Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
 
  17#include <linux/reboot.h>
  18#include <linux/sched.h>
 
 
 
  19#include <linux/sysrq.h>
  20#include <linux/smp.h>
  21#include <linux/utsname.h>
  22#include <linux/vmalloc.h>
 
  23#include <linux/module.h>
 
  24#include <linux/mm.h>
  25#include <linux/init.h>
  26#include <linux/kallsyms.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdb.h>
 
  29#include <linux/notifier.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/nmi.h>
  33#include <linux/time.h>
  34#include <linux/ptrace.h>
  35#include <linux/sysctl.h>
  36#include <linux/cpu.h>
  37#include <linux/kdebug.h>
  38#include <linux/proc_fs.h>
  39#include <linux/uaccess.h>
  40#include <linux/slab.h>
  41#include "kdb_private.h"
  42
  43#define GREP_LEN 256
  44char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  45int kdb_grepping_flag;
  46EXPORT_SYMBOL(kdb_grepping_flag);
  47int kdb_grep_leading;
  48int kdb_grep_trailing;
  49
  50/*
  51 * Kernel debugger state flags
  52 */
  53int kdb_flags;
  54atomic_t kdb_event;
  55
  56/*
  57 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  58 * single thread processors through the kernel debugger.
  59 */
  60int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  61int kdb_nextline = 1;
  62int kdb_state;			/* General KDB state */
  63
  64struct task_struct *kdb_current_task;
  65EXPORT_SYMBOL(kdb_current_task);
  66struct pt_regs *kdb_current_regs;
  67
  68const char *kdb_diemsg;
  69static int kdb_go_count;
  70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  71static unsigned int kdb_continue_catastrophic =
  72	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  73#else
  74static unsigned int kdb_continue_catastrophic;
  75#endif
  76
  77/* kdb_commands describes the available commands. */
  78static kdbtab_t *kdb_commands;
  79#define KDB_BASE_CMD_MAX 50
  80static int kdb_max_commands = KDB_BASE_CMD_MAX;
  81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  82#define for_each_kdbcmd(cmd, num)					\
  83	for ((cmd) = kdb_base_commands, (num) = 0;			\
  84	     num < kdb_max_commands;					\
  85	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  86
  87typedef struct _kdbmsg {
  88	int	km_diag;	/* kdb diagnostic */
  89	char	*km_msg;	/* Corresponding message text */
  90} kdbmsg_t;
  91
  92#define KDBMSG(msgnum, text) \
  93	{ KDB_##msgnum, text }
  94
  95static kdbmsg_t kdbmsgs[] = {
  96	KDBMSG(NOTFOUND, "Command Not Found"),
  97	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  98	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
  99	       "8 is only allowed on 64 bit systems"),
 100	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 101	KDBMSG(NOTENV, "Cannot find environment variable"),
 102	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 103	KDBMSG(NOTIMP, "Command not implemented"),
 104	KDBMSG(ENVFULL, "Environment full"),
 105	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 106	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 107#ifdef CONFIG_CPU_XSCALE
 108	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 109#else
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 111#endif
 112	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 113	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 114	KDBMSG(BADMODE, "Invalid IDMODE"),
 115	KDBMSG(BADINT, "Illegal numeric value"),
 116	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 117	KDBMSG(BADREG, "Invalid register name"),
 118	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 119	KDBMSG(BADLENGTH, "Invalid length field"),
 120	KDBMSG(NOBP, "No Breakpoint exists"),
 121	KDBMSG(BADADDR, "Invalid address"),
 
 122};
 123#undef KDBMSG
 124
 125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 126
 127
 128/*
 129 * Initial environment.   This is all kept static and local to
 130 * this file.   We don't want to rely on the memory allocation
 131 * mechanisms in the kernel, so we use a very limited allocate-only
 132 * heap for new and altered environment variables.  The entire
 133 * environment is limited to a fixed number of entries (add more
 134 * to __env[] if required) and a fixed amount of heap (add more to
 135 * KDB_ENVBUFSIZE if required).
 136 */
 137
 138static char *__env[] = {
 139#if defined(CONFIG_SMP)
 140 "PROMPT=[%d]kdb> ",
 141 "MOREPROMPT=[%d]more> ",
 142#else
 143 "PROMPT=kdb> ",
 144 "MOREPROMPT=more> ",
 145#endif
 146 "RADIX=16",
 147 "MDCOUNT=8",			/* lines of md output */
 148 KDB_PLATFORM_ENV,
 149 "DTABCOUNT=30",
 150 "NOSECT=1",
 151 (char *)0,
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175};
 176
 177static const int __nenv = (sizeof(__env) / sizeof(char *));
 178
 179struct task_struct *kdb_curr_task(int cpu)
 180{
 181	struct task_struct *p = curr_task(cpu);
 182#ifdef	_TIF_MCA_INIT
 183	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 184		p = krp->p;
 185#endif
 186	return p;
 187}
 188
 189/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long represntation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297 * kdbgetularg - This function will convert a numeric string into an
 298 *	unsigned long value.
 299 * Parameters:
 300 *	arg	A character string representing a numeric value
 301 * Outputs:
 302 *	*value  the unsigned long represntation of arg.
 303 * Returns:
 304 *	Zero on success, a kdb diagnostic on failure.
 305 */
 306int kdbgetularg(const char *arg, unsigned long *value)
 307{
 308	char *endp;
 309	unsigned long val;
 310
 311	val = simple_strtoul(arg, &endp, 0);
 312
 313	if (endp == arg) {
 314		/*
 315		 * Also try base 16, for us folks too lazy to type the
 316		 * leading 0x...
 317		 */
 318		val = simple_strtoul(arg, &endp, 16);
 319		if (endp == arg)
 320			return KDB_BADINT;
 321	}
 322
 323	*value = val;
 324
 325	return 0;
 326}
 327
 328int kdbgetu64arg(const char *arg, u64 *value)
 329{
 330	char *endp;
 331	u64 val;
 332
 333	val = simple_strtoull(arg, &endp, 0);
 334
 335	if (endp == arg) {
 336
 337		val = simple_strtoull(arg, &endp, 16);
 338		if (endp == arg)
 339			return KDB_BADINT;
 340	}
 341
 342	*value = val;
 343
 344	return 0;
 345}
 346
 347/*
 348 * kdb_set - This function implements the 'set' command.  Alter an
 349 *	existing environment variable or create a new one.
 350 */
 351int kdb_set(int argc, const char **argv)
 352{
 353	int i;
 354	char *ep;
 355	size_t varlen, vallen;
 356
 357	/*
 358	 * we can be invoked two ways:
 359	 *   set var=value    argv[1]="var", argv[2]="value"
 360	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 361	 * - if the latter, shift 'em down.
 362	 */
 363	if (argc == 3) {
 364		argv[2] = argv[3];
 365		argc--;
 366	}
 367
 368	if (argc != 2)
 369		return KDB_ARGCOUNT;
 370
 371	/*
 
 
 
 
 
 
 
 372	 * Check for internal variables
 373	 */
 374	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 375		unsigned int debugflags;
 376		char *cp;
 377
 378		debugflags = simple_strtoul(argv[2], &cp, 0);
 379		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 380			kdb_printf("kdb: illegal debug flags '%s'\n",
 381				    argv[2]);
 382			return 0;
 383		}
 384		kdb_flags = (kdb_flags &
 385			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 386			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 387
 388		return 0;
 389	}
 390
 391	/*
 392	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 393	 * name, argv[2] = value.
 394	 */
 395	varlen = strlen(argv[1]);
 396	vallen = strlen(argv[2]);
 397	ep = kdballocenv(varlen + vallen + 2);
 398	if (ep == (char *)0)
 399		return KDB_ENVBUFFULL;
 400
 401	sprintf(ep, "%s=%s", argv[1], argv[2]);
 402
 403	ep[varlen+vallen+1] = '\0';
 404
 405	for (i = 0; i < __nenv; i++) {
 406		if (__env[i]
 407		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 408		   && ((__env[i][varlen] == '\0')
 409		    || (__env[i][varlen] == '=')))) {
 410			__env[i] = ep;
 411			return 0;
 412		}
 413	}
 414
 415	/*
 416	 * Wasn't existing variable.  Fit into slot.
 417	 */
 418	for (i = 0; i < __nenv-1; i++) {
 419		if (__env[i] == (char *)0) {
 420			__env[i] = ep;
 421			return 0;
 422		}
 423	}
 424
 425	return KDB_ENVFULL;
 426}
 427
 428static int kdb_check_regs(void)
 429{
 430	if (!kdb_current_regs) {
 431		kdb_printf("No current kdb registers."
 432			   "  You may need to select another task\n");
 433		return KDB_BADREG;
 434	}
 435	return 0;
 436}
 437
 438/*
 439 * kdbgetaddrarg - This function is responsible for parsing an
 440 *	address-expression and returning the value of the expression,
 441 *	symbol name, and offset to the caller.
 442 *
 443 *	The argument may consist of a numeric value (decimal or
 444 *	hexidecimal), a symbol name, a register name (preceded by the
 445 *	percent sign), an environment variable with a numeric value
 446 *	(preceded by a dollar sign) or a simple arithmetic expression
 447 *	consisting of a symbol name, +/-, and a numeric constant value
 448 *	(offset).
 449 * Parameters:
 450 *	argc	- count of arguments in argv
 451 *	argv	- argument vector
 452 *	*nextarg - index to next unparsed argument in argv[]
 453 *	regs	- Register state at time of KDB entry
 454 * Outputs:
 455 *	*value	- receives the value of the address-expression
 456 *	*offset - receives the offset specified, if any
 457 *	*name   - receives the symbol name, if any
 458 *	*nextarg - index to next unparsed argument in argv[]
 459 * Returns:
 460 *	zero is returned on success, a kdb diagnostic code is
 461 *      returned on error.
 462 */
 463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 464		  unsigned long *value,  long *offset,
 465		  char **name)
 466{
 467	unsigned long addr;
 468	unsigned long off = 0;
 469	int positive;
 470	int diag;
 471	int found = 0;
 472	char *symname;
 473	char symbol = '\0';
 474	char *cp;
 475	kdb_symtab_t symtab;
 476
 477	/*
 
 
 
 
 
 
 
 
 
 478	 * Process arguments which follow the following syntax:
 479	 *
 480	 *  symbol | numeric-address [+/- numeric-offset]
 481	 *  %register
 482	 *  $environment-variable
 483	 */
 484
 485	if (*nextarg > argc)
 486		return KDB_ARGCOUNT;
 487
 488	symname = (char *)argv[*nextarg];
 489
 490	/*
 491	 * If there is no whitespace between the symbol
 492	 * or address and the '+' or '-' symbols, we
 493	 * remember the character and replace it with a
 494	 * null so the symbol/value can be properly parsed
 495	 */
 496	cp = strpbrk(symname, "+-");
 497	if (cp != NULL) {
 498		symbol = *cp;
 499		*cp++ = '\0';
 500	}
 501
 502	if (symname[0] == '$') {
 503		diag = kdbgetulenv(&symname[1], &addr);
 504		if (diag)
 505			return diag;
 506	} else if (symname[0] == '%') {
 507		diag = kdb_check_regs();
 508		if (diag)
 509			return diag;
 510		/* Implement register values with % at a later time as it is
 511		 * arch optional.
 512		 */
 513		return KDB_NOTIMP;
 514	} else {
 515		found = kdbgetsymval(symname, &symtab);
 516		if (found) {
 517			addr = symtab.sym_start;
 518		} else {
 519			diag = kdbgetularg(argv[*nextarg], &addr);
 520			if (diag)
 521				return diag;
 522		}
 523	}
 524
 525	if (!found)
 526		found = kdbnearsym(addr, &symtab);
 527
 528	(*nextarg)++;
 529
 530	if (name)
 531		*name = symname;
 532	if (value)
 533		*value = addr;
 534	if (offset && name && *name)
 535		*offset = addr - symtab.sym_start;
 536
 537	if ((*nextarg > argc)
 538	 && (symbol == '\0'))
 539		return 0;
 540
 541	/*
 542	 * check for +/- and offset
 543	 */
 544
 545	if (symbol == '\0') {
 546		if ((argv[*nextarg][0] != '+')
 547		 && (argv[*nextarg][0] != '-')) {
 548			/*
 549			 * Not our argument.  Return.
 550			 */
 551			return 0;
 552		} else {
 553			positive = (argv[*nextarg][0] == '+');
 554			(*nextarg)++;
 555		}
 556	} else
 557		positive = (symbol == '+');
 558
 559	/*
 560	 * Now there must be an offset!
 561	 */
 562	if ((*nextarg > argc)
 563	 && (symbol == '\0')) {
 564		return KDB_INVADDRFMT;
 565	}
 566
 567	if (!symbol) {
 568		cp = (char *)argv[*nextarg];
 569		(*nextarg)++;
 570	}
 571
 572	diag = kdbgetularg(cp, &off);
 573	if (diag)
 574		return diag;
 575
 576	if (!positive)
 577		off = -off;
 578
 579	if (offset)
 580		*offset += off;
 581
 582	if (value)
 583		*value += off;
 584
 585	return 0;
 586}
 587
 588static void kdb_cmderror(int diag)
 589{
 590	int i;
 591
 592	if (diag >= 0) {
 593		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 594		return;
 595	}
 596
 597	for (i = 0; i < __nkdb_err; i++) {
 598		if (kdbmsgs[i].km_diag == diag) {
 599			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 600			return;
 601		}
 602	}
 603
 604	kdb_printf("Unknown diag %d\n", -diag);
 605}
 606
 607/*
 608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 609 *	command which defines one command as a set of other commands,
 610 *	terminated by endefcmd.  kdb_defcmd processes the initial
 611 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 612 *	the following commands until 'endefcmd'.
 613 * Inputs:
 614 *	argc	argument count
 615 *	argv	argument vector
 616 * Returns:
 617 *	zero for success, a kdb diagnostic if error
 618 */
 619struct defcmd_set {
 620	int count;
 621	int usable;
 622	char *name;
 623	char *usage;
 624	char *help;
 625	char **command;
 626};
 627static struct defcmd_set *defcmd_set;
 628static int defcmd_set_count;
 629static int defcmd_in_progress;
 630
 631/* Forward references */
 632static int kdb_exec_defcmd(int argc, const char **argv);
 633
 634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 635{
 636	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 637	char **save_command = s->command;
 638	if (strcmp(argv0, "endefcmd") == 0) {
 639		defcmd_in_progress = 0;
 640		if (!s->count)
 641			s->usable = 0;
 642		if (s->usable)
 643			kdb_register(s->name, kdb_exec_defcmd,
 644				     s->usage, s->help, 0);
 
 
 
 
 
 645		return 0;
 646	}
 647	if (!s->usable)
 648		return KDB_NOTIMP;
 649	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 650	if (!s->command) {
 651		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 652			   cmdstr);
 653		s->usable = 0;
 654		return KDB_NOTIMP;
 655	}
 656	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 657	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 658	kfree(save_command);
 659	return 0;
 660}
 661
 662static int kdb_defcmd(int argc, const char **argv)
 663{
 664	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 665	if (defcmd_in_progress) {
 666		kdb_printf("kdb: nested defcmd detected, assuming missing "
 667			   "endefcmd\n");
 668		kdb_defcmd2("endefcmd", "endefcmd");
 669	}
 670	if (argc == 0) {
 671		int i;
 672		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 673			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 674				   s->usage, s->help);
 675			for (i = 0; i < s->count; ++i)
 676				kdb_printf("%s", s->command[i]);
 677			kdb_printf("endefcmd\n");
 678		}
 679		return 0;
 680	}
 681	if (argc != 3)
 682		return KDB_ARGCOUNT;
 683	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 684			     GFP_KDB);
 685	if (!defcmd_set) {
 686		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 687			   argv[1]);
 688		defcmd_set = save_defcmd_set;
 689		return KDB_NOTIMP;
 690	}
 
 
 
 
 691	memcpy(defcmd_set, save_defcmd_set,
 692	       defcmd_set_count * sizeof(*defcmd_set));
 693	kfree(save_defcmd_set);
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 
 
 698	s->usage = kdb_strdup(argv[2], GFP_KDB);
 
 
 699	s->help = kdb_strdup(argv[3], GFP_KDB);
 
