Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/kmemleak.txt.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a priority search tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
 
 
 
 
 
 
 
  56 * The kmemleak_object structures have a use_count incremented or decremented
  57 * using the get_object()/put_object() functions. When the use_count becomes
  58 * 0, this count can no longer be incremented and put_object() schedules the
  59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60 * function must be protected by rcu_read_lock() to avoid accessing a freed
  61 * structure.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65
  66#include <linux/init.h>
  67#include <linux/kernel.h>
  68#include <linux/list.h>
  69#include <linux/sched.h>
 
 
  70#include <linux/jiffies.h>
  71#include <linux/delay.h>
  72#include <linux/module.h>
  73#include <linux/kthread.h>
  74#include <linux/prio_tree.h>
  75#include <linux/fs.h>
  76#include <linux/debugfs.h>
  77#include <linux/seq_file.h>
  78#include <linux/cpumask.h>
  79#include <linux/spinlock.h>
 
  80#include <linux/mutex.h>
  81#include <linux/rcupdate.h>
  82#include <linux/stacktrace.h>
  83#include <linux/cache.h>
  84#include <linux/percpu.h>
  85#include <linux/hardirq.h>
 
  86#include <linux/mmzone.h>
  87#include <linux/slab.h>
  88#include <linux/thread_info.h>
  89#include <linux/err.h>
  90#include <linux/uaccess.h>
  91#include <linux/string.h>
  92#include <linux/nodemask.h>
  93#include <linux/mm.h>
  94#include <linux/workqueue.h>
  95#include <linux/crc32.h>
  96
  97#include <asm/sections.h>
  98#include <asm/processor.h>
  99#include <linux/atomic.h>
 100
 101#include <linux/kmemcheck.h>
 
 102#include <linux/kmemleak.h>
 
 103
 104/*
 105 * Kmemleak configuration and common defines.
 106 */
 107#define MAX_TRACE		16	/* stack trace length */
 108#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 111#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 112
 113#define BYTES_PER_POINTER	sizeof(void *)
 114
 115/* GFP bitmask for kmemleak internal allocations */
 116#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 117				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 118				 __GFP_NOWARN)
 119
 120/* scanning area inside a memory block */
 121struct kmemleak_scan_area {
 122	struct hlist_node node;
 123	unsigned long start;
 124	size_t size;
 125};
 126
 127#define KMEMLEAK_GREY	0
 128#define KMEMLEAK_BLACK	-1
 129
 130/*
 131 * Structure holding the metadata for each allocated memory block.
 132 * Modifications to such objects should be made while holding the
 133 * object->lock. Insertions or deletions from object_list, gray_list or
 134 * tree_node are already protected by the corresponding locks or mutex (see
 135 * the notes on locking above). These objects are reference-counted
 136 * (use_count) and freed using the RCU mechanism.
 137 */
 138struct kmemleak_object {
 139	spinlock_t lock;
 140	unsigned long flags;		/* object status flags */
 141	struct list_head object_list;
 142	struct list_head gray_list;
 143	struct prio_tree_node tree_node;
 144	struct rcu_head rcu;		/* object_list lockless traversal */
 145	/* object usage count; object freed when use_count == 0 */
 146	atomic_t use_count;
 147	unsigned long pointer;
 148	size_t size;
 
 
 149	/* minimum number of a pointers found before it is considered leak */
 150	int min_count;
 151	/* the total number of pointers found pointing to this object */
 152	int count;
 153	/* checksum for detecting modified objects */
 154	u32 checksum;
 155	/* memory ranges to be scanned inside an object (empty for all) */
 156	struct hlist_head area_list;
 157	unsigned long trace[MAX_TRACE];
 158	unsigned int trace_len;
 159	unsigned long jiffies;		/* creation timestamp */
 160	pid_t pid;			/* pid of the current task */
 161	char comm[TASK_COMM_LEN];	/* executable name */
 162};
 163
 164/* flag representing the memory block allocation status */
 165#define OBJECT_ALLOCATED	(1 << 0)
 166/* flag set after the first reporting of an unreference object */
 167#define OBJECT_REPORTED		(1 << 1)
 168/* flag set to not scan the object */
 169#define OBJECT_NO_SCAN		(1 << 2)
 
 
 170
 
 171/* number of bytes to print per line; must be 16 or 32 */
 172#define HEX_ROW_SIZE		16
 173/* number of bytes to print at a time (1, 2, 4, 8) */
 174#define HEX_GROUP_SIZE		1
 175/* include ASCII after the hex output */
 176#define HEX_ASCII		1
 177/* max number of lines to be printed */
 178#define HEX_MAX_LINES		2
 179
 180/* the list of all allocated objects */
 181static LIST_HEAD(object_list);
 182/* the list of gray-colored objects (see color_gray comment below) */
 183static LIST_HEAD(gray_list);
 184/* prio search tree for object boundaries */
 185static struct prio_tree_root object_tree_root;
 186/* rw_lock protecting the access to object_list and prio_tree_root */
 187static DEFINE_RWLOCK(kmemleak_lock);
 
 
 
 
 188
 189/* allocation caches for kmemleak internal data */
 190static struct kmem_cache *object_cache;
 191static struct kmem_cache *scan_area_cache;
 192
 193/* set if tracing memory operations is enabled */
 194static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
 
 
 195/* set in the late_initcall if there were no errors */
 196static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
 197/* enables or disables early logging of the memory operations */
 198static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
 199/* set if a fata kmemleak error has occurred */
 200static atomic_t kmemleak_error = ATOMIC_INIT(0);
 201
 202/* minimum and maximum address that may be valid pointers */
 203static unsigned long min_addr = ULONG_MAX;
 204static unsigned long max_addr;
 205
 206static struct task_struct *scan_thread;
 207/* used to avoid reporting of recently allocated objects */
 208static unsigned long jiffies_min_age;
 209static unsigned long jiffies_last_scan;
 210/* delay between automatic memory scannings */
 211static signed long jiffies_scan_wait;
 212/* enables or disables the task stacks scanning */
 213static int kmemleak_stack_scan = 1;
 214/* protects the memory scanning, parameters and debug/kmemleak file access */
 215static DEFINE_MUTEX(scan_mutex);
 216/* setting kmemleak=on, will set this var, skipping the disable */
 217static int kmemleak_skip_disable;
 
 
 218
 219
 220/*
 221 * Early object allocation/freeing logging. Kmemleak is initialized after the
 222 * kernel allocator. However, both the kernel allocator and kmemleak may
 223 * allocate memory blocks which need to be tracked. Kmemleak defines an
 224 * arbitrary buffer to hold the allocation/freeing information before it is
 225 * fully initialized.
 226 */
 227
 228/* kmemleak operation type for early logging */
 229enum {
 230	KMEMLEAK_ALLOC,
 231	KMEMLEAK_FREE,
 232	KMEMLEAK_FREE_PART,
 233	KMEMLEAK_NOT_LEAK,
 234	KMEMLEAK_IGNORE,
 235	KMEMLEAK_SCAN_AREA,
 236	KMEMLEAK_NO_SCAN
 237};
 238
 239/*
 240 * Structure holding the information passed to kmemleak callbacks during the
 241 * early logging.
 242 */
 243struct early_log {
 244	int op_type;			/* kmemleak operation type */
 245	const void *ptr;		/* allocated/freed memory block */
 246	size_t size;			/* memory block size */
 247	int min_count;			/* minimum reference count */
 248	unsigned long trace[MAX_TRACE];	/* stack trace */
 249	unsigned int trace_len;		/* stack trace length */
 250};
 251
 252/* early logging buffer and current position */
 253static struct early_log
 254	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 255static int crt_early_log __initdata;
 256
 257static void kmemleak_disable(void);
 258
 259/*
 260 * Print a warning and dump the stack trace.
 261 */
 262#define kmemleak_warn(x...)	do {	\
 263	pr_warning(x);			\
 264	dump_stack();			\
 
 265} while (0)
 266
 267/*
 268 * Macro invoked when a serious kmemleak condition occurred and cannot be
 269 * recovered from. Kmemleak will be disabled and further allocation/freeing
 270 * tracing no longer available.
 271 */
 272#define kmemleak_stop(x...)	do {	\
 273	kmemleak_warn(x);		\
 274	kmemleak_disable();		\
 275} while (0)
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277/*
 278 * Printing of the objects hex dump to the seq file. The number of lines to be
 279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 281 * with the object->lock held.
 282 */
 283static void hex_dump_object(struct seq_file *seq,
 284			    struct kmemleak_object *object)
 285{
 286	const u8 *ptr = (const u8 *)object->pointer;
 287	int i, len, remaining;
 288	unsigned char linebuf[HEX_ROW_SIZE * 5];
 289
 290	/* limit the number of lines to HEX_MAX_LINES */
 291	remaining = len =
 292		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
 293
 294	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
 295	for (i = 0; i < len; i += HEX_ROW_SIZE) {
 296		int linelen = min(remaining, HEX_ROW_SIZE);
 297
 298		remaining -= HEX_ROW_SIZE;
 299		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
 300				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
 301				   HEX_ASCII);
 302		seq_printf(seq, "    %s\n", linebuf);
 303	}
 304}
 305
 306/*
 307 * Object colors, encoded with count and min_count:
 308 * - white - orphan object, not enough references to it (count < min_count)
 309 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 310 *		sufficient references to it (count >= min_count)
 311 * - black - ignore, it doesn't contain references (e.g. text section)
 312 *		(min_count == -1). No function defined for this color.
 313 * Newly created objects don't have any color assigned (object->count == -1)
 314 * before the next memory scan when they become white.
 315 */
 316static bool color_white(const struct kmemleak_object *object)
 317{
 318	return object->count != KMEMLEAK_BLACK &&
 319		object->count < object->min_count;
 320}
 321
 322static bool color_gray(const struct kmemleak_object *object)
 323{
 324	return object->min_count != KMEMLEAK_BLACK &&
 325		object->count >= object->min_count;
 326}
 327
 328/*
 329 * Objects are considered unreferenced only if their color is white, they have
 330 * not be deleted and have a minimum age to avoid false positives caused by
 331 * pointers temporarily stored in CPU registers.
 332 */
 333static bool unreferenced_object(struct kmemleak_object *object)
 334{
 335	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 336		time_before_eq(object->jiffies + jiffies_min_age,
 337			       jiffies_last_scan);
 338}
 339
 340/*
 341 * Printing of the unreferenced objects information to the seq file. The
 342 * print_unreferenced function must be called with the object->lock held.
 343 */
 344static void print_unreferenced(struct seq_file *seq,
 345			       struct kmemleak_object *object)
 346{
 347	int i;
 348	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 349
 350	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 351		   object->pointer, object->size);
 352	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 353		   object->comm, object->pid, object->jiffies,
 354		   msecs_age / 1000, msecs_age % 1000);
 355	hex_dump_object(seq, object);
 356	seq_printf(seq, "  backtrace:\n");
 357
 358	for (i = 0; i < object->trace_len; i++) {
 359		void *ptr = (void *)object->trace[i];
 360		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 361	}
 362}
 363
 364/*
 365 * Print the kmemleak_object information. This function is used mainly for
 366 * debugging special cases when kmemleak operations. It must be called with
 367 * the object->lock held.
 368 */
 369static void dump_object_info(struct kmemleak_object *object)
 370{
 371	struct stack_trace trace;
 372
 373	trace.nr_entries = object->trace_len;
 374	trace.entries = object->trace;
 375
 376	pr_notice("Object 0x%08lx (size %zu):\n",
 377		  object->tree_node.start, object->size);
 378	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 379		  object->comm, object->pid, object->jiffies);
 380	pr_notice("  min_count = %d\n", object->min_count);
 381	pr_notice("  count = %d\n", object->count);
 382	pr_notice("  flags = 0x%lx\n", object->flags);
 383	pr_notice("  checksum = %d\n", object->checksum);
 384	pr_notice("  backtrace:\n");
 385	print_stack_trace(&trace, 4);
 386}
 387
 388/*
 389 * Look-up a memory block metadata (kmemleak_object) in the priority search
 390 * tree based on a pointer value. If alias is 0, only values pointing to the
 391 * beginning of the memory block are allowed. The kmemleak_lock must be held
 392 * when calling this function.
 393 */
 394static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 395{
 396	struct prio_tree_node *node;
 397	struct prio_tree_iter iter;
 398	struct kmemleak_object *object;
 399
 400	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
 401	node = prio_tree_next(&iter);
 402	if (node) {
 403		object = prio_tree_entry(node, struct kmemleak_object,
 404					 tree_node);
 405		if (!alias && object->pointer != ptr) {
 406			pr_warning("Found object by alias at 0x%08lx\n", ptr);
 407			dump_stack();
 
 
 
 
 408			dump_object_info(object);
 409			object = NULL;
 410		}
 411	} else
 412		object = NULL;
 413
 414	return object;
 415}
 416
 417/*
 418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 419 * that once an object's use_count reached 0, the RCU freeing was already
 420 * registered and the object should no longer be used. This function must be
 421 * called under the protection of rcu_read_lock().
 422 */
 423static int get_object(struct kmemleak_object *object)
 424{
 425	return atomic_inc_not_zero(&object->use_count);
 426}
 427
 428/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429 * RCU callback to free a kmemleak_object.
 430 */
 431static void free_object_rcu(struct rcu_head *rcu)
 432{
 433	struct hlist_node *elem, *tmp;
 434	struct kmemleak_scan_area *area;
 435	struct kmemleak_object *object =
 436		container_of(rcu, struct kmemleak_object, rcu);
 437
 438	/*
 439	 * Once use_count is 0 (guaranteed by put_object), there is no other
 440	 * code accessing this object, hence no need for locking.
 441	 */
 442	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
 443		hlist_del(elem);
 444		kmem_cache_free(scan_area_cache, area);
 445	}
 446	kmem_cache_free(object_cache, object);
 447}
 448
 449/*
 450 * Decrement the object use_count. Once the count is 0, free the object using
 451 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 452 * delete_object() path, the delayed RCU freeing ensures that there is no
 453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 454 * is also possible.
 455 */
 456static void put_object(struct kmemleak_object *object)
 457{
 458	if (!atomic_dec_and_test(&object->use_count))
 459		return;
 460
 461	/* should only get here after delete_object was called */
 462	WARN_ON(object->flags & OBJECT_ALLOCATED);
 463
 464	call_rcu(&object->rcu, free_object_rcu);
 
 
 
 
 
 
 
 
 465}
 466
 467/*
 468 * Look up an object in the prio search tree and increase its use_count.
 469 */
 470static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 471{
 472	unsigned long flags;
 473	struct kmemleak_object *object = NULL;
 474
 475	rcu_read_lock();
 476	read_lock_irqsave(&kmemleak_lock, flags);
 477	if (ptr >= min_addr && ptr < max_addr)
 478		object = lookup_object(ptr, alias);
 479	read_unlock_irqrestore(&kmemleak_lock, flags);
 480
 481	/* check whether the object is still available */
 482	if (object && !get_object(object))
 483		object = NULL;
 484	rcu_read_unlock();
 485
 486	return object;
 487}
 488
 489/*
 490 * Save stack trace to the given array of MAX_TRACE size.
 
