Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
 
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/slab.h>
 13#include <linux/module.h>
 
 
 
 14#include <linux/mempool.h>
 15#include <linux/blkdev.h>
 16#include <linux/writeback.h>
 
 17
 18static void add_element(mempool_t *pool, void *element)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19{
 20	BUG_ON(pool->curr_nr >= pool->min_nr);
 
 
 21	pool->elements[pool->curr_nr++] = element;
 22}
 23
 24static void *remove_element(mempool_t *pool)
 25{
 26	BUG_ON(pool->curr_nr <= 0);
 27	return pool->elements[--pool->curr_nr];
 
 
 
 
 28}
 29
 30static void free_pool(mempool_t *pool)
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	while (pool->curr_nr) {
 33		void *element = remove_element(pool);
 34		pool->free(element, pool->pool_data);
 35	}
 36	kfree(pool->elements);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37	kfree(pool);
 38}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39
 40/**
 41 * mempool_create - create a memory pool
 42 * @min_nr:    the minimum number of elements guaranteed to be
 43 *             allocated for this pool.
 44 * @alloc_fn:  user-defined element-allocation function.
 45 * @free_fn:   user-defined element-freeing function.
 46 * @pool_data: optional private data available to the user-defined functions.
 47 *
 48 * this function creates and allocates a guaranteed size, preallocated
 49 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 50 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 51 * functions might sleep - as long as the mempool_alloc() function is not called
 52 * from IRQ contexts.
 
 
 53 */
 54mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 55				mempool_free_t *free_fn, void *pool_data)
 56{
 57	return  mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
 
 58}
 59EXPORT_SYMBOL(mempool_create);
 60
 61mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 62			mempool_free_t *free_fn, void *pool_data, int node_id)
 
 63{
 64	mempool_t *pool;
 65	pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id);
 
 66	if (!pool)
 67		return NULL;
 68	pool->elements = kmalloc_node(min_nr * sizeof(void *),
 69					GFP_KERNEL, node_id);
 70	if (!pool->elements) {
 71		kfree(pool);
 72		return NULL;
 73	}
 74	spin_lock_init(&pool->lock);
 75	pool->min_nr = min_nr;
 76	pool->pool_data = pool_data;
 77	init_waitqueue_head(&pool->wait);
 78	pool->alloc = alloc_fn;
 79	pool->free = free_fn;
 80
 81	/*
 82	 * First pre-allocate the guaranteed number of buffers.
 83	 */
 84	while (pool->curr_nr < pool->min_nr) {
 85		void *element;
 86
 87		element = pool->alloc(GFP_KERNEL, pool->pool_data);
 88		if (unlikely(!element)) {
 89			free_pool(pool);
 90			return NULL;
 91		}
 92		add_element(pool, element);
 93	}
 94	return pool;
 95}
 96EXPORT_SYMBOL(mempool_create_node);
 97
 98/**
 99 * mempool_resize - resize an existing memory pool
100 * @pool:       pointer to the memory pool which was allocated via
101 *              mempool_create().
102 * @new_min_nr: the new minimum number of elements guaranteed to be
103 *              allocated for this pool.
104 * @gfp_mask:   the usual allocation bitmask.
105 *
106 * This function shrinks/grows the pool. In the case of growing,
107 * it cannot be guaranteed that the pool will be grown to the new
108 * size immediately, but new mempool_free() calls will refill it.
 
109 *
110 * Note, the caller must guarantee that no mempool_destroy is called
111 * while this function is running. mempool_alloc() & mempool_free()
112 * might be called (eg. from IRQ contexts) while this function executes.
 
