Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/slab.h>
 13#include <linux/module.h>
 14#include <linux/mempool.h>
 15#include <linux/blkdev.h>
 16#include <linux/writeback.h>
 17
 18static void add_element(mempool_t *pool, void *element)
 19{
 20	BUG_ON(pool->curr_nr >= pool->min_nr);
 21	pool->elements[pool->curr_nr++] = element;
 22}
 23
 24static void *remove_element(mempool_t *pool)
 25{
 26	BUG_ON(pool->curr_nr <= 0);
 27	return pool->elements[--pool->curr_nr];
 28}
 29
 30static void free_pool(mempool_t *pool)
 
 
 
 
 
 
 
 
 31{
 32	while (pool->curr_nr) {
 33		void *element = remove_element(pool);
 34		pool->free(element, pool->pool_data);
 35	}
 36	kfree(pool->elements);
 37	kfree(pool);
 38}
 
 39
 40/**
 41 * mempool_create - create a memory pool
 42 * @min_nr:    the minimum number of elements guaranteed to be
 43 *             allocated for this pool.
 44 * @alloc_fn:  user-defined element-allocation function.
 45 * @free_fn:   user-defined element-freeing function.
 46 * @pool_data: optional private data available to the user-defined functions.
 47 *
 48 * this function creates and allocates a guaranteed size, preallocated
 49 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 50 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 51 * functions might sleep - as long as the mempool_alloc() function is not called
 52 * from IRQ contexts.
 53 */
 54mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 55				mempool_free_t *free_fn, void *pool_data)
 56{
 57	return  mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
 58}
 59EXPORT_SYMBOL(mempool_create);
 60
 61mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 62			mempool_free_t *free_fn, void *pool_data, int node_id)
 63{
 64	mempool_t *pool;
 65	pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id);
 66	if (!pool)
 67		return NULL;
 68	pool->elements = kmalloc_node(min_nr * sizeof(void *),
 69					GFP_KERNEL, node_id);
 70	if (!pool->elements) {
 71		kfree(pool);
 72		return NULL;
 73	}
 74	spin_lock_init(&pool->lock);
 75	pool->min_nr = min_nr;
 76	pool->pool_data = pool_data;
 77	init_waitqueue_head(&pool->wait);
 78	pool->alloc = alloc_fn;
 79	pool->free = free_fn;
 80
 81	/*
 82	 * First pre-allocate the guaranteed number of buffers.
 83	 */
 84	while (pool->curr_nr < pool->min_nr) {
 85		void *element;
 86
 87		element = pool->alloc(GFP_KERNEL, pool->pool_data);
 88		if (unlikely(!element)) {
 89			free_pool(pool);
 90			return NULL;
 91		}
 92		add_element(pool, element);
 93	}
 94	return pool;
 95}
 96EXPORT_SYMBOL(mempool_create_node);
 97
 98/**
 99 * mempool_resize - resize an existing memory pool
100 * @pool:       pointer to the memory pool which was allocated via
101 *              mempool_create().
102 * @new_min_nr: the new minimum number of elements guaranteed to be
103 *              allocated for this pool.
104 * @gfp_mask:   the usual allocation bitmask.
105 *
106 * This function shrinks/grows the pool. In the case of growing,
107 * it cannot be guaranteed that the pool will be grown to the new
108 * size immediately, but new mempool_free() calls will refill it.
109 *
110 * Note, the caller must guarantee that no mempool_destroy is called
111 * while this function is running. mempool_alloc() & mempool_free()
112 * might be called (eg. from IRQ contexts) while this function executes.
113 */
114int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
115{
116	void *element;