 491 */
 492static int __save_stack_trace(unsigned long *trace)
 493{
 494	struct stack_trace stack_trace;
 
 
 
 
 
 
 
 
 
 
 
 
 495
 496	stack_trace.max_entries = MAX_TRACE;
 497	stack_trace.nr_entries = 0;
 498	stack_trace.entries = trace;
 499	stack_trace.skip = 2;
 500	save_stack_trace(&stack_trace);
 
 
 
 501
 502	return stack_trace.nr_entries;
 
 
 
 
 
 503}
 504
 505/*
 506 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 507 * memory block and add it to the object_list and object_tree_root.
 508 */
 509static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 510					     int min_count, gfp_t gfp)
 511{
 512	unsigned long flags;
 513	struct kmemleak_object *object;
 514	struct prio_tree_node *node;
 
 515
 516	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 517	if (!object) {
 518		pr_warning("Cannot allocate a kmemleak_object structure\n");
 519		kmemleak_disable();
 520		return NULL;
 521	}
 522
 523	INIT_LIST_HEAD(&object->object_list);
 524	INIT_LIST_HEAD(&object->gray_list);
 525	INIT_HLIST_HEAD(&object->area_list);
 526	spin_lock_init(&object->lock);
 527	atomic_set(&object->use_count, 1);
 528	object->flags = OBJECT_ALLOCATED;
 529	object->pointer = ptr;
 530	object->size = size;
 
 531	object->min_count = min_count;
 532	object->count = 0;			/* white color initially */
 533	object->jiffies = jiffies;
 534	object->checksum = 0;
 535
 536	/* task information */
 537	if (in_irq()) {
 538		object->pid = 0;
 539		strncpy(object->comm, "hardirq", sizeof(object->comm));
 540	} else if (in_softirq()) {
 541		object->pid = 0;
 542		strncpy(object->comm, "softirq", sizeof(object->comm));
 543	} else {
 544		object->pid = current->pid;
 545		/*
 546		 * There is a small chance of a race with set_task_comm(),
 547		 * however using get_task_comm() here may cause locking
 548		 * dependency issues with current->alloc_lock. In the worst
 549		 * case, the command line is not correct.
 550		 */
 551		strncpy(object->comm, current->comm, sizeof(object->comm));
 552	}
 553
 554	/* kernel backtrace */
 555	object->trace_len = __save_stack_trace(object->trace);
 556
 557	INIT_PRIO_TREE_NODE(&object->tree_node);
 558	object->tree_node.start = ptr;
 559	object->tree_node.last = ptr + size - 1;
 560
 561	write_lock_irqsave(&kmemleak_lock, flags);
 562
 563	min_addr = min(min_addr, ptr);
 564	max_addr = max(max_addr, ptr + size);
 565	node = prio_tree_insert(&object_tree_root, &object->tree_node);
 566	/*
 567	 * The code calling the kernel does not yet have the pointer to the
 568	 * memory block to be able to free it.  However, we still hold the
 569	 * kmemleak_lock here in case parts of the kernel started freeing
 570	 * random memory blocks.
 571	 */
 572	if (node != &object->tree_node) {
 573		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
 574			      "(already existing)\n", ptr);
 575		object = lookup_object(ptr, 1);
 576		spin_lock(&object->lock);
 577		dump_object_info(object);
 578		spin_unlock(&object->lock);
 579
 580		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581	}
 
 
 
 582	list_add_tail_rcu(&object->object_list, &object_list);
 583out:
 584	write_unlock_irqrestore(&kmemleak_lock, flags);
 585	return object;
 586}
 587
 588/*
 589 * Remove the metadata (struct kmemleak_object) for a memory block from the
 590 * object_list and object_tree_root and decrement its use_count.
 591 */
 592static void __delete_object(struct kmemleak_object *object)
 593{
 594	unsigned long flags;
 595
 596	write_lock_irqsave(&kmemleak_lock, flags);
 597	prio_tree_remove(&object_tree_root, &object->tree_node);
 598	list_del_rcu(&object->object_list);
 599	write_unlock_irqrestore(&kmemleak_lock, flags);
 600
 601	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 602	WARN_ON(atomic_read(&object->use_count) < 2);
 603
 604	/*
 605	 * Locking here also ensures that the corresponding memory block
 606	 * cannot be freed when it is being scanned.
 607	 */
 608	spin_lock_irqsave(&object->lock, flags);
 609	object->flags &= ~OBJECT_ALLOCATED;
 610	spin_unlock_irqrestore(&object->lock, flags);
 611	put_object(object);
 612}
 613
 614/*
 615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 616 * delete it.
 617 */
 618static void delete_object_full(unsigned long ptr)
 619{
 620	struct kmemleak_object *object;
 621
 622	object = find_and_get_object(ptr, 0);
 623	if (!object) {
 624#ifdef DEBUG
 625		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 626			      ptr);
 627#endif
 628		return;
 629	}
 630	__delete_object(object);
 631	put_object(object);
 632}
 633
 634/*
 635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 636 * delete it. If the memory block is partially freed, the function may create
 637 * additional metadata for the remaining parts of the block.
 638 */
 639static void delete_object_part(unsigned long ptr, size_t size)
 640{
 641	struct kmemleak_object *object;
 642	unsigned long start, end;
 643
 644	object = find_and_get_object(ptr, 1);
 645	if (!object) {
 646#ifdef DEBUG
 647		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
 648			      "(size %zu)\n", ptr, size);
 649#endif
 650		return;
 651	}
 652	__delete_object(object);
 653
 654	/*
 655	 * Create one or two objects that may result from the memory block
 656	 * split. Note that partial freeing is only done by free_bootmem() and
 657	 * this happens before kmemleak_init() is called. The path below is
 658	 * only executed during early log recording in kmemleak_init(), so
 659	 * GFP_KERNEL is enough.
 660	 */
 661	start = object->pointer;
 662	end = object->pointer + object->size;
 663	if (ptr > start)
 664		create_object(start, ptr - start, object->min_count,
 665			      GFP_KERNEL);
 666	if (ptr + size < end)
 667		create_object(ptr + size, end - ptr - size, object->min_count,
 668			      GFP_KERNEL);
 669
 670	put_object(object);
 671}
 672
 673static void __paint_it(struct kmemleak_object *object, int color)
 674{
 675	object->min_count = color;
 676	if (color == KMEMLEAK_BLACK)
 677		object->flags |= OBJECT_NO_SCAN;
 678}
 679
 680static void paint_it(struct kmemleak_object *object, int color)
 681{
 682	unsigned long flags;
 683
 684	spin_lock_irqsave(&object->lock, flags);
 685	__paint_it(object, color);
 686	spin_unlock_irqrestore(&object->lock, flags);
 687}
 688
 689static void paint_ptr(unsigned long ptr, int color)
 690{
 691	struct kmemleak_object *object;
 692
 693	object = find_and_get_object(ptr, 0);
 694	if (!object) {
 695		kmemleak_warn("Trying to color unknown object "
 696			      "at 0x%08lx as %s\n", ptr,
 697			      (color == KMEMLEAK_GREY) ? "Grey" :
 698			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 699		return;
 700	}
 701	paint_it(object, color);
 702	put_object(object);
 703}
 704
 705/*
 706 * Mark an object permanently as gray-colored so that it can no longer be
 707 * reported as a leak. This is used in general to mark a false positive.
 708 */
 709static void make_gray_object(unsigned long ptr)
 710{
 711	paint_ptr(ptr, KMEMLEAK_GREY);
 712}
 713
 714/*
 715 * Mark the object as black-colored so that it is ignored from scans and
 716 * reporting.
 717 */
 718static void make_black_object(unsigned long ptr)
 719{
 720	paint_ptr(ptr, KMEMLEAK_BLACK);
 721}
 722
 723/*
 724 * Add a scanning area to the object. If at least one such area is added,
 725 * kmemleak will only scan these ranges rather than the whole memory block.
 726 */
 727static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 728{
 729	unsigned long flags;
 730	struct kmemleak_object *object;
 731	struct kmemleak_scan_area *area;
 732
 733	object = find_and_get_object(ptr, 1);
 734	if (!object) {
 735		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 736			      ptr);
 737		return;
 738	}
 739
 740	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 
 
 
 741	if (!area) {
 742		pr_warning("Cannot allocate a scan area\n");
 743		goto out;
 
 
 744	}
 745
 746	spin_lock_irqsave(&object->lock, flags);
 747	if (ptr + size > object->pointer + object->size) {
 748		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 749		dump_object_info(object);
 750		kmem_cache_free(scan_area_cache, area);
 751		goto out_unlock;
 752	}
 753
 754	INIT_HLIST_NODE(&area->node);
 755	area->start = ptr;
 756	area->size = size;
 757
 758	hlist_add_head(&area->node, &object->area_list);
 759out_unlock:
 760	spin_unlock_irqrestore(&object->lock, flags);
 761out:
 762	put_object(object);
 763}
 764
 765/*
 766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 767 * pointer. Such object will not be scanned by kmemleak but references to it
 768 * are searched.
 
 769 */
 770static void object_no_scan(unsigned long ptr)
 771{
 772	unsigned long flags;
 773	struct kmemleak_object *object;
 774
 775	object = find_and_get_object(ptr, 0);
 776	if (!object) {
 777		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 
 778		return;
 779	}
 780
 781	spin_lock_irqsave(&object->lock, flags);
 782	object->flags |= OBJECT_NO_SCAN;
 783	spin_unlock_irqrestore(&object->lock, flags);
 784	put_object(object);
 785}
 786
 787/*
 788 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 789 * processed later once kmemleak is fully initialized.
 
 790 */
 791static void __init log_early(int op_type, const void *ptr, size_t size,
 792			     int min_count)
 793{
 794	unsigned long flags;
 795	struct early_log *log;
 796
 797	if (crt_early_log >= ARRAY_SIZE(early_log)) {
 798		pr_warning("Early log buffer exceeded, "
 799			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
 800		kmemleak_disable();
 801		return;
 802	}
 803
 804	/*
 805	 * There is no need for locking since the kernel is still in UP mode
 806	 * at this stage. Disabling the IRQs is enough.
 807	 */
 808	local_irq_save(flags);
 809	log = &early_log[crt_early_log];
 810	log->op_type = op_type;
 811	log->ptr = ptr;
 812	log->size = size;
 813	log->min_count = min_count;
 814	if (op_type == KMEMLEAK_ALLOC)
 815		log->trace_len = __save_stack_trace(log->trace);
 816	crt_early_log++;
 817	local_irq_restore(flags);
 818}
 819
 820/*
 821 * Log an early allocated block and populate the stack trace.
 822 */
 823static void early_alloc(struct early_log *log)
 824{
 825	struct kmemleak_object *object;
 826	unsigned long flags;
 827	int i;
 828
 829	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
 
 
 830		return;
 
 831
 832	/*
 833	 * RCU locking needed to ensure object is not freed via put_object().
 834	 */
 835	rcu_read_lock();
 836	object = create_object((unsigned long)log->ptr, log->size,
 837			       log->min_count, GFP_ATOMIC);
 838	if (!object)
 839		goto out;
 840	spin_lock_irqsave(&object->lock, flags);
 841	for (i = 0; i < log->trace_len; i++)
 842		object->trace[i] = log->trace[i];
 843	object->trace_len = log->trace_len;
 844	spin_unlock_irqrestore(&object->lock, flags);
 845out:
 846	rcu_read_unlock();
 847}
 848
 849/**
 850 * kmemleak_alloc - register a newly allocated object
 851 * @ptr:	pointer to beginning of the object
 852 * @size:	size of the object
 853 * @min_count:	minimum number of references to this object. If during memory
 854 *		scanning a number of references less than @min_count is found,
 855 *		the object is reported as a memory leak. If @min_count is 0,
 856 *		the object is never reported as a leak. If @min_count is -1,
 857 *		the object is ignored (not scanned and not reported as a leak)
 858 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 859 *
 860 * This function is called from the kernel allocators when a new object
 861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
 862 */
 863void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 864			  gfp_t gfp)
 865{
 866	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 867
 868	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 869		create_object((unsigned long)ptr, size, min_count, gfp);
 870	else if (atomic_read(&kmemleak_early_log))
 871		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 872}
 873EXPORT_SYMBOL_GPL(kmemleak_alloc);
 874
 875/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876 * kmemleak_free - unregister a previously registered object
 877 * @ptr:	pointer to beginning of the object
 878 *
 879 * This function is called from the kernel allocators when an object (memory
 880 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 881 */
 882void __ref kmemleak_free(const void *ptr)
 883{
 884	pr_debug("%s(0x%p)\n", __func__, ptr);
 885
 886	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 887		delete_object_full((unsigned long)ptr);
 888	else if (atomic_read(&kmemleak_early_log))
 889		log_early(KMEMLEAK_FREE, ptr, 0, 0);
 890}
 891EXPORT_SYMBOL_GPL(kmemleak_free);
 892
 893/**
 894 * kmemleak_free_part - partially unregister a previously registered object
 895 * @ptr:	pointer to the beginning or inside the object. This also
 896 *		represents the start of the range to be freed
 897 * @size:	size to be unregistered
 898 *
 899 * This function is called when only a part of a memory block is freed
 900 * (usually from the bootmem allocator).
 901 */
 902void __ref kmemleak_free_part(const void *ptr, size_t size)
 903{
 904	pr_debug("%s(0x%p)\n", __func__, ptr);
 905
 906	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 907		delete_object_part((unsigned long)ptr, size);
 908	else if (atomic_read(&kmemleak_early_log))
 909		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
 910}
 911EXPORT_SYMBOL_GPL(kmemleak_free_part);
 912
 913/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914 * kmemleak_not_leak - mark an allocated object as false positive
 915 * @ptr:	pointer to beginning of the object
 916 *
 917 * Calling this function on an object will cause the memory block to no longer
 918 * be reported as leak and always be scanned.
 919 */
 920void __ref kmemleak_not_leak(const void *ptr)
 921{
 922	pr_debug("%s(0x%p)\n", __func__, ptr);
 923
 924	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 925		make_gray_object((unsigned long)ptr);
 926	else if (atomic_read(&kmemleak_early_log))
 927		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
 928}
 929EXPORT_SYMBOL(kmemleak_not_leak);
 930
 931/**
 932 * kmemleak_ignore - ignore an allocated object
 933 * @ptr:	pointer to beginning of the object
 934 *
 935 * Calling this function on an object will cause the memory block to be
 936 * ignored (not scanned and not reported as a leak). This is usually done when
 937 * it is known that the corresponding block is not a leak and does not contain
 938 * any references to other allocated memory blocks.
 939 */
 940void __ref kmemleak_ignore(const void *ptr)
 941{
 942	pr_debug("%s(0x%p)\n", __func__, ptr);
 943
 944	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 945		make_black_object((unsigned long)ptr);
 946	else if (atomic_read(&kmemleak_early_log))
 947		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
 948}
 949EXPORT_SYMBOL(kmemleak_ignore);
 950
 951/**
 952 * kmemleak_scan_area - limit the range to be scanned in an allocated object
 953 * @ptr:	pointer to beginning or inside the object. This also
 954 *		represents the start of the scan area
 955 * @size:	size of the scan area
 956 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 957 *
 958 * This function is used when it is known that only certain parts of an object
 959 * contain references to other objects. Kmemleak will only scan these areas
 960 * reducing the number false negatives.
 961 */
 962void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
 963{
 964	pr_debug("%s(0x%p)\n", __func__, ptr);
 965
 966	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 967		add_scan_area((unsigned long)ptr, size, gfp);
 968	else if (atomic_read(&kmemleak_early_log))
 969		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
 970}
 971EXPORT_SYMBOL(kmemleak_scan_area);
 972
 973/**
 974 * kmemleak_no_scan - do not scan an allocated object
 975 * @ptr:	pointer to beginning of the object
 976 *
 977 * This function notifies kmemleak not to scan the given memory block. Useful
 978 * in situations where it is known that the given object does not contain any
 979 * references to other objects. Kmemleak will not scan such objects reducing
 980 * the number of false negatives.
 981 */
 982void __ref kmemleak_no_scan(const void *ptr)
 983{
 984	pr_debug("%s(0x%p)\n", __func__, ptr);
 985
 986	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 987		object_no_scan((unsigned long)ptr);
 988	else if (atomic_read(&kmemleak_early_log))
 989		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
 990}
 991EXPORT_SYMBOL(kmemleak_no_scan);
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993/*
 994 * Update an object's checksum and return true if it was modified.
 995 */
 996static bool update_checksum(struct kmemleak_object *object)
 997{
 998	u32 old_csum = object->checksum;
 999
1000	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001		return false;
 