 
 700	if (s->usage[0] == '"') {
 701		strcpy(s->usage, s->usage+1);
 702		s->usage[strlen(s->usage)-1] = '\0';
 703	}
 704	if (s->help[0] == '"') {
 705		strcpy(s->help, s->help+1);
 706		s->help[strlen(s->help)-1] = '\0';
 707	}
 708	++defcmd_set_count;
 709	defcmd_in_progress = 1;
 
 710	return 0;
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713/*
 714 * kdb_exec_defcmd - Execute the set of commands associated with this
 715 *	defcmd name.
 716 * Inputs:
 717 *	argc	argument count
 718 *	argv	argument vector
 719 * Returns:
 720 *	zero for success, a kdb diagnostic if error
 721 */
 722static int kdb_exec_defcmd(int argc, const char **argv)
 723{
 724	int i, ret;
 725	struct defcmd_set *s;
 726	if (argc != 0)
 727		return KDB_ARGCOUNT;
 728	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 729		if (strcmp(s->name, argv[0]) == 0)
 730			break;
 731	}
 732	if (i == defcmd_set_count) {
 733		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 734			   argv[0]);
 735		return KDB_NOTIMP;
 736	}
 737	for (i = 0; i < s->count; ++i) {
 738		/* Recursive use of kdb_parse, do not use argv after
 739		 * this point */
 740		argv = NULL;
 741		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 742		ret = kdb_parse(s->command[i]);
 743		if (ret)
 744			return ret;
 745	}
 746	return 0;
 747}
 748
 749/* Command history */
 750#define KDB_CMD_HISTORY_COUNT	32
 751#define CMD_BUFLEN		200	/* kdb_printf: max printline
 752					 * size == 256 */
 753static unsigned int cmd_head, cmd_tail;
 754static unsigned int cmdptr;
 755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 756static char cmd_cur[CMD_BUFLEN];
 757
 758/*
 759 * The "str" argument may point to something like  | grep xyz
 760 */
 761static void parse_grep(const char *str)
 762{
 763	int	len;
 764	char	*cp = (char *)str, *cp2;
 765
 766	/* sanity check: we should have been called with the \ first */
 767	if (*cp != '|')
 768		return;
 769	cp++;
 770	while (isspace(*cp))
 771		cp++;
 772	if (strncmp(cp, "grep ", 5)) {
 773		kdb_printf("invalid 'pipe', see grephelp\n");
 774		return;
 775	}
 776	cp += 5;
 777	while (isspace(*cp))
 778		cp++;
 779	cp2 = strchr(cp, '\n');
 780	if (cp2)
 781		*cp2 = '\0'; /* remove the trailing newline */
 782	len = strlen(cp);
 783	if (len == 0) {
 784		kdb_printf("invalid 'pipe', see grephelp\n");
 785		return;
 786	}
 787	/* now cp points to a nonzero length search string */
 788	if (*cp == '"') {
 789		/* allow it be "x y z" by removing the "'s - there must
 790		   be two of them */
 791		cp++;
 792		cp2 = strchr(cp, '"');
 793		if (!cp2) {
 794			kdb_printf("invalid quoted string, see grephelp\n");
 795			return;
 796		}
 797		*cp2 = '\0'; /* end the string where the 2nd " was */
 798	}
 799	kdb_grep_leading = 0;
 800	if (*cp == '^') {
 801		kdb_grep_leading = 1;
 802		cp++;
 803	}
 804	len = strlen(cp);
 805	kdb_grep_trailing = 0;
 806	if (*(cp+len-1) == '$') {
 807		kdb_grep_trailing = 1;
 808		*(cp+len-1) = '\0';
 809	}
 810	len = strlen(cp);
 811	if (!len)
 812		return;
 813	if (len >= GREP_LEN) {
 814		kdb_printf("search string too long\n");
 815		return;
 816	}
 817	strcpy(kdb_grep_string, cp);
 818	kdb_grepping_flag++;
 819	return;
 820}
 821
 822/*
 823 * kdb_parse - Parse the command line, search the command table for a
 824 *	matching command and invoke the command function.  This
 825 *	function may be called recursively, if it is, the second call
 826 *	will overwrite argv and cbuf.  It is the caller's
 827 *	responsibility to save their argv if they recursively call
 828 *	kdb_parse().
 829 * Parameters:
 830 *      cmdstr	The input command line to be parsed.
 831 *	regs	The registers at the time kdb was entered.
 832 * Returns:
 833 *	Zero for success, a kdb diagnostic if failure.
 834 * Remarks:
 835 *	Limited to 20 tokens.
 836 *
 837 *	Real rudimentary tokenization. Basically only whitespace
 838 *	is considered a token delimeter (but special consideration
 839 *	is taken of the '=' sign as used by the 'set' command).
 840 *
 841 *	The algorithm used to tokenize the input string relies on
 842 *	there being at least one whitespace (or otherwise useless)
 843 *	character between tokens as the character immediately following
 844 *	the token is altered in-place to a null-byte to terminate the
 845 *	token string.
 846 */
 847
 848#define MAXARGC	20
 849
 850int kdb_parse(const char *cmdstr)
 851{
 852	static char *argv[MAXARGC];
 853	static int argc;
 854	static char cbuf[CMD_BUFLEN+2];
 855	char *cp;
 856	char *cpp, quoted;
 857	kdbtab_t *tp;
 858	int i, escaped, ignore_errors = 0, check_grep;
 859
 860	/*
 861	 * First tokenize the command string.
 862	 */
 863	cp = (char *)cmdstr;
 864	kdb_grepping_flag = check_grep = 0;
 865
 866	if (KDB_FLAG(CMD_INTERRUPT)) {
 867		/* Previous command was interrupted, newline must not
 868		 * repeat the command */
 869		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 870		KDB_STATE_SET(PAGER);
 871		argc = 0;	/* no repeat */
 872	}
 873
 874	if (*cp != '\n' && *cp != '\0') {
 875		argc = 0;
 876		cpp = cbuf;
 877		while (*cp) {
 878			/* skip whitespace */
 879			while (isspace(*cp))
 880				cp++;
 881			if ((*cp == '\0') || (*cp == '\n') ||
 882			    (*cp == '#' && !defcmd_in_progress))
 883				break;
 884			/* special case: check for | grep pattern */
 885			if (*cp == '|') {
 886				check_grep++;
 887				break;
 888			}
 889			if (cpp >= cbuf + CMD_BUFLEN) {
 890				kdb_printf("kdb_parse: command buffer "
 891					   "overflow, command ignored\n%s\n",
 892					   cmdstr);
 893				return KDB_NOTFOUND;
 894			}
 895			if (argc >= MAXARGC - 1) {
 896				kdb_printf("kdb_parse: too many arguments, "
 897					   "command ignored\n%s\n", cmdstr);
 898				return KDB_NOTFOUND;
 899			}
 900			argv[argc++] = cpp;
 901			escaped = 0;
 902			quoted = '\0';
 903			/* Copy to next unquoted and unescaped
 904			 * whitespace or '=' */
 905			while (*cp && *cp != '\n' &&
 906			       (escaped || quoted || !isspace(*cp))) {
 907				if (cpp >= cbuf + CMD_BUFLEN)
 908					break;
 909				if (escaped) {
 910					escaped = 0;
 911					*cpp++ = *cp++;
 912					continue;
 913				}
 914				if (*cp == '\\') {
 915					escaped = 1;
 916					++cp;
 917					continue;
 918				}
 919				if (*cp == quoted)
 920					quoted = '\0';
 921				else if (*cp == '\'' || *cp == '"')
 922					quoted = *cp;
 923				*cpp = *cp++;
 924				if (*cpp == '=' && !quoted)
 925					break;
 926				++cpp;
 927			}
 928			*cpp++ = '\0';	/* Squash a ws or '=' character */
 929		}
 930	}
 931	if (!argc)
 932		return 0;
 933	if (check_grep)
 934		parse_grep(cp);
 935	if (defcmd_in_progress) {
 936		int result = kdb_defcmd2(cmdstr, argv[0]);
 937		if (!defcmd_in_progress) {
 938			argc = 0;	/* avoid repeat on endefcmd */
 939			*(argv[0]) = '\0';
 940		}
 941		return result;
 942	}
 943	if (argv[0][0] == '-' && argv[0][1] &&
 944	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 945		ignore_errors = 1;
 946		++argv[0];
 947	}
 948
 949	for_each_kdbcmd(tp, i) {
 950		if (tp->cmd_name) {
 951			/*
 952			 * If this command is allowed to be abbreviated,
 953			 * check to see if this is it.
 954			 */
 955
 956			if (tp->cmd_minlen
 957			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 958				if (strncmp(argv[0],
 959					    tp->cmd_name,
 960					    tp->cmd_minlen) == 0) {
 961					break;
 962				}
 963			}
 964
 965			if (strcmp(argv[0], tp->cmd_name) == 0)
 966				break;
 967		}
 968	}
 969
 970	/*
 971	 * If we don't find a command by this name, see if the first
 972	 * few characters of this match any of the known commands.
 973	 * e.g., md1c20 should match md.
 974	 */
 975	if (i == kdb_max_commands) {
 976		for_each_kdbcmd(tp, i) {
 977			if (tp->cmd_name) {
 978				if (strncmp(argv[0],
 979					    tp->cmd_name,
 980					    strlen(tp->cmd_name)) == 0) {
 981					break;
 982				}
 983			}
 984		}
 985	}
 986
 987	if (i < kdb_max_commands) {
 988		int result;
 
 
 
 
 989		KDB_STATE_SET(CMD);
 990		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 991		if (result && ignore_errors && result > KDB_CMD_GO)
 992			result = 0;
 993		KDB_STATE_CLEAR(CMD);
 994		switch (tp->cmd_repeat) {
 995		case KDB_REPEAT_NONE:
 996			argc = 0;
 997			if (argv[0])
 998				*(argv[0]) = '\0';
 999			break;
1000		case KDB_REPEAT_NO_ARGS:
1001			argc = 1;
1002			if (argv[1])
1003				*(argv[1]) = '\0';
1004			break;
1005		case KDB_REPEAT_WITH_ARGS:
1006			break;
1007		}
1008		return result;
1009	}
1010
1011	/*
1012	 * If the input with which we were presented does not
1013	 * map to an existing command, attempt to parse it as an
1014	 * address argument and display the result.   Useful for
1015	 * obtaining the address of a variable, or the nearest symbol
1016	 * to an address contained in a register.
1017	 */
1018	{
1019		unsigned long value;
1020		char *name = NULL;
1021		long offset;
1022		int nextarg = 0;
1023
1024		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025				  &value, &offset, &name)) {
1026			return KDB_NOTFOUND;
1027		}
1028
1029		kdb_printf("%s = ", argv[0]);
1030		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031		kdb_printf("\n");
1032		return 0;
1033	}
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P	16
1040#define CTRL_N	14
1041
1042	/* initial situation */
1043	if (cmd_head == cmd_tail)
1044		return 0;
1045	switch (*cmd) {
1046	case CTRL_P:
1047		if (cmdptr != cmd_tail)
1048			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1050		return 1;
1051	case CTRL_N:
1052		if (cmdptr != cmd_head)
1053			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055		return 1;
1056	}
1057	return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062 *	the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066	emergency_restart();
1067	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068	while (1)
1069		cpu_relax();
1070	/* NOTREACHED */
1071	return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076	int old_lvl = console_loglevel;
1077	console_loglevel = 15;
1078	kdb_trap_printk++;
1079	show_regs(regs);
1080	kdb_trap_printk--;
1081	kdb_printf("\n");
1082	console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087	kdb_current_task = p;
1088
1089	if (kdb_task_has_cpu(p)) {
1090		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091		return;
1092	}
1093	kdb_current_regs = NULL;
1094}
1095
 
 
 
 
 
 
 
 
 
 
1096/*
1097 * kdb_local - The main code for kdb.  This routine is invoked on a
1098 *	specific processor, it is not global.  The main kdb() routine
1099 *	ensures that only one processor at a time is in this routine.
1100 *	This code is called with the real reason code on the first
1101 *	entry to a kdb session, thereafter it is called with reason
1102 *	SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 *	reason		The reason KDB was invoked
1105 *	error		The hardware-defined error code
1106 *	regs		The exception frame at time of fault/breakpoint.
1107 *	db_result	Result code from the break or debug point.
1108 * Returns:
1109 *	0	KDB was invoked for an event which it wasn't responsible
1110 *	1	KDB handled the event for which it was invoked.
1111 *	KDB_CMD_GO	User typed 'go'.
1112 *	KDB_CMD_CPU	User switched to another cpu.
1113 *	KDB_CMD_SS	Single step.
1114 *	KDB_CMD_SSB	Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117		     kdb_dbtrap_t db_result)
1118{
1119	char *cmdbuf;
1120	int diag;
1121	struct task_struct *kdb_current =
1122		kdb_curr_task(raw_smp_processor_id());
1123
1124	KDB_DEBUG_STATE("kdb_local 1", reason);
1125	kdb_go_count = 0;
1126	if (reason == KDB_REASON_DEBUG) {
1127		/* special case below */
1128	} else {
1129		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130			   kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132		kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134	}
1135
1136	switch (reason) {
1137	case KDB_REASON_DEBUG:
1138	{
1139		/*
1140		 * If re-entering kdb after a single step
1141		 * command, don't print the message.
1142		 */
1143		switch (db_result) {
1144		case KDB_DB_BPT:
1145			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146				   kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148			kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151				   instruction_pointer(regs));
1152			break;
1153		case KDB_DB_SSB:
1154			/*
1155			 * In the midst of ssb command. Just return.
1156			 */
1157			KDB_DEBUG_STATE("kdb_local 3", reason);
1158			return KDB_CMD_SSB;	/* Continue with SSB command */
1159
1160			break;
1161		case KDB_DB_SS:
1162			break;
1163		case KDB_DB_SSBPT:
1164			KDB_DEBUG_STATE("kdb_local 4", reason);
1165			return 1;	/* kdba_db_trap did the work */
1166		default:
1167			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168				   db_result);
1169			break;
1170		}
1171
1172	}
1173		break;
1174	case KDB_REASON_ENTER:
1175		if (KDB_STATE(KEYBOARD))
1176			kdb_printf("due to Keyboard Entry\n");
1177		else
1178			kdb_printf("due to KDB_ENTER()\n");
1179		break;
1180	case KDB_REASON_KEYBOARD:
1181		KDB_STATE_SET(KEYBOARD);
1182		kdb_printf("due to Keyboard Entry\n");
1183		break;
1184	case KDB_REASON_ENTER_SLAVE:
1185		/* drop through, slaves only get released via cpu switch */
1186	case KDB_REASON_SWITCH:
1187		kdb_printf("due to cpu switch\n");
1188		break;
1189	case KDB_REASON_OOPS:
1190		kdb_printf("Oops: %s\n", kdb_diemsg);
1191		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192			   instruction_pointer(regs));
1193		kdb_dumpregs(regs);
1194		break;
 
 
 
1195	case KDB_REASON_NMI:
1196		kdb_printf("due to NonMaskable Interrupt @ "
1197			   kdb_machreg_fmt "\n",
1198			   instruction_pointer(regs));
1199		kdb_dumpregs(regs);
1200		break;
1201	case KDB_REASON_SSTEP:
1202	case KDB_REASON_BREAK:
1203		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204			   reason == KDB_REASON_BREAK ?
1205			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206		/*
1207		 * Determine if this breakpoint is one that we
1208		 * are interested in.
1209		 */
1210		if (db_result != KDB_DB_BPT) {
1211			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212				   db_result);
1213			KDB_DEBUG_STATE("kdb_local 6", reason);
1214			return 0;	/* Not for us, dismiss it */
1215		}
1216		break;
1217	case KDB_REASON_RECURSE:
1218		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219			   instruction_pointer(regs));
1220		break;
1221	default:
1222		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223		KDB_DEBUG_STATE("kdb_local 8", reason);
1224		return 0;	/* Not for us, dismiss it */
1225	}
1226
1227	while (1) {
1228		/*
1229		 * Initialize pager context.
1230		 */
1231		kdb_nextline = 1;
1232		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1233
1234		cmdbuf = cmd_cur;
1235		*cmdbuf = '\0';
1236		*(cmd_hist[cmd_head]) = '\0';
1237
1238		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239			/* kdb is off but a catastrophic error requires a dump.
1240			 * Take the dump and reboot.
1241			 * Turn on logging so the kdb output appears in the log
1242			 * buffer in the dump.
1243			 */
1244			const char *setargs[] = { "set", "LOGGING", "1" };
1245			kdb_set(2, setargs);
1246			kdb_reboot(0, NULL);
1247			/*NOTREACHED*/
1248		}
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253			 raw_smp_processor_id());
1254#else
1255		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257		if (defcmd_in_progress)
1258			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260		/*
1261		 * Fetch command from keyboard
1262		 */
1263		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264		if (*cmdbuf != '\n') {
1265			if (*cmdbuf < 32) {
1266				if (cmdptr == cmd_head) {
1267					strncpy(cmd_hist[cmd_head], cmd_cur,
1268						CMD_BUFLEN);
1269					*(cmd_hist[cmd_head] +
1270					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271				}
1272				if (!handle_ctrl_cmd(cmdbuf))
1273					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274				cmdbuf = cmd_cur;
1275				goto do_full_getstr;
1276			} else {
1277				strncpy(cmd_hist[cmd_head], cmd_cur,
1278					CMD_BUFLEN);
1279			}
1280
1281			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282			if (cmd_head == cmd_tail)
1283				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284		}
1285
1286		cmdptr = cmd_head;
1287		diag = kdb_parse(cmdbuf);
1288		if (diag == KDB_NOTFOUND) {
 
