Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
 
 
 
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
 
 
 
 
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
 
 
 
 
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
 
 
 
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root, struct inode *inode,
  96			     int inode_only);
 
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98			     struct btrfs_root *root,
  99			     struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101				       struct btrfs_root *root,
 102				       struct btrfs_root *log,
 103				       struct btrfs_path *path,
 104				       u64 dirid, int del_all);
 
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135			   struct btrfs_root *root)
 
 136{
 137	int ret;
 138	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140	mutex_lock(&root->log_mutex);
 
 
 141	if (root->log_root) {
 
 
 
 
 
 
 
 
 
 
 
 
 142		if (!root->log_start_pid) {
 
 143			root->log_start_pid = current->pid;
 144			root->log_multiple_pids = false;
 145		} else if (root->log_start_pid != current->pid) {
 146			root->log_multiple_pids = true;
 
 
 
 
 
 
 
 
 
 
 
 147		}
 148
 149		root->log_batch++;
 150		atomic_inc(&root->log_writers);
 151		mutex_unlock(&root->log_mutex);
 152		return 0;
 153	}
 154	root->log_multiple_pids = false;
 155	root->log_start_pid = current->pid;
 156	mutex_lock(&root->fs_info->tree_log_mutex);
 157	if (!root->fs_info->log_root_tree) {
 158		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159		if (ret)
 160			err = ret;
 161	}
 162	if (err == 0 && !root->log_root) {
 163		ret = btrfs_add_log_tree(trans, root);
 164		if (ret)
 165			err = ret;
 
 
 
 
 166	}
 167	mutex_unlock(&root->fs_info->tree_log_mutex);
 168	root->log_batch++;
 169	atomic_inc(&root->log_writers);
 
 
 
 
 
 
 
 170	mutex_unlock(&root->log_mutex);
 171	return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 
 181	int ret = -ENOENT;
 182
 183	smp_mb();
 184	if (!root->log_root)
 185		return -ENOENT;
 186
 187	mutex_lock(&root->log_mutex);
 
 188	if (root->log_root) {
 
 
 189		ret = 0;
 
 
 
 
 190		atomic_inc(&root->log_writers);
 191	}
 192	mutex_unlock(&root->log_mutex);
 193	return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203	int ret = -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	atomic_inc(&root->log_writers);
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215int btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217	if (atomic_dec_and_test(&root->log_writers)) {
 218		smp_mb();
 219		if (waitqueue_active(&root->log_writer_wait))
 220			wake_up(&root->log_writer_wait);
 221	}
 222	return 0;
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 225
 226/*
 227 * the walk control struct is used to pass state down the chain when
 228 * processing the log tree.  The stage field tells us which part
 229 * of the log tree processing we are currently doing.  The others
 230 * are state fields used for that specific part
 231 */
 232struct walk_control {
 233	/* should we free the extent on disk when done?  This is used
 234	 * at transaction commit time while freeing a log tree
 235	 */
 236	int free;
 237
 238	/* should we write out the extent buffer?  This is used
 239	 * while flushing the log tree to disk during a sync
 240	 */
 241	int write;
 242
 243	/* should we wait for the extent buffer io to finish?  Also used
 244	 * while flushing the log tree to disk for a sync
 245	 */
 246	int wait;
 247
 248	/* pin only walk, we record which extents on disk belong to the
 249	 * log trees
 250	 */
 251	int pin;
 252
 253	/* what stage of the replay code we're currently in */
 254	int stage;
 255
 
 
 
 
 
 
 
 256	/* the root we are currently replaying */
 257	struct btrfs_root *replay_dest;
 258
 259	/* the trans handle for the current replay */
 260	struct btrfs_trans_handle *trans;
 261
 262	/* the function that gets used to process blocks we find in the
 263	 * tree.  Note the extent_buffer might not be up to date when it is
 264	 * passed in, and it must be checked or read if you need the data
 265	 * inside it
 266	 */
 267	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 268			    struct walk_control *wc, u64 gen);
 269};
 270
 271/*
 272 * process_func used to pin down extents, write them or wait on them
 273 */
 274static int process_one_buffer(struct btrfs_root *log,
 275			      struct extent_buffer *eb,
 276			      struct walk_control *wc, u64 gen)
 277{
 
 
 
 
 
 
 
 
 
 
 
 
 
 278	if (wc->pin)
 279		btrfs_pin_extent(log->fs_info->extent_root,
 280				 eb->start, eb->len, 0);
 281
 282	if (btrfs_buffer_uptodate(eb, gen)) {
 
 
 283		if (wc->write)
 284			btrfs_write_tree_block(eb);
 285		if (wc->wait)
 286			btrfs_wait_tree_block_writeback(eb);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306				   struct btrfs_root *root,
 307				   struct btrfs_path *path,
 308				   struct extent_buffer *eb, int slot,
 309				   struct btrfs_key *key)
 310{
 311	int ret;
 312	u32 item_size;
 313	u64 saved_i_size = 0;
 314	int save_old_i_size = 0;
 315	unsigned long src_ptr;
 316	unsigned long dst_ptr;
 317	int overwrite_root = 0;
 
 318
 319	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320		overwrite_root = 1;
 321
 322	item_size = btrfs_item_size_nr(eb, slot);
 323	src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325	/* look for the key in the destination tree */
 326	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 
 
 
 327	if (ret == 0) {
 328		char *src_copy;
 329		char *dst_copy;
 330		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331						  path->slots[0]);
 332		if (dst_size != item_size)
 333			goto insert;
 334
 335		if (item_size == 0) {
 336			btrfs_release_path(path);
 337			return 0;
 338		}
 339		dst_copy = kmalloc(item_size, GFP_NOFS);
 340		src_copy = kmalloc(item_size, GFP_NOFS);
 341		if (!dst_copy || !src_copy) {
 342			btrfs_release_path(path);
 343			kfree(dst_copy);
 344			kfree(src_copy);
 345			return -ENOMEM;
 346		}
 347
 348		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352				   item_size);
 353		ret = memcmp(dst_copy, src_copy, item_size);
 354
 355		kfree(dst_copy);
 356		kfree(src_copy);
 357		/*
 358		 * they have the same contents, just return, this saves
 359		 * us from cowing blocks in the destination tree and doing
 360		 * extra writes that may not have been done by a previous
 361		 * sync
 362		 */
 363		if (ret == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369insert:
 370	btrfs_release_path(path);
 371	/* try to insert the key into the destination tree */
 
 372	ret = btrfs_insert_empty_item(trans, root, path,
 373				      key, item_size);
 
 374
 375	/* make sure any existing item is the correct size */
 376	if (ret == -EEXIST) {
 377		u32 found_size;
 378		found_size = btrfs_item_size_nr(path->nodes[0],
 379						path->slots[0]);
 380		if (found_size > item_size) {
 381			btrfs_truncate_item(trans, root, path, item_size, 1);
 382		} else if (found_size < item_size) {
 383			ret = btrfs_extend_item(trans, root, path,
 384						item_size - found_size);
 385		}
 386	} else if (ret) {
 387		return ret;
 388	}
 389	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 390					path->slots[0]);
 391
 392	/* don't overwrite an existing inode if the generation number
 393	 * was logged as zero.  This is done when the tree logging code
 394	 * is just logging an inode to make sure it exists after recovery.
 395	 *
 396	 * Also, don't overwrite i_size on directories during replay.
 397	 * log replay inserts and removes directory items based on the
 398	 * state of the tree found in the subvolume, and i_size is modified
 399	 * as it goes
 400	 */
 401	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 402		struct btrfs_inode_item *src_item;
 403		struct btrfs_inode_item *dst_item;
 404
 405		src_item = (struct btrfs_inode_item *)src_ptr;
 406		dst_item = (struct btrfs_inode_item *)dst_ptr;
 407
 408		if (btrfs_inode_generation(eb, src_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409			goto no_copy;
 
 410
 411		if (overwrite_root &&
 412		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 413		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 414			save_old_i_size = 1;
 415			saved_i_size = btrfs_inode_size(path->nodes[0],
 416							dst_item);
 417		}
 418	}
 419
 420	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 421			   src_ptr, item_size);
 422
 423	if (save_old_i_size) {
 424		struct btrfs_inode_item *dst_item;
 425		dst_item = (struct btrfs_inode_item *)dst_ptr;
 426		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 427	}
 428
 429	/* make sure the generation is filled in */
 430	if (key->type == BTRFS_INODE_ITEM_KEY) {
 431		struct btrfs_inode_item *dst_item;
 432		dst_item = (struct btrfs_inode_item *)dst_ptr;
 433		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 434			btrfs_set_inode_generation(path->nodes[0], dst_item,
 435						   trans->transid);
 436		}
 437	}
 438no_copy:
 439	btrfs_mark_buffer_dirty(path->nodes[0]);
 440	btrfs_release_path(path);
 441	return 0;
 442}
 443
 444/*
 445 * simple helper to read an inode off the disk from a given root
 446 * This can only be called for subvolume roots and not for the log
 447 */
 448static noinline struct inode *read_one_inode(struct btrfs_root *root,
 449					     u64 objectid)
 450{
 451	struct btrfs_key key;
 452	struct inode *inode;
 453
 454	key.objectid = objectid;
 455	key.type = BTRFS_INODE_ITEM_KEY;
 456	key.offset = 0;
 457	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 458	if (IS_ERR(inode)) {
 459		inode = NULL;
 460	} else if (is_bad_inode(inode)) {
 461		iput(inode);
 462		inode = NULL;
 463	}
 464	return inode;
 465}
 466
 467/* replays a single extent in 'eb' at 'slot' with 'key' into the
 468 * subvolume 'root'.  path is released on entry and should be released
 469 * on exit.
 470 *
 471 * extents in the log tree have not been allocated out of the extent
 472 * tree yet.  So, this completes the allocation, taking a reference
 473 * as required if the extent already exists or creating a new extent
 474 * if it isn't in the extent allocation tree yet.
 475 *
 476 * The extent is inserted into the file, dropping any existing extents
 477 * from the file that overlap the new one.
 478 */
 479static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 480				      struct btrfs_root *root,
 481				      struct btrfs_path *path,
 482				      struct extent_buffer *eb, int slot,
 483				      struct btrfs_key *key)
 484{
 
 
 485	int found_type;
 486	u64 mask = root->sectorsize - 1;
 487	u64 extent_end;
 488	u64 alloc_hint;
 489	u64 start = key->offset;
 490	u64 saved_nbytes;
 491	struct btrfs_file_extent_item *item;
 492	struct inode *inode = NULL;
 493	unsigned long size;
 494	int ret = 0;
 495
 496	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 497	found_type = btrfs_file_extent_type(eb, item);
 498
 499	if (found_type == BTRFS_FILE_EXTENT_REG ||
 500	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 501		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 502	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 503		size = btrfs_file_extent_inline_len(eb, item);
 504		extent_end = (start + size + mask) & ~mask;
 
 
 
 
 
 
 
 
 
 
 505	} else {
 506		ret = 0;
 507		goto out;
 508	}
 509
 510	inode = read_one_inode(root, key->objectid);
 511	if (!inode) {
 512		ret = -EIO;
 513		goto out;
 514	}
 515
 516	/*
 517	 * first check to see if we already have this extent in the
 518	 * file.  This must be done before the btrfs_drop_extents run
 519	 * so we don't try to drop this extent.
 520	 */
 521	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 522				       start, 0);
 523
 524	if (ret == 0 &&
 525	    (found_type == BTRFS_FILE_EXTENT_REG ||
 526	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 527		struct btrfs_file_extent_item cmp1;
 528		struct btrfs_file_extent_item cmp2;
 529		struct btrfs_file_extent_item *existing;
 530		struct extent_buffer *leaf;
 531
 532		leaf = path->nodes[0];
 533		existing = btrfs_item_ptr(leaf, path->slots[0],
 534					  struct btrfs_file_extent_item);
 535
 536		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 537				   sizeof(cmp1));
 538		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 539				   sizeof(cmp2));
 540
 541		/*
 542		 * we already have a pointer to this exact extent,
 543		 * we don't have to do anything
 544		 */
 545		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 546			btrfs_release_path(path);
 547			goto out;
 548		}
 549	}
 550	btrfs_release_path(path);
 551
 552	saved_nbytes = inode_get_bytes(inode);
 553	/* drop any overlapping extents */
 554	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 555				 &alloc_hint, 1);
 556	BUG_ON(ret);
 
 
 
 557
 558	if (found_type == BTRFS_FILE_EXTENT_REG ||
 559	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 560		u64 offset;
 561		unsigned long dest_offset;
 562		struct btrfs_key ins;
 563
 
 
 
 
 564		ret = btrfs_insert_empty_item(trans, root, path, key,
 565					      sizeof(*item));
 566		BUG_ON(ret);
 
 567		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 568						    path->slots[0]);
 569		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 570				(unsigned long)item,  sizeof(*item));
 571
 572		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 573		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 574		ins.type = BTRFS_EXTENT_ITEM_KEY;
 575		offset = key->offset - btrfs_file_extent_offset(eb, item);
 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577		if (ins.objectid > 0) {
 
 578			u64 csum_start;
 579			u64 csum_end;
 580			LIST_HEAD(ordered_sums);
 
 581			/*
 582			 * is this extent already allocated in the extent
 583			 * allocation tree?  If so, just add a reference
 584			 */
 585			ret = btrfs_lookup_extent(root, ins.objectid,
 586						ins.offset);
 587			if (ret == 0) {
 588				ret = btrfs_inc_extent_ref(trans, root,
 589						ins.objectid, ins.offset,
 590						0, root->root_key.objectid,
 
 
 
 
 591						key->objectid, offset);
 592				BUG_ON(ret);
 
 
 593			} else {
 594				/*
 595				 * insert the extent pointer in the extent
 596				 * allocation tree
 597				 */
 598				ret = btrfs_alloc_logged_file_extent(trans,
 599						root, root->root_key.objectid,
 600						key->objectid, offset, &ins);
 601				BUG_ON(ret);
 
 602			}
 603			btrfs_release_path(path);
 604
 605			if (btrfs_file_extent_compression(eb, item)) {
 606				csum_start = ins.objectid;
 607				csum_end = csum_start + ins.offset;
 608			} else {
 609				csum_start = ins.objectid +
 610					btrfs_file_extent_offset(eb, item);
 611				csum_end = csum_start +
 612					btrfs_file_extent_num_bytes(eb, item);
 613			}
 614
 615			ret = btrfs_lookup_csums_range(root->log_root,
 616						csum_start, csum_end - 1,
 617						&ordered_sums, 0);
 618			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619			while (!list_empty(&ordered_sums)) {
 620				struct btrfs_ordered_sum *sums;
 621				sums = list_entry(ordered_sums.next,
 622						struct btrfs_ordered_sum,
 623						list);
 624				ret = btrfs_csum_file_blocks(trans,
 625						root->fs_info->csum_root,
 626						sums);
 627				BUG_ON(ret);
 
 
 
 
 628				list_del(&sums->list);
 629				kfree(sums);
 630			}
 
 
 631		} else {
 632			btrfs_release_path(path);
 633		}
 634	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 635		/* inline extents are easy, we just overwrite them */
 636		ret = overwrite_item(trans, root, path, eb, slot, key);
 637		BUG_ON(ret);
 
 638	}
 639
 640	inode_set_bytes(inode, saved_nbytes);
 641	btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 642out:
 643	if (inode)
 644		iput(inode);
 645	return ret;
 646}
 647
 648/*
 649 * when cleaning up conflicts between the directory names in the
 650 * subvolume, directory names in the log and directory names in the
 651 * inode back references, we may have to unlink inodes from directories.
 652 *
 653 * This is a helper function to do the unlink of a specific directory
 654 * item
 655 */
 656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 657				      struct btrfs_root *root,
 658				      struct btrfs_path *path,
 659				      struct inode *dir,
 660				      struct btrfs_dir_item *di)
 661{
 662	struct inode *inode;
 663	char *name;
 664	int name_len;
 665	struct extent_buffer *leaf;
 666	struct btrfs_key location;
 667	int ret;
 668
 669	leaf = path->nodes[0];
 670
 671	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 672	name_len = btrfs_dir_name_len(leaf, di);
 673	name = kmalloc(name_len, GFP_NOFS);
 674	if (!name)
 675		return -ENOMEM;
 676
 677	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 678	btrfs_release_path(path);
 679
 680	inode = read_one_inode(root, location.objectid);
 681	if (!inode) {
 682		kfree(name);
 683		return -EIO;
 684	}
 685
 686	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 687	BUG_ON(ret);
 
 688
 689	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 690	BUG_ON(ret);
 
 
 
 
 
 691	kfree(name);
 692
 693	iput(inode);
 694	return ret;
 695}
 696
 697/*
 698 * helper function to see if a given name and sequence number found
 699 * in an inode back reference are already in a directory and correctly
 700 * point to this inode
 
 
 701 */
 702static noinline int inode_in_dir(struct btrfs_root *root,
 703				 struct btrfs_path *path,
 704				 u64 dirid, u64 objectid, u64 index,
 705				 const char *name, int name_len)
 706{
 707	struct btrfs_dir_item *di;
 708	struct btrfs_key location;
 709	int match = 0;
 710
 711	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 712					 index, name, name_len, 0);
 713	if (di && !IS_ERR(di)) {
 
 
 
 
 714		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 715		if (location.objectid != objectid)
 716			goto out;
 717	} else
 718		goto out;
 719	btrfs_release_path(path);
 720
 
 721	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 722	if (di && !IS_ERR(di)) {
 723		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 724		if (location.objectid != objectid)
 725			goto out;
 726	} else
 727		goto out;
 728	match = 1;
 
 
 
 
 729out:
 730	btrfs_release_path(path);
 731	return match;
 732}
 733
 734/*
 735 * helper function to check a log tree for a named back reference in
 736 * an inode.  This is used to decide if a back reference that is
 737 * found in the subvolume conflicts with what we find in the log.
 738 *
 739 * inode backreferences may have multiple refs in a single item,
 740 * during replay we process one reference at a time, and we don't
 741 * want to delete valid links to a file from the subvolume if that
 742 * link is also in the log.
 743 */
 744static noinline int backref_in_log(struct btrfs_root *log,
 745				   struct btrfs_key *key,
 746				   char *name, int namelen)
 
 747{
 748	struct btrfs_path *path;
 749	struct btrfs_inode_ref *ref;
 750	unsigned long ptr;
 751	unsigned long ptr_end;
 752	unsigned long name_ptr;
 753	int found_name_len;
 754	int item_size;
 755	int ret;
 756	int match = 0;
 757
 758	path = btrfs_alloc_path();
 759	if (!path)
 760		return -ENOMEM;
 761
 762	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 763	if (ret != 0)
 
 
 
 764		goto out;
 765
 766	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 767	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 768	ptr_end = ptr + item_size;
 769	while (ptr < ptr_end) {
 770		ref = (struct btrfs_inode_ref *)ptr;
 771		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 772		if (found_name_len == namelen) {
 773			name_ptr = (unsigned long)(ref + 1);
 774			ret = memcmp_extent_buffer(path->nodes[0], name,
 775						   name_ptr, namelen);
 776			if (ret == 0) {
 777				match = 1;
 778				goto out;
 779			}
 780		}
 781		ptr = (unsigned long)(ref + 1) + found_name_len;
 782	}
 
 
 
 
 
 
 
 
 
 
 783out:
 784	btrfs_free_path(path);
 785	return match;
 786}
 787
 788
 789/*
 790 * replay one inode back reference item found in the log tree.
 791 * eb, slot and key refer to the buffer and key found in the log tree.
 792 * root is the destination we are replaying into, and path is for temp
 793 * use by this function.  (it should be released on return).
 794 */
 795static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 796				  struct btrfs_root *root,
 797				  struct btrfs_root *log,
 798				  struct btrfs_path *path,
 799				  struct extent_buffer *eb, int slot,
 800				  struct btrfs_key *key)
 
 
 
 
 801{
 802	struct btrfs_inode_ref *ref;
 803	struct btrfs_dir_item *di;
 804	struct inode *dir;
 805	struct inode *inode;
 806	unsigned long ref_ptr;
 807	unsigned long ref_end;
 808	char *name;
 809	int namelen;
 810	int ret;
 811	int search_done = 0;
 812
 813	/*
 814	 * it is possible that we didn't log all the parent directories
 815	 * for a given inode.  If we don't find the dir, just don't
 816	 * copy the back ref in.  The link count fixup code will take
 817	 * care of the rest
 818	 */
 819	dir = read_one_inode(root, key->offset);
 820	if (!dir)
 821		return -ENOENT;
 822
 823	inode = read_one_inode(root, key->objectid);
 824	if (!inode) {
 825		iput(dir);
 826		return -EIO;
 827	}
 828
 829	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 830	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 831
 832again:
 833	ref = (struct btrfs_inode_ref *)ref_ptr;
 834
 835	namelen = btrfs_inode_ref_name_len(eb, ref);
 836	name = kmalloc(namelen, GFP_NOFS);
 837	BUG_ON(!name);
 838
 839	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 840
 841	/* if we already have a perfect match, we're done */
 842	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 843			 btrfs_inode_ref_index(eb, ref),
 844			 name, namelen)) {
 845		goto out;
 846	}
 847
 848	/*
 849	 * look for a conflicting back reference in the metadata.
 850	 * if we find one we have to unlink that name of the file
 851	 * before we add our new link.  Later on, we overwrite any
 852	 * existing back reference, and we don't want to create
 853	 * dangling pointers in the directory.
 854	 */
 855
 856	if (search_done)
 857		goto insert;
 858
 859	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 860	if (ret == 0) {
 861		char *victim_name;
 862		int victim_name_len;
 863		struct btrfs_inode_ref *victim_ref;
 864		unsigned long ptr;
 865		unsigned long ptr_end;
 866		struct extent_buffer *leaf = path->nodes[0];
 
 867
 868		/* are we trying to overwrite a back ref for the root directory
 869		 * if so, just jump out, we're done
 870		 */
 871		if (key->objectid == key->offset)
 872			goto out_nowrite;
 873
 874		/* check all the names in this back reference to see
 875		 * if they are in the log.  if so, we allow them to stay
 876		 * otherwise they must be unlinked as a conflict
 877		 */
 878		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 879		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 880		while (ptr < ptr_end) {
 881			victim_ref = (struct btrfs_inode_ref *)ptr;
 882			victim_name_len = btrfs_inode_ref_name_len(leaf,
 883								   victim_ref);
 884			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 885			BUG_ON(!victim_name);
 
 886
 887			read_extent_buffer(leaf, victim_name,
 888					   (unsigned long)(victim_ref + 1),
 889					   victim_name_len);
 890
 891			if (!backref_in_log(log, key, victim_name,
 892					    victim_name_len)) {
 893				btrfs_inc_nlink(inode);
 
 
 
 
 
 894				btrfs_release_path(path);
 895
 896				ret = btrfs_unlink_inode(trans, root, dir,
 897							 inode, victim_name,
 898							 victim_name_len);
 
 
 
 
 
 
 
 899			}
 900			kfree(victim_name);
 
 901			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 902		}
 903		BUG_ON(ret);
 904
 905		/*
 906		 * NOTE: we have searched root tree and checked the
 907		 * coresponding ref, it does not need to check again.
 908		 */
 909		search_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910	}
 911	btrfs_release_path(path);
 912
 913	/* look for a conflicting sequence number */
 914	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 915					 btrfs_inode_ref_index(eb, ref),
 916					 name, namelen, 0);
 917	if (di && !IS_ERR(di)) {
 
 
 918		ret = drop_one_dir_item(trans, root, path, dir, di);
 919		BUG_ON(ret);
 
 920	}
 921	btrfs_release_path(path);
 922
 923	/* look for a conflicing name */
 924	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 925				   name, namelen, 0);
 926	if (di && !IS_ERR(di)) {
 
 
 927		ret = drop_one_dir_item(trans, root, path, dir, di);
 928		BUG_ON(ret);
 
 929	}
 930	btrfs_release_path(path);
 931
 932insert:
 933	/* insert our name */
 934	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 935			     btrfs_inode_ref_index(eb, ref));
 936	BUG_ON(ret);
 937
 938	btrfs_update_inode(trans, root, inode);
 
 
 
 
 939
 940out:
 941	ref_ptr = (unsigned long)(ref + 1) + namelen;
 942	kfree(name);
 943	if (ref_ptr < ref_end)
 944		goto again;
 945
 946	/* finally write the back reference in the inode */
 947	ret = overwrite_item(trans, root, path, eb, slot, key);
 948	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 949
 950out_nowrite:
 951	btrfs_release_path(path);
 952	iput(dir);
 953	iput(inode);
 954	return 0;
 955}
 956
 957static int insert_orphan_item(struct btrfs_trans_handle *trans,
 958			      struct btrfs_root *root, u64 offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959{
 960	int ret;
 961	ret = btrfs_find_orphan_item(root, offset);
 962	if (ret > 0)
 963		ret = btrfs_insert_orphan_item(trans, root, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964	return ret;
 965}
 966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968/*
 969 * There are a few corners where the link count of the file can't
 970 * be properly maintained during replay.  So, instead of adding
 971 * lots of complexity to the log code, we just scan the backrefs
 972 * for any file that has been through replay.
 973 *
 974 * The scan will update the link count on the inode to reflect the
 975 * number of back refs found.  If it goes down to zero, the iput
 976 * will free the inode.
 977 */
 978static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 979					   struct btrfs_root *root,
 980					   struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981{
 982	struct btrfs_path *path;
 983	int ret;
 984	struct btrfs_key key;
 985	u64 nlink = 0;
 986	unsigned long ptr;
 987	unsigned long ptr_end;
 988	int name_len;
 989	u64 ino = btrfs_ino(inode);
 990
 991	key.objectid = ino;
 992	key.type = BTRFS_INODE_REF_KEY;
 993	key.offset = (u64)-1;
 994
 995	path = btrfs_alloc_path();
 996	if (!path)
 997		return -ENOMEM;
 998
 999	while (1) {
1000		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1001		if (ret < 0)
1002			break;
1003		if (ret > 0) {
1004			if (path->slots[0] == 0)
1005				break;
1006			path->slots[0]--;
1007		}
 
1008		btrfs_item_key_to_cpu(path->nodes[0], &key,
1009				      path->slots[0]);
1010		if (key.objectid != ino ||
1011		    key.type != BTRFS_INODE_REF_KEY)
1012			break;
1013		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1014		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1015						   path->slots[0]);
1016		while (ptr < ptr_end) {
1017			struct btrfs_inode_ref *ref;
1018
1019			ref = (struct btrfs_inode_ref *)ptr;
1020			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1021							    ref);
1022			ptr = (unsigned long)(ref + 1) + name_len;
1023			nlink++;
1024		}
1025
1026		if (key.offset == 0)
1027			break;
 
 
 
 
1028		key.offset--;
1029		btrfs_release_path(path);
1030	}
1031	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	if (nlink != inode->i_nlink) {
1033		inode->i_nlink = nlink;
1034		btrfs_update_inode(trans, root, inode);
 
 
1035	}
1036	BTRFS_I(inode)->index_cnt = (u64)-1;
1037
1038	if (inode->i_nlink == 0) {
1039		if (S_ISDIR(inode->i_mode)) {
1040			ret = replay_dir_deletes(trans, root, NULL, path,
1041						 ino, 1);
1042			BUG_ON(ret);
 
1043		}
1044		ret = insert_orphan_item(trans, root, ino);
1045		BUG_ON(ret);
 
1046	}
1047	btrfs_free_path(path);
1048
1049	return 0;
 
 
1050}
1051
1052static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1053					    struct btrfs_root *root,
1054					    struct btrfs_path *path)
1055{
1056	int ret;
1057	struct btrfs_key key;
1058	struct inode *inode;
1059
1060	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1061	key.type = BTRFS_ORPHAN_ITEM_KEY;
1062	key.offset = (u64)-1;
1063	while (1) {
1064		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065		if (ret < 0)
1066			break;
1067
1068		if (ret == 1) {
 
1069			if (path->slots[0] == 0)
1070				break;
1071			path->slots[0]--;
1072		}
1073
1074		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1075		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1076		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1077			break;
1078
1079		ret = btrfs_del_item(trans, root, path);
1080		if (ret)
1081			goto out;
1082
1083		btrfs_release_path(path);
1084		inode = read_one_inode(root, key.offset);
1085		if (!inode)
1086			return -EIO;
 
 
1087
1088		ret = fixup_inode_link_count(trans, root, inode);
1089		BUG_ON(ret);
1090
1091		iput(inode);
 
 
1092
1093		/*
1094		 * fixup on a directory may create new entries,
1095		 * make sure we always look for the highset possible
1096		 * offset
1097		 */
1098		key.offset = (u64)-1;
1099	}
1100	ret = 0;
1101out:
1102	btrfs_release_path(path);
1103	return ret;
1104}
1105
1106
1107/*
1108 * record a given inode in the fixup dir so we can check its link
1109 * count when replay is done.  The link count is incremented here
1110 * so the inode won't go away until we check it
1111 */
1112static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1113				      struct btrfs_root *root,
1114				      struct btrfs_path *path,
1115				      u64 objectid)
1116{
1117	struct btrfs_key key;
1118	int ret = 0;
1119	struct inode *inode;
1120
1121	inode = read_one_inode(root, objectid);
1122	if (!inode)
1123		return -EIO;
1124
1125	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1126	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1127	key.offset = objectid;
1128
1129	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1130
1131	btrfs_release_path(path);
1132	if (ret == 0) {
1133		btrfs_inc_nlink(inode);
1134		btrfs_update_inode(trans, root, inode);
 
 
 
1135	} else if (ret == -EEXIST) {
1136		ret = 0;
1137	} else {
1138		BUG();
1139	}
1140	iput(inode);
1141
1142	return ret;
1143}
1144
1145/*
1146 * when replaying the log for a directory, we only insert names
1147 * for inodes that actually exist.  This means an fsync on a directory
1148 * does not implicitly fsync all the new files in it
1149 */
1150static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1151				    struct btrfs_root *root,
1152				    struct btrfs_path *path,
1153				    u64 dirid, u64 index,
1154				    char *name, int name_len, u8 type,
1155				    struct btrfs_key *location)
1156{
1157	struct inode *inode;
1158	struct inode *dir;
1159	int ret;
1160
1161	inode = read_one_inode(root, location->objectid);
1162	if (!inode)
1163		return -ENOENT;
1164
1165	dir = read_one_inode(root, dirid);
1166	if (!dir) {
1167		iput(inode);
1168		return -EIO;
1169	}
1170	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
 
1171
1172	/* FIXME, put inode into FIXUP list */
1173
1174	iput(inode);
1175	iput(dir);
1176	return ret;
1177}
1178
1179/*
1180 * take a single entry in a log directory item and replay it into
1181 * the subvolume.
1182 *
1183 * if a conflicting item exists in the subdirectory already,
1184 * the inode it points to is unlinked and put into the link count
1185 * fix up tree.
1186 *
1187 * If a name from the log points to a file or directory that does
1188 * not exist in the FS, it is skipped.  fsyncs on directories
1189 * do not force down inodes inside that directory, just changes to the
1190 * names or unlinks in a directory.
 