 
 
1002
1003	object->checksum = crc32(0, (void *)object->pointer, object->size);
1004	return object->checksum != old_csum;
1005}
1006
1007/*
1008 * Memory scanning is a long process and it needs to be interruptable. This
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009 * function checks whether such interrupt condition occurred.
1010 */
1011static int scan_should_stop(void)
1012{
1013	if (!atomic_read(&kmemleak_enabled))
1014		return 1;
1015
1016	/*
1017	 * This function may be called from either process or kthread context,
1018	 * hence the need to check for both stop conditions.
1019	 */
1020	if (current->mm)
1021		return signal_pending(current);
1022	else
1023		return kthread_should_stop();
1024
1025	return 0;
1026}
1027
1028/*
1029 * Scan a memory block (exclusive range) for valid pointers and add those
1030 * found to the gray list.
1031 */
1032static void scan_block(void *_start, void *_end,
1033		       struct kmemleak_object *scanned, int allow_resched)
1034{
1035	unsigned long *ptr;
1036	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
 
 
1038
 
1039	for (ptr = start; ptr < end; ptr++) {
1040		struct kmemleak_object *object;
1041		unsigned long flags;
1042		unsigned long pointer;
 
1043
1044		if (allow_resched)
1045			cond_resched();
1046		if (scan_should_stop())
1047			break;
1048
1049		/* don't scan uninitialized memory */
1050		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051						  BYTES_PER_POINTER))
1052			continue;
1053
1054		pointer = *ptr;
 
 
1055
1056		object = find_and_get_object(pointer, 1);
 
 
 
 
 
 
1057		if (!object)
1058			continue;
1059		if (object == scanned) {
1060			/* self referenced, ignore */
1061			put_object(object);
1062			continue;
1063		}
1064
1065		/*
1066		 * Avoid the lockdep recursive warning on object->lock being
1067		 * previously acquired in scan_object(). These locks are
1068		 * enclosed by scan_mutex.
1069		 */
1070		spin_lock_irqsave_nested(&object->lock, flags,
1071					 SINGLE_DEPTH_NESTING);
1072		if (!color_white(object)) {
1073			/* non-orphan, ignored or new */
1074			spin_unlock_irqrestore(&object->lock, flags);
1075			put_object(object);
1076			continue;
 
1077		}
 
1078
1079		/*
1080		 * Increase the object's reference count (number of pointers
1081		 * to the memory block). If this count reaches the required
1082		 * minimum, the object's color will become gray and it will be
1083		 * added to the gray_list.
1084		 */
1085		object->count++;
1086		if (color_gray(object)) {
1087			list_add_tail(&object->gray_list, &gray_list);
1088			spin_unlock_irqrestore(&object->lock, flags);
1089			continue;
1090		}
 
 
 
1091
1092		spin_unlock_irqrestore(&object->lock, flags);
1093		put_object(object);
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095}
 
1096
1097/*
1098 * Scan a memory block corresponding to a kmemleak_object. A condition is
1099 * that object->use_count >= 1.
1100 */
1101static void scan_object(struct kmemleak_object *object)
1102{
1103	struct kmemleak_scan_area *area;
1104	struct hlist_node *elem;
1105	unsigned long flags;
1106
1107	/*
1108	 * Once the object->lock is acquired, the corresponding memory block
1109	 * cannot be freed (the same lock is acquired in delete_object).
1110	 */
1111	spin_lock_irqsave(&object->lock, flags);
1112	if (object->flags & OBJECT_NO_SCAN)
1113		goto out;
1114	if (!(object->flags & OBJECT_ALLOCATED))
1115		/* already freed object */
1116		goto out;
1117	if (hlist_empty(&object->area_list)) {
 
1118		void *start = (void *)object->pointer;
1119		void *end = (void *)(object->pointer + object->size);
 
 
 
 
 
1120
1121		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122		       !(object->flags & OBJECT_NO_SCAN)) {
1123			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124				   object, 0);
1125			start += MAX_SCAN_SIZE;
1126
1127			spin_unlock_irqrestore(&object->lock, flags);
1128			cond_resched();
1129			spin_lock_irqsave(&object->lock, flags);
1130		}
1131	} else
1132		hlist_for_each_entry(area, elem, &object->area_list, node)
1133			scan_block((void *)area->start,
1134				   (void *)(area->start + area->size),
1135				   object, 0);
1136out:
1137	spin_unlock_irqrestore(&object->lock, flags);
1138}
1139
1140/*
1141 * Scan the objects already referenced (gray objects). More objects will be
1142 * referenced and, if there are no memory leaks, all the objects are scanned.
1143 */
1144static void scan_gray_list(void)
1145{
1146	struct kmemleak_object *object, *tmp;
1147
1148	/*
1149	 * The list traversal is safe for both tail additions and removals
1150	 * from inside the loop. The kmemleak objects cannot be freed from
1151	 * outside the loop because their use_count was incremented.
1152	 */
1153	object = list_entry(gray_list.next, typeof(*object), gray_list);
1154	while (&object->gray_list != &gray_list) {
1155		cond_resched();
1156
1157		/* may add new objects to the list */
1158		if (!scan_should_stop())
1159			scan_object(object);
1160
1161		tmp = list_entry(object->gray_list.next, typeof(*object),
1162				 gray_list);
1163
1164		/* remove the object from the list and release it */
1165		list_del(&object->gray_list);
1166		put_object(object);
1167
1168		object = tmp;
1169	}
1170	WARN_ON(!list_empty(&gray_list));
1171}
1172
1173/*
1174 * Scan data sections and all the referenced memory blocks allocated via the
1175 * kernel's standard allocators. This function must be called with the
1176 * scan_mutex held.
1177 */
1178static void kmemleak_scan(void)
1179{
1180	unsigned long flags;
1181	struct kmemleak_object *object;
1182	int i;
1183	int new_leaks = 0;
1184
1185	jiffies_last_scan = jiffies;
1186
1187	/* prepare the kmemleak_object's */
1188	rcu_read_lock();
1189	list_for_each_entry_rcu(object, &object_list, object_list) {
1190		spin_lock_irqsave(&object->lock, flags);
1191#ifdef DEBUG
1192		/*
1193		 * With a few exceptions there should be a maximum of
1194		 * 1 reference to any object at this point.
1195		 */
1196		if (atomic_read(&object->use_count) > 1) {
1197			pr_debug("object->use_count = %d\n",
1198				 atomic_read(&object->use_count));
1199			dump_object_info(object);
1200		}
1201#endif
1202		/* reset the reference count (whiten the object) */
1203		object->count = 0;
1204		if (color_gray(object) && get_object(object))
1205			list_add_tail(&object->gray_list, &gray_list);
1206
1207		spin_unlock_irqrestore(&object->lock, flags);
1208	}
1209	rcu_read_unlock();
1210
1211	/* data/bss scanning */
1212	scan_block(_sdata, _edata, NULL, 1);
1213	scan_block(__bss_start, __bss_stop, NULL, 1);
1214
1215#ifdef CONFIG_SMP
1216	/* per-cpu sections scanning */
1217	for_each_possible_cpu(i)
1218		scan_block(__per_cpu_start + per_cpu_offset(i),
1219			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1220#endif
1221
1222	/*
1223	 * Struct page scanning for each node. The code below is not yet safe
1224	 * with MEMORY_HOTPLUG.
1225	 */
 
1226	for_each_online_node(i) {
1227		pg_data_t *pgdat = NODE_DATA(i);
1228		unsigned long start_pfn = pgdat->node_start_pfn;
1229		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230		unsigned long pfn;
1231
1232		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233			struct page *page;
1234
1235			if (!pfn_valid(pfn))
 
 
 
 
1236				continue;
1237			page = pfn_to_page(pfn);
1238			/* only scan if page is in use */
1239			if (page_count(page) == 0)
1240				continue;
1241			scan_block(page, page + 1, NULL, 1);
 
 
1242		}
1243	}
 
1244
1245	/*
1246	 * Scanning the task stacks (may introduce false negatives).
1247	 */
1248	if (kmemleak_stack_scan) {
1249		struct task_struct *p, *g;
1250
1251		read_lock(&tasklist_lock);
1252		do_each_thread(g, p) {
1253			scan_block(task_stack_page(p), task_stack_page(p) +
1254				   THREAD_SIZE, NULL, 0);
1255		} while_each_thread(g, p);
1256		read_unlock(&tasklist_lock);
 
 
 
1257	}
1258
1259	/*
1260	 * Scan the objects already referenced from the sections scanned
1261	 * above.
1262	 */
1263	scan_gray_list();
1264
1265	/*
1266	 * Check for new or unreferenced objects modified since the previous
1267	 * scan and color them gray until the next scan.
1268	 */
1269	rcu_read_lock();
1270	list_for_each_entry_rcu(object, &object_list, object_list) {
1271		spin_lock_irqsave(&object->lock, flags);
1272		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273		    && update_checksum(object) && get_object(object)) {
1274			/* color it gray temporarily */
1275			object->count = object->min_count;
1276			list_add_tail(&object->gray_list, &gray_list);
1277		}
1278		spin_unlock_irqrestore(&object->lock, flags);
1279	}
1280	rcu_read_unlock();
1281
1282	/*
1283	 * Re-scan the gray list for modified unreferenced objects.
1284	 */
1285	scan_gray_list();
1286
1287	/*
1288	 * If scanning was stopped do not report any new unreferenced objects.
1289	 */
1290	if (scan_should_stop())
1291		return;
1292
1293	/*
1294	 * Scanning result reporting.
1295	 */
1296	rcu_read_lock();
1297	list_for_each_entry_rcu(object, &object_list, object_list) {
1298		spin_lock_irqsave(&object->lock, flags);
1299		if (unreferenced_object(object) &&
1300		    !(object->flags & OBJECT_REPORTED)) {
1301			object->flags |= OBJECT_REPORTED;
 
 
 
 
1302			new_leaks++;
1303		}
1304		spin_unlock_irqrestore(&object->lock, flags);
1305	}
1306	rcu_read_unlock();
1307
1308	if (new_leaks)
1309		pr_info("%d new suspected memory leaks (see "
1310			"/sys/kernel/debug/kmemleak)\n", new_leaks);
 
 
 
1311
1312}
1313
1314/*
1315 * Thread function performing automatic memory scanning. Unreferenced objects
1316 * at the end of a memory scan are reported but only the first time.
1317 */
1318static int kmemleak_scan_thread(void *arg)
1319{
1320	static int first_run = 1;
1321
1322	pr_info("Automatic memory scanning thread started\n");
1323	set_user_nice(current, 10);
1324
1325	/*
1326	 * Wait before the first scan to allow the system to fully initialize.
1327	 */
1328	if (first_run) {
 
1329		first_run = 0;
1330		ssleep(SECS_FIRST_SCAN);
 