1289			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290			diag = 0;
1291		}
1292		if (diag == KDB_CMD_GO
1293		 || diag == KDB_CMD_CPU
1294		 || diag == KDB_CMD_SS
1295		 || diag == KDB_CMD_SSB
1296		 || diag == KDB_CMD_KGDB)
1297			break;
1298
1299		if (diag)
1300			kdb_cmderror(diag);
1301	}
1302	KDB_DEBUG_STATE("kdb_local 9", diag);
1303	return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 *	for debugging.
1310 * Inputs:
1311 *	text		Identifies the debug point
1312 *	value		Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318		   kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 *	controlling cpu, all cpus are in this loop.  One cpu is in
1324 *	control and will issue the kdb prompt, the others will spin
1325 *	until 'go' or cpu switch.
1326 *
1327 *	To get a consistent view of the kernel stacks for all
1328 *	processes, this routine is invoked from the main kdb code via
1329 *	an architecture specific routine.  kdba_main_loop is
1330 *	responsible for making the kernel stacks consistent for all
1331 *	processes, there should be no difference between a blocked
1332 *	process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 *	reason		The reason KDB was invoked
1335 *	error		The hardware-defined error code
1336 *	reason2		kdb's current reason code.
1337 *			Initially error but can change
1338 *			according to kdb state.
1339 *	db_result	Result code from break or debug point.
1340 *	regs		The exception frame at time of fault/breakpoint.
1341 *			should always be valid.
1342 * Returns:
1343 *	0	KDB was invoked for an event which it wasn't responsible
1344 *	1	KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349	int result = 1;
1350	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351	while (1) {
1352		/*
1353		 * All processors except the one that is in control
1354		 * will spin here.
1355		 */
1356		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357		while (KDB_STATE(HOLD_CPU)) {
1358			/* state KDB is turned off by kdb_cpu to see if the
1359			 * other cpus are still live, each cpu in this loop
1360			 * turns it back on.
1361			 */
1362			if (!KDB_STATE(KDB))
1363				KDB_STATE_SET(KDB);
1364		}
1365
1366		KDB_STATE_CLEAR(SUPPRESS);
1367		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368		if (KDB_STATE(LEAVING))
1369			break;	/* Another cpu said 'go' */
1370		/* Still using kdb, this processor is in control */
1371		result = kdb_local(reason2, error, regs, db_result);
1372		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374		if (result == KDB_CMD_CPU)
1375			break;
1376
1377		if (result == KDB_CMD_SS) {
1378			KDB_STATE_SET(DOING_SS);
1379			break;
1380		}
1381
1382		if (result == KDB_CMD_SSB) {
1383			KDB_STATE_SET(DOING_SS);
1384			KDB_STATE_SET(DOING_SSB);
1385			break;
1386		}
1387
1388		if (result == KDB_CMD_KGDB) {
1389			if (!KDB_STATE(DOING_KGDB))
1390				kdb_printf("Entering please attach debugger "
1391					   "or use $D#44+ or $3#33\n");
1392			break;
1393		}
1394		if (result && result != 1 && result != KDB_CMD_GO)
1395			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396				   result);
1397		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398		break;
1399	}
1400	if (KDB_STATE(DOING_SS))
1401		KDB_STATE_CLEAR(SSBPT);
1402
 
 
 
1403	return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 *	mdr  <addr arg>,<byte count>
1410 * Inputs:
1411 *	addr	Start address
1412 *	count	Number of bytes
1413 * Returns:
1414 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418	unsigned char c;
1419	while (count--) {
1420		if (kdb_getarea(c, addr))
1421			return 0;
1422		kdb_printf("%02x", c);
1423		addr++;
1424	}
1425	kdb_printf("\n");
1426	return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 *	'md8' 'mdr' and 'mds' commands.
1432 *
1433 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1434 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1435 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1436 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1437 *	mdr  <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440			int symbolic, int nosect, int bytesperword,
1441			int num, int repeat, int phys)
1442{
1443	/* print just one line of data */
1444	kdb_symtab_t symtab;
1445	char cbuf[32];
1446	char *c = cbuf;
1447	int i;
 
1448	unsigned long word;
1449
1450	memset(cbuf, '\0', sizeof(cbuf));
1451	if (phys)
1452		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453	else
1454		kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456	for (i = 0; i < num && repeat--; i++) {
1457		if (phys) {
1458			if (kdb_getphysword(&word, addr, bytesperword))
1459				break;
1460		} else if (kdb_getword(&word, addr, bytesperword))
1461			break;
1462		kdb_printf(fmtstr, word);
1463		if (symbolic)
1464			kdbnearsym(word, &symtab);
1465		else
1466			memset(&symtab, 0, sizeof(symtab));
1467		if (symtab.sym_name) {
1468			kdb_symbol_print(word, &symtab, 0);
1469			if (!nosect) {
1470				kdb_printf("\n");
1471				kdb_printf("                       %s %s "
1472					   kdb_machreg_fmt " "
1473					   kdb_machreg_fmt " "
1474					   kdb_machreg_fmt, symtab.mod_name,
1475					   symtab.sec_name, symtab.sec_start,
1476					   symtab.sym_start, symtab.sym_end);
1477			}
1478			addr += bytesperword;
1479		} else {
1480			union {
1481				u64 word;
1482				unsigned char c[8];
1483			} wc;
1484			unsigned char *cp;
1485#ifdef	__BIG_ENDIAN
1486			cp = wc.c + 8 - bytesperword;
1487#else
1488			cp = wc.c;
1489#endif
1490			wc.word = word;
1491#define printable_char(c) \
1492	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493			switch (bytesperword) {
1494			case 8:
1495				*c++ = printable_char(*cp++);
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				*c++ = printable_char(*cp++);
1499				addr += 4;
1500			case 4:
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 2;
1504			case 2:
1505				*c++ = printable_char(*cp++);
1506				addr++;
1507			case 1:
1508				*c++ = printable_char(*cp++);
1509				addr++;
1510				break;
1511			}
1512#undef printable_char
1513		}
1514	}
1515	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516		   " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521	static unsigned long last_addr;
1522	static int last_radix, last_bytesperword, last_repeat;
1523	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524	int nosect = 0;
1525	char fmtchar, fmtstr[64];
1526	unsigned long addr;
1527	unsigned long word;
1528	long offset = 0;
1529	int symbolic = 0;
1530	int valid = 0;
1531	int phys = 0;
 
1532
1533	kdbgetintenv("MDCOUNT", &mdcount);
1534	kdbgetintenv("RADIX", &radix);
1535	kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537	/* Assume 'md <addr>' and start with environment values */
1538	repeat = mdcount * 16 / bytesperword;
1539
1540	if (strcmp(argv[0], "mdr") == 0) {
1541		if (argc != 2)
 
 
1542			return KDB_ARGCOUNT;
1543		valid = 1;
1544	} else if (isdigit(argv[0][2])) {
1545		bytesperword = (int)(argv[0][2] - '0');
1546		if (bytesperword == 0) {
1547			bytesperword = last_bytesperword;
1548			if (bytesperword == 0)
1549				bytesperword = 4;
1550		}
1551		last_bytesperword = bytesperword;
1552		repeat = mdcount * 16 / bytesperword;
1553		if (!argv[0][3])
1554			valid = 1;
1555		else if (argv[0][3] == 'c' && argv[0][4]) {
1556			char *p;
1557			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558			mdcount = ((repeat * bytesperword) + 15) / 16;
1559			valid = !*p;
1560		}
1561		last_repeat = repeat;
1562	} else if (strcmp(argv[0], "md") == 0)
1563		valid = 1;
1564	else if (strcmp(argv[0], "mds") == 0)
1565		valid = 1;
1566	else if (strcmp(argv[0], "mdp") == 0) {
1567		phys = valid = 1;
1568	}
1569	if (!valid)
1570		return KDB_NOTFOUND;
1571
1572	if (argc == 0) {
1573		if (last_addr == 0)
1574			return KDB_ARGCOUNT;
1575		addr = last_addr;
1576		radix = last_radix;
1577		bytesperword = last_bytesperword;
1578		repeat = last_repeat;
1579		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1580	}
1581
1582	if (argc) {
1583		unsigned long val;
1584		int diag, nextarg = 1;
1585		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586				     &offset, NULL);
1587		if (diag)
1588			return diag;
1589		if (argc > nextarg+2)
1590			return KDB_ARGCOUNT;
1591
1592		if (argc >= nextarg) {
1593			diag = kdbgetularg(argv[nextarg], &val);
1594			if (!diag) {
1595				mdcount = (int) val;
1596				repeat = mdcount * 16 / bytesperword;
 
 
 
1597			}
1598		}
1599		if (argc >= nextarg+1) {
1600			diag = kdbgetularg(argv[nextarg+1], &val);
1601			if (!diag)
1602				radix = (int) val;
1603		}
1604	}
1605
1606	if (strcmp(argv[0], "mdr") == 0)
1607		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1608
1609	switch (radix) {
1610	case 10:
1611		fmtchar = 'd';
1612		break;
1613	case 16:
1614		fmtchar = 'x';
1615		break;
1616	case 8:
1617		fmtchar = 'o';
1618		break;
1619	default:
1620		return KDB_BADRADIX;
1621	}
1622
1623	last_radix = radix;
1624
1625	if (bytesperword > KDB_WORD_SIZE)
1626		return KDB_BADWIDTH;
1627
1628	switch (bytesperword) {
1629	case 8:
1630		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631		break;
1632	case 4:
1633		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634		break;
1635	case 2:
1636		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637		break;
1638	case 1:
1639		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640		break;
1641	default:
1642		return KDB_BADWIDTH;
1643	}
1644
1645	last_repeat = repeat;
1646	last_bytesperword = bytesperword;
1647
1648	if (strcmp(argv[0], "mds") == 0) {
1649		symbolic = 1;
1650		/* Do not save these changes as last_*, they are temporary mds
1651		 * overrides.
1652		 */
1653		bytesperword = KDB_WORD_SIZE;
1654		repeat = mdcount;
1655		kdbgetintenv("NOSECT", &nosect);
1656	}
1657
1658	/* Round address down modulo BYTESPERWORD */
1659
1660	addr &= ~(bytesperword-1);
1661
1662	while (repeat > 0) {
1663		unsigned long a;
1664		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666		if (KDB_FLAG(CMD_INTERRUPT))
1667			return 0;
1668		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669			if (phys) {
1670				if (kdb_getphysword(&word, a, bytesperword)
1671						|| word)
1672					break;
1673			} else if (kdb_getword(&word, a, bytesperword) || word)
1674				break;
1675		}
1676		n = min(num, repeat);
1677		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678			    num, repeat, phys);
1679		addr += bytesperword * n;
1680		repeat -= n;
1681		z = (z + num - 1) / num;
1682		if (z > 2) {
1683			int s = num * (z-2);
1684			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685				   " zero suppressed\n",
1686				addr, addr + bytesperword * s - 1);
1687			addr += bytesperword * s;
1688			repeat -= s;
1689		}
1690	}
1691	last_addr = addr;
1692
1693	return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 *	mm address-expression new-value
1699 * Remarks:
1700 *	mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704	int diag;
1705	unsigned long addr;
1706	long offset = 0;
1707	unsigned long contents;
1708	int nextarg;
1709	int width;
1710
1711	if (argv[0][2] && !isdigit(argv[0][2]))
1712		return KDB_NOTFOUND;
1713
1714	if (argc < 2)
1715		return KDB_ARGCOUNT;
1716
1717	nextarg = 1;
1718	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719	if (diag)
1720		return diag;
1721
1722	if (nextarg > argc)
1723		return KDB_ARGCOUNT;
1724	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725	if (diag)
1726		return diag;
1727
1728	if (nextarg != argc + 1)
1729		return KDB_ARGCOUNT;
1730
1731	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732	diag = kdb_putword(addr, contents, width);
1733	if (diag)
1734		return diag;
1735
1736	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738	return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 *	go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747	unsigned long addr;
1748	int diag;
1749	int nextarg;
1750	long offset;
1751
1752	if (raw_smp_processor_id() != kdb_initial_cpu) {
1753		kdb_printf("go must execute on the entry cpu, "
1754			   "please use \"cpu %d\" and then execute go\n",
1755			   kdb_initial_cpu);
1756		return KDB_BADCPUNUM;
1757	}
1758	if (argc == 1) {
1759		nextarg = 1;
1760		diag = kdbgetaddrarg(argc, argv, &nextarg,
1761				     &addr, &offset, NULL);
1762		if (diag)
1763			return diag;
1764	} else if (argc) {
1765		return KDB_ARGCOUNT;
1766	}
1767
1768	diag = KDB_CMD_GO;
1769	if (KDB_FLAG(CATASTROPHIC)) {
1770		kdb_printf("Catastrophic error detected\n");
1771		kdb_printf("kdb_continue_catastrophic=%d, ",
1772			kdb_continue_catastrophic);
1773		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774			kdb_printf("type go a second time if you really want "
1775				   "to continue\n");
1776			return 0;
1777		}
1778		if (kdb_continue_catastrophic == 2) {
1779			kdb_printf("forcing reboot\n");
1780			kdb_reboot(0, NULL);
1781		}
1782		kdb_printf("attempting to continue\n");
1783	}
1784	return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792	int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794	int i;
1795	char *rname;
1796	int rsize;
1797	u64 reg64;
1798	u32 reg32;
1799	u16 reg16;
1800	u8 reg8;
1801
1802	if (len)
1803		return len;
1804
1805	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806		rsize = dbg_reg_def[i].size * 2;
1807		if (rsize > 16)
1808			rsize = 2;
1809		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810			len = 0;
1811			kdb_printf("\n");
1812		}
1813		if (len)
1814			len += kdb_printf("  ");
1815		switch(dbg_reg_def[i].size * 8) {
1816		case 8:
1817			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818			if (!rname)
1819				break;
1820			len += kdb_printf("%s: %02x", rname, reg8);
1821			break;
1822		case 16:
1823			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824			if (!rname)
1825				break;
1826			len += kdb_printf("%s: %04x", rname, reg16);
1827			break;
1828		case 32:
1829			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830			if (!rname)
1831				break;
1832			len += kdb_printf("%s: %08x", rname, reg32);
1833			break;
1834		case 64:
1835			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836			if (!rname)
1837				break;
1838			len += kdb_printf("%s: %016llx", rname, reg64);
1839			break;
1840		default:
1841			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842		}
1843	}
1844	kdb_printf("\n");
1845#else
1846	if (len)
1847		return len;
1848
1849	kdb_dumpregs(kdb_current_regs);
1850#endif
1851	return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify)  command.
1856 *	rm register-name new-contents
1857 * Remarks:
1858 *	Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863	int diag;
1864	const char *rname;
1865	int i;
1866	u64 reg64;
1867	u32 reg32;
1868	u16 reg16;
1869	u8 reg8;
1870
1871	if (argc != 2)
1872		return KDB_ARGCOUNT;
1873	/*
1874	 * Allow presence or absence of leading '%' symbol.
1875	 */
1876	rname = argv[1];
1877	if (*rname == '%')
1878		rname++;
1879
1880	diag = kdbgetu64arg(argv[2], &reg64);
1881	if (diag)
1882		return diag;
1883
1884	diag = kdb_check_regs();
1885	if (diag)
1886		return diag;
1887
1888	diag = KDB_BADREG;
1889	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891			diag = 0;
1892			break;
1893		}
1894	}
1895	if (!diag) {
1896		switch(dbg_reg_def[i].size * 8) {
1897		case 8:
1898			reg8 = reg64;
1899			dbg_set_reg(i, &reg8, kdb_current_regs);
1900			break;
1901		case 16:
1902			reg16 = reg64;
1903			dbg_set_reg(i, &reg16, kdb_current_regs);
1904			break;
1905		case 32:
1906			reg32 = reg64;
1907			dbg_set_reg(i, &reg32, kdb_current_regs);
1908			break;
1909		case 64:
1910			dbg_set_reg(i, &reg64, kdb_current_regs);
1911			break;
1912		}
1913	}
1914	return diag;
1915#else
1916	kdb_printf("ERROR: Register set currently not implemented\n");
1917    return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 *		sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
 