117	void **new_elements;
118	unsigned long flags;
119
120	BUG_ON(new_min_nr <= 0);
121
122	spin_lock_irqsave(&pool->lock, flags);
123	if (new_min_nr <= pool->min_nr) {
124		while (new_min_nr < pool->curr_nr) {
125			element = remove_element(pool);
126			spin_unlock_irqrestore(&pool->lock, flags);
127			pool->free(element, pool->pool_data);
128			spin_lock_irqsave(&pool->lock, flags);
129		}
130		pool->min_nr = new_min_nr;
131		goto out_unlock;
132	}
133	spin_unlock_irqrestore(&pool->lock, flags);
134
135	/* Grow the pool */
136	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
137	if (!new_elements)
138		return -ENOMEM;
139
140	spin_lock_irqsave(&pool->lock, flags);
141	if (unlikely(new_min_nr <= pool->min_nr)) {
142		/* Raced, other resize will do our work */
143		spin_unlock_irqrestore(&pool->lock, flags);
144		kfree(new_elements);
145		goto out;
146	}
147	memcpy(new_elements, pool->elements,
148			pool->curr_nr * sizeof(*new_elements));
149	kfree(pool->elements);
150	pool->elements = new_elements;
151	pool->min_nr = new_min_nr;
152
153	while (pool->curr_nr < pool->min_nr) {
154		spin_unlock_irqrestore(&pool->lock, flags);
155		element = pool->alloc(gfp_mask, pool->pool_data);
156		if (!element)
157			goto out;
158		spin_lock_irqsave(&pool->lock, flags);
159		if (pool->curr_nr < pool->min_nr) {
160			add_element(pool, element);
161		} else {
162			spin_unlock_irqrestore(&pool->lock, flags);
163			pool->free(element, pool->pool_data);	/* Raced */
164			goto out;
165		}
166	}
167out_unlock:
168	spin_unlock_irqrestore(&pool->lock, flags);
169out:
170	return 0;
171}
172EXPORT_SYMBOL(mempool_resize);
173
174/**
175 * mempool_destroy - deallocate a memory pool
176 * @pool:      pointer to the memory pool which was allocated via
177 *             mempool_create().
178 *
179 * this function only sleeps if the free_fn() function sleeps. The caller
180 * has to guarantee that all elements have been returned to the pool (ie:
181 * freed) prior to calling mempool_destroy().
182 */
183void mempool_destroy(mempool_t *pool)
184{
185	/* Check for outstanding elements */
186	BUG_ON(pool->curr_nr != pool->min_nr);
187	free_pool(pool);
188}
189EXPORT_SYMBOL(mempool_destroy);
190
191/**
192 * mempool_alloc - allocate an element from a specific memory pool
193 * @pool:      pointer to the memory pool which was allocated via
194 *             mempool_create().
195 * @gfp_mask:  the usual allocation bitmask.
196 *
197 * this function only sleeps if the alloc_fn() function sleeps or
198 * returns NULL. Note that due to preallocation, this function
199 * *never* fails when called from process contexts. (it might
200 * fail if called from an IRQ context.)
201 */
202void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
203{
204	void *element;
205	unsigned long flags;
206	wait_queue_t wait;
207	gfp_t gfp_temp;
208
209	might_sleep_if(gfp_mask & __GFP_WAIT);
210
211	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
212	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
213	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
214
215	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
216
217repeat_alloc:
218
219	element = pool->alloc(gfp_temp, pool->pool_data);
220	if (likely(element != NULL))
221		return element;
222
223	spin_lock_irqsave(&pool->lock, flags);
224	if (likely(pool->curr_nr)) {
225		element = remove_element(pool);
226		spin_unlock_irqrestore(&pool->lock, flags);
 
