Loading...
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120/* scanning area inside a memory block */
121struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125};
126
127#define KMEMLEAK_GREY 0
128#define KMEMLEAK_BLACK -1
129
130/*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * tree_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138struct kmemleak_object {
139 spinlock_t lock;
140 unsigned long flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct prio_tree_node tree_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 /* memory ranges to be scanned inside an object (empty for all) */
156 struct hlist_head area_list;
157 unsigned long trace[MAX_TRACE];
158 unsigned int trace_len;
159 unsigned long jiffies; /* creation timestamp */
160 pid_t pid; /* pid of the current task */
161 char comm[TASK_COMM_LEN]; /* executable name */
162};
163
164/* flag representing the memory block allocation status */
165#define OBJECT_ALLOCATED (1 << 0)
166/* flag set after the first reporting of an unreference object */
167#define OBJECT_REPORTED (1 << 1)
168/* flag set to not scan the object */
169#define OBJECT_NO_SCAN (1 << 2)
170
171/* number of bytes to print per line; must be 16 or 32 */
172#define HEX_ROW_SIZE 16
173/* number of bytes to print at a time (1, 2, 4, 8) */
174#define HEX_GROUP_SIZE 1
175/* include ASCII after the hex output */
176#define HEX_ASCII 1
177/* max number of lines to be printed */
178#define HEX_MAX_LINES 2
179
180/* the list of all allocated objects */
181static LIST_HEAD(object_list);
182/* the list of gray-colored objects (see color_gray comment below) */
183static LIST_HEAD(gray_list);
184/* prio search tree for object boundaries */
185static struct prio_tree_root object_tree_root;
186/* rw_lock protecting the access to object_list and prio_tree_root */
187static DEFINE_RWLOCK(kmemleak_lock);
188
189/* allocation caches for kmemleak internal data */
190static struct kmem_cache *object_cache;
191static struct kmem_cache *scan_area_cache;
192
193/* set if tracing memory operations is enabled */
194static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
195/* set in the late_initcall if there were no errors */
196static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
197/* enables or disables early logging of the memory operations */
198static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
199/* set if a fata kmemleak error has occurred */
200static atomic_t kmemleak_error = ATOMIC_INIT(0);
201
202/* minimum and maximum address that may be valid pointers */
203static unsigned long min_addr = ULONG_MAX;
204static unsigned long max_addr;
205
206static struct task_struct *scan_thread;
207/* used to avoid reporting of recently allocated objects */
208static unsigned long jiffies_min_age;
209static unsigned long jiffies_last_scan;
210/* delay between automatic memory scannings */
211static signed long jiffies_scan_wait;
212/* enables or disables the task stacks scanning */
213static int kmemleak_stack_scan = 1;
214/* protects the memory scanning, parameters and debug/kmemleak file access */
215static DEFINE_MUTEX(scan_mutex);
216/* setting kmemleak=on, will set this var, skipping the disable */
217static int kmemleak_skip_disable;
218
219
220/*
221 * Early object allocation/freeing logging. Kmemleak is initialized after the
222 * kernel allocator. However, both the kernel allocator and kmemleak may
223 * allocate memory blocks which need to be tracked. Kmemleak defines an
224 * arbitrary buffer to hold the allocation/freeing information before it is
225 * fully initialized.
226 */
227
228/* kmemleak operation type for early logging */
229enum {
230 KMEMLEAK_ALLOC,
231 KMEMLEAK_FREE,
232 KMEMLEAK_FREE_PART,
233 KMEMLEAK_NOT_LEAK,
234 KMEMLEAK_IGNORE,
235 KMEMLEAK_SCAN_AREA,
236 KMEMLEAK_NO_SCAN
237};
238
239/*
240 * Structure holding the information passed to kmemleak callbacks during the
241 * early logging.
242 */
243struct early_log {
244 int op_type; /* kmemleak operation type */
245 const void *ptr; /* allocated/freed memory block */
246 size_t size; /* memory block size */
247 int min_count; /* minimum reference count */
248 unsigned long trace[MAX_TRACE]; /* stack trace */
249 unsigned int trace_len; /* stack trace length */
250};
251
252/* early logging buffer and current position */
253static struct early_log
254 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
255static int crt_early_log __initdata;
256
257static void kmemleak_disable(void);
258
259/*
260 * Print a warning and dump the stack trace.
261 */
262#define kmemleak_warn(x...) do { \
263 pr_warning(x); \
264 dump_stack(); \
265} while (0)
266
267/*
268 * Macro invoked when a serious kmemleak condition occurred and cannot be
269 * recovered from. Kmemleak will be disabled and further allocation/freeing
270 * tracing no longer available.
271 */
272#define kmemleak_stop(x...) do { \
273 kmemleak_warn(x); \
274 kmemleak_disable(); \
275} while (0)
276
277/*
278 * Printing of the objects hex dump to the seq file. The number of lines to be
279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281 * with the object->lock held.
282 */
283static void hex_dump_object(struct seq_file *seq,
284 struct kmemleak_object *object)
285{
286 const u8 *ptr = (const u8 *)object->pointer;
287 int i, len, remaining;
288 unsigned char linebuf[HEX_ROW_SIZE * 5];
289
290 /* limit the number of lines to HEX_MAX_LINES */
291 remaining = len =
292 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
293
294 seq_printf(seq, " hex dump (first %d bytes):\n", len);
295 for (i = 0; i < len; i += HEX_ROW_SIZE) {
296 int linelen = min(remaining, HEX_ROW_SIZE);
297
298 remaining -= HEX_ROW_SIZE;
299 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
300 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
301 HEX_ASCII);
302 seq_printf(seq, " %s\n", linebuf);
303 }
304}
305
306/*
307 * Object colors, encoded with count and min_count:
308 * - white - orphan object, not enough references to it (count < min_count)
309 * - gray - not orphan, not marked as false positive (min_count == 0) or
310 * sufficient references to it (count >= min_count)
311 * - black - ignore, it doesn't contain references (e.g. text section)
312 * (min_count == -1). No function defined for this color.
313 * Newly created objects don't have any color assigned (object->count == -1)
314 * before the next memory scan when they become white.
315 */
316static bool color_white(const struct kmemleak_object *object)
317{
318 return object->count != KMEMLEAK_BLACK &&
319 object->count < object->min_count;
320}
321
322static bool color_gray(const struct kmemleak_object *object)
323{
324 return object->min_count != KMEMLEAK_BLACK &&
325 object->count >= object->min_count;
326}
327
328/*
329 * Objects are considered unreferenced only if their color is white, they have
330 * not be deleted and have a minimum age to avoid false positives caused by
331 * pointers temporarily stored in CPU registers.
332 */
333static bool unreferenced_object(struct kmemleak_object *object)
334{
335 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
336 time_before_eq(object->jiffies + jiffies_min_age,
337 jiffies_last_scan);
338}
339
340/*
341 * Printing of the unreferenced objects information to the seq file. The
342 * print_unreferenced function must be called with the object->lock held.
343 */
344static void print_unreferenced(struct seq_file *seq,
345 struct kmemleak_object *object)
346{
347 int i;
348 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
349
350 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
351 object->pointer, object->size);
352 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353 object->comm, object->pid, object->jiffies,
354 msecs_age / 1000, msecs_age % 1000);
355 hex_dump_object(seq, object);
356 seq_printf(seq, " backtrace:\n");
357
358 for (i = 0; i < object->trace_len; i++) {
359 void *ptr = (void *)object->trace[i];
360 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
361 }
362}
363
364/*
365 * Print the kmemleak_object information. This function is used mainly for
366 * debugging special cases when kmemleak operations. It must be called with
367 * the object->lock held.
368 */
369static void dump_object_info(struct kmemleak_object *object)
370{
371 struct stack_trace trace;
372
373 trace.nr_entries = object->trace_len;
374 trace.entries = object->trace;
375
376 pr_notice("Object 0x%08lx (size %zu):\n",
377 object->tree_node.start, object->size);
378 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
379 object->comm, object->pid, object->jiffies);
380 pr_notice(" min_count = %d\n", object->min_count);
381 pr_notice(" count = %d\n", object->count);
382 pr_notice(" flags = 0x%lx\n", object->flags);
383 pr_notice(" checksum = %d\n", object->checksum);
384 pr_notice(" backtrace:\n");
385 print_stack_trace(&trace, 4);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the priority search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395{
396 struct prio_tree_node *node;
397 struct prio_tree_iter iter;
398 struct kmemleak_object *object;
399
400 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401 node = prio_tree_next(&iter);
402 if (node) {
403 object = prio_tree_entry(node, struct kmemleak_object,
404 tree_node);
405 if (!alias && object->pointer != ptr) {
406 pr_warning("Found object by alias at 0x%08lx\n", ptr);
407 dump_stack();
408 dump_object_info(object);
409 object = NULL;
410 }
411 } else
412 object = NULL;
413
414 return object;
415}
416
417/*
418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419 * that once an object's use_count reached 0, the RCU freeing was already
420 * registered and the object should no longer be used. This function must be
421 * called under the protection of rcu_read_lock().
422 */
423static int get_object(struct kmemleak_object *object)
424{
425 return atomic_inc_not_zero(&object->use_count);
426}
427
428/*
429 * RCU callback to free a kmemleak_object.
430 */
431static void free_object_rcu(struct rcu_head *rcu)
432{
433 struct hlist_node *elem, *tmp;
434 struct kmemleak_scan_area *area;
435 struct kmemleak_object *object =
436 container_of(rcu, struct kmemleak_object, rcu);
437
438 /*
439 * Once use_count is 0 (guaranteed by put_object), there is no other
440 * code accessing this object, hence no need for locking.
441 */
442 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
443 hlist_del(elem);
444 kmem_cache_free(scan_area_cache, area);
445 }
446 kmem_cache_free(object_cache, object);
447}
448
449/*
450 * Decrement the object use_count. Once the count is 0, free the object using
451 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452 * delete_object() path, the delayed RCU freeing ensures that there is no
453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
454 * is also possible.
455 */
456static void put_object(struct kmemleak_object *object)
457{
458 if (!atomic_dec_and_test(&object->use_count))
459 return;
460
461 /* should only get here after delete_object was called */
462 WARN_ON(object->flags & OBJECT_ALLOCATED);
463
464 call_rcu(&object->rcu, free_object_rcu);
465}
466
467/*
468 * Look up an object in the prio search tree and increase its use_count.
469 */
470static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
471{
472 unsigned long flags;
473 struct kmemleak_object *object = NULL;
474
475 rcu_read_lock();
476 read_lock_irqsave(&kmemleak_lock, flags);
477 if (ptr >= min_addr && ptr < max_addr)
478 object = lookup_object(ptr, alias);
479 read_unlock_irqrestore(&kmemleak_lock, flags);
480
481 /* check whether the object is still available */
482 if (object && !get_object(object))
483 object = NULL;
484 rcu_read_unlock();
485
486 return object;
487}
488
489/*
490 * Save stack trace to the given array of MAX_TRACE size.
491 */
492static int __save_stack_trace(unsigned long *trace)
493{
494 struct stack_trace stack_trace;
495
496 stack_trace.max_entries = MAX_TRACE;
497 stack_trace.nr_entries = 0;
498 stack_trace.entries = trace;
499 stack_trace.skip = 2;
500 save_stack_trace(&stack_trace);
501
502 return stack_trace.nr_entries;
503}
504
505/*
506 * Create the metadata (struct kmemleak_object) corresponding to an allocated
507 * memory block and add it to the object_list and object_tree_root.
508 */
509static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
510 int min_count, gfp_t gfp)
511{
512 unsigned long flags;
513 struct kmemleak_object *object;
514 struct prio_tree_node *node;
515
516 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
517 if (!object) {
518 pr_warning("Cannot allocate a kmemleak_object structure\n");
519 kmemleak_disable();
520 return NULL;
521 }
522
523 INIT_LIST_HEAD(&object->object_list);
524 INIT_LIST_HEAD(&object->gray_list);
525 INIT_HLIST_HEAD(&object->area_list);
526 spin_lock_init(&object->lock);
527 atomic_set(&object->use_count, 1);
528 object->flags = OBJECT_ALLOCATED;
529 object->pointer = ptr;
530 object->size = size;
531 object->min_count = min_count;
532 object->count = 0; /* white color initially */
533 object->jiffies = jiffies;
534 object->checksum = 0;
535
536 /* task information */
537 if (in_irq()) {
538 object->pid = 0;
539 strncpy(object->comm, "hardirq", sizeof(object->comm));
540 } else if (in_softirq()) {
541 object->pid = 0;
542 strncpy(object->comm, "softirq", sizeof(object->comm));
543 } else {
544 object->pid = current->pid;
545 /*
546 * There is a small chance of a race with set_task_comm(),
547 * however using get_task_comm() here may cause locking
548 * dependency issues with current->alloc_lock. In the worst
549 * case, the command line is not correct.
550 */
551 strncpy(object->comm, current->comm, sizeof(object->comm));
552 }
553
554 /* kernel backtrace */
555 object->trace_len = __save_stack_trace(object->trace);
556
557 INIT_PRIO_TREE_NODE(&object->tree_node);
558 object->tree_node.start = ptr;
559 object->tree_node.last = ptr + size - 1;
560
561 write_lock_irqsave(&kmemleak_lock, flags);
562
563 min_addr = min(min_addr, ptr);
564 max_addr = max(max_addr, ptr + size);
565 node = prio_tree_insert(&object_tree_root, &object->tree_node);
566 /*
567 * The code calling the kernel does not yet have the pointer to the
568 * memory block to be able to free it. However, we still hold the
569 * kmemleak_lock here in case parts of the kernel started freeing
570 * random memory blocks.