 
113 */
114int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
115{
116	void *element;
117	void **new_elements;
118	unsigned long flags;
119
120	BUG_ON(new_min_nr <= 0);
 
121
122	spin_lock_irqsave(&pool->lock, flags);
123	if (new_min_nr <= pool->min_nr) {
124		while (new_min_nr < pool->curr_nr) {
125			element = remove_element(pool);
126			spin_unlock_irqrestore(&pool->lock, flags);
127			pool->free(element, pool->pool_data);
128			spin_lock_irqsave(&pool->lock, flags);
129		}
130		pool->min_nr = new_min_nr;
131		goto out_unlock;
132	}
133	spin_unlock_irqrestore(&pool->lock, flags);
134
135	/* Grow the pool */
136	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
 
137	if (!new_elements)
138		return -ENOMEM;
139
140	spin_lock_irqsave(&pool->lock, flags);
141	if (unlikely(new_min_nr <= pool->min_nr)) {
142		/* Raced, other resize will do our work */
143		spin_unlock_irqrestore(&pool->lock, flags);
144		kfree(new_elements);
145		goto out;
146	}
147	memcpy(new_elements, pool->elements,
148			pool->curr_nr * sizeof(*new_elements));
149	kfree(pool->elements);
150	pool->elements = new_elements;
151	pool->min_nr = new_min_nr;
152
153	while (pool->curr_nr < pool->min_nr) {
154		spin_unlock_irqrestore(&pool->lock, flags);
155		element = pool->alloc(gfp_mask, pool->pool_data);
156		if (!element)
157			goto out;
158		spin_lock_irqsave(&pool->lock, flags);
159		if (pool->curr_nr < pool->min_nr) {
160			add_element(pool, element);
161		} else {
162			spin_unlock_irqrestore(&pool->lock, flags);
163			pool->free(element, pool->pool_data);	/* Raced */
164			goto out;
165		}
166	}
167out_unlock:
168	spin_unlock_irqrestore(&pool->lock, flags);
169out:
170	return 0;
171}
172EXPORT_SYMBOL(mempool_resize);
173
174/**
175 * mempool_destroy - deallocate a memory pool
176 * @pool:      pointer to the memory pool which was allocated via
177 *             mempool_create().
178 *
179 * this function only sleeps if the free_fn() function sleeps. The caller
180 * has to guarantee that all elements have been returned to the pool (ie:
181 * freed) prior to calling mempool_destroy().
182 */
183void mempool_destroy(mempool_t *pool)
184{
185	/* Check for outstanding elements */
186	BUG_ON(pool->curr_nr != pool->min_nr);
187	free_pool(pool);
188}
189EXPORT_SYMBOL(mempool_destroy);
190
191/**
192 * mempool_alloc - allocate an element from a specific memory pool
193 * @pool:      pointer to the memory pool which was allocated via
194 *             mempool_create().
195 * @gfp_mask:  the usual allocation bitmask.
196 *
197 * this function only sleeps if the alloc_fn() function sleeps or
198 * returns NULL. Note that due to preallocation, this function
199 * *never* fails when called from process contexts. (it might
200 * fail if called from an IRQ context.)
 
 
 
201 */
202void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
203{
204	void *element;
205	unsigned long flags;
206	wait_queue_t wait;
207	gfp_t gfp_temp;
208
209	might_sleep_if(gfp_mask & __GFP_WAIT);
 
210
211	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
212	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
213	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
214
215	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
216
217repeat_alloc:
218
219	element = pool->alloc(gfp_temp, pool->pool_data);
220	if (likely(element != NULL))
221		return element;
222
223	spin_lock_irqsave(&pool->lock, flags);
224	if (likely(pool->curr_nr)) {
225		element = remove_element(pool);
226		spin_unlock_irqrestore(&pool->lock, flags);
 
 
 
 
 
 
 
227		return element;
228	}
229	spin_unlock_irqrestore(&pool->lock, flags);
230
231	/* We must not sleep in the GFP_ATOMIC case */
232	if (!(gfp_mask & __GFP_WAIT))
 
 
 
 
 
 
 
 
 
 
 
233		return NULL;
 
234
235	/* Now start performing page reclaim */
236	gfp_temp = gfp_mask;
237	init_wait(&wait);
238	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
239	smp_mb();
240	if (!pool->curr_nr) {
241		/*
242		 * FIXME: this should be io_schedule().  The timeout is there
243		 * as a workaround for some DM problems in 2.6.18.
244		 */
245		io_schedule_timeout(5*HZ);
246	}
247	finish_wait(&pool->wait, &wait);
248
 
