation
3282		 * time, we need a lock to ensure we only try
3283		 * to do it once
3284		 */
3285		static DEFINE_SPINLOCK(lock);
3286		spin_lock(&lock);
3287		if (inode_unhashed(inode))
3288			__insert_inode_hash(inode,
3289					    inode->i_ino + inode->i_generation);
3290		spin_unlock(&lock);
3291	}
3292
3293	fh[0] = inode->i_generation;
3294	fh[1] = inode->i_ino;
3295	fh[2] = ((__u64)inode->i_ino) >> 32;
3296
3297	*len = 3;
3298	return 1;
3299}
3300
3301static const struct export_operations shmem_export_ops = {
3302	.get_parent     = shmem_get_parent,
3303	.encode_fh      = shmem_encode_fh,
3304	.fh_to_dentry	= shmem_fh_to_dentry,
3305};
3306
3307static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3308			       bool remount)
3309{
3310	char *this_char, *value, *rest;
3311	struct mempolicy *mpol = NULL;
3312	uid_t uid;
3313	gid_t gid;
3314
3315	while (options != NULL) {
3316		this_char = options;
3317		for (;;) {
3318			/*
3319			 * NUL-terminate this option: unfortunately,
3320			 * mount options form a comma-separated list,
3321			 * but mpol's nodelist may also contain commas.
3322			 */
3323			options = strchr(options, ',');
3324			if (options == NULL)
3325				break;
3326			options++;
3327			if (!isdigit(*options)) {
3328				options[-1] = '\0';
3329				break;
3330			}
3331		}
3332		if (!*this_char)
3333			continue;
3334		if ((value = strchr(this_char,'=')) != NULL) {
3335			*value++ = 0;
3336		} else {
3337			pr_err("tmpfs: No value for mount option '%s'\n",
3338			       this_char);
3339			goto error;
 
3340		}
3341
3342		if (!strcmp(this_char,"size")) {
3343			unsigned long long size;
3344			size = memparse(value,&rest);
3345			if (*rest == '%') {
3346				size <<= PAGE_SHIFT;
3347				size *= totalram_pages;
3348				do_div(size, 100);
3349				rest++;
3350			}
3351			if (*rest)
3352				goto bad_val;
3353			sbinfo->max_blocks =
3354				DIV_ROUND_UP(size, PAGE_SIZE);
3355		} else if (!strcmp(this_char,"nr_blocks")) {
3356			sbinfo->max_blocks = memparse(value, &rest);
3357			if (*rest)
3358				goto bad_val;
3359		} else if (!strcmp(this_char,"nr_inodes")) {
3360			sbinfo->max_inodes = memparse(value, &rest);
3361			if (*rest)
3362				goto bad_val;
3363		} else if (!strcmp(this_char,"mode")) {
3364			if (remount)
3365				continue;
3366			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3367			if (*rest)
3368				goto bad_val;
3369		} else if (!strcmp(this_char,"uid")) {
3370			if (remount)
3371				continue;
3372			uid = simple_strtoul(value, &rest, 0);
3373			if (*rest)
3374				goto bad_val;
3375			sbinfo->uid = make_kuid(current_user_ns(), uid);
3376			if (!uid_valid(sbinfo->uid))
3377				goto bad_val;
3378		} else if (!strcmp(this_char,"gid")) {
3379			if (remount)
3380				continue;
3381			gid = simple_strtoul(value, &rest, 0);
3382			if (*rest)
3383				goto bad_val;
3384			sbinfo->gid = make_kgid(current_user_ns(), gid);
3385			if (!gid_valid(sbinfo->gid))
3386				goto bad_val;
3387#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3388		} else if (!strcmp(this_char, "huge")) {
3389			int huge;
3390			huge = shmem_parse_huge(value);
3391			if (huge < 0)
3392				goto bad_val;
3393			if (!has_transparent_hugepage() &&
3394					huge != SHMEM_HUGE_NEVER)
3395				goto bad_val;
3396			sbinfo->huge = huge;
3397#endif
3398#ifdef CONFIG_NUMA
3399		} else if (!strcmp(this_char,"mpol")) {
3400			mpol_put(mpol);
3401			mpol = NULL;
3402			if (mpol_parse_str(value, &mpol))
3403				goto bad_val;
3404#endif
3405		} else {
3406			pr_err("tmpfs: Bad mount option %s\n", this_char);
3407			goto error;
 