571 */
572 if (node != &object->tree_node) {
573 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574 "(already existing)\n", ptr);
575 object = lookup_object(ptr, 1);
576 spin_lock(&object->lock);
577 dump_object_info(object);
578 spin_unlock(&object->lock);
579
580 goto out;
581 }
582 list_add_tail_rcu(&object->object_list, &object_list);
583out:
584 write_unlock_irqrestore(&kmemleak_lock, flags);
585 return object;
586}
587
588/*
589 * Remove the metadata (struct kmemleak_object) for a memory block from the
590 * object_list and object_tree_root and decrement its use_count.
591 */
592static void __delete_object(struct kmemleak_object *object)
593{
594 unsigned long flags;
595
596 write_lock_irqsave(&kmemleak_lock, flags);
597 prio_tree_remove(&object_tree_root, &object->tree_node);
598 list_del_rcu(&object->object_list);
599 write_unlock_irqrestore(&kmemleak_lock, flags);
600
601 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
602 WARN_ON(atomic_read(&object->use_count) < 2);
603
604 /*
605 * Locking here also ensures that the corresponding memory block
606 * cannot be freed when it is being scanned.
607 */
608 spin_lock_irqsave(&object->lock, flags);
609 object->flags &= ~OBJECT_ALLOCATED;
610 spin_unlock_irqrestore(&object->lock, flags);
611 put_object(object);
612}
613
614/*
615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
616 * delete it.
617 */
618static void delete_object_full(unsigned long ptr)
619{
620 struct kmemleak_object *object;
621
622 object = find_and_get_object(ptr, 0);
623 if (!object) {
624#ifdef DEBUG
625 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
626 ptr);
627#endif
628 return;
629 }
630 __delete_object(object);
631 put_object(object);
632}
633
634/*
635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
636 * delete it. If the memory block is partially freed, the function may create
637 * additional metadata for the remaining parts of the block.
638 */
639static void delete_object_part(unsigned long ptr, size_t size)
640{
641 struct kmemleak_object *object;
642 unsigned long start, end;
643
644 object = find_and_get_object(ptr, 1);
645 if (!object) {
646#ifdef DEBUG
647 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648 "(size %zu)\n", ptr, size);
649#endif
650 return;
651 }
652 __delete_object(object);
653
654 /*
655 * Create one or two objects that may result from the memory block
656 * split. Note that partial freeing is only done by free_bootmem() and
657 * this happens before kmemleak_init() is called. The path below is
658 * only executed during early log recording in kmemleak_init(), so
659 * GFP_KERNEL is enough.
660 */
661 start = object->pointer;
662 end = object->pointer + object->size;
663 if (ptr > start)
664 create_object(start, ptr - start, object->min_count,
665 GFP_KERNEL);
666 if (ptr + size < end)
667 create_object(ptr + size, end - ptr - size, object->min_count,
668 GFP_KERNEL);
669
670 put_object(object);
671}
672
673static void __paint_it(struct kmemleak_object *object, int color)
674{
675 object->min_count = color;
676 if (color == KMEMLEAK_BLACK)
677 object->flags |= OBJECT_NO_SCAN;
678}
679
680static void paint_it(struct kmemleak_object *object, int color)
681{
682 unsigned long flags;
683
684 spin_lock_irqsave(&object->lock, flags);
685 __paint_it(object, color);
686 spin_unlock_irqrestore(&object->lock, flags);
687}
688
689static void paint_ptr(unsigned long ptr, int color)
690{
691 struct kmemleak_object *object;
692
693 object = find_and_get_object(ptr, 0);
694 if (!object) {
695 kmemleak_warn("Trying to color unknown object "
696 "at 0x%08lx as %s\n", ptr,
697 (color == KMEMLEAK_GREY) ? "Grey" :
698 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
699 return;
700 }
701 paint_it(object, color);
702 put_object(object);
703}
704
705/*
706 * Mark an object permanently as gray-colored so that it can no longer be
707 * reported as a leak. This is used in general to mark a false positive.
708 */
709static void make_gray_object(unsigned long ptr)
710{
711 paint_ptr(ptr, KMEMLEAK_GREY);
712}
713
714/*
715 * Mark the object as black-colored so that it is ignored from scans and
716 * reporting.
717 */
718static void make_black_object(unsigned long ptr)
719{
720 paint_ptr(ptr, KMEMLEAK_BLACK);
721}
722
723/*
724 * Add a scanning area to the object. If at least one such area is added,
725 * kmemleak will only scan these ranges rather than the whole memory block.
726 */
727static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
728{
729 unsigned long flags;
730 struct kmemleak_object *object;
731 struct kmemleak_scan_area *area;
732
733 object = find_and_get_object(ptr, 1);
734 if (!object) {
735 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
736 ptr);
737 return;
738 }
739
740 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
741 if (!area) {
742 pr_warning("Cannot allocate a scan area\n");
743 goto out;
744 }
745
746 spin_lock_irqsave(&object->lock, flags);
747 if (ptr + size > object->pointer + object->size) {
748 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
749 dump_object_info(object);
750 kmem_cache_free(scan_area_cache, area);
751 goto out_unlock;
752 }
753
754 INIT_HLIST_NODE(&area->node);
755 area->start = ptr;
756 area->size = size;
757
758 hlist_add_head(&area->node, &object->area_list);
759out_unlock:
760 spin_unlock_irqrestore(&object->lock, flags);
761out:
762 put_object(object);
763}
764
765/*
766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767 * pointer. Such object will not be scanned by kmemleak but references to it
768 * are searched.
769 */
770static void object_no_scan(unsigned long ptr)
771{
772 unsigned long flags;
773 struct kmemleak_object *object;
774
775 object = find_and_get_object(ptr, 0);
776 if (!object) {
777 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
778 return;
779 }
780
781 spin_lock_irqsave(&object->lock, flags);
782 object->flags |= OBJECT_NO_SCAN;
783 spin_unlock_irqrestore(&object->lock, flags);
784 put_object(object);
785}
786
787/*
788 * Log an early kmemleak_* call to the early_log buffer. These calls will be
789 * processed later once kmemleak is fully initialized.
790 */
791static void __init log_early(int op_type, const void *ptr, size_t size,
792 int min_count)
793{
794 unsigned long flags;
795 struct early_log *log;
796
797 if (crt_early_log >= ARRAY_SIZE(early_log)) {
798 pr_warning("Early log buffer exceeded, "
799 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
800 kmemleak_disable();
801 return;
802 }
803
804 /*
805 * There is no need for locking since the kernel is still in UP mode
806 * at this stage. Disabling the IRQs is enough.
807 */
808 local_irq_save(flags);
809 log = &early_log[crt_early_log];
810 log->op_type = op_type;
811 log->ptr = ptr;
812 log->size = size;
813 log->min_count = min_count;
814 if (op_type == KMEMLEAK_ALLOC)
815 log->trace_len = __save_stack_trace(log->trace);
816 crt_early_log++;
817 local_irq_restore(flags);
818}
819
820/*
821 * Log an early allocated block and populate the stack trace.
822 */
823static void early_alloc(struct early_log *log)
824{
825 struct kmemleak_object *object;
826 unsigned long flags;
827 int i;
828
829 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
830 return;
831
832 /*
833 * RCU locking needed to ensure object is not freed via put_object().
834 */
835 rcu_read_lock();
836 object = create_object((unsigned long)log->ptr, log->size,
837 log->min_count, GFP_ATOMIC);
838 if (!object)
839 goto out;
840 spin_lock_irqsave(&object->lock, flags);
841 for (i = 0; i < log->trace_len; i++)
842 object->trace[i] = log->trace[i];
843 object->trace_len = log->trace_len;
844 spin_unlock_irqrestore(&object->lock, flags);
845out:
846 rcu_read_unlock();
847}
848
849/**
850 * kmemleak_alloc - register a newly allocated object
851 * @ptr: pointer to beginning of the object
852 * @size: size of the object
853 * @min_count: minimum number of references to this object. If during memory
854 * scanning a number of references less than @min_count is found,
855 * the object is reported as a memory leak. If @min_count is 0,
856 * the object is never reported as a leak. If @min_count is -1,
857 * the object is ignored (not scanned and not reported as a leak)
858 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
859 *
860 * This function is called from the kernel allocators when a new object
861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
862 */
863void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
864 gfp_t gfp)
865{
866 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
867
868 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
869 create_object((unsigned long)ptr, size, min_count, gfp);
870 else if (atomic_read(&kmemleak_early_log))
871 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
872}
873EXPORT_SYMBOL_GPL(kmemleak_alloc);
874
875/**
876 * kmemleak_free - unregister a previously registered object
877 * @ptr: pointer to beginning of the object
878 *
879 * This function is called from the kernel allocators when an object (memory
880 * block) is freed (kmem_cache_free, kfree, vfree etc.).
881 */
882void __ref kmemleak_free(const void *ptr)
883{
884 pr_debug("%s(0x%p)\n", __func__, ptr);
885
886 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887 delete_object_full((unsigned long)ptr);
888 else if (atomic_read(&kmemleak_early_log))
889 log_early(KMEMLEAK_FREE, ptr, 0, 0);
890}
891EXPORT_SYMBOL_GPL(kmemleak_free);
892
893/**
894 * kmemleak_free_part - partially unregister a previously registered object
895 * @ptr: pointer to the beginning or inside the object. This also
896 * represents the start of the range to be freed
897 * @size: size to be unregistered
898 *
899 * This function is called when only a part of a memory block is freed
900 * (usually from the bootmem allocator).
901 */
902void __ref kmemleak_free_part(const void *ptr, size_t size)
903{
904 pr_debug("%s(0x%p)\n", __func__, ptr);
905
906 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
907 delete_object_part((unsigned long)ptr, size);
908 else if (atomic_read(&kmemleak_early_log))
909 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
910}
911EXPORT_SYMBOL_GPL(kmemleak_free_part);
912
913/**
914 * kmemleak_not_leak - mark an allocated object as false positive
915 * @ptr: pointer to beginning of the object
916 *
917 * Calling this function on an object will cause the memory block to no longer
918 * be reported as leak and always be scanned.
919 */
920void __ref kmemleak_not_leak(const void *ptr)
921{
922 pr_debug("%s(0x%p)\n", __func__, ptr);
923
924 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
925 make_gray_object((unsigned long)ptr);
926 else if (atomic_read(&kmemleak_early_log))
927 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
928}
929EXPORT_SYMBOL(kmemleak_not_leak);
930
931/**
932 * kmemleak_ignore - ignore an allocated object
933 * @ptr: pointer to beginning of the object
934 *
935 * Calling this function on an object will cause the memory block to be
936 * ignored (not scanned and not reported as a leak). This is usually done when
937 * it is known that the corresponding block is not a leak and does not contain
938 * any references to other allocated memory blocks.
939 */
940void __ref kmemleak_ignore(const void *ptr)
941{
942 pr_debug("%s(0x%p)\n", __func__, ptr);
943
944 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
945 make_black_object((unsigned long)ptr);
946 else if (atomic_read(&kmemleak_early_log))
947 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
948}
949EXPORT_SYMBOL(kmemleak_ignore);
950
951/**
952 * kmemleak_scan_area - limit the range to be scanned in an allocated object
953 * @ptr: pointer to beginning or inside the object. This also
954 * represents the start of the scan area
955 * @size: size of the scan area
956 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
957 *
958 * This function is used when it is known that only certain parts of an object
959 * contain references to other objects. Kmemleak will only scan these areas
960 * reducing the number false negatives.
961 */
962void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
963{
964 pr_debug("%s(0x%p)\n", __func__, ptr);
965
966 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
967 add_scan_area((unsigned long)ptr, size, gfp);
968 else if (atomic_read(&kmemleak_early_log))
969 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
970}
971EXPORT_SYMBOL(kmemleak_scan_area);
972
973/**
974 * kmemleak_no_scan - do not scan an allocated object
975 * @ptr: pointer to beginning of the object
976 *
977 * This function notifies kmemleak not to scan the given memory block. Useful
978 * in situations where it is known that the given object does not contain any
979 * references to other objects. Kmemleak will not scan such objects reducing
980 * the number of false negatives.
981 */
982void __ref kmemleak_no_scan(const void *ptr)
983{
984 pr_debug("%s(0x%p)\n", __func__, ptr);
985
986 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
987 object_no_scan((unsigned long)ptr);
988 else if (atomic_read(&kmemleak_early_log))
989 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
990}
991EXPORT_SYMBOL(kmemleak_no_scan);
992
993/*
994 * Update an object's checksum and return true if it was modified.
995 */
996static bool update_checksum(struct kmemleak_object *object)
997{
998 u32 old_csum = object->checksum;
999
1000 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001 return false;
1002
1003 object->checksum = crc32(0, (void *)object->pointer, object->size);
1004 return object->checksum != old_csum;
1005}
1006
1007/*
1008 * Memory scanning is a long process and it needs to be interruptable. This
1009 * function checks whether such interrupt condition occurred.
1010 */
1011static int scan_should_stop(void)
1012{
1013 if (!atomic_read(&kmemleak_enabled))
1014 return 1;
1015
1016 /*
1017 * This function may be called from either process or kthread context,
1018 * hence the need to check for both stop conditions.
1019 */
1020 if (current->mm)
1021 return signal_pending(current);
1022 else
1023 return kthread_should_stop();
1024
1025 return 0;
1026}
1027
1028/*
1029 * Scan a memory block (exclusive range) for valid pointers and add those
1030 * found to the gray list.