 
 
 
 
 
 
 
 
249	goto repeat_alloc;
250}
251EXPORT_SYMBOL(mempool_alloc);
252
253/**
254 * mempool_free - return an element to the pool.
255 * @element:   pool element pointer.
256 * @pool:      pointer to the memory pool which was allocated via
257 *             mempool_create().
258 *
259 * this function only sleeps if the free_fn() function sleeps.
260 */
261void mempool_free(void *element, mempool_t *pool)
262{
263	unsigned long flags;
264
265	if (unlikely(element == NULL))
266		return;
267
268	smp_mb();
269	if (pool->curr_nr < pool->min_nr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270		spin_lock_irqsave(&pool->lock, flags);
271		if (pool->curr_nr < pool->min_nr) {
272			add_element(pool, element);
273			spin_unlock_irqrestore(&pool->lock, flags);
274			wake_up(&pool->wait);
275			return;
276		}
277		spin_unlock_irqrestore(&pool->lock, flags);
278	}
279	pool->free(element, pool->pool_data);
280}
281EXPORT_SYMBOL(mempool_free);
282
283/*
284 * A commonly used alloc and free fn.
285 */
286void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
287{
288	struct kmem_cache *mem = pool_data;
 
289	return kmem_cache_alloc(mem, gfp_mask);
290}
291EXPORT_SYMBOL(mempool_alloc_slab);
292
293void mempool_free_slab(void *element, void *pool_data)
294{
295	struct kmem_cache *mem = pool_data;
296	kmem_cache_free(mem, element);
297}
298EXPORT_SYMBOL(mempool_free_slab);
299
300/*
301 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
302 * specified by pool_data
303 */
304void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
305{
306	size_t size = (size_t)pool_data;
307	return kmalloc(size, gfp_mask);
308}
309EXPORT_SYMBOL(mempool_kmalloc);
310
311void mempool_kfree(void *element, void *pool_data)
312{
313	kfree(element);
314}
315EXPORT_SYMBOL(mempool_kfree);
316
317/*
318 * A simple mempool-backed page allocator that allocates pages
319 * of the order specified by pool_data.
320 */
321void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
322{
323	int order = (int)(long)pool_data;
324	return alloc_pages(gfp_mask, order);
325}
326EXPORT_SYMBOL(mempool_alloc_pages);
327
328void mempool_free_pages(void *element, void *pool_data)
329{
330	int order = (int)(long)pool_data;
331	__free_pages(element, order);
332}
333EXPORT_SYMBOL(mempool_free_pages);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/mempool.c
  4 *
  5 *  memory buffer pool support. Such pools are mostly used
  6 *  for guaranteed, deadlock-free memory allocations during
  7 *  extreme VM load.
  8 *
  9 *  started by Ingo Molnar, Copyright (C) 2001
 10 *  debugging by David Rientjes, Copyright (C) 2015
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/slab.h>
 15#include <linux/highmem.h>
 16#include <linux/kasan.h>
 17#include <linux/kmemleak.h>
 18#include <linux/export.h>
 19#include <linux/mempool.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include "slab.h"
 23
 24#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 25static void poison_error(mempool_t *pool, void *element, size_t size,
 26			 size_t byte)
 27{
 28	const int nr = pool->curr_nr;
 29	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
 30	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
 31	int i;
 32
 33	pr_err("BUG: mempool element poison mismatch\n");
 34	pr_err("Mempool %p size %zu\n", pool, size);
 35	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
 36	for (i = start; i < end; i++)
 37		pr_cont("%x ", *(u8 *)(element + i));
 38	pr_cont("%s\n", end < size ? "..." : "");
 39	dump_stack();
 40}
 41
 42static void __check_element(mempool_t *pool, void *element, size_t size)