 
 
1191 */
1192static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1193				    struct btrfs_root *root,
1194				    struct btrfs_path *path,
1195				    struct extent_buffer *eb,
1196				    struct btrfs_dir_item *di,
1197				    struct btrfs_key *key)
1198{
1199	char *name;
1200	int name_len;
1201	struct btrfs_dir_item *dst_di;
1202	struct btrfs_key found_key;
1203	struct btrfs_key log_key;
1204	struct inode *dir;
1205	u8 log_type;
1206	int exists;
1207	int ret;
 
 
1208
1209	dir = read_one_inode(root, key->objectid);
1210	if (!dir)
1211		return -EIO;
1212
1213	name_len = btrfs_dir_name_len(eb, di);
1214	name = kmalloc(name_len, GFP_NOFS);
1215	if (!name)
1216		return -ENOMEM;
 
 
1217
1218	log_type = btrfs_dir_type(eb, di);
1219	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1220		   name_len);
1221
1222	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1223	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1224	if (exists == 0)
1225		exists = 1;
1226	else
1227		exists = 0;
1228	btrfs_release_path(path);
 
 
 
 
1229
1230	if (key->type == BTRFS_DIR_ITEM_KEY) {
1231		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1232				       name, name_len, 1);
1233	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1234		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1235						     key->objectid,
1236						     key->offset, name,
1237						     name_len, 1);
1238	} else {
1239		BUG();
 
 
1240	}
1241	if (IS_ERR_OR_NULL(dst_di)) {
 
 
 
 
 
 
 
1242		/* we need a sequence number to insert, so we only
1243		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1244		 */
1245		if (key->type != BTRFS_DIR_INDEX_KEY)
1246			goto out;
1247		goto insert;
1248	}
1249
1250	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1251	/* the existing item matches the logged item */
1252	if (found_key.objectid == log_key.objectid &&
1253	    found_key.type == log_key.type &&
1254	    found_key.offset == log_key.offset &&
1255	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 
1256		goto out;
1257	}
1258
1259	/*
1260	 * don't drop the conflicting directory entry if the inode
1261	 * for the new entry doesn't exist
1262	 */
1263	if (!exists)
1264		goto out;
1265
1266	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1267	BUG_ON(ret);
 
1268
1269	if (key->type == BTRFS_DIR_INDEX_KEY)
1270		goto insert;
1271out:
1272	btrfs_release_path(path);
 
 
 
 
1273	kfree(name);
1274	iput(dir);
1275	return 0;
 
 
1276
1277insert:
1278	btrfs_release_path(path);
1279	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1280			      name, name_len, log_type, &log_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282	BUG_ON(ret && ret != -ENOENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283	goto out;
1284}
1285
1286/*
1287 * find all the names in a directory item and reconcile them into
1288 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1289 * one name in a directory item, but the same code gets used for
1290 * both directory index types
1291 */
1292static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1293					struct btrfs_root *root,
1294					struct btrfs_path *path,
1295					struct extent_buffer *eb, int slot,
1296					struct btrfs_key *key)
1297{
1298	int ret;
1299	u32 item_size = btrfs_item_size_nr(eb, slot);
1300	struct btrfs_dir_item *di;
1301	int name_len;
1302	unsigned long ptr;
1303	unsigned long ptr_end;
 
1304
1305	ptr = btrfs_item_ptr_offset(eb, slot);
1306	ptr_end = ptr + item_size;
1307	while (ptr < ptr_end) {
1308		di = (struct btrfs_dir_item *)ptr;
1309		if (verify_dir_item(root, eb, di))
1310			return -EIO;
1311		name_len = btrfs_dir_name_len(eb, di);
1312		ret = replay_one_name(trans, root, path, eb, di, key);
1313		BUG_ON(ret);
 
1314		ptr = (unsigned long)(di + 1);
1315		ptr += name_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316	}
1317	return 0;
 
1318}
1319
1320/*
1321 * directory replay has two parts.  There are the standard directory
1322 * items in the log copied from the subvolume, and range items
1323 * created in the log while the subvolume was logged.
1324 *
1325 * The range items tell us which parts of the key space the log
1326 * is authoritative for.  During replay, if a key in the subvolume
1327 * directory is in a logged range item, but not actually in the log
1328 * that means it was deleted from the directory before the fsync
1329 * and should be removed.
1330 */
1331static noinline int find_dir_range(struct btrfs_root *root,
1332				   struct btrfs_path *path,
1333				   u64 dirid, int key_type,
1334				   u64 *start_ret, u64 *end_ret)
1335{
1336	struct btrfs_key key;
1337	u64 found_end;
1338	struct btrfs_dir_log_item *item;
1339	int ret;
1340	int nritems;
1341
1342	if (*start_ret == (u64)-1)
1343		return 1;
1344
1345	key.objectid = dirid;
1346	key.type = key_type;
1347	key.offset = *start_ret;
1348
1349	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1350	if (ret < 0)
1351		goto out;
1352	if (ret > 0) {
1353		if (path->slots[0] == 0)
1354			goto out;
1355		path->slots[0]--;
1356	}
1357	if (ret != 0)
1358		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1359
1360	if (key.type != key_type || key.objectid != dirid) {
1361		ret = 1;
1362		goto next;
1363	}
1364	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1365			      struct btrfs_dir_log_item);
1366	found_end = btrfs_dir_log_end(path->nodes[0], item);
1367
1368	if (*start_ret >= key.offset && *start_ret <= found_end) {
1369		ret = 0;
1370		*start_ret = key.offset;
1371		*end_ret = found_end;
1372		goto out;
1373	}
1374	ret = 1;
1375next:
1376	/* check the next slot in the tree to see if it is a valid item */
1377	nritems = btrfs_header_nritems(path->nodes[0]);
 
1378	if (path->slots[0] >= nritems) {
1379		ret = btrfs_next_leaf(root, path);
1380		if (ret)
1381			goto out;
1382	} else {
1383		path->slots[0]++;
1384	}
1385
1386	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1387
1388	if (key.type != key_type || key.objectid != dirid) {
1389		ret = 1;
1390		goto out;
1391	}
1392	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1393			      struct btrfs_dir_log_item);
1394	found_end = btrfs_dir_log_end(path->nodes[0], item);
1395	*start_ret = key.offset;
1396	*end_ret = found_end;
1397	ret = 0;
1398out:
1399	btrfs_release_path(path);
1400	return ret;
1401}
1402
1403/*
1404 * this looks for a given directory item in the log.  If the directory
1405 * item is not in the log, the item is removed and the inode it points
1406 * to is unlinked
1407 */
1408static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1409				      struct btrfs_root *root,
1410				      struct btrfs_root *log,
1411				      struct btrfs_path *path,
1412				      struct btrfs_path *log_path,
1413				      struct inode *dir,
1414				      struct btrfs_key *dir_key)
1415{
1416	int ret;
1417	struct extent_buffer *eb;
1418	int slot;
1419	u32 item_size;
1420	struct btrfs_dir_item *di;
1421	struct btrfs_dir_item *log_di;
1422	int name_len;
1423	unsigned long ptr;
1424	unsigned long ptr_end;
1425	char *name;
1426	struct inode *inode;
1427	struct btrfs_key location;
1428
1429again:
1430	eb = path->nodes[0];
1431	slot = path->slots[0];
1432	item_size = btrfs_item_size_nr(eb, slot);
1433	ptr = btrfs_item_ptr_offset(eb, slot);
1434	ptr_end = ptr + item_size;
1435	while (ptr < ptr_end) {
1436		di = (struct btrfs_dir_item *)ptr;
1437		if (verify_dir_item(root, eb, di)) {
1438			ret = -EIO;
1439			goto out;
1440		}
1441
1442		name_len = btrfs_dir_name_len(eb, di);
1443		name = kmalloc(name_len, GFP_NOFS);
1444		if (!name) {
1445			ret = -ENOMEM;
1446			goto out;
1447		}
1448		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1449				  name_len);
1450		log_di = NULL;
1451		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1452			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1453						       dir_key->objectid,
1454						       name, name_len, 0);
1455		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1456			log_di = btrfs_lookup_dir_index_item(trans, log,
1457						     log_path,
1458						     dir_key->objectid,
1459						     dir_key->offset,
1460						     name, name_len, 0);
1461		}
1462		if (IS_ERR_OR_NULL(log_di)) {
1463			btrfs_dir_item_key_to_cpu(eb, di, &location);
1464			btrfs_release_path(path);
1465			btrfs_release_path(log_path);
1466			inode = read_one_inode(root, location.objectid);
1467			if (!inode) {
1468				kfree(name);
1469				return -EIO;
1470			}
1471
1472			ret = link_to_fixup_dir(trans, root,
1473						path, location.objectid);
1474			BUG_ON(ret);
1475			btrfs_inc_nlink(inode);
1476			ret = btrfs_unlink_inode(trans, root, dir, inode,
1477						 name, name_len);
1478			BUG_ON(ret);
 
 
 
 
 
 
1479			kfree(name);
1480			iput(inode);
 
 
1481
1482			/* there might still be more names under this key
1483			 * check and repeat if required
1484			 */
1485			ret = btrfs_search_slot(NULL, root, dir_key, path,
1486						0, 0);
1487			if (ret == 0)
1488				goto again;
1489			ret = 0;
1490			goto out;
 
 
 
1491		}
1492		btrfs_release_path(log_path);
1493		kfree(name);
1494
1495		ptr = (unsigned long)(di + 1);
1496		ptr += name_len;
1497	}
1498	ret = 0;
1499out:
1500	btrfs_release_path(path);
1501	btrfs_release_path(log_path);
1502	return ret;
1503}
1504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505/*
1506 * deletion replay happens before we copy any new directory items
1507 * out of the log or out of backreferences from inodes.  It
1508 * scans the log to find ranges of keys that log is authoritative for,
1509 * and then scans the directory to find items in those ranges that are
1510 * not present in the log.
1511 *
1512 * Anything we don't find in the log is unlinked and removed from the
1513 * directory.
1514 */
1515static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1516				       struct btrfs_root *root,
1517				       struct btrfs_root *log,
1518				       struct btrfs_path *path,
1519				       u64 dirid, int del_all)
1520{
1521	u64 range_start;
1522	u64 range_end;
1523	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1524	int ret = 0;
1525	struct btrfs_key dir_key;
1526	struct btrfs_key found_key;
1527	struct btrfs_path *log_path;
1528	struct inode *dir;
1529
1530	dir_key.objectid = dirid;
1531	dir_key.type = BTRFS_DIR_ITEM_KEY;
1532	log_path = btrfs_alloc_path();
1533	if (!log_path)
1534		return -ENOMEM;
1535
1536	dir = read_one_inode(root, dirid);
1537	/* it isn't an error if the inode isn't there, that can happen
1538	 * because we replay the deletes before we copy in the inode item
1539	 * from the log
1540	 */
1541	if (!dir) {
1542		btrfs_free_path(log_path);
1543		return 0;
1544	}
1545again:
1546	range_start = 0;
1547	range_end = 0;
1548	while (1) {
1549		if (del_all)
1550			range_end = (u64)-1;
1551		else {
1552			ret = find_dir_range(log, path, dirid, key_type,
1553					     &range_start, &range_end);
1554			if (ret != 0)
1555				break;
1556		}
1557
1558		dir_key.offset = range_start;
1559		while (1) {
1560			int nritems;
1561			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1562						0, 0);
1563			if (ret < 0)
1564				goto out;
1565
1566			nritems = btrfs_header_nritems(path->nodes[0]);
1567			if (path->slots[0] >= nritems) {
1568				ret = btrfs_next_leaf(root, path);
1569				if (ret)
1570					break;
 
 
1571			}
1572			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1573					      path->slots[0]);
1574			if (found_key.objectid != dirid ||
1575			    found_key.type != dir_key.type)
1576				goto next_type;
1577
1578			if (found_key.offset > range_end)
1579				break;
1580
1581			ret = check_item_in_log(trans, root, log, path,
1582						log_path, dir,
1583						&found_key);
1584			BUG_ON(ret);
 
1585			if (found_key.offset == (u64)-1)
1586				break;
1587			dir_key.offset = found_key.offset + 1;
1588		}
1589		btrfs_release_path(path);
1590		if (range_end == (u64)-1)
1591			break;
1592		range_start = range_end + 1;
1593	}
1594
1595next_type:
1596	ret = 0;
1597	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1598		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1599		dir_key.type = BTRFS_DIR_INDEX_KEY;
1600		btrfs_release_path(path);
1601		goto again;
1602	}
1603out:
1604	btrfs_release_path(path);
1605	btrfs_free_path(log_path);
1606	iput(dir);
1607	return ret;
1608}
1609
1610/*
1611 * the process_func used to replay items from the log tree.  This
1612 * gets called in two different stages.  The first stage just looks
1613 * for inodes and makes sure they are all copied into the subvolume.
1614 *
1615 * The second stage copies all the other item types from the log into
1616 * the subvolume.  The two stage approach is slower, but gets rid of
1617 * lots of complexity around inodes referencing other inodes that exist
1618 * only in the log (references come from either directory items or inode
1619 * back refs).
1620 */
1621static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1622			     struct walk_control *wc, u64 gen)
1623{
1624	int nritems;
1625	struct btrfs_path *path;
1626	struct btrfs_root *root = wc->replay_dest;
1627	struct btrfs_key key;
1628	int level;
1629	int i;
1630	int ret;
1631
1632	btrfs_read_buffer(eb, gen);
 
 
1633
1634	level = btrfs_header_level(eb);
1635
1636	if (level != 0)
1637		return 0;
1638
1639	path = btrfs_alloc_path();
1640	if (!path)
1641		return -ENOMEM;
1642
1643	nritems = btrfs_header_nritems(eb);
1644	for (i = 0; i < nritems; i++) {
1645		btrfs_item_key_to_cpu(eb, &key, i);
1646
1647		/* inode keys are done during the first stage */
1648		if (key.type == BTRFS_INODE_ITEM_KEY &&
1649		    wc->stage == LOG_WALK_REPLAY_INODES) {
1650			struct btrfs_inode_item *inode_item;
1651			u32 mode;
1652
1653			inode_item = btrfs_item_ptr(eb, i,
1654					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655			mode = btrfs_inode_mode(eb, inode_item);
1656			if (S_ISDIR(mode)) {
1657				ret = replay_dir_deletes(wc->trans,
1658					 root, log, path, key.objectid, 0);
1659				BUG_ON(ret);
 
1660			}
1661			ret = overwrite_item(wc->trans, root, path,
1662					     eb, i, &key);
1663			BUG_ON(ret);
 
1664
1665			/* for regular files, make sure corresponding
1666			 * orhpan item exist. extents past the new EOF
1667			 * will be truncated later by orphan cleanup.
 
 
 
 
1668			 */
1669			if (S_ISREG(mode)) {
1670				ret = insert_orphan_item(wc->trans, root,
1671							 key.objectid);
1672				BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673			}
1674
1675			ret = link_to_fixup_dir(wc->trans, root,
1676						path, key.objectid);
1677			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
1678		}
 
1679		if (wc->stage < LOG_WALK_REPLAY_ALL)
1680			continue;
1681
1682		/* these keys are simply copied */
1683		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1684			ret = overwrite_item(wc->trans, root, path,
1685					     eb, i, &key);
1686			BUG_ON(ret);
1687		} else if (key.type == BTRFS_INODE_REF_KEY) {
 
 
1688			ret = add_inode_ref(wc->trans, root, log, path,
1689					    eb, i, &key);
1690			BUG_ON(ret && ret != -ENOENT);
 
 
1691		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1692			ret = replay_one_extent(wc->trans, root, path,
1693						eb, i, &key);
1694			BUG_ON(ret);
1695		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1696			   key.type == BTRFS_DIR_INDEX_KEY) {
1697			ret = replay_one_dir_item(wc->trans, root, path,
1698						  eb, i, &key);
1699			BUG_ON(ret);
 
1700		}
1701	}
1702	btrfs_free_path(path);
1703	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704}
1705
1706static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1707				   struct btrfs_root *root,
1708				   struct btrfs_path *path, int *level,
1709				   struct walk_control *wc)
1710{
1711	u64 root_owner;
1712	u64 bytenr;
1713	u64 ptr_gen;
1714	struct extent_buffer *next;
1715	struct extent_buffer *cur;
1716	struct extent_buffer *parent;
1717	u32 blocksize;
1718	int ret = 0;
1719
1720	WARN_ON(*level < 0);
1721	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1722
1723	while (*level > 0) {
1724		WARN_ON(*level < 0);
1725		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1726		cur = path->nodes[*level];
1727
1728		if (btrfs_header_level(cur) != *level)
1729			WARN_ON(1);
1730
1731		if (path->slots[*level] >=
1732		    btrfs_header_nritems(cur))
1733			break;
1734
1735		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1736		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1737		blocksize = btrfs_level_size(root, *level - 1);
 
1738
1739		parent = path->nodes[*level];
1740		root_owner = btrfs_header_owner(parent);
1741
1742		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1743		if (!next)
1744			return -ENOMEM;
1745
1746		if (*level == 1) {
1747			ret = wc->process_func(root, next, wc, ptr_gen);
1748			if (ret)
 
 
1749				return ret;
 
1750
1751			path->slots[*level]++;
1752			if (wc->free) {
1753				btrfs_read_buffer(next, ptr_gen);
1754
1755				btrfs_tree_lock(next);
1756				btrfs_set_lock_blocking(next);
1757				clean_tree_block(trans, root, next);
1758				btrfs_wait_tree_block_writeback(next);
1759				btrfs_tree_unlock(next);
1760
1761				WARN_ON(root_owner !=
1762					BTRFS_TREE_LOG_OBJECTID);
1763				ret = btrfs_free_reserved_extent(root,
1764							 bytenr, blocksize);
1765				BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
1766			}
1767			free_extent_buffer(next);
1768			continue;
1769		}
1770		btrfs_read_buffer(next, ptr_gen);
 
 
 
 
1771
1772		WARN_ON(*level <= 0);
1773		if (path->nodes[*level-1])
1774			free_extent_buffer(path->nodes[*level-1]);
1775		path->nodes[*level-1] = next;
1776		*level = btrfs_header_level(next);
1777		path->slots[*level] = 0;
1778		cond_resched();
1779	}
1780	WARN_ON(*level < 0);
1781	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1782
1783	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1784
1785	cond_resched();
1786	return 0;
1787}
1788
1789static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1790				 struct btrfs_root *root,
1791				 struct btrfs_path *path, int *level,
1792				 struct walk_control *wc)
1793{
1794	u64 root_owner;
1795	int i;
1796	int slot;
1797	int ret;
1798
1799	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1800		slot = path->slots[i];
1801		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1802			path->slots[i]++;
1803			*level = i;
1804			WARN_ON(*level == 0);
1805			return 0;
1806		} else {
1807			struct extent_buffer *parent;
1808			if (path->nodes[*level] == root->node)
1809				parent = path->nodes[*level];
1810			else
1811				parent = path->nodes[*level + 1];
1812
1813			root_owner = btrfs_header_owner(parent);
1814			ret = wc->process_func(root, path->nodes[*level], wc,
1815				 btrfs_header_generation(path->nodes[*level]));
 
1816			if (ret)
1817				return ret;
1818
1819			if (wc->free) {
1820				struct extent_buffer *next;
1821
1822				next = path->nodes[*level];
1823
1824				btrfs_tree_lock(next);
1825				btrfs_set_lock_blocking(next);
1826				clean_tree_block(trans, root, next);
1827				btrfs_wait_tree_block_writeback(next);
1828				btrfs_tree_unlock(next);
 
 
 
 
 
 
 
 
1829
1830				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1831				ret = btrfs_free_reserved_extent(root,
1832						path->nodes[*level]->start,
1833						path->nodes[*level]->len);
1834				BUG_ON(ret);
1835			}
1836			free_extent_buffer(path->nodes[*level]);
1837			path->nodes[*level] = NULL;
1838			*level = i + 1;
1839		}
1840	}
1841	return 1;
1842}
1843
1844/*
1845 * drop the reference count on the tree rooted at 'snap'.  This traverses
1846 * the tree freeing any blocks that have a ref count of zero after being
1847 * decremented.
1848 */
1849static int walk_log_tree(struct btrfs_trans_handle *trans,
1850			 struct btrfs_root *log, struct walk_control *wc)
1851{
 
1852	int ret = 0;
1853	int wret;
1854	int level;
1855	struct btrfs_path *path;
1856	int i;
1857	int orig_level;
1858
1859	path = btrfs_alloc_path();
1860	if (!path)
1861		return -ENOMEM;
1862
1863	level = btrfs_header_level(log->node);
1864	orig_level = level;
1865	path->nodes[level] = log->node;
1866	extent_buffer_get(log->node);
1867	path->slots[level] = 0;
1868
1869	while (1) {
1870		wret = walk_down_log_tree(trans, log, path, &level, wc);
1871		if (wret > 0)
1872			break;
1873		if (wret < 0)
1874			ret = wret;
 
 
1875
1876		wret = walk_up_log_tree(trans, log, path, &level, wc);
1877		if (wret > 0)
1878			break;
1879		if (wret < 0)
1880			ret = wret;
 
 
1881	}
1882
1883	/* was the root node processed? if not, catch it here */
1884	if (path->nodes[orig_level]) {
1885		wc->process_func(log, path->nodes[orig_level], wc,
1886			 btrfs_header_generation(path->nodes[orig_level]));
 
 
 
1887		if (wc->free) {
1888			struct extent_buffer *next;
1889
1890			next = path->nodes[orig_level];
1891
1892			btrfs_tree_lock(next);
1893			btrfs_set_lock_blocking(next);
1894			clean_tree_block(trans, log, next);
1895			btrfs_wait_tree_block_writeback(next);
1896			btrfs_tree_unlock(next);
1897
1898			WARN_ON(log->root_key.objectid !=
1899				BTRFS_TREE_LOG_OBJECTID);
1900			ret = btrfs_free_reserved_extent(log, next->start,
1901							 next->len);
1902			BUG_ON(ret);
 
 
 
1903		}
1904	}
1905
1906	for (i = 0; i <= orig_level; i++) {
1907		if (path->nodes[i]) {
1908			free_extent_buffer(path->nodes[i]);
1909			path->nodes[i] = NULL;
1910		}
1911	}
1912	btrfs_free_path(path);
1913	return ret;
1914}
1915
1916/*
1917 * helper function to update the item for a given subvolumes log root
1918 * in the tree of log roots
1919 */
1920static int update_log_root(struct btrfs_trans_handle *trans,
1921			   struct btrfs_root *log)
 
1922{
 
1923	int ret;
1924
1925	if (log->log_transid == 1) {
1926		/* insert root item on the first sync */
1927		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1928				&log->root_key, &log->root_item);
1929	} else {
1930		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1931				&log->root_key, &log->root_item);
1932	}
1933	return ret;
1934}
1935
1936static int wait_log_commit(struct btrfs_trans_handle *trans,
1937			   struct btrfs_root *root, unsigned long transid)
1938{
1939	DEFINE_WAIT(wait);
1940	int index = transid % 2;
1941
1942	/*
1943	 * we only allow two pending log transactions at a time,
1944	 * so we know that if ours is more than 2 older than the
1945	 * current transaction, we're done
1946	 */
1947	do {
1948		prepare_to_wait(&root->log_commit_wait[index],
1949				&wait, TASK_UNINTERRUPTIBLE);
1950		mutex_unlock(&root->log_mutex);
1951
1952		if (root->fs_info->last_trans_log_full_commit !=
1953		    trans->transid && root->log_transid < transid + 2 &&
1954		    atomic_read(&root->log_commit[index]))
1955			schedule();
1956
1957		finish_wait(&root->log_commit_wait[index], &wait);
 
1958		mutex_lock(&root->log_mutex);
1959	} while (root->log_transid < transid + 2 &&
1960		 atomic_read(&root->log_commit[index]));
1961	return 0;
1962}
1963
1964static int wait_for_writer(struct btrfs_trans_handle *trans,
1965			   struct btrfs_root *root)
1966{
1967	DEFINE_WAIT(wait);
1968	while (atomic_read(&root->log_writers)) {
1969		prepare_to_wait(&root->log_writer_wait,
1970				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
 
1971		mutex_unlock(&root->log_mutex);
1972		if (root->fs_info->last_trans_log_full_commit !=
1973		    trans->transid && atomic_read(&root->log_writers))
1974			schedule();
1975		mutex_lock(&root->log_mutex);
1976		finish_wait(&root->log_writer_wait, &wait);
1977	}
1978	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979}
1980
1981/*
1982 * btrfs_sync_log does sends a given tree log down to the disk and
1983 * updates the super blocks to record it.  When this call is done,
1984 * you know that any inodes previously logged are safely on disk only
1985 * if it returns 0.
1986 *
1987 * Any other return value means you need to call btrfs_commit_transaction.
1988 * Some of the edge cases for fsyncing directories that have had unlinks
1989 * or renames done in the past mean that sometimes the only safe
1990 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1991 * that has happened.
1992 */
1993int btrfs_sync_log(struct btrfs_trans_handle *trans,
1994		   struct btrfs_root *root)
1995{
1996	int index1;
1997	int index2;
1998	int mark;
1999	int ret;
 
2000	struct btrfs_root *log = root->log_root;
2001	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2002	unsigned long log_transid = 0;
 
 
 
 
 
2003
2004	mutex_lock(&root->log_mutex);
2005	index1 = root->log_transid % 2;
 
 
 
 
 
 
2006	if (atomic_read(&root->log_commit[index1])) {
2007		wait_log_commit(trans, root, root->log_transid);
2008		mutex_unlock(&root->log_mutex);
2009		return 0;
2010	}
 
2011	atomic_set(&root->log_commit[index1], 1);
2012
2013	/* wait for previous tree log sync to complete */
2014	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2015		wait_log_commit(trans, root, root->log_transid - 1);
2016
2017	while (1) {
2018		unsigned long batch = root->log_batch;
2019		if (root->log_multiple_pids) {
 
 
2020			mutex_unlock(&root->log_mutex);
2021			schedule_timeout_uninterruptible(1);
2022			mutex_lock(&root->log_mutex);
2023		}
2024		wait_for_writer(trans, root);
2025		if (batch == root->log_batch)
2026			break;
2027	}
2028
2029	/* bail out if we need to do a full commit */
2030	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2031		ret = -EAGAIN;
2032		mutex_unlock(&root->log_mutex);
2033		goto out;
2034	}
2035
2036	log_transid = root->log_transid;
2037	if (log_transid % 2 == 0)
2038		mark = EXTENT_DIRTY;
2039	else
2040		mark = EXTENT_NEW;
2041
2042	/* we start IO on  all the marked extents here, but we don't actually
2043	 * wait for them until later.
2044	 */
2045	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2046	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047
 
 
 
 
 
 
 
 
 
 
 
 
 
2048	btrfs_set_root_node(&log->root_item, log->node);
 
2049
2050	root->log_batch = 0;
2051	root->log_transid++;
2052	log->log_transid = root->log_transid;
2053	root->log_start_pid = 0;
2054	smp_mb();
2055	/*
2056	 * IO has been started, blocks of the log tree have WRITTEN flag set
2057	 * in their headers. new modifications of the log will be written to
2058	 * new positions. so it's safe to allow log writers to go in.
2059	 */
2060	mutex_unlock(&root->log_mutex);
2061
2062	mutex_lock(&log_root_tree->log_mutex);
2063	log_root_tree->log_batch++;
2064	atomic_inc(&log_root_tree->log_writers);
2065	mutex_unlock(&log_root_tree->log_mutex);
 
 
 
 
 
 
 
2066
2067	ret = update_log_root(trans, log);
2068
2069	mutex_lock(&log_root_tree->log_mutex);
2070	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2071		smp_mb();
2072		if (waitqueue_active(&log_root_tree->log_writer_wait))
2073			wake_up(&log_root_tree->log_writer_wait);
2074	}
2075
 
 
 
 
 
 
 
 
 
 
2076	if (ret) {
2077		BUG_ON(ret != -ENOSPC);
2078		root->fs_info->last_trans_log_full_commit = trans->transid;
2079		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
2080		mutex_unlock(&log_root_tree->log_mutex);
2081		ret = -EAGAIN;
2082		goto out;
2083	}
2084
2085	index2 = log_root_tree->log_transid % 2;
 