 
227		return element;
228	}
229	spin_unlock_irqrestore(&pool->lock, flags);
230
231	/* We must not sleep in the GFP_ATOMIC case */
232	if (!(gfp_mask & __GFP_WAIT))
 
 
 
 
 
 
 
 
 
 
 
233		return NULL;
 
234
235	/* Now start performing page reclaim */
236	gfp_temp = gfp_mask;
237	init_wait(&wait);
238	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
239	smp_mb();
240	if (!pool->curr_nr) {
241		/*
242		 * FIXME: this should be io_schedule().  The timeout is there
243		 * as a workaround for some DM problems in 2.6.18.
244		 */
245		io_schedule_timeout(5*HZ);
246	}
247	finish_wait(&pool->wait, &wait);
248
 
 
 
 
 
 
 
 
 
249	goto repeat_alloc;
250}
251EXPORT_SYMBOL(mempool_alloc);
252
253/**
254 * mempool_free - return an element to the pool.
255 * @element:   pool element pointer.
256 * @pool:      pointer to the memory pool which was allocated via
257 *             mempool_create().
258 *
259 * this function only sleeps if the free_fn() function sleeps.
260 */
261void mempool_free(void *element, mempool_t *pool)
262{
263	unsigned long flags;
264
265	if (unlikely(element == NULL))
266		return;
267
268	smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269	if (pool->curr_nr < pool->min_nr) {
270		spin_lock_irqsave(&pool->lock, flags);
271		if (pool->curr_nr < pool->min_nr) {
272			add_element(pool, element);
273			spin_unlock_irqrestore(&pool->lock, flags);
274			wake_up(&pool->wait);
275			return;
276		}
277		spin_unlock_irqrestore(&pool->lock, flags);
278	}
279	pool->free(element, pool->pool_data);
280}
281EXPORT_SYMBOL(mempool_free);
282
283/*
284 * A commonly used alloc and free fn.
285 */
286void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
287{
288	struct kmem_cache *mem = pool_data;
289	return kmem_cache_alloc(mem, gfp_mask);
290}
291EXPORT_SYMBOL(mempool_alloc_slab);
292
293void mempool_free_slab(void *element, void *pool_data)
294{
295	struct kmem_cache *mem = pool_data;
296	kmem_cache_free(mem, element);
297}
298EXPORT_SYMBOL(mempool_free_slab);
299
300/*
301 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
302 * specified by pool_data
303 */
304void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
305{
306	size_t size = (size_t)pool_data;
307	return kmalloc(size, gfp_mask);
308}
309EXPORT_SYMBOL(mempool_kmalloc);
310
311void mempool_kfree(void *element, void *pool_data)
312{
313	kfree(element);
314}
315EXPORT_SYMBOL(mempool_kfree);
316
317/*
318 * A simple mempool-backed page allocator that allocates pages
319 * of the order specified by pool_data.
320 */
321void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
322{
323	int order = (int)(long)pool_data;
324	return alloc_pages(gfp_mask, order);
325}
326EXPORT_SYMBOL(mempool_alloc_pages);
327
328void mempool_free_pages(void *element, void *pool_data)
329{
330	int order = (int)(long)pool_data;
331	__free_pages(element, order);
332}
333EXPORT_SYMBOL(mempool_free_pages);
v3.5.6
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/slab.h>
 13#include <linux/export.h>
 14#include <linux/mempool.h>
 15#include <linux/blkdev.h>
 16#include <linux/writeback.h>
 17
 18static void add_element(mempool_t *pool, void *element)
 19{
 20	BUG_ON(pool->curr_nr >= pool->min_nr);
 21	pool->elements[pool->curr_nr++] = element;
 22}
 23
 24static void *remove_element(mempool_t *pool)
 25{
 26	BUG_ON(pool->curr_nr <= 0);
 27	return pool->elements[--pool->curr_nr];
 28}
 29
 30/**
 31 * mempool_destroy - deallocate a memory pool
 32 * @pool:      pointer to the memory pool which was allocated via
 33 *             mempool_create().
 34 *
 35 * Free all reserved elements in @pool and @pool itself.  This function
 36 * only sleeps if the free_fn() function sleeps.
 37 */
 38void mempool_destroy(mempool_t *pool)
 39{
 40	while (pool->curr_nr) {
 41		void *element = remove_element(pool);
 42		pool->free(element, pool->pool_data);
 43	}
 44	kfree(pool->elements);
 45	kfree(pool);
 46}
 47EXPORT_SYMBOL(mempool_destroy);
 48
 49/**
 50 * mempool_create - create a memory pool
 51 * @min_nr:    the minimum number of elements guaranteed to be
 52 *             allocated for this pool.
 53 * @alloc_fn:  user-defined element-allocation function.
 54 * @free_fn:   user-defined element-freeing function.
 55 * @pool_data: optional private data available to the user-defined functions.
 56 *
 57 * this function creates and allocates a guaranteed size, preallocated
 58 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 59 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 60 * functions might sleep - as long as the mempool_alloc() function is not called
 61 * from IRQ contexts.
 62 */
 63mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 64				mempool_free_t *free_fn, void *pool_data)
 65{
 66	return  mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
 67}
 68EXPORT_SYMBOL(mempool_create);
 69
