Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 KDB_PLATFORM_ENV,
149 "DTABCOUNT=30",
150 "NOSECT=1",
151 (char *)0,
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328int kdbgetu64arg(const char *arg, u64 *value)
329{
330 char *endp;
331 u64 val;
332
333 val = simple_strtoull(arg, &endp, 0);
334
335 if (endp == arg) {
336
337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg)
339 return KDB_BADINT;
340 }
341
342 *value = val;
343
344 return 0;
345}
346
347/*
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
350 */
351int kdb_set(int argc, const char **argv)
352{
353 int i;
354 char *ep;
355 size_t varlen, vallen;
356
357 /*
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
362 */
363 if (argc == 3) {
364 argv[2] = argv[3];
365 argc--;
366 }
367
368 if (argc != 2)
369 return KDB_ARGCOUNT;
370
371 /*
372 * Check for internal variables
373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags;
376 char *cp;
377
378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]);
382 return 0;
383 }
384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388 return 0;
389 }
390
391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
394 */
395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL;
400
401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403 ep[varlen+vallen+1] = '\0';
404
405 for (i = 0; i < __nenv; i++) {
406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep;
411 return 0;
412 }
413 }
414
415 /*
416 * Wasn't existing variable. Fit into slot.
417 */
418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) {
420 __env[i] = ep;
421 return 0;
422 }
423 }
424
425 return KDB_ENVFULL;
426}
427
428static int kdb_check_regs(void)
429{
430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
433 return KDB_BADREG;
434 }
435 return 0;
436}
437
438/*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
442 *
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset).
449 * Parameters:
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
454 * Outputs:
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error.
462 */
463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset,
465 char **name)
466{
467 unsigned long addr;
468 unsigned long off = 0;
469 int positive;
470 int diag;
471 int found = 0;
472 char *symname;
473 char symbol = '\0';
474 char *cp;
475 kdb_symtab_t symtab;
476
477 /*
478 * Process arguments which follow the following syntax:
479 *
480 * symbol | numeric-address [+/- numeric-offset]
481 * %register
482 * $environment-variable
483 */
484
485 if (*nextarg > argc)
486 return KDB_ARGCOUNT;
487
488 symname = (char *)argv[*nextarg];
489
490 /*
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
495 */
496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) {
498 symbol = *cp;
499 *cp++ = '\0';
500 }
501
502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag)
505 return diag;
506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs();
508 if (diag)
509 return diag;
510 /* Implement register values with % at a later time as it is
511 * arch optional.
512 */
513 return KDB_NOTIMP;
514 } else {
515 found = kdbgetsymval(symname, &symtab);
516 if (found) {
517 addr = symtab.sym_start;
518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag)
521 return diag;
522 }
523 }
524
525 if (!found)
526 found = kdbnearsym(addr, &symtab);
527
528 (*nextarg)++;
529
530 if (name)
531 *name = symname;
532 if (value)
533 *value = addr;
534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start;
536
537 if ((*nextarg > argc)
538 && (symbol == '\0'))
539 return 0;
540
541 /*
542 * check for +/- and offset
543 */
544
545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) {
548 /*
549 * Not our argument. Return.
550 */
551 return 0;
552 } else {
553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++;
555 }
556 } else
557 positive = (symbol == '+');
558
559 /*
560 * Now there must be an offset!
561 */
562 if ((*nextarg > argc)
563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT;
565 }
566
567 if (!symbol) {
568 cp = (char *)argv[*nextarg];
569 (*nextarg)++;
570 }
571
572 diag = kdbgetularg(cp, &off);
573 if (diag)
574 return diag;
575
576 if (!positive)
577 off = -off;
578
579 if (offset)
580 *offset += off;
581
582 if (value)
583 *value += off;
584
585 return 0;
586}
587
588static void kdb_cmderror(int diag)
589{
590 int i;
591
592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return;
595 }
596
597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return;
601 }
602 }
603
604 kdb_printf("Unknown diag %d\n", -diag);
605}
606
607/*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
613 * Inputs:
614 * argc argument count
615 * argv argument vector
616 * Returns:
617 * zero for success, a kdb diagnostic if error
618 */
619struct defcmd_set {
620 int count;
621 int usable;
622 char *name;
623 char *usage;
624 char *help;
625 char **command;
626};
627static struct defcmd_set *defcmd_set;
628static int defcmd_set_count;
629static int defcmd_in_progress;
630
631/* Forward references */
632static int kdb_exec_defcmd(int argc, const char **argv);
633
634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635{
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0;
640 if (!s->count)
641 s->usable = 0;
642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0);
645 return 0;
646 }
647 if (!s->usable)
648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr);
653 s->usable = 0;
654 return KDB_NOTIMP;
655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command);
659 return 0;
660}
661
662static int kdb_defcmd(int argc, const char **argv)
663{
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd");
669 }
670 if (argc == 0) {
671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n");
678 }
679 return 0;
680 }
681 if (argc != 3)
682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB);
685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]);
688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP;
690 }
691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0';
703 }
704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0';
707 }
708 ++defcmd_set_count;
709 defcmd_in_progress = 1;
710 return 0;
711}
712
713/*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name.
716 * Inputs:
717 * argc argument count
718 * argv argument vector
719 * Returns:
720 * zero for success, a kdb diagnostic if error
721 */
722static int kdb_exec_defcmd(int argc, const char **argv)
723{
724 int i, ret;
725 struct defcmd_set *s;
726 if (argc != 0)
727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0)
730 break;
731 }
732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]);
735 return KDB_NOTIMP;
736 }
737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */
740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]);
743 if (ret)
744 return ret;
745 }
746 return 0;
747}
748
749/* Command history */
750#define KDB_CMD_HISTORY_COUNT 32
751#define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */
753static unsigned int cmd_head, cmd_tail;
754static unsigned int cmdptr;
755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756static char cmd_cur[CMD_BUFLEN];
757
758/*
759 * The "str" argument may point to something like | grep xyz
760 */
761static void parse_grep(const char *str)
762{
763 int len;
764 char *cp = (char *)str, *cp2;
765
766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|')
768 return;
769 cp++;
770 while (isspace(*cp))
771 cp++;
772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return;
775 }
776 cp += 5;
777 while (isspace(*cp))
778 cp++;
779 cp2 = strchr(cp, '\n');
780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp);
783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return;
786 }
787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */
791 cp++;
792 cp2 = strchr(cp, '"');
793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n");
795 return;
796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 }
799 kdb_grep_leading = 0;
800 if (*cp == '^') {
801 kdb_grep_leading = 1;
802 cp++;
803 }
804 len = strlen(cp);
805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0';
809 }
810 len = strlen(cp);
811 if (!len)
812 return;
813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n");
815 return;
816 }
817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++;
819 return;
820}
821
822/*
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
828 * kdb_parse().
829 * Parameters:
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
832 * Returns:
833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 * Limited to 20 tokens.
836 *
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
840 *
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
845 * token string.
846 */
847
848#define MAXARGC 20
849
850int kdb_parse(const char *cmdstr)
851{
852 static char *argv[MAXARGC];
853 static int argc;
854 static char cbuf[CMD_BUFLEN+2];
855 char *cp;
856 char *cpp, quoted;
857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep;
859
860 /*
861 * First tokenize the command string.
862 */
863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0;
865
866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */
872 }
873
874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0;
876 cpp = cbuf;
877 while (*cp) {
878 /* skip whitespace */
879 while (isspace(*cp))
880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress))
883 break;
884 /* special case: check for | grep pattern */
885 if (*cp == '|') {
886 check_grep++;
887 break;
888 }
889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
892 cmdstr);
893 return KDB_NOTFOUND;
894 }
895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND;
899 }
900 argv[argc++] = cpp;
901 escaped = 0;
902 quoted = '\0';
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN)
908 break;
909 if (escaped) {
910 escaped = 0;
911 *cpp++ = *cp++;
912 continue;
913 }
914 if (*cp == '\\') {
915 escaped = 1;
916 ++cp;
917 continue;
918 }
919 if (*cp == quoted)
920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp;
923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted)
925 break;
926 ++cpp;
927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 }
930 }
931 if (!argc)
932 return 0;
933 if (check_grep)
934 parse_grep(cp);
935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0';
940 }
941 return result;
942 }
943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1;
946 ++argv[0];
947 }
948
949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) {
951 /*
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
954 */
955
956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0],
959 tp->cmd_name,
960 tp->cmd_minlen) == 0) {
961 break;
962 }
963 }
964
965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break;
967 }
968 }
969
970 /*
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
974 */
975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) {
978 if (strncmp(argv[0],
979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) {
981 break;
982 }
983 }
984 }
985 }
986
987 if (i < kdb_max_commands) {
988 int result;
989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0;
993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE:
996 argc = 0;
997 if (argv[0])
998 *(argv[0]) = '\0';
999 break;
1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1;
1002 if (argv[1])
1003 *(argv[1]) = '\0';
1004 break;
1005 case KDB_REPEAT_WITH_ARGS:
1006 break;
1007 }
1008 return result;
1009 }
1010
1011 /*
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1017 */
1018 {
1019 unsigned long value;
1020 char *name = NULL;
1021 long offset;
1022 int nextarg = 0;
1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND;
1027 }
1028
1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n");
1032 return 0;
1033 }
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P 16
1040#define CTRL_N 14
1041
1042 /* initial situation */
1043 if (cmd_head == cmd_tail)
1044 return 0;
1045 switch (*cmd) {
1046 case CTRL_P:
1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1;
1051 case CTRL_N:
1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1;
1056 }
1057 return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1)
1069 cpu_relax();
1070 /* NOTREACHED */
1071 return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15;
1078 kdb_trap_printk++;
1079 show_regs(regs);
1080 kdb_trap_printk--;
1081 kdb_printf("\n");
1082 console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087 kdb_current_task = p;
1088
1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return;
1092 }
1093 kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result)
1118{
1119 char *cmdbuf;
1120 int diag;
1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id());
1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */
1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134 }
1135
1136 switch (reason) {
1137 case KDB_REASON_DEBUG:
1138 {
1139 /*
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1142 */
1143 switch (db_result) {
1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs));
1152 break;
1153 case KDB_DB_SSB:
1154 /*
1155 * In the midst of ssb command. Just return.
1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159
1160 break;
1161 case KDB_DB_SS:
1162 break;
1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */
1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result);
1169 break;
1170 }
1171
1172 }
1173 break;
1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n");
1177 else
1178 kdb_printf("due to KDB_ENTER()\n");
1179 break;
1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n");
1183 break;
1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n");
1188 break;
1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs);
1194 break;
1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs);
1200 break;
1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /*
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1209 */
1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */
1215 }
1216 break;
1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs));
1220 break;
1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */
1225 }
1226
1227 while (1) {
1228 /*
1229 * Initialize pager context.
1230 */
1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS);
1233
1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0';
1237
1238 if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump.
1243 */
1244 const char *setargs[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs);
1246 kdb_reboot(0, NULL);
1247 /*NOTREACHED*/
1248 }
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id());
1254#else
1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257 if (defcmd_in_progress)
1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260 /*
1261 * Fetch command from keyboard
1262 */
1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 if (*cmdbuf != '\n') {
1265 if (*cmdbuf < 32) {
1266 if (cmdptr == cmd_head) {
1267 strncpy(cmd_hist[cmd_head], cmd_cur,
1268 CMD_BUFLEN);
1269 *(cmd_hist[cmd_head] +
1270 strlen(cmd_hist[cmd_head])-1) = '\0';
1271 }
1272 if (!handle_ctrl_cmd(cmdbuf))
1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 cmdbuf = cmd_cur;
1275 goto do_full_getstr;
1276 } else {
1277 strncpy(cmd_hist[cmd_head], cmd_cur,
1278 CMD_BUFLEN);
1279 }
1280
1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 if (cmd_head == cmd_tail)
1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 }
1285
1286 cmdptr = cmd_head;
1287 diag = kdb_parse(cmdbuf);
1288 if (diag == KDB_NOTFOUND) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 diag = 0;
1291 }
1292 if (diag == KDB_CMD_GO
1293 || diag == KDB_CMD_CPU
1294 || diag == KDB_CMD_SS
1295 || diag == KDB_CMD_SSB
1296 || diag == KDB_CMD_KGDB)
1297 break;
1298
1299 if (diag)
1300 kdb_cmderror(diag);
1301 }
1302 KDB_DEBUG_STATE("kdb_local 9", diag);
1303 return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 * for debugging.
1310 * Inputs:
1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch.
1326 *
1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code.