 
 
1929	if (argc != 1)
1930		return KDB_ARGCOUNT;
 
1931	kdb_trap_printk++;
1932	__handle_sysrq(*argv[1], false);
1933	kdb_trap_printk--;
1934
1935	return 0;
1936}
1937#endif	/* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 *	frame) command.  This command takes an address and expects to
1942 *	find an exception frame at that address, formats and prints
1943 *	it.
1944 *		regs address-expression
1945 * Remarks:
1946 *	Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950	int diag;
1951	unsigned long addr;
1952	long offset;
1953	int nextarg;
1954
1955	if (argc != 1)
1956		return KDB_ARGCOUNT;
1957
1958	nextarg = 1;
1959	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960	if (diag)
1961		return diag;
1962	show_regs((struct pt_regs *)addr);
1963	return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1969 *	currently loaded kernel modules.
1970 *	Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974	struct module *mod;
1975
1976	if (argc != 0)
1977		return KDB_ARGCOUNT;
1978
1979	kdb_printf("Module                  Size  modstruct     Used by\n");
1980	list_for_each_entry(mod, kdb_modules, list) {
 
 
1981
1982		kdb_printf("%-20s%8u  0x%p ", mod->name,
1983			   mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985		kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987		if (mod->state == MODULE_STATE_GOING)
1988			kdb_printf(" (Unloading)");
1989		else if (mod->state == MODULE_STATE_COMING)
1990			kdb_printf(" (Loading)");
1991		else
1992			kdb_printf(" (Live)");
1993		kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996		{
1997			struct module_use *use;
1998			kdb_printf(" [ ");
1999			list_for_each_entry(use, &mod->source_list,
2000					    source_list)
2001				kdb_printf("%s ", use->target->name);
2002			kdb_printf("]\n");
2003		}
2004#endif
2005	}
2006
2007	return 0;
2008}
2009
2010#endif	/* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command.  Display the
2014 *	current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019	int i;
2020
2021	for (i = 0; i < __nenv; i++) {
2022		if (__env[i])
2023			kdb_printf("%s\n", __env[i]);
2024	}
2025
2026	if (KDB_DEBUG(MASK))
2027		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2028
2029	return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 *	the contents of the syslog buffer.
2036 *		dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040	char *syslog_data[4], *start, *end, c = '\0', *p;
2041	int diag, logging, logsize, lines = 0, adjust = 0, n;
 
 
 
 
 
 
 
2042
2043	if (argc > 2)
2044		return KDB_ARGCOUNT;
2045	if (argc) {
2046		char *cp;
2047		lines = simple_strtol(argv[1], &cp, 0);
2048		if (*cp)
2049			lines = 0;
2050		if (argc > 1) {
2051			adjust = simple_strtoul(argv[2], &cp, 0);
2052			if (*cp || adjust < 0)
2053				adjust = 0;
2054		}
2055	}
2056
2057	/* disable LOGGING if set */
2058	diag = kdbgetintenv("LOGGING", &logging);
2059	if (!diag && logging) {
2060		const char *setargs[] = { "set", "LOGGING", "0" };
2061		kdb_set(2, setargs);
2062	}
2063
2064	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2065	 * logical start, end+1. */
2066	kdb_syslog_data(syslog_data);
2067	if (syslog_data[2] == syslog_data[3])
2068		return 0;
2069	logsize = syslog_data[1] - syslog_data[0];
2070	start = syslog_data[2];
2071	end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073	for (n = 0, p = start; p < end; ++p) {
2074		c = *KDB_WRAP(p);
2075		if (c == '\n')
2076			++n;
2077	}
2078	if (c != '\n')
2079		++n;
2080	if (lines < 0) {
2081		if (adjust >= n)
2082			kdb_printf("buffer only contains %d lines, nothing "
2083				   "printed\n", n);
2084		else if (adjust - lines >= n)
2085			kdb_printf("buffer only contains %d lines, last %d "
2086				   "lines printed\n", n, n - adjust);
2087		if (adjust) {
2088			for (; start < end && adjust; ++start) {
2089				if (*KDB_WRAP(start) == '\n')
2090					--adjust;
2091			}
2092			if (start < end)
2093				++start;
2094		}
2095		for (p = start; p < end && lines; ++p) {
2096			if (*KDB_WRAP(p) == '\n')
2097				++lines;
2098		}
2099		end = p;
2100	} else if (lines > 0) {
2101		int skip = n - (adjust + lines);
 
2102		if (adjust >= n) {
2103			kdb_printf("buffer only contains %d lines, "
2104				   "nothing printed\n", n);
2105			skip = n;
2106		} else if (skip < 0) {
2107			lines += skip;
2108			skip = 0;
2109			kdb_printf("buffer only contains %d lines, first "
2110				   "%d lines printed\n", n, lines);
2111		}
2112		for (; start < end && skip; ++start) {
2113			if (*KDB_WRAP(start) == '\n')
2114				--skip;
2115		}
2116		for (p = start; p < end && lines; ++p) {
2117			if (*KDB_WRAP(p) == '\n')
2118				--lines;
2119		}
2120		end = p;
2121	}
2122	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123	c = '\n';
2124	while (start != end) {
2125		char buf[201];
2126		p = buf;
2127		if (KDB_FLAG(CMD_INTERRUPT))
2128			return 0;
2129		while (start < end && (c = *KDB_WRAP(start)) &&
2130		       (p - buf) < sizeof(buf)-1) {
2131			++start;
2132			*p++ = c;
2133			if (c == '\n')
2134				break;
2135		}
2136		*p = '\0';
2137		kdb_printf("%s", buf);
2138	}
2139	if (c != '\n')
2140		kdb_printf("\n");
2141
2142	return 0;
2143}
2144#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 *	cpu	[<cpunum>]
2148 * Returns:
2149 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153	int i, start_cpu, first_print = 1;
2154	char state, prev_state = '?';
2155
2156	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157	kdb_printf("Available cpus: ");
2158	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159		if (!cpu_online(i)) {
2160			state = 'F';	/* cpu is offline */
 
 
2161		} else {
2162			state = ' ';	/* cpu is responding to kdb */
2163			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164				state = 'I';	/* idle task */
2165		}
2166		if (state != prev_state) {
2167			if (prev_state != '?') {
2168				if (!first_print)
2169					kdb_printf(", ");
2170				first_print = 0;
2171				kdb_printf("%d", start_cpu);
2172				if (start_cpu < i-1)
2173					kdb_printf("-%d", i-1);
2174				if (prev_state != ' ')
2175					kdb_printf("(%c)", prev_state);
2176			}
2177			prev_state = state;
2178			start_cpu = i;
2179		}
2180	}
2181	/* print the trailing cpus, ignoring them if they are all offline */
2182	if (prev_state != 'F') {
2183		if (!first_print)
2184			kdb_printf(", ");
2185		kdb_printf("%d", start_cpu);
2186		if (start_cpu < i-1)
2187			kdb_printf("-%d", i-1);
2188		if (prev_state != ' ')
2189			kdb_printf("(%c)", prev_state);
2190	}
2191	kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196	unsigned long cpunum;
2197	int diag;
2198
2199	if (argc == 0) {
2200		kdb_cpu_status();
2201		return 0;
2202	}
2203
2204	if (argc != 1)
2205		return KDB_ARGCOUNT;
2206
2207	diag = kdbgetularg(argv[1], &cpunum);
2208	if (diag)
2209		return diag;
2210
2211	/*
2212	 * Validate cpunum
2213	 */
2214	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215		return KDB_BADCPUNUM;
2216
2217	dbg_switch_cpu = cpunum;
2218
2219	/*
2220	 * Switch to other cpu
2221	 */
2222	return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230	int idle = 0, daemon = 0;
2231	unsigned long mask_I = kdb_task_state_string("I"),
2232		      mask_M = kdb_task_state_string("M");
2233	unsigned long cpu;
2234	const struct task_struct *p, *g;
2235	for_each_online_cpu(cpu) {
2236		p = kdb_curr_task(cpu);
2237		if (kdb_task_state(p, mask_I))
2238			++idle;
2239	}
2240	kdb_do_each_thread(g, p) {
2241		if (kdb_task_state(p, mask_M))
2242			++daemon;
2243	} kdb_while_each_thread(g, p);
2244	if (idle || daemon) {
2245		if (idle)
2246			kdb_printf("%d idle process%s (state I)%s\n",
2247				   idle, idle == 1 ? "" : "es",
2248				   daemon ? " and " : "");
2249		if (daemon)
2250			kdb_printf("%d sleeping system daemon (state M) "
2251				   "process%s", daemon,
2252				   daemon == 1 ? "" : "es");
2253		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254	}
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 *	list of the active processes.
2260 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264	int cpu;
2265	unsigned long tmp;
2266
2267	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2268		return;
2269
2270	cpu = kdb_process_cpu(p);
2271	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2272		   (void *)p, p->pid, p->parent->pid,
2273		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2274		   kdb_task_state_char(p),
2275		   (void *)(&p->thread),
2276		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277		   p->comm);
2278	if (kdb_task_has_cpu(p)) {
2279		if (!KDB_TSK(cpu)) {
2280			kdb_printf("  Error: no saved data for this cpu\n");
2281		} else {
2282			if (KDB_TSK(cpu) != p)
2283				kdb_printf("  Error: does not match running "
2284				   "process table (0x%p)\n", KDB_TSK(cpu));
2285		}
2286	}
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291	struct task_struct *g, *p;
2292	unsigned long mask, cpu;
2293
2294	if (argc == 0)
2295		kdb_ps_suppressed();
2296	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2297		(int)(2*sizeof(void *))+2, "Task Addr",
2298		(int)(2*sizeof(void *))+2, "Thread");
2299	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300	/* Run the active tasks first */
2301	for_each_online_cpu(cpu) {
2302		if (KDB_FLAG(CMD_INTERRUPT))
2303			return 0;
2304		p = kdb_curr_task(cpu);
2305		if (kdb_task_state(p, mask))
2306			kdb_ps1(p);
2307	}
2308	kdb_printf("\n");
2309	/* Now the real tasks */
2310	kdb_do_each_thread(g, p) {
2311		if (KDB_FLAG(CMD_INTERRUPT))
2312			return 0;
2313		if (kdb_task_state(p, mask))
2314			kdb_ps1(p);
2315	} kdb_while_each_thread(g, p);
2316
2317	return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 *	the currently active process.
2323 *		pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327	struct task_struct *p;
2328	unsigned long val;
2329	int diag;
2330
2331	if (argc > 1)
2332		return KDB_ARGCOUNT;
2333
2334	if (argc) {
2335		if (strcmp(argv[1], "R") == 0) {
2336			p = KDB_TSK(kdb_initial_cpu);
2337		} else {
2338			diag = kdbgetularg(argv[1], &val);
2339			if (diag)
2340				return KDB_BADINT;
2341
2342			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2343			if (!p) {
2344				kdb_printf("No task with pid=%d\n", (pid_t)val);
2345				return 0;
2346			}
2347		}
2348		kdb_set_current_task(p);
2349	}
2350	kdb_printf("KDB current process is %s(pid=%d)\n",
2351		   kdb_current_task->comm,
2352		   kdb_current_task->pid);
2353
2354	return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 *	linked list and executes an arbitrary command for each
2360 *	element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364	int diag = 0;
2365	unsigned long addr;
2366	long offset = 0;
2367	unsigned long va;
2368	unsigned long linkoffset;
2369	int nextarg;
2370	const char *command;
2371
2372	if (argc != 3)
2373		return KDB_ARGCOUNT;
2374
2375	nextarg = 1;
2376	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377	if (diag)
2378		return diag;
2379
2380	diag = kdbgetularg(argv[2], &linkoffset);
2381	if (diag)
2382		return diag;
2383
2384	/*
2385	 * Using the starting address as
2386	 * the first element in the list, and assuming that
2387	 * the list ends with a null pointer.
2388	 */
2389
2390	va = addr;
2391	command = kdb_strdup(argv[3], GFP_KDB);
2392	if (!command) {
2393		kdb_printf("%s: cannot duplicate command\n", __func__);
2394		return 0;
2395	}
2396	/* Recursive use of kdb_parse, do not use argv after this point */
2397	argv = NULL;
2398
2399	while (va) {
2400		char buf[80];
2401
2402		if (KDB_FLAG(CMD_INTERRUPT))
2403			goto out;
2404
2405		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406		diag = kdb_parse(buf);
2407		if (diag)
2408			goto out;
2409
2410		addr = va + linkoffset;
2411		if (kdb_getword(&va, addr, sizeof(va)))
2412			goto out;
2413	}
2414
2415out:
2416	kfree(command);
2417	return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422	return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430	kdbtab_t *kt;
2431	int i;
2432
2433	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434	kdb_printf("-----------------------------"
2435		   "-----------------------------\n");
2436	for_each_kdbcmd(kt, i) {
2437		if (kt->cmd_name)
2438			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439				   kt->cmd_usage, kt->cmd_help);
2440		if (KDB_FLAG(CMD_INTERRUPT))
2441			return 0;
 
 
 
 
 
 
2442	}
2443	return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451	long sig, pid;
2452	char *endp;
2453	struct task_struct *p;
2454	struct siginfo info;
2455
2456	if (argc != 2)
2457		return KDB_ARGCOUNT;
2458
2459	sig = simple_strtol(argv[1], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (sig >= 0) {
2463		kdb_printf("Invalid signal parameter.<-signal>\n");
2464		return 0;
2465	}
2466	sig = -sig;
2467
2468	pid = simple_strtol(argv[2], &endp, 0);
2469	if (*endp)
2470		return KDB_BADINT;
2471	if (pid <= 0) {
2472		kdb_printf("Process ID must be large than 0.\n");
2473		return 0;
2474	}
2475
2476	/* Find the process. */
2477	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478	if (!p) {
2479		kdb_printf("The specified process isn't found.\n");
2480		return 0;
2481	}
2482	p = p->group_leader;
2483	info.si_signo = sig;
2484	info.si_errno = 0;
2485	info.si_code = SI_USER;
2486	info.si_pid = pid;  /* same capabilities as process being signalled */
2487	info.si_uid = 0;    /* kdb has root authority */
2488	kdb_send_sig_info(p, &info);
2489	return 0;
2490}
2491
2492struct kdb_tm {
2493	int tm_sec;	/* seconds */
2494	int tm_min;	/* minutes */
2495	int tm_hour;	/* hours */
2496	int tm_mday;	/* day of the month */
2497	int tm_mon;	/* month */
2498	int tm_year;	/* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503	/* This will work from 1970-2099, 2100 is not a leap year */
2504	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505				 31, 30, 31, 30, 31 };
2506	memset(tm, 0, sizeof(*tm));
2507	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2508	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2510	tm->tm_min =  tm->tm_sec / 60 % 60;
2511	tm->tm_hour = tm->tm_sec / 60 / 60;
2512	tm->tm_sec =  tm->tm_sec % 60;
2513	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514	tm->tm_mday %= (4*365+1);
2515	mon_day[1] = 29;
2516	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517		tm->tm_mday -= mon_day[tm->tm_mon];
2518		if (++tm->tm_mon == 12) {
2519			tm->tm_mon = 0;
2520			++tm->tm_year;
2521			mon_day[1] = 28;
2522		}
2523	}
2524	++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534	struct timespec uptime;
2535	do_posix_clock_monotonic_gettime(&uptime);
2536	memset(val, 0, sizeof(*val));
2537	val->uptime = uptime.tv_sec;
2538	val->loads[0] = avenrun[0];
2539	val->loads[1] = avenrun[1];
2540	val->loads[2] = avenrun[2];
2541	val->procs = nr_threads-1;
2542	si_meminfo(val);
2543
2544	return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552	struct timespec now;
2553	struct kdb_tm tm;
2554	struct sysinfo val;
2555
2556	if (argc)
2557		return KDB_ARGCOUNT;
2558
2559	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2560	kdb_printf("release    %s\n", init_uts_ns.name.release);
2561	kdb_printf("version    %s\n", init_uts_ns.name.version);
2562	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2563	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2564	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2566
2567	now = __current_kernel_time();
2568	kdb_gmtime(&now, &tm);
2569	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2570		   "tz_minuteswest %d\n",
2571		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572		tm.tm_hour, tm.tm_min, tm.tm_sec,
2573		sys_tz.tz_minuteswest);
2574
 