 70mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 71			mempool_free_t *free_fn, void *pool_data, int node_id)
 72{
 73	mempool_t *pool;
 74	pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id);
 75	if (!pool)
 76		return NULL;
 77	pool->elements = kmalloc_node(min_nr * sizeof(void *),
 78					GFP_KERNEL, node_id);
 79	if (!pool->elements) {
 80		kfree(pool);
 81		return NULL;
 82	}
 83	spin_lock_init(&pool->lock);
 84	pool->min_nr = min_nr;
 85	pool->pool_data = pool_data;
 86	init_waitqueue_head(&pool->wait);
 87	pool->alloc = alloc_fn;
 88	pool->free = free_fn;
 89
 90	/*
 91	 * First pre-allocate the guaranteed number of buffers.
 92	 */
 93	while (pool->curr_nr < pool->min_nr) {
 94		void *element;
 95
 96		element = pool->alloc(GFP_KERNEL, pool->pool_data);
 97		if (unlikely(!element)) {
 98			mempool_destroy(pool);
 99			return NULL;
100		}
101		add_element(pool, element);
102	}
103	return pool;
104}
105EXPORT_SYMBOL(mempool_create_node);
106
107/**
108 * mempool_resize - resize an existing memory pool
109 * @pool:       pointer to the memory pool which was allocated via
110 *              mempool_create().
111 * @new_min_nr: the new minimum number of elements guaranteed to be
112 *              allocated for this pool.
113 * @gfp_mask:   the usual allocation bitmask.
114 *
115 * This function shrinks/grows the pool. In the case of growing,
116 * it cannot be guaranteed that the pool will be grown to the new
117 * size immediately, but new mempool_free() calls will refill it.
118 *
119 * Note, the caller must guarantee that no mempool_destroy is called
120 * while this function is running. mempool_alloc() & mempool_free()
121 * might be called (eg. from IRQ contexts) while this function executes.
122 */
123int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
124{
125	void *element;
126	void **new_elements;
127	unsigned long flags;
128
129	BUG_ON(new_min_nr <= 0);
130
131	spin_lock_irqsave(&pool->lock, flags);
132	if (new_min_nr <= pool->min_nr) {
133		while (new_min_nr < pool->curr_nr) {
134			element = remove_element(pool);
135			spin_unlock_irqrestore(&pool->lock, flags);
136			pool->free(element, pool->pool_data);
137			spin_lock_irqsave(&pool->lock, flags);
138		}
139		pool->min_nr = new_min_nr;
140		goto out_unlock;
141	}
142	spin_unlock_irqrestore(&pool->lock, flags);
143
144	/* Grow the pool */
145	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
146	if (!new_elements)
147		return -ENOMEM;
148
149	spin_lock_irqsave(&pool->lock, flags);
150	if (unlikely(new_min_nr <= pool->min_nr)) {
151		/* Raced, other resize will do our work */
152		spin_unlock_irqrestore(&pool->lock, flags);
153		kfree(new_elements);
154		goto out;
155	}
156	memcpy(new_elements, pool->elements,
157			pool->curr_nr * sizeof(*new_elements));
158	kfree(pool->elements);
159	pool->elements = new_elements;
160	pool->min_nr = new_min_nr;
161
162	while (pool->curr_nr < pool->min_nr) {
163		spin_unlock_irqrestore(&pool->lock, flags);
164		element = pool->alloc(gfp_mask, pool->pool_data);
165		if (!element)
166			goto out;
167		spin_lock_irqsave(&pool->lock, flags);
168		if (pool->curr_nr < pool->min_nr) {
169			add_element(pool, element);
170		} else {
171			spin_unlock_irqrestore(&pool->lock, flags);
172			pool->free(element, pool->pool_data);	/* Raced */
173			goto out;
174		}
175	}
176out_unlock:
177	spin_unlock_irqrestore(&pool->lock, flags);
178out:
179	return 0;
180}
181EXPORT_SYMBOL(mempool_resize);
182
183/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184 * mempool_alloc - allocate an element from a specific memory pool
185 * @pool:      pointer to the memory pool which was allocated via
186 *             mempool_create().
187 * @gfp_mask:  the usual allocation bitmask.
188 *
189 * this function only sleeps if the alloc_fn() function sleeps or
190 * returns NULL. Note that due to preallocation, this function
191 * *never* fails when called from process contexts. (it might
192 * fail if called from an IRQ context.)
193 */
194void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
195{
196	void *element;
197	unsigned long flags;
198	wait_queue_t wait;
199	gfp_t gfp_temp;
200
201	might_sleep_if(gfp_mask & __GFP_WAIT);
202
203	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
204	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
205	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
206
207	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
208
209repeat_alloc:
210
211	element = pool->alloc(gfp_temp, pool->pool_data);
212	if (likely(element != NULL))
213		return element;
214
215	spin_lock_irqsave(&pool->lock, flags);
216	if (likely(pool->curr_nr)) {
217		element = remove_element(pool);
218		spin_unlock_irqrestore(&pool->lock, flags);
219		/* paired with rmb in mempool_free(), read comment there */
220		smp_wmb();
221		return element;
222	}
 