 
 
 
 
 
 
 
2086	if (atomic_read(&log_root_tree->log_commit[index2])) {
2087		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2088		wait_log_commit(trans, log_root_tree,
2089				log_root_tree->log_transid);
 
2090		mutex_unlock(&log_root_tree->log_mutex);
2091		ret = 0;
 
2092		goto out;
2093	}
 
2094	atomic_set(&log_root_tree->log_commit[index2], 1);
2095
2096	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2097		wait_log_commit(trans, log_root_tree,
2098				log_root_tree->log_transid - 1);
2099	}
2100
2101	wait_for_writer(trans, log_root_tree);
2102
2103	/*
2104	 * now that we've moved on to the tree of log tree roots,
2105	 * check the full commit flag again
2106	 */
2107	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2108		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2109		mutex_unlock(&log_root_tree->log_mutex);
2110		ret = -EAGAIN;
2111		goto out_wake_log_root;
2112	}
2113
2114	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2115				&log_root_tree->dirty_log_pages,
2116				EXTENT_DIRTY | EXTENT_NEW);
2117	BUG_ON(ret);
2118	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119
2120	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2121				log_root_tree->node->start);
2122	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2123				btrfs_header_level(log_root_tree->node));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124
2125	log_root_tree->log_batch = 0;
 
2126	log_root_tree->log_transid++;
2127	smp_mb();
2128
2129	mutex_unlock(&log_root_tree->log_mutex);
2130
2131	/*
2132	 * nobody else is going to jump in and write the the ctree
2133	 * super here because the log_commit atomic below is protecting
2134	 * us.  We must be called with a transaction handle pinning
2135	 * the running transaction open, so a full commit can't hop
2136	 * in and cause problems either.
2137	 */
2138	btrfs_scrub_pause_super(root);
2139	write_ctree_super(trans, root->fs_info->tree_root, 1);
2140	btrfs_scrub_continue_super(root);
2141	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142
2143	mutex_lock(&root->log_mutex);
2144	if (root->last_log_commit < log_transid)
2145		root->last_log_commit = log_transid;
2146	mutex_unlock(&root->log_mutex);
2147
2148out_wake_log_root:
 
 
 
 
2149	atomic_set(&log_root_tree->log_commit[index2], 0);
2150	smp_mb();
2151	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2152		wake_up(&log_root_tree->log_commit_wait[index2]);
 
 
 
 
 
2153out:
 
 
 
2154	atomic_set(&root->log_commit[index1], 0);
2155	smp_mb();
2156	if (waitqueue_active(&root->log_commit_wait[index1]))
2157		wake_up(&root->log_commit_wait[index1]);
 
 
 
 
 
2158	return ret;
2159}
2160
2161static void free_log_tree(struct btrfs_trans_handle *trans,
2162			  struct btrfs_root *log)
2163{
2164	int ret;
2165	u64 start;
2166	u64 end;
2167	struct walk_control wc = {
2168		.free = 1,
2169		.process_func = process_one_buffer
2170	};
2171
2172	ret = walk_log_tree(trans, log, &wc);
2173	BUG_ON(ret);
2174
2175	while (1) {
2176		ret = find_first_extent_bit(&log->dirty_log_pages,
2177				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2178		if (ret)
2179			break;
2180
2181		clear_extent_bits(&log->dirty_log_pages, start, end,
2182				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2183	}
2184
2185	free_extent_buffer(log->node);
2186	kfree(log);
 
 
 
 
 
2187}
2188
2189/*
2190 * free all the extents used by the tree log.  This should be called
2191 * at commit time of the full transaction
2192 */
2193int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2194{
2195	if (root->log_root) {
2196		free_log_tree(trans, root->log_root);
2197		root->log_root = NULL;
 
2198	}
2199	return 0;
2200}
2201
2202int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2203			     struct btrfs_fs_info *fs_info)
2204{
2205	if (fs_info->log_root_tree) {
2206		free_log_tree(trans, fs_info->log_root_tree);
2207		fs_info->log_root_tree = NULL;
 
2208	}
2209	return 0;
2210}
2211
2212/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213 * If both a file and directory are logged, and unlinks or renames are
2214 * mixed in, we have a few interesting corners:
2215 *
2216 * create file X in dir Y
2217 * link file X to X.link in dir Y
2218 * fsync file X
2219 * unlink file X but leave X.link
2220 * fsync dir Y
2221 *
2222 * After a crash we would expect only X.link to exist.  But file X
2223 * didn't get fsync'd again so the log has back refs for X and X.link.
2224 *
2225 * We solve this by removing directory entries and inode backrefs from the
2226 * log when a file that was logged in the current transaction is
2227 * unlinked.  Any later fsync will include the updated log entries, and
2228 * we'll be able to reconstruct the proper directory items from backrefs.
2229 *
2230 * This optimizations allows us to avoid relogging the entire inode
2231 * or the entire directory.
2232 */
2233int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2234				 struct btrfs_root *root,
2235				 const char *name, int name_len,
2236				 struct inode *dir, u64 index)
2237{
2238	struct btrfs_root *log;
2239	struct btrfs_dir_item *di;
2240	struct btrfs_path *path;
2241	int ret;
2242	int err = 0;
2243	int bytes_del = 0;
2244	u64 dir_ino = btrfs_ino(dir);
2245
2246	if (BTRFS_I(dir)->logged_trans < trans->transid)
2247		return 0;
2248
2249	ret = join_running_log_trans(root);
2250	if (ret)
2251		return 0;
2252
2253	mutex_lock(&BTRFS_I(dir)->log_mutex);
2254
2255	log = root->log_root;
2256	path = btrfs_alloc_path();
2257	if (!path) {
2258		err = -ENOMEM;
2259		goto out_unlock;
2260	}
2261
2262	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2263				   name, name_len, -1);
2264	if (IS_ERR(di)) {
2265		err = PTR_ERR(di);
2266		goto fail;
2267	}
2268	if (di) {
2269		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2270		bytes_del += name_len;
2271		BUG_ON(ret);
 
 
2272	}
2273	btrfs_release_path(path);
2274	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2275					 index, name, name_len, -1);
2276	if (IS_ERR(di)) {
2277		err = PTR_ERR(di);
2278		goto fail;
2279	}
2280	if (di) {
2281		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2282		bytes_del += name_len;
2283		BUG_ON(ret);
2284	}
2285
2286	/* update the directory size in the log to reflect the names
2287	 * we have removed
2288	 */
2289	if (bytes_del) {
2290		struct btrfs_key key;
2291
2292		key.objectid = dir_ino;
2293		key.offset = 0;
2294		key.type = BTRFS_INODE_ITEM_KEY;
2295		btrfs_release_path(path);
2296
2297		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2298		if (ret < 0) {
2299			err = ret;
2300			goto fail;
2301		}
2302		if (ret == 0) {
2303			struct btrfs_inode_item *item;
2304			u64 i_size;
2305
2306			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2307					      struct btrfs_inode_item);
2308			i_size = btrfs_inode_size(path->nodes[0], item);
2309			if (i_size > bytes_del)
2310				i_size -= bytes_del;
2311			else
2312				i_size = 0;
2313			btrfs_set_inode_size(path->nodes[0], item, i_size);
2314			btrfs_mark_buffer_dirty(path->nodes[0]);
2315		} else
2316			ret = 0;
2317		btrfs_release_path(path);
2318	}
 
 
 
 
 
 
2319fail:
2320	btrfs_free_path(path);
2321out_unlock:
2322	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2323	if (ret == -ENOSPC) {
2324		root->fs_info->last_trans_log_full_commit = trans->transid;
2325		ret = 0;
 
 
 
2326	}
 
2327	btrfs_end_log_trans(root);
2328
2329	return err;
2330}
2331
2332/* see comments for btrfs_del_dir_entries_in_log */
2333int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2334			       struct btrfs_root *root,
2335			       const char *name, int name_len,
2336			       struct inode *inode, u64 dirid)
2337{
2338	struct btrfs_root *log;
2339	u64 index;
2340	int ret;
2341
2342	if (BTRFS_I(inode)->logged_trans < trans->transid)
2343		return 0;
2344
2345	ret = join_running_log_trans(root);
2346	if (ret)
2347		return 0;
2348	log = root->log_root;
2349	mutex_lock(&BTRFS_I(inode)->log_mutex);
2350
2351	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2352				  dirid, &index);
2353	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2354	if (ret == -ENOSPC) {
2355		root->fs_info->last_trans_log_full_commit = trans->transid;
2356		ret = 0;
2357	}
 
2358	btrfs_end_log_trans(root);
2359
2360	return ret;
2361}
2362
2363/*
2364 * creates a range item in the log for 'dirid'.  first_offset and
2365 * last_offset tell us which parts of the key space the log should
2366 * be considered authoritative for.
2367 */
2368static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2369				       struct btrfs_root *log,
2370				       struct btrfs_path *path,
2371				       int key_type, u64 dirid,
2372				       u64 first_offset, u64 last_offset)
2373{
2374	int ret;
2375	struct btrfs_key key;
2376	struct btrfs_dir_log_item *item;
2377
2378	key.objectid = dirid;
2379	key.offset = first_offset;
2380	if (key_type == BTRFS_DIR_ITEM_KEY)
2381		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2382	else
2383		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2384	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2385	if (ret)
2386		return ret;
2387
2388	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2389			      struct btrfs_dir_log_item);
2390	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2391	btrfs_mark_buffer_dirty(path->nodes[0]);
2392	btrfs_release_path(path);
2393	return 0;
2394}
2395
2396/*
2397 * log all the items included in the current transaction for a given
2398 * directory.  This also creates the range items in the log tree required
2399 * to replay anything deleted before the fsync
2400 */
2401static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2402			  struct btrfs_root *root, struct inode *inode,
2403			  struct btrfs_path *path,
2404			  struct btrfs_path *dst_path, int key_type,
 
2405			  u64 min_offset, u64 *last_offset_ret)
2406{
2407	struct btrfs_key min_key;
2408	struct btrfs_key max_key;
2409	struct btrfs_root *log = root->log_root;
2410	struct extent_buffer *src;
2411	int err = 0;
2412	int ret;
2413	int i;
2414	int nritems;
2415	u64 first_offset = min_offset;
2416	u64 last_offset = (u64)-1;
2417	u64 ino = btrfs_ino(inode);
2418
2419	log = root->log_root;
2420	max_key.objectid = ino;
2421	max_key.offset = (u64)-1;
2422	max_key.type = key_type;
2423
2424	min_key.objectid = ino;
2425	min_key.type = key_type;
2426	min_key.offset = min_offset;
2427
2428	path->keep_locks = 1;
2429
2430	ret = btrfs_search_forward(root, &min_key, &max_key,
2431				   path, 0, trans->transid);
2432
2433	/*
2434	 * we didn't find anything from this transaction, see if there
2435	 * is anything at all
2436	 */
2437	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2438		min_key.objectid = ino;
2439		min_key.type = key_type;
2440		min_key.offset = (u64)-1;
2441		btrfs_release_path(path);
2442		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2443		if (ret < 0) {
2444			btrfs_release_path(path);
2445			return ret;
2446		}
2447		ret = btrfs_previous_item(root, path, ino, key_type);
2448
2449		/* if ret == 0 there are items for this type,
2450		 * create a range to tell us the last key of this type.
2451		 * otherwise, there are no items in this directory after
2452		 * *min_offset, and we create a range to indicate that.
2453		 */
2454		if (ret == 0) {
2455			struct btrfs_key tmp;
2456			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2457					      path->slots[0]);
2458			if (key_type == tmp.type)
2459				first_offset = max(min_offset, tmp.offset) + 1;
2460		}
2461		goto done;
2462	}
2463
2464	/* go backward to find any previous key */
2465	ret = btrfs_previous_item(root, path, ino, key_type);
2466	if (ret == 0) {
2467		struct btrfs_key tmp;
2468		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2469		if (key_type == tmp.type) {
2470			first_offset = tmp.offset;
2471			ret = overwrite_item(trans, log, dst_path,
2472					     path->nodes[0], path->slots[0],
2473					     &tmp);
2474			if (ret) {
2475				err = ret;
2476				goto done;
2477			}
2478		}
2479	}
2480	btrfs_release_path(path);
2481
2482	/* find the first key from this transaction again */
 
 
 
 
 
 
 
 
2483	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2484	if (ret != 0) {
2485		WARN_ON(1);
2486		goto done;
2487	}
2488
2489	/*
2490	 * we have a block from this transaction, log every item in it
2491	 * from our directory
2492	 */
2493	while (1) {
2494		struct btrfs_key tmp;
2495		src = path->nodes[0];
2496		nritems = btrfs_header_nritems(src);
2497		for (i = path->slots[0]; i < nritems; i++) {
 
 
2498			btrfs_item_key_to_cpu(src, &min_key, i);
2499
2500			if (min_key.objectid != ino || min_key.type != key_type)
2501				goto done;
 
 
 
 
 
 
 
2502			ret = overwrite_item(trans, log, dst_path, src, i,
2503					     &min_key);
2504			if (ret) {
2505				err = ret;
2506				goto done;
2507			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508		}
2509		path->slots[0] = nritems;
2510
2511		/*
2512		 * look ahead to the next item and see if it is also
2513		 * from this directory and from this transaction
2514		 */
2515		ret = btrfs_next_leaf(root, path);
2516		if (ret == 1) {
2517			last_offset = (u64)-1;
 
 
 
2518			goto done;
2519		}
2520		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2521		if (tmp.objectid != ino || tmp.type != key_type) {
2522			last_offset = (u64)-1;
2523			goto done;
2524		}
2525		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2526			ret = overwrite_item(trans, log, dst_path,
2527					     path->nodes[0], path->slots[0],
2528					     &tmp);
2529			if (ret)
2530				err = ret;
2531			else
2532				last_offset = tmp.offset;
2533			goto done;
2534		}
2535	}
2536done:
2537	btrfs_release_path(path);
2538	btrfs_release_path(dst_path);
2539
2540	if (err == 0) {
2541		*last_offset_ret = last_offset;
2542		/*
2543		 * insert the log range keys to indicate where the log
2544		 * is valid
2545		 */
2546		ret = insert_dir_log_key(trans, log, path, key_type,
2547					 ino, first_offset, last_offset);
2548		if (ret)
2549			err = ret;
2550	}
2551	return err;
2552}
2553
2554/*
2555 * logging directories is very similar to logging inodes, We find all the items
2556 * from the current transaction and write them to the log.
2557 *
2558 * The recovery code scans the directory in the subvolume, and if it finds a
2559 * key in the range logged that is not present in the log tree, then it means
2560 * that dir entry was unlinked during the transaction.
2561 *
2562 * In order for that scan to work, we must include one key smaller than
2563 * the smallest logged by this transaction and one key larger than the largest
2564 * key logged by this transaction.
2565 */
2566static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2567			  struct btrfs_root *root, struct inode *inode,
2568			  struct btrfs_path *path,
2569			  struct btrfs_path *dst_path)
 
2570{
2571	u64 min_key;
2572	u64 max_key;
2573	int ret;
2574	int key_type = BTRFS_DIR_ITEM_KEY;
2575
2576again:
2577	min_key = 0;
2578	max_key = 0;
2579	while (1) {
2580		ret = log_dir_items(trans, root, inode, path,
2581				    dst_path, key_type, min_key,
2582				    &max_key);
2583		if (ret)
2584			return ret;
2585		if (max_key == (u64)-1)
2586			break;
2587		min_key = max_key + 1;
2588	}
2589
2590	if (key_type == BTRFS_DIR_ITEM_KEY) {
2591		key_type = BTRFS_DIR_INDEX_KEY;
2592		goto again;
2593	}
2594	return 0;
2595}
2596
2597/*
2598 * a helper function to drop items from the log before we relog an
2599 * inode.  max_key_type indicates the highest item type to remove.
2600 * This cannot be run for file data extents because it does not
2601 * free the extents they point to.
2602 */
2603static int drop_objectid_items(struct btrfs_trans_handle *trans,
2604				  struct btrfs_root *log,
2605				  struct btrfs_path *path,
2606				  u64 objectid, int max_key_type)
2607{
2608	int ret;
2609	struct btrfs_key key;
2610	struct btrfs_key found_key;
 
2611
2612	key.objectid = objectid;
2613	key.type = max_key_type;
2614	key.offset = (u64)-1;
2615
2616	while (1) {
2617		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2618		BUG_ON(ret == 0);
2619		if (ret < 0)
2620			break;
2621
2622		if (path->slots[0] == 0)
2623			break;
2624
2625		path->slots[0]--;
2626		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2627				      path->slots[0]);
2628
2629		if (found_key.objectid != objectid)
2630			break;
2631
2632		ret = btrfs_del_item(trans, log, path);
2633		if (ret)
 
 
 
 
 
 
 
 
 
 
 
2634			break;
2635		btrfs_release_path(path);
2636	}
2637	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638	return ret;
2639}
2640
2641static noinline int copy_items(struct btrfs_trans_handle *trans,
2642			       struct btrfs_root *log,
2643			       struct btrfs_path *dst_path,
2644			       struct extent_buffer *src,
2645			       int start_slot, int nr, int inode_only)
 
2646{
 
2647	unsigned long src_offset;
2648	unsigned long dst_offset;
 
2649	struct btrfs_file_extent_item *extent;
2650	struct btrfs_inode_item *inode_item;
 
2651	int ret;
2652	struct btrfs_key *ins_keys;
2653	u32 *ins_sizes;
2654	char *ins_data;
2655	int i;
2656	struct list_head ordered_sums;
 
2657
2658	INIT_LIST_HEAD(&ordered_sums);
2659
2660	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2661			   nr * sizeof(u32), GFP_NOFS);
2662	if (!ins_data)
2663		return -ENOMEM;
2664
2665	ins_sizes = (u32 *)ins_data;
2666	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2667
2668	for (i = 0; i < nr; i++) {
2669		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2670		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2671	}
2672	ret = btrfs_insert_empty_items(trans, log, dst_path,
2673				       ins_keys, ins_sizes, nr);
2674	if (ret) {
2675		kfree(ins_data);
2676		return ret;
2677	}
2678
2679	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2680		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2681						   dst_path->slots[0]);
2682
2683		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2684
2685		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2686				   src_offset, ins_sizes[i]);
2687
2688		if (inode_only == LOG_INODE_EXISTS &&
2689		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2690			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2691						    dst_path->slots[0],
2692						    struct btrfs_inode_item);
2693			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2694
2695			/* set the generation to zero so the recover code
2696			 * can tell the difference between an logging
2697			 * just to say 'this inode exists' and a logging
2698			 * to say 'update this inode with these values'
2699			 */
2700			btrfs_set_inode_generation(dst_path->nodes[0],
2701						   inode_item, 0);
2702		}
 
2703		/* take a reference on file data extents so that truncates
2704		 * or deletes of this inode don't have to relog the inode
2705		 * again
2706		 */
2707		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 
2708			int found_type;
2709			extent = btrfs_item_ptr(src, start_slot + i,
2710						struct btrfs_file_extent_item);
2711
2712			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2713				continue;
2714
2715			found_type = btrfs_file_extent_type(src, extent);
2716			if (found_type == BTRFS_FILE_EXTENT_REG ||
2717			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2718				u64 ds, dl, cs, cl;
2719				ds = btrfs_file_extent_disk_bytenr(src,
2720								extent);
2721				/* ds == 0 is a hole */
2722				if (ds == 0)
2723					continue;
2724
2725				dl = btrfs_file_extent_disk_num_bytes(src,
2726								extent);
2727				cs = btrfs_file_extent_offset(src, extent);
2728				cl = btrfs_file_extent_num_bytes(src,
2729								extent);
2730				if (btrfs_file_extent_compression(src,
2731								  extent)) {
2732					cs = 0;
2733					cl = dl;
2734				}
2735
2736				ret = btrfs_lookup_csums_range(
2737						log->fs_info->csum_root,
2738						ds + cs, ds + cs + cl - 1,
2739						&ordered_sums, 0);
2740				BUG_ON(ret);
 
2741			}
2742		}
2743	}
2744
2745	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2746	btrfs_release_path(dst_path);
2747	kfree(ins_data);
2748
2749	/*
2750	 * we have to do this after the loop above to avoid changing the
2751	 * log tree while trying to change the log tree.
2752	 */
2753	ret = 0;
2754	while (!list_empty(&ordered_sums)) {
2755		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2756						   struct btrfs_ordered_sum,
2757						   list);
2758		if (!ret)
2759			ret = btrfs_csum_file_blocks(trans, log, sums);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760		list_del(&sums->list);
2761		kfree(sums);
2762	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763	return ret;
2764}
2765
2766/* log a single inode in the tree log.
2767 * At least one parent directory for this inode must exist in the tree
2768 * or be logged already.
2769 *
2770 * Any items from this inode changed by the current transaction are copied
2771 * to the log tree.  An extra reference is taken on any extents in this
2772 * file, allowing us to avoid a whole pile of corner cases around logging
2773 * blocks that have been removed from the tree.
2774 *
2775 * See LOG_INODE_ALL and related defines for a description of what inode_only
2776 * does.
2777 *
2778 * This handles both files and directories.
2779 */
2780static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2781			     struct btrfs_root *root, struct inode *inode,
2782			     int inode_only)
 
2783{
2784	struct btrfs_path *path;
2785	struct btrfs_path *dst_path;
2786	struct btrfs_key min_key;
2787	struct btrfs_key max_key;
2788	struct btrfs_root *log = root->log_root;
2789	struct extent_buffer *src = NULL;
2790	int err = 0;
2791	int ret;
2792	int nritems;
2793	int ins_start_slot = 0;
2794	int ins_nr;
2795	u64 ino = btrfs_ino(inode);
2796
2797	log = root->log_root;
 
 
 
2798
2799	path = btrfs_alloc_path();
2800	if (!path)
2801		return -ENOMEM;
2802	dst_path = btrfs_alloc_path();
2803	if (!dst_path) {
2804		btrfs_free_path(path);
2805		return -ENOMEM;
2806	}
2807
2808	min_key.objectid = ino;
2809	min_key.type = BTRFS_INODE_ITEM_KEY;
2810	min_key.offset = 0;
2811
2812	max_key.objectid = ino;
2813
2814	/* today the code can only do partial logging of directories */
2815	if (!S_ISDIR(inode->i_mode))
2816	    inode_only = LOG_INODE_ALL;
2817
2818	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 
 
 
 
2819		max_key.type = BTRFS_XATTR_ITEM_KEY;
2820	else
2821		max_key.type = (u8)-1;
2822	max_key.offset = (u64)-1;
2823
2824	ret = btrfs_commit_inode_delayed_items(trans, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825	if (ret) {
2826		btrfs_free_path(path);
2827		btrfs_free_path(dst_path);
2828		return ret;
2829	}
2830
2831	mutex_lock(&BTRFS_I(inode)->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833	/*
2834	 * a brute force approach to making sure we get the most uptodate
2835	 * copies of everything.
2836	 */
2837	if (S_ISDIR(inode->i_mode)) {
2838		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2839
 
2840		if (inode_only == LOG_INODE_EXISTS)
2841			max_key_type = BTRFS_XATTR_ITEM_KEY;
2842		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2843	} else {
2844		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2845	}
2846	if (ret) {
2847		err = ret;
2848		goto out_unlock;
2849	}
2850	path->keep_locks = 1;
2851
2852	while (1) {
2853		ins_nr = 0;
2854		ret = btrfs_search_forward(root, &min_key, &max_key,
2855					   path, 0, trans->transid);
2856		if (ret != 0)
2857			break;
2858again:
2859		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2860		if (min_key.objectid != ino)
2861			break;
2862		if (min_key.type > max_key.type)
2863			break;
2864
2865		src = path->nodes[0];
2866		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2867			ins_nr++;
2868			goto next_slot;
2869		} else if (!ins_nr) {
2870			ins_start_slot = path->slots[0];
2871			ins_nr = 1;
2872			goto next_slot;
2873		}
2874
2875		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2876				 ins_nr, inode_only);
2877		if (ret) {
2878			err = ret;
 
 
 
 
 
 
 
2879			goto out_unlock;
2880		}
2881		ins_nr = 1;
2882		ins_start_slot = path->slots[0];
2883next_slot:
2884
2885		nritems = btrfs_header_nritems(path->nodes[0]);
2886		path->slots[0]++;
2887		if (path->slots[0] < nritems) {
2888			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2889					      path->slots[0]);
2890			goto again;
2891		}
2892		if (ins_nr) {
2893			ret = copy_items(trans, log, dst_path, src,
2894					 ins_start_slot,
2895					 ins_nr, inode_only);
2896			if (ret) {
2897				err = ret;
 
 
2898				goto out_unlock;
2899			}
2900			ins_nr = 0;
2901		}
2902		btrfs_release_path(path);
2903
2904		if (min_key.offset < (u64)-1)
2905			min_key.offset++;
2906		else if (min_key.type < (u8)-1)
2907			min_key.type++;
2908		else if (min_key.objectid < (u64)-1)
2909			min_key.objectid++;
2910		else
2911			break;
2912	}
2913	if (ins_nr) {
2914		ret = copy_items(trans, log, dst_path, src,
2915				 ins_start_slot,
2916				 ins_nr, inode_only);
2917		if (ret) {
2918			err = ret;
2919			goto out_unlock;
2920		}
2921		ins_nr = 0;
 
 
 
 
 
 
2922	}
2923	WARN_ON(ins_nr);
2924	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2925		btrfs_release_path(path);
2926		btrfs_release_path(dst_path);
2927		ret = log_directory_changes(trans, root, inode, path, dst_path);
2928		if (ret) {
2929			err = ret;
2930			goto out_unlock;
2931		}
2932	}
2933	BTRFS_I(inode)->logged_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2934out_unlock:
2935	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2936
2937	btrfs_free_path(path);
2938	btrfs_free_path(dst_path);
2939	return err;
2940}
2941
2942/*
2943 * follow the dentry parent pointers up the chain and see if any
2944 * of the directories in it require a full commit before they can
2945 * be logged.  Returns zero if nothing special needs to be done or 1 if
2946 * a full commit is required.
2947 */
2948static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2949					       struct inode *inode,
2950					       struct dentry *parent,
2951					       struct super_block *sb,
2952					       u64 last_committed)
2953{
2954	int ret = 0;
2955	struct btrfs_root *root;
2956	struct dentry *old_parent = NULL;
2957
2958	/*
2959	 * for regular files, if its inode is already on disk, we don't
2960	 * have to worry about the parents at all.  This is because
2961	 * we can use the last_unlink_trans field to record renames
2962	 * and other fun in this file.
 