1031 */
1032static void scan_block(void *_start, void *_end,
1033 struct kmemleak_object *scanned, int allow_resched)
1034{
1035 unsigned long *ptr;
1036 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1038
1039 for (ptr = start; ptr < end; ptr++) {
1040 struct kmemleak_object *object;
1041 unsigned long flags;
1042 unsigned long pointer;
1043
1044 if (allow_resched)
1045 cond_resched();
1046 if (scan_should_stop())
1047 break;
1048
1049 /* don't scan uninitialized memory */
1050 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051 BYTES_PER_POINTER))
1052 continue;
1053
1054 pointer = *ptr;
1055
1056 object = find_and_get_object(pointer, 1);
1057 if (!object)
1058 continue;
1059 if (object == scanned) {
1060 /* self referenced, ignore */
1061 put_object(object);
1062 continue;
1063 }
1064
1065 /*
1066 * Avoid the lockdep recursive warning on object->lock being
1067 * previously acquired in scan_object(). These locks are
1068 * enclosed by scan_mutex.
1069 */
1070 spin_lock_irqsave_nested(&object->lock, flags,
1071 SINGLE_DEPTH_NESTING);
1072 if (!color_white(object)) {
1073 /* non-orphan, ignored or new */
1074 spin_unlock_irqrestore(&object->lock, flags);
1075 put_object(object);
1076 continue;
1077 }
1078
1079 /*
1080 * Increase the object's reference count (number of pointers
1081 * to the memory block). If this count reaches the required
1082 * minimum, the object's color will become gray and it will be
1083 * added to the gray_list.
1084 */
1085 object->count++;
1086 if (color_gray(object)) {
1087 list_add_tail(&object->gray_list, &gray_list);
1088 spin_unlock_irqrestore(&object->lock, flags);
1089 continue;
1090 }
1091
1092 spin_unlock_irqrestore(&object->lock, flags);
1093 put_object(object);
1094 }
1095}
1096
1097/*
1098 * Scan a memory block corresponding to a kmemleak_object. A condition is
1099 * that object->use_count >= 1.
1100 */
1101static void scan_object(struct kmemleak_object *object)
1102{
1103 struct kmemleak_scan_area *area;
1104 struct hlist_node *elem;
1105 unsigned long flags;
1106
1107 /*
1108 * Once the object->lock is acquired, the corresponding memory block
1109 * cannot be freed (the same lock is acquired in delete_object).
1110 */
1111 spin_lock_irqsave(&object->lock, flags);
1112 if (object->flags & OBJECT_NO_SCAN)
1113 goto out;
1114 if (!(object->flags & OBJECT_ALLOCATED))
1115 /* already freed object */
1116 goto out;
1117 if (hlist_empty(&object->area_list)) {
1118 void *start = (void *)object->pointer;
1119 void *end = (void *)(object->pointer + object->size);
1120
1121 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122 !(object->flags & OBJECT_NO_SCAN)) {
1123 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124 object, 0);
1125 start += MAX_SCAN_SIZE;
1126
1127 spin_unlock_irqrestore(&object->lock, flags);
1128 cond_resched();
1129 spin_lock_irqsave(&object->lock, flags);
1130 }
1131 } else
1132 hlist_for_each_entry(area, elem, &object->area_list, node)
1133 scan_block((void *)area->start,
1134 (void *)(area->start + area->size),
1135 object, 0);
1136out:
1137 spin_unlock_irqrestore(&object->lock, flags);
1138}
1139
1140/*
1141 * Scan the objects already referenced (gray objects). More objects will be
1142 * referenced and, if there are no memory leaks, all the objects are scanned.
1143 */
1144static void scan_gray_list(void)
1145{
1146 struct kmemleak_object *object, *tmp;
1147
1148 /*
1149 * The list traversal is safe for both tail additions and removals
1150 * from inside the loop. The kmemleak objects cannot be freed from
1151 * outside the loop because their use_count was incremented.
1152 */
1153 object = list_entry(gray_list.next, typeof(*object), gray_list);
1154 while (&object->gray_list != &gray_list) {
1155 cond_resched();
1156
1157 /* may add new objects to the list */
1158 if (!scan_should_stop())
1159 scan_object(object);
1160
1161 tmp = list_entry(object->gray_list.next, typeof(*object),
1162 gray_list);
1163
1164 /* remove the object from the list and release it */
1165 list_del(&object->gray_list);
1166 put_object(object);
1167
1168 object = tmp;
1169 }
1170 WARN_ON(!list_empty(&gray_list));
1171}
1172
1173/*
1174 * Scan data sections and all the referenced memory blocks allocated via the
1175 * kernel's standard allocators. This function must be called with the
1176 * scan_mutex held.
1177 */
1178static void kmemleak_scan(void)
1179{
1180 unsigned long flags;
1181 struct kmemleak_object *object;
1182 int i;
1183 int new_leaks = 0;
1184
1185 jiffies_last_scan = jiffies;
1186
1187 /* prepare the kmemleak_object's */
1188 rcu_read_lock();
1189 list_for_each_entry_rcu(object, &object_list, object_list) {
1190 spin_lock_irqsave(&object->lock, flags);
1191#ifdef DEBUG
1192 /*
1193 * With a few exceptions there should be a maximum of
1194 * 1 reference to any object at this point.
1195 */
1196 if (atomic_read(&object->use_count) > 1) {
1197 pr_debug("object->use_count = %d\n",
1198 atomic_read(&object->use_count));
1199 dump_object_info(object);
1200 }
1201#endif
1202 /* reset the reference count (whiten the object) */
1203 object->count = 0;
1204 if (color_gray(object) && get_object(object))
1205 list_add_tail(&object->gray_list, &gray_list);
1206
1207 spin_unlock_irqrestore(&object->lock, flags);
1208 }
1209 rcu_read_unlock();
1210
1211 /* data/bss scanning */
1212 scan_block(_sdata, _edata, NULL, 1);
1213 scan_block(__bss_start, __bss_stop, NULL, 1);
1214
1215#ifdef CONFIG_SMP
1216 /* per-cpu sections scanning */
1217 for_each_possible_cpu(i)
1218 scan_block(__per_cpu_start + per_cpu_offset(i),
1219 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1220#endif
1221
1222 /*
1223 * Struct page scanning for each node. The code below is not yet safe
1224 * with MEMORY_HOTPLUG.
1225 */
1226 for_each_online_node(i) {
1227 pg_data_t *pgdat = NODE_DATA(i);
1228 unsigned long start_pfn = pgdat->node_start_pfn;
1229 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230 unsigned long pfn;
1231
1232 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233 struct page *page;
1234
1235 if (!pfn_valid(pfn))
1236 continue;
1237 page = pfn_to_page(pfn);
1238 /* only scan if page is in use */
1239 if (page_count(page) == 0)
1240 continue;
1241 scan_block(page, page + 1, NULL, 1);
1242 }
1243 }
1244
1245 /*
1246 * Scanning the task stacks (may introduce false negatives).
1247 */
1248 if (kmemleak_stack_scan) {
1249 struct task_struct *p, *g;
1250
1251 read_lock(&tasklist_lock);
1252 do_each_thread(g, p) {
1253 scan_block(task_stack_page(p), task_stack_page(p) +
1254 THREAD_SIZE, NULL, 0);
1255 } while_each_thread(g, p);
1256 read_unlock(&tasklist_lock);
1257 }
1258
1259 /*
1260 * Scan the objects already referenced from the sections scanned
1261 * above.
1262 */
1263 scan_gray_list();
1264
1265 /*
1266 * Check for new or unreferenced objects modified since the previous
1267 * scan and color them gray until the next scan.
1268 */
1269 rcu_read_lock();
1270 list_for_each_entry_rcu(object, &object_list, object_list) {
1271 spin_lock_irqsave(&object->lock, flags);
1272 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273 && update_checksum(object) && get_object(object)) {
1274 /* color it gray temporarily */
1275 object->count = object->min_count;
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278 spin_unlock_irqrestore(&object->lock, flags);
1279 }
1280 rcu_read_unlock();
1281
1282 /*
1283 * Re-scan the gray list for modified unreferenced objects.
1284 */
1285 scan_gray_list();
1286
1287 /*
1288 * If scanning was stopped do not report any new unreferenced objects.
1289 */
1290 if (scan_should_stop())
1291 return;
1292
1293 /*
1294 * Scanning result reporting.
1295 */
1296 rcu_read_lock();
1297 list_for_each_entry_rcu(object, &object_list, object_list) {
1298 spin_lock_irqsave(&object->lock, flags);
1299 if (unreferenced_object(object) &&
1300 !(object->flags & OBJECT_REPORTED)) {
1301 object->flags |= OBJECT_REPORTED;
1302 new_leaks++;
1303 }
1304 spin_unlock_irqrestore(&object->lock, flags);
1305 }
1306 rcu_read_unlock();
1307
1308 if (new_leaks)
1309 pr_info("%d new suspected memory leaks (see "
1310 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1311
1312}
1313
1314/*
1315 * Thread function performing automatic memory scanning. Unreferenced objects
1316 * at the end of a memory scan are reported but only the first time.
1317 */
1318static int kmemleak_scan_thread(void *arg)
1319{
1320 static int first_run = 1;
1321
1322 pr_info("Automatic memory scanning thread started\n");
1323 set_user_nice(current, 10);
1324
1325 /*
1326 * Wait before the first scan to allow the system to fully initialize.
1327 */
1328 if (first_run) {
1329 first_run = 0;
1330 ssleep(SECS_FIRST_SCAN);
1331 }
1332
1333 while (!kthread_should_stop()) {
1334 signed long timeout = jiffies_scan_wait;
1335
1336 mutex_lock(&scan_mutex);
1337 kmemleak_scan();
1338 mutex_unlock(&scan_mutex);
1339
1340 /* wait before the next scan */
1341 while (timeout && !kthread_should_stop())
1342 timeout = schedule_timeout_interruptible(timeout);
1343 }
1344
1345 pr_info("Automatic memory scanning thread ended\n");
1346
1347 return 0;
1348}
1349
1350/*
1351 * Start the automatic memory scanning thread. This function must be called
1352 * with the scan_mutex held.
1353 */
1354static void start_scan_thread(void)
1355{
1356 if (scan_thread)
1357 return;
1358 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359 if (IS_ERR(scan_thread)) {
1360 pr_warning("Failed to create the scan thread\n");
1361 scan_thread = NULL;
1362 }
1363}
1364
1365/*
1366 * Stop the automatic memory scanning thread. This function must be called
1367 * with the scan_mutex held.
1368 */
1369static void stop_scan_thread(void)
1370{
1371 if (scan_thread) {
1372 kthread_stop(scan_thread);
1373 scan_thread = NULL;
1374 }
1375}
1376
1377/*
1378 * Iterate over the object_list and return the first valid object at or after
1379 * the required position with its use_count incremented. The function triggers
1380 * a memory scanning when the pos argument points to the first position.
1381 */
1382static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383{
1384 struct kmemleak_object *object;
1385 loff_t n = *pos;
1386 int err;
1387
1388 err = mutex_lock_interruptible(&scan_mutex);
1389 if (err < 0)
1390 return ERR_PTR(err);
1391
1392 rcu_read_lock();
1393 list_for_each_entry_rcu(object, &object_list, object_list) {
1394 if (n-- > 0)
1395 continue;
1396 if (get_object(object))
1397 goto out;
1398 }
1399 object = NULL;
1400out:
1401 return object;
1402}
1403
1404/*
1405 * Return the next object in the object_list. The function decrements the
1406 * use_count of the previous object and increases that of the next one.
1407 */
1408static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409{
1410 struct kmemleak_object *prev_obj = v;
1411 struct kmemleak_object *next_obj = NULL;
1412 struct list_head *n = &prev_obj->object_list;
1413
1414 ++(*pos);
1415
1416 list_for_each_continue_rcu(n, &object_list) {
1417 struct kmemleak_object *obj =
1418 list_entry(n, struct kmemleak_object, object_list);
1419 if (get_object(obj)) {
1420 next_obj = obj;
1421 break;
1422 }
1423 }
1424
1425 put_object(prev_obj);
1426 return next_obj;
1427}
1428
1429/*
1430 * Decrement the use_count of the last object required, if any.
1431 */
1432static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1433{
1434 if (!IS_ERR(v)) {
1435 /*
1436 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1437 * waiting was interrupted, so only release it if !IS_ERR.
1438 */
1439 rcu_read_unlock();
1440 mutex_unlock(&scan_mutex);
1441 if (v)
1442 put_object(v);
1443 }
1444}
1445
1446/*
1447 * Print the information for an unreferenced object to the seq file.
1448 */
1449static int kmemleak_seq_show(struct seq_file *seq, void *v)
1450{
1451 struct kmemleak_object *object = v;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&object->lock, flags);
1455 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1456 print_unreferenced(seq, object);
1457 spin_unlock_irqrestore(&object->lock, flags);
1458 return 0;
1459}
1460
1461static const struct seq_operations kmemleak_seq_ops = {
1462 .start = kmemleak_seq_start,
1463 .next = kmemleak_seq_next,
1464 .stop = kmemleak_seq_stop,
1465 .show = kmemleak_seq_show,
1466};
1467
1468static int kmemleak_open(struct inode *inode, struct file *file)
1469{
1470 if (!atomic_read(&kmemleak_enabled))
1471 return -EBUSY;
1472
1473 return seq_open(file, &kmemleak_seq_ops);
1474}
1475
1476static int kmemleak_release(struct inode *inode, struct file *file)
1477{
1478 return seq_release(inode, file);
1479}
1480
1481static int dump_str_object_info(const char *str)
1482{
1483 unsigned long flags;
1484 struct kmemleak_object *object;
1485 unsigned long addr;
1486
1487 addr= simple_strtoul(str, NULL, 0);
1488 object = find_and_get_object(addr, 0);
1489 if (!object) {
1490 pr_info("Unknown object at 0x%08lx\n", addr);
1491 return -EINVAL;
1492 }
1493
1494 spin_lock_irqsave(&object->lock, flags);
1495 dump_object_info(object);
1496 spin_unlock_irqrestore(&object->lock, flags);
1497
1498 put_object(object);
1499 return 0;
1500}
1501
1502/*
1503 * We use grey instead of black to ensure we can do future scans on the same
1504 * objects. If we did not do future scans these black objects could
1505 * potentially contain references to newly allocated objects in the future and
1506 * we'd end up with false positives.