3408		}
3409	}
3410	sbinfo->mpol = mpol;
3411	return 0;
3412
3413bad_val:
3414	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3415	       value, this_char);
3416error:
3417	mpol_put(mpol);
3418	return 1;
3419
3420}
3421
3422static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3423{
3424	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3425	struct shmem_sb_info config = *sbinfo;
3426	unsigned long inodes;
3427	int error = -EINVAL;
3428
3429	config.mpol = NULL;
3430	if (shmem_parse_options(data, &config, true))
3431		return error;
3432
3433	spin_lock(&sbinfo->stat_lock);
3434	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3435	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3436		goto out;
3437	if (config.max_inodes < inodes)
3438		goto out;
3439	/*
3440	 * Those tests disallow limited->unlimited while any are in use;
3441	 * but we must separately disallow unlimited->limited, because
3442	 * in that case we have no record of how much is already in use.
3443	 */
3444	if (config.max_blocks && !sbinfo->max_blocks)
3445		goto out;
3446	if (config.max_inodes && !sbinfo->max_inodes)
3447		goto out;
3448
3449	error = 0;
3450	sbinfo->huge = config.huge;
3451	sbinfo->max_blocks  = config.max_blocks;
3452	sbinfo->max_inodes  = config.max_inodes;
3453	sbinfo->free_inodes = config.max_inodes - inodes;
3454
3455	/*
3456	 * Preserve previous mempolicy unless mpol remount option was specified.
3457	 */
3458	if (config.mpol) {
3459		mpol_put(sbinfo->mpol);
3460		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3461	}
3462out:
3463	spin_unlock(&sbinfo->stat_lock);
3464	return error;
3465}
3466
3467static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3468{
3469	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3470
3471	if (sbinfo->max_blocks != shmem_default_max_blocks())
3472		seq_printf(seq, ",size=%luk",
3473			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3474	if (sbinfo->max_inodes != shmem_default_max_inodes())
3475		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3476	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3477		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3478	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3479		seq_printf(seq, ",uid=%u",
3480				from_kuid_munged(&init_user_ns, sbinfo->uid));
3481	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3482		seq_printf(seq, ",gid=%u",
3483				from_kgid_munged(&init_user_ns, sbinfo->gid));
3484#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3485	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3486	if (sbinfo->huge)
3487		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3488#endif
3489	shmem_show_mpol(seq, sbinfo->mpol);
3490	return 0;
3491}
3492
3493#define MFD_NAME_PREFIX "memfd:"
3494#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3495#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3496
3497#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3498
3499SYSCALL_DEFINE2(memfd_create,
3500		const char __user *, uname,
3501		unsigned int, flags)
3502{
3503	struct shmem_inode_info *info;
3504	struct file *file;
3505	int fd, error;
3506	char *name;
3507	long len;
3508
3509	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3510		return -EINVAL;
3511
3512	/* length includes terminating zero */
3513	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3514	if (len <= 0)
3515		return -EFAULT;
3516	if (len > MFD_NAME_MAX_LEN + 1)
3517		return -EINVAL;
3518
3519	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3520	if (!name)
3521		return -ENOMEM;
3522
3523	strcpy(name, MFD_NAME_PREFIX);
3524	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3525		error = -EFAULT;
3526		goto err_name;
3527	}
3528
3529	/* terminating-zero may have changed after strnlen_user() returned */
3530	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3531		error = -EFAULT;
3532		goto err_name;
3533	}
3534
3535	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3536	if (fd < 0) {
3537		error = fd;
3538		goto err_name;
3539	}
3540
3541	file = shmem_file_setup(name, 0, VM_NORESERVE);
3542	if (IS_ERR(file)) {
3543		error = PTR_ERR(file);
3544		goto err_fd;
3545	}
3546	info = SHMEM_I(file_inode(file));
3547	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3548	file->f_flags |= O_RDWR | O_LARGEFILE;
3549	if (flags & MFD_ALLOW_SEALING)
3550		info->seals &= ~F_SEAL_SEAL;
3551
3552	fd_install(fd, file);
3553	kfree(name);
3554	return fd;
3555
3556err_fd:
3557	put_unused_fd(fd);
3558err_name:
3559	kfree(name);
3560	return error;
3561}
3562
3563#endif /* CONFIG_TMPFS */
3564
3565static void shmem_put_super(struct super_block *sb)
3566{
3567	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3568
3569	percpu_counter_destroy(&sbinfo->used_blocks);
3570	mpol_put(sbinfo->mpol);
3571	kfree(sbinfo);
3572	sb->s_fs_info = NULL;
3573}
3574
3575int shmem_fill_super(struct super_block *sb, void *data, int silent)
3576{
3577	struct inode *inode;
 