1337 * Initially error but can change
1338 * according to kdb state.
1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid.
1342 * Returns:
1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349 int result = 1;
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 while (1) {
1352 /*
1353 * All processors except the one that is in control
1354 * will spin here.
1355 */
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 while (KDB_STATE(HOLD_CPU)) {
1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop
1360 * turns it back on.
1361 */
1362 if (!KDB_STATE(KDB))
1363 KDB_STATE_SET(KDB);
1364 }
1365
1366 KDB_STATE_CLEAR(SUPPRESS);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 if (KDB_STATE(LEAVING))
1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */
1371 result = kdb_local(reason2, error, regs, db_result);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374 if (result == KDB_CMD_CPU)
1375 break;
1376
1377 if (result == KDB_CMD_SS) {
1378 KDB_STATE_SET(DOING_SS);
1379 break;
1380 }
1381
1382 if (result == KDB_CMD_SSB) {
1383 KDB_STATE_SET(DOING_SS);
1384 KDB_STATE_SET(DOING_SSB);
1385 break;
1386 }
1387
1388 if (result == KDB_CMD_KGDB) {
1389 if (!KDB_STATE(DOING_KGDB))
1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n");
1392 break;
1393 }
1394 if (result && result != 1 && result != KDB_CMD_GO)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 result);
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 break;
1399 }
1400 if (KDB_STATE(DOING_SS))
1401 KDB_STATE_CLEAR(SSBPT);
1402
1403 return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 * mdr <addr arg>,<byte count>
1410 * Inputs:
1411 * addr Start address
1412 * count Number of bytes
1413 * Returns:
1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418 unsigned char c;
1419 while (count--) {
1420 if (kdb_getarea(c, addr))
1421 return 0;
1422 kdb_printf("%02x", c);
1423 addr++;
1424 }
1425 kdb_printf("\n");
1426 return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands.
1432 *
1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 int symbolic, int nosect, int bytesperword,
1441 int num, int repeat, int phys)
1442{
1443 /* print just one line of data */
1444 kdb_symtab_t symtab;
1445 char cbuf[32];
1446 char *c = cbuf;
1447 int i;
1448 unsigned long word;
1449
1450 memset(cbuf, '\0', sizeof(cbuf));
1451 if (phys)
1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 else
1454 kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456 for (i = 0; i < num && repeat--; i++) {
1457 if (phys) {
1458 if (kdb_getphysword(&word, addr, bytesperword))
1459 break;
1460 } else if (kdb_getword(&word, addr, bytesperword))
1461 break;
1462 kdb_printf(fmtstr, word);
1463 if (symbolic)
1464 kdbnearsym(word, &symtab);
1465 else
1466 memset(&symtab, 0, sizeof(symtab));
1467 if (symtab.sym_name) {
1468 kdb_symbol_print(word, &symtab, 0);
1469 if (!nosect) {
1470 kdb_printf("\n");
1471 kdb_printf(" %s %s "
1472 kdb_machreg_fmt " "
1473 kdb_machreg_fmt " "
1474 kdb_machreg_fmt, symtab.mod_name,
1475 symtab.sec_name, symtab.sec_start,
1476 symtab.sym_start, symtab.sym_end);
1477 }
1478 addr += bytesperword;
1479 } else {
1480 union {
1481 u64 word;
1482 unsigned char c[8];
1483 } wc;
1484 unsigned char *cp;
1485#ifdef __BIG_ENDIAN
1486 cp = wc.c + 8 - bytesperword;
1487#else
1488 cp = wc.c;
1489#endif
1490 wc.word = word;
1491#define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword) {
1494 case 8:
1495 *c++ = printable_char(*cp++);
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 *c++ = printable_char(*cp++);
1499 addr += 4;
1500 case 4:
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 2;
1504 case 2:
1505 *c++ = printable_char(*cp++);
1506 addr++;
1507 case 1:
1508 *c++ = printable_char(*cp++);
1509 addr++;
1510 break;
1511 }
1512#undef printable_char
1513 }
1514 }
1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521 static unsigned long last_addr;
1522 static int last_radix, last_bytesperword, last_repeat;
1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 int nosect = 0;
1525 char fmtchar, fmtstr[64];
1526 unsigned long addr;
1527 unsigned long word;
1528 long offset = 0;
1529 int symbolic = 0;
1530 int valid = 0;
1531 int phys = 0;
1532
1533 kdbgetintenv("MDCOUNT", &mdcount);
1534 kdbgetintenv("RADIX", &radix);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat = mdcount * 16 / bytesperword;
1539
1540 if (strcmp(argv[0], "mdr") == 0) {
1541 if (argc != 2)
1542 return KDB_ARGCOUNT;
1543 valid = 1;
1544 } else if (isdigit(argv[0][2])) {
1545 bytesperword = (int)(argv[0][2] - '0');
1546 if (bytesperword == 0) {
1547 bytesperword = last_bytesperword;
1548 if (bytesperword == 0)
1549 bytesperword = 4;
1550 }
1551 last_bytesperword = bytesperword;
1552 repeat = mdcount * 16 / bytesperword;
1553 if (!argv[0][3])
1554 valid = 1;
1555 else if (argv[0][3] == 'c' && argv[0][4]) {
1556 char *p;
1557 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 valid = !*p;
1560 }
1561 last_repeat = repeat;
1562 } else if (strcmp(argv[0], "md") == 0)
1563 valid = 1;
1564 else if (strcmp(argv[0], "mds") == 0)
1565 valid = 1;
1566 else if (strcmp(argv[0], "mdp") == 0) {
1567 phys = valid = 1;
1568 }
1569 if (!valid)
1570 return KDB_NOTFOUND;
1571
1572 if (argc == 0) {
1573 if (last_addr == 0)
1574 return KDB_ARGCOUNT;
1575 addr = last_addr;
1576 radix = last_radix;
1577 bytesperword = last_bytesperword;
1578 repeat = last_repeat;
1579 mdcount = ((repeat * bytesperword) + 15) / 16;
1580 }
1581
1582 if (argc) {
1583 unsigned long val;
1584 int diag, nextarg = 1;
1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 &offset, NULL);
1587 if (diag)
1588 return diag;
1589 if (argc > nextarg+2)
1590 return KDB_ARGCOUNT;
1591
1592 if (argc >= nextarg) {
1593 diag = kdbgetularg(argv[nextarg], &val);
1594 if (!diag) {
1595 mdcount = (int) val;
1596 repeat = mdcount * 16 / bytesperword;
1597 }
1598 }
1599 if (argc >= nextarg+1) {
1600 diag = kdbgetularg(argv[nextarg+1], &val);
1601 if (!diag)
1602 radix = (int) val;
1603 }
1604 }
1605
1606 if (strcmp(argv[0], "mdr") == 0)
1607 return kdb_mdr(addr, mdcount);
1608
1609 switch (radix) {
1610 case 10:
1611 fmtchar = 'd';
1612 break;
1613 case 16:
1614 fmtchar = 'x';
1615 break;
1616 case 8:
1617 fmtchar = 'o';
1618 break;
1619 default:
1620 return KDB_BADRADIX;
1621 }
1622
1623 last_radix = radix;
1624
1625 if (bytesperword > KDB_WORD_SIZE)
1626 return KDB_BADWIDTH;
1627
1628 switch (bytesperword) {
1629 case 8:
1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 break;
1632 case 4:
1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 break;
1635 case 2:
1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 break;
1638 case 1:
1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 break;
1641 default:
1642 return KDB_BADWIDTH;
1643 }
1644
1645 last_repeat = repeat;
1646 last_bytesperword = bytesperword;
1647
1648 if (strcmp(argv[0], "mds") == 0) {
1649 symbolic = 1;
1650 /* Do not save these changes as last_*, they are temporary mds
1651 * overrides.
1652 */
1653 bytesperword = KDB_WORD_SIZE;
1654 repeat = mdcount;
1655 kdbgetintenv("NOSECT", &nosect);
1656 }
1657
1658 /* Round address down modulo BYTESPERWORD */
1659
1660 addr &= ~(bytesperword-1);
1661
1662 while (repeat > 0) {
1663 unsigned long a;
1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666 if (KDB_FLAG(CMD_INTERRUPT))
1667 return 0;
1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 if (phys) {
1670 if (kdb_getphysword(&word, a, bytesperword)
1671 || word)
1672 break;
1673 } else if (kdb_getword(&word, a, bytesperword) || word)
1674 break;
1675 }
1676 n = min(num, repeat);
1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 num, repeat, phys);
1679 addr += bytesperword * n;
1680 repeat -= n;
1681 z = (z + num - 1) / num;
1682 if (z > 2) {
1683 int s = num * (z-2);
1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 " zero suppressed\n",
1686 addr, addr + bytesperword * s - 1);
1687 addr += bytesperword * s;
1688 repeat -= s;
1689 }
1690 }
1691 last_addr = addr;
1692
1693 return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value
1699 * Remarks:
1700 * mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704 int diag;
1705 unsigned long addr;
1706 long offset = 0;
1707 unsigned long contents;
1708 int nextarg;
1709 int width;
1710
1711 if (argv[0][2] && !isdigit(argv[0][2]))
1712 return KDB_NOTFOUND;
1713
1714 if (argc < 2)
1715 return KDB_ARGCOUNT;
1716
1717 nextarg = 1;
1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 if (diag)
1720 return diag;
1721
1722 if (nextarg > argc)
1723 return KDB_ARGCOUNT;
1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 if (diag)
1726 return diag;
1727
1728 if (nextarg != argc + 1)
1729 return KDB_ARGCOUNT;
1730
1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 diag = kdb_putword(addr, contents, width);
1733 if (diag)
1734 return diag;
1735
1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738 return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747 unsigned long addr;
1748 int diag;
1749 int nextarg;
1750 long offset;
1751
1752 if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n",
1755 kdb_initial_cpu);
1756 return KDB_BADCPUNUM;
1757 }
1758 if (argc == 1) {
1759 nextarg = 1;
1760 diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 &addr, &offset, NULL);
1762 if (diag)
1763 return diag;
1764 } else if (argc) {
1765 return KDB_ARGCOUNT;
1766 }
1767
1768 diag = KDB_CMD_GO;
1769 if (KDB_FLAG(CATASTROPHIC)) {
1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic);
1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 kdb_printf("type go a second time if you really want "
1775 "to continue\n");
1776 return 0;
1777 }
1778 if (kdb_continue_catastrophic == 2) {
1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL);
1781 }
1782 kdb_printf("attempting to continue\n");
1783 }
1784 return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792 int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794 int i;
1795 char *rname;
1796 int rsize;
1797 u64 reg64;
1798 u32 reg32;
1799 u16 reg16;
1800 u8 reg8;
1801
1802 if (len)
1803 return len;
1804
1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 rsize = dbg_reg_def[i].size * 2;
1807 if (rsize > 16)
1808 rsize = 2;
1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 len = 0;
1811 kdb_printf("\n");
1812 }
1813 if (len)
1814 len += kdb_printf(" ");
1815 switch(dbg_reg_def[i].size * 8) {
1816 case 8:
1817 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1818 if (!rname)
1819 break;
1820 len += kdb_printf("%s: %02x", rname, reg8);
1821 break;
1822 case 16:
1823 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1824 if (!rname)
1825 break;
1826 len += kdb_printf("%s: %04x", rname, reg16);
1827 break;
1828 case 32:
1829 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1830 if (!rname)
1831 break;
1832 len += kdb_printf("%s: %08x", rname, reg32);
1833 break;
1834 case 64:
1835 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1836 if (!rname)
1837 break;
1838 len += kdb_printf("%s: %016llx", rname, reg64);
1839 break;
1840 default:
1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 }
1843 }
1844 kdb_printf("\n");
1845#else
1846 if (len)
1847 return len;
1848
1849 kdb_dumpregs(kdb_current_regs);
1850#endif
1851 return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents
1857 * Remarks:
1858 * Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863 int diag;
1864 const char *rname;
1865 int i;
1866 u64 reg64;
1867 u32 reg32;
1868 u16 reg16;
1869 u8 reg8;
1870
1871 if (argc != 2)
1872 return KDB_ARGCOUNT;
1873 /*
1874 * Allow presence or absence of leading '%' symbol.