1507 */
1508static void kmemleak_clear(void)
1509{
1510 struct kmemleak_object *object;
1511 unsigned long flags;
1512
1513 rcu_read_lock();
1514 list_for_each_entry_rcu(object, &object_list, object_list) {
1515 spin_lock_irqsave(&object->lock, flags);
1516 if ((object->flags & OBJECT_REPORTED) &&
1517 unreferenced_object(object))
1518 __paint_it(object, KMEMLEAK_GREY);
1519 spin_unlock_irqrestore(&object->lock, flags);
1520 }
1521 rcu_read_unlock();
1522}
1523
1524/*
1525 * File write operation to configure kmemleak at run-time. The following
1526 * commands can be written to the /sys/kernel/debug/kmemleak file:
1527 * off - disable kmemleak (irreversible)
1528 * stack=on - enable the task stacks scanning
1529 * stack=off - disable the tasks stacks scanning
1530 * scan=on - start the automatic memory scanning thread
1531 * scan=off - stop the automatic memory scanning thread
1532 * scan=... - set the automatic memory scanning period in seconds (0 to
1533 * disable it)
1534 * scan - trigger a memory scan
1535 * clear - mark all current reported unreferenced kmemleak objects as
1536 * grey to ignore printing them
1537 * dump=... - dump information about the object found at the given address
1538 */
1539static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1540 size_t size, loff_t *ppos)
1541{
1542 char buf[64];
1543 int buf_size;
1544 int ret;
1545
1546 buf_size = min(size, (sizeof(buf) - 1));
1547 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1548 return -EFAULT;
1549 buf[buf_size] = 0;
1550
1551 ret = mutex_lock_interruptible(&scan_mutex);
1552 if (ret < 0)
1553 return ret;
1554
1555 if (strncmp(buf, "off", 3) == 0)
1556 kmemleak_disable();
1557 else if (strncmp(buf, "stack=on", 8) == 0)
1558 kmemleak_stack_scan = 1;
1559 else if (strncmp(buf, "stack=off", 9) == 0)
1560 kmemleak_stack_scan = 0;
1561 else if (strncmp(buf, "scan=on", 7) == 0)
1562 start_scan_thread();
1563 else if (strncmp(buf, "scan=off", 8) == 0)
1564 stop_scan_thread();
1565 else if (strncmp(buf, "scan=", 5) == 0) {
1566 unsigned long secs;
1567
1568 ret = strict_strtoul(buf + 5, 0, &secs);
1569 if (ret < 0)
1570 goto out;
1571 stop_scan_thread();
1572 if (secs) {
1573 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1574 start_scan_thread();
1575 }
1576 } else if (strncmp(buf, "scan", 4) == 0)
1577 kmemleak_scan();
1578 else if (strncmp(buf, "clear", 5) == 0)
1579 kmemleak_clear();
1580 else if (strncmp(buf, "dump=", 5) == 0)
1581 ret = dump_str_object_info(buf + 5);
1582 else
1583 ret = -EINVAL;
1584
1585out:
1586 mutex_unlock(&scan_mutex);
1587 if (ret < 0)
1588 return ret;
1589
1590 /* ignore the rest of the buffer, only one command at a time */
1591 *ppos += size;
1592 return size;
1593}
1594
1595static const struct file_operations kmemleak_fops = {
1596 .owner = THIS_MODULE,
1597 .open = kmemleak_open,
1598 .read = seq_read,
1599 .write = kmemleak_write,
1600 .llseek = seq_lseek,
1601 .release = kmemleak_release,
1602};
1603
1604/*
1605 * Perform the freeing of the kmemleak internal objects after waiting for any
1606 * current memory scan to complete.
1607 */
1608static void kmemleak_do_cleanup(struct work_struct *work)
1609{
1610 struct kmemleak_object *object;
1611
1612 mutex_lock(&scan_mutex);
1613 stop_scan_thread();
1614
1615 rcu_read_lock();
1616 list_for_each_entry_rcu(object, &object_list, object_list)
1617 delete_object_full(object->pointer);
1618 rcu_read_unlock();
1619 mutex_unlock(&scan_mutex);
1620}
1621
1622static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1623
1624/*
1625 * Disable kmemleak. No memory allocation/freeing will be traced once this
1626 * function is called. Disabling kmemleak is an irreversible operation.
1627 */
1628static void kmemleak_disable(void)
1629{
1630 /* atomically check whether it was already invoked */
1631 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1632 return;
1633
1634 /* stop any memory operation tracing */
1635 atomic_set(&kmemleak_early_log, 0);
1636 atomic_set(&kmemleak_enabled, 0);
1637
1638 /* check whether it is too early for a kernel thread */
1639 if (atomic_read(&kmemleak_initialized))
1640 schedule_work(&cleanup_work);
1641
1642 pr_info("Kernel memory leak detector disabled\n");
1643}
1644
1645/*
1646 * Allow boot-time kmemleak disabling (enabled by default).
1647 */
1648static int kmemleak_boot_config(char *str)
1649{
1650 if (!str)
1651 return -EINVAL;
1652 if (strcmp(str, "off") == 0)
1653 kmemleak_disable();
1654 else if (strcmp(str, "on") == 0)
1655 kmemleak_skip_disable = 1;
1656 else
1657 return -EINVAL;
1658 return 0;
1659}
1660early_param("kmemleak", kmemleak_boot_config);
1661
1662/*
1663 * Kmemleak initialization.
1664 */
1665void __init kmemleak_init(void)
1666{
1667 int i;
1668 unsigned long flags;
1669
1670#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1671 if (!kmemleak_skip_disable) {
1672 kmemleak_disable();
1673 return;
1674 }
1675#endif
1676
1677 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1678 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1679
1680 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1681 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1682 INIT_PRIO_TREE_ROOT(&object_tree_root);
1683
1684 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1685 local_irq_save(flags);
1686 if (!atomic_read(&kmemleak_error)) {
1687 atomic_set(&kmemleak_enabled, 1);
1688 atomic_set(&kmemleak_early_log, 0);
1689 }
1690 local_irq_restore(flags);
1691
1692 /*
1693 * This is the point where tracking allocations is safe. Automatic
1694 * scanning is started during the late initcall. Add the early logged
1695 * callbacks to the kmemleak infrastructure.
1696 */
1697 for (i = 0; i < crt_early_log; i++) {
1698 struct early_log *log = &early_log[i];
1699
1700 switch (log->op_type) {
1701 case KMEMLEAK_ALLOC:
1702 early_alloc(log);
1703 break;
1704 case KMEMLEAK_FREE:
1705 kmemleak_free(log->ptr);
1706 break;
1707 case KMEMLEAK_FREE_PART:
1708 kmemleak_free_part(log->ptr, log->size);
1709 break;
1710 case KMEMLEAK_NOT_LEAK:
1711 kmemleak_not_leak(log->ptr);
1712 break;
1713 case KMEMLEAK_IGNORE:
1714 kmemleak_ignore(log->ptr);
1715 break;
1716 case KMEMLEAK_SCAN_AREA:
1717 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1718 break;
1719 case KMEMLEAK_NO_SCAN:
1720 kmemleak_no_scan(log->ptr);
1721 break;
1722 default:
1723 WARN_ON(1);
1724 }
1725 }
1726}
1727
1728/*
1729 * Late initialization function.
1730 */
1731static int __init kmemleak_late_init(void)
1732{
1733 struct dentry *dentry;
1734
1735 atomic_set(&kmemleak_initialized, 1);
1736
1737 if (atomic_read(&kmemleak_error)) {
1738 /*
1739 * Some error occurred and kmemleak was disabled. There is a
1740 * small chance that kmemleak_disable() was called immediately
1741 * after setting kmemleak_initialized and we may end up with
1742 * two clean-up threads but serialized by scan_mutex.
1743 */
1744 schedule_work(&cleanup_work);
1745 return -ENOMEM;
1746 }
1747
1748 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1749 &kmemleak_fops);
1750 if (!dentry)
1751 pr_warning("Failed to create the debugfs kmemleak file\n");
1752 mutex_lock(&scan_mutex);
1753 start_scan_thread();
1754 mutex_unlock(&scan_mutex);
1755
1756 pr_info("Kernel memory leak detector initialized\n");
1757
1758 return 0;
1759}
1760late_initcall(kmemleak_late_init);
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/task.h>
78#include <linux/sched/task_stack.h>
79#include <linux/jiffies.h>
80#include <linux/delay.h>
81#include <linux/export.h>
82#include <linux/kthread.h>
83#include <linux/rbtree.h>
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
89#include <linux/mutex.h>
90#include <linux/rcupdate.h>
91#include <linux/stacktrace.h>
92#include <linux/cache.h>
93#include <linux/percpu.h>
94#include <linux/bootmem.h>
95#include <linux/pfn.h>
96#include <linux/mmzone.h>
97#include <linux/slab.h>
98#include <linux/thread_info.h>
99#include <linux/err.h>
100#include <linux/uaccess.h>
101#include <linux/string.h>
102#include <linux/nodemask.h>
103#include <linux/mm.h>
104#include <linux/workqueue.h>
105#include <linux/crc32.h>
106
107#include <asm/sections.h>
108#include <asm/processor.h>
109#include <linux/atomic.h>
110
111#include <linux/kasan.h>
112#include <linux/kmemleak.h>
113#include <linux/memory_hotplug.h>
114
115/*
116 * Kmemleak configuration and common defines.
117 */
118#define MAX_TRACE 16 /* stack trace length */
119#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
120#define SECS_FIRST_SCAN 60 /* delay before the first scan */
121#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
122#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
123
124#define BYTES_PER_POINTER sizeof(void *)
125
126/* GFP bitmask for kmemleak internal allocations */
127#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 __GFP_NOWARN | __GFP_NOFAIL)
130
131/* scanning area inside a memory block */
132struct kmemleak_scan_area {
133 struct hlist_node node;
134 unsigned long start;
135 size_t size;
136};
137
138#define KMEMLEAK_GREY 0
139#define KMEMLEAK_BLACK -1
140
141/*
142 * Structure holding the metadata for each allocated memory block.
143 * Modifications to such objects should be made while holding the
144 * object->lock. Insertions or deletions from object_list, gray_list or
145 * rb_node are already protected by the corresponding locks or mutex (see
146 * the notes on locking above). These objects are reference-counted
147 * (use_count) and freed using the RCU mechanism.
148 */
149struct kmemleak_object {
150 spinlock_t lock;
151 unsigned int flags; /* object status flags */
152 struct list_head object_list;
153 struct list_head gray_list;
154 struct rb_node rb_node;
155 struct rcu_head rcu; /* object_list lockless traversal */
156 /* object usage count; object freed when use_count == 0 */
157 atomic_t use_count;
158 unsigned long pointer;
159 size_t size;
160 /* pass surplus references to this pointer */
161 unsigned long excess_ref;
162 /* minimum number of a pointers found before it is considered leak */
163 int min_count;
164 /* the total number of pointers found pointing to this object */
165 int count;
166 /* checksum for detecting modified objects */
167 u32 checksum;
168 /* memory ranges to be scanned inside an object (empty for all) */
169 struct hlist_head area_list;
170 unsigned long trace[MAX_TRACE];
171 unsigned int trace_len;
172 unsigned long jiffies; /* creation timestamp */
173 pid_t pid; /* pid of the current task */
174 char comm[TASK_COMM_LEN]; /* executable name */
175};
176
177/* flag representing the memory block allocation status */
178#define OBJECT_ALLOCATED (1 << 0)
179/* flag set after the first reporting of an unreference object */
180#define OBJECT_REPORTED (1 << 1)
181/* flag set to not scan the object */
182#define OBJECT_NO_SCAN (1 << 2)
183
184/* number of bytes to print per line; must be 16 or 32 */
185#define HEX_ROW_SIZE 16
186/* number of bytes to print at a time (1, 2, 4, 8) */
187#define HEX_GROUP_SIZE 1
188/* include ASCII after the hex output */
189#define HEX_ASCII 1
190/* max number of lines to be printed */
191#define HEX_MAX_LINES 2
192
193/* the list of all allocated objects */
194static LIST_HEAD(object_list);
195/* the list of gray-colored objects (see color_gray comment below) */
196static LIST_HEAD(gray_list);
197/* search tree for object boundaries */
198static struct rb_root object_tree_root = RB_ROOT;
199/* rw_lock protecting the access to object_list and object_tree_root */
200static DEFINE_RWLOCK(kmemleak_lock);
201
202/* allocation caches for kmemleak internal data */
203static struct kmem_cache *object_cache;
204static struct kmem_cache *scan_area_cache;
205
206/* set if tracing memory operations is enabled */
207static int kmemleak_enabled;
208/* same as above but only for the kmemleak_free() callback */
209static int kmemleak_free_enabled;
210/* set in the late_initcall if there were no errors */
211static int kmemleak_initialized;
212/* enables or disables early logging of the memory operations */
213static int kmemleak_early_log = 1;
214/* set if a kmemleak warning was issued */
215static int kmemleak_warning;
216/* set if a fatal kmemleak error has occurred */
217static int kmemleak_error;
218
219/* minimum and maximum address that may be valid pointers */
220static unsigned long min_addr = ULONG_MAX;
221static unsigned long max_addr;
222
223static struct task_struct *scan_thread;
224/* used to avoid reporting of recently allocated objects */
225static unsigned long jiffies_min_age;
226static unsigned long jiffies_last_scan;
227/* delay between automatic memory scannings */
228static signed long jiffies_scan_wait;
229/* enables or disables the task stacks scanning */
230static int kmemleak_stack_scan = 1;
231/* protects the memory scanning, parameters and debug/kmemleak file access */
232static DEFINE_MUTEX(scan_mutex);
233/* setting kmemleak=on, will set this var, skipping the disable */
234static int kmemleak_skip_disable;
235/* If there are leaks that can be reported */
236static bool kmemleak_found_leaks;
237
238/*
239 * Early object allocation/freeing logging. Kmemleak is initialized after the
240 * kernel allocator. However, both the kernel allocator and kmemleak may
241 * allocate memory blocks which need to be tracked. Kmemleak defines an
242 * arbitrary buffer to hold the allocation/freeing information before it is
243 * fully initialized.