 
 
2963	 */
2964	if (S_ISREG(inode->i_mode) &&
2965	    BTRFS_I(inode)->generation <= last_committed &&
2966	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2967			goto out;
2968
2969	if (!S_ISDIR(inode->i_mode)) {
2970		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2971			goto out;
2972		inode = parent->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973	}
 
 
2974
2975	while (1) {
2976		BTRFS_I(inode)->logged_trans = trans->transid;
2977		smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2978
2979		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2980			root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982			/*
2983			 * make sure any commits to the log are forced
2984			 * to be full commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2985			 */
2986			root->fs_info->last_trans_log_full_commit =
2987				trans->transid;
2988			ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990		}
2991
2992		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2993			break;
2994
 
 
 
 
 
 
 
 
 
 
 
2995		if (IS_ROOT(parent))
2996			break;
2997
2998		parent = dget_parent(parent);
2999		dput(old_parent);
3000		old_parent = parent;
3001		inode = parent->d_inode;
3002
3003	}
3004	dput(old_parent);
3005out:
3006	return ret;
3007}
3008
3009static int inode_in_log(struct btrfs_trans_handle *trans,
3010		 struct inode *inode)
 
 
3011{
3012	struct btrfs_root *root = BTRFS_I(inode)->root;
3013	int ret = 0;
 
 
 
3014
3015	mutex_lock(&root->log_mutex);
3016	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3017	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3018		ret = 1;
3019	mutex_unlock(&root->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020	return ret;
3021}
3022
3023
3024/*
3025 * helper function around btrfs_log_inode to make sure newly created
3026 * parent directories also end up in the log.  A minimal inode and backref
3027 * only logging is done of any parent directories that are older than
3028 * the last committed transaction
3029 */
3030int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3031		    struct btrfs_root *root, struct inode *inode,
3032		    struct dentry *parent, int exists_only)
 
 
3033{
3034	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3035	struct super_block *sb;
3036	struct dentry *old_parent = NULL;
3037	int ret = 0;
3038	u64 last_committed = root->fs_info->last_trans_committed;
3039
3040	sb = inode->i_sb;
3041
3042	if (btrfs_test_opt(root, NOTREELOG)) {
3043		ret = 1;
3044		goto end_no_trans;
3045	}
3046
3047	if (root->fs_info->last_trans_log_full_commit >
3048	    root->fs_info->last_trans_committed) {
3049		ret = 1;
3050		goto end_no_trans;
3051	}
3052
3053	if (root != BTRFS_I(inode)->root ||
3054	    btrfs_root_refs(&root->root_item) == 0) {
3055		ret = 1;
3056		goto end_no_trans;
3057	}
3058
3059	ret = check_parent_dirs_for_sync(trans, inode, parent,
3060					 sb, last_committed);
3061	if (ret)
3062		goto end_no_trans;
3063
3064	if (inode_in_log(trans, inode)) {
3065		ret = BTRFS_NO_LOG_SYNC;
3066		goto end_no_trans;
3067	}
3068
3069	ret = start_log_trans(trans, root);
3070	if (ret)
3071		goto end_trans;
3072
3073	ret = btrfs_log_inode(trans, root, inode, inode_only);
3074	if (ret)
3075		goto end_trans;
3076
3077	/*
3078	 * for regular files, if its inode is already on disk, we don't
3079	 * have to worry about the parents at all.  This is because
3080	 * we can use the last_unlink_trans field to record renames
3081	 * and other fun in this file.
3082	 */
3083	if (S_ISREG(inode->i_mode) &&
3084	    BTRFS_I(inode)->generation <= last_committed &&
3085	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3086		ret = 0;
3087		goto end_trans;
3088	}
3089
3090	inode_only = LOG_INODE_EXISTS;
3091	while (1) {
3092		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3093			break;
3094
3095		inode = parent->d_inode;
3096		if (root != BTRFS_I(inode)->root)
3097			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098
3099		if (BTRFS_I(inode)->generation >
3100		    root->fs_info->last_trans_committed) {
3101			ret = btrfs_log_inode(trans, root, inode, inode_only);
3102			if (ret)
3103				goto end_trans;
3104		}
3105		if (IS_ROOT(parent))
3106			break;
3107
3108		parent = dget_parent(parent);
3109		dput(old_parent);
3110		old_parent = parent;
3111	}
3112	ret = 0;
3113end_trans:
3114	dput(old_parent);
3115	if (ret < 0) {
3116		BUG_ON(ret != -ENOSPC);
3117		root->fs_info->last_trans_log_full_commit = trans->transid;
3118		ret = 1;
3119	}
 
 
 
3120	btrfs_end_log_trans(root);
3121end_no_trans:
3122	return ret;
3123}
3124
3125/*
3126 * it is not safe to log dentry if the chunk root has added new
3127 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3128 * If this returns 1, you must commit the transaction to safely get your
3129 * data on disk.
3130 */
3131int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3132			  struct btrfs_root *root, struct dentry *dentry)
 
3133{
3134	struct dentry *parent = dget_parent(dentry);
3135	int ret;
3136
3137	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 
3138	dput(parent);
3139
3140	return ret;
3141}
3142
3143/*
3144 * should be called during mount to recover any replay any log trees
3145 * from the FS
3146 */
3147int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3148{
3149	int ret;
3150	struct btrfs_path *path;
3151	struct btrfs_trans_handle *trans;
3152	struct btrfs_key key;
3153	struct btrfs_key found_key;
3154	struct btrfs_key tmp_key;
3155	struct btrfs_root *log;
3156	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3157	struct walk_control wc = {
3158		.process_func = process_one_buffer,
3159		.stage = 0,
3160	};
3161
3162	path = btrfs_alloc_path();
3163	if (!path)
3164		return -ENOMEM;
3165
3166	fs_info->log_root_recovering = 1;
3167
3168	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3169	BUG_ON(IS_ERR(trans));
 
 
 
3170
3171	wc.trans = trans;
3172	wc.pin = 1;
3173
3174	ret = walk_log_tree(trans, log_root_tree, &wc);
3175	BUG_ON(ret);
 
 
 
 
3176
3177again:
3178	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3179	key.offset = (u64)-1;
3180	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3181
3182	while (1) {
3183		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3184		if (ret < 0)
3185			break;
 
 
 
 
3186		if (ret > 0) {
3187			if (path->slots[0] == 0)
3188				break;
3189			path->slots[0]--;
3190		}
3191		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3192				      path->slots[0]);
3193		btrfs_release_path(path);
3194		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3195			break;
3196
3197		log = btrfs_read_fs_root_no_radix(log_root_tree,
3198						  &found_key);
3199		BUG_ON(IS_ERR(log));
3200
3201		tmp_key.objectid = found_key.offset;
3202		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3203		tmp_key.offset = (u64)-1;
3204
3205		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3206		BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3207
3208		wc.replay_dest->log_root = log;
3209		btrfs_record_root_in_trans(trans, wc.replay_dest);
3210		ret = walk_log_tree(trans, log, &wc);
3211		BUG_ON(ret);
 
 
 
 
3212
3213		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3214			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3215						      path);
3216			BUG_ON(ret);
3217		}
3218
3219		key.offset = found_key.offset - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220		wc.replay_dest->log_root = NULL;
3221		free_extent_buffer(log->node);
3222		free_extent_buffer(log->commit_root);
3223		kfree(log);
3224
 
 
 
3225		if (found_key.offset == 0)
3226			break;
 
3227	}
3228	btrfs_release_path(path);
3229
3230	/* step one is to pin it all, step two is to replay just inodes */
3231	if (wc.pin) {
3232		wc.pin = 0;
3233		wc.process_func = replay_one_buffer;
3234		wc.stage = LOG_WALK_REPLAY_INODES;
3235		goto again;
3236	}
3237	/* step three is to replay everything */
3238	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3239		wc.stage++;
3240		goto again;
3241	}
3242
3243	btrfs_free_path(path);
3244
3245	free_extent_buffer(log_root_tree->node);
3246	log_root_tree->log_root = NULL;
3247	fs_info->log_root_recovering = 0;
3248
3249	/* step 4: commit the transaction, which also unpins the blocks */
3250	btrfs_commit_transaction(trans, fs_info->tree_root);
 
 
 
 
 
 
3251
3252	kfree(log_root_tree);
3253	return 0;
 
 
 
 
 
 
3254}
3255
3256/*
3257 * there are some corner cases where we want to force a full
3258 * commit instead of allowing a directory to be logged.
3259 *
3260 * They revolve around files there were unlinked from the directory, and
3261 * this function updates the parent directory so that a full commit is
3262 * properly done if it is fsync'd later after the unlinks are done.
 
 
 
3263 */
3264void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3265			     struct inode *dir, struct inode *inode,
3266			     int for_rename)
3267{
3268	/*
3269	 * when we're logging a file, if it hasn't been renamed
3270	 * or unlinked, and its inode is fully committed on disk,
3271	 * we don't have to worry about walking up the directory chain
3272	 * to log its parents.
3273	 *
3274	 * So, we use the last_unlink_trans field to put this transid
3275	 * into the file.  When the file is logged we check it and
3276	 * don't log the parents if the file is fully on disk.
3277	 */
3278	if (S_ISREG(inode->i_mode))
3279		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 
3280
3281	/*
3282	 * if this directory was already logged any new
3283	 * names for this file/dir will get recorded
3284	 */
3285	smp_mb();
3286	if (BTRFS_I(dir)->logged_trans == trans->transid)
3287		return;
3288
3289	/*
3290	 * if the inode we're about to unlink was logged,
3291	 * the log will be properly updated for any new names
3292	 */
3293	if (BTRFS_I(inode)->logged_trans == trans->transid)
3294		return;
3295
3296	/*
3297	 * when renaming files across directories, if the directory
3298	 * there we're unlinking from gets fsync'd later on, there's
3299	 * no way to find the destination directory later and fsync it
3300	 * properly.  So, we have to be conservative and force commits
3301	 * so the new name gets discovered.
3302	 */
3303	if (for_rename)
3304		goto record;
3305
3306	/* we can safely do the unlink without any special recording */
3307	return;
3308
3309record:
3310	BTRFS_I(dir)->last_unlink_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3311}
3312
3313/*
3314 * Call this after adding a new name for a file and it will properly
3315 * update the log to reflect the new name.
3316 *
3317 * It will return zero if all goes well, and it will return 1 if a
3318 * full transaction commit is required.
3319 */
3320int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3321			struct inode *inode, struct inode *old_dir,
3322			struct dentry *parent)
3323{
3324	struct btrfs_root * root = BTRFS_I(inode)->root;
3325
3326	/*
3327	 * this will force the logging code to walk the dentry chain
3328	 * up for the file
3329	 */
3330	if (S_ISREG(inode->i_mode))
3331		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3332
3333	/*
3334	 * if this inode hasn't been logged and directory we're renaming it
3335	 * from hasn't been logged, we don't need to log it
3336	 */
3337	if (BTRFS_I(inode)->logged_trans <=
3338	    root->fs_info->last_trans_committed &&
3339	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3340		    root->fs_info->last_trans_committed))
3341		return 0;
3342
3343	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344}
3345
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23
  24/* magic values for the inode_only field in btrfs_log_inode:
  25 *
  26 * LOG_INODE_ALL means to log everything
  27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  28 * during log replay
  29 */
  30enum {
  31	LOG_INODE_ALL,
  32	LOG_INODE_EXISTS,
  33	LOG_OTHER_INODE,
  34	LOG_OTHER_INODE_ALL,
  35};
  36
  37/*
  38 * directory trouble cases
  39 *
  40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  41 * log, we must force a full commit before doing an fsync of the directory
  42 * where the unlink was done.
  43 * ---> record transid of last unlink/rename per directory
  44 *
  45 * mkdir foo/some_dir
  46 * normal commit
  47 * rename foo/some_dir foo2/some_dir
  48 * mkdir foo/some_dir
  49 * fsync foo/some_dir/some_file
  50 *
  51 * The fsync above will unlink the original some_dir without recording
  52 * it in its new location (foo2).  After a crash, some_dir will be gone
  53 * unless the fsync of some_file forces a full commit
  54 *
  55 * 2) we must log any new names for any file or dir that is in the fsync
  56 * log. ---> check inode while renaming/linking.
  57 *
  58 * 2a) we must log any new names for any file or dir during rename
  59 * when the directory they are being removed from was logged.
  60 * ---> check inode and old parent dir during rename
  61 *
  62 *  2a is actually the more important variant.  With the extra logging
  63 *  a crash might unlink the old name without recreating the new one
  64 *
  65 * 3) after a crash, we must go through any directories with a link count
  66 * of zero and redo the rm -rf
  67 *
  68 * mkdir f1/foo
  69 * normal commit
  70 * rm -rf f1/foo
  71 * fsync(f1)
  72 *
  73 * The directory f1 was fully removed from the FS, but fsync was never
  74 * called on f1, only its parent dir.  After a crash the rm -rf must
  75 * be replayed.  This must be able to recurse down the entire
  76 * directory tree.  The inode link count fixup code takes care of the
  77 * ugly details.
  78 */
  79
  80/*
  81 * stages for the tree walking.  The first
  82 * stage (0) is to only pin down the blocks we find
  83 * the second stage (1) is to make sure that all the inodes
  84 * we find in the log are created in the subvolume.
  85 *
  86 * The last stage is to deal with directories and links and extents
  87 * and all the other fun semantics
  88 */
  89enum {
  90	LOG_WALK_PIN_ONLY,
  91	LOG_WALK_REPLAY_INODES,
  92	LOG_WALK_REPLAY_DIR_INDEX,
  93	LOG_WALK_REPLAY_ALL,
  94};
  95
  96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  97			   struct btrfs_root *root, struct btrfs_inode *inode,
  98			   int inode_only,
  99			   struct btrfs_log_ctx *ctx);
 100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 101			     struct btrfs_root *root,
 102			     struct btrfs_path *path, u64 objectid);
 103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 104				       struct btrfs_root *root,
 105				       struct btrfs_root *log,
 106				       struct btrfs_path *path,
 107				       u64 dirid, int del_all);
 108static void wait_log_commit(struct btrfs_root *root, int transid);
 109
 110/*
 111 * tree logging is a special write ahead log used to make sure that
 112 * fsyncs and O_SYNCs can happen without doing full tree commits.
 113 *
 114 * Full tree commits are expensive because they require commonly
 115 * modified blocks to be recowed, creating many dirty pages in the
 116 * extent tree an 4x-6x higher write load than ext3.
 117 *
 118 * Instead of doing a tree commit on every fsync, we use the
 119 * key ranges and transaction ids to find items for a given file or directory
 120 * that have changed in this transaction.  Those items are copied into
 121 * a special tree (one per subvolume root), that tree is written to disk
 122 * and then the fsync is considered complete.
 123 *
 124 * After a crash, items are copied out of the log-tree back into the
 125 * subvolume tree.  Any file data extents found are recorded in the extent
 126 * allocation tree, and the log-tree freed.
 127 *
 128 * The log tree is read three times, once to pin down all the extents it is
 129 * using in ram and once, once to create all the inodes logged in the tree
 130 * and once to do all the other items.
 131 */
 132
 133/*
 134 * start a sub transaction and setup the log tree
 135 * this increments the log tree writer count to make the people
 136 * syncing the tree wait for us to finish
 137 */
 138static int start_log_trans(struct btrfs_trans_handle *trans,
 139			   struct btrfs_root *root,
 140			   struct btrfs_log_ctx *ctx)
 141{
 142	struct btrfs_fs_info *fs_info = root->fs_info;
 143	struct btrfs_root *tree_root = fs_info->tree_root;
 144	const bool zoned = btrfs_is_zoned(fs_info);
 145	int ret = 0;
 146	bool created = false;
 147
 148	/*
 149	 * First check if the log root tree was already created. If not, create
 150	 * it before locking the root's log_mutex, just to keep lockdep happy.
 151	 */
 152	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 153		mutex_lock(&tree_root->log_mutex);
 154		if (!fs_info->log_root_tree) {
 155			ret = btrfs_init_log_root_tree(trans, fs_info);
 156			if (!ret) {
 157				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 158				created = true;
 159			}
 160		}
 161		mutex_unlock(&tree_root->log_mutex);
 162		if (ret)
 163			return ret;
 164	}
 165
 166	mutex_lock(&root->log_mutex);
 167
 168again:
 169	if (root->log_root) {
 170		int index = (root->log_transid + 1) % 2;
 171
 172		if (btrfs_need_log_full_commit(trans)) {
 173			ret = -EAGAIN;
 174			goto out;
 175		}
 176
 177		if (zoned && atomic_read(&root->log_commit[index])) {
 178			wait_log_commit(root, root->log_transid - 1);
 179			goto again;
 180		}
 181
 182		if (!root->log_start_pid) {
 183			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 184			root->log_start_pid = current->pid;
 
 185		} else if (root->log_start_pid != current->pid) {
 186			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 187		}
 188	} else {
 189		/*
 190		 * This means fs_info->log_root_tree was already created
 191		 * for some other FS trees. Do the full commit not to mix
 192		 * nodes from multiple log transactions to do sequential
 193		 * writing.
 194		 */
 195		if (zoned && !created) {
 196			ret = -EAGAIN;
 197			goto out;
 198		}
 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200		ret = btrfs_add_log_tree(trans, root);
 201		if (ret)
 202			goto out;
 203
 204		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 205		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 206		root->log_start_pid = current->pid;
 207	}
 208
 
 209	atomic_inc(&root->log_writers);
 210	if (ctx && !ctx->logging_new_name) {
 211		int index = root->log_transid % 2;
 212		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 213		ctx->log_transid = root->log_transid;
 214	}
 215
 216out:
 217	mutex_unlock(&root->log_mutex);
 218	return ret;
 219}
 220
 221/*
 222 * returns 0 if there was a log transaction running and we were able
 223 * to join, or returns -ENOENT if there were not transactions
 224 * in progress
 225 */
 226static int join_running_log_trans(struct btrfs_root *root)
 227{
 228	const bool zoned = btrfs_is_zoned(root->fs_info);
 229	int ret = -ENOENT;
 230
 231	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 232		return ret;
 
 233
 234	mutex_lock(&root->log_mutex);
 235again:
 236	if (root->log_root) {
 237		int index = (root->log_transid + 1) % 2;
 238
 239		ret = 0;
 240		if (zoned && atomic_read(&root->log_commit[index])) {
 241			wait_log_commit(root, root->log_transid - 1);
 242			goto again;
 243		}
 244		atomic_inc(&root->log_writers);
 245	}
 246	mutex_unlock(&root->log_mutex);
 247	return ret;
 248}
 249
 250/*
 251 * This either makes the current running log transaction wait
 252 * until you call btrfs_end_log_trans() or it makes any future
 253 * log transactions wait until you call btrfs_end_log_trans()
 254 */
 255void btrfs_pin_log_trans(struct btrfs_root *root)
 256{
 
 
 
 257	atomic_inc(&root->log_writers);
 
 
 258}
 259
 260/*
 261 * indicate we're done making changes to the log tree
 262 * and wake up anyone waiting to do a sync
 263 */
 264void btrfs_end_log_trans(struct btrfs_root *root)
 265{
 266	if (atomic_dec_and_test(&root->log_writers)) {
 267		/* atomic_dec_and_test implies a barrier */
 268		cond_wake_up_nomb(&root->log_writer_wait);
 
 269	}
 
 270}
 271
 272static int btrfs_write_tree_block(struct extent_buffer *buf)
 273{
 274	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 275					buf->start + buf->len - 1);
 276}
 277
 278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 279{
 280	filemap_fdatawait_range(buf->pages[0]->mapping,
 281			        buf->start, buf->start + buf->len - 1);
 282}
 283
 284/*
 285 * the walk control struct is used to pass state down the chain when
 286 * processing the log tree.  The stage field tells us which part
 287 * of the log tree processing we are currently doing.  The others
 288 * are state fields used for that specific part
 289 */
 290struct walk_control {
 291	/* should we free the extent on disk when done?  This is used
 292	 * at transaction commit time while freeing a log tree
 293	 */
 294	int free;
 295
 296	/* should we write out the extent buffer?  This is used
 297	 * while flushing the log tree to disk during a sync
 298	 */
 299	int write;
 300
 301	/* should we wait for the extent buffer io to finish?  Also used
 302	 * while flushing the log tree to disk for a sync
 303	 */
 304	int wait;
 305
 306	/* pin only walk, we record which extents on disk belong to the
 307	 * log trees
 308	 */
 309	int pin;
 310
 311	/* what stage of the replay code we're currently in */
 312	int stage;
 313
 314	/*
 315	 * Ignore any items from the inode currently being processed. Needs
 316	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 317	 * the LOG_WALK_REPLAY_INODES stage.
 318	 */
 319	bool ignore_cur_inode;
 320
 321	/* the root we are currently replaying */
 322	struct btrfs_root *replay_dest;
 323
 324	/* the trans handle for the current replay */
 325	struct btrfs_trans_handle *trans;
 326
 327	/* the function that gets used to process blocks we find in the
 328	 * tree.  Note the extent_buffer might not be up to date when it is
 329	 * passed in, and it must be checked or read if you need the data
 330	 * inside it
 331	 */
 332	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 333			    struct walk_control *wc, u64 gen, int level);
 334};
 335
 336/*
 337 * process_func used to pin down extents, write them or wait on them
 338 */
 339static int process_one_buffer(struct btrfs_root *log,
 340			      struct extent_buffer *eb,
 341			      struct walk_control *wc, u64 gen, int level)
 342{
 343	struct btrfs_fs_info *fs_info = log->fs_info;
 344	int ret = 0;
 345
 346	/*
 347	 * If this fs is mixed then we need to be able to process the leaves to
 348	 * pin down any logged extents, so we have to read the block.
 349	 */
 350	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 351		ret = btrfs_read_buffer(eb, gen, level, NULL);
 352		if (ret)
 353			return ret;
 354	}
 355
 356	if (wc->pin)
 357		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 358						      eb->len);
 359
 360	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 361		if (wc->pin && btrfs_header_level(eb) == 0)
 362			ret = btrfs_exclude_logged_extents(eb);
 363		if (wc->write)
 364			btrfs_write_tree_block(eb);
 365		if (wc->wait)
 366			btrfs_wait_tree_block_writeback(eb);
 367	}
 368	return ret;
 369}
 370
 371/*
 372 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 373 * to the src data we are copying out.
 374 *
 375 * root is the tree we are copying into, and path is a scratch
 376 * path for use in this function (it should be released on entry and
 377 * will be released on exit).
 378 *
 379 * If the key is already in the destination tree the existing item is
 380 * overwritten.  If the existing item isn't big enough, it is extended.
 381 * If it is too large, it is truncated.
 382 *
 383 * If the key isn't in the destination yet, a new item is inserted.
 384 */
 385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 386				   struct btrfs_root *root,
 387				   struct btrfs_path *path,
 388				   struct extent_buffer *eb, int slot,
 389				   struct btrfs_key *key)
 390{
 391	int ret;
 392	u32 item_size;
 393	u64 saved_i_size = 0;
 394	int save_old_i_size = 0;
 395	unsigned long src_ptr;
 396	unsigned long dst_ptr;
 397	int overwrite_root = 0;
 398	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 399
 400	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 401		overwrite_root = 1;
 402
 403	item_size = btrfs_item_size_nr(eb, slot);
 404	src_ptr = btrfs_item_ptr_offset(eb, slot);
 405
 406	/* look for the key in the destination tree */
 407	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 408	if (ret < 0)
 409		return ret;
 410
 411	if (ret == 0) {
 412		char *src_copy;
 413		char *dst_copy;
 414		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 415						  path->slots[0]);
 416		if (dst_size != item_size)
 417			goto insert;
 418
 419		if (item_size == 0) {
 420			btrfs_release_path(path);
 421			return 0;
 422		}
 423		dst_copy = kmalloc(item_size, GFP_NOFS);
 424		src_copy = kmalloc(item_size, GFP_NOFS);
 425		if (!dst_copy || !src_copy) {
 426			btrfs_release_path(path);
 427			kfree(dst_copy);
 428			kfree(src_copy);
 429			return -ENOMEM;
 430		}
 431
 432		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 433
 434		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 435		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 436				   item_size);
 437		ret = memcmp(dst_copy, src_copy, item_size);
 438
 439		kfree(dst_copy);
 440		kfree(src_copy);
 441		/*
 442		 * they have the same contents, just return, this saves
 443		 * us from cowing blocks in the destination tree and doing
 444		 * extra writes that may not have been done by a previous
 445		 * sync
 446		 */
 447		if (ret == 0) {
 448			btrfs_release_path(path);
 449			return 0;
 450		}
 451
 452		/*
 453		 * We need to load the old nbytes into the inode so when we
 454		 * replay the extents we've logged we get the right nbytes.
 455		 */
 456		if (inode_item) {
 457			struct btrfs_inode_item *item;
 458			u64 nbytes;
 459			u32 mode;
 460
 461			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 462					      struct btrfs_inode_item);
 463			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 464			item = btrfs_item_ptr(eb, slot,
 465					      struct btrfs_inode_item);
 466			btrfs_set_inode_nbytes(eb, item, nbytes);
 467
 468			/*
 469			 * If this is a directory we need to reset the i_size to
 470			 * 0 so that we can set it up properly when replaying
 471			 * the rest of the items in this log.
 472			 */
 473			mode = btrfs_inode_mode(eb, item);
 474			if (S_ISDIR(mode))
 475				btrfs_set_inode_size(eb, item, 0);
 476		}
 477	} else if (inode_item) {
 478		struct btrfs_inode_item *item;
 479		u32 mode;
 480
 481		/*
 482		 * New inode, set nbytes to 0 so that the nbytes comes out
 483		 * properly when we replay the extents.
 484		 */
 485		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 486		btrfs_set_inode_nbytes(eb, item, 0);
 487
 488		/*
 489		 * If this is a directory we need to reset the i_size to 0 so
 490		 * that we can set it up properly when replaying the rest of
 491		 * the items in this log.
 492		 */
 493		mode = btrfs_inode_mode(eb, item);
 494		if (S_ISDIR(mode))
 495			btrfs_set_inode_size(eb, item, 0);
 496	}
 497insert:
 498	btrfs_release_path(path);
 499	/* try to insert the key into the destination tree */
 500	path->skip_release_on_error = 1;
 501	ret = btrfs_insert_empty_item(trans, root, path,
 502				      key, item_size);
 503	path->skip_release_on_error = 0;
 504
 505	/* make sure any existing item is the correct size */
 506	if (ret == -EEXIST || ret == -EOVERFLOW) {
 507		u32 found_size;
 508		found_size = btrfs_item_size_nr(path->nodes[0],
 509						path->slots[0]);
 510		if (found_size > item_size)
 511			btrfs_truncate_item(path, item_size, 1);
 512		else if (found_size < item_size)
 513			btrfs_extend_item(path, item_size - found_size);
 
 
 514	} else if (ret) {
 515		return ret;
 516	}
 517	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 518					path->slots[0]);
 519
 520	/* don't overwrite an existing inode if the generation number
 521	 * was logged as zero.  This is done when the tree logging code
 522	 * is just logging an inode to make sure it exists after recovery.
 523	 *
 524	 * Also, don't overwrite i_size on directories during replay.
 525	 * log replay inserts and removes directory items based on the
 526	 * state of the tree found in the subvolume, and i_size is modified
 527	 * as it goes
 528	 */
 529	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 530		struct btrfs_inode_item *src_item;
 531		struct btrfs_inode_item *dst_item;
 532
 533		src_item = (struct btrfs_inode_item *)src_ptr;
 534		dst_item = (struct btrfs_inode_item *)dst_ptr;
 535
 536		if (btrfs_inode_generation(eb, src_item) == 0) {
 537			struct extent_buffer *dst_eb = path->nodes[0];
 538			const u64 ino_size = btrfs_inode_size(eb, src_item);
 539
 540			/*
 541			 * For regular files an ino_size == 0 is used only when
 542			 * logging that an inode exists, as part of a directory
 543			 * fsync, and the inode wasn't fsynced before. In this
 544			 * case don't set the size of the inode in the fs/subvol
 545			 * tree, otherwise we would be throwing valid data away.
 546			 */
 547			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 548			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 549			    ino_size != 0)
 550				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 551			goto no_copy;
 552		}
 553
 554		if (overwrite_root &&
 555		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 556		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 557			save_old_i_size = 1;
 558			saved_i_size = btrfs_inode_size(path->nodes[0],
 559							dst_item);
 560		}
 561	}
 562
 563	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 564			   src_ptr, item_size);
 565
 566	if (save_old_i_size) {
 567		struct btrfs_inode_item *dst_item;
 568		dst_item = (struct btrfs_inode_item *)dst_ptr;
 569		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 570	}
 571
 572	/* make sure the generation is filled in */
 573	if (key->type == BTRFS_INODE_ITEM_KEY) {
 574		struct btrfs_inode_item *dst_item;
 575		dst_item = (struct btrfs_inode_item *)dst_ptr;
 576		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 577			btrfs_set_inode_generation(path->nodes[0], dst_item,
 578						   trans->transid);
 579		}
 580	}
 581no_copy:
 582	btrfs_mark_buffer_dirty(path->nodes[0]);
 583	btrfs_release_path(path);
 584	return 0;
 585}
 586
 587/*
 588 * simple helper to read an inode off the disk from a given root
 589 * This can only be called for subvolume roots and not for the log
 590 */
 591static noinline struct inode *read_one_inode(struct btrfs_root *root,
 592					     u64 objectid)
 593{
 
 594	struct inode *inode;
 595
 596	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 597	if (IS_ERR(inode))
 
 
 
 
 
 
 598		inode = NULL;
 
 599	return inode;
 600}
 601
 602/* replays a single extent in 'eb' at 'slot' with 'key' into the
 603 * subvolume 'root'.  path is released on entry and should be released
 604 * on exit.
 605 *
 606 * extents in the log tree have not been allocated out of the extent
 607 * tree yet.  So, this completes the allocation, taking a reference
 608 * as required if the extent already exists or creating a new extent
 609 * if it isn't in the extent allocation tree yet.
 610 *
 611 * The extent is inserted into the file, dropping any existing extents
 612 * from the file that overlap the new one.
 613 */
 614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 615				      struct btrfs_root *root,
 616				      struct btrfs_path *path,
 617				      struct extent_buffer *eb, int slot,
 618				      struct btrfs_key *key)
 619{
 620	struct btrfs_drop_extents_args drop_args = { 0 };
 621	struct btrfs_fs_info *fs_info = root->fs_info;
 622	int found_type;
 
 623	u64 extent_end;
 
 624	u64 start = key->offset;
 625	u64 nbytes = 0;
 626	struct btrfs_file_extent_item *item;
 627	struct inode *inode = NULL;
 628	unsigned long size;
 629	int ret = 0;
 630
 631	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 632	found_type = btrfs_file_extent_type(eb, item);
 633
 634	if (found_type == BTRFS_FILE_EXTENT_REG ||
 635	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 636		nbytes = btrfs_file_extent_num_bytes(eb, item);
 637		extent_end = start + nbytes;
 638
 639		/*
 640		 * We don't add to the inodes nbytes if we are prealloc or a
 641		 * hole.
 642		 */
 643		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 644			nbytes = 0;
 645	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 646		size = btrfs_file_extent_ram_bytes(eb, item);
 647		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 648		extent_end = ALIGN(start + size,
 649				   fs_info->sectorsize);
 650	} else {
 651		ret = 0;
 652		goto out;
 653	}
 654
 655	inode = read_one_inode(root, key->objectid);
 656	if (!inode) {
 657		ret = -EIO;
 658		goto out;
 659	}
 660
 661	/*
 662	 * first check to see if we already have this extent in the
 663	 * file.  This must be done before the btrfs_drop_extents run
 664	 * so we don't try to drop this extent.
 665	 */
 666	ret = btrfs_lookup_file_extent(trans, root, path,
 667			btrfs_ino(BTRFS_I(inode)), start, 0);
 668
 669	if (ret == 0 &&
 670	    (found_type == BTRFS_FILE_EXTENT_REG ||
 671	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 672		struct btrfs_file_extent_item cmp1;
 673		struct btrfs_file_extent_item cmp2;
 674		struct btrfs_file_extent_item *existing;
 675		struct extent_buffer *leaf;
 676
 677		leaf = path->nodes[0];
 678		existing = btrfs_item_ptr(leaf, path->slots[0],
 679					  struct btrfs_file_extent_item);
 680
 681		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 682				   sizeof(cmp1));
 683		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 684				   sizeof(cmp2));
 685
 686		/*
 687		 * we already have a pointer to this exact extent,
 688		 * we don't have to do anything
 689		 */
 690		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 691			btrfs_release_path(path);
 692			goto out;
 693		}
 694	}
 695	btrfs_release_path(path);
 696
 