 43{
 44	u8 *obj = element;
 45	size_t i;
 46
 47	for (i = 0; i < size; i++) {
 48		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
 49
 50		if (obj[i] != exp) {
 51			poison_error(pool, element, size, i);
 52			return;
 53		}
 54	}
 55	memset(obj, POISON_INUSE, size);
 56}
 57
 58static void check_element(mempool_t *pool, void *element)
 59{
 60	/* Mempools backed by slab allocator */
 61	if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
 62		__check_element(pool, element, ksize(element));
 63	} else if (pool->free == mempool_free_pages) {
 64		/* Mempools backed by page allocator */
 65		int order = (int)(long)pool->pool_data;
 66		void *addr = kmap_atomic((struct page *)element);
 67
 68		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
 69		kunmap_atomic(addr);
 70	}
 71}
 72
 73static void __poison_element(void *element, size_t size)
 74{
 75	u8 *obj = element;
 76
 77	memset(obj, POISON_FREE, size - 1);
 78	obj[size - 1] = POISON_END;
 79}
 80
 81static void poison_element(mempool_t *pool, void *element)
 82{
 83	/* Mempools backed by slab allocator */
 84	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
 85		__poison_element(element, ksize(element));
 86	} else if (pool->alloc == mempool_alloc_pages) {
 87		/* Mempools backed by page allocator */
 88		int order = (int)(long)pool->pool_data;
 89		void *addr = kmap_atomic((struct page *)element);
 90
 91		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
 92		kunmap_atomic(addr);
 93	}
 94}
 95#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 96static inline void check_element(mempool_t *pool, void *element)
 97{
 98}
 99static inline void poison_element(mempool_t *pool, void *element)
100{
101}
102#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
103
104static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
105{
106	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
107		kasan_slab_free_mempool(element);
108	else if (pool->alloc == mempool_alloc_pages)
109		kasan_poison_pages(element, (unsigned long)pool->pool_data,
110				   false);
111}
112
113static void kasan_unpoison_element(mempool_t *pool, void *element)
114{
115	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
116		kasan_unpoison_range(element, __ksize(element));
117	else if (pool->alloc == mempool_alloc_pages)
118		kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
119				     false);
120}
121
122static __always_inline void add_element(mempool_t *pool, void *element)
123{
124	BUG_ON(pool->curr_nr >= pool->min_nr);
125	poison_element(pool, element);
126	kasan_poison_element(pool, element);
127	pool->elements[pool->curr_nr++] = element;
128}
129
130static void *remove_element(mempool_t *pool)
131{
132	void *element = pool->elements[--pool->curr_nr];
133
134	BUG_ON(pool->curr_nr < 0);
135	kasan_unpoison_element(pool, element);
136	check_element(pool, element);
137	return element;
138}
139
140/**
141 * mempool_exit - exit a mempool initialized with mempool_init()
142 * @pool:      pointer to the memory pool which was initialized with
143 *             mempool_init().
144 *
145 * Free all reserved elements in @pool and @pool itself.  This function
146 * only sleeps if the free_fn() function sleeps.
147 *
148 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
149 * kzalloc()).
150 */
151void mempool_exit(mempool_t *pool)
152{
153	while (pool->curr_nr) {
154		void *element = remove_element(pool);
155		pool->free(element, pool->pool_data);
156	}
157	kfree(pool->elements);
158	pool->elements = NULL;
159}
160EXPORT_SYMBOL(mempool_exit);
161
162/**