1331	}
1332
1333	while (!kthread_should_stop()) {
1334		signed long timeout = jiffies_scan_wait;
1335
1336		mutex_lock(&scan_mutex);
1337		kmemleak_scan();
1338		mutex_unlock(&scan_mutex);
1339
1340		/* wait before the next scan */
1341		while (timeout && !kthread_should_stop())
1342			timeout = schedule_timeout_interruptible(timeout);
1343	}
1344
1345	pr_info("Automatic memory scanning thread ended\n");
1346
1347	return 0;
1348}
1349
1350/*
1351 * Start the automatic memory scanning thread. This function must be called
1352 * with the scan_mutex held.
1353 */
1354static void start_scan_thread(void)
1355{
1356	if (scan_thread)
1357		return;
1358	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359	if (IS_ERR(scan_thread)) {
1360		pr_warning("Failed to create the scan thread\n");
1361		scan_thread = NULL;
1362	}
1363}
1364
1365/*
1366 * Stop the automatic memory scanning thread. This function must be called
1367 * with the scan_mutex held.
1368 */
1369static void stop_scan_thread(void)
1370{
1371	if (scan_thread) {
1372		kthread_stop(scan_thread);
1373		scan_thread = NULL;
1374	}
1375}
1376
1377/*
1378 * Iterate over the object_list and return the first valid object at or after
1379 * the required position with its use_count incremented. The function triggers
1380 * a memory scanning when the pos argument points to the first position.
1381 */
1382static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383{
1384	struct kmemleak_object *object;
1385	loff_t n = *pos;
1386	int err;
1387
1388	err = mutex_lock_interruptible(&scan_mutex);
1389	if (err < 0)
1390		return ERR_PTR(err);
1391
1392	rcu_read_lock();
1393	list_for_each_entry_rcu(object, &object_list, object_list) {
1394		if (n-- > 0)
1395			continue;
1396		if (get_object(object))
1397			goto out;
1398	}
1399	object = NULL;
1400out:
1401	return object;
1402}
1403
1404/*
1405 * Return the next object in the object_list. The function decrements the
1406 * use_count of the previous object and increases that of the next one.
1407 */
1408static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409{
1410	struct kmemleak_object *prev_obj = v;
1411	struct kmemleak_object *next_obj = NULL;
1412	struct list_head *n = &prev_obj->object_list;
1413
1414	++(*pos);
1415
1416	list_for_each_continue_rcu(n, &object_list) {
1417		struct kmemleak_object *obj =
1418			list_entry(n, struct kmemleak_object, object_list);
1419		if (get_object(obj)) {
1420			next_obj = obj;
1421			break;
1422		}
1423	}
1424
1425	put_object(prev_obj);
1426	return next_obj;
1427}
1428
1429/*
1430 * Decrement the use_count of the last object required, if any.
1431 */
1432static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1433{
1434	if (!IS_ERR(v)) {
1435		/*
1436		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1437		 * waiting was interrupted, so only release it if !IS_ERR.
1438		 */
1439		rcu_read_unlock();
1440		mutex_unlock(&scan_mutex);
1441		if (v)
1442			put_object(v);
1443	}
1444}
1445
1446/*
1447 * Print the information for an unreferenced object to the seq file.
1448 */
1449static int kmemleak_seq_show(struct seq_file *seq, void *v)
1450{
1451	struct kmemleak_object *object = v;
1452	unsigned long flags;
1453
1454	spin_lock_irqsave(&object->lock, flags);
1455	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1456		print_unreferenced(seq, object);
1457	spin_unlock_irqrestore(&object->lock, flags);
1458	return 0;
1459}
1460
1461static const struct seq_operations kmemleak_seq_ops = {
1462	.start = kmemleak_seq_start,
1463	.next  = kmemleak_seq_next,
1464	.stop  = kmemleak_seq_stop,
1465	.show  = kmemleak_seq_show,
1466};
1467
1468static int kmemleak_open(struct inode *inode, struct file *file)
1469{
1470	if (!atomic_read(&kmemleak_enabled))
1471		return -EBUSY;
1472
1473	return seq_open(file, &kmemleak_seq_ops);
1474}
1475
1476static int kmemleak_release(struct inode *inode, struct file *file)
1477{
1478	return seq_release(inode, file);
1479}
1480
1481static int dump_str_object_info(const char *str)
1482{
1483	unsigned long flags;
1484	struct kmemleak_object *object;
1485	unsigned long addr;
1486
1487	addr= simple_strtoul(str, NULL, 0);
 
1488	object = find_and_get_object(addr, 0);
1489	if (!object) {
1490		pr_info("Unknown object at 0x%08lx\n", addr);
1491		return -EINVAL;
1492	}
1493
1494	spin_lock_irqsave(&object->lock, flags);
1495	dump_object_info(object);
1496	spin_unlock_irqrestore(&object->lock, flags);
1497
1498	put_object(object);
1499	return 0;
1500}
1501
1502/*
1503 * We use grey instead of black to ensure we can do future scans on the same
1504 * objects. If we did not do future scans these black objects could
1505 * potentially contain references to newly allocated objects in the future and
1506 * we'd end up with false positives.
1507 */
1508static void kmemleak_clear(void)
1509{
1510	struct kmemleak_object *object;
1511	unsigned long flags;
1512
1513	rcu_read_lock();
1514	list_for_each_entry_rcu(object, &object_list, object_list) {
1515		spin_lock_irqsave(&object->lock, flags);
1516		if ((object->flags & OBJECT_REPORTED) &&
1517		    unreferenced_object(object))
1518			__paint_it(object, KMEMLEAK_GREY);
1519		spin_unlock_irqrestore(&object->lock, flags);
1520	}
1521	rcu_read_unlock();
 
 
1522}
1523
 
 
1524/*
1525 * File write operation to configure kmemleak at run-time. The following
1526 * commands can be written to the /sys/kernel/debug/kmemleak file:
1527 *   off	- disable kmemleak (irreversible)
1528 *   stack=on	- enable the task stacks scanning
1529 *   stack=off	- disable the tasks stacks scanning
1530 *   scan=on	- start the automatic memory scanning thread
1531 *   scan=off	- stop the automatic memory scanning thread
1532 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1533 *		  disable it)
1534 *   scan	- trigger a memory scan
1535 *   clear	- mark all current reported unreferenced kmemleak objects as
1536 *		  grey to ignore printing them
 
1537 *   dump=...	- dump information about the object found at the given address
1538 */
1539static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1540			      size_t size, loff_t *ppos)
1541{
1542	char buf[64];
1543	int buf_size;
1544	int ret;
1545
1546	buf_size = min(size, (sizeof(buf) - 1));
1547	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1548		return -EFAULT;
1549	buf[buf_size] = 0;
1550
1551	ret = mutex_lock_interruptible(&scan_mutex);
1552	if (ret < 0)
1553		return ret;
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
1555	if (strncmp(buf, "off", 3) == 0)
1556		kmemleak_disable();
1557	else if (strncmp(buf, "stack=on", 8) == 0)
1558		kmemleak_stack_scan = 1;
1559	else if (strncmp(buf, "stack=off", 9) == 0)
1560		kmemleak_stack_scan = 0;
1561	else if (strncmp(buf, "scan=on", 7) == 0)
1562		start_scan_thread();
1563	else if (strncmp(buf, "scan=off", 8) == 0)
1564		stop_scan_thread();
1565	else if (strncmp(buf, "scan=", 5) == 0) {
1566		unsigned long secs;
 
1567
1568		ret = strict_strtoul(buf + 5, 0, &secs);
1569		if (ret < 0)
1570			goto out;
 
 
 
 
 
1571		stop_scan_thread();
1572		if (secs) {
1573			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1574			start_scan_thread();
1575		}
1576	} else if (strncmp(buf, "scan", 4) == 0)
1577		kmemleak_scan();
1578	else if (strncmp(buf, "clear", 5) == 0)
1579		kmemleak_clear();
1580	else if (strncmp(buf, "dump=", 5) == 0)
1581		ret = dump_str_object_info(buf + 5);
1582	else
1583		ret = -EINVAL;
1584
1585out:
1586	mutex_unlock(&scan_mutex);
1587	if (ret < 0)
1588		return ret;
1589
1590	/* ignore the rest of the buffer, only one command at a time */
1591	*ppos += size;
1592	return size;
1593}
1594
1595static const struct file_operations kmemleak_fops = {
1596	.owner		= THIS_MODULE,
1597	.open		= kmemleak_open,
1598	.read		= seq_read,
1599	.write		= kmemleak_write,
1600	.llseek		= seq_lseek,
1601	.release	= kmemleak_release,
1602};
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604/*
1605 * Perform the freeing of the kmemleak internal objects after waiting for any
1606 * current memory scan to complete.
 
1607 */
1608static void kmemleak_do_cleanup(struct work_struct *work)
1609{
1610	struct kmemleak_object *object;
1611
1612	mutex_lock(&scan_mutex);
1613	stop_scan_thread();
1614
1615	rcu_read_lock();
1616	list_for_each_entry_rcu(object, &object_list, object_list)
1617		delete_object_full(object->pointer);
1618	rcu_read_unlock();
 
 
 
 
1619	mutex_unlock(&scan_mutex);
 
 
 
 
 
1620}
1621
1622static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1623
1624/*
1625 * Disable kmemleak. No memory allocation/freeing will be traced once this
1626 * function is called. Disabling kmemleak is an irreversible operation.
1627 */
1628static void kmemleak_disable(void)
1629{
1630	/* atomically check whether it was already invoked */
1631	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1632		return;
1633
1634	/* stop any memory operation tracing */
1635	atomic_set(&kmemleak_early_log, 0);
1636	atomic_set(&kmemleak_enabled, 0);
1637
1638	/* check whether it is too early for a kernel thread */
1639	if (atomic_read(&kmemleak_initialized))
1640		schedule_work(&cleanup_work);
 
 
1641
1642	pr_info("Kernel memory leak detector disabled\n");
1643}
1644
1645/*
1646 * Allow boot-time kmemleak disabling (enabled by default).
1647 */
1648static int kmemleak_boot_config(char *str)
1649{
1650	if (!str)
1651		return -EINVAL;
1652	if (strcmp(str, "off") == 0)
1653		kmemleak_disable();
1654	else if (strcmp(str, "on") == 0)
1655		kmemleak_skip_disable = 1;
1656	else
1657		return -EINVAL;
1658	return 0;
1659}
1660early_param("kmemleak", kmemleak_boot_config);
1661
1662/*
1663 * Kmemleak initialization.
1664 */
1665void __init kmemleak_init(void)
1666{
1667	int i;
1668	unsigned long flags;
1669
1670#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1671	if (!kmemleak_skip_disable) {
1672		kmemleak_disable();
1673		return;
1674	}
1675#endif
1676
 
 
 
1677	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1678	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1679
1680	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1681	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1682	INIT_PRIO_TREE_ROOT(&object_tree_root);
1683
1684	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1685	local_irq_save(flags);
1686	if (!atomic_read(&kmemleak_error)) {
1687		atomic_set(&kmemleak_enabled, 1);
1688		atomic_set(&kmemleak_early_log, 0);
1689	}
1690	local_irq_restore(flags);
1691
1692	/*
1693	 * This is the point where tracking allocations is safe. Automatic
1694	 * scanning is started during the late initcall. Add the early logged
1695	 * callbacks to the kmemleak infrastructure.
1696	 */
1697	for (i = 0; i < crt_early_log; i++) {
1698		struct early_log *log = &early_log[i];
1699
1700		switch (log->op_type) {
1701		case KMEMLEAK_ALLOC:
1702			early_alloc(log);
1703			break;
1704		case KMEMLEAK_FREE:
1705			kmemleak_free(log->ptr);
1706			break;
1707		case KMEMLEAK_FREE_PART:
1708			kmemleak_free_part(log->ptr, log->size);
1709			break;
1710		case KMEMLEAK_NOT_LEAK:
1711			kmemleak_not_leak(log->ptr);
1712			break;
1713		case KMEMLEAK_IGNORE:
1714			kmemleak_ignore(log->ptr);
1715			break;
1716		case KMEMLEAK_SCAN_AREA:
1717			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1718			break;
1719		case KMEMLEAK_NO_SCAN:
1720			kmemleak_no_scan(log->ptr);
1721			break;
1722		default:
1723			WARN_ON(1);
1724		}
1725	}
1726}
1727
1728/*
1729 * Late initialization function.
1730 */
1731static int __init kmemleak_late_init(void)
1732{
1733	struct dentry *dentry;
1734
1735	atomic_set(&kmemleak_initialized, 1);
1736
1737	if (atomic_read(&kmemleak_error)) {
1738		/*
1739		 * Some error occurred and kmemleak was disabled. There is a
1740		 * small chance that kmemleak_disable() was called immediately
1741		 * after setting kmemleak_initialized and we may end up with
1742		 * two clean-up threads but serialized by scan_mutex.
1743		 */
1744		schedule_work(&cleanup_work);
1745		return -ENOMEM;
1746	}
1747
1748	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1749				     &kmemleak_fops);
1750	if (!dentry)
1751		pr_warning("Failed to create the debugfs kmemleak file\n");
1752	mutex_lock(&scan_mutex);
1753	start_scan_thread();
1754	mutex_unlock(&scan_mutex);
1755
1756	pr_info("Kernel memory leak detector initialized\n");
 