244 */
245
246/* kmemleak operation type for early logging */
247enum {
248 KMEMLEAK_ALLOC,
249 KMEMLEAK_ALLOC_PERCPU,
250 KMEMLEAK_FREE,
251 KMEMLEAK_FREE_PART,
252 KMEMLEAK_FREE_PERCPU,
253 KMEMLEAK_NOT_LEAK,
254 KMEMLEAK_IGNORE,
255 KMEMLEAK_SCAN_AREA,
256 KMEMLEAK_NO_SCAN,
257 KMEMLEAK_SET_EXCESS_REF
258};
259
260/*
261 * Structure holding the information passed to kmemleak callbacks during the
262 * early logging.
263 */
264struct early_log {
265 int op_type; /* kmemleak operation type */
266 int min_count; /* minimum reference count */
267 const void *ptr; /* allocated/freed memory block */
268 union {
269 size_t size; /* memory block size */
270 unsigned long excess_ref; /* surplus reference passing */
271 };
272 unsigned long trace[MAX_TRACE]; /* stack trace */
273 unsigned int trace_len; /* stack trace length */
274};
275
276/* early logging buffer and current position */
277static struct early_log
278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279static int crt_early_log __initdata;
280
281static void kmemleak_disable(void);
282
283/*
284 * Print a warning and dump the stack trace.
285 */
286#define kmemleak_warn(x...) do { \
287 pr_warn(x); \
288 dump_stack(); \
289 kmemleak_warning = 1; \
290} while (0)
291
292/*
293 * Macro invoked when a serious kmemleak condition occurred and cannot be
294 * recovered from. Kmemleak will be disabled and further allocation/freeing
295 * tracing no longer available.
296 */
297#define kmemleak_stop(x...) do { \
298 kmemleak_warn(x); \
299 kmemleak_disable(); \
300} while (0)
301
302/*
303 * Printing of the objects hex dump to the seq file. The number of lines to be
304 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
305 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
306 * with the object->lock held.
307 */
308static void hex_dump_object(struct seq_file *seq,
309 struct kmemleak_object *object)
310{
311 const u8 *ptr = (const u8 *)object->pointer;
312 size_t len;
313
314 /* limit the number of lines to HEX_MAX_LINES */
315 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
316
317 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
318 kasan_disable_current();
319 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
320 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
321 kasan_enable_current();
322}
323
324/*
325 * Object colors, encoded with count and min_count:
326 * - white - orphan object, not enough references to it (count < min_count)
327 * - gray - not orphan, not marked as false positive (min_count == 0) or
328 * sufficient references to it (count >= min_count)
329 * - black - ignore, it doesn't contain references (e.g. text section)
330 * (min_count == -1). No function defined for this color.
331 * Newly created objects don't have any color assigned (object->count == -1)
332 * before the next memory scan when they become white.
333 */
334static bool color_white(const struct kmemleak_object *object)
335{
336 return object->count != KMEMLEAK_BLACK &&
337 object->count < object->min_count;
338}
339
340static bool color_gray(const struct kmemleak_object *object)
341{
342 return object->min_count != KMEMLEAK_BLACK &&
343 object->count >= object->min_count;
344}
345
346/*
347 * Objects are considered unreferenced only if their color is white, they have
348 * not be deleted and have a minimum age to avoid false positives caused by
349 * pointers temporarily stored in CPU registers.
350 */
351static bool unreferenced_object(struct kmemleak_object *object)
352{
353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354 time_before_eq(object->jiffies + jiffies_min_age,
355 jiffies_last_scan);
356}
357
358/*
359 * Printing of the unreferenced objects information to the seq file. The
360 * print_unreferenced function must be called with the object->lock held.
361 */
362static void print_unreferenced(struct seq_file *seq,
363 struct kmemleak_object *object)
364{
365 int i;
366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
367
368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369 object->pointer, object->size);
370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371 object->comm, object->pid, object->jiffies,
372 msecs_age / 1000, msecs_age % 1000);
373 hex_dump_object(seq, object);
374 seq_printf(seq, " backtrace:\n");
375
376 for (i = 0; i < object->trace_len; i++) {
377 void *ptr = (void *)object->trace[i];
378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
379 }
380}
381
382/*
383 * Print the kmemleak_object information. This function is used mainly for
384 * debugging special cases when kmemleak operations. It must be called with
385 * the object->lock held.
386 */
387static void dump_object_info(struct kmemleak_object *object)
388{
389 struct stack_trace trace;
390
391 trace.nr_entries = object->trace_len;
392 trace.entries = object->trace;
393
394 pr_notice("Object 0x%08lx (size %zu):\n",
395 object->pointer, object->size);
396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
397 object->comm, object->pid, object->jiffies);
398 pr_notice(" min_count = %d\n", object->min_count);
399 pr_notice(" count = %d\n", object->count);
400 pr_notice(" flags = 0x%x\n", object->flags);
401 pr_notice(" checksum = %u\n", object->checksum);
402 pr_notice(" backtrace:\n");
403 print_stack_trace(&trace, 4);
404}
405
406/*
407 * Look-up a memory block metadata (kmemleak_object) in the object search
408 * tree based on a pointer value. If alias is 0, only values pointing to the
409 * beginning of the memory block are allowed. The kmemleak_lock must be held
410 * when calling this function.
411 */
412static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
413{
414 struct rb_node *rb = object_tree_root.rb_node;
415
416 while (rb) {
417 struct kmemleak_object *object =
418 rb_entry(rb, struct kmemleak_object, rb_node);
419 if (ptr < object->pointer)
420 rb = object->rb_node.rb_left;
421 else if (object->pointer + object->size <= ptr)
422 rb = object->rb_node.rb_right;
423 else if (object->pointer == ptr || alias)
424 return object;
425 else {
426 kmemleak_warn("Found object by alias at 0x%08lx\n",
427 ptr);
428 dump_object_info(object);
429 break;
430 }
431 }
432 return NULL;
433}
434
435/*
436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437 * that once an object's use_count reached 0, the RCU freeing was already
438 * registered and the object should no longer be used. This function must be
439 * called under the protection of rcu_read_lock().
440 */
441static int get_object(struct kmemleak_object *object)
442{
443 return atomic_inc_not_zero(&object->use_count);
444}
445
446/*
447 * RCU callback to free a kmemleak_object.
448 */
449static void free_object_rcu(struct rcu_head *rcu)
450{
451 struct hlist_node *tmp;
452 struct kmemleak_scan_area *area;
453 struct kmemleak_object *object =
454 container_of(rcu, struct kmemleak_object, rcu);
455
456 /*
457 * Once use_count is 0 (guaranteed by put_object), there is no other
458 * code accessing this object, hence no need for locking.
459 */
460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461 hlist_del(&area->node);
462 kmem_cache_free(scan_area_cache, area);
463 }
464 kmem_cache_free(object_cache, object);
465}
466
467/*
468 * Decrement the object use_count. Once the count is 0, free the object using
469 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470 * delete_object() path, the delayed RCU freeing ensures that there is no
471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472 * is also possible.
473 */
474static void put_object(struct kmemleak_object *object)
475{
476 if (!atomic_dec_and_test(&object->use_count))
477 return;
478
479 /* should only get here after delete_object was called */
480 WARN_ON(object->flags & OBJECT_ALLOCATED);
481
482 call_rcu(&object->rcu, free_object_rcu);
483}
484
485/*
486 * Look up an object in the object search tree and increase its use_count.
487 */
488static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
489{
490 unsigned long flags;
491 struct kmemleak_object *object;
492
493 rcu_read_lock();
494 read_lock_irqsave(&kmemleak_lock, flags);
495 object = lookup_object(ptr, alias);
496 read_unlock_irqrestore(&kmemleak_lock, flags);
497
498 /* check whether the object is still available */
499 if (object && !get_object(object))
500 object = NULL;
501 rcu_read_unlock();
502
503 return object;
504}
505
506/*
507 * Look up an object in the object search tree and remove it from both
508 * object_tree_root and object_list. The returned object's use_count should be
509 * at least 1, as initially set by create_object().
510 */
511static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
512{
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 write_lock_irqsave(&kmemleak_lock, flags);
517 object = lookup_object(ptr, alias);
518 if (object) {
519 rb_erase(&object->rb_node, &object_tree_root);
520 list_del_rcu(&object->object_list);
521 }
522 write_unlock_irqrestore(&kmemleak_lock, flags);
523
524 return object;
525}
526
527/*
528 * Save stack trace to the given array of MAX_TRACE size.
529 */
530static int __save_stack_trace(unsigned long *trace)
531{
532 struct stack_trace stack_trace;
533
534 stack_trace.max_entries = MAX_TRACE;
535 stack_trace.nr_entries = 0;
536 stack_trace.entries = trace;
537 stack_trace.skip = 2;
538 save_stack_trace(&stack_trace);
539
540 return stack_trace.nr_entries;
541}
542
543/*
544 * Create the metadata (struct kmemleak_object) corresponding to an allocated
545 * memory block and add it to the object_list and object_tree_root.
546 */
547static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 int min_count, gfp_t gfp)
549{
550 unsigned long flags;
551 struct kmemleak_object *object, *parent;
552 struct rb_node **link, *rb_parent;
553
554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555 if (!object) {
556 pr_warn("Cannot allocate a kmemleak_object structure\n");
557 kmemleak_disable();
558 return NULL;
559 }
560
561 INIT_LIST_HEAD(&object->object_list);
562 INIT_LIST_HEAD(&object->gray_list);
563 INIT_HLIST_HEAD(&object->area_list);
564 spin_lock_init(&object->lock);
565 atomic_set(&object->use_count, 1);
566 object->flags = OBJECT_ALLOCATED;
567 object->pointer = ptr;
568 object->size = size;
569 object->excess_ref = 0;
570 object->min_count = min_count;
571 object->count = 0; /* white color initially */
572 object->jiffies = jiffies;
573 object->checksum = 0;
574
575 /* task information */
576 if (in_irq()) {
577 object->pid = 0;
578 strncpy(object->comm, "hardirq", sizeof(object->comm));
579 } else if (in_softirq()) {
580 object->pid = 0;
581 strncpy(object->comm, "softirq", sizeof(object->comm));
582 } else {
583 object->pid = current->pid;
584 /*
585 * There is a small chance of a race with set_task_comm(),
586 * however using get_task_comm() here may cause locking
587 * dependency issues with current->alloc_lock. In the worst
588 * case, the command line is not correct.
589 */
590 strncpy(object->comm, current->comm, sizeof(object->comm));
591 }
592
593 /* kernel backtrace */
594 object->trace_len = __save_stack_trace(object->trace);
595
596 write_lock_irqsave(&kmemleak_lock, flags);
597
598 min_addr = min(min_addr, ptr);
599 max_addr = max(max_addr, ptr + size);
600 link = &object_tree_root.rb_node;
601 rb_parent = NULL;
602 while (*link) {
603 rb_parent = *link;
604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 if (ptr + size <= parent->pointer)
606 link = &parent->rb_node.rb_left;
607 else if (parent->pointer + parent->size <= ptr)
608 link = &parent->rb_node.rb_right;
609 else {
610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 ptr);
612 /*
613 * No need for parent->lock here since "parent" cannot
614 * be freed while the kmemleak_lock is held.
615 */
616 dump_object_info(parent);
617 kmem_cache_free(object_cache, object);
618 object = NULL;
619 goto out;
620 }
621 }
622 rb_link_node(&object->rb_node, rb_parent, link);
623 rb_insert_color(&object->rb_node, &object_tree_root);
624
625 list_add_tail_rcu(&object->object_list, &object_list);
626out:
627 write_unlock_irqrestore(&kmemleak_lock, flags);
628 return object;
629}
630
631/*
632 * Mark the object as not allocated and schedule RCU freeing via put_object().
633 */
634static void __delete_object(struct kmemleak_object *object)
635{
636 unsigned long flags;
637
638 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 WARN_ON(atomic_read(&object->use_count) < 1);
640
641 /*
642 * Locking here also ensures that the corresponding memory block
643 * cannot be freed when it is being scanned.
644 */
645 spin_lock_irqsave(&object->lock, flags);
646 object->flags &= ~OBJECT_ALLOCATED;
647 spin_unlock_irqrestore(&object->lock, flags);
648 put_object(object);
649}
650
651/*
652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653 * delete it.
654 */
655static void delete_object_full(unsigned long ptr)
656{
657 struct kmemleak_object *object;
658
659 object = find_and_remove_object(ptr, 0);
660 if (!object) {
661#ifdef DEBUG
662 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 ptr);
664#endif
665 return;
666 }
667 __delete_object(object);
668}
669
670/*
671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672 * delete it. If the memory block is partially freed, the function may create
673 * additional metadata for the remaining parts of the block.