 
2575	kdb_sysinfo(&val);
2576	kdb_printf("uptime     ");
2577	if (val.uptime > (24*60*60)) {
2578		int days = val.uptime / (24*60*60);
2579		val.uptime %= (24*60*60);
2580		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581	}
2582	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594	/* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2597		   "Buffers:        %8lu kB\n",
2598		   val.totalram, val.freeram, val.bufferram);
2599	return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607	char fmtstr[64];
2608	int cpu, diag, nextarg = 1;
2609	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611	if (argc < 1 || argc > 3)
2612		return KDB_ARGCOUNT;
2613
2614	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615	if (diag)
2616		return diag;
2617
2618	if (argc >= 2) {
2619		diag = kdbgetularg(argv[2], &bytesperword);
2620		if (diag)
2621			return diag;
2622	}
2623	if (!bytesperword)
2624		bytesperword = KDB_WORD_SIZE;
2625	else if (bytesperword > KDB_WORD_SIZE)
2626		return KDB_BADWIDTH;
2627	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628	if (argc >= 3) {
2629		diag = kdbgetularg(argv[3], &whichcpu);
2630		if (diag)
2631			return diag;
2632		if (!cpu_online(whichcpu)) {
2633			kdb_printf("cpu %ld is not online\n", whichcpu);
2634			return KDB_BADCPUNUM;
2635		}
2636	}
2637
2638	/* Most architectures use __per_cpu_offset[cpu], some use
2639	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640	 */
2641#ifdef	__per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef	CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650	for_each_online_cpu(cpu) {
2651		if (KDB_FLAG(CMD_INTERRUPT))
2652			return 0;
2653
2654		if (whichcpu != ~0UL && whichcpu != cpu)
2655			continue;
2656		addr = symaddr + KDB_PCU(cpu);
2657		diag = kdb_getword(&val, addr, bytesperword);
2658		if (diag) {
2659			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660				   "read, diag=%d\n", cpu, addr, diag);
2661			continue;
2662		}
2663		kdb_printf("%5d ", cpu);
2664		kdb_md_line(fmtstr, addr,
2665			bytesperword == KDB_WORD_SIZE,
2666			1, bytesperword, 1, 1, 0);
2667	}
2668#undef KDB_PCU
2669	return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677	kdb_printf("Usage of  cmd args | grep pattern:\n");
2678	kdb_printf("  Any command's output may be filtered through an ");
2679	kdb_printf("emulated 'pipe'.\n");
2680	kdb_printf("  'grep' is just a key word.\n");
2681	kdb_printf("  The pattern may include a very limited set of "
2682		   "metacharacters:\n");
2683	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2684	kdb_printf("  And if there are spaces in the pattern, you may "
2685		   "quote it:\n");
2686	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687		   " or \"^pat tern$\"\n");
2688	return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * 	debugger command.
2694 * Inputs:
2695 *	cmd	Command name
2696 *	func	Function to execute the command
2697 *	usage	A simple usage string showing arguments
2698 *	help	A simple help string describing command
2699 *	repeat	Does the command auto repeat on enter?
2700 * Returns:
2701 *	zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50	/* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705			kdb_func_t func,
2706			char *usage,
2707			char *help,
2708			short minlen,
2709			kdb_repeat_t repeat)
2710{
2711	int i;
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  Brute force method to determine duplicates
2716	 */
2717	for_each_kdbcmd(kp, i) {
2718		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719			kdb_printf("Duplicate kdb command registered: "
2720				"%s, func %p help %s\n", cmd, func, help);
2721			return 1;
2722		}
2723	}
2724
2725	/*
2726	 * Insert command into first available location in table
2727	 */
2728	for_each_kdbcmd(kp, i) {
2729		if (kp->cmd_name == NULL)
2730			break;
2731	}
2732
2733	if (i >= kdb_max_commands) {
2734		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736		if (!new) {
2737			kdb_printf("Could not allocate new kdb_command "
2738				   "table\n");
2739			return 1;
2740		}
2741		if (kdb_commands) {
2742			memcpy(new, kdb_commands,
2743			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744			kfree(kdb_commands);
2745		}
2746		memset(new + kdb_max_commands, 0,
2747		       kdb_command_extend * sizeof(*new));
2748		kdb_commands = new;
2749		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750		kdb_max_commands += kdb_command_extend;
2751	}
2752
2753	kp->cmd_name   = cmd;
2754	kp->cmd_func   = func;
2755	kp->cmd_usage  = usage;
2756	kp->cmd_help   = help;
2757	kp->cmd_flags  = 0;
2758	kp->cmd_minlen = minlen;
2759	kp->cmd_repeat = repeat;
 
 
 
2760
2761	return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
 
 
 
 
 
 
 
 
 
 
 
 
 
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 *	not need to specify a repeat state.  Equivalent to
2769 *	kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 *	cmd	Command name
2772 *	func	Function to execute the command
2773 *	usage	A simple usage string showing arguments
2774 *	help	A simple help string describing command
2775 * Returns:
2776 *	zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779	     kdb_func_t func,
2780	     char *usage,
2781	     char *help,
2782	     short minlen)
2783{
2784	return kdb_register_repeat(cmd, func, usage, help, minlen,
2785				   KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 *	debugger command.  It is generally called when a module which
2792 *	implements kdb commands is unloaded.
2793 * Inputs:
2794 *	cmd	Command name
2795 * Returns:
2796 *	zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800	int i;
2801	kdbtab_t *kp;
2802
2803	/*
2804	 *  find the command.
2805	 */
2806	for_each_kdbcmd(kp, i) {
2807		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808			kp->cmd_name = NULL;
 
 
2809			return 0;
2810		}
2811	}
2812
2813	/* Couldn't find it.  */
2814	return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821	int i;
2822	kdbtab_t *kp;
2823
2824	for_each_kdbcmd(kp, i)
2825		kp->cmd_name = NULL;
2826
2827	kdb_register_repeat("md", kdb_md, "<vaddr>",
2828	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829			    KDB_REPEAT_NO_ARGS);
2830	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839	  "Continue Execution", 1, KDB_REPEAT_NONE);
2840	kdb_register_repeat("rd", kdb_rd, "",
2841	  "Display Registers", 0, KDB_REPEAT_NONE);
2842	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843	  "Modify Registers", 0, KDB_REPEAT_NONE);
2844	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845	  "Display exception frame", 0, KDB_REPEAT_NONE);
2846	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847	  "Stack traceback", 1, KDB_REPEAT_NONE);
2848	kdb_register_repeat("btp", kdb_bt, "<pid>",
2849	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2852	kdb_register_repeat("btc", kdb_bt, "",
2853	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855	  "Backtrace process given its struct task address", 0,
2856			    KDB_REPEAT_NONE);
2857	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859	kdb_register_repeat("env", kdb_env, "",
2860	  "Show environment variables", 0, KDB_REPEAT_NONE);
2861	kdb_register_repeat("set", kdb_set, "",
2862	  "Set environment variables", 0, KDB_REPEAT_NONE);
2863	kdb_register_repeat("help", kdb_help, "",
2864	  "Display Help Message", 1, KDB_REPEAT_NONE);
2865	kdb_register_repeat("?", kdb_help, "",
2866	  "Display Help Message", 0, KDB_REPEAT_NONE);
2867	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0, KDB_REPEAT_NONE);
2873	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874	  "Switch to another task", 0, KDB_REPEAT_NONE);
2875	kdb_register_repeat("reboot", kdb_reboot, "",
2876	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877#if defined(CONFIG_MODULES)
2878	kdb_register_repeat("lsmod", kdb_lsmod, "",
2879	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
 
 
 
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882	kdb_register_repeat("sr", kdb_sr, "<key>",
2883	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
 
 
 
2884#endif
2885#if defined(CONFIG_PRINTK)
2886	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
 
 
 
2888#endif
2889	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893	kdb_register_repeat("summary", kdb_summary, "",
2894	  "Summarize the system", 4, KDB_REPEAT_NONE);
2895	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897	kdb_register_repeat("grephelp", kdb_grep_help, "",
2898	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899}
2900
2901/* Execute any commands defined in kdb_cmds.  */
2902static void __init kdb_cmd_init(void)
2903{
2904	int i, diag;
2905	for (i = 0; kdb_cmds[i]; ++i) {
2906		diag = kdb_parse(kdb_cmds[i]);
2907		if (diag)
2908			kdb_printf("kdb command %s failed, kdb diag %d\n",
2909				kdb_cmds[i], diag);
2910	}
2911	if (defcmd_in_progress) {
2912		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913		kdb_parse("endefcmd");
2914	}
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921	int i;
2922
2923	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924		return;
2925	for (i = kdb_init_lvl; i < lvl; i++) {
2926		switch (i) {
2927		case KDB_NOT_INITIALIZED:
2928			kdb_inittab();		/* Initialize Command Table */
2929			kdb_initbptab();	/* Initialize Breakpoints */
2930			break;
2931		case KDB_INIT_EARLY:
2932			kdb_cmd_init();		/* Build kdb_cmds tables */
2933			break;
2934		}
2935	}
2936	kdb_init_lvl = lvl;
2937}
v5.14.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/list.h>
  37#include <linux/notifier.h>
  38#include <linux/interrupt.h>
  39#include <linux/delay.h>
  40#include <linux/nmi.h>
  41#include <linux/time.h>
  42#include <linux/ptrace.h>
  43#include <linux/sysctl.h>
  44#include <linux/cpu.h>
  45#include <linux/kdebug.h>
  46#include <linux/proc_fs.h>
  47#include <linux/uaccess.h>
  48#include <linux/slab.h>
  49#include "kdb_private.h"
  50
  51#undef	MODULE_PARAM_PREFIX
  52#define	MODULE_PARAM_PREFIX "kdb."
  53
  54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  56
  57char kdb_grep_string[KDB_GREP_STRLEN];
  58int kdb_grepping_flag;
  59EXPORT_SYMBOL(kdb_grepping_flag);
  60int kdb_grep_leading;
  61int kdb_grep_trailing;
  62
  63/*
  64 * Kernel debugger state flags
  65 */
  66unsigned int kdb_flags;
 
  67
  68/*
  69 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  70 * single thread processors through the kernel debugger.
  71 */
  72int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  73int kdb_nextline = 1;
  74int kdb_state;			/* General KDB state */
  75
  76struct task_struct *kdb_current_task;
 
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_cmds_head describes the available commands. */
  89static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  90
  91typedef struct _kdbmsg {
  92	int	km_diag;	/* kdb diagnostic */
  93	char	*km_msg;	/* Corresponding message text */
  94} kdbmsg_t;
  95
  96#define KDBMSG(msgnum, text) \
  97	{ KDB_##msgnum, text }
  98
  99static kdbmsg_t kdbmsgs[] = {
 100	KDBMSG(NOTFOUND, "Command Not Found"),
 101	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 102	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 103	       "8 is only allowed on 64 bit systems"),
 104	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 105	KDBMSG(NOTENV, "Cannot find environment variable"),
 106	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 107	KDBMSG(NOTIMP, "Command not implemented"),
 108	KDBMSG(ENVFULL, "Environment full"),
 109	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 110	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 111#ifdef CONFIG_CPU_XSCALE
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 113#else
 114	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 115#endif
 116	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 117	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 118	KDBMSG(BADMODE, "Invalid IDMODE"),
 119	KDBMSG(BADINT, "Illegal numeric value"),
 120	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 121	KDBMSG(BADREG, "Invalid register name"),
 122	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 123	KDBMSG(BADLENGTH, "Invalid length field"),
 124	KDBMSG(NOBP, "No Breakpoint exists"),
 125	KDBMSG(BADADDR, "Invalid address"),
 126	KDBMSG(NOPERM, "Permission denied"),
 127};
 128#undef KDBMSG
 129
 130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 131
 132
 133/*
 134 * Initial environment.   This is all kept static and local to
 135 * this file.   We don't want to rely on the memory allocation
 136 * mechanisms in the kernel, so we use a very limited allocate-only
 137 * heap for new and altered environment variables.  The entire
 138 * environment is limited to a fixed number of entries (add more
 139 * to __env[] if required) and a fixed amount of heap (add more to
 140 * KDB_ENVBUFSIZE if required).
 141 */
 142
 143static char *__env[31] = {
 144#if defined(CONFIG_SMP)
 145	"PROMPT=[%d]kdb> ",
 
 146#else
 147	"PROMPT=kdb> ",
 
 148#endif
 149	"MOREPROMPT=more> ",
 150	"RADIX=16",
 151	"MDCOUNT=8",		/* lines of md output */
 152	KDB_PLATFORM_ENV,
 153	"DTABCOUNT=30",
 154	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155};
 156
 157static const int __nenv = ARRAY_SIZE(__env);
 158
 159struct task_struct *kdb_curr_task(int cpu)
 160{
 161	struct task_struct *p = curr_task(cpu);
 162#ifdef	_TIF_MCA_INIT
 163	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 164		p = krp->p;
 165#endif
 166	return p;
 167}
 168
 169/*
 170 * Check whether the flags of the current command and the permissions
 171 * of the kdb console has allow a command to be run.
 172 */
 173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 174				   bool no_args)
 175{
 176	/* permissions comes from userspace so needs massaging slightly */
 177	permissions &= KDB_ENABLE_MASK;
 178	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 179
 180	/* some commands change group when launched with no arguments */
 181	if (no_args)
 182		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 183
 184	flags |= KDB_ENABLE_ALL;
 185
 186	return permissions & flags;
 187}
 188
 189/*
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long representation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 297 * kdb_setenv() - Alter an existing environment variable or create a new one.
 298 * @var: Name of the variable
 299 * @val: Value of the variable
 300 *
 301 * Return: Zero on success, a kdb diagnostic on failure.
 302 */
 303static int kdb_setenv(const char *var, const char *val)
 304{
 305	int i;
 306	char *ep;
 307	size_t varlen, vallen;
 308
 309	varlen = strlen(var);
 310	vallen = strlen(val);
 311	ep = kdballocenv(varlen + vallen + 2);
 312	if (ep == (char *)0)
 313		return KDB_ENVBUFFULL;
 314
 315	sprintf(ep, "%s=%s", var, val);
 316
 317	for (i = 0; i < __nenv; i++) {
 318		if (__env[i]
 319		 && ((strncmp(__env[i], var, varlen) == 0)
 320		   && ((__env[i][varlen] == '\0')
 321		    || (__env[i][varlen] == '=')))) {
 322			__env[i] = ep;
 323			return 0;
 324		}
 325	}
 326
 327	/*
 328	 * Wasn't existing variable.  Fit into slot.
 329	 */
 330	for (i = 0; i < __nenv-1; i++) {
 331		if (__env[i] == (char *)0) {
 332			__env[i] = ep;
 333			return 0;
 334		}
 335	}
 336
 337	return KDB_ENVFULL;
 338}
 339
 340/*
 341 * kdb_printenv() - Display the current environment variables.
 342 */
 343static void kdb_printenv(void)
 344{
 345	int i;
 346
 347	for (i = 0; i < __nenv; i++) {
 348		if (__env[i])
 349			kdb_printf("%s\n", __env[i]);
 350	}
 351}
 352
 353/*
 354 * kdbgetularg - This function will convert a numeric string into an
 355 *	unsigned long value.
 356 * Parameters:
 357 *	arg	A character string representing a numeric value
 358 * Outputs:
 359 *	*value  the unsigned long representation of arg.
 360 * Returns:
 361 *	Zero on success, a kdb diagnostic on failure.
 362 */
 363int kdbgetularg(const char *arg, unsigned long *value)
 364{
 365	char *endp;
 366	unsigned long val;
 367
 368	val = simple_strtoul(arg, &endp, 0);
 369
 370	if (endp == arg) {
 371		/*
 372		 * Also try base 16, for us folks too lazy to type the
 373		 * leading 0x...
 374		 */
 375		val = simple_strtoul(arg, &endp, 16);
 376		if (endp == arg)
 377			return KDB_BADINT;
 378	}
 379
 380	*value = val;
 381
 382	return 0;
 383}
 384
 385int kdbgetu64arg(const char *arg, u64 *value)
 386{
 387	char *endp;
 388	u64 val;
 389
 390	val = simple_strtoull(arg, &endp, 0);
 391
 392	if (endp == arg) {
 393
 394		val = simple_strtoull(arg, &endp, 16);
 395		if (endp == arg)
 396			return KDB_BADINT;
 397	}
 398
 399	*value = val;
 400
 401	return 0;
 402}
 403
 404/*
 405 * kdb_set - This function implements the 'set' command.  Alter an
 406 *	existing environment variable or create a new one.
 407 */
 408int kdb_set(int argc, const char **argv)
 409{
 