163 * mempool_destroy - deallocate a memory pool
164 * @pool:      pointer to the memory pool which was allocated via
165 *             mempool_create().
166 *
167 * Free all reserved elements in @pool and @pool itself.  This function
168 * only sleeps if the free_fn() function sleeps.
169 */
170void mempool_destroy(mempool_t *pool)
171{
172	if (unlikely(!pool))
173		return;
174
175	mempool_exit(pool);
176	kfree(pool);
177}
178EXPORT_SYMBOL(mempool_destroy);
179
180int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
181		      mempool_free_t *free_fn, void *pool_data,
182		      gfp_t gfp_mask, int node_id)
183{
184	spin_lock_init(&pool->lock);
185	pool->min_nr	= min_nr;
186	pool->pool_data = pool_data;
187	pool->alloc	= alloc_fn;
188	pool->free	= free_fn;
189	init_waitqueue_head(&pool->wait);
190
191	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
192					    gfp_mask, node_id);
193	if (!pool->elements)
194		return -ENOMEM;
195
196	/*
197	 * First pre-allocate the guaranteed number of buffers.
198	 */
199	while (pool->curr_nr < pool->min_nr) {
200		void *element;
201
202		element = pool->alloc(gfp_mask, pool->pool_data);
203		if (unlikely(!element)) {
204			mempool_exit(pool);
205			return -ENOMEM;
206		}
207		add_element(pool, element);
208	}
209
210	return 0;
211}
212EXPORT_SYMBOL(mempool_init_node);
213
214/**
215 * mempool_init - initialize a memory pool
216 * @pool:      pointer to the memory pool that should be initialized
217 * @min_nr:    the minimum number of elements guaranteed to be
218 *             allocated for this pool.
219 * @alloc_fn:  user-defined element-allocation function.
220 * @free_fn:   user-defined element-freeing function.
221 * @pool_data: optional private data available to the user-defined functions.
222 *
223 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
224 * structure).
225 *
226 * Return: %0 on success, negative error code otherwise.
227 */
228int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
229		 mempool_free_t *free_fn, void *pool_data)
230{
231	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
232				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
233
234}
235EXPORT_SYMBOL(mempool_init);
236
237/**
238 * mempool_create - create a memory pool
239 * @min_nr:    the minimum number of elements guaranteed to be
240 *             allocated for this pool.
241 * @alloc_fn:  user-defined element-allocation function.
242 * @free_fn:   user-defined element-freeing function.
243 * @pool_data: optional private data available to the user-defined functions.
244 *
245 * this function creates and allocates a guaranteed size, preallocated
246 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
247 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
248 * functions might sleep - as long as the mempool_alloc() function is not called
249 * from IRQ contexts.
250 *
251 * Return: pointer to the created memory pool object or %NULL on error.
252 */
253mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
254				mempool_free_t *free_fn, void *pool_data)
255{
256	return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
257				   GFP_KERNEL, NUMA_NO_NODE);
258}
259EXPORT_SYMBOL(mempool_create);
260
261mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
262			       mempool_free_t *free_fn, void *pool_data,
263			       gfp_t gfp_mask, int node_id)
264{
265	mempool_t *pool;
266
267	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
268	if (!pool)
269		return NULL;
270
271	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
272			      gfp_mask, node_id)) {
273		kfree(pool);
274		return NULL;
275	}
 