1875 */
1876 rname = argv[1];
1877 if (*rname == '%')
1878 rname++;
1879
1880 diag = kdbgetu64arg(argv[2], ®64);
1881 if (diag)
1882 return diag;
1883
1884 diag = kdb_check_regs();
1885 if (diag)
1886 return diag;
1887
1888 diag = KDB_BADREG;
1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 diag = 0;
1892 break;
1893 }
1894 }
1895 if (!diag) {
1896 switch(dbg_reg_def[i].size * 8) {
1897 case 8:
1898 reg8 = reg64;
1899 dbg_set_reg(i, ®8, kdb_current_regs);
1900 break;
1901 case 16:
1902 reg16 = reg64;
1903 dbg_set_reg(i, ®16, kdb_current_regs);
1904 break;
1905 case 32:
1906 reg32 = reg64;
1907 dbg_set_reg(i, ®32, kdb_current_regs);
1908 break;
1909 case 64:
1910 dbg_set_reg(i, ®64, kdb_current_regs);
1911 break;
1912 }
1913 }
1914 return diag;
1915#else
1916 kdb_printf("ERROR: Register set currently not implemented\n");
1917 return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929 if (argc != 1)
1930 return KDB_ARGCOUNT;
1931 kdb_trap_printk++;
1932 __handle_sysrq(*argv[1], false);
1933 kdb_trap_printk--;
1934
1935 return 0;
1936}
1937#endif /* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints
1943 * it.
1944 * regs address-expression
1945 * Remarks:
1946 * Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950 int diag;
1951 unsigned long addr;
1952 long offset;
1953 int nextarg;
1954
1955 if (argc != 1)
1956 return KDB_ARGCOUNT;
1957
1958 nextarg = 1;
1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 if (diag)
1961 return diag;
1962 show_regs((struct pt_regs *)addr);
1963 return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974 struct module *mod;
1975
1976 if (argc != 0)
1977 return KDB_ARGCOUNT;
1978
1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod, kdb_modules, list) {
1981
1982 kdb_printf("%-20s%8u 0x%p ", mod->name,
1983 mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987 if (mod->state == MODULE_STATE_GOING)
1988 kdb_printf(" (Unloading)");
1989 else if (mod->state == MODULE_STATE_COMING)
1990 kdb_printf(" (Loading)");
1991 else
1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996 {
1997 struct module_use *use;
1998 kdb_printf(" [ ");
1999 list_for_each_entry(use, &mod->source_list,
2000 source_list)
2001 kdb_printf("%s ", use->target->name);
2002 kdb_printf("]\n");
2003 }
2004#endif
2005 }
2006
2007 return 0;
2008}
2009
2010#endif /* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019 int i;
2020
2021 for (i = 0; i < __nenv; i++) {
2022 if (__env[i])
2023 kdb_printf("%s\n", __env[i]);
2024 }
2025
2026 if (KDB_DEBUG(MASK))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029 return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040 char *syslog_data[4], *start, *end, c = '\0', *p;
2041 int diag, logging, logsize, lines = 0, adjust = 0, n;
2042
2043 if (argc > 2)
2044 return KDB_ARGCOUNT;
2045 if (argc) {
2046 char *cp;
2047 lines = simple_strtol(argv[1], &cp, 0);
2048 if (*cp)
2049 lines = 0;
2050 if (argc > 1) {
2051 adjust = simple_strtoul(argv[2], &cp, 0);
2052 if (*cp || adjust < 0)
2053 adjust = 0;
2054 }
2055 }
2056
2057 /* disable LOGGING if set */
2058 diag = kdbgetintenv("LOGGING", &logging);
2059 if (!diag && logging) {
2060 const char *setargs[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs);
2062 }
2063
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data);
2067 if (syslog_data[2] == syslog_data[3])
2068 return 0;
2069 logsize = syslog_data[1] - syslog_data[0];
2070 start = syslog_data[2];
2071 end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n = 0, p = start; p < end; ++p) {
2074 c = *KDB_WRAP(p);
2075 if (c == '\n')
2076 ++n;
2077 }
2078 if (c != '\n')
2079 ++n;
2080 if (lines < 0) {
2081 if (adjust >= n)
2082 kdb_printf("buffer only contains %d lines, nothing "
2083 "printed\n", n);
2084 else if (adjust - lines >= n)
2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n, n - adjust);
2087 if (adjust) {
2088 for (; start < end && adjust; ++start) {
2089 if (*KDB_WRAP(start) == '\n')
2090 --adjust;
2091 }
2092 if (start < end)
2093 ++start;
2094 }
2095 for (p = start; p < end && lines; ++p) {
2096 if (*KDB_WRAP(p) == '\n')
2097 ++lines;
2098 }
2099 end = p;
2100 } else if (lines > 0) {
2101 int skip = n - (adjust + lines);
2102 if (adjust >= n) {
2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n);
2105 skip = n;
2106 } else if (skip < 0) {
2107 lines += skip;
2108 skip = 0;
2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n, lines);
2111 }
2112 for (; start < end && skip; ++start) {
2113 if (*KDB_WRAP(start) == '\n')
2114 --skip;
2115 }
2116 for (p = start; p < end && lines; ++p) {
2117 if (*KDB_WRAP(p) == '\n')
2118 --lines;
2119 }
2120 end = p;
2121 }
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 c = '\n';
2124 while (start != end) {
2125 char buf[201];
2126 p = buf;
2127 if (KDB_FLAG(CMD_INTERRUPT))
2128 return 0;
2129 while (start < end && (c = *KDB_WRAP(start)) &&
2130 (p - buf) < sizeof(buf)-1) {
2131 ++start;
2132 *p++ = c;
2133 if (c == '\n')
2134 break;
2135 }
2136 *p = '\0';
2137 kdb_printf("%s", buf);
2138 }
2139 if (c != '\n')
2140 kdb_printf("\n");
2141
2142 return 0;
2143}
2144#endif /* CONFIG_PRINTK */
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 * cpu [<cpunum>]
2148 * Returns:
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153 int i, start_cpu, first_print = 1;
2154 char state, prev_state = '?';
2155
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: ");
2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 if (!cpu_online(i)) {
2160 state = 'F'; /* cpu is offline */
2161 } else {
2162 state = ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 state = 'I'; /* idle task */
2165 }
2166 if (state != prev_state) {
2167 if (prev_state != '?') {
2168 if (!first_print)
2169 kdb_printf(", ");
2170 first_print = 0;
2171 kdb_printf("%d", start_cpu);
2172 if (start_cpu < i-1)
2173 kdb_printf("-%d", i-1);
2174 if (prev_state != ' ')
2175 kdb_printf("(%c)", prev_state);
2176 }
2177 prev_state = state;
2178 start_cpu = i;
2179 }
2180 }
2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state != 'F') {
2183 if (!first_print)
2184 kdb_printf(", ");
2185 kdb_printf("%d", start_cpu);
2186 if (start_cpu < i-1)
2187 kdb_printf("-%d", i-1);
2188 if (prev_state != ' ')
2189 kdb_printf("(%c)", prev_state);
2190 }
2191 kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196 unsigned long cpunum;
2197 int diag;
2198
2199 if (argc == 0) {
2200 kdb_cpu_status();
2201 return 0;
2202 }
2203
2204 if (argc != 1)
2205 return KDB_ARGCOUNT;
2206
2207 diag = kdbgetularg(argv[1], &cpunum);
2208 if (diag)
2209 return diag;
2210
2211 /*
2212 * Validate cpunum
2213 */
2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 return KDB_BADCPUNUM;
2216
2217 dbg_switch_cpu = cpunum;
2218
2219 /*
2220 * Switch to other cpu
2221 */
2222 return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230 int idle = 0, daemon = 0;
2231 unsigned long mask_I = kdb_task_state_string("I"),
2232 mask_M = kdb_task_state_string("M");
2233 unsigned long cpu;
2234 const struct task_struct *p, *g;
2235 for_each_online_cpu(cpu) {
2236 p = kdb_curr_task(cpu);
2237 if (kdb_task_state(p, mask_I))
2238 ++idle;
2239 }
2240 kdb_do_each_thread(g, p) {
2241 if (kdb_task_state(p, mask_M))
2242 ++daemon;
2243 } kdb_while_each_thread(g, p);
2244 if (idle || daemon) {
2245 if (idle)
2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle, idle == 1 ? "" : "es",
2248 daemon ? " and " : "");
2249 if (daemon)
2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon,
2252 daemon == 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 }
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264 int cpu;
2265 unsigned long tmp;
2266
2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 return;
2269
2270 cpu = kdb_process_cpu(p);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p, p->pid, p->parent->pid,
2273 kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 kdb_task_state_char(p),
2275 (void *)(&p->thread),
2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 p->comm);
2278 if (kdb_task_has_cpu(p)) {
2279 if (!KDB_TSK(cpu)) {
2280 kdb_printf(" Error: no saved data for this cpu\n");
2281 } else {
2282 if (KDB_TSK(cpu) != p)
2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu));
2285 }
2286 }
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291 struct task_struct *g, *p;
2292 unsigned long mask, cpu;
2293
2294 if (argc == 0)
2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu) {
2302 if (KDB_FLAG(CMD_INTERRUPT))
2303 return 0;
2304 p = kdb_curr_task(cpu);
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 }
2308 kdb_printf("\n");
2309 /* Now the real tasks */
2310 kdb_do_each_thread(g, p) {
2311 if (KDB_FLAG(CMD_INTERRUPT))
2312 return 0;
2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p);
2315 } kdb_while_each_thread(g, p);
2316
2317 return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process.
2323 * pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327 struct task_struct *p;
2328 unsigned long val;
2329 int diag;
2330
2331 if (argc > 1)
2332 return KDB_ARGCOUNT;
2333
2334 if (argc) {
2335 if (strcmp(argv[1], "R") == 0) {
2336 p = KDB_TSK(kdb_initial_cpu);
2337 } else {
2338 diag = kdbgetularg(argv[1], &val);
2339 if (diag)
2340 return KDB_BADINT;
2341
2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2343 if (!p) {
2344 kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 return 0;
2346 }
2347 }
2348 kdb_set_current_task(p);
2349 }
2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task->comm,
2352 kdb_current_task->pid);
2353
2354 return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each
2360 * element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364 int diag = 0;
2365 unsigned long addr;
2366 long offset = 0;
2367 unsigned long va;
2368 unsigned long linkoffset;
2369 int nextarg;
2370 const char *command;
2371
2372 if (argc != 3)
2373 return KDB_ARGCOUNT;
2374
2375 nextarg = 1;
2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 if (diag)
2378 return diag;
2379
2380 diag = kdbgetularg(argv[2], &linkoffset);
2381 if (diag)
2382 return diag;
2383
2384 /*
2385 * Using the starting address as
2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer.