674 */
675static void delete_object_part(unsigned long ptr, size_t size)
676{
677 struct kmemleak_object *object;
678 unsigned long start, end;
679
680 object = find_and_remove_object(ptr, 1);
681 if (!object) {
682#ifdef DEBUG
683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 ptr, size);
685#endif
686 return;
687 }
688
689 /*
690 * Create one or two objects that may result from the memory block
691 * split. Note that partial freeing is only done by free_bootmem() and
692 * this happens before kmemleak_init() is called. The path below is
693 * only executed during early log recording in kmemleak_init(), so
694 * GFP_KERNEL is enough.
695 */
696 start = object->pointer;
697 end = object->pointer + object->size;
698 if (ptr > start)
699 create_object(start, ptr - start, object->min_count,
700 GFP_KERNEL);
701 if (ptr + size < end)
702 create_object(ptr + size, end - ptr - size, object->min_count,
703 GFP_KERNEL);
704
705 __delete_object(object);
706}
707
708static void __paint_it(struct kmemleak_object *object, int color)
709{
710 object->min_count = color;
711 if (color == KMEMLEAK_BLACK)
712 object->flags |= OBJECT_NO_SCAN;
713}
714
715static void paint_it(struct kmemleak_object *object, int color)
716{
717 unsigned long flags;
718
719 spin_lock_irqsave(&object->lock, flags);
720 __paint_it(object, color);
721 spin_unlock_irqrestore(&object->lock, flags);
722}
723
724static void paint_ptr(unsigned long ptr, int color)
725{
726 struct kmemleak_object *object;
727
728 object = find_and_get_object(ptr, 0);
729 if (!object) {
730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 ptr,
732 (color == KMEMLEAK_GREY) ? "Grey" :
733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 return;
735 }
736 paint_it(object, color);
737 put_object(object);
738}
739
740/*
741 * Mark an object permanently as gray-colored so that it can no longer be
742 * reported as a leak. This is used in general to mark a false positive.
743 */
744static void make_gray_object(unsigned long ptr)
745{
746 paint_ptr(ptr, KMEMLEAK_GREY);
747}
748
749/*
750 * Mark the object as black-colored so that it is ignored from scans and
751 * reporting.
752 */
753static void make_black_object(unsigned long ptr)
754{
755 paint_ptr(ptr, KMEMLEAK_BLACK);
756}
757
758/*
759 * Add a scanning area to the object. If at least one such area is added,
760 * kmemleak will only scan these ranges rather than the whole memory block.
761 */
762static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763{
764 unsigned long flags;
765 struct kmemleak_object *object;
766 struct kmemleak_scan_area *area;
767
768 object = find_and_get_object(ptr, 1);
769 if (!object) {
770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 ptr);
772 return;
773 }
774
775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 if (!area) {
777 pr_warn("Cannot allocate a scan area\n");
778 goto out;
779 }
780
781 spin_lock_irqsave(&object->lock, flags);
782 if (size == SIZE_MAX) {
783 size = object->pointer + object->size - ptr;
784 } else if (ptr + size > object->pointer + object->size) {
785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 dump_object_info(object);
787 kmem_cache_free(scan_area_cache, area);
788 goto out_unlock;
789 }
790
791 INIT_HLIST_NODE(&area->node);
792 area->start = ptr;
793 area->size = size;
794
795 hlist_add_head(&area->node, &object->area_list);
796out_unlock:
797 spin_unlock_irqrestore(&object->lock, flags);
798out:
799 put_object(object);
800}
801
802/*
803 * Any surplus references (object already gray) to 'ptr' are passed to
804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805 * vm_struct may be used as an alternative reference to the vmalloc'ed object
806 * (see free_thread_stack()).
807 */
808static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809{
810 unsigned long flags;
811 struct kmemleak_object *object;
812
813 object = find_and_get_object(ptr, 0);
814 if (!object) {
815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 ptr);
817 return;
818 }
819
820 spin_lock_irqsave(&object->lock, flags);
821 object->excess_ref = excess_ref;
822 spin_unlock_irqrestore(&object->lock, flags);
823 put_object(object);
824}
825
826/*
827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828 * pointer. Such object will not be scanned by kmemleak but references to it
829 * are searched.
830 */
831static void object_no_scan(unsigned long ptr)
832{
833 unsigned long flags;
834 struct kmemleak_object *object;
835
836 object = find_and_get_object(ptr, 0);
837 if (!object) {
838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 return;
840 }
841
842 spin_lock_irqsave(&object->lock, flags);
843 object->flags |= OBJECT_NO_SCAN;
844 spin_unlock_irqrestore(&object->lock, flags);
845 put_object(object);
846}
847
848/*
849 * Log an early kmemleak_* call to the early_log buffer. These calls will be
850 * processed later once kmemleak is fully initialized.
851 */
852static void __init log_early(int op_type, const void *ptr, size_t size,
853 int min_count)
854{
855 unsigned long flags;
856 struct early_log *log;
857
858 if (kmemleak_error) {
859 /* kmemleak stopped recording, just count the requests */
860 crt_early_log++;
861 return;
862 }
863
864 if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 crt_early_log++;
866 kmemleak_disable();
867 return;
868 }
869
870 /*
871 * There is no need for locking since the kernel is still in UP mode
872 * at this stage. Disabling the IRQs is enough.
873 */
874 local_irq_save(flags);
875 log = &early_log[crt_early_log];
876 log->op_type = op_type;
877 log->ptr = ptr;
878 log->size = size;
879 log->min_count = min_count;
880 log->trace_len = __save_stack_trace(log->trace);
881 crt_early_log++;
882 local_irq_restore(flags);
883}
884
885/*
886 * Log an early allocated block and populate the stack trace.
887 */
888static void early_alloc(struct early_log *log)
889{
890 struct kmemleak_object *object;
891 unsigned long flags;
892 int i;
893
894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 return;
896
897 /*
898 * RCU locking needed to ensure object is not freed via put_object().
899 */
900 rcu_read_lock();
901 object = create_object((unsigned long)log->ptr, log->size,
902 log->min_count, GFP_ATOMIC);
903 if (!object)
904 goto out;
905 spin_lock_irqsave(&object->lock, flags);
906 for (i = 0; i < log->trace_len; i++)
907 object->trace[i] = log->trace[i];
908 object->trace_len = log->trace_len;
909 spin_unlock_irqrestore(&object->lock, flags);
910out:
911 rcu_read_unlock();
912}
913
914/*
915 * Log an early allocated block and populate the stack trace.
916 */
917static void early_alloc_percpu(struct early_log *log)
918{
919 unsigned int cpu;
920 const void __percpu *ptr = log->ptr;
921
922 for_each_possible_cpu(cpu) {
923 log->ptr = per_cpu_ptr(ptr, cpu);
924 early_alloc(log);
925 }
926}
927
928/**
929 * kmemleak_alloc - register a newly allocated object
930 * @ptr: pointer to beginning of the object
931 * @size: size of the object
932 * @min_count: minimum number of references to this object. If during memory
933 * scanning a number of references less than @min_count is found,
934 * the object is reported as a memory leak. If @min_count is 0,
935 * the object is never reported as a leak. If @min_count is -1,
936 * the object is ignored (not scanned and not reported as a leak)
937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
938 *
939 * This function is called from the kernel allocators when a new object
940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941 */
942void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 gfp_t gfp)
944{
945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946
947 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 create_object((unsigned long)ptr, size, min_count, gfp);
949 else if (kmemleak_early_log)
950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951}
952EXPORT_SYMBOL_GPL(kmemleak_alloc);
953
954/**
955 * kmemleak_alloc_percpu - register a newly allocated __percpu object
956 * @ptr: __percpu pointer to beginning of the object
957 * @size: size of the object
958 * @gfp: flags used for kmemleak internal memory allocations
959 *
960 * This function is called from the kernel percpu allocator when a new object
961 * (memory block) is allocated (alloc_percpu).
962 */
963void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 gfp_t gfp)
965{
966 unsigned int cpu;
967
968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969
970 /*
971 * Percpu allocations are only scanned and not reported as leaks
972 * (min_count is set to 0).
973 */
974 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 for_each_possible_cpu(cpu)
976 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 size, 0, gfp);
978 else if (kmemleak_early_log)
979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980}
981EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982
983/**
984 * kmemleak_vmalloc - register a newly vmalloc'ed object
985 * @area: pointer to vm_struct
986 * @size: size of the object
987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
988 *
989 * This function is called from the vmalloc() kernel allocator when a new
990 * object (memory block) is allocated.
991 */
992void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993{
994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995
996 /*
997 * A min_count = 2 is needed because vm_struct contains a reference to
998 * the virtual address of the vmalloc'ed block.
999 */
1000 if (kmemleak_enabled) {
1001 create_object((unsigned long)area->addr, size, 2, gfp);
1002 object_set_excess_ref((unsigned long)area,
1003 (unsigned long)area->addr);
1004 } else if (kmemleak_early_log) {
1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 /* reusing early_log.size for storing area->addr */
1007 log_early(KMEMLEAK_SET_EXCESS_REF,
1008 area, (unsigned long)area->addr, 0);
1009 }
1010}
1011EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
1013/**
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1016 *
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019 */
1020void __ref kmemleak_free(const void *ptr)
1021{
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 delete_object_full((unsigned long)ptr);
1026 else if (kmemleak_early_log)
1027 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028}
1029EXPORT_SYMBOL_GPL(kmemleak_free);
1030
1031/**
1032 * kmemleak_free_part - partially unregister a previously registered object
1033 * @ptr: pointer to the beginning or inside the object. This also
1034 * represents the start of the range to be freed
1035 * @size: size to be unregistered
1036 *
1037 * This function is called when only a part of a memory block is freed
1038 * (usually from the bootmem allocator).
1039 */
1040void __ref kmemleak_free_part(const void *ptr, size_t size)
1041{
1042 pr_debug("%s(0x%p)\n", __func__, ptr);
1043
1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 delete_object_part((unsigned long)ptr, size);
1046 else if (kmemleak_early_log)
1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048}
1049EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050
1051/**
1052 * kmemleak_free_percpu - unregister a previously registered __percpu object
1053 * @ptr: __percpu pointer to beginning of the object
1054 *
1055 * This function is called from the kernel percpu allocator when an object
1056 * (memory block) is freed (free_percpu).
1057 */
1058void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059{
1060 unsigned int cpu;
1061
1062 pr_debug("%s(0x%p)\n", __func__, ptr);
1063
1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 for_each_possible_cpu(cpu)
1066 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 cpu));
1068 else if (kmemleak_early_log)
1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070}
1071EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072
1073/**
1074 * kmemleak_update_trace - update object allocation stack trace
1075 * @ptr: pointer to beginning of the object
1076 *
1077 * Override the object allocation stack trace for cases where the actual
1078 * allocation place is not always useful.
1079 */
1080void __ref kmemleak_update_trace(const void *ptr)
1081{
1082 struct kmemleak_object *object;
1083 unsigned long flags;
1084
1085 pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 return;
1089
1090 object = find_and_get_object((unsigned long)ptr, 1);
1091 if (!object) {
1092#ifdef DEBUG
1093 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 ptr);
1095#endif
1096 return;
1097 }
1098
1099 spin_lock_irqsave(&object->lock, flags);
1100 object->trace_len = __save_stack_trace(object->trace);
1101 spin_unlock_irqrestore(&object->lock, flags);
1102
1103 put_object(object);
1104}
1105EXPORT_SYMBOL(kmemleak_update_trace);
1106
1107/**
1108 * kmemleak_not_leak - mark an allocated object as false positive
1109 * @ptr: pointer to beginning of the object
1110 *
1111 * Calling this function on an object will cause the memory block to no longer
1112 * be reported as leak and always be scanned.
1113 */
1114void __ref kmemleak_not_leak(const void *ptr)
1115{
1116 pr_debug("%s(0x%p)\n", __func__, ptr);
1117
1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 make_gray_object((unsigned long)ptr);
1120 else if (kmemleak_early_log)
1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122}
1123EXPORT_SYMBOL(kmemleak_not_leak);
1124
1125/**
1126 * kmemleak_ignore - ignore an allocated object
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * Calling this function on an object will cause the memory block to be
1130 * ignored (not scanned and not reported as a leak). This is usually done when
1131 * it is known that the corresponding block is not a leak and does not contain
1132 * any references to other allocated memory blocks.
1133 */
1134void __ref kmemleak_ignore(const void *ptr)
1135{
1136 pr_debug("%s(0x%p)\n", __func__, ptr);
1137
1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 make_black_object((unsigned long)ptr);
1140 else if (kmemleak_early_log)
1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142}
1143EXPORT_SYMBOL(kmemleak_ignore);
1144
1145/**
1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147 * @ptr: pointer to beginning or inside the object. This also
1148 * represents the start of the scan area
1149 * @size: size of the scan area
1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1151 *
1152 * This function is used when it is known that only certain parts of an object
1153 * contain references to other objects. Kmemleak will only scan these areas
1154 * reducing the number false negatives.
1155 */
1156void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157{
1158 pr_debug("%s(0x%p)\n", __func__, ptr);
1159
1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 add_scan_area((unsigned long)ptr, size, gfp);
1162 else if (kmemleak_early_log)
1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164}
1165EXPORT_SYMBOL(kmemleak_scan_area);
1166
1167/**
1168 * kmemleak_no_scan - do not scan an allocated object
1169 * @ptr: pointer to beginning of the object
1170 *
1171 * This function notifies kmemleak not to scan the given memory block. Useful
1172 * in situations where it is known that the given object does not contain any
1173 * references to other objects. Kmemleak will not scan such objects reducing
1174 * the number of false negatives.