 
 
 
 
 
276
 
 
 
 
 
 
 
 
 
 
 
 
 
277	return pool;
278}
279EXPORT_SYMBOL(mempool_create_node);
280
281/**
282 * mempool_resize - resize an existing memory pool
283 * @pool:       pointer to the memory pool which was allocated via
284 *              mempool_create().
285 * @new_min_nr: the new minimum number of elements guaranteed to be
286 *              allocated for this pool.
 
287 *
288 * This function shrinks/grows the pool. In the case of growing,
289 * it cannot be guaranteed that the pool will be grown to the new
290 * size immediately, but new mempool_free() calls will refill it.
291 * This function may sleep.
292 *
293 * Note, the caller must guarantee that no mempool_destroy is called
294 * while this function is running. mempool_alloc() & mempool_free()
295 * might be called (eg. from IRQ contexts) while this function executes.
296 *
297 * Return: %0 on success, negative error code otherwise.
298 */
299int mempool_resize(mempool_t *pool, int new_min_nr)
300{
301	void *element;
302	void **new_elements;
303	unsigned long flags;
304
305	BUG_ON(new_min_nr <= 0);
306	might_sleep();
307
308	spin_lock_irqsave(&pool->lock, flags);
309	if (new_min_nr <= pool->min_nr) {
310		while (new_min_nr < pool->curr_nr) {
311			element = remove_element(pool);
312			spin_unlock_irqrestore(&pool->lock, flags);
313			pool->free(element, pool->pool_data);
314			spin_lock_irqsave(&pool->lock, flags);
315		}
316		pool->min_nr = new_min_nr;
317		goto out_unlock;
318	}
319	spin_unlock_irqrestore(&pool->lock, flags);
320
321	/* Grow the pool */
322	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
323				     GFP_KERNEL);
324	if (!new_elements)
325		return -ENOMEM;
326
327	spin_lock_irqsave(&pool->lock, flags);
328	if (unlikely(new_min_nr <= pool->min_nr)) {
329		/* Raced, other resize will do our work */
330		spin_unlock_irqrestore(&pool->lock, flags);
331		kfree(new_elements);
332		goto out;
333	}
334	memcpy(new_elements, pool->elements,
335			pool->curr_nr * sizeof(*new_elements));
336	kfree(pool->elements);
337	pool->elements = new_elements;
338	pool->min_nr = new_min_nr;
339
340	while (pool->curr_nr < pool->min_nr) {
341		spin_unlock_irqrestore(&pool->lock, flags);
342		element = pool->alloc(GFP_KERNEL, pool->pool_data);
343		if (!element)
344			goto out;
345		spin_lock_irqsave(&pool->lock, flags);
346		if (pool->curr_nr < pool->min_nr) {
347			add_element(pool, element);
348		} else {
349			spin_unlock_irqrestore(&pool->lock, flags);
350			pool->free(element, pool->pool_data);	/* Raced */
351			goto out;
352		}
353	}
354out_unlock:
355	spin_unlock_irqrestore(&pool->lock, flags);
356out:
357	return 0;
358}
359EXPORT_SYMBOL(mempool_resize);
360
361/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362 * mempool_alloc - allocate an element from a specific memory pool
363 * @pool:      pointer to the memory pool which was allocated via
364 *             mempool_create().
365 * @gfp_mask:  the usual allocation bitmask.
366 *
367 * this function only sleeps if the alloc_fn() function sleeps or
368 * returns NULL. Note that due to preallocation, this function
369 * *never* fails when called from process contexts. (it might
370 * fail if called from an IRQ context.)
371 * Note: using __GFP_ZERO is not supported.
372 *
373 * Return: pointer to the allocated element or %NULL on error.
374 */
375void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
376{
377	void *element;
378	unsigned long flags;
379	wait_queue_entry_t wait;
380	gfp_t gfp_temp;
381
382	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
383	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
384
385	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
386	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
387	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
388
389	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
390
391repeat_alloc:
392
393	element = pool->alloc(gfp_temp, pool->pool_data);
394	if (likely(element != NULL))
395		return element;
396
397	spin_lock_irqsave(&pool->lock, flags);
398	if (likely(pool->curr_nr)) {
399		element = remove_element(pool);
400		spin_unlock_irqrestore(&pool->lock, flags);
401		/* paired with rmb in mempool_free(), read comment there */
402		smp_wmb();
403		/*
404		 * Update the allocation stack trace as this is more useful
405		 * for debugging.
406		 */
407		kmemleak_update_trace(element);
408		return element;
409	}
 
410
411	/*
412	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
413	 * alloc failed with that and @pool was empty, retry immediately.
414	 */
415	if (gfp_temp != gfp_mask) {
416		spin_unlock_irqrestore(&pool->lock, flags);
417		gfp_temp = gfp_mask;
418		goto repeat_alloc;
419	}
420
421	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
422	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
423		spin_unlock_irqrestore(&pool->lock, flags);
424		return NULL;
425	}
426
427	/* Let's wait for someone else to return an element to @pool */
 