2388 */
2389
2390 va = addr;
2391 command = kdb_strdup(argv[3], GFP_KDB);
2392 if (!command) {
2393 kdb_printf("%s: cannot duplicate command\n", __func__);
2394 return 0;
2395 }
2396 /* Recursive use of kdb_parse, do not use argv after this point */
2397 argv = NULL;
2398
2399 while (va) {
2400 char buf[80];
2401
2402 if (KDB_FLAG(CMD_INTERRUPT))
2403 goto out;
2404
2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 diag = kdb_parse(buf);
2407 if (diag)
2408 goto out;
2409
2410 addr = va + linkoffset;
2411 if (kdb_getword(&va, addr, sizeof(va)))
2412 goto out;
2413 }
2414
2415out:
2416 kfree(command);
2417 return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 if (kt->cmd_name)
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439 kt->cmd_usage, kt->cmd_help);
2440 if (KDB_FLAG(CMD_INTERRUPT))
2441 return 0;
2442 }
2443 return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451 long sig, pid;
2452 char *endp;
2453 struct task_struct *p;
2454 struct siginfo info;
2455
2456 if (argc != 2)
2457 return KDB_ARGCOUNT;
2458
2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (sig >= 0) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0;
2465 }
2466 sig = -sig;
2467
2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp)
2470 return KDB_BADINT;
2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0;
2474 }
2475
2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n");
2480 return 0;
2481 }
2482 p = p->group_leader;
2483 info.si_signo = sig;
2484 info.si_errno = 0;
2485 info.si_code = SI_USER;
2486 info.si_pid = pid; /* same capabilities as process being signalled */
2487 info.si_uid = 0; /* kdb has root authority */
2488 kdb_send_sig_info(p, &info);
2489 return 0;
2490}
2491
2492struct kdb_tm {
2493 int tm_sec; /* seconds */
2494 int tm_min; /* minutes */
2495 int tm_hour; /* hours */
2496 int tm_mday; /* day of the month */
2497 int tm_mon; /* month */
2498 int tm_year; /* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 };
2506 memset(tm, 0, sizeof(*tm));
2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm->tm_min = tm->tm_sec / 60 % 60;
2511 tm->tm_hour = tm->tm_sec / 60 / 60;
2512 tm->tm_sec = tm->tm_sec % 60;
2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514 tm->tm_mday %= (4*365+1);
2515 mon_day[1] = 29;
2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517 tm->tm_mday -= mon_day[tm->tm_mon];
2518 if (++tm->tm_mon == 12) {
2519 tm->tm_mon = 0;
2520 ++tm->tm_year;
2521 mon_day[1] = 28;
2522 }
2523 }
2524 ++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534 struct timespec uptime;
2535 do_posix_clock_monotonic_gettime(&uptime);
2536 memset(val, 0, sizeof(*val));
2537 val->uptime = uptime.tv_sec;
2538 val->loads[0] = avenrun[0];
2539 val->loads[1] = avenrun[1];
2540 val->loads[2] = avenrun[2];
2541 val->procs = nr_threads-1;
2542 si_meminfo(val);
2543
2544 return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552 struct timespec now;
2553 struct kdb_tm tm;
2554 struct sysinfo val;
2555
2556 if (argc)
2557 return KDB_ARGCOUNT;
2558
2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2560 kdb_printf("release %s\n", init_uts_ns.name.release);
2561 kdb_printf("version %s\n", init_uts_ns.name.version);
2562 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2566
2567 now = __current_kernel_time();
2568 kdb_gmtime(&now, &tm);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n",
2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572 tm.tm_hour, tm.tm_min, tm.tm_sec,
2573 sys_tz.tz_minuteswest);
2574
2575 kdb_sysinfo(&val);
2576 kdb_printf("uptime ");
2577 if (val.uptime > (24*60*60)) {
2578 int days = val.uptime / (24*60*60);
2579 val.uptime %= (24*60*60);
2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581 }
2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594 /* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n",
2598 val.totalram, val.freeram, val.bufferram);
2599 return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607 char fmtstr[64];
2608 int cpu, diag, nextarg = 1;
2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611 if (argc < 1 || argc > 3)
2612 return KDB_ARGCOUNT;
2613
2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615 if (diag)
2616 return diag;
2617
2618 if (argc >= 2) {
2619 diag = kdbgetularg(argv[2], &bytesperword);
2620 if (diag)
2621 return diag;
2622 }
2623 if (!bytesperword)
2624 bytesperword = KDB_WORD_SIZE;
2625 else if (bytesperword > KDB_WORD_SIZE)
2626 return KDB_BADWIDTH;
2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628 if (argc >= 3) {
2629 diag = kdbgetularg(argv[3], &whichcpu);
2630 if (diag)
2631 return diag;
2632 if (!cpu_online(whichcpu)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu);
2634 return KDB_BADCPUNUM;
2635 }
2636 }
2637
2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640 */
2641#ifdef __per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650 for_each_online_cpu(cpu) {
2651 if (KDB_FLAG(CMD_INTERRUPT))
2652 return 0;
2653
2654 if (whichcpu != ~0UL && whichcpu != cpu)
2655 continue;
2656 addr = symaddr + KDB_PCU(cpu);
2657 diag = kdb_getword(&val, addr, bytesperword);
2658 if (diag) {
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 "read, diag=%d\n", cpu, addr, diag);
2661 continue;
2662 }
2663 kdb_printf("%5d ", cpu);
2664 kdb_md_line(fmtstr, addr,
2665 bytesperword == KDB_WORD_SIZE,
2666 1, bytesperword, 1, 1, 0);
2667 }
2668#undef KDB_PCU
2669 return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may "
2685 "quote it:\n");
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n");
2688 return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * debugger command.
2694 * Inputs:
2695 * cmd Command name
2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter?
2700 * Returns:
2701 * zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50 /* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705 kdb_func_t func,
2706 char *usage,
2707 char *help,
2708 short minlen,
2709 kdb_repeat_t repeat)
2710{
2711 int i;
2712 kdbtab_t *kp;
2713
2714 /*
2715 * Brute force method to determine duplicates
2716 */
2717 for_each_kdbcmd(kp, i) {
2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd, func, help);
2721 return 1;
2722 }
2723 }
2724
2725 /*
2726 * Insert command into first available location in table
2727 */
2728 for_each_kdbcmd(kp, i) {
2729 if (kp->cmd_name == NULL)
2730 break;
2731 }
2732
2733 if (i >= kdb_max_commands) {
2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736 if (!new) {
2737 kdb_printf("Could not allocate new kdb_command "
2738 "table\n");
2739 return 1;
2740 }
2741 if (kdb_commands) {
2742 memcpy(new, kdb_commands,
2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744 kfree(kdb_commands);
2745 }
2746 memset(new + kdb_max_commands, 0,
2747 kdb_command_extend * sizeof(*new));
2748 kdb_commands = new;
2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750 kdb_max_commands += kdb_command_extend;
2751 }
2752
2753 kp->cmd_name = cmd;
2754 kp->cmd_func = func;
2755 kp->cmd_usage = usage;
2756 kp->cmd_help = help;
2757 kp->cmd_flags = 0;
2758 kp->cmd_minlen = minlen;
2759 kp->cmd_repeat = repeat;
2760
2761 return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 * cmd Command name
2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command
2775 * Returns:
2776 * zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779 kdb_func_t func,
2780 char *usage,
2781 char *help,
2782 short minlen)
2783{
2784 return kdb_register_repeat(cmd, func, usage, help, minlen,
2785 KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded.
2793 * Inputs:
2794 * cmd Command name
2795 * Returns:
2796 * zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800 int i;
2801 kdbtab_t *kp;
2802
2803 /*
2804 * find the command.
2805 */
2806 for_each_kdbcmd(kp, i) {
2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808 kp->cmd_name = NULL;
2809 return 0;
2810 }
2811 }
2812
2813 /* Couldn't find it. */
2814 return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821 int i;
2822 kdbtab_t *kp;
2823
2824 for_each_kdbcmd(kp, i)
2825 kp->cmd_name = NULL;
2826
2827 kdb_register_repeat("md", kdb_md, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("rd", kdb_rd, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE);
2848 kdb_register_repeat("btp", kdb_bt, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE);
2852 kdb_register_repeat("btc", kdb_bt, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_REPEAT_NONE);
2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("env", kdb_env, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("set", kdb_set, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("help", kdb_help, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE);
2865 kdb_register_repeat("?", kdb_help, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE);
2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE);
2875 kdb_register_repeat("reboot", kdb_reboot, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877#if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884#endif
2885#if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888#endif
2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893 kdb_register_repeat("summary", kdb_summary, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897 kdb_register_repeat("grephelp", kdb_grep_help, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE);
2899}
2900
2901/* Execute any commands defined in kdb_cmds. */
2902static void __init kdb_cmd_init(void)
2903{
2904 int i, diag;
2905 for (i = 0; kdb_cmds[i]; ++i) {
2906 diag = kdb_parse(kdb_cmds[i]);
2907 if (diag)
2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2909 kdb_cmds[i], diag);
2910 }
2911 if (defcmd_in_progress) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd");
2914 }
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921 int i;
2922
2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924 return;
2925 for (i = kdb_init_lvl; i < lvl; i++) {
2926 switch (i) {
2927 case KDB_NOT_INITIALIZED:
2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */
2930 break;
2931 case KDB_INIT_EARLY:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */
2933 break;
2934 }
2935 }
2936 kdb_init_lvl = lvl;
2937}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76EXPORT_SYMBOL(kdb_current_task);
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_commands describes the available commands. */
89static kdbtab_t *kdb_commands;
90#define KDB_BASE_CMD_MAX 50
91static int kdb_max_commands = KDB_BASE_CMD_MAX;
92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93#define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101} kdbmsg_t;
102
103#define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118#ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120#else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122#endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134};
135#undef KDBMSG
136
137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140/*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150static char *__env[] = {
151#if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153#else
154 "PROMPT=kdb> ",
155#endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186};
187
188static const int __nenv = ARRAY_SIZE(__env);
189
190struct task_struct *kdb_curr_task(int cpu)
191{
192 struct task_struct *p = curr_task(cpu);
193#ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196#endif
197 return p;
198}
199
200/*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206{
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218}
219
220/*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229char *kdbgetenv(const char *match)
230{
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249}
250
251/*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267static char *kdballocenv(size_t bytes)
268{
269#define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279}
280
281/*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291static int kdbgetulenv(const char *match, unsigned long *value)
292{
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304}
305
306/*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316int kdbgetintenv(const char *match, int *value)
317{
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325}
326
327/*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337int kdbgetularg(const char *arg, unsigned long *value)
338{
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357}
358
359int kdbgetu64arg(const char *arg, u64 *value)
360{
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376}
377
378/*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382int kdb_set(int argc, const char **argv)
383{
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457}
458
459static int kdb_check_regs(void)
460{
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467}
468
469/*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497{
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626}
627
628static void kdb_cmderror(int diag)
629{
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645}
646
647/*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666};
667static struct defcmd_set *defcmd_set;
668static int defcmd_set_count;
669static int defcmd_in_progress;
670
671/* Forward references */
672static int kdb_exec_defcmd(int argc, const char **argv);
673
674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675{
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705}
706
707static int kdb_defcmd(int argc, const char **argv)
708{
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
761 return 0;
762fail_help:
763 kfree(s->usage);
764fail_usage:
765 kfree(s->name);
766fail_name:
767 kfree(defcmd_set);
768fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772}
773
774/*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783static int kdb_exec_defcmd(int argc, const char **argv)
784{
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808}
809
810/* Command history */
811#define KDB_CMD_HISTORY_COUNT 32
812#define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814static unsigned int cmd_head, cmd_tail;
815static unsigned int cmdptr;
816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817static char cmd_cur[CMD_BUFLEN];
818
819/*
820 * The "str" argument may point to something like | grep xyz
821 */
822static void parse_grep(const char *str)
823{
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881}
882
883/*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909#define MAXARGC 20
910
911int kdb_parse(const char *cmdstr)
912{
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155 size_t len = strlen(buf);
1156
1157 if (len == 0)
1158 return;
1159 if (*(buf + len - 1) == '\n')
1160 *(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb. This routine is invoked on a
1165 * specific processor, it is not global. The main kdb() routine
1166 * ensures that only one processor at a time is in this routine.
1167 * This code is called with the real reason code on the first
1168 * entry to a kdb session, thereafter it is called with reason
1169 * SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 * reason The reason KDB was invoked
1172 * error The hardware-defined error code
1173 * regs The exception frame at time of fault/breakpoint.
1174 * db_result Result code from the break or debug point.
1175 * Returns:
1176 * 0 KDB was invoked for an event which it wasn't responsible
1177 * 1 KDB handled the event for which it was invoked.
1178 * KDB_CMD_GO User typed 'go'.
1179 * KDB_CMD_CPU User switched to another cpu.
1180 * KDB_CMD_SS Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 kdb_dbtrap_t db_result)
1184{
1185 char *cmdbuf;
1186 int diag;
1187 struct task_struct *kdb_current =
1188 kdb_curr_task(raw_smp_processor_id());
1189
1190 KDB_DEBUG_STATE("kdb_local 1", reason);
1191 kdb_go_count = 0;
1192 if (reason == KDB_REASON_DEBUG) {
1193 /* special case below */
1194 } else {
1195 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1196 kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198 kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200 }
1201
1202 switch (reason) {
1203 case KDB_REASON_DEBUG:
1204 {
1205 /*
1206 * If re-entering kdb after a single step
1207 * command, don't print the message.
1208 */
1209 switch (db_result) {
1210 case KDB_DB_BPT:
1211 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1212 kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214 kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 instruction_pointer(regs));
1218 break;
1219 case KDB_DB_SS:
1220 break;
1221 case KDB_DB_SSBPT:
1222 KDB_DEBUG_STATE("kdb_local 4", reason);
1223 return 1; /* kdba_db_trap did the work */
1224 default:
1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226 db_result);
1227 break;
1228 }
1229
1230 }
1231 break;
1232 case KDB_REASON_ENTER:
1233 if (KDB_STATE(KEYBOARD))
1234 kdb_printf("due to Keyboard Entry\n");
1235 else
1236 kdb_printf("due to KDB_ENTER()\n");
1237 break;
1238 case KDB_REASON_KEYBOARD:
1239 KDB_STATE_SET(KEYBOARD);
1240 kdb_printf("due to Keyboard Entry\n");
1241 break;
1242 case KDB_REASON_ENTER_SLAVE:
1243 /* drop through, slaves only get released via cpu switch */
1244 case KDB_REASON_SWITCH:
1245 kdb_printf("due to cpu switch\n");
1246 break;
1247 case KDB_REASON_OOPS:
1248 kdb_printf("Oops: %s\n", kdb_diemsg);
1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 instruction_pointer(regs));
1251 kdb_dumpregs(regs);
1252 break;
1253 case KDB_REASON_SYSTEM_NMI:
1254 kdb_printf("due to System NonMaskable Interrupt\n");
1255 break;
1256 case KDB_REASON_NMI:
1257 kdb_printf("due to NonMaskable Interrupt @ "
1258 kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 break;
1261 case KDB_REASON_SSTEP:
1262 case KDB_REASON_BREAK:
1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 reason == KDB_REASON_BREAK ?