223
224	/*
225	 * We use gfp mask w/o __GFP_WAIT or IO for the first round.  If
226	 * alloc failed with that and @pool was empty, retry immediately.
227	 */
228	if (gfp_temp != gfp_mask) {
229		spin_unlock_irqrestore(&pool->lock, flags);
230		gfp_temp = gfp_mask;
231		goto repeat_alloc;
232	}
233
234	/* We must not sleep if !__GFP_WAIT */
235	if (!(gfp_mask & __GFP_WAIT)) {
236		spin_unlock_irqrestore(&pool->lock, flags);
237		return NULL;
238	}
239
240	/* Let's wait for someone else to return an element to @pool */
 
241	init_wait(&wait);
242	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
243
244	spin_unlock_irqrestore(&pool->lock, flags);
245
246	/*
247	 * FIXME: this should be io_schedule().  The timeout is there as a
248	 * workaround for some DM problems in 2.6.18.
249	 */
250	io_schedule_timeout(5*HZ);
251
252	finish_wait(&pool->wait, &wait);
253	goto repeat_alloc;
254}
255EXPORT_SYMBOL(mempool_alloc);
256
257/**
258 * mempool_free - return an element to the pool.
259 * @element:   pool element pointer.
260 * @pool:      pointer to the memory pool which was allocated via
261 *             mempool_create().
262 *
263 * this function only sleeps if the free_fn() function sleeps.
264 */
265void mempool_free(void *element, mempool_t *pool)
266{
267	unsigned long flags;
268
269	if (unlikely(element == NULL))
270		return;
271
272	/*
273	 * Paired with the wmb in mempool_alloc().  The preceding read is
274	 * for @element and the following @pool->curr_nr.  This ensures
275	 * that the visible value of @pool->curr_nr is from after the
276	 * allocation of @element.  This is necessary for fringe cases
277	 * where @element was passed to this task without going through
278	 * barriers.
279	 *
280	 * For example, assume @p is %NULL at the beginning and one task
281	 * performs "p = mempool_alloc(...);" while another task is doing
282	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
283	 * may end up using curr_nr value which is from before allocation
284	 * of @p without the following rmb.
285	 */
286	smp_rmb();
287
288	/*
289	 * For correctness, we need a test which is guaranteed to trigger
290	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
291	 * without locking achieves that and refilling as soon as possible
292	 * is desirable.
293	 *
294	 * Because curr_nr visible here is always a value after the
295	 * allocation of @element, any task which decremented curr_nr below
296	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
297	 * incremented to min_nr afterwards.  If curr_nr gets incremented
298	 * to min_nr after the allocation of @element, the elements
299	 * allocated after that are subject to the same guarantee.
300	 *
301	 * Waiters happen iff curr_nr is 0 and the above guarantee also
302	 * ensures that there will be frees which return elements to the
303	 * pool waking up the waiters.
304	 */
305	if (pool->curr_nr < pool->min_nr) {
306		spin_lock_irqsave(&pool->lock, flags);
307		if (pool->curr_nr < pool->min_nr) {
308			add_element(pool, element);
309			spin_unlock_irqrestore(&pool->lock, flags);
310			wake_up(&pool->wait);
311			return;
312		}
313		spin_unlock_irqrestore(&pool->lock, flags);
314	}
315	pool->free(element, pool->pool_data);
316}
317EXPORT_SYMBOL(mempool_free);
318
319/*
320 * A commonly used alloc and free fn.
321 */
322void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
323{
324	struct kmem_cache *mem = pool_data;
325	return kmem_cache_alloc(mem, gfp_mask);
326}
327EXPORT_SYMBOL(mempool_alloc_slab);
328
329void mempool_free_slab(void *element, void *pool_data)
330{
331	struct kmem_cache *mem = pool_data;
332	kmem_cache_free(mem, element);
333}
334EXPORT_SYMBOL(mempool_free_slab);
335
336/*
337 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
338 * specified by pool_data
339 */
340void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
341{
342	size_t size = (size_t)pool_data;
343	return kmalloc(size, gfp_mask);
344}
345EXPORT_SYMBOL(mempool_kmalloc);
346
347void mempool_kfree(void *element, void *pool_data)
348{
349	kfree(element);
350}
351EXPORT_SYMBOL(mempool_kfree);
352
353/*
354 * A simple mempool-backed page allocator that allocates pages
355 * of the order specified by pool_data.
356 */
357void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
358{
359	int order = (int)(long)pool_data;
360	return alloc_pages(gfp_mask, order);
361}
362EXPORT_SYMBOL(mempool_alloc_pages);
363
364void mempool_free_pages(void *element, void *pool_data)
365{
366	int order = (int)(long)pool_data;
367	__free_pages(element, order);
368}
369EXPORT_SYMBOL(mempool_free_pages);