 697	/* drop any overlapping extents */
 698	drop_args.start = start;
 699	drop_args.end = extent_end;
 700	drop_args.drop_cache = true;
 701	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 702	if (ret)
 703		goto out;
 704
 705	if (found_type == BTRFS_FILE_EXTENT_REG ||
 706	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 707		u64 offset;
 708		unsigned long dest_offset;
 709		struct btrfs_key ins;
 710
 711		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 712		    btrfs_fs_incompat(fs_info, NO_HOLES))
 713			goto update_inode;
 714
 715		ret = btrfs_insert_empty_item(trans, root, path, key,
 716					      sizeof(*item));
 717		if (ret)
 718			goto out;
 719		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 720						    path->slots[0]);
 721		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 722				(unsigned long)item,  sizeof(*item));
 723
 724		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 725		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 726		ins.type = BTRFS_EXTENT_ITEM_KEY;
 727		offset = key->offset - btrfs_file_extent_offset(eb, item);
 728
 729		/*
 730		 * Manually record dirty extent, as here we did a shallow
 731		 * file extent item copy and skip normal backref update,
 732		 * but modifying extent tree all by ourselves.
 733		 * So need to manually record dirty extent for qgroup,
 734		 * as the owner of the file extent changed from log tree
 735		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 736		 */
 737		ret = btrfs_qgroup_trace_extent(trans,
 738				btrfs_file_extent_disk_bytenr(eb, item),
 739				btrfs_file_extent_disk_num_bytes(eb, item),
 740				GFP_NOFS);
 741		if (ret < 0)
 742			goto out;
 743
 744		if (ins.objectid > 0) {
 745			struct btrfs_ref ref = { 0 };
 746			u64 csum_start;
 747			u64 csum_end;
 748			LIST_HEAD(ordered_sums);
 749
 750			/*
 751			 * is this extent already allocated in the extent
 752			 * allocation tree?  If so, just add a reference
 753			 */
 754			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 755						ins.offset);
 756			if (ret < 0) {
 757				goto out;
 758			} else if (ret == 0) {
 759				btrfs_init_generic_ref(&ref,
 760						BTRFS_ADD_DELAYED_REF,
 761						ins.objectid, ins.offset, 0);
 762				btrfs_init_data_ref(&ref,
 763						root->root_key.objectid,
 764						key->objectid, offset);
 765				ret = btrfs_inc_extent_ref(trans, &ref);
 766				if (ret)
 767					goto out;
 768			} else {
 769				/*
 770				 * insert the extent pointer in the extent
 771				 * allocation tree
 772				 */
 773				ret = btrfs_alloc_logged_file_extent(trans,
 774						root->root_key.objectid,
 775						key->objectid, offset, &ins);
 776				if (ret)
 777					goto out;
 778			}
 779			btrfs_release_path(path);
 780
 781			if (btrfs_file_extent_compression(eb, item)) {
 782				csum_start = ins.objectid;
 783				csum_end = csum_start + ins.offset;
 784			} else {
 785				csum_start = ins.objectid +
 786					btrfs_file_extent_offset(eb, item);
 787				csum_end = csum_start +
 788					btrfs_file_extent_num_bytes(eb, item);
 789			}
 790
 791			ret = btrfs_lookup_csums_range(root->log_root,
 792						csum_start, csum_end - 1,
 793						&ordered_sums, 0);
 794			if (ret)
 795				goto out;
 796			/*
 797			 * Now delete all existing cums in the csum root that
 798			 * cover our range. We do this because we can have an
 799			 * extent that is completely referenced by one file
 800			 * extent item and partially referenced by another
 801			 * file extent item (like after using the clone or
 802			 * extent_same ioctls). In this case if we end up doing
 803			 * the replay of the one that partially references the
 804			 * extent first, and we do not do the csum deletion
 805			 * below, we can get 2 csum items in the csum tree that
 806			 * overlap each other. For example, imagine our log has
 807			 * the two following file extent items:
 808			 *
 809			 * key (257 EXTENT_DATA 409600)
 810			 *     extent data disk byte 12845056 nr 102400
 811			 *     extent data offset 20480 nr 20480 ram 102400
 812			 *
 813			 * key (257 EXTENT_DATA 819200)
 814			 *     extent data disk byte 12845056 nr 102400
 815			 *     extent data offset 0 nr 102400 ram 102400
 816			 *
 817			 * Where the second one fully references the 100K extent
 818			 * that starts at disk byte 12845056, and the log tree
 819			 * has a single csum item that covers the entire range
 820			 * of the extent:
 821			 *
 822			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 823			 *
 824			 * After the first file extent item is replayed, the
 825			 * csum tree gets the following csum item:
 826			 *
 827			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 828			 *
 829			 * Which covers the 20K sub-range starting at offset 20K
 830			 * of our extent. Now when we replay the second file
 831			 * extent item, if we do not delete existing csum items
 832			 * that cover any of its blocks, we end up getting two
 833			 * csum items in our csum tree that overlap each other:
 834			 *
 835			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 836			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 837			 *
 838			 * Which is a problem, because after this anyone trying
 839			 * to lookup up for the checksum of any block of our
 840			 * extent starting at an offset of 40K or higher, will
 841			 * end up looking at the second csum item only, which
 842			 * does not contain the checksum for any block starting
 843			 * at offset 40K or higher of our extent.
 844			 */
 845			while (!list_empty(&ordered_sums)) {
 846				struct btrfs_ordered_sum *sums;
 847				sums = list_entry(ordered_sums.next,
 848						struct btrfs_ordered_sum,
 849						list);
 850				if (!ret)
 851					ret = btrfs_del_csums(trans,
 852							      fs_info->csum_root,
 853							      sums->bytenr,
 854							      sums->len);
 855				if (!ret)
 856					ret = btrfs_csum_file_blocks(trans,
 857						fs_info->csum_root, sums);
 858				list_del(&sums->list);
 859				kfree(sums);
 860			}
 861			if (ret)
 862				goto out;
 863		} else {
 864			btrfs_release_path(path);
 865		}
 866	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 867		/* inline extents are easy, we just overwrite them */
 868		ret = overwrite_item(trans, root, path, eb, slot, key);
 869		if (ret)
 870			goto out;
 871	}
 872
 873	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 874						extent_end - start);
 875	if (ret)
 876		goto out;
 877
 878update_inode:
 879	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 880	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 881out:
 882	if (inode)
 883		iput(inode);
 884	return ret;
 885}
 886
 887/*
 888 * when cleaning up conflicts between the directory names in the
 889 * subvolume, directory names in the log and directory names in the
 890 * inode back references, we may have to unlink inodes from directories.
 891 *
 892 * This is a helper function to do the unlink of a specific directory
 893 * item
 894 */
 895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 896				      struct btrfs_root *root,
 897				      struct btrfs_path *path,
 898				      struct btrfs_inode *dir,
 899				      struct btrfs_dir_item *di)
 900{
 901	struct inode *inode;
 902	char *name;
 903	int name_len;
 904	struct extent_buffer *leaf;
 905	struct btrfs_key location;
 906	int ret;
 907
 908	leaf = path->nodes[0];
 909
 910	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 911	name_len = btrfs_dir_name_len(leaf, di);
 912	name = kmalloc(name_len, GFP_NOFS);
 913	if (!name)
 914		return -ENOMEM;
 915
 916	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 917	btrfs_release_path(path);
 918
 919	inode = read_one_inode(root, location.objectid);
 920	if (!inode) {
 921		ret = -EIO;
 922		goto out;
 923	}
 924
 925	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 926	if (ret)
 927		goto out;
 928
 929	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 930			name_len);
 931	if (ret)
 932		goto out;
 933	else
 934		ret = btrfs_run_delayed_items(trans);
 935out:
 936	kfree(name);
 
 937	iput(inode);
 938	return ret;
 939}
 940
 941/*
 942 * See if a given name and sequence number found in an inode back reference are
 943 * already in a directory and correctly point to this inode.
 944 *
 945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 946 * exists.
 947 */
 948static noinline int inode_in_dir(struct btrfs_root *root,
 949				 struct btrfs_path *path,
 950				 u64 dirid, u64 objectid, u64 index,
 951				 const char *name, int name_len)
 952{
 953	struct btrfs_dir_item *di;
 954	struct btrfs_key location;
 955	int ret = 0;
 956
 957	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 958					 index, name, name_len, 0);
 959	if (IS_ERR(di)) {
 960		if (PTR_ERR(di) != -ENOENT)
 961			ret = PTR_ERR(di);
 962		goto out;
 963	} else if (di) {
 964		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 965		if (location.objectid != objectid)
 966			goto out;
 967	} else {
 968		goto out;
 969	}
 970
 971	btrfs_release_path(path);
 972	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 973	if (IS_ERR(di)) {
 974		ret = PTR_ERR(di);
 
 
 
 975		goto out;
 976	} else if (di) {
 977		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 978		if (location.objectid == objectid)
 979			ret = 1;
 980	}
 981out:
 982	btrfs_release_path(path);
 983	return ret;
 984}
 985
 986/*
 987 * helper function to check a log tree for a named back reference in
 988 * an inode.  This is used to decide if a back reference that is
 989 * found in the subvolume conflicts with what we find in the log.
 990 *
 991 * inode backreferences may have multiple refs in a single item,
 992 * during replay we process one reference at a time, and we don't
 993 * want to delete valid links to a file from the subvolume if that
 994 * link is also in the log.
 995 */
 996static noinline int backref_in_log(struct btrfs_root *log,
 997				   struct btrfs_key *key,
 998				   u64 ref_objectid,
 999				   const char *name, int namelen)
1000{
1001	struct btrfs_path *path;
 
 
 
 
 
 
1002	int ret;
 
1003
1004	path = btrfs_alloc_path();
1005	if (!path)
1006		return -ENOMEM;
1007
1008	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1009	if (ret < 0) {
1010		goto out;
1011	} else if (ret == 1) {
1012		ret = 0;
1013		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	}
1015
1016	if (key->type == BTRFS_INODE_EXTREF_KEY)
1017		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1018						       path->slots[0],
1019						       ref_objectid,
1020						       name, namelen);
1021	else
1022		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1023						   path->slots[0],
1024						   name, namelen);
1025out:
1026	btrfs_free_path(path);
1027	return ret;
1028}
1029
1030static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
1031				  struct btrfs_root *root,
 
1032				  struct btrfs_path *path,
1033				  struct btrfs_root *log_root,
1034				  struct btrfs_inode *dir,
1035				  struct btrfs_inode *inode,
1036				  u64 inode_objectid, u64 parent_objectid,
1037				  u64 ref_index, char *name, int namelen,
1038				  int *search_done)
1039{
 
 
 
 
 
 
 
 
1040	int ret;
1041	char *victim_name;
1042	int victim_name_len;
1043	struct extent_buffer *leaf;
1044	struct btrfs_dir_item *di;
1045	struct btrfs_key search_key;
1046	struct btrfs_inode_extref *extref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048again:
1049	/* Search old style refs */
1050	search_key.objectid = inode_objectid;
1051	search_key.type = BTRFS_INODE_REF_KEY;
1052	search_key.offset = parent_objectid;
1053	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054	if (ret == 0) {
 
 
1055		struct btrfs_inode_ref *victim_ref;
1056		unsigned long ptr;
1057		unsigned long ptr_end;
1058
1059		leaf = path->nodes[0];
1060
1061		/* are we trying to overwrite a back ref for the root directory
1062		 * if so, just jump out, we're done
1063		 */
1064		if (search_key.objectid == search_key.offset)
1065			return 1;
1066
1067		/* check all the names in this back reference to see
1068		 * if they are in the log.  if so, we allow them to stay
1069		 * otherwise they must be unlinked as a conflict
1070		 */
1071		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1072		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1073		while (ptr < ptr_end) {
1074			victim_ref = (struct btrfs_inode_ref *)ptr;
1075			victim_name_len = btrfs_inode_ref_name_len(leaf,
1076								   victim_ref);
1077			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078			if (!victim_name)
1079				return -ENOMEM;
1080
1081			read_extent_buffer(leaf, victim_name,
1082					   (unsigned long)(victim_ref + 1),
1083					   victim_name_len);
1084
1085			ret = backref_in_log(log_root, &search_key,
1086					     parent_objectid, victim_name,
1087					     victim_name_len);
1088			if (ret < 0) {
1089				kfree(victim_name);
1090				return ret;
1091			} else if (!ret) {
1092				inc_nlink(&inode->vfs_inode);
1093				btrfs_release_path(path);
1094
1095				ret = btrfs_unlink_inode(trans, root, dir, inode,
1096						victim_name, victim_name_len);
1097				kfree(victim_name);
1098				if (ret)
1099					return ret;
1100				ret = btrfs_run_delayed_items(trans);
1101				if (ret)
1102					return ret;
1103				*search_done = 1;
1104				goto again;
1105			}
1106			kfree(victim_name);
1107
1108			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1109		}
 
1110
1111		/*
1112		 * NOTE: we have searched root tree and checked the
1113		 * corresponding ref, it does not need to check again.
1114		 */
1115		*search_done = 1;
1116	}
1117	btrfs_release_path(path);
1118
1119	/* Same search but for extended refs */
1120	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1121					   inode_objectid, parent_objectid, 0,
1122					   0);
1123	if (!IS_ERR_OR_NULL(extref)) {
1124		u32 item_size;
1125		u32 cur_offset = 0;
1126		unsigned long base;
1127		struct inode *victim_parent;
1128
1129		leaf = path->nodes[0];
1130
1131		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1132		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133
1134		while (cur_offset < item_size) {
1135			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136
1137			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138
1139			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1140				goto next;
1141
1142			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1143			if (!victim_name)
1144				return -ENOMEM;
1145			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1146					   victim_name_len);
1147
1148			search_key.objectid = inode_objectid;
1149			search_key.type = BTRFS_INODE_EXTREF_KEY;
1150			search_key.offset = btrfs_extref_hash(parent_objectid,
1151							      victim_name,
1152							      victim_name_len);
1153			ret = backref_in_log(log_root, &search_key,
1154					     parent_objectid, victim_name,
1155					     victim_name_len);
1156			if (ret < 0) {
1157				return ret;
1158			} else if (!ret) {
1159				ret = -ENOENT;
1160				victim_parent = read_one_inode(root,
1161						parent_objectid);
1162				if (victim_parent) {
1163					inc_nlink(&inode->vfs_inode);
1164					btrfs_release_path(path);
1165
1166					ret = btrfs_unlink_inode(trans, root,
1167							BTRFS_I(victim_parent),
1168							inode,
1169							victim_name,
1170							victim_name_len);
1171					if (!ret)
1172						ret = btrfs_run_delayed_items(
1173								  trans);
1174				}
1175				iput(victim_parent);
1176				kfree(victim_name);
1177				if (ret)
1178					return ret;
1179				*search_done = 1;
1180				goto again;
1181			}
1182			kfree(victim_name);
1183next:
1184			cur_offset += victim_name_len + sizeof(*extref);
1185		}
1186		*search_done = 1;
1187	}
1188	btrfs_release_path(path);
1189
1190	/* look for a conflicting sequence number */
1191	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1192					 ref_index, name, namelen, 0);
1193	if (IS_ERR(di)) {
1194		if (PTR_ERR(di) != -ENOENT)
1195			return PTR_ERR(di);
1196	} else if (di) {
1197		ret = drop_one_dir_item(trans, root, path, dir, di);
1198		if (ret)
1199			return ret;
1200	}
1201	btrfs_release_path(path);
1202
1203	/* look for a conflicting name */
1204	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1205				   name, namelen, 0);
1206	if (IS_ERR(di)) {
1207		return PTR_ERR(di);
1208	} else if (di) {
1209		ret = drop_one_dir_item(trans, root, path, dir, di);
1210		if (ret)
1211			return ret;
1212	}
1213	btrfs_release_path(path);
1214
1215	return 0;
1216}
 
 
 
1217
1218static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1219			     u32 *namelen, char **name, u64 *index,
1220			     u64 *parent_objectid)
1221{
1222	struct btrfs_inode_extref *extref;
1223
1224	extref = (struct btrfs_inode_extref *)ref_ptr;
 
 
 
 
1225
1226	*namelen = btrfs_inode_extref_name_len(eb, extref);
1227	*name = kmalloc(*namelen, GFP_NOFS);
1228	if (*name == NULL)
1229		return -ENOMEM;
1230
1231	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1232			   *namelen);
1233
1234	if (index)
1235		*index = btrfs_inode_extref_index(eb, extref);
1236	if (parent_objectid)
1237		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238
 
 
 
 
1239	return 0;
1240}
1241
1242static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243			  u32 *namelen, char **name, u64 *index)
1244{
1245	struct btrfs_inode_ref *ref;
1246
1247	ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249	*namelen = btrfs_inode_ref_name_len(eb, ref);
1250	*name = kmalloc(*namelen, GFP_NOFS);
1251	if (*name == NULL)
1252		return -ENOMEM;
1253
1254	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255
1256	if (index)
1257		*index = btrfs_inode_ref_index(eb, ref);
1258
1259	return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270				 struct btrfs_root *root,
1271				 struct btrfs_path *path,
1272				 struct btrfs_inode *inode,
1273				 struct extent_buffer *log_eb,
1274				 int log_slot,
1275				 struct btrfs_key *key)
1276{
1277	int ret;
1278	unsigned long ref_ptr;
1279	unsigned long ref_end;
1280	struct extent_buffer *eb;
1281
1282again:
1283	btrfs_release_path(path);
1284	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285	if (ret > 0) {
1286		ret = 0;
1287		goto out;
1288	}
1289	if (ret < 0)
1290		goto out;
1291
1292	eb = path->nodes[0];
1293	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1295	while (ref_ptr < ref_end) {
1296		char *name = NULL;
1297		int namelen;
1298		u64 parent_id;
1299
1300		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1301			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302						NULL, &parent_id);
1303		} else {
1304			parent_id = key->offset;
1305			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1306					     NULL);
1307		}
1308		if (ret)
1309			goto out;
1310
1311		if (key->type == BTRFS_INODE_EXTREF_KEY)
1312			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313							       parent_id, name,
1314							       namelen);
1315		else
1316			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1317							   name, namelen);
1318
1319		if (!ret) {
1320			struct inode *dir;
1321
1322			btrfs_release_path(path);
1323			dir = read_one_inode(root, parent_id);
1324			if (!dir) {
1325				ret = -ENOENT;
1326				kfree(name);
1327				goto out;
1328			}
1329			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1330						 inode, name, namelen);
1331			kfree(name);
1332			iput(dir);
1333			if (ret)
1334				goto out;
1335			goto again;
1336		}
1337
1338		kfree(name);
1339		ref_ptr += namelen;
1340		if (key->type == BTRFS_INODE_EXTREF_KEY)
1341			ref_ptr += sizeof(struct btrfs_inode_extref);
1342		else
1343			ref_ptr += sizeof(struct btrfs_inode_ref);
1344	}
1345	ret = 0;
1346 out:
1347	btrfs_release_path(path);
1348	return ret;
1349}
1350
1351static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1352				  const u8 ref_type, const char *name,
1353				  const int namelen)
1354{
1355	struct btrfs_key key;
1356	struct btrfs_path *path;
1357	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358	int ret;
1359
1360	path = btrfs_alloc_path();
1361	if (!path)
1362		return -ENOMEM;
1363
1364	key.objectid = btrfs_ino(BTRFS_I(inode));
1365	key.type = ref_type;
1366	if (key.type == BTRFS_INODE_REF_KEY)
1367		key.offset = parent_id;
1368	else
1369		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1370
1371	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1372	if (ret < 0)
1373		goto out;
1374	if (ret > 0) {
1375		ret = 0;
1376		goto out;
1377	}
1378	if (key.type == BTRFS_INODE_EXTREF_KEY)
1379		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1380				path->slots[0], parent_id, name, namelen);
1381	else
1382		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1383						   name, namelen);
1384
1385out:
1386	btrfs_free_path(path);
1387	return ret;
1388}
1389
1390static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1391		    struct inode *dir, struct inode *inode, const char *name,
1392		    int namelen, u64 ref_index)
1393{
1394	struct btrfs_dir_item *dir_item;
1395	struct btrfs_key key;
1396	struct btrfs_path *path;
1397	struct inode *other_inode = NULL;
1398	int ret;
1399
1400	path = btrfs_alloc_path();
1401	if (!path)
1402		return -ENOMEM;
1403
1404	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1405					 btrfs_ino(BTRFS_I(dir)),
1406					 name, namelen, 0);
1407	if (!dir_item) {
1408		btrfs_release_path(path);
1409		goto add_link;
1410	} else if (IS_ERR(dir_item)) {
1411		ret = PTR_ERR(dir_item);
1412		goto out;
1413	}
1414
1415	/*
1416	 * Our inode's dentry collides with the dentry of another inode which is
1417	 * in the log but not yet processed since it has a higher inode number.
1418	 * So delete that other dentry.
1419	 */
1420	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1421	btrfs_release_path(path);
1422	other_inode = read_one_inode(root, key.objectid);
1423	if (!other_inode) {
1424		ret = -ENOENT;
1425		goto out;
1426	}
1427	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1428				 name, namelen);
1429	if (ret)
1430		goto out;
1431	/*
1432	 * If we dropped the link count to 0, bump it so that later the iput()
1433	 * on the inode will not free it. We will fixup the link count later.
1434	 */
1435	if (other_inode->i_nlink == 0)
1436		inc_nlink(other_inode);
1437
1438	ret = btrfs_run_delayed_items(trans);
1439	if (ret)
1440		goto out;
1441add_link:
1442	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1443			     name, namelen, 0, ref_index);
1444out:
1445	iput(other_inode);
1446	btrfs_free_path(path);
1447
1448	return ret;
1449}
1450
1451/*
1452 * replay one inode back reference item found in the log tree.
1453 * eb, slot and key refer to the buffer and key found in the log tree.
1454 * root is the destination we are replaying into, and path is for temp
1455 * use by this function.  (it should be released on return).
 
 
 
 
1456 */
1457static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1458				  struct btrfs_root *root,
1459				  struct btrfs_root *log,
1460				  struct btrfs_path *path,
1461				  struct extent_buffer *eb, int slot,
1462				  struct btrfs_key *key)
1463{
1464	struct inode *dir = NULL;
1465	struct inode *inode = NULL;
1466	unsigned long ref_ptr;
1467	unsigned long ref_end;
1468	char *name = NULL;
1469	int namelen;
1470	int ret;
1471	int search_done = 0;
1472	int log_ref_ver = 0;
1473	u64 parent_objectid;
1474	u64 inode_objectid;
1475	u64 ref_index = 0;
1476	int ref_struct_size;
1477
1478	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1479	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1480
1481	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1482		struct btrfs_inode_extref *r;
1483
1484		ref_struct_size = sizeof(struct btrfs_inode_extref);
1485		log_ref_ver = 1;
1486		r = (struct btrfs_inode_extref *)ref_ptr;
1487		parent_objectid = btrfs_inode_extref_parent(eb, r);
1488	} else {
1489		ref_struct_size = sizeof(struct btrfs_inode_ref);
1490		parent_objectid = key->offset;
1491	}
1492	inode_objectid = key->objectid;
1493
1494	/*
1495	 * it is possible that we didn't log all the parent directories
1496	 * for a given inode.  If we don't find the dir, just don't
1497	 * copy the back ref in.  The link count fixup code will take
1498	 * care of the rest
1499	 */
1500	dir = read_one_inode(root, parent_objectid);
1501	if (!dir) {
1502		ret = -ENOENT;
1503		goto out;
1504	}
1505
1506	inode = read_one_inode(root, inode_objectid);
1507	if (!inode) {
1508		ret = -EIO;
1509		goto out;
1510	}
1511
1512	while (ref_ptr < ref_end) {
1513		if (log_ref_ver) {
1514			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1515						&ref_index, &parent_objectid);
1516			/*
1517			 * parent object can change from one array
1518			 * item to another.
1519			 */
1520			if (!dir)
1521				dir = read_one_inode(root, parent_objectid);
1522			if (!dir) {
1523				ret = -ENOENT;
1524				goto out;
1525			}
1526		} else {
1527			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1528					     &ref_index);
1529		}
1530		if (ret)
1531			goto out;
1532
1533		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1534				   btrfs_ino(BTRFS_I(inode)), ref_index,
1535				   name, namelen);
1536		if (ret < 0) {
1537			goto out;
1538		} else if (ret == 0) {
1539			/*
1540			 * look for a conflicting back reference in the
1541			 * metadata. if we find one we have to unlink that name
1542			 * of the file before we add our new link.  Later on, we
1543			 * overwrite any existing back reference, and we don't
1544			 * want to create dangling pointers in the directory.
1545			 */
1546
1547			if (!search_done) {
1548				ret = __add_inode_ref(trans, root, path, log,
1549						      BTRFS_I(dir),
1550						      BTRFS_I(inode),
1551						      inode_objectid,
1552						      parent_objectid,
1553						      ref_index, name, namelen,
1554						      &search_done);
1555				if (ret) {
1556					if (ret == 1)
1557						ret = 0;
1558					goto out;
1559				}
1560			}
1561
1562			/*
1563			 * If a reference item already exists for this inode
1564			 * with the same parent and name, but different index,
1565			 * drop it and the corresponding directory index entries
1566			 * from the parent before adding the new reference item
1567			 * and dir index entries, otherwise we would fail with
1568			 * -EEXIST returned from btrfs_add_link() below.
1569			 */
1570			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571						     name, namelen);
1572			if (ret > 0) {
1573				ret = btrfs_unlink_inode(trans, root,
1574							 BTRFS_I(dir),
1575							 BTRFS_I(inode),
1576							 name, namelen);
1577				/*
1578				 * If we dropped the link count to 0, bump it so
1579				 * that later the iput() on the inode will not
1580				 * free it. We will fixup the link count later.
1581				 */
1582				if (!ret && inode->i_nlink == 0)
1583					inc_nlink(inode);
1584			}
1585			if (ret < 0)
1586				goto out;
1587
1588			/* insert our name */
1589			ret = add_link(trans, root, dir, inode, name, namelen,
1590				       ref_index);
1591			if (ret)
1592				goto out;
1593
1594			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1595			if (ret)
1596				goto out;
1597		}
1598		/* Else, ret == 1, we already have a perfect match, we're done. */
1599
1600		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1601		kfree(name);
1602		name = NULL;
1603		if (log_ref_ver) {
1604			iput(dir);
1605			dir = NULL;
1606		}
1607	}
1608
1609	/*
1610	 * Before we overwrite the inode reference item in the subvolume tree
1611	 * with the item from the log tree, we must unlink all names from the
1612	 * parent directory that are in the subvolume's tree inode reference
1613	 * item, otherwise we end up with an inconsistent subvolume tree where
1614	 * dir index entries exist for a name but there is no inode reference
1615	 * item with the same name.
1616	 */
1617	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1618				    key);
1619	if (ret)
1620		goto out;
1621
1622	/* finally write the back reference in the inode */
1623	ret = overwrite_item(trans, root, path, eb, slot, key);
1624out:
1625	btrfs_release_path(path);
1626	kfree(name);
1627	iput(dir);
1628	iput(inode);
1629	return ret;
1630}
1631
1632static int count_inode_extrefs(struct btrfs_root *root,
1633		struct btrfs_inode *inode, struct btrfs_path *path)
1634{
1635	int ret = 0;
1636	int name_len;
1637	unsigned int nlink = 0;
1638	u32 item_size;
1639	u32 cur_offset = 0;
1640	u64 inode_objectid = btrfs_ino(inode);
1641	u64 offset = 0;
1642	unsigned long ptr;
1643	struct btrfs_inode_extref *extref;
1644	struct extent_buffer *leaf;
1645
1646	while (1) {
1647		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1648					    &extref, &offset);
1649		if (ret)
1650			break;
1651
1652		leaf = path->nodes[0];
1653		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655		cur_offset = 0;
1656
1657		while (cur_offset < item_size) {
1658			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1659			name_len = btrfs_inode_extref_name_len(leaf, extref);
1660
1661			nlink++;
1662
1663			cur_offset += name_len + sizeof(*extref);
1664		}
1665
1666		offset++;
1667		btrfs_release_path(path);
1668	}
1669	btrfs_release_path(path);
1670
1671	if (ret < 0 && ret != -ENOENT)
1672		return ret;
1673	return nlink;
1674}
1675
1676static int count_inode_refs(struct btrfs_root *root,
1677			struct btrfs_inode *inode, struct btrfs_path *path)
1678{
 
1679	int ret;
1680	struct btrfs_key key;
1681	unsigned int nlink = 0;
1682	unsigned long ptr;
1683	unsigned long ptr_end;
1684	int name_len;
1685	u64 ino = btrfs_ino(inode);
1686
1687	key.objectid = ino;
1688	key.type = BTRFS_INODE_REF_KEY;
1689	key.offset = (u64)-1;
1690
 
 
 