1265 "Breakpoint" : "SS trap", instruction_pointer(regs));
1266 /*
1267 * Determine if this breakpoint is one that we
1268 * are interested in.
1269 */
1270 if (db_result != KDB_DB_BPT) {
1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272 db_result);
1273 KDB_DEBUG_STATE("kdb_local 6", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276 break;
1277 case KDB_REASON_RECURSE:
1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 instruction_pointer(regs));
1280 break;
1281 default:
1282 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 KDB_DEBUG_STATE("kdb_local 8", reason);
1284 return 0; /* Not for us, dismiss it */
1285 }
1286
1287 while (1) {
1288 /*
1289 * Initialize pager context.
1290 */
1291 kdb_nextline = 1;
1292 KDB_STATE_CLEAR(SUPPRESS);
1293 kdb_grepping_flag = 0;
1294 /* ensure the old search does not leak into '/' commands */
1295 kdb_grep_string[0] = '\0';
1296
1297 cmdbuf = cmd_cur;
1298 *cmdbuf = '\0';
1299 *(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 raw_smp_processor_id());
1305#else
1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308 if (defcmd_in_progress)
1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311 /*
1312 * Fetch command from keyboard
1313 */
1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 if (*cmdbuf != '\n') {
1316 if (*cmdbuf < 32) {
1317 if (cmdptr == cmd_head) {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 *(cmd_hist[cmd_head] +
1321 strlen(cmd_hist[cmd_head])-1) = '\0';
1322 }
1323 if (!handle_ctrl_cmd(cmdbuf))
1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325 cmdbuf = cmd_cur;
1326 goto do_full_getstr;
1327 } else {
1328 strncpy(cmd_hist[cmd_head], cmd_cur,
1329 CMD_BUFLEN);
1330 }
1331
1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 if (cmd_head == cmd_tail)
1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335 }
1336
1337 cmdptr = cmd_head;
1338 diag = kdb_parse(cmdbuf);
1339 if (diag == KDB_NOTFOUND) {
1340 drop_newline(cmdbuf);
1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342 diag = 0;
1343 }
1344 if (diag == KDB_CMD_GO
1345 || diag == KDB_CMD_CPU
1346 || diag == KDB_CMD_SS
1347 || diag == KDB_CMD_KGDB)
1348 break;
1349
1350 if (diag)
1351 kdb_cmderror(diag);
1352 }
1353 KDB_DEBUG_STATE("kdb_local 9", diag);
1354 return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 * for debugging.
1361 * Inputs:
1362 * text Identifies the debug point
1363 * value Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369 kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 * controlling cpu, all cpus are in this loop. One cpu is in
1375 * control and will issue the kdb prompt, the others will spin
1376 * until 'go' or cpu switch.
1377 *
1378 * To get a consistent view of the kernel stacks for all
1379 * processes, this routine is invoked from the main kdb code via
1380 * an architecture specific routine. kdba_main_loop is
1381 * responsible for making the kernel stacks consistent for all
1382 * processes, there should be no difference between a blocked
1383 * process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 * reason The reason KDB was invoked
1386 * error The hardware-defined error code
1387 * reason2 kdb's current reason code.
1388 * Initially error but can change
1389 * according to kdb state.
1390 * db_result Result code from break or debug point.
1391 * regs The exception frame at time of fault/breakpoint.
1392 * should always be valid.
1393 * Returns:
1394 * 0 KDB was invoked for an event which it wasn't responsible
1395 * 1 KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400 int result = 1;
1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1402 while (1) {
1403 /*
1404 * All processors except the one that is in control
1405 * will spin here.
1406 */
1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 while (KDB_STATE(HOLD_CPU)) {
1409 /* state KDB is turned off by kdb_cpu to see if the
1410 * other cpus are still live, each cpu in this loop
1411 * turns it back on.
1412 */
1413 if (!KDB_STATE(KDB))
1414 KDB_STATE_SET(KDB);
1415 }
1416
1417 KDB_STATE_CLEAR(SUPPRESS);
1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 if (KDB_STATE(LEAVING))
1420 break; /* Another cpu said 'go' */
1421 /* Still using kdb, this processor is in control */
1422 result = kdb_local(reason2, error, regs, db_result);
1423 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425 if (result == KDB_CMD_CPU)
1426 break;
1427
1428 if (result == KDB_CMD_SS) {
1429 KDB_STATE_SET(DOING_SS);
1430 break;
1431 }
1432
1433 if (result == KDB_CMD_KGDB) {
1434 if (!KDB_STATE(DOING_KGDB))
1435 kdb_printf("Entering please attach debugger "
1436 "or use $D#44+ or $3#33\n");
1437 break;
1438 }
1439 if (result && result != 1 && result != KDB_CMD_GO)
1440 kdb_printf("\nUnexpected kdb_local return code %d\n",
1441 result);
1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443 break;
1444 }
1445 if (KDB_STATE(DOING_SS))
1446 KDB_STATE_CLEAR(SSBPT);
1447
1448 /* Clean up any keyboard devices before leaving */
1449 kdb_kbd_cleanup_state();
1450
1451 return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 * mdr <addr arg>,<byte count>
1458 * Inputs:
1459 * addr Start address
1460 * count Number of bytes
1461 * Returns:
1462 * Always 0. Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466 unsigned char c;
1467 while (count--) {
1468 if (kdb_getarea(c, addr))
1469 return 0;
1470 kdb_printf("%02x", c);
1471 addr++;
1472 }
1473 kdb_printf("\n");
1474 return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 * 'md8' 'mdr' and 'mds' commands.
1480 *
1481 * md|mds [<addr arg> [<line count> [<radix>]]]
1482 * mdWcN [<addr arg> [<line count> [<radix>]]]
1483 * where W = is the width (1, 2, 4 or 8) and N is the count.
1484 * for eg., md1c20 reads 20 bytes, 1 at a time.
1485 * mdr <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 int symbolic, int nosect, int bytesperword,
1489 int num, int repeat, int phys)
1490{
1491 /* print just one line of data */
1492 kdb_symtab_t symtab;
1493 char cbuf[32];
1494 char *c = cbuf;
1495 int i;
1496 unsigned long word;
1497
1498 memset(cbuf, '\0', sizeof(cbuf));
1499 if (phys)
1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1501 else
1502 kdb_printf(kdb_machreg_fmt0 " ", addr);
1503
1504 for (i = 0; i < num && repeat--; i++) {
1505 if (phys) {
1506 if (kdb_getphysword(&word, addr, bytesperword))
1507 break;
1508 } else if (kdb_getword(&word, addr, bytesperword))
1509 break;
1510 kdb_printf(fmtstr, word);
1511 if (symbolic)
1512 kdbnearsym(word, &symtab);
1513 else
1514 memset(&symtab, 0, sizeof(symtab));
1515 if (symtab.sym_name) {
1516 kdb_symbol_print(word, &symtab, 0);
1517 if (!nosect) {
1518 kdb_printf("\n");
1519 kdb_printf(" %s %s "
1520 kdb_machreg_fmt " "
1521 kdb_machreg_fmt " "
1522 kdb_machreg_fmt, symtab.mod_name,
1523 symtab.sec_name, symtab.sec_start,
1524 symtab.sym_start, symtab.sym_end);
1525 }
1526 addr += bytesperword;
1527 } else {
1528 union {
1529 u64 word;
1530 unsigned char c[8];
1531 } wc;
1532 unsigned char *cp;
1533#ifdef __BIG_ENDIAN
1534 cp = wc.c + 8 - bytesperword;
1535#else
1536 cp = wc.c;
1537#endif
1538 wc.word = word;
1539#define printable_char(c) \
1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1541 switch (bytesperword) {
1542 case 8:
1543 *c++ = printable_char(*cp++);
1544 *c++ = printable_char(*cp++);
1545 *c++ = printable_char(*cp++);
1546 *c++ = printable_char(*cp++);
1547 addr += 4;
1548 case 4:
1549 *c++ = printable_char(*cp++);
1550 *c++ = printable_char(*cp++);
1551 addr += 2;
1552 case 2:
1553 *c++ = printable_char(*cp++);
1554 addr++;
1555 case 1:
1556 *c++ = printable_char(*cp++);
1557 addr++;
1558 break;
1559 }
1560#undef printable_char
1561 }
1562 }
1563 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1564 " ", cbuf);
1565}
1566
1567static int kdb_md(int argc, const char **argv)
1568{
1569 static unsigned long last_addr;
1570 static int last_radix, last_bytesperword, last_repeat;
1571 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1572 int nosect = 0;
1573 char fmtchar, fmtstr[64];
1574 unsigned long addr;
1575 unsigned long word;
1576 long offset = 0;
1577 int symbolic = 0;
1578 int valid = 0;
1579 int phys = 0;
1580 int raw = 0;
1581
1582 kdbgetintenv("MDCOUNT", &mdcount);
1583 kdbgetintenv("RADIX", &radix);
1584 kdbgetintenv("BYTESPERWORD", &bytesperword);
1585
1586 /* Assume 'md <addr>' and start with environment values */
1587 repeat = mdcount * 16 / bytesperword;
1588
1589 if (strcmp(argv[0], "mdr") == 0) {
1590 if (argc == 2 || (argc == 0 && last_addr != 0))
1591 valid = raw = 1;
1592 else
1593 return KDB_ARGCOUNT;
1594 } else if (isdigit(argv[0][2])) {
1595 bytesperword = (int)(argv[0][2] - '0');
1596 if (bytesperword == 0) {
1597 bytesperword = last_bytesperword;
1598 if (bytesperword == 0)
1599 bytesperword = 4;
1600 }
1601 last_bytesperword = bytesperword;
1602 repeat = mdcount * 16 / bytesperword;
1603 if (!argv[0][3])
1604 valid = 1;
1605 else if (argv[0][3] == 'c' && argv[0][4]) {
1606 char *p;
1607 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1608 mdcount = ((repeat * bytesperword) + 15) / 16;
1609 valid = !*p;
1610 }
1611 last_repeat = repeat;
1612 } else if (strcmp(argv[0], "md") == 0)
1613 valid = 1;
1614 else if (strcmp(argv[0], "mds") == 0)
1615 valid = 1;
1616 else if (strcmp(argv[0], "mdp") == 0) {
1617 phys = valid = 1;
1618 }
1619 if (!valid)
1620 return KDB_NOTFOUND;
1621
1622 if (argc == 0) {
1623 if (last_addr == 0)
1624 return KDB_ARGCOUNT;
1625 addr = last_addr;
1626 radix = last_radix;
1627 bytesperword = last_bytesperword;
1628 repeat = last_repeat;
1629 if (raw)
1630 mdcount = repeat;
1631 else
1632 mdcount = ((repeat * bytesperword) + 15) / 16;
1633 }
1634
1635 if (argc) {
1636 unsigned long val;
1637 int diag, nextarg = 1;
1638 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1639 &offset, NULL);
1640 if (diag)
1641 return diag;
1642 if (argc > nextarg+2)
1643 return KDB_ARGCOUNT;
1644
1645 if (argc >= nextarg) {
1646 diag = kdbgetularg(argv[nextarg], &val);
1647 if (!diag) {
1648 mdcount = (int) val;
1649 if (raw)
1650 repeat = mdcount;
1651 else
1652 repeat = mdcount * 16 / bytesperword;
1653 }
1654 }
1655 if (argc >= nextarg+1) {
1656 diag = kdbgetularg(argv[nextarg+1], &val);
1657 if (!diag)
1658 radix = (int) val;
1659 }
1660 }
1661
1662 if (strcmp(argv[0], "mdr") == 0) {
1663 int ret;
1664 last_addr = addr;
1665 ret = kdb_mdr(addr, mdcount);
1666 last_addr += mdcount;
1667 last_repeat = mdcount;
1668 last_bytesperword = bytesperword; // to make REPEAT happy
1669 return ret;
1670 }
1671
1672 switch (radix) {
1673 case 10:
1674 fmtchar = 'd';
1675 break;
1676 case 16:
1677 fmtchar = 'x';
1678 break;
1679 case 8:
1680 fmtchar = 'o';
1681 break;
1682 default:
1683 return KDB_BADRADIX;
1684 }
1685
1686 last_radix = radix;
1687
1688 if (bytesperword > KDB_WORD_SIZE)
1689 return KDB_BADWIDTH;
1690
1691 switch (bytesperword) {
1692 case 8:
1693 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1694 break;
1695 case 4:
1696 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1697 break;
1698 case 2:
1699 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1700 break;
1701 case 1:
1702 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1703 break;
1704 default:
1705 return KDB_BADWIDTH;
1706 }
1707
1708 last_repeat = repeat;
1709 last_bytesperword = bytesperword;
1710
1711 if (strcmp(argv[0], "mds") == 0) {
1712 symbolic = 1;
1713 /* Do not save these changes as last_*, they are temporary mds
1714 * overrides.