3578	struct shmem_sb_info *sbinfo;
3579	int err = -ENOMEM;
3580
3581	/* Round up to L1_CACHE_BYTES to resist false sharing */
3582	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3583				L1_CACHE_BYTES), GFP_KERNEL);
3584	if (!sbinfo)
3585		return -ENOMEM;
3586
3587	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3588	sbinfo->uid = current_fsuid();
3589	sbinfo->gid = current_fsgid();
3590	sb->s_fs_info = sbinfo;
3591
3592#ifdef CONFIG_TMPFS
3593	/*
3594	 * Per default we only allow half of the physical ram per
3595	 * tmpfs instance, limiting inodes to one per page of lowmem;
3596	 * but the internal instance is left unlimited.
3597	 */
3598	if (!(sb->s_flags & MS_KERNMOUNT)) {
3599		sbinfo->max_blocks = shmem_default_max_blocks();
3600		sbinfo->max_inodes = shmem_default_max_inodes();
3601		if (shmem_parse_options(data, sbinfo, false)) {
3602			err = -EINVAL;
3603			goto failed;
3604		}
3605	} else {
3606		sb->s_flags |= MS_NOUSER;
3607	}
3608	sb->s_export_op = &shmem_export_ops;
3609	sb->s_flags |= MS_NOSEC;
3610#else
3611	sb->s_flags |= MS_NOUSER;
3612#endif
3613
3614	spin_lock_init(&sbinfo->stat_lock);
3615	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3616		goto failed;
3617	sbinfo->free_inodes = sbinfo->max_inodes;
3618	spin_lock_init(&sbinfo->shrinklist_lock);
3619	INIT_LIST_HEAD(&sbinfo->shrinklist);
3620
3621	sb->s_maxbytes = MAX_LFS_FILESIZE;
3622	sb->s_blocksize = PAGE_SIZE;
3623	sb->s_blocksize_bits = PAGE_SHIFT;
3624	sb->s_magic = TMPFS_MAGIC;
3625	sb->s_op = &shmem_ops;
3626	sb->s_time_gran = 1;
3627#ifdef CONFIG_TMPFS_XATTR
3628	sb->s_xattr = shmem_xattr_handlers;
3629#endif
3630#ifdef CONFIG_TMPFS_POSIX_ACL
3631	sb->s_flags |= MS_POSIXACL;
3632#endif
3633
3634	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3635	if (!inode)
3636		goto failed;
3637	inode->i_uid = sbinfo->uid;
3638	inode->i_gid = sbinfo->gid;
3639	sb->s_root = d_make_root(inode);
3640	if (!sb->s_root)
3641		goto failed;
 