 
1691	while (1) {
1692		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1693		if (ret < 0)
1694			break;
1695		if (ret > 0) {
1696			if (path->slots[0] == 0)
1697				break;
1698			path->slots[0]--;
1699		}
1700process_slot:
1701		btrfs_item_key_to_cpu(path->nodes[0], &key,
1702				      path->slots[0]);
1703		if (key.objectid != ino ||
1704		    key.type != BTRFS_INODE_REF_KEY)
1705			break;
1706		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1707		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1708						   path->slots[0]);
1709		while (ptr < ptr_end) {
1710			struct btrfs_inode_ref *ref;
1711
1712			ref = (struct btrfs_inode_ref *)ptr;
1713			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1714							    ref);
1715			ptr = (unsigned long)(ref + 1) + name_len;
1716			nlink++;
1717		}
1718
1719		if (key.offset == 0)
1720			break;
1721		if (path->slots[0] > 0) {
1722			path->slots[0]--;
1723			goto process_slot;
1724		}
1725		key.offset--;
1726		btrfs_release_path(path);
1727	}
1728	btrfs_release_path(path);
1729
1730	return nlink;
1731}
1732
1733/*
1734 * There are a few corners where the link count of the file can't
1735 * be properly maintained during replay.  So, instead of adding
1736 * lots of complexity to the log code, we just scan the backrefs
1737 * for any file that has been through replay.
1738 *
1739 * The scan will update the link count on the inode to reflect the
1740 * number of back refs found.  If it goes down to zero, the iput
1741 * will free the inode.
1742 */
1743static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1744					   struct btrfs_root *root,
1745					   struct inode *inode)
1746{
1747	struct btrfs_path *path;
1748	int ret;
1749	u64 nlink = 0;
1750	u64 ino = btrfs_ino(BTRFS_I(inode));
1751
1752	path = btrfs_alloc_path();
1753	if (!path)
1754		return -ENOMEM;
1755
1756	ret = count_inode_refs(root, BTRFS_I(inode), path);
1757	if (ret < 0)
1758		goto out;
1759
1760	nlink = ret;
1761
1762	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1763	if (ret < 0)
1764		goto out;
1765
1766	nlink += ret;
1767
1768	ret = 0;
1769
1770	if (nlink != inode->i_nlink) {
1771		set_nlink(inode, nlink);
1772		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1773		if (ret)
1774			goto out;
1775	}
1776	BTRFS_I(inode)->index_cnt = (u64)-1;
1777
1778	if (inode->i_nlink == 0) {
1779		if (S_ISDIR(inode->i_mode)) {
1780			ret = replay_dir_deletes(trans, root, NULL, path,
1781						 ino, 1);
1782			if (ret)
1783				goto out;
1784		}
1785		ret = btrfs_insert_orphan_item(trans, root, ino);
1786		if (ret == -EEXIST)
1787			ret = 0;
1788	}
 
1789
1790out:
1791	btrfs_free_path(path);
1792	return ret;
1793}
1794
1795static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1796					    struct btrfs_root *root,
1797					    struct btrfs_path *path)
1798{
1799	int ret;
1800	struct btrfs_key key;
1801	struct inode *inode;
1802
1803	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1804	key.type = BTRFS_ORPHAN_ITEM_KEY;
1805	key.offset = (u64)-1;
1806	while (1) {
1807		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1808		if (ret < 0)
1809			break;
1810
1811		if (ret == 1) {
1812			ret = 0;
1813			if (path->slots[0] == 0)
1814				break;
1815			path->slots[0]--;
1816		}
1817
1818		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1820		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1821			break;
1822
1823		ret = btrfs_del_item(trans, root, path);
1824		if (ret)
1825			break;
1826
1827		btrfs_release_path(path);
1828		inode = read_one_inode(root, key.offset);
1829		if (!inode) {
1830			ret = -EIO;
1831			break;
1832		}
1833
1834		ret = fixup_inode_link_count(trans, root, inode);
 
 
1835		iput(inode);
1836		if (ret)
1837			break;
1838
1839		/*
1840		 * fixup on a directory may create new entries,
1841		 * make sure we always look for the highset possible
1842		 * offset
1843		 */
1844		key.offset = (u64)-1;
1845	}
 
 
1846	btrfs_release_path(path);
1847	return ret;
1848}
1849
1850
1851/*
1852 * record a given inode in the fixup dir so we can check its link
1853 * count when replay is done.  The link count is incremented here
1854 * so the inode won't go away until we check it
1855 */
1856static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1857				      struct btrfs_root *root,
1858				      struct btrfs_path *path,
1859				      u64 objectid)
1860{
1861	struct btrfs_key key;
1862	int ret = 0;
1863	struct inode *inode;
1864
1865	inode = read_one_inode(root, objectid);
1866	if (!inode)
1867		return -EIO;
1868
1869	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1870	key.type = BTRFS_ORPHAN_ITEM_KEY;
1871	key.offset = objectid;
1872
1873	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1874
1875	btrfs_release_path(path);
1876	if (ret == 0) {
1877		if (!inode->i_nlink)
1878			set_nlink(inode, 1);
1879		else
1880			inc_nlink(inode);
1881		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1882	} else if (ret == -EEXIST) {
1883		ret = 0;
 
 
1884	}
1885	iput(inode);
1886
1887	return ret;
1888}
1889
1890/*
1891 * when replaying the log for a directory, we only insert names
1892 * for inodes that actually exist.  This means an fsync on a directory
1893 * does not implicitly fsync all the new files in it
1894 */
1895static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1896				    struct btrfs_root *root,
 
1897				    u64 dirid, u64 index,
1898				    char *name, int name_len,
1899				    struct btrfs_key *location)
1900{
1901	struct inode *inode;
1902	struct inode *dir;
1903	int ret;
1904
1905	inode = read_one_inode(root, location->objectid);
1906	if (!inode)
1907		return -ENOENT;
1908
1909	dir = read_one_inode(root, dirid);
1910	if (!dir) {
1911		iput(inode);
1912		return -EIO;
1913	}
1914
1915	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1916			name_len, 1, index);
1917
1918	/* FIXME, put inode into FIXUP list */
1919
1920	iput(inode);
1921	iput(dir);
1922	return ret;
1923}
1924
1925/*
1926 * take a single entry in a log directory item and replay it into
1927 * the subvolume.
1928 *
1929 * if a conflicting item exists in the subdirectory already,
1930 * the inode it points to is unlinked and put into the link count
1931 * fix up tree.
1932 *
1933 * If a name from the log points to a file or directory that does
1934 * not exist in the FS, it is skipped.  fsyncs on directories
1935 * do not force down inodes inside that directory, just changes to the
1936 * names or unlinks in a directory.
1937 *
1938 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1939 * non-existing inode) and 1 if the name was replayed.
1940 */
1941static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1942				    struct btrfs_root *root,
1943				    struct btrfs_path *path,
1944				    struct extent_buffer *eb,
1945				    struct btrfs_dir_item *di,
1946				    struct btrfs_key *key)
1947{
1948	char *name;
1949	int name_len;
1950	struct btrfs_dir_item *dst_di;
1951	struct btrfs_key found_key;
1952	struct btrfs_key log_key;
1953	struct inode *dir;
1954	u8 log_type;
1955	bool exists;
1956	int ret;
1957	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1958	bool name_added = false;
1959
1960	dir = read_one_inode(root, key->objectid);
1961	if (!dir)
1962		return -EIO;
1963
1964	name_len = btrfs_dir_name_len(eb, di);
1965	name = kmalloc(name_len, GFP_NOFS);
1966	if (!name) {
1967		ret = -ENOMEM;
1968		goto out;
1969	}
1970
1971	log_type = btrfs_dir_type(eb, di);
1972	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973		   name_len);
1974
1975	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1976	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1977	btrfs_release_path(path);
1978	if (ret < 0)
1979		goto out;
1980	exists = (ret == 0);
1981	ret = 0;
1982
1983	if (key->type == BTRFS_DIR_ITEM_KEY) {
1984		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1985				       name, name_len, 1);
1986	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1987		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1988						     key->objectid,
1989						     key->offset, name,
1990						     name_len, 1);
1991	} else {
1992		/* Corruption */
1993		ret = -EINVAL;
1994		goto out;
1995	}
1996
1997	if (dst_di == ERR_PTR(-ENOENT))
1998		dst_di = NULL;
1999
2000	if (IS_ERR(dst_di)) {
2001		ret = PTR_ERR(dst_di);
2002		goto out;
2003	} else if (!dst_di) {
2004		/* we need a sequence number to insert, so we only
2005		 * do inserts for the BTRFS_DIR_INDEX_KEY types
2006		 */
2007		if (key->type != BTRFS_DIR_INDEX_KEY)
2008			goto out;
2009		goto insert;
2010	}
2011
2012	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2013	/* the existing item matches the logged item */
2014	if (found_key.objectid == log_key.objectid &&
2015	    found_key.type == log_key.type &&
2016	    found_key.offset == log_key.offset &&
2017	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2018		update_size = false;
2019		goto out;
2020	}
2021
2022	/*
2023	 * don't drop the conflicting directory entry if the inode
2024	 * for the new entry doesn't exist
2025	 */
2026	if (!exists)
2027		goto out;
2028
2029	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2030	if (ret)
2031		goto out;
2032
2033	if (key->type == BTRFS_DIR_INDEX_KEY)
2034		goto insert;
2035out:
2036	btrfs_release_path(path);
2037	if (!ret && update_size) {
2038		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2039		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2040	}
2041	kfree(name);
2042	iput(dir);
2043	if (!ret && name_added)
2044		ret = 1;
2045	return ret;
2046
2047insert:
2048	/*
2049	 * Check if the inode reference exists in the log for the given name,
2050	 * inode and parent inode
2051	 */
2052	found_key.objectid = log_key.objectid;
2053	found_key.type = BTRFS_INODE_REF_KEY;
2054	found_key.offset = key->objectid;
2055	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2056	if (ret < 0) {
2057	        goto out;
2058	} else if (ret) {
2059	        /* The dentry will be added later. */
2060	        ret = 0;
2061	        update_size = false;
2062	        goto out;
2063	}
2064
2065	found_key.objectid = log_key.objectid;
2066	found_key.type = BTRFS_INODE_EXTREF_KEY;
2067	found_key.offset = key->objectid;
2068	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2069			     name_len);
2070	if (ret < 0) {
2071		goto out;
2072	} else if (ret) {
2073		/* The dentry will be added later. */
2074		ret = 0;
2075		update_size = false;
2076		goto out;
2077	}
2078	btrfs_release_path(path);
2079	ret = insert_one_name(trans, root, key->objectid, key->offset,
2080			      name, name_len, &log_key);
2081	if (ret && ret != -ENOENT && ret != -EEXIST)
2082		goto out;
2083	if (!ret)
2084		name_added = true;
2085	update_size = false;
2086	ret = 0;
2087	goto out;
2088}
2089
2090/*
2091 * find all the names in a directory item and reconcile them into
2092 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2093 * one name in a directory item, but the same code gets used for
2094 * both directory index types
2095 */
2096static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097					struct btrfs_root *root,
2098					struct btrfs_path *path,
2099					struct extent_buffer *eb, int slot,
2100					struct btrfs_key *key)
2101{
2102	int ret = 0;
2103	u32 item_size = btrfs_item_size_nr(eb, slot);
2104	struct btrfs_dir_item *di;
2105	int name_len;
2106	unsigned long ptr;
2107	unsigned long ptr_end;
2108	struct btrfs_path *fixup_path = NULL;
2109
2110	ptr = btrfs_item_ptr_offset(eb, slot);
2111	ptr_end = ptr + item_size;
2112	while (ptr < ptr_end) {
2113		di = (struct btrfs_dir_item *)ptr;
 
 
2114		name_len = btrfs_dir_name_len(eb, di);
2115		ret = replay_one_name(trans, root, path, eb, di, key);
2116		if (ret < 0)
2117			break;
2118		ptr = (unsigned long)(di + 1);
2119		ptr += name_len;
2120
2121		/*
2122		 * If this entry refers to a non-directory (directories can not
2123		 * have a link count > 1) and it was added in the transaction
2124		 * that was not committed, make sure we fixup the link count of
2125		 * the inode it the entry points to. Otherwise something like
2126		 * the following would result in a directory pointing to an
2127		 * inode with a wrong link that does not account for this dir
2128		 * entry:
2129		 *
2130		 * mkdir testdir
2131		 * touch testdir/foo
2132		 * touch testdir/bar
2133		 * sync
2134		 *
2135		 * ln testdir/bar testdir/bar_link
2136		 * ln testdir/foo testdir/foo_link
2137		 * xfs_io -c "fsync" testdir/bar
2138		 *
2139		 * <power failure>
2140		 *
2141		 * mount fs, log replay happens
2142		 *
2143		 * File foo would remain with a link count of 1 when it has two
2144		 * entries pointing to it in the directory testdir. This would
2145		 * make it impossible to ever delete the parent directory has
2146		 * it would result in stale dentries that can never be deleted.
2147		 */
2148		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149			struct btrfs_key di_key;
2150
2151			if (!fixup_path) {
2152				fixup_path = btrfs_alloc_path();
2153				if (!fixup_path) {
2154					ret = -ENOMEM;
2155					break;
2156				}
2157			}
2158
2159			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160			ret = link_to_fixup_dir(trans, root, fixup_path,
2161						di_key.objectid);
2162			if (ret)
2163				break;
2164		}
2165		ret = 0;
2166	}
2167	btrfs_free_path(fixup_path);
2168	return ret;
2169}
2170
2171/*
2172 * directory replay has two parts.  There are the standard directory
2173 * items in the log copied from the subvolume, and range items
2174 * created in the log while the subvolume was logged.
2175 *
2176 * The range items tell us which parts of the key space the log
2177 * is authoritative for.  During replay, if a key in the subvolume
2178 * directory is in a logged range item, but not actually in the log
2179 * that means it was deleted from the directory before the fsync
2180 * and should be removed.
2181 */
2182static noinline int find_dir_range(struct btrfs_root *root,
2183				   struct btrfs_path *path,
2184				   u64 dirid, int key_type,
2185				   u64 *start_ret, u64 *end_ret)
2186{
2187	struct btrfs_key key;
2188	u64 found_end;
2189	struct btrfs_dir_log_item *item;
2190	int ret;
2191	int nritems;
2192
2193	if (*start_ret == (u64)-1)
2194		return 1;
2195
2196	key.objectid = dirid;
2197	key.type = key_type;
2198	key.offset = *start_ret;
2199
2200	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201	if (ret < 0)
2202		goto out;
2203	if (ret > 0) {
2204		if (path->slots[0] == 0)
2205			goto out;
2206		path->slots[0]--;
2207	}
2208	if (ret != 0)
2209		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210
2211	if (key.type != key_type || key.objectid != dirid) {
2212		ret = 1;
2213		goto next;
2214	}
2215	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216			      struct btrfs_dir_log_item);
2217	found_end = btrfs_dir_log_end(path->nodes[0], item);
2218
2219	if (*start_ret >= key.offset && *start_ret <= found_end) {
2220		ret = 0;
2221		*start_ret = key.offset;
2222		*end_ret = found_end;
2223		goto out;
2224	}
2225	ret = 1;
2226next:
2227	/* check the next slot in the tree to see if it is a valid item */
2228	nritems = btrfs_header_nritems(path->nodes[0]);
2229	path->slots[0]++;
2230	if (path->slots[0] >= nritems) {
2231		ret = btrfs_next_leaf(root, path);
2232		if (ret)
2233			goto out;
 
 
2234	}
2235
2236	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
2238	if (key.type != key_type || key.objectid != dirid) {
2239		ret = 1;
2240		goto out;
2241	}
2242	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243			      struct btrfs_dir_log_item);
2244	found_end = btrfs_dir_log_end(path->nodes[0], item);
2245	*start_ret = key.offset;
2246	*end_ret = found_end;
2247	ret = 0;
2248out:
2249	btrfs_release_path(path);
2250	return ret;
2251}
2252
2253/*
2254 * this looks for a given directory item in the log.  If the directory
2255 * item is not in the log, the item is removed and the inode it points
2256 * to is unlinked
2257 */
2258static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259				      struct btrfs_root *root,
2260				      struct btrfs_root *log,
2261				      struct btrfs_path *path,
2262				      struct btrfs_path *log_path,
2263				      struct inode *dir,
2264				      struct btrfs_key *dir_key)
2265{
2266	int ret;
2267	struct extent_buffer *eb;
2268	int slot;
2269	u32 item_size;
2270	struct btrfs_dir_item *di;
2271	struct btrfs_dir_item *log_di;
2272	int name_len;
2273	unsigned long ptr;
2274	unsigned long ptr_end;
2275	char *name;
2276	struct inode *inode;
2277	struct btrfs_key location;
2278
2279again:
2280	eb = path->nodes[0];
2281	slot = path->slots[0];
2282	item_size = btrfs_item_size_nr(eb, slot);
2283	ptr = btrfs_item_ptr_offset(eb, slot);
2284	ptr_end = ptr + item_size;
2285	while (ptr < ptr_end) {
2286		di = (struct btrfs_dir_item *)ptr;
 
 
 
 
 
2287		name_len = btrfs_dir_name_len(eb, di);
2288		name = kmalloc(name_len, GFP_NOFS);
2289		if (!name) {
2290			ret = -ENOMEM;
2291			goto out;
2292		}
2293		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294				  name_len);
2295		log_di = NULL;
2296		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298						       dir_key->objectid,
2299						       name, name_len, 0);
2300		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301			log_di = btrfs_lookup_dir_index_item(trans, log,
2302						     log_path,
2303						     dir_key->objectid,
2304						     dir_key->offset,
2305						     name, name_len, 0);
2306		}
2307		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2308			btrfs_dir_item_key_to_cpu(eb, di, &location);
2309			btrfs_release_path(path);
2310			btrfs_release_path(log_path);
2311			inode = read_one_inode(root, location.objectid);
2312			if (!inode) {
2313				kfree(name);
2314				return -EIO;
2315			}
2316
2317			ret = link_to_fixup_dir(trans, root,
2318						path, location.objectid);
2319			if (ret) {
2320				kfree(name);
2321				iput(inode);
2322				goto out;
2323			}
2324
2325			inc_nlink(inode);
2326			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327					BTRFS_I(inode), name, name_len);
2328			if (!ret)
2329				ret = btrfs_run_delayed_items(trans);
2330			kfree(name);
2331			iput(inode);
2332			if (ret)
2333				goto out;
2334
2335			/* there might still be more names under this key
2336			 * check and repeat if required
2337			 */
2338			ret = btrfs_search_slot(NULL, root, dir_key, path,
2339						0, 0);
2340			if (ret == 0)
2341				goto again;
2342			ret = 0;
2343			goto out;
2344		} else if (IS_ERR(log_di)) {
2345			kfree(name);
2346			return PTR_ERR(log_di);
2347		}
2348		btrfs_release_path(log_path);
2349		kfree(name);
2350
2351		ptr = (unsigned long)(di + 1);
2352		ptr += name_len;
2353	}
2354	ret = 0;
2355out:
2356	btrfs_release_path(path);
2357	btrfs_release_path(log_path);
2358	return ret;
2359}
2360
2361static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362			      struct btrfs_root *root,
2363			      struct btrfs_root *log,
2364			      struct btrfs_path *path,
2365			      const u64 ino)
2366{
2367	struct btrfs_key search_key;
2368	struct btrfs_path *log_path;
2369	int i;
2370	int nritems;
2371	int ret;
2372
2373	log_path = btrfs_alloc_path();
2374	if (!log_path)
2375		return -ENOMEM;
2376
2377	search_key.objectid = ino;
2378	search_key.type = BTRFS_XATTR_ITEM_KEY;
2379	search_key.offset = 0;
2380again:
2381	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382	if (ret < 0)
2383		goto out;
2384process_leaf:
2385	nritems = btrfs_header_nritems(path->nodes[0]);
2386	for (i = path->slots[0]; i < nritems; i++) {
2387		struct btrfs_key key;
2388		struct btrfs_dir_item *di;
2389		struct btrfs_dir_item *log_di;
2390		u32 total_size;
2391		u32 cur;
2392
2393		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395			ret = 0;
2396			goto out;
2397		}
2398
2399		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400		total_size = btrfs_item_size_nr(path->nodes[0], i);
2401		cur = 0;
2402		while (cur < total_size) {
2403			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405			u32 this_len = sizeof(*di) + name_len + data_len;
2406			char *name;
2407
2408			name = kmalloc(name_len, GFP_NOFS);
2409			if (!name) {
2410				ret = -ENOMEM;
2411				goto out;
2412			}
2413			read_extent_buffer(path->nodes[0], name,
2414					   (unsigned long)(di + 1), name_len);
2415
2416			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417						    name, name_len, 0);
2418			btrfs_release_path(log_path);
2419			if (!log_di) {
2420				/* Doesn't exist in log tree, so delete it. */
2421				btrfs_release_path(path);
2422				di = btrfs_lookup_xattr(trans, root, path, ino,
2423							name, name_len, -1);
2424				kfree(name);
2425				if (IS_ERR(di)) {
2426					ret = PTR_ERR(di);
2427					goto out;
2428				}
2429				ASSERT(di);
2430				ret = btrfs_delete_one_dir_name(trans, root,
2431								path, di);
2432				if (ret)
2433					goto out;
2434				btrfs_release_path(path);
2435				search_key = key;
2436				goto again;
2437			}
2438			kfree(name);
2439			if (IS_ERR(log_di)) {
2440				ret = PTR_ERR(log_di);
2441				goto out;
2442			}
2443			cur += this_len;
2444			di = (struct btrfs_dir_item *)((char *)di + this_len);
2445		}
2446	}
2447	ret = btrfs_next_leaf(root, path);
2448	if (ret > 0)
2449		ret = 0;
2450	else if (ret == 0)
2451		goto process_leaf;
2452out:
2453	btrfs_free_path(log_path);
2454	btrfs_release_path(path);
2455	return ret;
2456}
2457
2458
2459/*
2460 * deletion replay happens before we copy any new directory items
2461 * out of the log or out of backreferences from inodes.  It
2462 * scans the log to find ranges of keys that log is authoritative for,
2463 * and then scans the directory to find items in those ranges that are
2464 * not present in the log.
2465 *
2466 * Anything we don't find in the log is unlinked and removed from the
2467 * directory.
2468 */
2469static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470				       struct btrfs_root *root,
2471				       struct btrfs_root *log,
2472				       struct btrfs_path *path,
2473				       u64 dirid, int del_all)
2474{
2475	u64 range_start;
2476	u64 range_end;
2477	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478	int ret = 0;
2479	struct btrfs_key dir_key;
2480	struct btrfs_key found_key;
2481	struct btrfs_path *log_path;
2482	struct inode *dir;
2483
2484	dir_key.objectid = dirid;
2485	dir_key.type = BTRFS_DIR_ITEM_KEY;
2486	log_path = btrfs_alloc_path();
2487	if (!log_path)
2488		return -ENOMEM;
2489
2490	dir = read_one_inode(root, dirid);
2491	/* it isn't an error if the inode isn't there, that can happen
2492	 * because we replay the deletes before we copy in the inode item
2493	 * from the log
2494	 */
2495	if (!dir) {
2496		btrfs_free_path(log_path);
2497		return 0;
2498	}
2499again:
2500	range_start = 0;
2501	range_end = 0;
2502	while (1) {
2503		if (del_all)
2504			range_end = (u64)-1;
2505		else {
2506			ret = find_dir_range(log, path, dirid, key_type,
2507					     &range_start, &range_end);
2508			if (ret != 0)
2509				break;
2510		}
2511
2512		dir_key.offset = range_start;
2513		while (1) {
2514			int nritems;
2515			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2516						0, 0);
2517			if (ret < 0)
2518				goto out;
2519
2520			nritems = btrfs_header_nritems(path->nodes[0]);
2521			if (path->slots[0] >= nritems) {
2522				ret = btrfs_next_leaf(root, path);
2523				if (ret == 1)
2524					break;
2525				else if (ret < 0)
2526					goto out;
2527			}
2528			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2529					      path->slots[0]);
2530			if (found_key.objectid != dirid ||
2531			    found_key.type != dir_key.type)
2532				goto next_type;
2533
2534			if (found_key.offset > range_end)
2535				break;
2536
2537			ret = check_item_in_log(trans, root, log, path,
2538						log_path, dir,
2539						&found_key);
2540			if (ret)
2541				goto out;
2542			if (found_key.offset == (u64)-1)
2543				break;
2544			dir_key.offset = found_key.offset + 1;
2545		}
2546		btrfs_release_path(path);
2547		if (range_end == (u64)-1)
2548			break;
2549		range_start = range_end + 1;
2550	}
2551
2552next_type:
2553	ret = 0;
2554	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2555		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2556		dir_key.type = BTRFS_DIR_INDEX_KEY;
2557		btrfs_release_path(path);
2558		goto again;
2559	}
2560out:
2561	btrfs_release_path(path);
2562	btrfs_free_path(log_path);
2563	iput(dir);
2564	return ret;
2565}
2566
2567/*
2568 * the process_func used to replay items from the log tree.  This
2569 * gets called in two different stages.  The first stage just looks
2570 * for inodes and makes sure they are all copied into the subvolume.
2571 *
2572 * The second stage copies all the other item types from the log into
2573 * the subvolume.  The two stage approach is slower, but gets rid of
2574 * lots of complexity around inodes referencing other inodes that exist
2575 * only in the log (references come from either directory items or inode
2576 * back refs).
2577 */
2578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2579			     struct walk_control *wc, u64 gen, int level)
2580{
2581	int nritems;
2582	struct btrfs_path *path;
2583	struct btrfs_root *root = wc->replay_dest;
2584	struct btrfs_key key;
 
2585	int i;
2586	int ret;
2587
2588	ret = btrfs_read_buffer(eb, gen, level, NULL);
2589	if (ret)
2590		return ret;
2591
2592	level = btrfs_header_level(eb);
2593
2594	if (level != 0)
2595		return 0;
2596
2597	path = btrfs_alloc_path();
2598	if (!path)
2599		return -ENOMEM;
2600
2601	nritems = btrfs_header_nritems(eb);
2602	for (i = 0; i < nritems; i++) {
2603		btrfs_item_key_to_cpu(eb, &key, i);
2604
2605		/* inode keys are done during the first stage */
2606		if (key.type == BTRFS_INODE_ITEM_KEY &&
2607		    wc->stage == LOG_WALK_REPLAY_INODES) {
2608			struct btrfs_inode_item *inode_item;
2609			u32 mode;
2610
2611			inode_item = btrfs_item_ptr(eb, i,
2612					    struct btrfs_inode_item);
2613			/*
2614			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2615			 * and never got linked before the fsync, skip it, as
2616			 * replaying it is pointless since it would be deleted
2617			 * later. We skip logging tmpfiles, but it's always
2618			 * possible we are replaying a log created with a kernel
2619			 * that used to log tmpfiles.
2620			 */
2621			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2622				wc->ignore_cur_inode = true;
2623				continue;
2624			} else {
2625				wc->ignore_cur_inode = false;
2626			}
2627			ret = replay_xattr_deletes(wc->trans, root, log,
2628						   path, key.objectid);
2629			if (ret)
2630				break;
2631			mode = btrfs_inode_mode(eb, inode_item);
2632			if (S_ISDIR(mode)) {
2633				ret = replay_dir_deletes(wc->trans,
2634					 root, log, path, key.objectid, 0);
2635				if (ret)
2636					break;
2637			}
2638			ret = overwrite_item(wc->trans, root, path,
2639					     eb, i, &key);
2640			if (ret)
2641				break;
2642
2643			/*
2644			 * Before replaying extents, truncate the inode to its
2645			 * size. We need to do it now and not after log replay
2646			 * because before an fsync we can have prealloc extents
2647			 * added beyond the inode's i_size. If we did it after,
2648			 * through orphan cleanup for example, we would drop
2649			 * those prealloc extents just after replaying them.
2650			 */
2651			if (S_ISREG(mode)) {
2652				struct btrfs_drop_extents_args drop_args = { 0 };
2653				struct inode *inode;
2654				u64 from;
2655
2656				inode = read_one_inode(root, key.objectid);
2657				if (!inode) {
2658					ret = -EIO;
2659					break;
2660				}
2661				from = ALIGN(i_size_read(inode),
2662					     root->fs_info->sectorsize);
2663				drop_args.start = from;
2664				drop_args.end = (u64)-1;
2665				drop_args.drop_cache = true;
2666				ret = btrfs_drop_extents(wc->trans, root,
2667							 BTRFS_I(inode),
2668							 &drop_args);
2669				if (!ret) {
2670					inode_sub_bytes(inode,
2671							drop_args.bytes_found);
2672					/* Update the inode's nbytes. */
2673					ret = btrfs_update_inode(wc->trans,
2674							root, BTRFS_I(inode));
2675				}
2676				iput(inode);
2677				if (ret)
2678					break;
2679			}
2680
2681			ret = link_to_fixup_dir(wc->trans, root,
2682						path, key.objectid);
2683			if (ret)
2684				break;
2685		}
2686
2687		if (wc->ignore_cur_inode)
2688			continue;
2689
2690		if (key.type == BTRFS_DIR_INDEX_KEY &&
2691		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2692			ret = replay_one_dir_item(wc->trans, root, path,
2693						  eb, i, &key);
2694			if (ret)
2695				break;
2696		}
2697
2698		if (wc->stage < LOG_WALK_REPLAY_ALL)
2699			continue;
2700
2701		/* these keys are simply copied */
2702		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2703			ret = overwrite_item(wc->trans, root, path,
2704					     eb, i, &key);
2705			if (ret)
2706				break;
2707		} else if (key.type == BTRFS_INODE_REF_KEY ||
2708			   key.type == BTRFS_INODE_EXTREF_KEY) {
2709			ret = add_inode_ref(wc->trans, root, log, path,
2710					    eb, i, &key);
2711			if (ret && ret != -ENOENT)
2712				break;
2713			ret = 0;
2714		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2715			ret = replay_one_extent(wc->trans, root, path,
2716						eb, i, &key);
2717			if (ret)
2718				break;
2719		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2720			ret = replay_one_dir_item(wc->trans, root, path,
2721						  eb, i, &key);
2722			if (ret)
2723				break;
2724		}
2725	}
2726	btrfs_free_path(path);
2727	return ret;
2728}
2729
2730/*
2731 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2732 */
2733static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2734{
2735	struct btrfs_block_group *cache;
2736
2737	cache = btrfs_lookup_block_group(fs_info, start);
2738	if (!cache) {
2739		btrfs_err(fs_info, "unable to find block group for %llu", start);
2740		return;
2741	}
2742
2743	spin_lock(&cache->space_info->lock);
2744	spin_lock(&cache->lock);
2745	cache->reserved -= fs_info->nodesize;
2746	cache->space_info->bytes_reserved -= fs_info->nodesize;
2747	spin_unlock(&cache->lock);
2748	spin_unlock(&cache->space_info->lock);
2749
2750	btrfs_put_block_group(cache);
2751}
2752
2753static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2754				   struct btrfs_root *root,
2755				   struct btrfs_path *path, int *level,
2756				   struct walk_control *wc)
2757{
2758	struct btrfs_fs_info *fs_info = root->fs_info;
2759	u64 bytenr;
2760	u64 ptr_gen;
2761	struct extent_buffer *next;
2762	struct extent_buffer *cur;
 