1715 */
1716 bytesperword = KDB_WORD_SIZE;
1717 repeat = mdcount;
1718 kdbgetintenv("NOSECT", &nosect);
1719 }
1720
1721 /* Round address down modulo BYTESPERWORD */
1722
1723 addr &= ~(bytesperword-1);
1724
1725 while (repeat > 0) {
1726 unsigned long a;
1727 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1728
1729 if (KDB_FLAG(CMD_INTERRUPT))
1730 return 0;
1731 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1732 if (phys) {
1733 if (kdb_getphysword(&word, a, bytesperword)
1734 || word)
1735 break;
1736 } else if (kdb_getword(&word, a, bytesperword) || word)
1737 break;
1738 }
1739 n = min(num, repeat);
1740 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1741 num, repeat, phys);
1742 addr += bytesperword * n;
1743 repeat -= n;
1744 z = (z + num - 1) / num;
1745 if (z > 2) {
1746 int s = num * (z-2);
1747 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1748 " zero suppressed\n",
1749 addr, addr + bytesperword * s - 1);
1750 addr += bytesperword * s;
1751 repeat -= s;
1752 }
1753 }
1754 last_addr = addr;
1755
1756 return 0;
1757}
1758
1759/*
1760 * kdb_mm - This function implements the 'mm' command.
1761 * mm address-expression new-value
1762 * Remarks:
1763 * mm works on machine words, mmW works on bytes.
1764 */
1765static int kdb_mm(int argc, const char **argv)
1766{
1767 int diag;
1768 unsigned long addr;
1769 long offset = 0;
1770 unsigned long contents;
1771 int nextarg;
1772 int width;
1773
1774 if (argv[0][2] && !isdigit(argv[0][2]))
1775 return KDB_NOTFOUND;
1776
1777 if (argc < 2)
1778 return KDB_ARGCOUNT;
1779
1780 nextarg = 1;
1781 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1782 if (diag)
1783 return diag;
1784
1785 if (nextarg > argc)
1786 return KDB_ARGCOUNT;
1787 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1788 if (diag)
1789 return diag;
1790
1791 if (nextarg != argc + 1)
1792 return KDB_ARGCOUNT;
1793
1794 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1795 diag = kdb_putword(addr, contents, width);
1796 if (diag)
1797 return diag;
1798
1799 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1800
1801 return 0;
1802}
1803
1804/*
1805 * kdb_go - This function implements the 'go' command.
1806 * go [address-expression]
1807 */
1808static int kdb_go(int argc, const char **argv)
1809{
1810 unsigned long addr;
1811 int diag;
1812 int nextarg;
1813 long offset;
1814
1815 if (raw_smp_processor_id() != kdb_initial_cpu) {
1816 kdb_printf("go must execute on the entry cpu, "
1817 "please use \"cpu %d\" and then execute go\n",
1818 kdb_initial_cpu);
1819 return KDB_BADCPUNUM;
1820 }
1821 if (argc == 1) {
1822 nextarg = 1;
1823 diag = kdbgetaddrarg(argc, argv, &nextarg,
1824 &addr, &offset, NULL);
1825 if (diag)
1826 return diag;
1827 } else if (argc) {
1828 return KDB_ARGCOUNT;
1829 }
1830
1831 diag = KDB_CMD_GO;
1832 if (KDB_FLAG(CATASTROPHIC)) {
1833 kdb_printf("Catastrophic error detected\n");
1834 kdb_printf("kdb_continue_catastrophic=%d, ",
1835 kdb_continue_catastrophic);
1836 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1837 kdb_printf("type go a second time if you really want "
1838 "to continue\n");
1839 return 0;
1840 }
1841 if (kdb_continue_catastrophic == 2) {
1842 kdb_printf("forcing reboot\n");
1843 kdb_reboot(0, NULL);
1844 }
1845 kdb_printf("attempting to continue\n");
1846 }
1847 return diag;
1848}
1849
1850/*
1851 * kdb_rd - This function implements the 'rd' command.
1852 */
1853static int kdb_rd(int argc, const char **argv)
1854{
1855 int len = kdb_check_regs();
1856#if DBG_MAX_REG_NUM > 0
1857 int i;
1858 char *rname;
1859 int rsize;
1860 u64 reg64;
1861 u32 reg32;
1862 u16 reg16;
1863 u8 reg8;
1864
1865 if (len)
1866 return len;
1867
1868 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1869 rsize = dbg_reg_def[i].size * 2;
1870 if (rsize > 16)
1871 rsize = 2;
1872 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1873 len = 0;
1874 kdb_printf("\n");
1875 }
1876 if (len)
1877 len += kdb_printf(" ");
1878 switch(dbg_reg_def[i].size * 8) {
1879 case 8:
1880 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %02x", rname, reg8);
1884 break;
1885 case 16:
1886 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %04x", rname, reg16);
1890 break;
1891 case 32:
1892 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1893 if (!rname)
1894 break;
1895 len += kdb_printf("%s: %08x", rname, reg32);
1896 break;
1897 case 64:
1898 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1899 if (!rname)
1900 break;
1901 len += kdb_printf("%s: %016llx", rname, reg64);
1902 break;
1903 default:
1904 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1905 }
1906 }
1907 kdb_printf("\n");
1908#else
1909 if (len)
1910 return len;
1911
1912 kdb_dumpregs(kdb_current_regs);
1913#endif
1914 return 0;
1915}
1916
1917/*
1918 * kdb_rm - This function implements the 'rm' (register modify) command.
1919 * rm register-name new-contents
1920 * Remarks:
1921 * Allows register modification with the same restrictions as gdb
1922 */
1923static int kdb_rm(int argc, const char **argv)
1924{
1925#if DBG_MAX_REG_NUM > 0
1926 int diag;
1927 const char *rname;
1928 int i;
1929 u64 reg64;
1930 u32 reg32;
1931 u16 reg16;
1932 u8 reg8;
1933
1934 if (argc != 2)
1935 return KDB_ARGCOUNT;
1936 /*
1937 * Allow presence or absence of leading '%' symbol.
1938 */
1939 rname = argv[1];
1940 if (*rname == '%')
1941 rname++;
1942
1943 diag = kdbgetu64arg(argv[2], ®64);
1944 if (diag)
1945 return diag;
1946
1947 diag = kdb_check_regs();
1948 if (diag)
1949 return diag;
1950
1951 diag = KDB_BADREG;
1952 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1953 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1954 diag = 0;
1955 break;
1956 }
1957 }
1958 if (!diag) {
1959 switch(dbg_reg_def[i].size * 8) {
1960 case 8:
1961 reg8 = reg64;
1962 dbg_set_reg(i, ®8, kdb_current_regs);
1963 break;
1964 case 16:
1965 reg16 = reg64;
1966 dbg_set_reg(i, ®16, kdb_current_regs);
1967 break;
1968 case 32:
1969 reg32 = reg64;
1970 dbg_set_reg(i, ®32, kdb_current_regs);
1971 break;
1972 case 64:
1973 dbg_set_reg(i, ®64, kdb_current_regs);
1974 break;
1975 }
1976 }
1977 return diag;
1978#else
1979 kdb_printf("ERROR: Register set currently not implemented\n");
1980 return 0;
1981#endif
1982}
1983
1984#if defined(CONFIG_MAGIC_SYSRQ)
1985/*
1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1987 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1988 * sr <magic-sysrq-code>
1989 */
1990static int kdb_sr(int argc, const char **argv)
1991{
1992 bool check_mask =
1993 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1994
1995 if (argc != 1)
1996 return KDB_ARGCOUNT;
1997
1998 kdb_trap_printk++;
1999 __handle_sysrq(*argv[1], check_mask);
2000 kdb_trap_printk--;
2001
2002 return 0;
2003}
2004#endif /* CONFIG_MAGIC_SYSRQ */
2005
2006/*
2007 * kdb_ef - This function implements the 'regs' (display exception
2008 * frame) command. This command takes an address and expects to
2009 * find an exception frame at that address, formats and prints
2010 * it.
2011 * regs address-expression
2012 * Remarks:
2013 * Not done yet.
2014 */
2015static int kdb_ef(int argc, const char **argv)
2016{
2017 int diag;
2018 unsigned long addr;
2019 long offset;
2020 int nextarg;
2021
2022 if (argc != 1)
2023 return KDB_ARGCOUNT;
2024
2025 nextarg = 1;
2026 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2027 if (diag)
2028 return diag;
2029 show_regs((struct pt_regs *)addr);
2030 return 0;
2031}
2032
2033#if defined(CONFIG_MODULES)
2034/*
2035 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2036 * currently loaded kernel modules.
2037 * Mostly taken from userland lsmod.
2038 */
2039static int kdb_lsmod(int argc, const char **argv)
2040{
2041 struct module *mod;
2042
2043 if (argc != 0)
2044 return KDB_ARGCOUNT;
2045
2046 kdb_printf("Module Size modstruct Used by\n");
2047 list_for_each_entry(mod, kdb_modules, list) {
2048 if (mod->state == MODULE_STATE_UNFORMED)
2049 continue;
2050
2051 kdb_printf("%-20s%8u 0x%p ", mod->name,
2052 mod->core_layout.size, (void *)mod);
2053#ifdef CONFIG_MODULE_UNLOAD
2054 kdb_printf("%4d ", module_refcount(mod));
2055#endif
2056 if (mod->state == MODULE_STATE_GOING)
2057 kdb_printf(" (Unloading)");
2058 else if (mod->state == MODULE_STATE_COMING)
2059 kdb_printf(" (Loading)");
2060 else
2061 kdb_printf(" (Live)");
2062 kdb_printf(" 0x%p", mod->core_layout.base);
2063
2064#ifdef CONFIG_MODULE_UNLOAD
2065 {
2066 struct module_use *use;
2067 kdb_printf(" [ ");
2068 list_for_each_entry(use, &mod->source_list,
2069 source_list)
2070 kdb_printf("%s ", use->target->name);
2071 kdb_printf("]\n");
2072 }
2073#endif
2074 }
2075
2076 return 0;
2077}
2078
2079#endif /* CONFIG_MODULES */
2080
2081/*
2082 * kdb_env - This function implements the 'env' command. Display the
2083 * current environment variables.
2084 */
2085
2086static int kdb_env(int argc, const char **argv)
2087{
2088 int i;
2089
2090 for (i = 0; i < __nenv; i++) {
2091 if (__env[i])
2092 kdb_printf("%s\n", __env[i]);
2093 }
2094
2095 if (KDB_DEBUG(MASK))
2096 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2097
2098 return 0;
2099}
2100
2101#ifdef CONFIG_PRINTK
2102/*
2103 * kdb_dmesg - This function implements the 'dmesg' command to display
2104 * the contents of the syslog buffer.