 
 
 
 410	/*
 411	 * we can be invoked two ways:
 412	 *   set var=value    argv[1]="var", argv[2]="value"
 413	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 414	 * - if the latter, shift 'em down.
 415	 */
 416	if (argc == 3) {
 417		argv[2] = argv[3];
 418		argc--;
 419	}
 420
 421	if (argc != 2)
 422		return KDB_ARGCOUNT;
 423
 424	/*
 425	 * Censor sensitive variables
 426	 */
 427	if (strcmp(argv[1], "PROMPT") == 0 &&
 428	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 429		return KDB_NOPERM;
 430
 431	/*
 432	 * Check for internal variables
 433	 */
 434	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 435		unsigned int debugflags;
 436		char *cp;
 437
 438		debugflags = simple_strtoul(argv[2], &cp, 0);
 439		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 440			kdb_printf("kdb: illegal debug flags '%s'\n",
 441				    argv[2]);
 442			return 0;
 443		}
 444		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 445			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 446
 447		return 0;
 448	}
 449
 450	/*
 451	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 452	 * name, argv[2] = value.
 453	 */
 454	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexadecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	bool usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static bool defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = false;
 678		if (!s->count)
 679			s->usable = false;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = false;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 
 
 
 
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 731				   GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = true;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = true;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (!str_has_prefix(cp, "grep ")) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimiter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008		/*
1009		 * If this command is allowed to be abbreviated,
1010		 * check to see if this is it.
1011		 */
1012		if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013		    (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014			break;
 
 
 
 
 
 
 
1015
1016		if (strcmp(argv[0], tp->cmd_name) == 0)
1017			break;
 
1018	}
1019
1020	/*
1021	 * If we don't find a command by this name, see if the first
1022	 * few characters of this match any of the known commands.
1023	 * e.g., md1c20 should match md.
1024	 */
1025	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027			if (strncmp(argv[0], tp->cmd_name,
1028				    strlen(tp->cmd_name)) == 0)
1029				break;
 
 
 
 
1030		}
1031	}
1032
1033	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034		int result;
1035
1036		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037			return KDB_NOPERM;
1038
1039		KDB_STATE_SET(CMD);
1040		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041		if (result && ignore_errors && result > KDB_CMD_GO)
1042			result = 0;
1043		KDB_STATE_CLEAR(CMD);
1044
1045		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046			return result;
1047
1048		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049		if (argv[argc])
1050			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1051		return result;
1052	}
1053
1054	/*
1055	 * If the input with which we were presented does not
1056	 * map to an existing command, attempt to parse it as an
1057	 * address argument and display the result.   Useful for
1058	 * obtaining the address of a variable, or the nearest symbol
1059	 * to an address contained in a register.
1060	 */
1061	{
1062		unsigned long value;
1063		char *name = NULL;
1064		long offset;
1065		int nextarg = 0;
1066
1067		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068				  &value, &offset, &name)) {
1069			return KDB_NOTFOUND;
1070		}
1071
1072		kdb_printf("%s = ", argv[0]);
1073		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074		kdb_printf("\n");
1075		return 0;
1076	}
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P	16
1083#define CTRL_N	14
1084
1085	/* initial situation */
1086	if (cmd_head == cmd_tail)
1087		return 0;
1088	switch (*cmd) {
1089	case CTRL_P:
1090		if (cmdptr != cmd_tail)
1091			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092				 KDB_CMD_HISTORY_COUNT;
1093		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094		return 1;
1095	case CTRL_N:
1096		if (cmdptr != cmd_head)
1097			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099		return 1;
1100	}
1101	return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1106 *	the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110	emergency_restart();
1111	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112	while (1)
1113		cpu_relax();
1114	/* NOTREACHED */
1115	return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120	int old_lvl = console_loglevel;
1121	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122	kdb_trap_printk++;
1123	show_regs(regs);
1124	kdb_trap_printk--;
1125	kdb_printf("\n");
1126	console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131	kdb_current_task = p;
1132
1133	if (kdb_task_has_cpu(p)) {
1134		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135		return;
1136	}
1137	kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142	size_t len = strlen(buf);
1143
1144	if (len == 0)
1145		return;
1146	if (*(buf + len - 1) == '\n')
1147		*(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
 
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
 
 
 
 
 
 
 
 
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
 
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
 
 
 
 
 
 
 
 
 
 
 
 
1288do_full_getstr:
1289		/* PROMPT can only be set if we have MEM_READ permission. */
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
 
 
 
1292		if (defcmd_in_progress)
1293			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295		/*
1296		 * Fetch command from keyboard
1297		 */
1298		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299		if (*cmdbuf != '\n') {
1300			if (*cmdbuf < 32) {
1301				if (cmdptr == cmd_head) {
1302					strscpy(cmd_hist[cmd_head], cmd_cur,
1303						CMD_BUFLEN);
1304					*(cmd_hist[cmd_head] +
1305					  strlen(cmd_hist[cmd_head])-1) = '\0';
1306				}
1307				if (!handle_ctrl_cmd(cmdbuf))
1308					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309				cmdbuf = cmd_cur;
1310				goto do_full_getstr;
1311			} else {
1312				strscpy(cmd_hist[cmd_head], cmd_cur,
1313					CMD_BUFLEN);
1314			}
1315
1316			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317			if (cmd_head == cmd_tail)
1318				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319		}
1320
1321		cmdptr = cmd_head;
1322		diag = kdb_parse(cmdbuf);
1323		if (diag == KDB_NOTFOUND) {
1324			drop_newline(cmdbuf);
1325			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326			diag = 0;
1327		}
1328		if (diag == KDB_CMD_GO
1329		 || diag == KDB_CMD_CPU
1330		 || diag == KDB_CMD_SS
 
1331		 || diag == KDB_CMD_KGDB)
1332			break;
1333
1334		if (diag)
1335			kdb_cmderror(diag);
1336	}
1337	KDB_DEBUG_STATE("kdb_local 9", diag);
1338	return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 *	for debugging.
1345 * Inputs:
1346 *	text		Identifies the debug point
1347 *	value		Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353		   kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 *	controlling cpu, all cpus are in this loop.  One cpu is in
1359 *	control and will issue the kdb prompt, the others will spin
1360 *	until 'go' or cpu switch.
1361 *
1362 *	To get a consistent view of the kernel stacks for all
1363 *	processes, this routine is invoked from the main kdb code via
1364 *	an architecture specific routine.  kdba_main_loop is
1365 *	responsible for making the kernel stacks consistent for all
1366 *	processes, there should be no difference between a blocked
1367 *	process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 *	reason		The reason KDB was invoked
1370 *	error		The hardware-defined error code
1371 *	reason2		kdb's current reason code.
1372 *			Initially error but can change
1373 *			according to kdb state.
1374 *	db_result	Result code from break or debug point.
1375 *	regs		The exception frame at time of fault/breakpoint.
1376 *			should always be valid.
1377 * Returns:
1378 *	0	KDB was invoked for an event which it wasn't responsible
1379 *	1	KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384	int result = 1;
1385	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1386	while (1) {
1387		/*
1388		 * All processors except the one that is in control
1389		 * will spin here.
1390		 */
1391		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392		while (KDB_STATE(HOLD_CPU)) {
1393			/* state KDB is turned off by kdb_cpu to see if the
1394			 * other cpus are still live, each cpu in this loop
1395			 * turns it back on.
1396			 */
1397			if (!KDB_STATE(KDB))
1398				KDB_STATE_SET(KDB);
1399		}
1400
1401		KDB_STATE_CLEAR(SUPPRESS);
1402		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403		if (KDB_STATE(LEAVING))
1404			break;	/* Another cpu said 'go' */
1405		/* Still using kdb, this processor is in control */
1406		result = kdb_local(reason2, error, regs, db_result);
1407		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409		if (result == KDB_CMD_CPU)
1410			break;
1411
1412		if (result == KDB_CMD_SS) {
1413			KDB_STATE_SET(DOING_SS);
1414			break;
1415		}
1416
 
 
 
 
 
 
1417		if (result == KDB_CMD_KGDB) {
1418			if (!KDB_STATE(DOING_KGDB))
1419				kdb_printf("Entering please attach debugger "
1420					   "or use $D#44+ or $3#33\n");
1421			break;
1422		}
1423		if (result && result != 1 && result != KDB_CMD_GO)
1424			kdb_printf("\nUnexpected kdb_local return code %d\n",
1425				   result);
1426		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427		break;
1428	}
1429	if (KDB_STATE(DOING_SS))
1430		KDB_STATE_CLEAR(SSBPT);
1431
1432	/* Clean up any keyboard devices before leaving */
1433	kdb_kbd_cleanup_state();
1434
1435	return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 *	mdr  <addr arg>,<byte count>
1442 * Inputs:
1443 *	addr	Start address
1444 *	count	Number of bytes
1445 * Returns:
1446 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450	unsigned char c;
1451	while (count--) {
1452		if (kdb_getarea(c, addr))
1453			return 0;
1454		kdb_printf("%02x", c);
1455		addr++;
1456	}
1457	kdb_printf("\n");
1458	return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 *	'md8' 'mdr' and 'mds' commands.
1464 *
1465 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1466 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1467 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1468 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1469 *	mdr  <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472			int symbolic, int nosect, int bytesperword,
1473			int num, int repeat, int phys)
1474{
1475	/* print just one line of data */
1476	kdb_symtab_t symtab;
1477	char cbuf[32];
1478	char *c = cbuf;
1479	int i;
1480	int j;
1481	unsigned long word;
1482
1483	memset(cbuf, '\0', sizeof(cbuf));
1484	if (phys)
1485		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486	else
1487		kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489	for (i = 0; i < num && repeat--; i++) {
1490		if (phys) {
1491			if (kdb_getphysword(&word, addr, bytesperword))
1492				break;
1493		} else if (kdb_getword(&word, addr, bytesperword))
1494			break;
1495		kdb_printf(fmtstr, word);
1496		if (symbolic)
1497			kdbnearsym(word, &symtab);
1498		else
1499			memset(&symtab, 0, sizeof(symtab));
1500		if (symtab.sym_name) {
1501			kdb_symbol_print(word, &symtab, 0);
1502			if (!nosect) {
1503				kdb_printf("\n");
1504				kdb_printf("                       %s %s "
1505					   kdb_machreg_fmt " "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt, symtab.mod_name,
1508					   symtab.sec_name, symtab.sec_start,
1509					   symtab.sym_start, symtab.sym_end);
1510			}
1511			addr += bytesperword;
1512		} else {
1513			union {
1514				u64 word;
1515				unsigned char c[8];
1516			} wc;
1517			unsigned char *cp;
1518#ifdef	__BIG_ENDIAN
1519			cp = wc.c + 8 - bytesperword;
1520#else
1521			cp = wc.c;
1522#endif
1523			wc.word = word;
1524#define printable_char(c) \
1525	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526			for (j = 0; j < bytesperword; j++)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527				*c++ = printable_char(*cp++);
1528			addr += bytesperword;
 
 
1529#undef printable_char
1530		}
1531	}
1532	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533		   " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538	static unsigned long last_addr;
1539	static int last_radix, last_bytesperword, last_repeat;
1540	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541	int nosect = 0;
1542	char fmtchar, fmtstr[64];
1543	unsigned long addr;
1544	unsigned long word;
1545	long offset = 0;
1546	int symbolic = 0;
1547	int valid = 0;
1548	int phys = 0;
1549	int raw = 0;
1550
1551	kdbgetintenv("MDCOUNT", &mdcount);
1552	kdbgetintenv("RADIX", &radix);
1553	kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555	/* Assume 'md <addr>' and start with environment values */
1556	repeat = mdcount * 16 / bytesperword;
1557
1558	if (strcmp(argv[0], "mdr") == 0) {
1559		if (argc == 2 || (argc == 0 && last_addr != 0))
1560			valid = raw = 1;
1561		else
1562			return KDB_ARGCOUNT;
 