3642	return 0;
3643
 
 
3644failed:
3645	shmem_put_super(sb);
3646	return err;
3647}
3648
3649static struct kmem_cache *shmem_inode_cachep;
3650
3651static struct inode *shmem_alloc_inode(struct super_block *sb)
3652{
3653	struct shmem_inode_info *info;
3654	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3655	if (!info)
3656		return NULL;
3657	return &info->vfs_inode;
3658}
3659
3660static void shmem_destroy_callback(struct rcu_head *head)
3661{
3662	struct inode *inode = container_of(head, struct inode, i_rcu);
3663	if (S_ISLNK(inode->i_mode))
3664		kfree(inode->i_link);
3665	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3666}
3667
3668static void shmem_destroy_inode(struct inode *inode)
3669{
3670	if (S_ISREG(inode->i_mode))
3671		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3672	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3673}
3674
3675static void shmem_init_inode(void *foo)
3676{
3677	struct shmem_inode_info *info = foo;
3678	inode_init_once(&info->vfs_inode);
3679}
3680
3681static int shmem_init_inodecache(void)
3682{
3683	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3684				sizeof(struct shmem_inode_info),
3685				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3686	return 0;
3687}
3688
3689static void shmem_destroy_inodecache(void)
3690{
3691	kmem_cache_destroy(shmem_inode_cachep);
3692}
3693
3694static const struct address_space_operations shmem_aops = {
3695	.writepage	= shmem_writepage,
3696	.set_page_dirty	= __set_page_dirty_no_writeback,
3697#ifdef CONFIG_TMPFS
3698	.write_begin	= shmem_write_begin,
3699	.write_end	= shmem_write_end,
3700#endif
3701#ifdef CONFIG_MIGRATION
3702	.migratepage	= migrate_page,
3703#endif
3704	.error_remove_page = generic_error_remove_page,
3705};
3706
3707static const struct file_operations shmem_file_operations = {
3708	.mmap		= shmem_mmap,
3709	.get_unmapped_area = shmem_get_unmapped_area,
3710#ifdef CONFIG_TMPFS
3711	.llseek		= shmem_file_llseek,
3712	.read_iter	= shmem_file_read_iter,
3713	.write_iter	= generic_file_write_iter,
 
 
3714	.fsync		= noop_fsync,
3715	.splice_read	= generic_file_splice_read,
3716	.splice_write	= iter_file_splice_write,
3717	.fallocate	= shmem_fallocate,
3718#endif
3719};
3720
3721static const struct inode_operations shmem_inode_operations = {
3722	.getattr	= shmem_getattr,
3723	.setattr	= shmem_setattr,
 
3724#ifdef CONFIG_TMPFS_XATTR
 
 
3725	.listxattr	= shmem_listxattr,
3726	.set_acl	= simple_set_acl,
3727#endif
3728};
3729
3730static const struct inode_operations shmem_dir_inode_operations = {
3731#ifdef CONFIG_TMPFS
3732	.create		= shmem_create,
3733	.lookup		= simple_lookup,
3734	.link		= shmem_link,
3735	.unlink		= shmem_unlink,
3736	.symlink	= shmem_symlink,
3737	.mkdir		= shmem_mkdir,
3738	.rmdir		= shmem_rmdir,
3739	.mknod		= shmem_mknod,
3740	.rename		= shmem_rename2,
3741	.tmpfile	= shmem_tmpfile,
3742#endif
3743#ifdef CONFIG_TMPFS_XATTR
 
 
3744	.listxattr	= shmem_listxattr,
 
3745#endif
3746#ifdef CONFIG_TMPFS_POSIX_ACL
3747	.setattr	= shmem_setattr,
3748	.set_acl	= simple_set_acl,
3749#endif
3750};
3751
3752static const struct inode_operations shmem_special_inode_operations = {
3753#ifdef CONFIG_TMPFS_XATTR
 