1175 */
1176void __ref kmemleak_no_scan(const void *ptr)
1177{
1178 pr_debug("%s(0x%p)\n", __func__, ptr);
1179
1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 object_no_scan((unsigned long)ptr);
1182 else if (kmemleak_early_log)
1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184}
1185EXPORT_SYMBOL(kmemleak_no_scan);
1186
1187/**
1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189 * address argument
1190 * @phys: physical address of the object
1191 * @size: size of the object
1192 * @min_count: minimum number of references to this object.
1193 * See kmemleak_alloc()
1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1195 */
1196void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1197 gfp_t gfp)
1198{
1199 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1200 kmemleak_alloc(__va(phys), size, min_count, gfp);
1201}
1202EXPORT_SYMBOL(kmemleak_alloc_phys);
1203
1204/**
1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206 * physical address argument
1207 * @phys: physical address if the beginning or inside an object. This
1208 * also represents the start of the range to be freed
1209 * @size: size to be unregistered
1210 */
1211void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1212{
1213 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1214 kmemleak_free_part(__va(phys), size);
1215}
1216EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218/**
1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1224{
1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 kmemleak_not_leak(__va(phys));
1227}
1228EXPORT_SYMBOL(kmemleak_not_leak_phys);
1229
1230/**
1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1232 * address argument
1233 * @phys: physical address of the object
1234 */
1235void __ref kmemleak_ignore_phys(phys_addr_t phys)
1236{
1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 kmemleak_ignore(__va(phys));
1239}
1240EXPORT_SYMBOL(kmemleak_ignore_phys);
1241
1242/*
1243 * Update an object's checksum and return true if it was modified.
1244 */
1245static bool update_checksum(struct kmemleak_object *object)
1246{
1247 u32 old_csum = object->checksum;
1248
1249 kasan_disable_current();
1250 object->checksum = crc32(0, (void *)object->pointer, object->size);
1251 kasan_enable_current();
1252
1253 return object->checksum != old_csum;
1254}
1255
1256/*
1257 * Update an object's references. object->lock must be held by the caller.
1258 */
1259static void update_refs(struct kmemleak_object *object)
1260{
1261 if (!color_white(object)) {
1262 /* non-orphan, ignored or new */
1263 return;
1264 }
1265
1266 /*
1267 * Increase the object's reference count (number of pointers to the
1268 * memory block). If this count reaches the required minimum, the
1269 * object's color will become gray and it will be added to the
1270 * gray_list.
1271 */
1272 object->count++;
1273 if (color_gray(object)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object));
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278}
1279
1280/*
1281 * Memory scanning is a long process and it needs to be interruptable. This
1282 * function checks whether such interrupt condition occurred.
1283 */
1284static int scan_should_stop(void)
1285{
1286 if (!kmemleak_enabled)
1287 return 1;
1288
1289 /*
1290 * This function may be called from either process or kthread context,
1291 * hence the need to check for both stop conditions.
1292 */
1293 if (current->mm)
1294 return signal_pending(current);
1295 else
1296 return kthread_should_stop();
1297
1298 return 0;
1299}
1300
1301/*
1302 * Scan a memory block (exclusive range) for valid pointers and add those
1303 * found to the gray list.
1304 */
1305static void scan_block(void *_start, void *_end,
1306 struct kmemleak_object *scanned)
1307{
1308 unsigned long *ptr;
1309 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1310 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1311 unsigned long flags;
1312
1313 read_lock_irqsave(&kmemleak_lock, flags);
1314 for (ptr = start; ptr < end; ptr++) {
1315 struct kmemleak_object *object;
1316 unsigned long pointer;
1317 unsigned long excess_ref;
1318
1319 if (scan_should_stop())
1320 break;
1321
1322 kasan_disable_current();
1323 pointer = *ptr;
1324 kasan_enable_current();
1325
1326 if (pointer < min_addr || pointer >= max_addr)
1327 continue;
1328
1329 /*
1330 * No need for get_object() here since we hold kmemleak_lock.
1331 * object->use_count cannot be dropped to 0 while the object
1332 * is still present in object_tree_root and object_list
1333 * (with updates protected by kmemleak_lock).
1334 */
1335 object = lookup_object(pointer, 1);
1336 if (!object)
1337 continue;
1338 if (object == scanned)
1339 /* self referenced, ignore */
1340 continue;
1341
1342 /*
1343 * Avoid the lockdep recursive warning on object->lock being
1344 * previously acquired in scan_object(). These locks are
1345 * enclosed by scan_mutex.
1346 */
1347 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1348 /* only pass surplus references (object already gray) */
1349 if (color_gray(object)) {
1350 excess_ref = object->excess_ref;
1351 /* no need for update_refs() if object already gray */
1352 } else {
1353 excess_ref = 0;
1354 update_refs(object);
1355 }
1356 spin_unlock(&object->lock);
1357
1358 if (excess_ref) {
1359 object = lookup_object(excess_ref, 0);
1360 if (!object)
1361 continue;
1362 if (object == scanned)
1363 /* circular reference, ignore */
1364 continue;
1365 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366 update_refs(object);
1367 spin_unlock(&object->lock);
1368 }
1369 }
1370 read_unlock_irqrestore(&kmemleak_lock, flags);
1371}
1372
1373/*
1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375 */
1376static void scan_large_block(void *start, void *end)
1377{
1378 void *next;
1379
1380 while (start < end) {
1381 next = min(start + MAX_SCAN_SIZE, end);
1382 scan_block(start, next, NULL);
1383 start = next;
1384 cond_resched();
1385 }
1386}
1387
1388/*
1389 * Scan a memory block corresponding to a kmemleak_object. A condition is
1390 * that object->use_count >= 1.
1391 */
1392static void scan_object(struct kmemleak_object *object)
1393{
1394 struct kmemleak_scan_area *area;
1395 unsigned long flags;
1396
1397 /*
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1400 */
1401 spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
1407 if (hlist_empty(&object->area_list)) {
1408 void *start = (void *)object->pointer;
1409 void *end = (void *)(object->pointer + object->size);
1410 void *next;
1411
1412 do {
1413 next = min(start + MAX_SCAN_SIZE, end);
1414 scan_block(start, next, object);
1415
1416 start = next;
1417 if (start >= end)
1418 break;
1419
1420 spin_unlock_irqrestore(&object->lock, flags);
1421 cond_resched();
1422 spin_lock_irqsave(&object->lock, flags);
1423 } while (object->flags & OBJECT_ALLOCATED);
1424 } else
1425 hlist_for_each_entry(area, &object->area_list, node)
1426 scan_block((void *)area->start,
1427 (void *)(area->start + area->size),
1428 object);
1429out:
1430 spin_unlock_irqrestore(&object->lock, flags);
1431}
1432
1433/*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437static void scan_gray_list(void)
1438{
1439 struct kmemleak_object *object, *tmp;
1440
1441 /*
1442 * The list traversal is safe for both tail additions and removals
1443 * from inside the loop. The kmemleak objects cannot be freed from
1444 * outside the loop because their use_count was incremented.
1445 */
1446 object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 while (&object->gray_list != &gray_list) {
1448 cond_resched();
1449
1450 /* may add new objects to the list */
1451 if (!scan_should_stop())
1452 scan_object(object);
1453
1454 tmp = list_entry(object->gray_list.next, typeof(*object),
1455 gray_list);
1456
1457 /* remove the object from the list and release it */
1458 list_del(&object->gray_list);
1459 put_object(object);
1460
1461 object = tmp;
1462 }
1463 WARN_ON(!list_empty(&gray_list));
1464}
1465
1466/*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471static void kmemleak_scan(void)
1472{
1473 unsigned long flags;
1474 struct kmemleak_object *object;
1475 int i;
1476 int new_leaks = 0;
1477
1478 jiffies_last_scan = jiffies;
1479
1480 /* prepare the kmemleak_object's */
1481 rcu_read_lock();
1482 list_for_each_entry_rcu(object, &object_list, object_list) {
1483 spin_lock_irqsave(&object->lock, flags);
1484#ifdef DEBUG
1485 /*
1486 * With a few exceptions there should be a maximum of
1487 * 1 reference to any object at this point.
1488 */
1489 if (atomic_read(&object->use_count) > 1) {
1490 pr_debug("object->use_count = %d\n",
1491 atomic_read(&object->use_count));
1492 dump_object_info(object);
1493 }
1494#endif
1495 /* reset the reference count (whiten the object) */
1496 object->count = 0;
1497 if (color_gray(object) && get_object(object))
1498 list_add_tail(&object->gray_list, &gray_list);
1499
1500 spin_unlock_irqrestore(&object->lock, flags);
1501 }
1502 rcu_read_unlock();
1503
1504 /* data/bss scanning */
1505 scan_large_block(_sdata, _edata);
1506 scan_large_block(__bss_start, __bss_stop);
1507 scan_large_block(__start_ro_after_init, __end_ro_after_init);
1508
1509#ifdef CONFIG_SMP
1510 /* per-cpu sections scanning */
1511 for_each_possible_cpu(i)
1512 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513 __per_cpu_end + per_cpu_offset(i));
1514#endif
1515
1516 /*
1517 * Struct page scanning for each node.
1518 */
1519 get_online_mems();
1520 for_each_online_node(i) {
1521 unsigned long start_pfn = node_start_pfn(i);
1522 unsigned long end_pfn = node_end_pfn(i);
1523 unsigned long pfn;
1524
1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 struct page *page;
1527
1528 if (!pfn_valid(pfn))
1529 continue;
1530 page = pfn_to_page(pfn);
1531 /* only scan if page is in use */
1532 if (page_count(page) == 0)
1533 continue;
1534 scan_block(page, page + 1, NULL);
1535 if (!(pfn & 63))
1536 cond_resched();
1537 }
1538 }
1539 put_online_mems();
1540
1541 /*
1542 * Scanning the task stacks (may introduce false negatives).
1543 */
1544 if (kmemleak_stack_scan) {
1545 struct task_struct *p, *g;
1546
1547 read_lock(&tasklist_lock);
1548 do_each_thread(g, p) {
1549 void *stack = try_get_task_stack(p);
1550 if (stack) {
1551 scan_block(stack, stack + THREAD_SIZE, NULL);
1552 put_task_stack(p);
1553 }
1554 } while_each_thread(g, p);
1555 read_unlock(&tasklist_lock);
1556 }
1557
1558 /*
1559 * Scan the objects already referenced from the sections scanned
1560 * above.
1561 */
1562 scan_gray_list();
1563
1564 /*
1565 * Check for new or unreferenced objects modified since the previous
1566 * scan and color them gray until the next scan.
1567 */
1568 rcu_read_lock();
1569 list_for_each_entry_rcu(object, &object_list, object_list) {
1570 spin_lock_irqsave(&object->lock, flags);
1571 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1572 && update_checksum(object) && get_object(object)) {
1573 /* color it gray temporarily */
1574 object->count = object->min_count;
1575 list_add_tail(&object->gray_list, &gray_list);
1576 }
1577 spin_unlock_irqrestore(&object->lock, flags);
1578 }
1579 rcu_read_unlock();
1580
1581 /*
1582 * Re-scan the gray list for modified unreferenced objects.
1583 */
1584 scan_gray_list();
1585
1586 /*
1587 * If scanning was stopped do not report any new unreferenced objects.
1588 */
1589 if (scan_should_stop())
1590 return;
1591
1592 /*
1593 * Scanning result reporting.
1594 */
1595 rcu_read_lock();
1596 list_for_each_entry_rcu(object, &object_list, object_list) {
1597 spin_lock_irqsave(&object->lock, flags);
1598 if (unreferenced_object(object) &&
1599 !(object->flags & OBJECT_REPORTED)) {
1600 object->flags |= OBJECT_REPORTED;
1601 new_leaks++;
1602 }
1603 spin_unlock_irqrestore(&object->lock, flags);
1604 }
1605 rcu_read_unlock();
1606
1607 if (new_leaks) {
1608 kmemleak_found_leaks = true;
1609
1610 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1611 new_leaks);
1612 }
1613
1614}
1615
1616/*
1617 * Thread function performing automatic memory scanning. Unreferenced objects
1618 * at the end of a memory scan are reported but only the first time.
1619 */
1620static int kmemleak_scan_thread(void *arg)
1621{
1622 static int first_run = 1;
1623
1624 pr_info("Automatic memory scanning thread started\n");
1625 set_user_nice(current, 10);
1626
1627 /*
1628 * Wait before the first scan to allow the system to fully initialize.
1629 */
1630 if (first_run) {
1631 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1632 first_run = 0;
1633 while (timeout && !kthread_should_stop())
1634 timeout = schedule_timeout_interruptible(timeout);
1635 }
1636
1637 while (!kthread_should_stop()) {
1638 signed long timeout = jiffies_scan_wait;
1639
1640 mutex_lock(&scan_mutex);
1641 kmemleak_scan();
1642 mutex_unlock(&scan_mutex);
1643
1644 /* wait before the next scan */
1645 while (timeout && !kthread_should_stop())
1646 timeout = schedule_timeout_interruptible(timeout);
1647 }
1648
1649 pr_info("Automatic memory scanning thread ended\n");
1650
1651 return 0;
1652}
1653
1654/*
1655 * Start the automatic memory scanning thread. This function must be called
1656 * with the scan_mutex held.
1657 */
1658static void start_scan_thread(void)
1659{
1660 if (scan_thread)
1661 return;
1662 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1663 if (IS_ERR(scan_thread)) {
1664 pr_warn("Failed to create the scan thread\n");
1665 scan_thread = NULL;
1666 }
1667}
1668
1669/*
1670 * Stop the automatic memory scanning thread.