1563	} else if (isdigit(argv[0][2])) {
1564		bytesperword = (int)(argv[0][2] - '0');
1565		if (bytesperword == 0) {
1566			bytesperword = last_bytesperword;
1567			if (bytesperword == 0)
1568				bytesperword = 4;
1569		}
1570		last_bytesperword = bytesperword;
1571		repeat = mdcount * 16 / bytesperword;
1572		if (!argv[0][3])
1573			valid = 1;
1574		else if (argv[0][3] == 'c' && argv[0][4]) {
1575			char *p;
1576			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577			mdcount = ((repeat * bytesperword) + 15) / 16;
1578			valid = !*p;
1579		}
1580		last_repeat = repeat;
1581	} else if (strcmp(argv[0], "md") == 0)
1582		valid = 1;
1583	else if (strcmp(argv[0], "mds") == 0)
1584		valid = 1;
1585	else if (strcmp(argv[0], "mdp") == 0) {
1586		phys = valid = 1;
1587	}
1588	if (!valid)
1589		return KDB_NOTFOUND;
1590
1591	if (argc == 0) {
1592		if (last_addr == 0)
1593			return KDB_ARGCOUNT;
1594		addr = last_addr;
1595		radix = last_radix;
1596		bytesperword = last_bytesperword;
1597		repeat = last_repeat;
1598		if (raw)
1599			mdcount = repeat;
1600		else
1601			mdcount = ((repeat * bytesperword) + 15) / 16;
1602	}
1603
1604	if (argc) {
1605		unsigned long val;
1606		int diag, nextarg = 1;
1607		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608				     &offset, NULL);
1609		if (diag)
1610			return diag;
1611		if (argc > nextarg+2)
1612			return KDB_ARGCOUNT;
1613
1614		if (argc >= nextarg) {
1615			diag = kdbgetularg(argv[nextarg], &val);
1616			if (!diag) {
1617				mdcount = (int) val;
1618				if (raw)
1619					repeat = mdcount;
1620				else
1621					repeat = mdcount * 16 / bytesperword;
1622			}
1623		}
1624		if (argc >= nextarg+1) {
1625			diag = kdbgetularg(argv[nextarg+1], &val);
1626			if (!diag)
1627				radix = (int) val;
1628		}
1629	}
1630
1631	if (strcmp(argv[0], "mdr") == 0) {
1632		int ret;
1633		last_addr = addr;
1634		ret = kdb_mdr(addr, mdcount);
1635		last_addr += mdcount;
1636		last_repeat = mdcount;
1637		last_bytesperword = bytesperword; // to make REPEAT happy
1638		return ret;
1639	}
1640
1641	switch (radix) {
1642	case 10:
1643		fmtchar = 'd';
1644		break;
1645	case 16:
1646		fmtchar = 'x';
1647		break;
1648	case 8:
1649		fmtchar = 'o';
1650		break;
1651	default:
1652		return KDB_BADRADIX;
1653	}
1654
1655	last_radix = radix;
1656
1657	if (bytesperword > KDB_WORD_SIZE)
1658		return KDB_BADWIDTH;
1659
1660	switch (bytesperword) {
1661	case 8:
1662		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663		break;
1664	case 4:
1665		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666		break;
1667	case 2:
1668		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669		break;
1670	case 1:
1671		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672		break;
1673	default:
1674		return KDB_BADWIDTH;
1675	}
1676
1677	last_repeat = repeat;
1678	last_bytesperword = bytesperword;
1679
1680	if (strcmp(argv[0], "mds") == 0) {
1681		symbolic = 1;
1682		/* Do not save these changes as last_*, they are temporary mds
1683		 * overrides.
1684		 */
1685		bytesperword = KDB_WORD_SIZE;
1686		repeat = mdcount;
1687		kdbgetintenv("NOSECT", &nosect);
1688	}
1689
1690	/* Round address down modulo BYTESPERWORD */
1691
1692	addr &= ~(bytesperword-1);
1693
1694	while (repeat > 0) {
1695		unsigned long a;
1696		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698		if (KDB_FLAG(CMD_INTERRUPT))
1699			return 0;
1700		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701			if (phys) {
1702				if (kdb_getphysword(&word, a, bytesperword)
1703						|| word)
1704					break;
1705			} else if (kdb_getword(&word, a, bytesperword) || word)
1706				break;
1707		}
1708		n = min(num, repeat);
1709		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710			    num, repeat, phys);
1711		addr += bytesperword * n;
1712		repeat -= n;
1713		z = (z + num - 1) / num;
1714		if (z > 2) {
1715			int s = num * (z-2);
1716			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717				   " zero suppressed\n",
1718				addr, addr + bytesperword * s - 1);
1719			addr += bytesperword * s;
1720			repeat -= s;
1721		}
1722	}
1723	last_addr = addr;
1724
1725	return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 *	mm address-expression new-value
1731 * Remarks:
1732 *	mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736	int diag;
1737	unsigned long addr;
1738	long offset = 0;
1739	unsigned long contents;
1740	int nextarg;
1741	int width;
1742
1743	if (argv[0][2] && !isdigit(argv[0][2]))
1744		return KDB_NOTFOUND;
1745
1746	if (argc < 2)
1747		return KDB_ARGCOUNT;
1748
1749	nextarg = 1;
1750	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751	if (diag)
1752		return diag;
1753
1754	if (nextarg > argc)
1755		return KDB_ARGCOUNT;
1756	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757	if (diag)
1758		return diag;
1759
1760	if (nextarg != argc + 1)
1761		return KDB_ARGCOUNT;
1762
1763	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764	diag = kdb_putword(addr, contents, width);
1765	if (diag)
1766		return diag;
1767
1768	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770	return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 *	go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779	unsigned long addr;
1780	int diag;
1781	int nextarg;
1782	long offset;
1783
1784	if (raw_smp_processor_id() != kdb_initial_cpu) {
1785		kdb_printf("go must execute on the entry cpu, "
1786			   "please use \"cpu %d\" and then execute go\n",
1787			   kdb_initial_cpu);
1788		return KDB_BADCPUNUM;
1789	}
1790	if (argc == 1) {
1791		nextarg = 1;
1792		diag = kdbgetaddrarg(argc, argv, &nextarg,
1793				     &addr, &offset, NULL);
1794		if (diag)
1795			return diag;
1796	} else if (argc) {
1797		return KDB_ARGCOUNT;
1798	}
1799
1800	diag = KDB_CMD_GO;
1801	if (KDB_FLAG(CATASTROPHIC)) {
1802		kdb_printf("Catastrophic error detected\n");
1803		kdb_printf("kdb_continue_catastrophic=%d, ",
1804			kdb_continue_catastrophic);
1805		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806			kdb_printf("type go a second time if you really want "
1807				   "to continue\n");
1808			return 0;
1809		}
1810		if (kdb_continue_catastrophic == 2) {
1811			kdb_printf("forcing reboot\n");
1812			kdb_reboot(0, NULL);
1813		}
1814		kdb_printf("attempting to continue\n");
1815	}
1816	return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824	int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826	int i;
1827	char *rname;
1828	int rsize;
1829	u64 reg64;
1830	u32 reg32;
1831	u16 reg16;
1832	u8 reg8;
1833
1834	if (len)
1835		return len;
1836
1837	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838		rsize = dbg_reg_def[i].size * 2;
1839		if (rsize > 16)
1840			rsize = 2;
1841		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842			len = 0;
1843			kdb_printf("\n");
1844		}
1845		if (len)
1846			len += kdb_printf("  ");
1847		switch(dbg_reg_def[i].size * 8) {
1848		case 8:
1849			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1850			if (!rname)
1851				break;
1852			len += kdb_printf("%s: %02x", rname, reg8);
1853			break;
1854		case 16:
1855			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1856			if (!rname)
1857				break;
1858			len += kdb_printf("%s: %04x", rname, reg16);
1859			break;
1860		case 32:
1861			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1862			if (!rname)
1863				break;
1864			len += kdb_printf("%s: %08x", rname, reg32);
1865			break;
1866		case 64:
1867			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1868			if (!rname)
1869				break;
1870			len += kdb_printf("%s: %016llx", rname, reg64);
1871			break;
1872		default:
1873			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874		}
1875	}
1876	kdb_printf("\n");
1877#else
1878	if (len)
1879		return len;
1880
1881	kdb_dumpregs(kdb_current_regs);
1882#endif
1883	return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify)  command.
1888 *	rm register-name new-contents
1889 * Remarks:
1890 *	Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895	int diag;
1896	const char *rname;
1897	int i;
1898	u64 reg64;
1899	u32 reg32;
1900	u16 reg16;
1901	u8 reg8;
1902
1903	if (argc != 2)
1904		return KDB_ARGCOUNT;
1905	/*
1906	 * Allow presence or absence of leading '%' symbol.
1907	 */
1908	rname = argv[1];
1909	if (*rname == '%')
1910		rname++;
1911
1912	diag = kdbgetu64arg(argv[2], &reg64);
1913	if (diag)
1914		return diag;
1915
1916	diag = kdb_check_regs();
1917	if (diag)
1918		return diag;
1919
1920	diag = KDB_BADREG;
1921	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923			diag = 0;
1924			break;
1925		}
1926	}
1927	if (!diag) {
1928		switch(dbg_reg_def[i].size * 8) {
1929		case 8:
1930			reg8 = reg64;
1931			dbg_set_reg(i, &reg8, kdb_current_regs);
1932			break;
1933		case 16:
1934			reg16 = reg64;
1935			dbg_set_reg(i, &reg16, kdb_current_regs);
1936			break;
1937		case 32:
1938			reg32 = reg64;
1939			dbg_set_reg(i, &reg32, kdb_current_regs);
1940			break;
1941		case 64:
1942			dbg_set_reg(i, &reg64, kdb_current_regs);
1943			break;
1944		}
1945	}
1946	return diag;
1947#else
1948	kdb_printf("ERROR: Register set currently not implemented\n");
1949    return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 *		sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961	bool check_mask =
1962	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964	if (argc != 1)
1965		return KDB_ARGCOUNT;
1966
1967	kdb_trap_printk++;
1968	__handle_sysrq(*argv[1], check_mask);
1969	kdb_trap_printk--;
1970
1971	return 0;
1972}
1973#endif	/* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 *	frame) command.  This command takes an address and expects to
1978 *	find an exception frame at that address, formats and prints
1979 *	it.
1980 *		regs address-expression
1981 * Remarks:
1982 *	Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986	int diag;
1987	unsigned long addr;
1988	long offset;
1989	int nextarg;
1990
1991	if (argc != 1)
1992		return KDB_ARGCOUNT;
1993
1994	nextarg = 1;
1995	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996	if (diag)
1997		return diag;
1998	show_regs((struct pt_regs *)addr);
1999	return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2005 *	currently loaded kernel modules.
2006 *	Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010	struct module *mod;
2011
2012	if (argc != 0)
2013		return KDB_ARGCOUNT;
2014
2015	kdb_printf("Module                  Size  modstruct     Used by\n");
2016	list_for_each_entry(mod, kdb_modules, list) {
2017		if (mod->state == MODULE_STATE_UNFORMED)
2018			continue;
2019
2020		kdb_printf("%-20s%8u  0x%px ", mod->name,
2021			   mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023		kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025		if (mod->state == MODULE_STATE_GOING)
2026			kdb_printf(" (Unloading)");
2027		else if (mod->state == MODULE_STATE_COMING)
2028			kdb_printf(" (Loading)");
2029		else
2030			kdb_printf(" (Live)");
2031		kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034		{
2035			struct module_use *use;
2036			kdb_printf(" [ ");
2037			list_for_each_entry(use, &mod->source_list,
2038					    source_list)
2039				kdb_printf("%s ", use->target->name);
2040			kdb_printf("]\n");
2041		}
2042#endif
2043	}
2044
2045	return 0;
2046}
2047
2048#endif	/* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command.  Display the
2052 *	current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057	kdb_printenv();
 
 
 
 
 
2058
2059	if (KDB_DEBUG(MASK))
2060		kdb_printf("KDBDEBUG=0x%x\n",
2061			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063	return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 *	the contents of the syslog buffer.
2070 *		dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074	int diag;
2075	int logging;
2076	int lines = 0;
2077	int adjust = 0;
2078	int n = 0;
2079	int skip = 0;
2080	struct kmsg_dump_iter iter;
2081	size_t len;
2082	char buf[201];
2083
2084	if (argc > 2)
2085		return KDB_ARGCOUNT;
2086	if (argc) {
2087		char *cp;
2088		lines = simple_strtol(argv[1], &cp, 0);
2089		if (*cp)
2090			lines = 0;
2091		if (argc > 1) {
2092			adjust = simple_strtoul(argv[2], &cp, 0);
2093			if (*cp || adjust < 0)
2094				adjust = 0;
2095		}
2096	}
2097
2098	/* disable LOGGING if set */
2099	diag = kdbgetintenv("LOGGING", &logging);
2100	if (!diag && logging) {
2101		const char *setargs[] = { "set", "LOGGING", "0" };
2102		kdb_set(2, setargs);
2103	}
2104
2105	kmsg_dump_rewind(&iter);
2106	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107		n++;
2108
 
 
 
 
 
 
 
 
 
 
 
 
2109	if (lines < 0) {
2110		if (adjust >= n)
2111			kdb_printf("buffer only contains %d lines, nothing "
2112				   "printed\n", n);
2113		else if (adjust - lines >= n)
2114			kdb_printf("buffer only contains %d lines, last %d "
2115				   "lines printed\n", n, n - adjust);
2116		skip = adjust;
2117		lines = abs(lines);
 
 
 
 
 
 
 
 
 
 
 
2118	} else if (lines > 0) {
2119		skip = n - lines - adjust;
2120		lines = abs(lines);
2121		if (adjust >= n) {
2122			kdb_printf("buffer only contains %d lines, "
2123				   "nothing printed\n", n);
2124			skip = n;
2125		} else if (skip < 0) {
2126			lines += skip;
2127			skip = 0;
2128			kdb_printf("buffer only contains %d lines, first "
2129				   "%d lines printed\n", n, lines);
2130		}
2131	} else {
2132		lines = n;
2133	}
2134
2135	if (skip >= n || skip < 0)
2136		return 0;
2137
2138	kmsg_dump_rewind(&iter);
2139	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140		if (skip) {
2141			skip--;
2142			continue;
2143		}
2144		if (!lines--)
2145			break;
2146		if (KDB_FLAG(CMD_INTERRUPT))
2147			return 0;
2148
2149		kdb_printf("%.*s\n", (int)len - 1, buf);
 
 
 
 
 
 
 
2150	}
 
 
2151
2152	return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161	if (atomic_read(&kdb_nmi_disabled))
2162		return 0;
2163	atomic_set(&kdb_nmi_disabled, 1);
2164	arch_kgdb_ops.enable_nmi(0);
2165	return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171		return -EINVAL;
2172	arch_kgdb_ops.enable_nmi(1);
2173	return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177	.set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 *	cpu	[<cpunum>]
2184 * Returns:
2185 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189	int i, start_cpu, first_print = 1;
2190	char state, prev_state = '?';
2191
2192	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193	kdb_printf("Available cpus: ");
2194	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195		if (!cpu_online(i)) {
2196			state = 'F';	/* cpu is offline */
2197		} else if (!kgdb_info[i].enter_kgdb) {
2198			state = 'D';	/* cpu is online but unresponsive */
2199		} else {
2200			state = ' ';	/* cpu is responding to kdb */
2201			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202				state = 'I';	/* idle task */
2203		}
2204		if (state != prev_state) {
2205			if (prev_state != '?') {
2206				if (!first_print)
2207					kdb_printf(", ");
2208				first_print = 0;
2209				kdb_printf("%d", start_cpu);
2210				if (start_cpu < i-1)
2211					kdb_printf("-%d", i-1);
2212				if (prev_state != ' ')
2213					kdb_printf("(%c)", prev_state);
2214			}
2215			prev_state = state;
2216			start_cpu = i;
2217		}
2218	}
2219	/* print the trailing cpus, ignoring them if they are all offline */
2220	if (prev_state != 'F') {
2221		if (!first_print)
2222			kdb_printf(", ");
2223		kdb_printf("%d", start_cpu);
2224		if (start_cpu < i-1)
2225			kdb_printf("-%d", i-1);
2226		if (prev_state != ' ')
2227			kdb_printf("(%c)", prev_state);
2228	}
2229	kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234	unsigned long cpunum;
2235	int diag;
2236
2237	if (argc == 0) {
2238		kdb_cpu_status();
2239		return 0;
2240	}
2241
2242	if (argc != 1)
2243		return KDB_ARGCOUNT;
2244
2245	diag = kdbgetularg(argv[1], &cpunum);
2246	if (diag)
2247		return diag;
2248
2249	/*
2250	 * Validate cpunum
2251	 */
2252	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253		return KDB_BADCPUNUM;
2254
2255	dbg_switch_cpu = cpunum;
2256
2257	/*
2258	 * Switch to other cpu
2259	 */
2260	return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268	int idle = 0, daemon = 0;
2269	unsigned long mask_I = kdb_task_state_string("I"),
2270		      mask_M = kdb_task_state_string("M");
2271	unsigned long cpu;
2272	const struct task_struct *p, *g;
2273	for_each_online_cpu(cpu) {
2274		p = kdb_curr_task(cpu);
2275		if (kdb_task_state(p, mask_I))
2276			++idle;
2277	}
2278	for_each_process_thread(g, p) {
2279		if (kdb_task_state(p, mask_M))
2280			++daemon;
2281	}
2282	if (idle || daemon) {
2283		if (idle)
2284			kdb_printf("%d idle process%s (state I)%s\n",
2285				   idle, idle == 1 ? "" : "es",
2286				   daemon ? " and " : "");
2287		if (daemon)
2288			kdb_printf("%d sleeping system daemon (state M) "
2289				   "process%s", daemon,
2290				   daemon == 1 ? "" : "es");
2291		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292	}
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 *	list of the active processes.
2298 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302	int cpu;
2303	unsigned long tmp;
2304
2305	if (!p ||
2306	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307		return;
2308
2309	cpu = kdb_process_cpu(p);
2310	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2311		   (void *)p, p->pid, p->parent->pid,
2312		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2313		   kdb_task_state_char(p),
2314		   (void *)(&p->thread),
2315		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316		   p->comm);
2317	if (kdb_task_has_cpu(p)) {
2318		if (!KDB_TSK(cpu)) {
2319			kdb_printf("  Error: no saved data for this cpu\n");
2320		} else {
2321			if (KDB_TSK(cpu) != p)
2322				kdb_printf("  Error: does not match running "
2323				   "process table (0x%px)\n", KDB_TSK(cpu));
2324		}
2325	}
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330	struct task_struct *g, *p;
2331	unsigned long mask, cpu;
2332
2333	if (argc == 0)
2334		kdb_ps_suppressed();
2335	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2336		(int)(2*sizeof(void *))+2, "Task Addr",
2337		(int)(2*sizeof(void *))+2, "Thread");
2338	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339	/* Run the active tasks first */
2340	for_each_online_cpu(cpu) {
2341		if (KDB_FLAG(CMD_INTERRUPT))
2342			return 0;
2343		p = kdb_curr_task(cpu);
2344		if (kdb_task_state(p, mask))
2345			kdb_ps1(p);
2346	}
2347	kdb_printf("\n");
2348	/* Now the real tasks */
2349	for_each_process_thread(g, p) {
2350		if (KDB_FLAG(CMD_INTERRUPT))
2351			return 0;
2352		if (kdb_task_state(p, mask))
2353			kdb_ps1(p);
2354	}
2355
2356	return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 *	the currently active process.
2362 *		pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366	struct task_struct *p;
2367	unsigned long val;
2368	int diag;
2369
2370	if (argc > 1)
2371		return KDB_ARGCOUNT;
2372
2373	if (argc) {
2374		if (strcmp(argv[1], "R") == 0) {
2375			p = KDB_TSK(kdb_initial_cpu);
2376		} else {
2377			diag = kdbgetularg(argv[1], &val);
2378			if (diag)
2379				return KDB_BADINT;
2380
2381			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2382			if (!p) {
2383				kdb_printf("No task with pid=%d\n", (pid_t)val);
2384				return 0;
2385			}
2386		}
2387		kdb_set_current_task(p);
2388	}
2389	kdb_printf("KDB current process is %s(pid=%d)\n",
2390		   kdb_current_task->comm,
2391		   kdb_current_task->pid);
2392
2393	return 0;
2394}
2395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398	return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406	kdbtab_t *kt;
 