1757
1758	return 0;
1759}
1760late_initcall(kmemleak_late_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
  17 *   accesses to the object_tree_root. The object_list is the main list
  18 *   holding the metadata (struct kmemleak_object) for the allocated memory
  19 *   blocks. The object_tree_root is a red black tree used to look-up
  20 *   metadata based on a pointer to the corresponding memory block.  The
  21 *   kmemleak_object structures are added to the object_list and
  22 *   object_tree_root in the create_object() function called from the
  23 *   kmemleak_alloc() callback and removed in delete_object() called from the
  24 *   kmemleak_free() callback
  25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  26 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  27 *   that some members of this structure may be protected by other means
  28 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  29 *   corresponding memory block to avoid the kernel freeing it via the
  30 *   kmemleak_free() callback. This is less heavyweight than holding a global
  31 *   lock like kmemleak_lock during scanning.
  32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  33 *   unreferenced objects at a time. The gray_list contains the objects which
  34 *   are already referenced or marked as false positives and need to be
  35 *   scanned. This list is only modified during a scanning episode when the
  36 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  37 *   Note that the kmemleak_object.use_count is incremented when an object is
  38 *   added to the gray_list and therefore cannot be freed. This mutex also
  39 *   prevents multiple users of the "kmemleak" debugfs file together with
  40 *   modifications to the memory scanning parameters including the scan_thread
  41 *   pointer
  42 *
  43 * Locks and mutexes are acquired/nested in the following order:
  44 *
  45 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  46 *
  47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  48 * regions.
  49 *
  50 * The kmemleak_object structures have a use_count incremented or decremented
  51 * using the get_object()/put_object() functions. When the use_count becomes
  52 * 0, this count can no longer be incremented and put_object() schedules the
  53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  54 * function must be protected by rcu_read_lock() to avoid accessing a freed
  55 * structure.
  56 */
  57
  58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  59
  60#include <linux/init.h>
  61#include <linux/kernel.h>
  62#include <linux/list.h>
  63#include <linux/sched/signal.h>
  64#include <linux/sched/task.h>
  65#include <linux/sched/task_stack.h>
  66#include <linux/jiffies.h>
  67#include <linux/delay.h>
  68#include <linux/export.h>
  69#include <linux/kthread.h>
  70#include <linux/rbtree.h>
  71#include <linux/fs.h>
  72#include <linux/debugfs.h>
  73#include <linux/seq_file.h>
  74#include <linux/cpumask.h>
  75#include <linux/spinlock.h>
  76#include <linux/module.h>
  77#include <linux/mutex.h>
  78#include <linux/rcupdate.h>
  79#include <linux/stacktrace.h>
  80#include <linux/cache.h>
  81#include <linux/percpu.h>
  82#include <linux/memblock.h>
  83#include <linux/pfn.h>
  84#include <linux/mmzone.h>
  85#include <linux/slab.h>
  86#include <linux/thread_info.h>
  87#include <linux/err.h>
  88#include <linux/uaccess.h>
  89#include <linux/string.h>
  90#include <linux/nodemask.h>
  91#include <linux/mm.h>
  92#include <linux/workqueue.h>
  93#include <linux/crc32.h>
  94
  95#include <asm/sections.h>
  96#include <asm/processor.h>
  97#include <linux/atomic.h>
  98
  99#include <linux/kasan.h>
 100#include <linux/kfence.h>
 101#include <linux/kmemleak.h>
 102#include <linux/memory_hotplug.h>
 103
 104/*
 105 * Kmemleak configuration and common defines.
 106 */
 107#define MAX_TRACE		16	/* stack trace length */
 108#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 111#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 112
 113#define BYTES_PER_POINTER	sizeof(void *)
 114
 115/* GFP bitmask for kmemleak internal allocations */
 116#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 117				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 118				 __GFP_NOWARN)
 119
 120/* scanning area inside a memory block */
 121struct kmemleak_scan_area {
 122	struct hlist_node node;
 123	unsigned long start;
 124	size_t size;
 125};
 126
 127#define KMEMLEAK_GREY	0
 128#define KMEMLEAK_BLACK	-1
 129
 130/*
 131 * Structure holding the metadata for each allocated memory block.
 132 * Modifications to such objects should be made while holding the
 133 * object->lock. Insertions or deletions from object_list, gray_list or
 134 * rb_node are already protected by the corresponding locks or mutex (see
 135 * the notes on locking above). These objects are reference-counted
 136 * (use_count) and freed using the RCU mechanism.
 137 */
 138struct kmemleak_object {
 139	raw_spinlock_t lock;
 140	unsigned int flags;		/* object status flags */
 141	struct list_head object_list;
 142	struct list_head gray_list;
 143	struct rb_node rb_node;
 144	struct rcu_head rcu;		/* object_list lockless traversal */
 145	/* object usage count; object freed when use_count == 0 */
 146	atomic_t use_count;
 147	unsigned long pointer;
 148	size_t size;
 149	/* pass surplus references to this pointer */
 150	unsigned long excess_ref;
 151	/* minimum number of a pointers found before it is considered leak */
 152	int min_count;
 153	/* the total number of pointers found pointing to this object */
 154	int count;
 155	/* checksum for detecting modified objects */
 156	u32 checksum;
 157	/* memory ranges to be scanned inside an object (empty for all) */
 158	struct hlist_head area_list;
 159	unsigned long trace[MAX_TRACE];
 160	unsigned int trace_len;
 161	unsigned long jiffies;		/* creation timestamp */
 162	pid_t pid;			/* pid of the current task */
 163	char comm[TASK_COMM_LEN];	/* executable name */
 164};
 165
 166/* flag representing the memory block allocation status */
 167#define OBJECT_ALLOCATED	(1 << 0)
 168/* flag set after the first reporting of an unreference object */
 169#define OBJECT_REPORTED		(1 << 1)
 170/* flag set to not scan the object */
 171#define OBJECT_NO_SCAN		(1 << 2)
 172/* flag set to fully scan the object when scan_area allocation failed */
 173#define OBJECT_FULL_SCAN	(1 << 3)
 174
 175#define HEX_PREFIX		"    "
 176/* number of bytes to print per line; must be 16 or 32 */
 177#define HEX_ROW_SIZE		16
 178/* number of bytes to print at a time (1, 2, 4, 8) */
 179#define HEX_GROUP_SIZE		1
 180/* include ASCII after the hex output */
 181#define HEX_ASCII		1
 182/* max number of lines to be printed */
 183#define HEX_MAX_LINES		2
 184
 185/* the list of all allocated objects */
 186static LIST_HEAD(object_list);
 187/* the list of gray-colored objects (see color_gray comment below) */
 188static LIST_HEAD(gray_list);
 189/* memory pool allocation */
 190static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 191static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 192static LIST_HEAD(mem_pool_free_list);
 193/* search tree for object boundaries */
 194static struct rb_root object_tree_root = RB_ROOT;
 195/* protecting the access to object_list and object_tree_root */
 196static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 197
 198/* allocation caches for kmemleak internal data */
 199static struct kmem_cache *object_cache;
 200static struct kmem_cache *scan_area_cache;
 201
 202/* set if tracing memory operations is enabled */
 203static int kmemleak_enabled = 1;
 204/* same as above but only for the kmemleak_free() callback */
 205static int kmemleak_free_enabled = 1;
 206/* set in the late_initcall if there were no errors */
 207static int kmemleak_initialized;
 208/* set if a kmemleak warning was issued */
 209static int kmemleak_warning;
 210/* set if a fatal kmemleak error has occurred */
 211static int kmemleak_error;
 212
 213/* minimum and maximum address that may be valid pointers */
 214static unsigned long min_addr = ULONG_MAX;
 215static unsigned long max_addr;
 216
 217static struct task_struct *scan_thread;
 218/* used to avoid reporting of recently allocated objects */
 219static unsigned long jiffies_min_age;
 220static unsigned long jiffies_last_scan;
 221/* delay between automatic memory scannings */
 222static unsigned long jiffies_scan_wait;
 223/* enables or disables the task stacks scanning */
 224static int kmemleak_stack_scan = 1;
 225/* protects the memory scanning, parameters and debug/kmemleak file access */
 226static DEFINE_MUTEX(scan_mutex);
 227/* setting kmemleak=on, will set this var, skipping the disable */
 228static int kmemleak_skip_disable;
 229/* If there are leaks that can be reported */
 230static bool kmemleak_found_leaks;
 231
 232static bool kmemleak_verbose;
 233module_param_named(verbose, kmemleak_verbose, bool, 0600);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234
 235static void kmemleak_disable(void);
 236
 237/*
 238 * Print a warning and dump the stack trace.
 239 */
 240#define kmemleak_warn(x...)	do {		\
 241	pr_warn(x);				\
 242	dump_stack();				\
 243	kmemleak_warning = 1;			\
 244} while (0)
 245
 246/*
 247 * Macro invoked when a serious kmemleak condition occurred and cannot be
 248 * recovered from. Kmemleak will be disabled and further allocation/freeing
 249 * tracing no longer available.
 250 */
 251#define kmemleak_stop(x...)	do {	\
 252	kmemleak_warn(x);		\
 253	kmemleak_disable();		\
 254} while (0)
 255
 256#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 257	if (seq)					\
 258		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 259	else						\
 260		pr_warn(fmt, ##__VA_ARGS__);		\
 261} while (0)
 262
 263static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 264				 int rowsize, int groupsize, const void *buf,
 265				 size_t len, bool ascii)
 266{
 267	if (seq)
 268		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 269			     buf, len, ascii);
 270	else
 271		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 272			       rowsize, groupsize, buf, len, ascii);
 273}
 274
 275/*
 276 * Printing of the objects hex dump to the seq file. The number of lines to be
 277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 279 * with the object->lock held.
 280 */
 281static void hex_dump_object(struct seq_file *seq,
 282			    struct kmemleak_object *object)
 283{
 284	const u8 *ptr = (const u8 *)object->pointer;
 285	size_t len;
 
 286
 287	/* limit the number of lines to HEX_MAX_LINES */
 288	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 
 289
 290	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 291	kasan_disable_current();
 292	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 293			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
 294	kasan_enable_current();
 
 
 
 
 
 295}
 296
 297/*
 298 * Object colors, encoded with count and min_count:
 299 * - white - orphan object, not enough references to it (count < min_count)
 300 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 301 *		sufficient references to it (count >= min_count)
 302 * - black - ignore, it doesn't contain references (e.g. text section)
 303 *		(min_count == -1). No function defined for this color.
 304 * Newly created objects don't have any color assigned (object->count == -1)
 305 * before the next memory scan when they become white.
 306 */
 307static bool color_white(const struct kmemleak_object *object)
 308{
 309	return object->count != KMEMLEAK_BLACK &&
 310		object->count < object->min_count;
 311}
 312
 313static bool color_gray(const struct kmemleak_object *object)
 314{
 315	return object->min_count != KMEMLEAK_BLACK &&
 316		object->count >= object->min_count;
 317}
 318
 319/*
 320 * Objects are considered unreferenced only if their color is white, they have
 321 * not be deleted and have a minimum age to avoid false positives caused by
 322 * pointers temporarily stored in CPU registers.
 323 */
 324static bool unreferenced_object(struct kmemleak_object *object)
 325{
 326	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 327		time_before_eq(object->jiffies + jiffies_min_age,
 328			       jiffies_last_scan);
 329}
 330
 331/*
 332 * Printing of the unreferenced objects information to the seq file. The
 333 * print_unreferenced function must be called with the object->lock held.
 334 */
 335static void print_unreferenced(struct seq_file *seq,
 336			       struct kmemleak_object *object)
 337{
 338	int i;
 339	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 340
 341	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 342		   object->pointer, object->size);
 343	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 344		   object->comm, object->pid, object->jiffies,
 345		   msecs_age / 1000, msecs_age % 1000);
 346	hex_dump_object(seq, object);
 347	warn_or_seq_printf(seq, "  backtrace:\n");
 348
 349	for (i = 0; i < object->trace_len; i++) {
 350		void *ptr = (void *)object->trace[i];
 351		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 352	}
 353}
 354
 355/*
 356 * Print the kmemleak_object information. This function is used mainly for
 357 * debugging special cases when kmemleak operations. It must be called with
 358 * the object->lock held.
 359 */
 360static void dump_object_info(struct kmemleak_object *object)
 361{
 
 
 
 
 
 362	pr_notice("Object 0x%08lx (size %zu):\n",
 363		  object->pointer, object->size);
 364	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 365		  object->comm, object->pid, object->jiffies);
 366	pr_notice("  min_count = %d\n", object->min_count);
 367	pr_notice("  count = %d\n", object->count);
 368	pr_notice("  flags = 0x%x\n", object->flags);
 369	pr_notice("  checksum = %u\n", object->checksum);
 370	pr_notice("  backtrace:\n");
 371	stack_trace_print(object->trace, object->trace_len, 4);
 372}
 373
 374/*
 375 * Look-up a memory block metadata (kmemleak_object) in the object search
 376 * tree based on a pointer value. If alias is 0, only values pointing to the
 377 * beginning of the memory block are allowed. The kmemleak_lock must be held
 378 * when calling this function.
 379 */
 380static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 381{
 382	struct rb_node *rb = object_tree_root.rb_node;
 
 
 383
 384	while (rb) {
 385		struct kmemleak_object *object =
 386			rb_entry(rb, struct kmemleak_object, rb_node);
 387		if (ptr < object->pointer)
 388			rb = object->rb_node.rb_left;
 389		else if (object->pointer + object->size <= ptr)
 390			rb = object->rb_node.rb_right;
 391		else if (object->pointer == ptr || alias)
 392			return object;
 393		else {
 394			kmemleak_warn("Found object by alias at 0x%08lx\n",
 395				      ptr);
 396			dump_object_info(object);
 397			break;
 398		}
 399	}
 400	return NULL;
 
 
 401}
 402
 403/*
 404 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 405 * that once an object's use_count reached 0, the RCU freeing was already
 406 * registered and the object should no longer be used. This function must be
 407 * called under the protection of rcu_read_lock().
 408 */
 409static int get_object(struct kmemleak_object *object)
 410{
 411	return atomic_inc_not_zero(&object->use_count);
 412}
 413
 414/*
 415 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 416 */
 417static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 418{
 419	unsigned long flags;
 420	struct kmemleak_object *object;
 421
 422	/* try the slab allocator first */
 423	if (object_cache) {
 424		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 425		if (object)
 426			return object;
 427	}
 428
 429	/* slab allocation failed, try the memory pool */
 430	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 431	object = list_first_entry_or_null(&mem_pool_free_list,
 432					  typeof(*object), object_list);
 433	if (object)
 434		list_del(&object->object_list);
 435	else if (mem_pool_free_count)
 436		object = &mem_pool[--mem_pool_free_count];
 437	else
 438		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 439	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 440
 441	return object;
 442}
 443
 444/*
 445 * Return the object to either the slab allocator or the memory pool.
 446 */
 447static void mem_pool_free(struct kmemleak_object *object)
 448{
 449	unsigned long flags;
 450
 451	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 452		kmem_cache_free(object_cache, object);
 453		return;
 454	}
 455
 456	/* add the object to the memory pool free list */
 457	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 458	list_add(&object->object_list, &mem_pool_free_list);
 459	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 460}
 461
 462/*
 463 * RCU callback to free a kmemleak_object.
 464 */
 465static void free_object_rcu(struct rcu_head *rcu)
 466{
 467	struct hlist_node *tmp;
 468	struct kmemleak_scan_area *area;
 469	struct kmemleak_object *object =
 470		container_of(rcu, struct kmemleak_object, rcu);
 471
 472	/*
 473	 * Once use_count is 0 (guaranteed by put_object), there is no other
 474	 * code accessing this object, hence no need for locking.
 475	 */
 476	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 477		hlist_del(&area->node);
 478		kmem_cache_free(scan_area_cache, area);
 479	}
 480	mem_pool_free(object);
 481}
 482
 483/*
 484 * Decrement the object use_count. Once the count is 0, free the object using
 485 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 486 * delete_object() path, the delayed RCU freeing ensures that there is no
 487 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 488 * is also possible.
 489 */
 490static void put_object(struct kmemleak_object *object)
 491{
 492	if (!atomic_dec_and_test(&object->use_count))
 493		return;
 494
 495	/* should only get here after delete_object was called */
 496	WARN_ON(object->flags & OBJECT_ALLOCATED);
 497
 498	/*
 499	 * It may be too early for the RCU callbacks, however, there is no
 500	 * concurrent object_list traversal when !object_cache and all objects
 501	 * came from the memory pool. Free the object directly.
 502	 */
 503	if (object_cache)
 504		call_rcu(&object->rcu, free_object_rcu);
 505	else
 506		free_object_rcu(&object->rcu);
 507}
 508
 509/*
 510 * Look up an object in the object search tree and increase its use_count.
 511 */
 512static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 513{
 514	unsigned long flags;
 515	struct kmemleak_object *object;
 516
 517	rcu_read_lock();
 518	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 519	object = lookup_object(ptr, alias);
 520	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 
 521
 522	/* check whether the object is still available */
 523	if (object && !get_object(object))
 524		object = NULL;
 525	rcu_read_unlock();
 526
 527	return object;
 528}
 529
 530/*
 531 * Remove an object from the object_tree_root and object_list. Must be called
 532 * with the kmemleak_lock held _if_ kmemleak is still enabled.
 533 */
 534static void __remove_object(struct kmemleak_object *object)
 535{
 536	rb_erase(&object->rb_node, &object_tree_root);
 537	list_del_rcu(&object->object_list);
 538}
 539
 540/*
 541 * Look up an object in the object search tree and remove it from both
 542 * object_tree_root and object_list. The returned object's use_count should be
 543 * at least 1, as initially set by create_object().
 544 */
 545static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
 546{
 547	unsigned long flags;
 548	struct kmemleak_object *object;
 549
 550	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 551	object = lookup_object(ptr, alias);
 552	if (object)
 553		__remove_object(object);
 554	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 555
 556	return object;
 557}
 558
 559/*
 560 * Save stack trace to the given array of MAX_TRACE size.
 561 */
 562static int __save_stack_trace(unsigned long *trace)
 563{
 564	return stack_trace_save(trace, MAX_TRACE, 2);
 565}
 566
 567/*
 568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 569 * memory block and add it to the object_list and object_tree_root.
 570 */
 571static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 572					     int min_count, gfp_t gfp)
 573{
 574	unsigned long flags;
 575	struct kmemleak_object *object, *parent;
 576	struct rb_node **link, *rb_parent;
 577	unsigned long untagged_ptr;
 578
 579	object = mem_pool_alloc(gfp);
 580	if (!object) {
 581		pr_warn("Cannot allocate a kmemleak_object structure\n");
 582		kmemleak_disable();
 583		return NULL;
 584	}
 585
 586	INIT_LIST_HEAD(&object->object_list);
 587	INIT_LIST_HEAD(&object->gray_list);
 588	INIT_HLIST_HEAD(&object->area_list);
 589	raw_spin_lock_init(&object->lock);
 590	atomic_set(&object->use_count, 1);
 591	object->flags = OBJECT_ALLOCATED;
 592	object->pointer = ptr;
 593	object->size = kfence_ksize((void *)ptr) ?: size;
 594	object->excess_ref = 0;
 595	object->min_count = min_count;
 596	object->count = 0;			/* white color initially */
 597	object->jiffies = jiffies;
 598	object->checksum = 0;
 599
 600	/* task information */
 601	if (in_irq()) {
 602		object->pid = 0;
 603		strncpy(object->comm, "hardirq", sizeof(object->comm));
 604	} else if (in_serving_softirq()) {
 605		object->pid = 0;
 606		strncpy(object->comm, "softirq", sizeof(object->comm));
 607	} else {
 608		object->pid = current->pid;
 609		/*
 610		 * There is a small chance of a race with set_task_comm(),
 611		 * however using get_task_comm() here may cause locking
 612		 * dependency issues with current->alloc_lock. In the worst
 613		 * case, the command line is not correct.
 614		 */
 615		strncpy(object->comm, current->comm, sizeof(object->comm));
 616	}
 617
 618	/* kernel backtrace */
 619	object->trace_len = __save_stack_trace(object->trace);
 620
 621	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 624	min_addr = min(min_addr, untagged_ptr);
 625	max_addr = max(max_addr, untagged_ptr + size);
 626	link = &object_tree_root.rb_node;
 627	rb_parent = NULL;
 628	while (*link) {
 629		rb_parent = *link;
 630		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 631		if (ptr + size <= parent->pointer)
 632			link = &parent->rb_node.rb_left;
 633		else if (parent->pointer + parent->size <= ptr)
 634			link = &parent->rb_node.rb_right;
 635		else {
 636			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 637				      ptr);
 638			/*
 639			 * No need for parent->lock here since "parent" cannot
 640			 * be freed while the kmemleak_lock is held.
 641			 */
 642			dump_object_info(parent);
 643			kmem_cache_free(object_cache, object);
 644			object = NULL;
 645			goto out;
 646		}
 647	}
 648	rb_link_node(&object->rb_node, rb_parent, link);
 649	rb_insert_color(&object->rb_node, &object_tree_root);
 650
 651	list_add_tail_rcu(&object->object_list, &object_list);
 652out:
 653	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 654	return object;
 655}
 656
 657/*
 658 * Mark the object as not allocated and schedule RCU freeing via put_object().
 