 
3754	.listxattr	= shmem_listxattr,
 
3755#endif
3756#ifdef CONFIG_TMPFS_POSIX_ACL
3757	.setattr	= shmem_setattr,
3758	.set_acl	= simple_set_acl,
3759#endif
3760};
3761
3762static const struct super_operations shmem_ops = {
3763	.alloc_inode	= shmem_alloc_inode,
3764	.destroy_inode	= shmem_destroy_inode,
3765#ifdef CONFIG_TMPFS
3766	.statfs		= shmem_statfs,
3767	.remount_fs	= shmem_remount_fs,
3768	.show_options	= shmem_show_options,
3769#endif
3770	.evict_inode	= shmem_evict_inode,
3771	.drop_inode	= generic_delete_inode,
3772	.put_super	= shmem_put_super,
3773#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3774	.nr_cached_objects	= shmem_unused_huge_count,
3775	.free_cached_objects	= shmem_unused_huge_scan,
3776#endif
3777};
3778
3779static const struct vm_operations_struct shmem_vm_ops = {
3780	.fault		= shmem_fault,
3781	.map_pages	= filemap_map_pages,
3782#ifdef CONFIG_NUMA
3783	.set_policy     = shmem_set_policy,
3784	.get_policy     = shmem_get_policy,
3785#endif
3786};
3787
3788static struct dentry *shmem_mount(struct file_system_type *fs_type,
3789	int flags, const char *dev_name, void *data)
3790{
3791	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3792}
3793
3794static struct file_system_type shmem_fs_type = {
3795	.owner		= THIS_MODULE,
3796	.name		= "tmpfs",
3797	.mount		= shmem_mount,
3798	.kill_sb	= kill_litter_super,
3799	.fs_flags	= FS_USERNS_MOUNT,
3800};
3801
3802int __init shmem_init(void)
3803{
3804	int error;
3805
3806	/* If rootfs called this, don't re-init */
3807	if (shmem_inode_cachep)
3808		return 0;
3809
3810	error = shmem_init_inodecache();
3811	if (error)
3812		goto out3;
3813
3814	error = register_filesystem(&shmem_fs_type);
3815	if (error) {
3816		pr_err("Could not register tmpfs\n");
3817		goto out2;
3818	}
3819
3820	shm_mnt = kern_mount(&shmem_fs_type);
 
3821	if (IS_ERR(shm_mnt)) {
3822		error = PTR_ERR(shm_mnt);
3823		pr_err("Could not kern_mount tmpfs\n");
3824		goto out1;
3825	}
3826
3827#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3828	if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3829		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3830	else
3831		shmem_huge = 0; /* just in case it was patched */
3832#endif
3833	return 0;
3834
3835out1:
3836	unregister_filesystem(&shmem_fs_type);
3837out2:
3838	shmem_destroy_inodecache();
3839out3:
 
 
3840	shm_mnt = ERR_PTR(error);
3841	return error;
3842}
3843
3844#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3845static ssize_t shmem_enabled_show(struct kobject *kobj,
3846		struct kobj_attribute *attr, char *buf)
3847{
3848	int values[] = {
3849		SHMEM_HUGE_ALWAYS,
3850		SHMEM_HUGE_WITHIN_SIZE,
3851		SHMEM_HUGE_ADVISE,
3852		SHMEM_HUGE_NEVER,
3853		SHMEM_HUGE_DENY,
3854		SHMEM_HUGE_FORCE,
3855	};
3856	int i, count;
3857
3858	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3859		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3860
3861		count += sprintf(buf + count, fmt,
3862				shmem_format_huge(values[i]));
3863	}
3864	buf[count - 1] = '\n';
3865	return count;
3866}
3867
3868static ssize_t shmem_enabled_store(struct kobject *kobj,
3869		struct kobj_attribute *attr, const char *buf, size_t count)
3870{
3871	char tmp[16];
3872	int huge;
3873
3874	if (count + 1 > sizeof(tmp))
3875		return -EINVAL;
3876	memcpy(tmp, buf, count);
3877	tmp[count] = '\0';
3878	if (count && tmp[count - 1] == '\n')
3879		tmp[count - 1] = '\0';
3880
3881	huge = shmem_parse_huge(tmp);
3882	if (huge == -EINVAL)
3883		return -EINVAL;
3884	if (!has_transparent_hugepage() &&
3885			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3886		return -EINVAL;
3887
3888	shmem_huge = huge;
3889	if (shmem_huge < SHMEM_HUGE_DENY)
3890		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3891	return count;
3892}
3893
3894struct kobj_attribute shmem_enabled_attr =
3895	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3896#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3897
3898#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3899bool shmem_huge_enabled(struct vm_area_struct *vma)
3900{
3901	struct inode *inode = file_inode(vma->vm_file);
3902	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3903	loff_t i_size;
3904	pgoff_t off;
3905
3906	if (shmem_huge == SHMEM_HUGE_FORCE)
3907		return true;
3908	if (shmem_huge == SHMEM_HUGE_DENY)
3909		return false;
3910	switch (sbinfo->huge) {
3911		case SHMEM_HUGE_NEVER:
3912			return false;
3913		case SHMEM_HUGE_ALWAYS:
3914			return true;
3915		case SHMEM_HUGE_WITHIN_SIZE:
3916			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3917			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3918			if (i_size >= HPAGE_PMD_SIZE &&
3919					i_size >> PAGE_SHIFT >= off)
3920				return true;
3921		case SHMEM_HUGE_ADVISE:
3922			/* TODO: implement fadvise() hints */
3923			return (vma->vm_flags & VM_HUGEPAGE);
3924		default:
3925			VM_BUG_ON(1);
3926			return false;
3927	}
3928}
3929#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3930
3931#else /* !CONFIG_SHMEM */
3932
3933/*
3934 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3935 *
3936 * This is intended for small system where the benefits of the full
3937 * shmem code (swap-backed and resource-limited) are outweighed by
3938 * their complexity. On systems without swap this code should be
3939 * effectively equivalent, but much lighter weight.
3940 */
3941
 