2407
2408	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409	kdb_printf("-----------------------------"
2410		   "-----------------------------\n");
2411	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412		char *space = "";
 
 
2413		if (KDB_FLAG(CMD_INTERRUPT))
2414			return 0;
2415		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416			continue;
2417		if (strlen(kt->cmd_usage) > 20)
2418			space = "\n                                    ";
2419		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420			   kt->cmd_usage, space, kt->cmd_help);
2421	}
2422	return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430	long sig, pid;
2431	char *endp;
2432	struct task_struct *p;
 
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if ((sig >= 0) || !valid_signal(-sig)) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	kdb_send_sig(p, sig);
 
 
 
 
 
2462	return 0;
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472	u64 uptime = ktime_get_mono_fast_ns();
2473
2474	memset(val, 0, sizeof(*val));
2475	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476	val->loads[0] = avenrun[0];
2477	val->loads[1] = avenrun[1];
2478	val->loads[2] = avenrun[2];
2479	val->procs = nr_threads-1;
2480	si_meminfo(val);
2481
2482	return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490	time64_t now;
 
2491	struct sysinfo val;
2492
2493	if (argc)
2494		return KDB_ARGCOUNT;
2495
2496	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2497	kdb_printf("release    %s\n", init_uts_ns.name.release);
2498	kdb_printf("version    %s\n", init_uts_ns.name.version);
2499	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2500	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2501	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2502
2503	now = __ktime_get_real_seconds();
2504	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505	kdb_sysinfo(&val);
2506	kdb_printf("uptime     ");
2507	if (val.uptime > (24*60*60)) {
2508		int days = val.uptime / (24*60*60);
2509		val.uptime %= (24*60*60);
2510		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511	}
2512	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
 
 
 
 
2514	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
 
2519	/* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2522		   "Buffers:        %8lu kB\n",
2523		   K(val.totalram), K(val.freeram), K(val.bufferram));
2524	return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532	char fmtstr[64];
2533	int cpu, diag, nextarg = 1;
2534	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536	if (argc < 1 || argc > 3)
2537		return KDB_ARGCOUNT;
2538
2539	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540	if (diag)
2541		return diag;
2542
2543	if (argc >= 2) {
2544		diag = kdbgetularg(argv[2], &bytesperword);
2545		if (diag)
2546			return diag;
2547	}
2548	if (!bytesperword)
2549		bytesperword = KDB_WORD_SIZE;
2550	else if (bytesperword > KDB_WORD_SIZE)
2551		return KDB_BADWIDTH;
2552	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553	if (argc >= 3) {
2554		diag = kdbgetularg(argv[3], &whichcpu);
2555		if (diag)
2556			return diag;
2557		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558			kdb_printf("cpu %ld is not online\n", whichcpu);
2559			return KDB_BADCPUNUM;
2560		}
2561	}
2562
2563	/* Most architectures use __per_cpu_offset[cpu], some use
2564	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565	 */
2566#ifdef	__per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef	CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575	for_each_online_cpu(cpu) {
2576		if (KDB_FLAG(CMD_INTERRUPT))
2577			return 0;
2578
2579		if (whichcpu != ~0UL && whichcpu != cpu)
2580			continue;
2581		addr = symaddr + KDB_PCU(cpu);
2582		diag = kdb_getword(&val, addr, bytesperword);
2583		if (diag) {
2584			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585				   "read, diag=%d\n", cpu, addr, diag);
2586			continue;
2587		}
2588		kdb_printf("%5d ", cpu);
2589		kdb_md_line(fmtstr, addr,
2590			bytesperword == KDB_WORD_SIZE,
2591			1, bytesperword, 1, 1, 0);
2592	}
2593#undef KDB_PCU
2594	return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602	kdb_printf("Usage of  cmd args | grep pattern:\n");
2603	kdb_printf("  Any command's output may be filtered through an ");
2604	kdb_printf("emulated 'pipe'.\n");
2605	kdb_printf("  'grep' is just a key word.\n");
2606	kdb_printf("  The pattern may include a very limited set of "
2607		   "metacharacters:\n");
2608	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2609	kdb_printf("  And if there are spaces in the pattern, you may "
2610		   "quote it:\n");
2611	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612		   " or \"^pat tern$\"\n");
2613	return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * 	debugger command.
2619 * Inputs:
2620 *	cmd	Command name
2621 *	func	Function to execute the command
2622 *	usage	A simple usage string showing arguments
2623 *	help	A simple help string describing command
2624 *	repeat	Does the command auto repeat on enter?
2625 * Returns:
2626 *	zero for success, one if a duplicate command.
2627 */
2628int kdb_register_flags(char *cmd,
2629		       kdb_func_t func,
2630		       char *usage,
2631		       char *help,
2632		       short minlen,
2633		       kdb_cmdflags_t flags)
 
2634{
 
2635	kdbtab_t *kp;
2636
2637	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638		if (strcmp(kp->cmd_name, cmd) == 0) {
 
 
 
2639			kdb_printf("Duplicate kdb command registered: "
2640				"%s, func %px help %s\n", cmd, func, help);
2641			return 1;
2642		}
2643	}
2644
2645	kp = kmalloc(sizeof(*kp), GFP_KDB);
2646	if (!kp) {
2647		kdb_printf("Could not allocate new kdb_command table\n");
2648		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649	}
2650
2651	kp->cmd_name   = cmd;
2652	kp->cmd_func   = func;
2653	kp->cmd_usage  = usage;
2654	kp->cmd_help   = help;
 
2655	kp->cmd_minlen = minlen;
2656	kp->cmd_flags  = flags;
2657	kp->is_dynamic = true;
2658
2659	list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661	return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 *                        table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673	while (len--) {
2674		list_add_tail(&kp->list_node, &kdb_cmds_head);
2675		kp++;
2676	}
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 *	not need to specify a repeat state.  Equivalent to
2682 *	kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 *	cmd	Command name
2685 *	func	Function to execute the command
2686 *	usage	A simple usage string showing arguments
2687 *	help	A simple help string describing command
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692	     kdb_func_t func,
2693	     char *usage,
2694	     char *help,
2695	     short minlen)
2696{
2697	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 *	debugger command.  It is generally called when a module which
2704 *	implements kdb commands is unloaded.
2705 * Inputs:
2706 *	cmd	Command name
2707 * Returns:
2708 *	zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
 
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  find the command.
2716	 */
2717	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718		if (strcmp(kp->cmd_name, cmd) == 0) {
2719			list_del(&kp->list_node);
2720			if (kp->is_dynamic)
2721				kfree(kp);
2722			return 0;
2723		}
2724	}
2725
2726	/* Couldn't find it.  */
2727	return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732	{	.cmd_name = "md",
2733		.cmd_func = kdb_md,
2734		.cmd_usage = "<vaddr>",
2735		.cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736		.cmd_minlen = 1,
2737		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738	},
2739	{	.cmd_name = "mdr",
2740		.cmd_func = kdb_md,
2741		.cmd_usage = "<vaddr> <bytes>",
2742		.cmd_help = "Display Raw Memory",
2743		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744	},
2745	{	.cmd_name = "mdp",
2746		.cmd_func = kdb_md,
2747		.cmd_usage = "<paddr> <bytes>",
2748		.cmd_help = "Display Physical Memory",
2749		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750	},
2751	{	.cmd_name = "mds",
2752		.cmd_func = kdb_md,
2753		.cmd_usage = "<vaddr>",
2754		.cmd_help = "Display Memory Symbolically",
2755		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756	},
2757	{	.cmd_name = "mm",
2758		.cmd_func = kdb_mm,
2759		.cmd_usage = "<vaddr> <contents>",
2760		.cmd_help = "Modify Memory Contents",
2761		.cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762	},
2763	{	.cmd_name = "go",
2764		.cmd_func = kdb_go,
2765		.cmd_usage = "[<vaddr>]",
2766		.cmd_help = "Continue Execution",
2767		.cmd_minlen = 1,
2768		.cmd_flags = KDB_ENABLE_REG_WRITE |
2769			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770	},
2771	{	.cmd_name = "rd",
2772		.cmd_func = kdb_rd,
2773		.cmd_usage = "",
2774		.cmd_help = "Display Registers",
2775		.cmd_flags = KDB_ENABLE_REG_READ,
2776	},
2777	{	.cmd_name = "rm",
2778		.cmd_func = kdb_rm,
2779		.cmd_usage = "<reg> <contents>",
2780		.cmd_help = "Modify Registers",
2781		.cmd_flags = KDB_ENABLE_REG_WRITE,
2782	},
2783	{	.cmd_name = "ef",
2784		.cmd_func = kdb_ef,
2785		.cmd_usage = "<vaddr>",
2786		.cmd_help = "Display exception frame",
2787		.cmd_flags = KDB_ENABLE_MEM_READ,
2788	},
2789	{	.cmd_name = "bt",
2790		.cmd_func = kdb_bt,
2791		.cmd_usage = "[<vaddr>]",
2792		.cmd_help = "Stack traceback",
2793		.cmd_minlen = 1,
2794		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795	},
2796	{	.cmd_name = "btp",
2797		.cmd_func = kdb_bt,
2798		.cmd_usage = "<pid>",
2799		.cmd_help = "Display stack for process <pid>",
2800		.cmd_flags = KDB_ENABLE_INSPECT,
2801	},
2802	{	.cmd_name = "bta",
2803		.cmd_func = kdb_bt,
2804		.cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805		.cmd_help = "Backtrace all processes matching state flag",
2806		.cmd_flags = KDB_ENABLE_INSPECT,
2807	},
2808	{	.cmd_name = "btc",
2809		.cmd_func = kdb_bt,
2810		.cmd_usage = "",
2811		.cmd_help = "Backtrace current process on each cpu",
2812		.cmd_flags = KDB_ENABLE_INSPECT,
2813	},
2814	{	.cmd_name = "btt",
2815		.cmd_func = kdb_bt,
2816		.cmd_usage = "<vaddr>",
2817		.cmd_help = "Backtrace process given its struct task address",
2818		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819	},
2820	{	.cmd_name = "env",
2821		.cmd_func = kdb_env,
2822		.cmd_usage = "",
2823		.cmd_help = "Show environment variables",
2824		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825	},
2826	{	.cmd_name = "set",
2827		.cmd_func = kdb_set,
2828		.cmd_usage = "",
2829		.cmd_help = "Set environment variables",
2830		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831	},
2832	{	.cmd_name = "help",
2833		.cmd_func = kdb_help,
2834		.cmd_usage = "",
2835		.cmd_help = "Display Help Message",
2836		.cmd_minlen = 1,
2837		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839	{	.cmd_name = "?",
2840		.cmd_func = kdb_help,
2841		.cmd_usage = "",
2842		.cmd_help = "Display Help Message",
2843		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844	},
2845	{	.cmd_name = "cpu",
2846		.cmd_func = kdb_cpu,
2847		.cmd_usage = "<cpunum>",
2848		.cmd_help = "Switch to new cpu",
2849		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850	},
2851	{	.cmd_name = "kgdb",
2852		.cmd_func = kdb_kgdb,
2853		.cmd_usage = "",
2854		.cmd_help = "Enter kgdb mode",
2855		.cmd_flags = 0,
2856	},
2857	{	.cmd_name = "ps",
2858		.cmd_func = kdb_ps,
2859		.cmd_usage = "[<flags>|A]",
2860		.cmd_help = "Display active task list",
2861		.cmd_flags = KDB_ENABLE_INSPECT,
2862	},
2863	{	.cmd_name = "pid",
2864		.cmd_func = kdb_pid,
2865		.cmd_usage = "<pidnum>",
2866		.cmd_help = "Switch to another task",
2867		.cmd_flags = KDB_ENABLE_INSPECT,
2868	},
2869	{	.cmd_name = "reboot",
2870		.cmd_func = kdb_reboot,
2871		.cmd_usage = "",
2872		.cmd_help = "Reboot the machine immediately",
2873		.cmd_flags = KDB_ENABLE_REBOOT,
2874	},
2875#if defined(CONFIG_MODULES)
2876	{	.cmd_name = "lsmod",
2877		.cmd_func = kdb_lsmod,
2878		.cmd_usage = "",
2879		.cmd_help = "List loaded kernel modules",
2880		.cmd_flags = KDB_ENABLE_INSPECT,
2881	},
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884	{	.cmd_name = "sr",
2885		.cmd_func = kdb_sr,
2886		.cmd_usage = "<key>",
2887		.cmd_help = "Magic SysRq key",
2888		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889	},
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	{	.cmd_name = "dmesg",
2893		.cmd_func = kdb_dmesg,
2894		.cmd_usage = "[lines]",
2895		.cmd_help = "Display syslog buffer",
2896		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897	},
2898#endif
2899	{	.cmd_name = "defcmd",
2900		.cmd_func = kdb_defcmd,
2901		.cmd_usage = "name \"usage\" \"help\"",
2902		.cmd_help = "Define a set of commands, down to endefcmd",
2903		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904	},
2905	{	.cmd_name = "kill",
2906		.cmd_func = kdb_kill,
2907		.cmd_usage = "<-signal> <pid>",
2908		.cmd_help = "Send a signal to a process",
2909		.cmd_flags = KDB_ENABLE_SIGNAL,
2910	},
2911	{	.cmd_name = "summary",
2912		.cmd_func = kdb_summary,
2913		.cmd_usage = "",
2914		.cmd_help = "Summarize the system",
2915		.cmd_minlen = 4,
2916		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917	},
2918	{	.cmd_name = "per_cpu",
2919		.cmd_func = kdb_per_cpu,
2920		.cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921		.cmd_help = "Display per_cpu variables",
2922		.cmd_minlen = 3,
2923		.cmd_flags = KDB_ENABLE_MEM_READ,
2924	},
2925	{	.cmd_name = "grephelp",
2926		.cmd_func = kdb_grep_help,
2927		.cmd_usage = "",
2928		.cmd_help = "Display help on | grep",
2929		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930	},
2931};
2932
2933static kdbtab_t nmicmd = {
2934	.cmd_name = "disable_nmi",
2935	.cmd_func = kdb_disable_nmi,
2936	.cmd_usage = "",
2937	.cmd_help = "Disable NMI entry to KDB",
2938	.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945	if (arch_kgdb_ops.enable_nmi)
2946		kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds.  */
2950static void __init kdb_cmd_init(void)
2951{
2952	int i, diag;
2953	for (i = 0; kdb_cmds[i]; ++i) {
2954		diag = kdb_parse(kdb_cmds[i]);
2955		if (diag)
2956			kdb_printf("kdb command %s failed, kdb diag %d\n",
2957				kdb_cmds[i], diag);
2958	}
2959	if (defcmd_in_progress) {
2960		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961		kdb_parse("endefcmd");
2962	}
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969	int i;
2970
2971	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972		return;
2973	for (i = kdb_init_lvl; i < lvl; i++) {
2974		switch (i) {
2975		case KDB_NOT_INITIALIZED:
2976			kdb_inittab();		/* Initialize Command Table */
2977			kdb_initbptab();	/* Initialize Breakpoints */
2978			break;
2979		case KDB_INIT_EARLY:
2980			kdb_cmd_init();		/* Build kdb_cmds tables */
2981			break;
2982		}
2983	}
2984	kdb_init_lvl = lvl;
2985}