2763	u32 blocksize;
2764	int ret = 0;
2765
 
 
 
2766	while (*level > 0) {
2767		struct btrfs_key first_key;
2768
2769		cur = path->nodes[*level];
2770
2771		WARN_ON(btrfs_header_level(cur) != *level);
 
2772
2773		if (path->slots[*level] >=
2774		    btrfs_header_nritems(cur))
2775			break;
2776
2777		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2778		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2779		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2780		blocksize = fs_info->nodesize;
2781
2782		next = btrfs_find_create_tree_block(fs_info, bytenr,
2783						    btrfs_header_owner(cur),
2784						    *level - 1);
2785		if (IS_ERR(next))
2786			return PTR_ERR(next);
 
2787
2788		if (*level == 1) {
2789			ret = wc->process_func(root, next, wc, ptr_gen,
2790					       *level - 1);
2791			if (ret) {
2792				free_extent_buffer(next);
2793				return ret;
2794			}
2795
2796			path->slots[*level]++;
2797			if (wc->free) {
2798				ret = btrfs_read_buffer(next, ptr_gen,
2799							*level - 1, &first_key);
2800				if (ret) {
2801					free_extent_buffer(next);
2802					return ret;
2803				}
 
2804
2805				if (trans) {
2806					btrfs_tree_lock(next);
2807					btrfs_clean_tree_block(next);
2808					btrfs_wait_tree_block_writeback(next);
2809					btrfs_tree_unlock(next);
2810					ret = btrfs_pin_reserved_extent(trans,
2811							bytenr, blocksize);
2812					if (ret) {
2813						free_extent_buffer(next);
2814						return ret;
2815					}
2816					btrfs_redirty_list_add(
2817						trans->transaction, next);
2818				} else {
2819					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2820						clear_extent_buffer_dirty(next);
2821					unaccount_log_buffer(fs_info, bytenr);
2822				}
2823			}
2824			free_extent_buffer(next);
2825			continue;
2826		}
2827		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2828		if (ret) {
2829			free_extent_buffer(next);
2830			return ret;
2831		}
2832
 
2833		if (path->nodes[*level-1])
2834			free_extent_buffer(path->nodes[*level-1]);
2835		path->nodes[*level-1] = next;
2836		*level = btrfs_header_level(next);
2837		path->slots[*level] = 0;
2838		cond_resched();
2839	}
 
 
 
2840	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841
2842	cond_resched();
2843	return 0;
2844}
2845
2846static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2847				 struct btrfs_root *root,
2848				 struct btrfs_path *path, int *level,
2849				 struct walk_control *wc)
2850{
2851	struct btrfs_fs_info *fs_info = root->fs_info;
2852	int i;
2853	int slot;
2854	int ret;
2855
2856	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2857		slot = path->slots[i];
2858		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2859			path->slots[i]++;
2860			*level = i;
2861			WARN_ON(*level == 0);
2862			return 0;
2863		} else {
 
 
 
 
 
 
 
2864			ret = wc->process_func(root, path->nodes[*level], wc,
2865				 btrfs_header_generation(path->nodes[*level]),
2866				 *level);
2867			if (ret)
2868				return ret;
2869
2870			if (wc->free) {
2871				struct extent_buffer *next;
2872
2873				next = path->nodes[*level];
2874
2875				if (trans) {
2876					btrfs_tree_lock(next);
2877					btrfs_clean_tree_block(next);
2878					btrfs_wait_tree_block_writeback(next);
2879					btrfs_tree_unlock(next);
2880					ret = btrfs_pin_reserved_extent(trans,
2881						     path->nodes[*level]->start,
2882						     path->nodes[*level]->len);
2883					if (ret)
2884						return ret;
2885				} else {
2886					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2887						clear_extent_buffer_dirty(next);
2888
2889					unaccount_log_buffer(fs_info,
2890						path->nodes[*level]->start);
2891				}
 
 
2892			}
2893			free_extent_buffer(path->nodes[*level]);
2894			path->nodes[*level] = NULL;
2895			*level = i + 1;
2896		}
2897	}
2898	return 1;
2899}
2900
2901/*
2902 * drop the reference count on the tree rooted at 'snap'.  This traverses
2903 * the tree freeing any blocks that have a ref count of zero after being
2904 * decremented.
2905 */
2906static int walk_log_tree(struct btrfs_trans_handle *trans,
2907			 struct btrfs_root *log, struct walk_control *wc)
2908{
2909	struct btrfs_fs_info *fs_info = log->fs_info;
2910	int ret = 0;
2911	int wret;
2912	int level;
2913	struct btrfs_path *path;
 
2914	int orig_level;
2915
2916	path = btrfs_alloc_path();
2917	if (!path)
2918		return -ENOMEM;
2919
2920	level = btrfs_header_level(log->node);
2921	orig_level = level;
2922	path->nodes[level] = log->node;
2923	atomic_inc(&log->node->refs);
2924	path->slots[level] = 0;
2925
2926	while (1) {
2927		wret = walk_down_log_tree(trans, log, path, &level, wc);
2928		if (wret > 0)
2929			break;
2930		if (wret < 0) {
2931			ret = wret;
2932			goto out;
2933		}
2934
2935		wret = walk_up_log_tree(trans, log, path, &level, wc);
2936		if (wret > 0)
2937			break;
2938		if (wret < 0) {
2939			ret = wret;
2940			goto out;
2941		}
2942	}
2943
2944	/* was the root node processed? if not, catch it here */
2945	if (path->nodes[orig_level]) {
2946		ret = wc->process_func(log, path->nodes[orig_level], wc,
2947			 btrfs_header_generation(path->nodes[orig_level]),
2948			 orig_level);
2949		if (ret)
2950			goto out;
2951		if (wc->free) {
2952			struct extent_buffer *next;
2953
2954			next = path->nodes[orig_level];
2955
2956			if (trans) {
2957				btrfs_tree_lock(next);
2958				btrfs_clean_tree_block(next);
2959				btrfs_wait_tree_block_writeback(next);
2960				btrfs_tree_unlock(next);
2961				ret = btrfs_pin_reserved_extent(trans,
2962						next->start, next->len);
2963				if (ret)
2964					goto out;
2965			} else {
2966				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2967					clear_extent_buffer_dirty(next);
2968				unaccount_log_buffer(fs_info, next->start);
2969			}
2970		}
2971	}
2972
2973out:
 
 
 
 
 
2974	btrfs_free_path(path);
2975	return ret;
2976}
2977
2978/*
2979 * helper function to update the item for a given subvolumes log root
2980 * in the tree of log roots
2981 */
2982static int update_log_root(struct btrfs_trans_handle *trans,
2983			   struct btrfs_root *log,
2984			   struct btrfs_root_item *root_item)
2985{
2986	struct btrfs_fs_info *fs_info = log->fs_info;
2987	int ret;
2988
2989	if (log->log_transid == 1) {
2990		/* insert root item on the first sync */
2991		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2992				&log->root_key, root_item);
2993	} else {
2994		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2995				&log->root_key, root_item);
2996	}
2997	return ret;
2998}
2999
3000static void wait_log_commit(struct btrfs_root *root, int transid)
 
3001{
3002	DEFINE_WAIT(wait);
3003	int index = transid % 2;
3004
3005	/*
3006	 * we only allow two pending log transactions at a time,
3007	 * so we know that if ours is more than 2 older than the
3008	 * current transaction, we're done
3009	 */
3010	for (;;) {
3011		prepare_to_wait(&root->log_commit_wait[index],
3012				&wait, TASK_UNINTERRUPTIBLE);
 
3013
3014		if (!(root->log_transid_committed < transid &&
3015		      atomic_read(&root->log_commit[index])))
3016			break;
 
3017
3018		mutex_unlock(&root->log_mutex);
3019		schedule();
3020		mutex_lock(&root->log_mutex);
3021	}
3022	finish_wait(&root->log_commit_wait[index], &wait);
 
3023}
3024
3025static void wait_for_writer(struct btrfs_root *root)
 
3026{
3027	DEFINE_WAIT(wait);
3028
3029	for (;;) {
3030		prepare_to_wait(&root->log_writer_wait, &wait,
3031				TASK_UNINTERRUPTIBLE);
3032		if (!atomic_read(&root->log_writers))
3033			break;
3034
3035		mutex_unlock(&root->log_mutex);
3036		schedule();
 
 
3037		mutex_lock(&root->log_mutex);
 
3038	}
3039	finish_wait(&root->log_writer_wait, &wait);
3040}
3041
3042static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3043					struct btrfs_log_ctx *ctx)
3044{
3045	if (!ctx)
3046		return;
3047
3048	mutex_lock(&root->log_mutex);
3049	list_del_init(&ctx->list);
3050	mutex_unlock(&root->log_mutex);
3051}
3052
3053/* 
3054 * Invoked in log mutex context, or be sure there is no other task which
3055 * can access the list.
3056 */
3057static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3058					     int index, int error)
3059{
3060	struct btrfs_log_ctx *ctx;
3061	struct btrfs_log_ctx *safe;
3062
3063	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3064		list_del_init(&ctx->list);
3065		ctx->log_ret = error;
3066	}
3067
3068	INIT_LIST_HEAD(&root->log_ctxs[index]);
3069}
3070
3071/*
3072 * btrfs_sync_log does sends a given tree log down to the disk and
3073 * updates the super blocks to record it.  When this call is done,
3074 * you know that any inodes previously logged are safely on disk only
3075 * if it returns 0.
3076 *
3077 * Any other return value means you need to call btrfs_commit_transaction.
3078 * Some of the edge cases for fsyncing directories that have had unlinks
3079 * or renames done in the past mean that sometimes the only safe
3080 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3081 * that has happened.
3082 */
3083int btrfs_sync_log(struct btrfs_trans_handle *trans,
3084		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3085{
3086	int index1;
3087	int index2;
3088	int mark;
3089	int ret;
3090	struct btrfs_fs_info *fs_info = root->fs_info;
3091	struct btrfs_root *log = root->log_root;
3092	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3093	struct btrfs_root_item new_root_item;
3094	int log_transid = 0;
3095	struct btrfs_log_ctx root_log_ctx;
3096	struct blk_plug plug;
3097	u64 log_root_start;
3098	u64 log_root_level;
3099
3100	mutex_lock(&root->log_mutex);
3101	log_transid = ctx->log_transid;
3102	if (root->log_transid_committed >= log_transid) {
3103		mutex_unlock(&root->log_mutex);
3104		return ctx->log_ret;
3105	}
3106
3107	index1 = log_transid % 2;
3108	if (atomic_read(&root->log_commit[index1])) {
3109		wait_log_commit(root, log_transid);
3110		mutex_unlock(&root->log_mutex);
3111		return ctx->log_ret;
3112	}
3113	ASSERT(log_transid == root->log_transid);
3114	atomic_set(&root->log_commit[index1], 1);
3115
3116	/* wait for previous tree log sync to complete */
3117	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3118		wait_log_commit(root, log_transid - 1);
3119
3120	while (1) {
3121		int batch = atomic_read(&root->log_batch);
3122		/* when we're on an ssd, just kick the log commit out */
3123		if (!btrfs_test_opt(fs_info, SSD) &&
3124		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3125			mutex_unlock(&root->log_mutex);
3126			schedule_timeout_uninterruptible(1);
3127			mutex_lock(&root->log_mutex);
3128		}
3129		wait_for_writer(root);
3130		if (batch == atomic_read(&root->log_batch))
3131			break;
3132	}
3133
3134	/* bail out if we need to do a full commit */
3135	if (btrfs_need_log_full_commit(trans)) {
3136		ret = -EAGAIN;
3137		mutex_unlock(&root->log_mutex);
3138		goto out;
3139	}
3140
 
3141	if (log_transid % 2 == 0)
3142		mark = EXTENT_DIRTY;
3143	else
3144		mark = EXTENT_NEW;
3145
3146	/* we start IO on  all the marked extents here, but we don't actually
3147	 * wait for them until later.
3148	 */
3149	blk_start_plug(&plug);
3150	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3151	/*
3152	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3153	 *  commit, writes a dirty extent in this tree-log commit. This
3154	 *  concurrent write will create a hole writing out the extents,
3155	 *  and we cannot proceed on a zoned filesystem, requiring
3156	 *  sequential writing. While we can bail out to a full commit
3157	 *  here, but we can continue hoping the concurrent writing fills
3158	 *  the hole.
3159	 */
3160	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3161		ret = 0;
3162	if (ret) {
3163		blk_finish_plug(&plug);
3164		btrfs_abort_transaction(trans, ret);
3165		btrfs_set_log_full_commit(trans);
3166		mutex_unlock(&root->log_mutex);
3167		goto out;
3168	}
3169
3170	/*
3171	 * We _must_ update under the root->log_mutex in order to make sure we
3172	 * have a consistent view of the log root we are trying to commit at
3173	 * this moment.
3174	 *
3175	 * We _must_ copy this into a local copy, because we are not holding the
3176	 * log_root_tree->log_mutex yet.  This is important because when we
3177	 * commit the log_root_tree we must have a consistent view of the
3178	 * log_root_tree when we update the super block to point at the
3179	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3180	 * with the commit and possibly point at the new block which we may not
3181	 * have written out.
3182	 */
3183	btrfs_set_root_node(&log->root_item, log->node);
3184	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3185
 
3186	root->log_transid++;
3187	log->log_transid = root->log_transid;
3188	root->log_start_pid = 0;
 
3189	/*
3190	 * IO has been started, blocks of the log tree have WRITTEN flag set
3191	 * in their headers. new modifications of the log will be written to
3192	 * new positions. so it's safe to allow log writers to go in.
3193	 */
3194	mutex_unlock(&root->log_mutex);
3195
3196	if (btrfs_is_zoned(fs_info)) {
3197		mutex_lock(&fs_info->tree_root->log_mutex);
3198		if (!log_root_tree->node) {
3199			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3200			if (ret) {
3201				mutex_unlock(&fs_info->tree_root->log_mutex);
3202				goto out;
3203			}
3204		}
3205		mutex_unlock(&fs_info->tree_root->log_mutex);
3206	}
3207
3208	btrfs_init_log_ctx(&root_log_ctx, NULL);
3209
3210	mutex_lock(&log_root_tree->log_mutex);
 
 
 
 
 
3211
3212	index2 = log_root_tree->log_transid % 2;
3213	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3214	root_log_ctx.log_transid = log_root_tree->log_transid;
3215
3216	/*
3217	 * Now we are safe to update the log_root_tree because we're under the
3218	 * log_mutex, and we're a current writer so we're holding the commit
3219	 * open until we drop the log_mutex.
3220	 */
3221	ret = update_log_root(trans, log, &new_root_item);
3222	if (ret) {
3223		if (!list_empty(&root_log_ctx.list))
3224			list_del_init(&root_log_ctx.list);
3225
3226		blk_finish_plug(&plug);
3227		btrfs_set_log_full_commit(trans);
3228
3229		if (ret != -ENOSPC) {
3230			btrfs_abort_transaction(trans, ret);
3231			mutex_unlock(&log_root_tree->log_mutex);
3232			goto out;
3233		}
3234		btrfs_wait_tree_log_extents(log, mark);
3235		mutex_unlock(&log_root_tree->log_mutex);
3236		ret = -EAGAIN;
3237		goto out;
3238	}
3239
3240	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3241		blk_finish_plug(&plug);
3242		list_del_init(&root_log_ctx.list);
3243		mutex_unlock(&log_root_tree->log_mutex);
3244		ret = root_log_ctx.log_ret;
3245		goto out;
3246	}
3247
3248	index2 = root_log_ctx.log_transid % 2;
3249	if (atomic_read(&log_root_tree->log_commit[index2])) {
3250		blk_finish_plug(&plug);
3251		ret = btrfs_wait_tree_log_extents(log, mark);
3252		wait_log_commit(log_root_tree,
3253				root_log_ctx.log_transid);
3254		mutex_unlock(&log_root_tree->log_mutex);
3255		if (!ret)
3256			ret = root_log_ctx.log_ret;
3257		goto out;
3258	}
3259	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3260	atomic_set(&log_root_tree->log_commit[index2], 1);
3261
3262	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3263		wait_log_commit(log_root_tree,
3264				root_log_ctx.log_transid - 1);
3265	}
3266
 
 
3267	/*
3268	 * now that we've moved on to the tree of log tree roots,
3269	 * check the full commit flag again
3270	 */
3271	if (btrfs_need_log_full_commit(trans)) {
3272		blk_finish_plug(&plug);
3273		btrfs_wait_tree_log_extents(log, mark);
3274		mutex_unlock(&log_root_tree->log_mutex);
3275		ret = -EAGAIN;
3276		goto out_wake_log_root;
3277	}
3278
3279	ret = btrfs_write_marked_extents(fs_info,
3280					 &log_root_tree->dirty_log_pages,
3281					 EXTENT_DIRTY | EXTENT_NEW);
3282	blk_finish_plug(&plug);
3283	/*
3284	 * As described above, -EAGAIN indicates a hole in the extents. We
3285	 * cannot wait for these write outs since the waiting cause a
3286	 * deadlock. Bail out to the full commit instead.
3287	 */
3288	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3289		btrfs_set_log_full_commit(trans);
3290		btrfs_wait_tree_log_extents(log, mark);
3291		mutex_unlock(&log_root_tree->log_mutex);
3292		goto out_wake_log_root;
3293	} else if (ret) {
3294		btrfs_set_log_full_commit(trans);
3295		btrfs_abort_transaction(trans, ret);
3296		mutex_unlock(&log_root_tree->log_mutex);
3297		goto out_wake_log_root;
3298	}
3299	ret = btrfs_wait_tree_log_extents(log, mark);
3300	if (!ret)
3301		ret = btrfs_wait_tree_log_extents(log_root_tree,
3302						  EXTENT_NEW | EXTENT_DIRTY);
3303	if (ret) {
3304		btrfs_set_log_full_commit(trans);
3305		mutex_unlock(&log_root_tree->log_mutex);
3306		goto out_wake_log_root;
3307	}
3308
3309	log_root_start = log_root_tree->node->start;
3310	log_root_level = btrfs_header_level(log_root_tree->node);
3311	log_root_tree->log_transid++;
 
 
3312	mutex_unlock(&log_root_tree->log_mutex);
3313
3314	/*
3315	 * Here we are guaranteed that nobody is going to write the superblock
3316	 * for the current transaction before us and that neither we do write
3317	 * our superblock before the previous transaction finishes its commit
3318	 * and writes its superblock, because:
3319	 *
3320	 * 1) We are holding a handle on the current transaction, so no body
3321	 *    can commit it until we release the handle;
3322	 *
3323	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3324	 *    if the previous transaction is still committing, and hasn't yet
3325	 *    written its superblock, we wait for it to do it, because a
3326	 *    transaction commit acquires the tree_log_mutex when the commit
3327	 *    begins and releases it only after writing its superblock.
3328	 */
3329	mutex_lock(&fs_info->tree_log_mutex);
3330
3331	/*
3332	 * The previous transaction writeout phase could have failed, and thus
3333	 * marked the fs in an error state.  We must not commit here, as we
3334	 * could have updated our generation in the super_for_commit and
3335	 * writing the super here would result in transid mismatches.  If there
3336	 * is an error here just bail.
3337	 */
3338	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3339		ret = -EIO;
3340		btrfs_set_log_full_commit(trans);
3341		btrfs_abort_transaction(trans, ret);
3342		mutex_unlock(&fs_info->tree_log_mutex);
3343		goto out_wake_log_root;
3344	}
3345
3346	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3347	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3348	ret = write_all_supers(fs_info, 1);
3349	mutex_unlock(&fs_info->tree_log_mutex);
3350	if (ret) {
3351		btrfs_set_log_full_commit(trans);
3352		btrfs_abort_transaction(trans, ret);
3353		goto out_wake_log_root;
3354	}
3355
3356	mutex_lock(&root->log_mutex);
3357	if (root->last_log_commit < log_transid)
3358		root->last_log_commit = log_transid;
3359	mutex_unlock(&root->log_mutex);
3360
3361out_wake_log_root:
3362	mutex_lock(&log_root_tree->log_mutex);
3363	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364
3365	log_root_tree->log_transid_committed++;
3366	atomic_set(&log_root_tree->log_commit[index2], 0);
3367	mutex_unlock(&log_root_tree->log_mutex);
3368
3369	/*
3370	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3371	 * all the updates above are seen by the woken threads. It might not be
3372	 * necessary, but proving that seems to be hard.
3373	 */
3374	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3375out:
3376	mutex_lock(&root->log_mutex);
3377	btrfs_remove_all_log_ctxs(root, index1, ret);
3378	root->log_transid_committed++;
3379	atomic_set(&root->log_commit[index1], 0);
3380	mutex_unlock(&root->log_mutex);
3381
3382	/*
3383	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3384	 * all the updates above are seen by the woken threads. It might not be
3385	 * necessary, but proving that seems to be hard.
3386	 */
3387	cond_wake_up(&root->log_commit_wait[index1]);
3388	return ret;
3389}
3390
3391static void free_log_tree(struct btrfs_trans_handle *trans,
3392			  struct btrfs_root *log)
3393{
3394	int ret;
 
 
3395	struct walk_control wc = {
3396		.free = 1,
3397		.process_func = process_one_buffer
3398	};
3399
3400	if (log->node) {
3401		ret = walk_log_tree(trans, log, &wc);
3402		if (ret) {
3403			if (trans)
3404				btrfs_abort_transaction(trans, ret);
3405			else
3406				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3407		}
 
 
 
3408	}
3409
3410	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3411			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3412	extent_io_tree_release(&log->log_csum_range);
3413
3414	if (trans && log->node)
3415		btrfs_redirty_list_add(trans->transaction, log->node);
3416	btrfs_put_root(log);
3417}
3418
3419/*
3420 * free all the extents used by the tree log.  This should be called
3421 * at commit time of the full transaction
3422 */
3423int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424{
3425	if (root->log_root) {
3426		free_log_tree(trans, root->log_root);
3427		root->log_root = NULL;
3428		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3429	}
3430	return 0;
3431}
3432
3433int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3434			     struct btrfs_fs_info *fs_info)
3435{
3436	if (fs_info->log_root_tree) {
3437		free_log_tree(trans, fs_info->log_root_tree);
3438		fs_info->log_root_tree = NULL;
3439		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3440	}
3441	return 0;
3442}
3443
3444/*
3445 * Check if an inode was logged in the current transaction. We can't always rely
3446 * on an inode's logged_trans value, because it's an in-memory only field and
3447 * therefore not persisted. This means that its value is lost if the inode gets
3448 * evicted and loaded again from disk (in which case it has a value of 0, and
3449 * certainly it is smaller then any possible transaction ID), when that happens
3450 * the full_sync flag is set in the inode's runtime flags, so on that case we
3451 * assume eviction happened and ignore the logged_trans value, assuming the
3452 * worst case, that the inode was logged before in the current transaction.
3453 */
3454static bool inode_logged(struct btrfs_trans_handle *trans,
3455			 struct btrfs_inode *inode)
3456{
3457	if (inode->logged_trans == trans->transid)
3458		return true;
3459
3460	if (inode->last_trans == trans->transid &&
3461	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3462	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3463		return true;
3464
3465	return false;
3466}
3467
3468/*
3469 * If both a file and directory are logged, and unlinks or renames are
3470 * mixed in, we have a few interesting corners:
3471 *
3472 * create file X in dir Y
3473 * link file X to X.link in dir Y
3474 * fsync file X
3475 * unlink file X but leave X.link
3476 * fsync dir Y
3477 *
3478 * After a crash we would expect only X.link to exist.  But file X
3479 * didn't get fsync'd again so the log has back refs for X and X.link.
3480 *
3481 * We solve this by removing directory entries and inode backrefs from the
3482 * log when a file that was logged in the current transaction is
3483 * unlinked.  Any later fsync will include the updated log entries, and
3484 * we'll be able to reconstruct the proper directory items from backrefs.
3485 *
3486 * This optimizations allows us to avoid relogging the entire inode
3487 * or the entire directory.
3488 */
3489int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3490				 struct btrfs_root *root,
3491				 const char *name, int name_len,
3492				 struct btrfs_inode *dir, u64 index)
3493{
3494	struct btrfs_root *log;
3495	struct btrfs_dir_item *di;
3496	struct btrfs_path *path;
3497	int ret;
3498	int err = 0;
 
3499	u64 dir_ino = btrfs_ino(dir);
3500
3501	if (!inode_logged(trans, dir))
3502		return 0;
3503
3504	ret = join_running_log_trans(root);
3505	if (ret)
3506		return 0;
3507
3508	mutex_lock(&dir->log_mutex);
3509
3510	log = root->log_root;
3511	path = btrfs_alloc_path();
3512	if (!path) {
3513		err = -ENOMEM;
3514		goto out_unlock;
3515	}
3516
3517	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3518				   name, name_len, -1);
3519	if (IS_ERR(di)) {
3520		err = PTR_ERR(di);
3521		goto fail;
3522	}
3523	if (di) {
3524		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3525		if (ret) {
3526			err = ret;
3527			goto fail;
3528		}
3529	}
3530	btrfs_release_path(path);
3531	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3532					 index, name, name_len, -1);
3533	if (IS_ERR(di)) {
3534		err = PTR_ERR(di);
3535		goto fail;
3536	}
3537	if (di) {
3538		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3539		if (ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540			err = ret;
3541			goto fail;
3542		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543	}
3544
3545	/*
3546	 * We do not need to update the size field of the directory's inode item
3547	 * because on log replay we update the field to reflect all existing
3548	 * entries in the directory (see overwrite_item()).
3549	 */
3550fail:
3551	btrfs_free_path(path);
3552out_unlock:
3553	mutex_unlock(&dir->log_mutex);
3554	if (err == -ENOSPC) {
3555		btrfs_set_log_full_commit(trans);
3556		err = 0;
3557	} else if (err < 0 && err != -ENOENT) {
3558		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3559		btrfs_abort_transaction(trans, err);
3560	}
3561
3562	btrfs_end_log_trans(root);
3563
3564	return err;
3565}
3566
3567/* see comments for btrfs_del_dir_entries_in_log */
3568int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3569			       struct btrfs_root *root,
3570			       const char *name, int name_len,
3571			       struct btrfs_inode *inode, u64 dirid)
3572{
3573	struct btrfs_root *log;
3574	u64 index;
3575	int ret;
3576
3577	if (!inode_logged(trans, inode))
3578		return 0;
3579
3580	ret = join_running_log_trans(root);
3581	if (ret)
3582		return 0;
3583	log = root->log_root;
3584	mutex_lock(&inode->log_mutex);
3585
3586	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3587				  dirid, &index);
3588	mutex_unlock(&inode->log_mutex);
3589	if (ret == -ENOSPC) {
3590		btrfs_set_log_full_commit(trans);
3591		ret = 0;
3592	} else if (ret < 0 && ret != -ENOENT)
3593		btrfs_abort_transaction(trans, ret);
3594	btrfs_end_log_trans(root);
3595
3596	return ret;
3597}
3598
3599/*
3600 * creates a range item in the log for 'dirid'.  first_offset and
3601 * last_offset tell us which parts of the key space the log should
3602 * be considered authoritative for.
3603 */
3604static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3605				       struct btrfs_root *log,
3606				       struct btrfs_path *path,
3607				       int key_type, u64 dirid,
3608				       u64 first_offset, u64 last_offset)
3609{
3610	int ret;
3611	struct btrfs_key key;
3612	struct btrfs_dir_log_item *item;
3613
3614	key.objectid = dirid;
3615	key.offset = first_offset;
3616	if (key_type == BTRFS_DIR_ITEM_KEY)
3617		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3618	else
3619		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3620	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3621	if (ret)
3622		return ret;
3623
3624	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3625			      struct btrfs_dir_log_item);
3626	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3627	btrfs_mark_buffer_dirty(path->nodes[0]);
3628	btrfs_release_path(path);
3629	return 0;
3630}
3631
3632/*
3633 * log all the items included in the current transaction for a given
3634 * directory.  This also creates the range items in the log tree required
3635 * to replay anything deleted before the fsync
3636 */
3637static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3638			  struct btrfs_root *root, struct btrfs_inode *inode,
3639			  struct btrfs_path *path,
3640			  struct btrfs_path *dst_path, int key_type,
3641			  struct btrfs_log_ctx *ctx,
3642			  u64 min_offset, u64 *last_offset_ret)
3643{
3644	struct btrfs_key min_key;
 
3645	struct btrfs_root *log = root->log_root;
3646	struct extent_buffer *src;
3647	int err = 0;
3648	int ret;
3649	int i;
3650	int nritems;
3651	u64 first_offset = min_offset;
3652	u64 last_offset = (u64)-1;
3653	u64 ino = btrfs_ino(inode);
3654
3655	log = root->log_root;
 
 
 