 659 */
 660static void __delete_object(struct kmemleak_object *object)
 661{
 662	unsigned long flags;
 663
 
 
 
 
 
 664	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 665	WARN_ON(atomic_read(&object->use_count) < 1);
 666
 667	/*
 668	 * Locking here also ensures that the corresponding memory block
 669	 * cannot be freed when it is being scanned.
 670	 */
 671	raw_spin_lock_irqsave(&object->lock, flags);
 672	object->flags &= ~OBJECT_ALLOCATED;
 673	raw_spin_unlock_irqrestore(&object->lock, flags);
 674	put_object(object);
 675}
 676
 677/*
 678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 679 * delete it.
 680 */
 681static void delete_object_full(unsigned long ptr)
 682{
 683	struct kmemleak_object *object;
 684
 685	object = find_and_remove_object(ptr, 0);
 686	if (!object) {
 687#ifdef DEBUG
 688		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 689			      ptr);
 690#endif
 691		return;
 692	}
 693	__delete_object(object);
 
 694}
 695
 696/*
 697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 698 * delete it. If the memory block is partially freed, the function may create
 699 * additional metadata for the remaining parts of the block.
 700 */
 701static void delete_object_part(unsigned long ptr, size_t size)
 702{
 703	struct kmemleak_object *object;
 704	unsigned long start, end;
 705
 706	object = find_and_remove_object(ptr, 1);
 707	if (!object) {
 708#ifdef DEBUG
 709		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 710			      ptr, size);
 711#endif
 712		return;
 713	}
 
 714
 715	/*
 716	 * Create one or two objects that may result from the memory block
 717	 * split. Note that partial freeing is only done by free_bootmem() and
 718	 * this happens before kmemleak_init() is called.
 
 
 719	 */
 720	start = object->pointer;
 721	end = object->pointer + object->size;
 722	if (ptr > start)
 723		create_object(start, ptr - start, object->min_count,
 724			      GFP_KERNEL);
 725	if (ptr + size < end)
 726		create_object(ptr + size, end - ptr - size, object->min_count,
 727			      GFP_KERNEL);
 728
 729	__delete_object(object);
 730}
 731
 732static void __paint_it(struct kmemleak_object *object, int color)
 733{
 734	object->min_count = color;
 735	if (color == KMEMLEAK_BLACK)
 736		object->flags |= OBJECT_NO_SCAN;
 737}
 738
 739static void paint_it(struct kmemleak_object *object, int color)
 740{
 741	unsigned long flags;
 742
 743	raw_spin_lock_irqsave(&object->lock, flags);
 744	__paint_it(object, color);
 745	raw_spin_unlock_irqrestore(&object->lock, flags);
 746}
 747
 748static void paint_ptr(unsigned long ptr, int color)
 749{
 750	struct kmemleak_object *object;
 751
 752	object = find_and_get_object(ptr, 0);
 753	if (!object) {
 754		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 755			      ptr,
 756			      (color == KMEMLEAK_GREY) ? "Grey" :
 757			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 758		return;
 759	}
 760	paint_it(object, color);
 761	put_object(object);
 762}
 763
 764/*
 765 * Mark an object permanently as gray-colored so that it can no longer be
 766 * reported as a leak. This is used in general to mark a false positive.
 767 */
 768static void make_gray_object(unsigned long ptr)
 769{
 770	paint_ptr(ptr, KMEMLEAK_GREY);
 771}
 772
 773/*
 774 * Mark the object as black-colored so that it is ignored from scans and
 775 * reporting.
 776 */
 777static void make_black_object(unsigned long ptr)
 778{
 779	paint_ptr(ptr, KMEMLEAK_BLACK);
 780}
 781
 782/*
 783 * Add a scanning area to the object. If at least one such area is added,
 784 * kmemleak will only scan these ranges rather than the whole memory block.
 785 */
 786static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 787{
 788	unsigned long flags;
 789	struct kmemleak_object *object;
 790	struct kmemleak_scan_area *area = NULL;
 791
 792	object = find_and_get_object(ptr, 1);
 793	if (!object) {
 794		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 795			      ptr);
 796		return;
 797	}
 798
 799	if (scan_area_cache)
 800		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 801
 802	raw_spin_lock_irqsave(&object->lock, flags);
 803	if (!area) {
 804		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 805		/* mark the object for full scan to avoid false positives */
 806		object->flags |= OBJECT_FULL_SCAN;
 807		goto out_unlock;
 808	}
 809	if (size == SIZE_MAX) {
 810		size = object->pointer + object->size - ptr;
 811	} else if (ptr + size > object->pointer + object->size) {
 812		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 813		dump_object_info(object);
 814		kmem_cache_free(scan_area_cache, area);
 815		goto out_unlock;
 816	}
 817
 818	INIT_HLIST_NODE(&area->node);
 819	area->start = ptr;
 820	area->size = size;
 821
 822	hlist_add_head(&area->node, &object->area_list);
 823out_unlock:
 824	raw_spin_unlock_irqrestore(&object->lock, flags);
 
 825	put_object(object);
 826}
 827
 828/*
 829 * Any surplus references (object already gray) to 'ptr' are passed to
 830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 831 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 832 * (see free_thread_stack()).
 833 */
 834static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 835{
 836	unsigned long flags;
 837	struct kmemleak_object *object;
 838
 839	object = find_and_get_object(ptr, 0);
 840	if (!object) {
 841		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 842			      ptr);
 843		return;
 844	}
 845
 846	raw_spin_lock_irqsave(&object->lock, flags);
 847	object->excess_ref = excess_ref;
 848	raw_spin_unlock_irqrestore(&object->lock, flags);
 849	put_object(object);
 850}
 851
 852/*
 853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 854 * pointer. Such object will not be scanned by kmemleak but references to it
 855 * are searched.
 856 */
 857static void object_no_scan(unsigned long ptr)
 
 858{
 859	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860	struct kmemleak_object *object;
 
 
 861
 862	object = find_and_get_object(ptr, 0);
 863	if (!object) {
 864		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 865		return;
 866	}
 867
 868	raw_spin_lock_irqsave(&object->lock, flags);
 869	object->flags |= OBJECT_NO_SCAN;
 870	raw_spin_unlock_irqrestore(&object->lock, flags);
 871	put_object(object);
 
 
 
 
 
 
 
 
 
 
 
 872}
 873
 874/**
 875 * kmemleak_alloc - register a newly allocated object
 876 * @ptr:	pointer to beginning of the object
 877 * @size:	size of the object
 878 * @min_count:	minimum number of references to this object. If during memory
 879 *		scanning a number of references less than @min_count is found,
 880 *		the object is reported as a memory leak. If @min_count is 0,
 881 *		the object is never reported as a leak. If @min_count is -1,
 882 *		the object is ignored (not scanned and not reported as a leak)
 883 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 884 *
 885 * This function is called from the kernel allocators when a new object
 886 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 887 */
 888void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 889			  gfp_t gfp)
 890{
 891	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 892
 893	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 894		create_object((unsigned long)ptr, size, min_count, gfp);
 
 
 895}
 896EXPORT_SYMBOL_GPL(kmemleak_alloc);
 897
 898/**
 899 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 900 * @ptr:	__percpu pointer to beginning of the object
 901 * @size:	size of the object
 902 * @gfp:	flags used for kmemleak internal memory allocations
 903 *
 904 * This function is called from the kernel percpu allocator when a new object
 905 * (memory block) is allocated (alloc_percpu).
 906 */
 907void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 908				 gfp_t gfp)
 909{
 910	unsigned int cpu;
 911
 912	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 913
 914	/*
 915	 * Percpu allocations are only scanned and not reported as leaks
 916	 * (min_count is set to 0).
 917	 */
 918	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 919		for_each_possible_cpu(cpu)
 920			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 921				      size, 0, gfp);
 922}
 923EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 924
 925/**
 926 * kmemleak_vmalloc - register a newly vmalloc'ed object
 927 * @area:	pointer to vm_struct
 928 * @size:	size of the object
 929 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
 930 *
 931 * This function is called from the vmalloc() kernel allocator when a new
 932 * object (memory block) is allocated.
 933 */
 934void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
 935{
 936	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
 937
 938	/*
 939	 * A min_count = 2 is needed because vm_struct contains a reference to
 940	 * the virtual address of the vmalloc'ed block.
 941	 */
 942	if (kmemleak_enabled) {
 943		create_object((unsigned long)area->addr, size, 2, gfp);
 944		object_set_excess_ref((unsigned long)area,
 945				      (unsigned long)area->addr);
 946	}
 947}
 948EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
 949
 950/**
 951 * kmemleak_free - unregister a previously registered object
 952 * @ptr:	pointer to beginning of the object
 953 *
 954 * This function is called from the kernel allocators when an object (memory
 955 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 956 */
 957void __ref kmemleak_free(const void *ptr)
 958{
 959	pr_debug("%s(0x%p)\n", __func__, ptr);
 960
 961	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 962		delete_object_full((unsigned long)ptr);
 
 
 963}
 964EXPORT_SYMBOL_GPL(kmemleak_free);
 965
 966/**
 967 * kmemleak_free_part - partially unregister a previously registered object
 968 * @ptr:	pointer to the beginning or inside the object. This also
 969 *		represents the start of the range to be freed
 970 * @size:	size to be unregistered
 971 *
 972 * This function is called when only a part of a memory block is freed
 973 * (usually from the bootmem allocator).
 974 */
 975void __ref kmemleak_free_part(const void *ptr, size_t size)
 976{
 977	pr_debug("%s(0x%p)\n", __func__, ptr);
 978
 979	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 980		delete_object_part((unsigned long)ptr, size);
 
 
 981}
 982EXPORT_SYMBOL_GPL(kmemleak_free_part);
 983
 984/**
 985 * kmemleak_free_percpu - unregister a previously registered __percpu object
 986 * @ptr:	__percpu pointer to beginning of the object
 987 *
 988 * This function is called from the kernel percpu allocator when an object
 989 * (memory block) is freed (free_percpu).
 990 */
 991void __ref kmemleak_free_percpu(const void __percpu *ptr)
 992{
 993	unsigned int cpu;
 994
 995	pr_debug("%s(0x%p)\n", __func__, ptr);
 996
 997	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 998		for_each_possible_cpu(cpu)
 999			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1000								      cpu));
1001}
1002EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1003
1004/**
1005 * kmemleak_update_trace - update object allocation stack trace
1006 * @ptr:	pointer to beginning of the object
1007 *
1008 * Override the object allocation stack trace for cases where the actual
1009 * allocation place is not always useful.
1010 */
1011void __ref kmemleak_update_trace(const void *ptr)
1012{
1013	struct kmemleak_object *object;
1014	unsigned long flags;
1015
1016	pr_debug("%s(0x%p)\n", __func__, ptr);
1017
1018	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1019		return;
1020
1021	object = find_and_get_object((unsigned long)ptr, 1);
1022	if (!object) {
1023#ifdef DEBUG
1024		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1025			      ptr);
1026#endif
1027		return;
1028	}
1029
1030	raw_spin_lock_irqsave(&object->lock, flags);
1031	object->trace_len = __save_stack_trace(object->trace);
1032	raw_spin_unlock_irqrestore(&object->lock, flags);
1033
1034	put_object(object);
1035}
1036EXPORT_SYMBOL(kmemleak_update_trace);
1037
1038/**
1039 * kmemleak_not_leak - mark an allocated object as false positive
1040 * @ptr:	pointer to beginning of the object
1041 *
1042 * Calling this function on an object will cause the memory block to no longer
1043 * be reported as leak and always be scanned.
1044 */
1045void __ref kmemleak_not_leak(const void *ptr)
1046{
1047	pr_debug("%s(0x%p)\n", __func__, ptr);
1048
1049	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1050		make_gray_object((unsigned long)ptr);
 