428	init_wait(&wait);
429	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
430
431	spin_unlock_irqrestore(&pool->lock, flags);
432
433	/*
434	 * FIXME: this should be io_schedule().  The timeout is there as a
435	 * workaround for some DM problems in 2.6.18.
436	 */
437	io_schedule_timeout(5*HZ);
438
439	finish_wait(&pool->wait, &wait);
440	goto repeat_alloc;
441}
442EXPORT_SYMBOL(mempool_alloc);
443
444/**
445 * mempool_free - return an element to the pool.
446 * @element:   pool element pointer.
447 * @pool:      pointer to the memory pool which was allocated via
448 *             mempool_create().
449 *
450 * this function only sleeps if the free_fn() function sleeps.
451 */
452void mempool_free(void *element, mempool_t *pool)
453{
454	unsigned long flags;
455
456	if (unlikely(element == NULL))
457		return;
458
459	/*
460	 * Paired with the wmb in mempool_alloc().  The preceding read is
461	 * for @element and the following @pool->curr_nr.  This ensures
462	 * that the visible value of @pool->curr_nr is from after the
463	 * allocation of @element.  This is necessary for fringe cases
464	 * where @element was passed to this task without going through
465	 * barriers.
466	 *
467	 * For example, assume @p is %NULL at the beginning and one task
468	 * performs "p = mempool_alloc(...);" while another task is doing
469	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
470	 * may end up using curr_nr value which is from before allocation
471	 * of @p without the following rmb.
472	 */
473	smp_rmb();
474
475	/*
476	 * For correctness, we need a test which is guaranteed to trigger
477	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
478	 * without locking achieves that and refilling as soon as possible
479	 * is desirable.
480	 *
481	 * Because curr_nr visible here is always a value after the
482	 * allocation of @element, any task which decremented curr_nr below
483	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
484	 * incremented to min_nr afterwards.  If curr_nr gets incremented
485	 * to min_nr after the allocation of @element, the elements
486	 * allocated after that are subject to the same guarantee.
487	 *
488	 * Waiters happen iff curr_nr is 0 and the above guarantee also
489	 * ensures that there will be frees which return elements to the
490	 * pool waking up the waiters.
491	 */
492	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
493		spin_lock_irqsave(&pool->lock, flags);
494		if (likely(pool->curr_nr < pool->min_nr)) {
495			add_element(pool, element);
496			spin_unlock_irqrestore(&pool->lock, flags);
497			wake_up(&pool->wait);
498			return;
499		}
500		spin_unlock_irqrestore(&pool->lock, flags);
501	}
502	pool->free(element, pool->pool_data);
503}
504EXPORT_SYMBOL(mempool_free);
505
506/*
507 * A commonly used alloc and free fn.
508 */
509void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
510{
511	struct kmem_cache *mem = pool_data;
512	VM_BUG_ON(mem->ctor);
513	return kmem_cache_alloc(mem, gfp_mask);
514}
515EXPORT_SYMBOL(mempool_alloc_slab);
516
517void mempool_free_slab(void *element, void *pool_data)
518{
519	struct kmem_cache *mem = pool_data;
520	kmem_cache_free(mem, element);
521}
522EXPORT_SYMBOL(mempool_free_slab);
523
524/*
525 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
526 * specified by pool_data
527 */
528void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
529{
530	size_t size = (size_t)pool_data;
531	return kmalloc(size, gfp_mask);
532}
533EXPORT_SYMBOL(mempool_kmalloc);
534
535void mempool_kfree(void *element, void *pool_data)
536{
537	kfree(element);
538}
539EXPORT_SYMBOL(mempool_kfree);
540
541/*
542 * A simple mempool-backed page allocator that allocates pages
543 * of the order specified by pool_data.
544 */
545void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
546{
547	int order = (int)(long)pool_data;
548	return alloc_pages(gfp_mask, order);
549}
550EXPORT_SYMBOL(mempool_alloc_pages);
551
552void mempool_free_pages(void *element, void *pool_data)
553{
554	int order = (int)(long)pool_data;
555	__free_pages(element, order);
556}
557EXPORT_SYMBOL(mempool_free_pages);