1671 */
1672static void stop_scan_thread(void)
1673{
1674 if (scan_thread) {
1675 kthread_stop(scan_thread);
1676 scan_thread = NULL;
1677 }
1678}
1679
1680/*
1681 * Iterate over the object_list and return the first valid object at or after
1682 * the required position with its use_count incremented. The function triggers
1683 * a memory scanning when the pos argument points to the first position.
1684 */
1685static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1686{
1687 struct kmemleak_object *object;
1688 loff_t n = *pos;
1689 int err;
1690
1691 err = mutex_lock_interruptible(&scan_mutex);
1692 if (err < 0)
1693 return ERR_PTR(err);
1694
1695 rcu_read_lock();
1696 list_for_each_entry_rcu(object, &object_list, object_list) {
1697 if (n-- > 0)
1698 continue;
1699 if (get_object(object))
1700 goto out;
1701 }
1702 object = NULL;
1703out:
1704 return object;
1705}
1706
1707/*
1708 * Return the next object in the object_list. The function decrements the
1709 * use_count of the previous object and increases that of the next one.
1710 */
1711static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1712{
1713 struct kmemleak_object *prev_obj = v;
1714 struct kmemleak_object *next_obj = NULL;
1715 struct kmemleak_object *obj = prev_obj;
1716
1717 ++(*pos);
1718
1719 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1720 if (get_object(obj)) {
1721 next_obj = obj;
1722 break;
1723 }
1724 }
1725
1726 put_object(prev_obj);
1727 return next_obj;
1728}
1729
1730/*
1731 * Decrement the use_count of the last object required, if any.
1732 */
1733static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1734{
1735 if (!IS_ERR(v)) {
1736 /*
1737 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1738 * waiting was interrupted, so only release it if !IS_ERR.
1739 */
1740 rcu_read_unlock();
1741 mutex_unlock(&scan_mutex);
1742 if (v)
1743 put_object(v);
1744 }
1745}
1746
1747/*
1748 * Print the information for an unreferenced object to the seq file.
1749 */
1750static int kmemleak_seq_show(struct seq_file *seq, void *v)
1751{
1752 struct kmemleak_object *object = v;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&object->lock, flags);
1756 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1757 print_unreferenced(seq, object);
1758 spin_unlock_irqrestore(&object->lock, flags);
1759 return 0;
1760}
1761
1762static const struct seq_operations kmemleak_seq_ops = {
1763 .start = kmemleak_seq_start,
1764 .next = kmemleak_seq_next,
1765 .stop = kmemleak_seq_stop,
1766 .show = kmemleak_seq_show,
1767};
1768
1769static int kmemleak_open(struct inode *inode, struct file *file)
1770{
1771 return seq_open(file, &kmemleak_seq_ops);
1772}
1773
1774static int dump_str_object_info(const char *str)
1775{
1776 unsigned long flags;
1777 struct kmemleak_object *object;
1778 unsigned long addr;
1779
1780 if (kstrtoul(str, 0, &addr))
1781 return -EINVAL;
1782 object = find_and_get_object(addr, 0);
1783 if (!object) {
1784 pr_info("Unknown object at 0x%08lx\n", addr);
1785 return -EINVAL;
1786 }
1787
1788 spin_lock_irqsave(&object->lock, flags);
1789 dump_object_info(object);
1790 spin_unlock_irqrestore(&object->lock, flags);
1791
1792 put_object(object);
1793 return 0;
1794}
1795
1796/*
1797 * We use grey instead of black to ensure we can do future scans on the same
1798 * objects. If we did not do future scans these black objects could
1799 * potentially contain references to newly allocated objects in the future and
1800 * we'd end up with false positives.
1801 */
1802static void kmemleak_clear(void)
1803{
1804 struct kmemleak_object *object;
1805 unsigned long flags;
1806
1807 rcu_read_lock();
1808 list_for_each_entry_rcu(object, &object_list, object_list) {
1809 spin_lock_irqsave(&object->lock, flags);
1810 if ((object->flags & OBJECT_REPORTED) &&
1811 unreferenced_object(object))
1812 __paint_it(object, KMEMLEAK_GREY);
1813 spin_unlock_irqrestore(&object->lock, flags);
1814 }
1815 rcu_read_unlock();
1816
1817 kmemleak_found_leaks = false;
1818}
1819
1820static void __kmemleak_do_cleanup(void);
1821
1822/*
1823 * File write operation to configure kmemleak at run-time. The following
1824 * commands can be written to the /sys/kernel/debug/kmemleak file:
1825 * off - disable kmemleak (irreversible)
1826 * stack=on - enable the task stacks scanning
1827 * stack=off - disable the tasks stacks scanning
1828 * scan=on - start the automatic memory scanning thread
1829 * scan=off - stop the automatic memory scanning thread
1830 * scan=... - set the automatic memory scanning period in seconds (0 to
1831 * disable it)
1832 * scan - trigger a memory scan
1833 * clear - mark all current reported unreferenced kmemleak objects as
1834 * grey to ignore printing them, or free all kmemleak objects
1835 * if kmemleak has been disabled.
1836 * dump=... - dump information about the object found at the given address
1837 */
1838static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1839 size_t size, loff_t *ppos)
1840{
1841 char buf[64];
1842 int buf_size;
1843 int ret;
1844
1845 buf_size = min(size, (sizeof(buf) - 1));
1846 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1847 return -EFAULT;
1848 buf[buf_size] = 0;
1849
1850 ret = mutex_lock_interruptible(&scan_mutex);
1851 if (ret < 0)
1852 return ret;
1853
1854 if (strncmp(buf, "clear", 5) == 0) {
1855 if (kmemleak_enabled)
1856 kmemleak_clear();
1857 else
1858 __kmemleak_do_cleanup();
1859 goto out;
1860 }
1861
1862 if (!kmemleak_enabled) {
1863 ret = -EBUSY;
1864 goto out;
1865 }
1866
1867 if (strncmp(buf, "off", 3) == 0)
1868 kmemleak_disable();
1869 else if (strncmp(buf, "stack=on", 8) == 0)
1870 kmemleak_stack_scan = 1;
1871 else if (strncmp(buf, "stack=off", 9) == 0)
1872 kmemleak_stack_scan = 0;
1873 else if (strncmp(buf, "scan=on", 7) == 0)
1874 start_scan_thread();
1875 else if (strncmp(buf, "scan=off", 8) == 0)
1876 stop_scan_thread();
1877 else if (strncmp(buf, "scan=", 5) == 0) {
1878 unsigned long secs;
1879
1880 ret = kstrtoul(buf + 5, 0, &secs);
1881 if (ret < 0)
1882 goto out;
1883 stop_scan_thread();
1884 if (secs) {
1885 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1886 start_scan_thread();
1887 }
1888 } else if (strncmp(buf, "scan", 4) == 0)
1889 kmemleak_scan();
1890 else if (strncmp(buf, "dump=", 5) == 0)
1891 ret = dump_str_object_info(buf + 5);
1892 else
1893 ret = -EINVAL;
1894
1895out:
1896 mutex_unlock(&scan_mutex);
1897 if (ret < 0)
1898 return ret;
1899
1900 /* ignore the rest of the buffer, only one command at a time */
1901 *ppos += size;
1902 return size;
1903}
1904
1905static const struct file_operations kmemleak_fops = {
1906 .owner = THIS_MODULE,
1907 .open = kmemleak_open,
1908 .read = seq_read,
1909 .write = kmemleak_write,
1910 .llseek = seq_lseek,
1911 .release = seq_release,
1912};
1913
1914static void __kmemleak_do_cleanup(void)
1915{
1916 struct kmemleak_object *object;
1917
1918 rcu_read_lock();
1919 list_for_each_entry_rcu(object, &object_list, object_list)
1920 delete_object_full(object->pointer);
1921 rcu_read_unlock();
1922}
1923
1924/*
1925 * Stop the memory scanning thread and free the kmemleak internal objects if
1926 * no previous scan thread (otherwise, kmemleak may still have some useful
1927 * information on memory leaks).
1928 */
1929static void kmemleak_do_cleanup(struct work_struct *work)
1930{
1931 stop_scan_thread();
1932
1933 mutex_lock(&scan_mutex);
1934 /*
1935 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1936 * longer track object freeing. Ordering of the scan thread stopping and
1937 * the memory accesses below is guaranteed by the kthread_stop()
1938 * function.
1939 */
1940 kmemleak_free_enabled = 0;
1941 mutex_unlock(&scan_mutex);
1942
1943 if (!kmemleak_found_leaks)
1944 __kmemleak_do_cleanup();
1945 else
1946 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1947}
1948
1949static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1950
1951/*
1952 * Disable kmemleak. No memory allocation/freeing will be traced once this
1953 * function is called. Disabling kmemleak is an irreversible operation.
1954 */
1955static void kmemleak_disable(void)
1956{
1957 /* atomically check whether it was already invoked */
1958 if (cmpxchg(&kmemleak_error, 0, 1))
1959 return;
1960
1961 /* stop any memory operation tracing */
1962 kmemleak_enabled = 0;
1963
1964 /* check whether it is too early for a kernel thread */
1965 if (kmemleak_initialized)
1966 schedule_work(&cleanup_work);
1967 else
1968 kmemleak_free_enabled = 0;
1969
1970 pr_info("Kernel memory leak detector disabled\n");
1971}
1972
1973/*
1974 * Allow boot-time kmemleak disabling (enabled by default).
1975 */
1976static int __init kmemleak_boot_config(char *str)
1977{
1978 if (!str)
1979 return -EINVAL;
1980 if (strcmp(str, "off") == 0)
1981 kmemleak_disable();
1982 else if (strcmp(str, "on") == 0)
1983 kmemleak_skip_disable = 1;
1984 else
1985 return -EINVAL;
1986 return 0;
1987}
1988early_param("kmemleak", kmemleak_boot_config);
1989
1990static void __init print_log_trace(struct early_log *log)
1991{
1992 struct stack_trace trace;
1993
1994 trace.nr_entries = log->trace_len;
1995 trace.entries = log->trace;
1996
1997 pr_notice("Early log backtrace:\n");
1998 print_stack_trace(&trace, 2);
1999}
2000
2001/*
2002 * Kmemleak initialization.
2003 */
2004void __init kmemleak_init(void)
2005{
2006 int i;
2007 unsigned long flags;
2008
2009#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2010 if (!kmemleak_skip_disable) {
2011 kmemleak_early_log = 0;
2012 kmemleak_disable();
2013 return;
2014 }
2015#endif
2016
2017 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2018 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2019
2020 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2021 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2022
2023 if (crt_early_log > ARRAY_SIZE(early_log))
2024 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2025 crt_early_log);
2026
2027 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2028 local_irq_save(flags);
2029 kmemleak_early_log = 0;
2030 if (kmemleak_error) {
2031 local_irq_restore(flags);
2032 return;
2033 } else {
2034 kmemleak_enabled = 1;
2035 kmemleak_free_enabled = 1;
2036 }
2037 local_irq_restore(flags);
2038
2039 /*
2040 * This is the point where tracking allocations is safe. Automatic
2041 * scanning is started during the late initcall. Add the early logged
2042 * callbacks to the kmemleak infrastructure.
2043 */
2044 for (i = 0; i < crt_early_log; i++) {
2045 struct early_log *log = &early_log[i];
2046
2047 switch (log->op_type) {
2048 case KMEMLEAK_ALLOC:
2049 early_alloc(log);
2050 break;
2051 case KMEMLEAK_ALLOC_PERCPU:
2052 early_alloc_percpu(log);
2053 break;
2054 case KMEMLEAK_FREE:
2055 kmemleak_free(log->ptr);
2056 break;
2057 case KMEMLEAK_FREE_PART:
2058 kmemleak_free_part(log->ptr, log->size);
2059 break;
2060 case KMEMLEAK_FREE_PERCPU:
2061 kmemleak_free_percpu(log->ptr);
2062 break;
2063 case KMEMLEAK_NOT_LEAK:
2064 kmemleak_not_leak(log->ptr);
2065 break;
2066 case KMEMLEAK_IGNORE:
2067 kmemleak_ignore(log->ptr);
2068 break;
2069 case KMEMLEAK_SCAN_AREA:
2070 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2071 break;
2072 case KMEMLEAK_NO_SCAN:
2073 kmemleak_no_scan(log->ptr);
2074 break;
2075 case KMEMLEAK_SET_EXCESS_REF:
2076 object_set_excess_ref((unsigned long)log->ptr,
2077 log->excess_ref);
2078 break;
2079 default:
2080 kmemleak_warn("Unknown early log operation: %d\n",
2081 log->op_type);
2082 }
2083
2084 if (kmemleak_warning) {
2085 print_log_trace(log);
2086 kmemleak_warning = 0;
2087 }
2088 }
2089}
2090
2091/*
2092 * Late initialization function.
2093 */
2094static int __init kmemleak_late_init(void)
2095{
2096 struct dentry *dentry;
2097
2098 kmemleak_initialized = 1;
2099
2100 if (kmemleak_error) {
2101 /*
2102 * Some error occurred and kmemleak was disabled. There is a
2103 * small chance that kmemleak_disable() was called immediately
2104 * after setting kmemleak_initialized and we may end up with
2105 * two clean-up threads but serialized by scan_mutex.
2106 */
2107 schedule_work(&cleanup_work);
2108 return -ENOMEM;
2109 }
2110
2111 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2112 &kmemleak_fops);
2113 if (!dentry)
2114 pr_warn("Failed to create the debugfs kmemleak file\n");
2115 mutex_lock(&scan_mutex);
2116 start_scan_thread();
2117 mutex_unlock(&scan_mutex);
2118
2119 pr_info("Kernel memory leak detector initialized\n");
2120
2121 return 0;
2122}
2123late_initcall(kmemleak_late_init);