 
1051}
1052EXPORT_SYMBOL(kmemleak_not_leak);
1053
1054/**
1055 * kmemleak_ignore - ignore an allocated object
1056 * @ptr:	pointer to beginning of the object
1057 *
1058 * Calling this function on an object will cause the memory block to be
1059 * ignored (not scanned and not reported as a leak). This is usually done when
1060 * it is known that the corresponding block is not a leak and does not contain
1061 * any references to other allocated memory blocks.
1062 */
1063void __ref kmemleak_ignore(const void *ptr)
1064{
1065	pr_debug("%s(0x%p)\n", __func__, ptr);
1066
1067	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1068		make_black_object((unsigned long)ptr);
 
 
1069}
1070EXPORT_SYMBOL(kmemleak_ignore);
1071
1072/**
1073 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1074 * @ptr:	pointer to beginning or inside the object. This also
1075 *		represents the start of the scan area
1076 * @size:	size of the scan area
1077 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1078 *
1079 * This function is used when it is known that only certain parts of an object
1080 * contain references to other objects. Kmemleak will only scan these areas
1081 * reducing the number false negatives.
1082 */
1083void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1084{
1085	pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1088		add_scan_area((unsigned long)ptr, size, gfp);
 
 
1089}
1090EXPORT_SYMBOL(kmemleak_scan_area);
1091
1092/**
1093 * kmemleak_no_scan - do not scan an allocated object
1094 * @ptr:	pointer to beginning of the object
1095 *
1096 * This function notifies kmemleak not to scan the given memory block. Useful
1097 * in situations where it is known that the given object does not contain any
1098 * references to other objects. Kmemleak will not scan such objects reducing
1099 * the number of false negatives.
1100 */
1101void __ref kmemleak_no_scan(const void *ptr)
1102{
1103	pr_debug("%s(0x%p)\n", __func__, ptr);
1104
1105	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1106		object_no_scan((unsigned long)ptr);
 
 
1107}
1108EXPORT_SYMBOL(kmemleak_no_scan);
1109
1110/**
1111 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1112 *			 address argument
1113 * @phys:	physical address of the object
1114 * @size:	size of the object
1115 * @min_count:	minimum number of references to this object.
1116 *              See kmemleak_alloc()
1117 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1118 */
1119void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1120			       gfp_t gfp)
1121{
1122	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1123		kmemleak_alloc(__va(phys), size, min_count, gfp);
1124}
1125EXPORT_SYMBOL(kmemleak_alloc_phys);
1126
1127/**
1128 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1129 *			     physical address argument
1130 * @phys:	physical address if the beginning or inside an object. This
1131 *		also represents the start of the range to be freed
1132 * @size:	size to be unregistered
1133 */
1134void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1135{
1136	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1137		kmemleak_free_part(__va(phys), size);
1138}
1139EXPORT_SYMBOL(kmemleak_free_part_phys);
1140
1141/**
1142 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1143 *			    address argument
1144 * @phys:	physical address of the object
1145 */
1146void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1147{
1148	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1149		kmemleak_not_leak(__va(phys));
1150}
1151EXPORT_SYMBOL(kmemleak_not_leak_phys);
1152
1153/**
1154 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1155 *			  address argument
1156 * @phys:	physical address of the object
1157 */
1158void __ref kmemleak_ignore_phys(phys_addr_t phys)
1159{
1160	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1161		kmemleak_ignore(__va(phys));
1162}
1163EXPORT_SYMBOL(kmemleak_ignore_phys);
1164
1165/*
1166 * Update an object's checksum and return true if it was modified.
1167 */
1168static bool update_checksum(struct kmemleak_object *object)
1169{
1170	u32 old_csum = object->checksum;
1171
1172	kasan_disable_current();
1173	kcsan_disable_current();
1174	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1175	kasan_enable_current();
1176	kcsan_enable_current();
1177
 
1178	return object->checksum != old_csum;
1179}
1180
1181/*
1182 * Update an object's references. object->lock must be held by the caller.
1183 */
1184static void update_refs(struct kmemleak_object *object)
1185{
1186	if (!color_white(object)) {
1187		/* non-orphan, ignored or new */
1188		return;
1189	}
1190
1191	/*
1192	 * Increase the object's reference count (number of pointers to the
1193	 * memory block). If this count reaches the required minimum, the
1194	 * object's color will become gray and it will be added to the
1195	 * gray_list.
1196	 */
1197	object->count++;
1198	if (color_gray(object)) {
1199		/* put_object() called when removing from gray_list */
1200		WARN_ON(!get_object(object));
1201		list_add_tail(&object->gray_list, &gray_list);
1202	}
1203}
1204
1205/*
1206 * Memory scanning is a long process and it needs to be interruptible. This
1207 * function checks whether such interrupt condition occurred.
1208 */
1209static int scan_should_stop(void)
1210{
1211	if (!kmemleak_enabled)
1212		return 1;
1213
1214	/*
1215	 * This function may be called from either process or kthread context,
1216	 * hence the need to check for both stop conditions.
1217	 */
1218	if (current->mm)
1219		return signal_pending(current);
1220	else
1221		return kthread_should_stop();
1222
1223	return 0;
1224}
1225
1226/*
1227 * Scan a memory block (exclusive range) for valid pointers and add those
1228 * found to the gray list.
1229 */
1230static void scan_block(void *_start, void *_end,
1231		       struct kmemleak_object *scanned)
1232{
1233	unsigned long *ptr;
1234	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1235	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1236	unsigned long flags;
1237	unsigned long untagged_ptr;
1238
1239	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1240	for (ptr = start; ptr < end; ptr++) {
1241		struct kmemleak_object *object;
 
1242		unsigned long pointer;
1243		unsigned long excess_ref;
1244
 
 
1245		if (scan_should_stop())
1246			break;
1247
1248		kasan_disable_current();
1249		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1250		kasan_enable_current();
 
1251
1252		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1253		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1254			continue;
1255
1256		/*
1257		 * No need for get_object() here since we hold kmemleak_lock.
1258		 * object->use_count cannot be dropped to 0 while the object
1259		 * is still present in object_tree_root and object_list
1260		 * (with updates protected by kmemleak_lock).
1261		 */
1262		object = lookup_object(pointer, 1);
1263		if (!object)
1264			continue;
1265		if (object == scanned)
1266			/* self referenced, ignore */
 
1267			continue;
 
1268
1269		/*
1270		 * Avoid the lockdep recursive warning on object->lock being
1271		 * previously acquired in scan_object(). These locks are
1272		 * enclosed by scan_mutex.
1273		 */
1274		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1275		/* only pass surplus references (object already gray) */
1276		if (color_gray(object)) {
1277			excess_ref = object->excess_ref;
1278			/* no need for update_refs() if object already gray */
1279		} else {
1280			excess_ref = 0;
1281			update_refs(object);
1282		}
1283		raw_spin_unlock(&object->lock);
1284
1285		if (excess_ref) {
1286			object = lookup_object(excess_ref, 0);
1287			if (!object)
1288				continue;
1289			if (object == scanned)
1290				/* circular reference, ignore */
1291				continue;
1292			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1293			update_refs(object);
1294			raw_spin_unlock(&object->lock);
 
1295		}
1296	}
1297	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1298}
1299
1300/*
1301 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1302 */
1303#ifdef CONFIG_SMP
1304static void scan_large_block(void *start, void *end)
1305{
1306	void *next;
1307
1308	while (start < end) {
1309		next = min(start + MAX_SCAN_SIZE, end);
1310		scan_block(start, next, NULL);
1311		start = next;
1312		cond_resched();
1313	}
1314}
1315#endif
1316
1317/*
1318 * Scan a memory block corresponding to a kmemleak_object. A condition is
1319 * that object->use_count >= 1.
1320 */
1321static void scan_object(struct kmemleak_object *object)
1322{
1323	struct kmemleak_scan_area *area;
 
1324	unsigned long flags;
1325
1326	/*
1327	 * Once the object->lock is acquired, the corresponding memory block
1328	 * cannot be freed (the same lock is acquired in delete_object).
1329	 */
1330	raw_spin_lock_irqsave(&object->lock, flags);
1331	if (object->flags & OBJECT_NO_SCAN)
1332		goto out;
1333	if (!(object->flags & OBJECT_ALLOCATED))
1334		/* already freed object */
1335		goto out;
1336	if (hlist_empty(&object->area_list) ||
1337	    object->flags & OBJECT_FULL_SCAN) {
1338		void *start = (void *)object->pointer;
1339		void *end = (void *)(object->pointer + object->size);
1340		void *next;
1341
1342		do {
1343			next = min(start + MAX_SCAN_SIZE, end);
1344			scan_block(start, next, object);
1345
1346			start = next;
1347			if (start >= end)
1348				break;
 
 
1349
1350			raw_spin_unlock_irqrestore(&object->lock, flags);
1351			cond_resched();
1352			raw_spin_lock_irqsave(&object->lock, flags);
1353		} while (object->flags & OBJECT_ALLOCATED);
1354	} else
1355		hlist_for_each_entry(area, &object->area_list, node)
1356			scan_block((void *)area->start,
1357				   (void *)(area->start + area->size),
1358				   object);
1359out:
1360	raw_spin_unlock_irqrestore(&object->lock, flags);
1361}
1362
1363/*
1364 * Scan the objects already referenced (gray objects). More objects will be
1365 * referenced and, if there are no memory leaks, all the objects are scanned.
1366 */
1367static void scan_gray_list(void)
1368{
1369	struct kmemleak_object *object, *tmp;
1370
1371	/*
1372	 * The list traversal is safe for both tail additions and removals
1373	 * from inside the loop. The kmemleak objects cannot be freed from
1374	 * outside the loop because their use_count was incremented.
1375	 */
1376	object = list_entry(gray_list.next, typeof(*object), gray_list);
1377	while (&object->gray_list != &gray_list) {
1378		cond_resched();
1379
1380		/* may add new objects to the list */
1381		if (!scan_should_stop())
1382			scan_object(object);
1383
1384		tmp = list_entry(object->gray_list.next, typeof(*object),
1385				 gray_list);
1386
1387		/* remove the object from the list and release it */
1388		list_del(&object->gray_list);
1389		put_object(object);
1390
1391		object = tmp;
1392	}
1393	WARN_ON(!list_empty(&gray_list));
1394}
1395
1396/*
1397 * Scan data sections and all the referenced memory blocks allocated via the
1398 * kernel's standard allocators. This function must be called with the
1399 * scan_mutex held.
1400 */
1401static void kmemleak_scan(void)
1402{
1403	unsigned long flags;
1404	struct kmemleak_object *object;
1405	int i;
1406	int new_leaks = 0;
1407
1408	jiffies_last_scan = jiffies;
1409
1410	/* prepare the kmemleak_object's */
1411	rcu_read_lock();
1412	list_for_each_entry_rcu(object, &object_list, object_list) {
1413		raw_spin_lock_irqsave(&object->lock, flags);
1414#ifdef DEBUG
1415		/*
1416		 * With a few exceptions there should be a maximum of
1417		 * 1 reference to any object at this point.
1418		 */
1419		if (atomic_read(&object->use_count) > 1) {
1420			pr_debug("object->use_count = %d\n",
1421				 atomic_read(&object->use_count));
1422			dump_object_info(object);
1423		}
1424#endif
1425		/* reset the reference count (whiten the object) */
1426		object->count = 0;
1427		if (color_gray(object) && get_object(object))
1428			list_add_tail(&object->gray_list, &gray_list);
1429
1430		raw_spin_unlock_irqrestore(&object->lock, flags);
1431	}
1432	rcu_read_unlock();
1433
 
 
 
 
1434#ifdef CONFIG_SMP
1435	/* per-cpu sections scanning */
1436	for_each_possible_cpu(i)
1437		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1438				 __per_cpu_end + per_cpu_offset(i));
1439#endif
1440
1441	/*
1442	 * Struct page scanning for each node.
 