2105 * dmesg [lines] [adjust]
2106 */
2107static int kdb_dmesg(int argc, const char **argv)
2108{
2109 int diag;
2110 int logging;
2111 int lines = 0;
2112 int adjust = 0;
2113 int n = 0;
2114 int skip = 0;
2115 struct kmsg_dumper dumper = { .active = 1 };
2116 size_t len;
2117 char buf[201];
2118
2119 if (argc > 2)
2120 return KDB_ARGCOUNT;
2121 if (argc) {
2122 char *cp;
2123 lines = simple_strtol(argv[1], &cp, 0);
2124 if (*cp)
2125 lines = 0;
2126 if (argc > 1) {
2127 adjust = simple_strtoul(argv[2], &cp, 0);
2128 if (*cp || adjust < 0)
2129 adjust = 0;
2130 }
2131 }
2132
2133 /* disable LOGGING if set */
2134 diag = kdbgetintenv("LOGGING", &logging);
2135 if (!diag && logging) {
2136 const char *setargs[] = { "set", "LOGGING", "0" };
2137 kdb_set(2, setargs);
2138 }
2139
2140 kmsg_dump_rewind_nolock(&dumper);
2141 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2142 n++;
2143
2144 if (lines < 0) {
2145 if (adjust >= n)
2146 kdb_printf("buffer only contains %d lines, nothing "
2147 "printed\n", n);
2148 else if (adjust - lines >= n)
2149 kdb_printf("buffer only contains %d lines, last %d "
2150 "lines printed\n", n, n - adjust);
2151 skip = adjust;
2152 lines = abs(lines);
2153 } else if (lines > 0) {
2154 skip = n - lines - adjust;
2155 lines = abs(lines);
2156 if (adjust >= n) {
2157 kdb_printf("buffer only contains %d lines, "
2158 "nothing printed\n", n);
2159 skip = n;
2160 } else if (skip < 0) {
2161 lines += skip;
2162 skip = 0;
2163 kdb_printf("buffer only contains %d lines, first "
2164 "%d lines printed\n", n, lines);
2165 }
2166 } else {
2167 lines = n;
2168 }
2169
2170 if (skip >= n || skip < 0)
2171 return 0;
2172
2173 kmsg_dump_rewind_nolock(&dumper);
2174 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2175 if (skip) {
2176 skip--;
2177 continue;
2178 }
2179 if (!lines--)
2180 break;
2181 if (KDB_FLAG(CMD_INTERRUPT))
2182 return 0;
2183
2184 kdb_printf("%.*s\n", (int)len - 1, buf);
2185 }
2186
2187 return 0;
2188}
2189#endif /* CONFIG_PRINTK */
2190
2191/* Make sure we balance enable/disable calls, must disable first. */
2192static atomic_t kdb_nmi_disabled;
2193
2194static int kdb_disable_nmi(int argc, const char *argv[])
2195{
2196 if (atomic_read(&kdb_nmi_disabled))
2197 return 0;
2198 atomic_set(&kdb_nmi_disabled, 1);
2199 arch_kgdb_ops.enable_nmi(0);
2200 return 0;
2201}
2202
2203static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2204{
2205 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2206 return -EINVAL;
2207 arch_kgdb_ops.enable_nmi(1);
2208 return 0;
2209}
2210
2211static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2212 .set = kdb_param_enable_nmi,
2213};
2214module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2215
2216/*
2217 * kdb_cpu - This function implements the 'cpu' command.
2218 * cpu [<cpunum>]
2219 * Returns:
2220 * KDB_CMD_CPU for success, a kdb diagnostic if error
2221 */
2222static void kdb_cpu_status(void)
2223{
2224 int i, start_cpu, first_print = 1;
2225 char state, prev_state = '?';
2226
2227 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2228 kdb_printf("Available cpus: ");
2229 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2230 if (!cpu_online(i)) {
2231 state = 'F'; /* cpu is offline */
2232 } else if (!kgdb_info[i].enter_kgdb) {
2233 state = 'D'; /* cpu is online but unresponsive */
2234 } else {
2235 state = ' '; /* cpu is responding to kdb */
2236 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2237 state = 'I'; /* idle task */
2238 }
2239 if (state != prev_state) {
2240 if (prev_state != '?') {
2241 if (!first_print)
2242 kdb_printf(", ");
2243 first_print = 0;
2244 kdb_printf("%d", start_cpu);
2245 if (start_cpu < i-1)
2246 kdb_printf("-%d", i-1);
2247 if (prev_state != ' ')
2248 kdb_printf("(%c)", prev_state);
2249 }
2250 prev_state = state;
2251 start_cpu = i;
2252 }
2253 }
2254 /* print the trailing cpus, ignoring them if they are all offline */
2255 if (prev_state != 'F') {
2256 if (!first_print)
2257 kdb_printf(", ");
2258 kdb_printf("%d", start_cpu);
2259 if (start_cpu < i-1)
2260 kdb_printf("-%d", i-1);
2261 if (prev_state != ' ')
2262 kdb_printf("(%c)", prev_state);
2263 }
2264 kdb_printf("\n");
2265}
2266
2267static int kdb_cpu(int argc, const char **argv)
2268{
2269 unsigned long cpunum;
2270 int diag;
2271
2272 if (argc == 0) {
2273 kdb_cpu_status();
2274 return 0;
2275 }
2276
2277 if (argc != 1)
2278 return KDB_ARGCOUNT;
2279
2280 diag = kdbgetularg(argv[1], &cpunum);
2281 if (diag)
2282 return diag;
2283
2284 /*
2285 * Validate cpunum
2286 */
2287 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2288 return KDB_BADCPUNUM;
2289
2290 dbg_switch_cpu = cpunum;
2291
2292 /*
2293 * Switch to other cpu
2294 */
2295 return KDB_CMD_CPU;
2296}
2297
2298/* The user may not realize that ps/bta with no parameters does not print idle
2299 * or sleeping system daemon processes, so tell them how many were suppressed.
2300 */
2301void kdb_ps_suppressed(void)
2302{
2303 int idle = 0, daemon = 0;
2304 unsigned long mask_I = kdb_task_state_string("I"),
2305 mask_M = kdb_task_state_string("M");
2306 unsigned long cpu;
2307 const struct task_struct *p, *g;
2308 for_each_online_cpu(cpu) {
2309 p = kdb_curr_task(cpu);
2310 if (kdb_task_state(p, mask_I))
2311 ++idle;
2312 }
2313 kdb_do_each_thread(g, p) {
2314 if (kdb_task_state(p, mask_M))
2315 ++daemon;
2316 } kdb_while_each_thread(g, p);
2317 if (idle || daemon) {
2318 if (idle)
2319 kdb_printf("%d idle process%s (state I)%s\n",
2320 idle, idle == 1 ? "" : "es",
2321 daemon ? " and " : "");
2322 if (daemon)
2323 kdb_printf("%d sleeping system daemon (state M) "
2324 "process%s", daemon,
2325 daemon == 1 ? "" : "es");
2326 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2327 }
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2334 */
2335void kdb_ps1(const struct task_struct *p)
2336{
2337 int cpu;
2338 unsigned long tmp;
2339
2340 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2341 return;
2342
2343 cpu = kdb_process_cpu(p);
2344 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2345 (void *)p, p->pid, p->parent->pid,
2346 kdb_task_has_cpu(p), kdb_process_cpu(p),
2347 kdb_task_state_char(p),
2348 (void *)(&p->thread),
2349 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2350 p->comm);
2351 if (kdb_task_has_cpu(p)) {
2352 if (!KDB_TSK(cpu)) {
2353 kdb_printf(" Error: no saved data for this cpu\n");
2354 } else {
2355 if (KDB_TSK(cpu) != p)
2356 kdb_printf(" Error: does not match running "
2357 "process table (0x%p)\n", KDB_TSK(cpu));
2358 }
2359 }
2360}
2361
2362static int kdb_ps(int argc, const char **argv)
2363{
2364 struct task_struct *g, *p;
2365 unsigned long mask, cpu;
2366
2367 if (argc == 0)
2368 kdb_ps_suppressed();
2369 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2370 (int)(2*sizeof(void *))+2, "Task Addr",
2371 (int)(2*sizeof(void *))+2, "Thread");
2372 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2373 /* Run the active tasks first */
2374 for_each_online_cpu(cpu) {
2375 if (KDB_FLAG(CMD_INTERRUPT))
2376 return 0;
2377 p = kdb_curr_task(cpu);
2378 if (kdb_task_state(p, mask))
2379 kdb_ps1(p);
2380 }
2381 kdb_printf("\n");
2382 /* Now the real tasks */
2383 kdb_do_each_thread(g, p) {
2384 if (KDB_FLAG(CMD_INTERRUPT))
2385 return 0;
2386 if (kdb_task_state(p, mask))
2387 kdb_ps1(p);
2388 } kdb_while_each_thread(g, p);
2389
2390 return 0;
2391}
2392
2393/*
2394 * kdb_pid - This function implements the 'pid' command which switches
2395 * the currently active process.
2396 * pid [<pid> | R]
2397 */
2398static int kdb_pid(int argc, const char **argv)
2399{
2400 struct task_struct *p;
2401 unsigned long val;
2402 int diag;
2403
2404 if (argc > 1)
2405 return KDB_ARGCOUNT;
2406
2407 if (argc) {
2408 if (strcmp(argv[1], "R") == 0) {
2409 p = KDB_TSK(kdb_initial_cpu);
2410 } else {
2411 diag = kdbgetularg(argv[1], &val);
2412 if (diag)
2413 return KDB_BADINT;
2414
2415 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2416 if (!p) {
2417 kdb_printf("No task with pid=%d\n", (pid_t)val);
2418 return 0;
2419 }
2420 }
2421 kdb_set_current_task(p);
2422 }
2423 kdb_printf("KDB current process is %s(pid=%d)\n",
2424 kdb_current_task->comm,
2425 kdb_current_task->pid);
2426
2427 return 0;
2428}
2429
2430static int kdb_kgdb(int argc, const char **argv)
2431{
2432 return KDB_CMD_KGDB;
2433}
2434
2435/*
2436 * kdb_help - This function implements the 'help' and '?' commands.
2437 */
2438static int kdb_help(int argc, const char **argv)
2439{
2440 kdbtab_t *kt;
2441 int i;
2442
2443 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2444 kdb_printf("-----------------------------"
2445 "-----------------------------\n");
2446 for_each_kdbcmd(kt, i) {
2447 char *space = "";
2448 if (KDB_FLAG(CMD_INTERRUPT))
2449 return 0;
2450 if (!kt->cmd_name)
2451 continue;
2452 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2453 continue;
2454 if (strlen(kt->cmd_usage) > 20)
2455 space = "\n ";
2456 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2457 kt->cmd_usage, space, kt->cmd_help);
2458 }
2459 return 0;
2460}
2461
2462/*
2463 * kdb_kill - This function implements the 'kill' commands.
2464 */
2465static int kdb_kill(int argc, const char **argv)
2466{
2467 long sig, pid;
2468 char *endp;
2469 struct task_struct *p;
2470
2471 if (argc != 2)
2472 return KDB_ARGCOUNT;
2473
2474 sig = simple_strtol(argv[1], &endp, 0);
2475 if (*endp)
2476 return KDB_BADINT;
2477 if ((sig >= 0) || !valid_signal(-sig)) {
2478 kdb_printf("Invalid signal parameter.<-signal>\n");
2479 return 0;
2480 }
2481 sig = -sig;
2482
2483 pid = simple_strtol(argv[2], &endp, 0);
2484 if (*endp)
2485 return KDB_BADINT;
2486 if (pid <= 0) {
2487 kdb_printf("Process ID must be large than 0.\n");
2488 return 0;
2489 }
2490
2491 /* Find the process. */
2492 p = find_task_by_pid_ns(pid, &init_pid_ns);
2493 if (!p) {
2494 kdb_printf("The specified process isn't found.\n");
2495 return 0;
2496 }
2497 p = p->group_leader;
2498 kdb_send_sig(p, sig);
2499 return 0;
2500}
2501
2502/*
2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2504 * I cannot call that code directly from kdb, it has an unconditional
2505 * cli()/sti() and calls routines that take locks which can stop the debugger.
2506 */
2507static void kdb_sysinfo(struct sysinfo *val)
2508{
2509 u64 uptime = ktime_get_mono_fast_ns();
2510
2511 memset(val, 0, sizeof(*val));
2512 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2513 val->loads[0] = avenrun[0];
2514 val->loads[1] = avenrun[1];
2515 val->loads[2] = avenrun[2];
2516 val->procs = nr_threads-1;
2517 si_meminfo(val);
2518
2519 return;
2520}
2521
2522/*
2523 * kdb_summary - This function implements the 'summary' command.