 
3942static struct file_system_type shmem_fs_type = {
3943	.name		= "tmpfs",
3944	.mount		= ramfs_mount,
3945	.kill_sb	= kill_litter_super,
3946	.fs_flags	= FS_USERNS_MOUNT,
3947};
3948
3949int __init shmem_init(void)
3950{
3951	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3952
3953	shm_mnt = kern_mount(&shmem_fs_type);
3954	BUG_ON(IS_ERR(shm_mnt));
3955
3956	return 0;
3957}
3958
3959int shmem_unuse(swp_entry_t swap, struct page *page)
3960{
3961	return 0;
3962}
3963
3964int shmem_lock(struct file *file, int lock, struct user_struct *user)
3965{
3966	return 0;
3967}
3968
3969void shmem_unlock_mapping(struct address_space *mapping)
3970{
3971}
3972
3973#ifdef CONFIG_MMU
3974unsigned long shmem_get_unmapped_area(struct file *file,
3975				      unsigned long addr, unsigned long len,
3976				      unsigned long pgoff, unsigned long flags)
3977{
3978	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3979}
3980#endif
3981
3982void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3983{
3984	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3985}
3986EXPORT_SYMBOL_GPL(shmem_truncate_range);
3987
3988#define shmem_vm_ops				generic_file_vm_ops
3989#define shmem_file_operations			ramfs_file_operations
3990#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3991#define shmem_acct_size(flags, size)		0
3992#define shmem_unacct_size(flags, size)		do {} while (0)
3993
3994#endif /* CONFIG_SHMEM */
3995
3996/* common code */
3997
3998static const struct dentry_operations anon_ops = {
3999	.d_dname = simple_dname
4000};
4001
4002static struct file *__shmem_file_setup(const char *name, loff_t size,
4003				       unsigned long flags, unsigned int i_flags)
 
4004{
4005	struct file *res;
 