1443	 */
1444	get_online_mems();
1445	for_each_online_node(i) {
1446		unsigned long start_pfn = node_start_pfn(i);
1447		unsigned long end_pfn = node_end_pfn(i);
 
1448		unsigned long pfn;
1449
1450		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1451			struct page *page = pfn_to_online_page(pfn);
1452
1453			if (!page)
1454				continue;
1455
1456			/* only scan pages belonging to this node */
1457			if (page_to_nid(page) != i)
1458				continue;
 
1459			/* only scan if page is in use */
1460			if (page_count(page) == 0)
1461				continue;
1462			scan_block(page, page + 1, NULL);
1463			if (!(pfn & 63))
1464				cond_resched();
1465		}
1466	}
1467	put_online_mems();
1468
1469	/*
1470	 * Scanning the task stacks (may introduce false negatives).
1471	 */
1472	if (kmemleak_stack_scan) {
1473		struct task_struct *p, *g;
1474
1475		rcu_read_lock();
1476		for_each_process_thread(g, p) {
1477			void *stack = try_get_task_stack(p);
1478			if (stack) {
1479				scan_block(stack, stack + THREAD_SIZE, NULL);
1480				put_task_stack(p);
1481			}
1482		}
1483		rcu_read_unlock();
1484	}
1485
1486	/*
1487	 * Scan the objects already referenced from the sections scanned
1488	 * above.
1489	 */
1490	scan_gray_list();
1491
1492	/*
1493	 * Check for new or unreferenced objects modified since the previous
1494	 * scan and color them gray until the next scan.
1495	 */
1496	rcu_read_lock();
1497	list_for_each_entry_rcu(object, &object_list, object_list) {
1498		raw_spin_lock_irqsave(&object->lock, flags);
1499		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1500		    && update_checksum(object) && get_object(object)) {
1501			/* color it gray temporarily */
1502			object->count = object->min_count;
1503			list_add_tail(&object->gray_list, &gray_list);
1504		}
1505		raw_spin_unlock_irqrestore(&object->lock, flags);
1506	}
1507	rcu_read_unlock();
1508
1509	/*
1510	 * Re-scan the gray list for modified unreferenced objects.
1511	 */
1512	scan_gray_list();
1513
1514	/*
1515	 * If scanning was stopped do not report any new unreferenced objects.
1516	 */
1517	if (scan_should_stop())
1518		return;
1519
1520	/*
1521	 * Scanning result reporting.
1522	 */
1523	rcu_read_lock();
1524	list_for_each_entry_rcu(object, &object_list, object_list) {
1525		raw_spin_lock_irqsave(&object->lock, flags);
1526		if (unreferenced_object(object) &&
1527		    !(object->flags & OBJECT_REPORTED)) {
1528			object->flags |= OBJECT_REPORTED;
1529
1530			if (kmemleak_verbose)
1531				print_unreferenced(NULL, object);
1532
1533			new_leaks++;
1534		}
1535		raw_spin_unlock_irqrestore(&object->lock, flags);
1536	}
1537	rcu_read_unlock();
1538
1539	if (new_leaks) {
1540		kmemleak_found_leaks = true;
1541
1542		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1543			new_leaks);
1544	}
1545
1546}
1547
1548/*
1549 * Thread function performing automatic memory scanning. Unreferenced objects
1550 * at the end of a memory scan are reported but only the first time.
1551 */
1552static int kmemleak_scan_thread(void *arg)
1553{
1554	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1555
1556	pr_info("Automatic memory scanning thread started\n");
1557	set_user_nice(current, 10);
1558
1559	/*
1560	 * Wait before the first scan to allow the system to fully initialize.
1561	 */
1562	if (first_run) {
1563		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1564		first_run = 0;
1565		while (timeout && !kthread_should_stop())
1566			timeout = schedule_timeout_interruptible(timeout);
1567	}
1568
1569	while (!kthread_should_stop()) {
1570		signed long timeout = READ_ONCE(jiffies_scan_wait);
1571
1572		mutex_lock(&scan_mutex);
1573		kmemleak_scan();
1574		mutex_unlock(&scan_mutex);
1575
1576		/* wait before the next scan */
1577		while (timeout && !kthread_should_stop())
1578			timeout = schedule_timeout_interruptible(timeout);
1579	}
1580
1581	pr_info("Automatic memory scanning thread ended\n");
1582
1583	return 0;
1584}
1585
1586/*
1587 * Start the automatic memory scanning thread. This function must be called
1588 * with the scan_mutex held.
1589 */
1590static void start_scan_thread(void)
1591{
1592	if (scan_thread)
1593		return;
1594	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1595	if (IS_ERR(scan_thread)) {
1596		pr_warn("Failed to create the scan thread\n");
1597		scan_thread = NULL;
1598	}
1599}
1600
1601/*
1602 * Stop the automatic memory scanning thread.
 
1603 */
1604static void stop_scan_thread(void)
1605{
1606	if (scan_thread) {
1607		kthread_stop(scan_thread);
1608		scan_thread = NULL;
1609	}
1610}
1611
1612/*
1613 * Iterate over the object_list and return the first valid object at or after
1614 * the required position with its use_count incremented. The function triggers
1615 * a memory scanning when the pos argument points to the first position.
1616 */
1617static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1618{
1619	struct kmemleak_object *object;
1620	loff_t n = *pos;
1621	int err;
1622
1623	err = mutex_lock_interruptible(&scan_mutex);
1624	if (err < 0)
1625		return ERR_PTR(err);
1626
1627	rcu_read_lock();
1628	list_for_each_entry_rcu(object, &object_list, object_list) {
1629		if (n-- > 0)
1630			continue;
1631		if (get_object(object))
1632			goto out;
1633	}
1634	object = NULL;
1635out:
1636	return object;
1637}
1638
1639/*
1640 * Return the next object in the object_list. The function decrements the
1641 * use_count of the previous object and increases that of the next one.
1642 */
1643static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1644{
1645	struct kmemleak_object *prev_obj = v;
1646	struct kmemleak_object *next_obj = NULL;
1647	struct kmemleak_object *obj = prev_obj;
1648
1649	++(*pos);
1650
1651	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
 
 
1652		if (get_object(obj)) {
1653			next_obj = obj;
1654			break;
1655		}
1656	}
1657
1658	put_object(prev_obj);
1659	return next_obj;
1660}
1661
1662/*
1663 * Decrement the use_count of the last object required, if any.
1664 */
1665static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1666{
1667	if (!IS_ERR(v)) {
1668		/*
1669		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1670		 * waiting was interrupted, so only release it if !IS_ERR.
1671		 */
1672		rcu_read_unlock();
1673		mutex_unlock(&scan_mutex);
1674		if (v)
1675			put_object(v);
1676	}
1677}
1678
1679/*
1680 * Print the information for an unreferenced object to the seq file.
1681 */
1682static int kmemleak_seq_show(struct seq_file *seq, void *v)
1683{
1684	struct kmemleak_object *object = v;
1685	unsigned long flags;
1686
1687	raw_spin_lock_irqsave(&object->lock, flags);
1688	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1689		print_unreferenced(seq, object);
1690	raw_spin_unlock_irqrestore(&object->lock, flags);
1691	return 0;
1692}
1693
1694static const struct seq_operations kmemleak_seq_ops = {
1695	.start = kmemleak_seq_start,
1696	.next  = kmemleak_seq_next,
1697	.stop  = kmemleak_seq_stop,
1698	.show  = kmemleak_seq_show,
1699};
1700
1701static int kmemleak_open(struct inode *inode, struct file *file)
1702{
 
 
 
1703	return seq_open(file, &kmemleak_seq_ops);
1704}
1705
 
 
 
 
 
1706static int dump_str_object_info(const char *str)
1707{
1708	unsigned long flags;
1709	struct kmemleak_object *object;
1710	unsigned long addr;
1711
1712	if (kstrtoul(str, 0, &addr))
1713		return -EINVAL;
1714	object = find_and_get_object(addr, 0);
1715	if (!object) {
1716		pr_info("Unknown object at 0x%08lx\n", addr);
1717		return -EINVAL;
1718	}
1719
1720	raw_spin_lock_irqsave(&object->lock, flags);
1721	dump_object_info(object);
1722	raw_spin_unlock_irqrestore(&object->lock, flags);
1723
1724	put_object(object);
1725	return 0;
1726}
1727
1728/*
1729 * We use grey instead of black to ensure we can do future scans on the same
1730 * objects. If we did not do future scans these black objects could
1731 * potentially contain references to newly allocated objects in the future and
1732 * we'd end up with false positives.
1733 */
1734static void kmemleak_clear(void)
1735{
1736	struct kmemleak_object *object;
1737	unsigned long flags;
1738
1739	rcu_read_lock();
1740	list_for_each_entry_rcu(object, &object_list, object_list) {
1741		raw_spin_lock_irqsave(&object->lock, flags);
1742		if ((object->flags & OBJECT_REPORTED) &&
1743		    unreferenced_object(object))
1744			__paint_it(object, KMEMLEAK_GREY);
1745		raw_spin_unlock_irqrestore(&object->lock, flags);
1746	}
1747	rcu_read_unlock();
1748
1749	kmemleak_found_leaks = false;
1750}
1751
1752static void __kmemleak_do_cleanup(void);
1753
1754/*
1755 * File write operation to configure kmemleak at run-time. The following
1756 * commands can be written to the /sys/kernel/debug/kmemleak file:
1757 *   off	- disable kmemleak (irreversible)
1758 *   stack=on	- enable the task stacks scanning
1759 *   stack=off	- disable the tasks stacks scanning
1760 *   scan=on	- start the automatic memory scanning thread
1761 *   scan=off	- stop the automatic memory scanning thread
1762 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1763 *		  disable it)
1764 *   scan	- trigger a memory scan
1765 *   clear	- mark all current reported unreferenced kmemleak objects as
1766 *		  grey to ignore printing them, or free all kmemleak objects
1767 *		  if kmemleak has been disabled.
1768 *   dump=...	- dump information about the object found at the given address
1769 */
1770static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1771			      size_t size, loff_t *ppos)
1772{
1773	char buf[64];
1774	int buf_size;
1775	int ret;
1776
1777	buf_size = min(size, (sizeof(buf) - 1));
1778	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1779		return -EFAULT;
1780	buf[buf_size] = 0;
1781
1782	ret = mutex_lock_interruptible(&scan_mutex);
1783	if (ret < 0)
1784		return ret;
1785
1786	if (strncmp(buf, "clear", 5) == 0) {
1787		if (kmemleak_enabled)
1788			kmemleak_clear();
1789		else
1790			__kmemleak_do_cleanup();
1791		goto out;
1792	}
1793
1794	if (!kmemleak_enabled) {
1795		ret = -EPERM;
1796		goto out;
1797	}
1798
1799	if (strncmp(buf, "off", 3) == 0)
1800		kmemleak_disable();
1801	else if (strncmp(buf, "stack=on", 8) == 0)
1802		kmemleak_stack_scan = 1;
1803	else if (strncmp(buf, "stack=off", 9) == 0)
1804		kmemleak_stack_scan = 0;
1805	else if (strncmp(buf, "scan=on", 7) == 0)
1806		start_scan_thread();
1807	else if (strncmp(buf, "scan=off", 8) == 0)
1808		stop_scan_thread();
1809	else if (strncmp(buf, "scan=", 5) == 0) {
1810		unsigned secs;
1811		unsigned long msecs;
1812
1813		ret = kstrtouint(buf + 5, 0, &secs);
1814		if (ret < 0)
1815			goto out;
1816
1817		msecs = secs * MSEC_PER_SEC;
1818		if (msecs > UINT_MAX)
1819			msecs = UINT_MAX;
1820
1821		stop_scan_thread();
1822		if (msecs) {
1823			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1824			start_scan_thread();
1825		}
1826	} else if (strncmp(buf, "scan", 4) == 0)
1827		kmemleak_scan();
 
 
1828	else if (strncmp(buf, "dump=", 5) == 0)
1829		ret = dump_str_object_info(buf + 5);
1830	else
1831		ret = -EINVAL;
1832
1833out:
1834	mutex_unlock(&scan_mutex);
1835	if (ret < 0)
1836		return ret;
1837
1838	/* ignore the rest of the buffer, only one command at a time */
1839	*ppos += size;
1840	return size;
1841}
1842
1843static const struct file_operations kmemleak_fops = {
1844	.owner		= THIS_MODULE,
1845	.open		= kmemleak_open,
1846	.read		= seq_read,
1847	.write		= kmemleak_write,
1848	.llseek		= seq_lseek,
1849	.release	= seq_release,
1850};
1851
1852static void __kmemleak_do_cleanup(void)
1853{
1854	struct kmemleak_object *object, *tmp;
1855
1856	/*
1857	 * Kmemleak has already been disabled, no need for RCU list traversal
1858	 * or kmemleak_lock held.
1859	 */
1860	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1861		__remove_object(object);
1862		__delete_object(object);
1863	}
1864}
1865
1866/*
1867 * Stop the memory scanning thread and free the kmemleak internal objects if
1868 * no previous scan thread (otherwise, kmemleak may still have some useful
1869 * information on memory leaks).
1870 */
1871static void kmemleak_do_cleanup(struct work_struct *work)
1872{
 
 
 
1873	stop_scan_thread();
1874
1875	mutex_lock(&scan_mutex);
1876	/*
1877	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1878	 * longer track object freeing. Ordering of the scan thread stopping and
1879	 * the memory accesses below is guaranteed by the kthread_stop()
1880	 * function.
1881	 */
1882	kmemleak_free_enabled = 0;
1883	mutex_unlock(&scan_mutex);
1884
1885	if (!kmemleak_found_leaks)
1886		__kmemleak_do_cleanup();
1887	else
1888		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1889}
1890
1891static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1892
1893/*
1894 * Disable kmemleak. No memory allocation/freeing will be traced once this
1895 * function is called. Disabling kmemleak is an irreversible operation.
1896 */
1897static void kmemleak_disable(void)
1898{
1899	/* atomically check whether it was already invoked */
1900	if (cmpxchg(&kmemleak_error, 0, 1))
1901		return;
1902
1903	/* stop any memory operation tracing */
1904	kmemleak_enabled = 0;
 
1905
1906	/* check whether it is too early for a kernel thread */
1907	if (kmemleak_initialized)
1908		schedule_work(&cleanup_work);
1909	else
1910		kmemleak_free_enabled = 0;
1911
1912	pr_info("Kernel memory leak detector disabled\n");
1913}
1914
1915/*
1916 * Allow boot-time kmemleak disabling (enabled by default).
1917 */
1918static int __init kmemleak_boot_config(char *str)
1919{
1920	if (!str)
1921		return -EINVAL;
1922	if (strcmp(str, "off") == 0)
1923		kmemleak_disable();
1924	else if (strcmp(str, "on") == 0)
1925		kmemleak_skip_disable = 1;
1926	else
1927		return -EINVAL;
1928	return 0;
1929}
1930early_param("kmemleak", kmemleak_boot_config);
1931
1932/*
1933 * Kmemleak initialization.
1934 */
1935void __init kmemleak_init(void)
1936{
 
 
 
1937#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1938	if (!kmemleak_skip_disable) {
1939		kmemleak_disable();
1940		return;
1941	}
1942#endif
1943
1944	if (kmemleak_error)
1945		return;
1946
1947	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1948	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1949
1950	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1951	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
 
1952
1953	/* register the data/bss sections */
1954	create_object((unsigned long)_sdata, _edata - _sdata,
1955		      KMEMLEAK_GREY, GFP_ATOMIC);
1956	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1957		      KMEMLEAK_GREY, GFP_ATOMIC);
1958	/* only register .data..ro_after_init if not within .data */
1959	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1960		create_object((unsigned long)__start_ro_after_init,
1961			      __end_ro_after_init - __start_ro_after_init,
1962			      KMEMLEAK_GREY, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963}
1964
1965/*
1966 * Late initialization function.
1967 */
1968static int __init kmemleak_late_init(void)
1969{
1970	kmemleak_initialized = 1;
1971
1972	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1973
1974	if (kmemleak_error) {
1975		/*
1976		 * Some error occurred and kmemleak was disabled. There is a
1977		 * small chance that kmemleak_disable() was called immediately
1978		 * after setting kmemleak_initialized and we may end up with
1979		 * two clean-up threads but serialized by scan_mutex.
1980		 */
1981		schedule_work(&cleanup_work);
1982		return -ENOMEM;
1983	}
1984
1985	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1986		mutex_lock(&scan_mutex);
1987		start_scan_thread();
1988		mutex_unlock(&scan_mutex);
1989	}
 
 
1990
1991	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1992		mem_pool_free_count);
1993
1994	return 0;
1995}
1996late_initcall(kmemleak_late_init);