2524 */
2525static int kdb_summary(int argc, const char **argv)
2526{
2527 time64_t now;
2528 struct tm tm;
2529 struct sysinfo val;
2530
2531 if (argc)
2532 return KDB_ARGCOUNT;
2533
2534 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2535 kdb_printf("release %s\n", init_uts_ns.name.release);
2536 kdb_printf("version %s\n", init_uts_ns.name.version);
2537 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2538 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2539 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2540 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2541
2542 now = __ktime_get_real_seconds();
2543 time64_to_tm(now, 0, &tm);
2544 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2545 "tz_minuteswest %d\n",
2546 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2547 tm.tm_hour, tm.tm_min, tm.tm_sec,
2548 sys_tz.tz_minuteswest);
2549
2550 kdb_sysinfo(&val);
2551 kdb_printf("uptime ");
2552 if (val.uptime > (24*60*60)) {
2553 int days = val.uptime / (24*60*60);
2554 val.uptime %= (24*60*60);
2555 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2556 }
2557 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2558
2559 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2560
2561#define LOAD_INT(x) ((x) >> FSHIFT)
2562#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2563 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2564 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2565 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2566 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2567#undef LOAD_INT
2568#undef LOAD_FRAC
2569 /* Display in kilobytes */
2570#define K(x) ((x) << (PAGE_SHIFT - 10))
2571 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2572 "Buffers: %8lu kB\n",
2573 K(val.totalram), K(val.freeram), K(val.bufferram));
2574 return 0;
2575}
2576
2577/*
2578 * kdb_per_cpu - This function implements the 'per_cpu' command.
2579 */
2580static int kdb_per_cpu(int argc, const char **argv)
2581{
2582 char fmtstr[64];
2583 int cpu, diag, nextarg = 1;
2584 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2585
2586 if (argc < 1 || argc > 3)
2587 return KDB_ARGCOUNT;
2588
2589 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2590 if (diag)
2591 return diag;
2592
2593 if (argc >= 2) {
2594 diag = kdbgetularg(argv[2], &bytesperword);
2595 if (diag)
2596 return diag;
2597 }
2598 if (!bytesperword)
2599 bytesperword = KDB_WORD_SIZE;
2600 else if (bytesperword > KDB_WORD_SIZE)
2601 return KDB_BADWIDTH;
2602 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2603 if (argc >= 3) {
2604 diag = kdbgetularg(argv[3], &whichcpu);
2605 if (diag)
2606 return diag;
2607 if (!cpu_online(whichcpu)) {
2608 kdb_printf("cpu %ld is not online\n", whichcpu);
2609 return KDB_BADCPUNUM;
2610 }
2611 }
2612
2613 /* Most architectures use __per_cpu_offset[cpu], some use
2614 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2615 */
2616#ifdef __per_cpu_offset
2617#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2618#else
2619#ifdef CONFIG_SMP
2620#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2621#else
2622#define KDB_PCU(cpu) 0
2623#endif
2624#endif
2625 for_each_online_cpu(cpu) {
2626 if (KDB_FLAG(CMD_INTERRUPT))
2627 return 0;
2628
2629 if (whichcpu != ~0UL && whichcpu != cpu)
2630 continue;
2631 addr = symaddr + KDB_PCU(cpu);
2632 diag = kdb_getword(&val, addr, bytesperword);
2633 if (diag) {
2634 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2635 "read, diag=%d\n", cpu, addr, diag);
2636 continue;
2637 }
2638 kdb_printf("%5d ", cpu);
2639 kdb_md_line(fmtstr, addr,
2640 bytesperword == KDB_WORD_SIZE,
2641 1, bytesperword, 1, 1, 0);
2642 }
2643#undef KDB_PCU
2644 return 0;
2645}
2646
2647/*
2648 * display help for the use of cmd | grep pattern
2649 */
2650static int kdb_grep_help(int argc, const char **argv)
2651{
2652 kdb_printf("Usage of cmd args | grep pattern:\n");
2653 kdb_printf(" Any command's output may be filtered through an ");
2654 kdb_printf("emulated 'pipe'.\n");
2655 kdb_printf(" 'grep' is just a key word.\n");
2656 kdb_printf(" The pattern may include a very limited set of "
2657 "metacharacters:\n");
2658 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2659 kdb_printf(" And if there are spaces in the pattern, you may "
2660 "quote it:\n");
2661 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2662 " or \"^pat tern$\"\n");
2663 return 0;
2664}
2665
2666/*
2667 * kdb_register_flags - This function is used to register a kernel
2668 * debugger command.
2669 * Inputs:
2670 * cmd Command name
2671 * func Function to execute the command
2672 * usage A simple usage string showing arguments
2673 * help A simple help string describing command
2674 * repeat Does the command auto repeat on enter?
2675 * Returns:
2676 * zero for success, one if a duplicate command.
2677 */
2678#define kdb_command_extend 50 /* arbitrary */
2679int kdb_register_flags(char *cmd,
2680 kdb_func_t func,
2681 char *usage,
2682 char *help,
2683 short minlen,
2684 kdb_cmdflags_t flags)
2685{
2686 int i;
2687 kdbtab_t *kp;
2688
2689 /*
2690 * Brute force method to determine duplicates
2691 */
2692 for_each_kdbcmd(kp, i) {
2693 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2694 kdb_printf("Duplicate kdb command registered: "
2695 "%s, func %p help %s\n", cmd, func, help);
2696 return 1;
2697 }
2698 }
2699
2700 /*
2701 * Insert command into first available location in table
2702 */
2703 for_each_kdbcmd(kp, i) {
2704 if (kp->cmd_name == NULL)
2705 break;
2706 }
2707
2708 if (i >= kdb_max_commands) {
2709 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2710 kdb_command_extend) * sizeof(*new), GFP_KDB);
2711 if (!new) {
2712 kdb_printf("Could not allocate new kdb_command "
2713 "table\n");
2714 return 1;
2715 }
2716 if (kdb_commands) {
2717 memcpy(new, kdb_commands,
2718 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2719 kfree(kdb_commands);
2720 }
2721 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2722 kdb_command_extend * sizeof(*new));
2723 kdb_commands = new;
2724 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2725 kdb_max_commands += kdb_command_extend;
2726 }
2727
2728 kp->cmd_name = cmd;
2729 kp->cmd_func = func;
2730 kp->cmd_usage = usage;
2731 kp->cmd_help = help;
2732 kp->cmd_minlen = minlen;
2733 kp->cmd_flags = flags;
2734
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(kdb_register_flags);
2738
2739
2740/*
2741 * kdb_register - Compatibility register function for commands that do
2742 * not need to specify a repeat state. Equivalent to
2743 * kdb_register_flags with flags set to 0.
2744 * Inputs:
2745 * cmd Command name
2746 * func Function to execute the command
2747 * usage A simple usage string showing arguments
2748 * help A simple help string describing command
2749 * Returns:
2750 * zero for success, one if a duplicate command.
2751 */
2752int kdb_register(char *cmd,
2753 kdb_func_t func,
2754 char *usage,
2755 char *help,
2756 short minlen)
2757{
2758 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2759}
2760EXPORT_SYMBOL_GPL(kdb_register);
2761
2762/*
2763 * kdb_unregister - This function is used to unregister a kernel
2764 * debugger command. It is generally called when a module which
2765 * implements kdb commands is unloaded.
2766 * Inputs:
2767 * cmd Command name
2768 * Returns:
2769 * zero for success, one command not registered.
2770 */
2771int kdb_unregister(char *cmd)
2772{
2773 int i;
2774 kdbtab_t *kp;
2775
2776 /*
2777 * find the command.
2778 */
2779 for_each_kdbcmd(kp, i) {
2780 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2781 kp->cmd_name = NULL;
2782 return 0;
2783 }
2784 }
2785
2786 /* Couldn't find it. */
2787 return 1;
2788}
2789EXPORT_SYMBOL_GPL(kdb_unregister);
2790
2791/* Initialize the kdb command table. */
2792static void __init kdb_inittab(void)
2793{
2794 int i;
2795 kdbtab_t *kp;
2796
2797 for_each_kdbcmd(kp, i)
2798 kp->cmd_name = NULL;
2799
2800 kdb_register_flags("md", kdb_md, "<vaddr>",
2801 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2802 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2803 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2804 "Display Raw Memory", 0,
2805 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2806 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2807 "Display Physical Memory", 0,
2808 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2809 kdb_register_flags("mds", kdb_md, "<vaddr>",
2810 "Display Memory Symbolically", 0,
2811 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2812 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2813 "Modify Memory Contents", 0,
2814 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2816 "Continue Execution", 1,
2817 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2818 kdb_register_flags("rd", kdb_rd, "",
2819 "Display Registers", 0,
2820 KDB_ENABLE_REG_READ);
2821 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2822 "Modify Registers", 0,
2823 KDB_ENABLE_REG_WRITE);
2824 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2825 "Display exception frame", 0,
2826 KDB_ENABLE_MEM_READ);
2827 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2828 "Stack traceback", 1,
2829 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2830 kdb_register_flags("btp", kdb_bt, "<pid>",
2831 "Display stack for process <pid>", 0,
2832 KDB_ENABLE_INSPECT);
2833 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2834 "Backtrace all processes matching state flag", 0,
2835 KDB_ENABLE_INSPECT);
2836 kdb_register_flags("btc", kdb_bt, "",
2837 "Backtrace current process on each cpu", 0,
2838 KDB_ENABLE_INSPECT);
2839 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2840 "Backtrace process given its struct task address", 0,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("env", kdb_env, "",
2843 "Show environment variables", 0,
2844 KDB_ENABLE_ALWAYS_SAFE);
2845 kdb_register_flags("set", kdb_set, "",
2846 "Set environment variables", 0,
2847 KDB_ENABLE_ALWAYS_SAFE);
2848 kdb_register_flags("help", kdb_help, "",
2849 "Display Help Message", 1,
2850 KDB_ENABLE_ALWAYS_SAFE);
2851 kdb_register_flags("?", kdb_help, "",
2852 "Display Help Message", 0,
2853 KDB_ENABLE_ALWAYS_SAFE);
2854 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2855 "Switch to new cpu", 0,
2856 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2857 kdb_register_flags("kgdb", kdb_kgdb, "",
2858 "Enter kgdb mode", 0, 0);
2859 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2860 "Display active task list", 0,
2861 KDB_ENABLE_INSPECT);
2862 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2863 "Switch to another task", 0,
2864 KDB_ENABLE_INSPECT);
2865 kdb_register_flags("reboot", kdb_reboot, "",
2866 "Reboot the machine immediately", 0,
2867 KDB_ENABLE_REBOOT);
2868#if defined(CONFIG_MODULES)
2869 kdb_register_flags("lsmod", kdb_lsmod, "",
2870 "List loaded kernel modules", 0,
2871 KDB_ENABLE_INSPECT);
2872#endif
2873#if defined(CONFIG_MAGIC_SYSRQ)
2874 kdb_register_flags("sr", kdb_sr, "<key>",
2875 "Magic SysRq key", 0,
2876 KDB_ENABLE_ALWAYS_SAFE);
2877#endif
2878#if defined(CONFIG_PRINTK)
2879 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2880 "Display syslog buffer", 0,
2881 KDB_ENABLE_ALWAYS_SAFE);
2882#endif
2883 if (arch_kgdb_ops.enable_nmi) {
2884 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2885 "Disable NMI entry to KDB", 0,
2886 KDB_ENABLE_ALWAYS_SAFE);
2887 }
2888 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2889 "Define a set of commands, down to endefcmd", 0,
2890 KDB_ENABLE_ALWAYS_SAFE);
2891 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0,
2893 KDB_ENABLE_SIGNAL);
2894 kdb_register_flags("summary", kdb_summary, "",
2895 "Summarize the system", 4,
2896 KDB_ENABLE_ALWAYS_SAFE);
2897 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2898 "Display per_cpu variables", 3,
2899 KDB_ENABLE_MEM_READ);
2900 kdb_register_flags("grephelp", kdb_grep_help, "",
2901 "Display help on | grep", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903}
2904
2905/* Execute any commands defined in kdb_cmds. */
2906static void __init kdb_cmd_init(void)
2907{
2908 int i, diag;
2909 for (i = 0; kdb_cmds[i]; ++i) {
2910 diag = kdb_parse(kdb_cmds[i]);
2911 if (diag)
2912 kdb_printf("kdb command %s failed, kdb diag %d\n",
2913 kdb_cmds[i], diag);
2914 }
2915 if (defcmd_in_progress) {
2916 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2917 kdb_parse("endefcmd");
2918 }
2919}
2920
2921/* Initialize kdb_printf, breakpoint tables and kdb state */
2922void __init kdb_init(int lvl)
2923{
2924 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2925 int i;
2926
2927 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2928 return;
2929 for (i = kdb_init_lvl; i < lvl; i++) {
2930 switch (i) {
2931 case KDB_NOT_INITIALIZED:
2932 kdb_inittab(); /* Initialize Command Table */
2933 kdb_initbptab(); /* Initialize Breakpoints */
2934 break;
2935 case KDB_INIT_EARLY:
2936 kdb_cmd_init(); /* Build kdb_cmds tables */
2937 break;
2938 }
2939 }
2940 kdb_init_lvl = lvl;
2941}