4006	struct inode *inode;
4007	struct path path;
4008	struct super_block *sb;
4009	struct qstr this;
4010
4011	if (IS_ERR(shm_mnt))
4012		return ERR_CAST(shm_mnt);
4013
4014	if (size < 0 || size > MAX_LFS_FILESIZE)
4015		return ERR_PTR(-EINVAL);
4016
4017	if (shmem_acct_size(flags, size))
4018		return ERR_PTR(-ENOMEM);
4019
4020	res = ERR_PTR(-ENOMEM);
4021	this.name = name;
4022	this.len = strlen(name);
4023	this.hash = 0; /* will go */
4024	sb = shm_mnt->mnt_sb;
4025	path.mnt = mntget(shm_mnt);
4026	path.dentry = d_alloc_pseudo(sb, &this);
4027	if (!path.dentry)
4028		goto put_memory;
4029	d_set_d_op(path.dentry, &anon_ops);
4030
4031	res = ERR_PTR(-ENOSPC);
4032	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4033	if (!inode)
4034		goto put_memory;
4035
4036	inode->i_flags |= i_flags;
4037	d_instantiate(path.dentry, inode);
4038	inode->i_size = size;
4039	clear_nlink(inode);	/* It is unlinked */
4040	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4041	if (IS_ERR(res))
4042		goto put_path;
 
 
4043
4044	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
 
4045		  &shmem_file_operations);
4046	if (IS_ERR(res))
4047		goto put_path;
4048
4049	return res;
4050
 
 
4051put_memory:
4052	shmem_unacct_size(flags, size);
4053put_path:
4054	path_put(&path);
4055	return res;
4056}
4057
4058/**
4059 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4060 * 	kernel internal.  There will be NO LSM permission checks against the
4061 * 	underlying inode.  So users of this interface must do LSM checks at a
4062 *	higher layer.  The users are the big_key and shm implementations.  LSM
4063 *	checks are provided at the key or shm level rather than the inode.
4064 * @name: name for dentry (to be seen in /proc/<pid>/maps
4065 * @size: size to be set for the file
4066 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4067 */
4068struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4069{
4070	return __shmem_file_setup(name, size, flags, S_PRIVATE);
4071}
4072
4073/**
4074 * shmem_file_setup - get an unlinked file living in tmpfs
4075 * @name: name for dentry (to be seen in /proc/<pid>/maps
4076 * @size: size to be set for the file
4077 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4078 */
4079struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4080{
4081	return __shmem_file_setup(name, size, flags, 0);
4082}
4083EXPORT_SYMBOL_GPL(shmem_file_setup);
4084
4085/**
4086 * shmem_zero_setup - setup a shared anonymous mapping
4087 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4088 */
4089int shmem_zero_setup(struct vm_area_struct *vma)
4090{
4091	struct file *file;
4092	loff_t size = vma->vm_end - vma->vm_start;
4093
4094	/*
4095	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4096	 * between XFS directory reading and selinux: since this file is only
4097	 * accessible to the user through its mapping, use S_PRIVATE flag to
4098	 * bypass file security, in the same way as shmem_kernel_file_setup().
4099	 */
4100	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4101	if (IS_ERR(file))
4102		return PTR_ERR(file);
4103
4104	if (vma->vm_file)
4105		fput(vma->vm_file);
4106	vma->vm_file = file;
4107	vma->vm_ops = &shmem_vm_ops;
4108
4109	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4110			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4111			(vma->vm_end & HPAGE_PMD_MASK)) {
4112		khugepaged_enter(vma, vma->vm_flags);
4113	}
4114
4115	return 0;
4116}
4117
4118/**
4119 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4120 * @mapping:	the page's address_space
4121 * @index:	the page index
4122 * @gfp:	the page allocator flags to use if allocating
4123 *
4124 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4125 * with any new page allocations done using the specified allocation flags.
4126 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4127 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4128 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4129 *
4130 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4131 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4132 */
4133struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4134					 pgoff_t index, gfp_t gfp)
4135{
4136#ifdef CONFIG_SHMEM
4137	struct inode *inode = mapping->host;
4138	struct page *page;
4139	int error;
4140
4141	BUG_ON(mapping->a_ops != &shmem_aops);
4142	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4143				  gfp, NULL, NULL);
4144	if (error)
4145		page = ERR_PTR(error);
4146	else
4147		unlock_page(page);
4148	return page;
4149#else
4150	/*
4151	 * The tiny !SHMEM case uses ramfs without swap
4152	 */
4153	return read_cache_page_gfp(mapping, index, gfp);
4154#endif
4155}
4156EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);