3656
3657	min_key.objectid = ino;
3658	min_key.type = key_type;
3659	min_key.offset = min_offset;
3660
3661	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 
 
 
3662
3663	/*
3664	 * we didn't find anything from this transaction, see if there
3665	 * is anything at all
3666	 */
3667	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3668		min_key.objectid = ino;
3669		min_key.type = key_type;
3670		min_key.offset = (u64)-1;
3671		btrfs_release_path(path);
3672		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3673		if (ret < 0) {
3674			btrfs_release_path(path);
3675			return ret;
3676		}
3677		ret = btrfs_previous_item(root, path, ino, key_type);
3678
3679		/* if ret == 0 there are items for this type,
3680		 * create a range to tell us the last key of this type.
3681		 * otherwise, there are no items in this directory after
3682		 * *min_offset, and we create a range to indicate that.
3683		 */
3684		if (ret == 0) {
3685			struct btrfs_key tmp;
3686			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3687					      path->slots[0]);
3688			if (key_type == tmp.type)
3689				first_offset = max(min_offset, tmp.offset) + 1;
3690		}
3691		goto done;
3692	}
3693
3694	/* go backward to find any previous key */
3695	ret = btrfs_previous_item(root, path, ino, key_type);
3696	if (ret == 0) {
3697		struct btrfs_key tmp;
3698		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3699		if (key_type == tmp.type) {
3700			first_offset = tmp.offset;
3701			ret = overwrite_item(trans, log, dst_path,
3702					     path->nodes[0], path->slots[0],
3703					     &tmp);
3704			if (ret) {
3705				err = ret;
3706				goto done;
3707			}
3708		}
3709	}
3710	btrfs_release_path(path);
3711
3712	/*
3713	 * Find the first key from this transaction again.  See the note for
3714	 * log_new_dir_dentries, if we're logging a directory recursively we
3715	 * won't be holding its i_mutex, which means we can modify the directory
3716	 * while we're logging it.  If we remove an entry between our first
3717	 * search and this search we'll not find the key again and can just
3718	 * bail.
3719	 */
3720search:
3721	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3722	if (ret != 0)
 
3723		goto done;
 
3724
3725	/*
3726	 * we have a block from this transaction, log every item in it
3727	 * from our directory
3728	 */
3729	while (1) {
3730		struct btrfs_key tmp;
3731		src = path->nodes[0];
3732		nritems = btrfs_header_nritems(src);
3733		for (i = path->slots[0]; i < nritems; i++) {
3734			struct btrfs_dir_item *di;
3735
3736			btrfs_item_key_to_cpu(src, &min_key, i);
3737
3738			if (min_key.objectid != ino || min_key.type != key_type)
3739				goto done;
3740
3741			if (need_resched()) {
3742				btrfs_release_path(path);
3743				cond_resched();
3744				goto search;
3745			}
3746
3747			ret = overwrite_item(trans, log, dst_path, src, i,
3748					     &min_key);
3749			if (ret) {
3750				err = ret;
3751				goto done;
3752			}
3753
3754			/*
3755			 * We must make sure that when we log a directory entry,
3756			 * the corresponding inode, after log replay, has a
3757			 * matching link count. For example:
3758			 *
3759			 * touch foo
3760			 * mkdir mydir
3761			 * sync
3762			 * ln foo mydir/bar
3763			 * xfs_io -c "fsync" mydir
3764			 * <crash>
3765			 * <mount fs and log replay>
3766			 *
3767			 * Would result in a fsync log that when replayed, our
3768			 * file inode would have a link count of 1, but we get
3769			 * two directory entries pointing to the same inode.
3770			 * After removing one of the names, it would not be
3771			 * possible to remove the other name, which resulted
3772			 * always in stale file handle errors, and would not
3773			 * be possible to rmdir the parent directory, since
3774			 * its i_size could never decrement to the value
3775			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3776			 */
3777			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3778			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3779			if (ctx &&
3780			    (btrfs_dir_transid(src, di) == trans->transid ||
3781			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3783				ctx->log_new_dentries = true;
3784		}
3785		path->slots[0] = nritems;
3786
3787		/*
3788		 * look ahead to the next item and see if it is also
3789		 * from this directory and from this transaction
3790		 */
3791		ret = btrfs_next_leaf(root, path);
3792		if (ret) {
3793			if (ret == 1)
3794				last_offset = (u64)-1;
3795			else
3796				err = ret;
3797			goto done;
3798		}
3799		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3800		if (tmp.objectid != ino || tmp.type != key_type) {
3801			last_offset = (u64)-1;
3802			goto done;
3803		}
3804		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3805			ret = overwrite_item(trans, log, dst_path,
3806					     path->nodes[0], path->slots[0],
3807					     &tmp);
3808			if (ret)
3809				err = ret;
3810			else
3811				last_offset = tmp.offset;
3812			goto done;
3813		}
3814	}
3815done:
3816	btrfs_release_path(path);
3817	btrfs_release_path(dst_path);
3818
3819	if (err == 0) {
3820		*last_offset_ret = last_offset;
3821		/*
3822		 * insert the log range keys to indicate where the log
3823		 * is valid
3824		 */
3825		ret = insert_dir_log_key(trans, log, path, key_type,
3826					 ino, first_offset, last_offset);
3827		if (ret)
3828			err = ret;
3829	}
3830	return err;
3831}
3832
3833/*
3834 * logging directories is very similar to logging inodes, We find all the items
3835 * from the current transaction and write them to the log.
3836 *
3837 * The recovery code scans the directory in the subvolume, and if it finds a
3838 * key in the range logged that is not present in the log tree, then it means
3839 * that dir entry was unlinked during the transaction.
3840 *
3841 * In order for that scan to work, we must include one key smaller than
3842 * the smallest logged by this transaction and one key larger than the largest
3843 * key logged by this transaction.
3844 */
3845static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3846			  struct btrfs_root *root, struct btrfs_inode *inode,
3847			  struct btrfs_path *path,
3848			  struct btrfs_path *dst_path,
3849			  struct btrfs_log_ctx *ctx)
3850{
3851	u64 min_key;
3852	u64 max_key;
3853	int ret;
3854	int key_type = BTRFS_DIR_ITEM_KEY;
3855
3856again:
3857	min_key = 0;
3858	max_key = 0;
3859	while (1) {
3860		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3861				ctx, min_key, &max_key);
 
3862		if (ret)
3863			return ret;
3864		if (max_key == (u64)-1)
3865			break;
3866		min_key = max_key + 1;
3867	}
3868
3869	if (key_type == BTRFS_DIR_ITEM_KEY) {
3870		key_type = BTRFS_DIR_INDEX_KEY;
3871		goto again;
3872	}
3873	return 0;
3874}
3875
3876/*
3877 * a helper function to drop items from the log before we relog an
3878 * inode.  max_key_type indicates the highest item type to remove.
3879 * This cannot be run for file data extents because it does not
3880 * free the extents they point to.
3881 */
3882static int drop_objectid_items(struct btrfs_trans_handle *trans,
3883				  struct btrfs_root *log,
3884				  struct btrfs_path *path,
3885				  u64 objectid, int max_key_type)
3886{
3887	int ret;
3888	struct btrfs_key key;
3889	struct btrfs_key found_key;
3890	int start_slot;
3891
3892	key.objectid = objectid;
3893	key.type = max_key_type;
3894	key.offset = (u64)-1;
3895
3896	while (1) {
3897		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3898		BUG_ON(ret == 0); /* Logic error */
3899		if (ret < 0)
3900			break;
3901
3902		if (path->slots[0] == 0)
3903			break;
3904
3905		path->slots[0]--;
3906		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3907				      path->slots[0]);
3908
3909		if (found_key.objectid != objectid)
3910			break;
3911
3912		found_key.offset = 0;
3913		found_key.type = 0;
3914		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3915		if (ret < 0)
3916			break;
3917
3918		ret = btrfs_del_items(trans, log, path, start_slot,
3919				      path->slots[0] - start_slot + 1);
3920		/*
3921		 * If start slot isn't 0 then we don't need to re-search, we've
3922		 * found the last guy with the objectid in this tree.
3923		 */
3924		if (ret || start_slot != 0)
3925			break;
3926		btrfs_release_path(path);
3927	}
3928	btrfs_release_path(path);
3929	if (ret > 0)
3930		ret = 0;
3931	return ret;
3932}
3933
3934static void fill_inode_item(struct btrfs_trans_handle *trans,
3935			    struct extent_buffer *leaf,
3936			    struct btrfs_inode_item *item,
3937			    struct inode *inode, int log_inode_only,
3938			    u64 logged_isize)
3939{
3940	struct btrfs_map_token token;
3941
3942	btrfs_init_map_token(&token, leaf);
3943
3944	if (log_inode_only) {
3945		/* set the generation to zero so the recover code
3946		 * can tell the difference between an logging
3947		 * just to say 'this inode exists' and a logging
3948		 * to say 'update this inode with these values'
3949		 */
3950		btrfs_set_token_inode_generation(&token, item, 0);
3951		btrfs_set_token_inode_size(&token, item, logged_isize);
3952	} else {
3953		btrfs_set_token_inode_generation(&token, item,
3954						 BTRFS_I(inode)->generation);
3955		btrfs_set_token_inode_size(&token, item, inode->i_size);
3956	}
3957
3958	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3959	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3960	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3961	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3962
3963	btrfs_set_token_timespec_sec(&token, &item->atime,
3964				     inode->i_atime.tv_sec);
3965	btrfs_set_token_timespec_nsec(&token, &item->atime,
3966				      inode->i_atime.tv_nsec);
3967
3968	btrfs_set_token_timespec_sec(&token, &item->mtime,
3969				     inode->i_mtime.tv_sec);
3970	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3971				      inode->i_mtime.tv_nsec);
3972
3973	btrfs_set_token_timespec_sec(&token, &item->ctime,
3974				     inode->i_ctime.tv_sec);
3975	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3976				      inode->i_ctime.tv_nsec);
3977
3978	/*
3979	 * We do not need to set the nbytes field, in fact during a fast fsync
3980	 * its value may not even be correct, since a fast fsync does not wait
3981	 * for ordered extent completion, which is where we update nbytes, it
3982	 * only waits for writeback to complete. During log replay as we find
3983	 * file extent items and replay them, we adjust the nbytes field of the
3984	 * inode item in subvolume tree as needed (see overwrite_item()).
3985	 */
3986
3987	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3988	btrfs_set_token_inode_transid(&token, item, trans->transid);
3989	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3990	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3991	btrfs_set_token_inode_block_group(&token, item, 0);
3992}
3993
3994static int log_inode_item(struct btrfs_trans_handle *trans,
3995			  struct btrfs_root *log, struct btrfs_path *path,
3996			  struct btrfs_inode *inode)
3997{
3998	struct btrfs_inode_item *inode_item;
3999	int ret;
4000
4001	ret = btrfs_insert_empty_item(trans, log, path,
4002				      &inode->location, sizeof(*inode_item));
4003	if (ret && ret != -EEXIST)
4004		return ret;
4005	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4006				    struct btrfs_inode_item);
4007	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4008			0, 0);
4009	btrfs_release_path(path);
4010	return 0;
4011}
4012
4013static int log_csums(struct btrfs_trans_handle *trans,
4014		     struct btrfs_inode *inode,
4015		     struct btrfs_root *log_root,
4016		     struct btrfs_ordered_sum *sums)
4017{
4018	const u64 lock_end = sums->bytenr + sums->len - 1;
4019	struct extent_state *cached_state = NULL;
4020	int ret;
4021
4022	/*
4023	 * If this inode was not used for reflink operations in the current
4024	 * transaction with new extents, then do the fast path, no need to
4025	 * worry about logging checksum items with overlapping ranges.
4026	 */
4027	if (inode->last_reflink_trans < trans->transid)
4028		return btrfs_csum_file_blocks(trans, log_root, sums);
4029
4030	/*
4031	 * Serialize logging for checksums. This is to avoid racing with the
4032	 * same checksum being logged by another task that is logging another
4033	 * file which happens to refer to the same extent as well. Such races
4034	 * can leave checksum items in the log with overlapping ranges.
4035	 */
4036	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4037			       lock_end, &cached_state);
4038	if (ret)
4039		return ret;
4040	/*
4041	 * Due to extent cloning, we might have logged a csum item that covers a
4042	 * subrange of a cloned extent, and later we can end up logging a csum
4043	 * item for a larger subrange of the same extent or the entire range.
4044	 * This would leave csum items in the log tree that cover the same range
4045	 * and break the searches for checksums in the log tree, resulting in
4046	 * some checksums missing in the fs/subvolume tree. So just delete (or
4047	 * trim and adjust) any existing csum items in the log for this range.
4048	 */
4049	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4050	if (!ret)
4051		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4052
4053	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4054			     &cached_state);
4055
4056	return ret;
4057}
4058
4059static noinline int copy_items(struct btrfs_trans_handle *trans,
4060			       struct btrfs_inode *inode,
4061			       struct btrfs_path *dst_path,
4062			       struct btrfs_path *src_path,
4063			       int start_slot, int nr, int inode_only,
4064			       u64 logged_isize)
4065{
4066	struct btrfs_fs_info *fs_info = trans->fs_info;
4067	unsigned long src_offset;
4068	unsigned long dst_offset;
4069	struct btrfs_root *log = inode->root->log_root;
4070	struct btrfs_file_extent_item *extent;
4071	struct btrfs_inode_item *inode_item;
4072	struct extent_buffer *src = src_path->nodes[0];
4073	int ret;
4074	struct btrfs_key *ins_keys;
4075	u32 *ins_sizes;
4076	char *ins_data;
4077	int i;
4078	struct list_head ordered_sums;
4079	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4080
4081	INIT_LIST_HEAD(&ordered_sums);
4082
4083	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4084			   nr * sizeof(u32), GFP_NOFS);
4085	if (!ins_data)
4086		return -ENOMEM;
4087
4088	ins_sizes = (u32 *)ins_data;
4089	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4090
4091	for (i = 0; i < nr; i++) {
4092		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4093		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4094	}
4095	ret = btrfs_insert_empty_items(trans, log, dst_path,
4096				       ins_keys, ins_sizes, nr);
4097	if (ret) {
4098		kfree(ins_data);
4099		return ret;
4100	}
4101
4102	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4103		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4104						   dst_path->slots[0]);
4105
4106		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4107
4108		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 
 
 
 
4109			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4110						    dst_path->slots[0],
4111						    struct btrfs_inode_item);
4112			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4113					&inode->vfs_inode,
4114					inode_only == LOG_INODE_EXISTS,
4115					logged_isize);
4116		} else {
4117			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4118					   src_offset, ins_sizes[i]);
 
 
4119		}
4120
4121		/* take a reference on file data extents so that truncates
4122		 * or deletes of this inode don't have to relog the inode
4123		 * again
4124		 */
4125		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4126		    !skip_csum) {
4127			int found_type;
4128			extent = btrfs_item_ptr(src, start_slot + i,
4129						struct btrfs_file_extent_item);
4130
4131			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4132				continue;
4133
4134			found_type = btrfs_file_extent_type(src, extent);
4135			if (found_type == BTRFS_FILE_EXTENT_REG) {
 
4136				u64 ds, dl, cs, cl;
4137				ds = btrfs_file_extent_disk_bytenr(src,
4138								extent);
4139				/* ds == 0 is a hole */
4140				if (ds == 0)
4141					continue;
4142
4143				dl = btrfs_file_extent_disk_num_bytes(src,
4144								extent);
4145				cs = btrfs_file_extent_offset(src, extent);
4146				cl = btrfs_file_extent_num_bytes(src,
4147								extent);
4148				if (btrfs_file_extent_compression(src,
4149								  extent)) {
4150					cs = 0;
4151					cl = dl;
4152				}
4153
4154				ret = btrfs_lookup_csums_range(
4155						fs_info->csum_root,
4156						ds + cs, ds + cs + cl - 1,
4157						&ordered_sums, 0);
4158				if (ret)
4159					break;
4160			}
4161		}
4162	}
4163
4164	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4165	btrfs_release_path(dst_path);
4166	kfree(ins_data);
4167
4168	/*
4169	 * we have to do this after the loop above to avoid changing the
4170	 * log tree while trying to change the log tree.
4171	 */
 
4172	while (!list_empty(&ordered_sums)) {
4173		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174						   struct btrfs_ordered_sum,
4175						   list);
4176		if (!ret)
4177			ret = log_csums(trans, inode, log, sums);
4178		list_del(&sums->list);
4179		kfree(sums);
4180	}
4181
4182	return ret;
4183}
4184
4185static int extent_cmp(void *priv, const struct list_head *a,
4186		      const struct list_head *b)
4187{
4188	struct extent_map *em1, *em2;
4189
4190	em1 = list_entry(a, struct extent_map, list);
4191	em2 = list_entry(b, struct extent_map, list);
4192
4193	if (em1->start < em2->start)
4194		return -1;
4195	else if (em1->start > em2->start)
4196		return 1;
4197	return 0;
4198}
4199
4200static int log_extent_csums(struct btrfs_trans_handle *trans,
4201			    struct btrfs_inode *inode,
4202			    struct btrfs_root *log_root,
4203			    const struct extent_map *em,
4204			    struct btrfs_log_ctx *ctx)
4205{
4206	struct btrfs_ordered_extent *ordered;
4207	u64 csum_offset;
4208	u64 csum_len;
4209	u64 mod_start = em->mod_start;
4210	u64 mod_len = em->mod_len;
4211	LIST_HEAD(ordered_sums);
4212	int ret = 0;
4213
4214	if (inode->flags & BTRFS_INODE_NODATASUM ||
4215	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4216	    em->block_start == EXTENT_MAP_HOLE)
4217		return 0;
4218
4219	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4220		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4221		const u64 mod_end = mod_start + mod_len;
4222		struct btrfs_ordered_sum *sums;
4223
4224		if (mod_len == 0)
4225			break;
4226
4227		if (ordered_end <= mod_start)
4228			continue;
4229		if (mod_end <= ordered->file_offset)
4230			break;
4231
4232		/*
4233		 * We are going to copy all the csums on this ordered extent, so
4234		 * go ahead and adjust mod_start and mod_len in case this ordered
4235		 * extent has already been logged.
4236		 */
4237		if (ordered->file_offset > mod_start) {
4238			if (ordered_end >= mod_end)
4239				mod_len = ordered->file_offset - mod_start;
4240			/*
4241			 * If we have this case
4242			 *
4243			 * |--------- logged extent ---------|
4244			 *       |----- ordered extent ----|
4245			 *
4246			 * Just don't mess with mod_start and mod_len, we'll
4247			 * just end up logging more csums than we need and it
4248			 * will be ok.
4249			 */
4250		} else {
4251			if (ordered_end < mod_end) {
4252				mod_len = mod_end - ordered_end;
4253				mod_start = ordered_end;
4254			} else {
4255				mod_len = 0;
4256			}
4257		}
4258
4259		/*
4260		 * To keep us from looping for the above case of an ordered
4261		 * extent that falls inside of the logged extent.
4262		 */
4263		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4264			continue;
4265
4266		list_for_each_entry(sums, &ordered->list, list) {
4267			ret = log_csums(trans, inode, log_root, sums);
4268			if (ret)
4269				return ret;
4270		}
4271	}
4272
4273	/* We're done, found all csums in the ordered extents. */
4274	if (mod_len == 0)
4275		return 0;
4276
4277	/* If we're compressed we have to save the entire range of csums. */
4278	if (em->compress_type) {
4279		csum_offset = 0;
4280		csum_len = max(em->block_len, em->orig_block_len);
4281	} else {
4282		csum_offset = mod_start - em->start;
4283		csum_len = mod_len;
4284	}
4285
4286	/* block start is already adjusted for the file extent offset. */
4287	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4288				       em->block_start + csum_offset,
4289				       em->block_start + csum_offset +
4290				       csum_len - 1, &ordered_sums, 0);
4291	if (ret)
4292		return ret;
4293
4294	while (!list_empty(&ordered_sums)) {
4295		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4296						   struct btrfs_ordered_sum,
4297						   list);
4298		if (!ret)
4299			ret = log_csums(trans, inode, log_root, sums);
4300		list_del(&sums->list);
4301		kfree(sums);
4302	}
4303
4304	return ret;
4305}
4306
4307static int log_one_extent(struct btrfs_trans_handle *trans,
4308			  struct btrfs_inode *inode, struct btrfs_root *root,
4309			  const struct extent_map *em,
4310			  struct btrfs_path *path,
4311			  struct btrfs_log_ctx *ctx)
4312{
4313	struct btrfs_drop_extents_args drop_args = { 0 };
4314	struct btrfs_root *log = root->log_root;
4315	struct btrfs_file_extent_item *fi;
4316	struct extent_buffer *leaf;
4317	struct btrfs_map_token token;
4318	struct btrfs_key key;
4319	u64 extent_offset = em->start - em->orig_start;
4320	u64 block_len;
4321	int ret;
4322
4323	ret = log_extent_csums(trans, inode, log, em, ctx);
4324	if (ret)
4325		return ret;
4326
4327	drop_args.path = path;
4328	drop_args.start = em->start;
4329	drop_args.end = em->start + em->len;
4330	drop_args.replace_extent = true;
4331	drop_args.extent_item_size = sizeof(*fi);
4332	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4333	if (ret)
4334		return ret;
4335
4336	if (!drop_args.extent_inserted) {
4337		key.objectid = btrfs_ino(inode);
4338		key.type = BTRFS_EXTENT_DATA_KEY;
4339		key.offset = em->start;
4340
4341		ret = btrfs_insert_empty_item(trans, log, path, &key,
4342					      sizeof(*fi));
4343		if (ret)
4344			return ret;
4345	}
4346	leaf = path->nodes[0];
4347	btrfs_init_map_token(&token, leaf);
4348	fi = btrfs_item_ptr(leaf, path->slots[0],
4349			    struct btrfs_file_extent_item);
4350
4351	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4352	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4353		btrfs_set_token_file_extent_type(&token, fi,
4354						 BTRFS_FILE_EXTENT_PREALLOC);
4355	else
4356		btrfs_set_token_file_extent_type(&token, fi,
4357						 BTRFS_FILE_EXTENT_REG);
4358
4359	block_len = max(em->block_len, em->orig_block_len);
4360	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4361		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4362							em->block_start);
4363		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4364	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4365		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4366							em->block_start -
4367							extent_offset);
4368		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4369	} else {
4370		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4371		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4372	}
4373
4374	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4375	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4376	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4377	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4378	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4379	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4380	btrfs_mark_buffer_dirty(leaf);
4381
4382	btrfs_release_path(path);
4383
4384	return ret;
4385}
4386
4387/*
4388 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4389 * lose them after doing a fast fsync and replaying the log. We scan the
4390 * subvolume's root instead of iterating the inode's extent map tree because
4391 * otherwise we can log incorrect extent items based on extent map conversion.
4392 * That can happen due to the fact that extent maps are merged when they
4393 * are not in the extent map tree's list of modified extents.
4394 */
4395static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4396				      struct btrfs_inode *inode,
4397				      struct btrfs_path *path)
4398{
4399	struct btrfs_root *root = inode->root;
4400	struct btrfs_key key;
4401	const u64 i_size = i_size_read(&inode->vfs_inode);
4402	const u64 ino = btrfs_ino(inode);
4403	struct btrfs_path *dst_path = NULL;
4404	bool dropped_extents = false;
4405	u64 truncate_offset = i_size;
4406	struct extent_buffer *leaf;
4407	int slot;
4408	int ins_nr = 0;
4409	int start_slot;
4410	int ret;
4411
4412	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4413		return 0;
4414
4415	key.objectid = ino;
4416	key.type = BTRFS_EXTENT_DATA_KEY;
4417	key.offset = i_size;
4418	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419	if (ret < 0)
4420		goto out;
4421
4422	/*
4423	 * We must check if there is a prealloc extent that starts before the
4424	 * i_size and crosses the i_size boundary. This is to ensure later we
4425	 * truncate down to the end of that extent and not to the i_size, as
4426	 * otherwise we end up losing part of the prealloc extent after a log
4427	 * replay and with an implicit hole if there is another prealloc extent
4428	 * that starts at an offset beyond i_size.
4429	 */
4430	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4431	if (ret < 0)
4432		goto out;
4433
4434	if (ret == 0) {
4435		struct btrfs_file_extent_item *ei;
4436
4437		leaf = path->nodes[0];
4438		slot = path->slots[0];
4439		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4440
4441		if (btrfs_file_extent_type(leaf, ei) ==
4442		    BTRFS_FILE_EXTENT_PREALLOC) {
4443			u64 extent_end;
4444
4445			btrfs_item_key_to_cpu(leaf, &key, slot);
4446			extent_end = key.offset +
4447				btrfs_file_extent_num_bytes(leaf, ei);
4448
4449			if (extent_end > i_size)
4450				truncate_offset = extent_end;
4451		}
4452	} else {
4453		ret = 0;
4454	}
4455
4456	while (true) {
4457		leaf = path->nodes[0];
4458		slot = path->slots[0];
4459
4460		if (slot >= btrfs_header_nritems(leaf)) {
4461			if (ins_nr > 0) {
4462				ret = copy_items(trans, inode, dst_path, path,
4463						 start_slot, ins_nr, 1, 0);
4464				if (ret < 0)
4465					goto out;
4466				ins_nr = 0;
4467			}
4468			ret = btrfs_next_leaf(root, path);
4469			if (ret < 0)
4470				goto out;
4471			if (ret > 0) {
4472				ret = 0;
4473				break;
4474			}
4475			continue;
4476		}
4477
4478		btrfs_item_key_to_cpu(leaf, &key, slot);
4479		if (key.objectid > ino)
4480			break;
4481		if (WARN_ON_ONCE(key.objectid < ino) ||
4482		    key.type < BTRFS_EXTENT_DATA_KEY ||
4483		    key.offset < i_size) {
4484			path->slots[0]++;
4485			continue;
4486		}
4487		if (!dropped_extents) {
4488			/*
4489			 * Avoid logging extent items logged in past fsync calls
4490			 * and leading to duplicate keys in the log tree.
4491			 */
4492			do {
4493				ret = btrfs_truncate_inode_items(trans,
4494							 root->log_root,
4495							 inode, truncate_offset,
4496							 BTRFS_EXTENT_DATA_KEY,
4497							 NULL);
4498			} while (ret == -EAGAIN);
4499			if (ret)
4500				goto out;
4501			dropped_extents = true;
4502		}
4503		if (ins_nr == 0)
4504			start_slot = slot;
4505		ins_nr++;
4506		path->slots[0]++;
4507		if (!dst_path) {
4508			dst_path = btrfs_alloc_path();
4509			if (!dst_path) {
4510				ret = -ENOMEM;
4511				goto out;
4512			}
4513		}
4514	}
4515	if (ins_nr > 0)
4516		ret = copy_items(trans, inode, dst_path, path,
4517				 start_slot, ins_nr, 1, 0);
4518out:
4519	btrfs_release_path(path);
4520	btrfs_free_path(dst_path);
4521	return ret;
4522}
4523
4524static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4525				     struct btrfs_root *root,
4526				     struct btrfs_inode *inode,
4527				     struct btrfs_path *path,
4528				     struct btrfs_log_ctx *ctx)
4529{
4530	struct btrfs_ordered_extent *ordered;
4531	struct btrfs_ordered_extent *tmp;
4532	struct extent_map *em, *n;
4533	struct list_head extents;
4534	struct extent_map_tree *tree = &inode->extent_tree;
4535	int ret = 0;
4536	int num = 0;
4537
4538	INIT_LIST_HEAD(&extents);
4539
4540	write_lock(&tree->lock);
4541
4542	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4543		list_del_init(&em->list);
4544		/*
4545		 * Just an arbitrary number, this can be really CPU intensive
4546		 * once we start getting a lot of extents, and really once we
4547		 * have a bunch of extents we just want to commit since it will
4548		 * be faster.
4549		 */
4550		if (++num > 32768) {
4551			list_del_init(&tree->modified_extents);
4552			ret = -EFBIG;
4553			goto process;
4554		}
4555
4556		if (em->generation < trans->transid)
4557			continue;
4558
4559		/* We log prealloc extents beyond eof later. */
4560		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4561		    em->start >= i_size_read(&inode->vfs_inode))
4562			continue;
4563
4564		/* Need a ref to keep it from getting evicted from cache */
4565		refcount_inc(&em->refs);
4566		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4567		list_add_tail(&em->list, &extents);
4568		num++;
4569	}
4570
4571	list_sort(NULL, &extents, extent_cmp);
4572process:
4573	while (!list_empty(&extents)) {
4574		em = list_entry(extents.next, struct extent_map, list);
4575
4576		list_del_init(&em->list);
4577
4578		/*
4579		 * If we had an error we just need to delete everybody from our
4580		 * private list.
4581		 */
4582		if (ret) {
4583			clear_em_logging(tree, em);
4584			free_extent_map(em);
4585			continue;
4586		}
4587
4588		write_unlock(&tree->lock);
4589
4590		ret = log_one_extent(trans, inode, root, em, path, ctx);
4591		write_lock(&tree->lock);
4592		clear_em_logging(tree, em);
4593		free_extent_map(em);
4594	}
4595	WARN_ON(!list_empty(&extents));
4596	write_unlock(&tree->lock);
4597
4598	btrfs_release_path(path);
4599	if (!ret)
4600		ret = btrfs_log_prealloc_extents(trans, inode, path);
4601	if (ret)
4602		return ret;
4603
4604	/*
4605	 * We have logged all extents successfully, now make sure the commit of
4606	 * the current transaction waits for the ordered extents to complete
4607	 * before it commits and wipes out the log trees, otherwise we would
4608	 * lose data if an ordered extents completes after the transaction
4609	 * commits and a power failure happens after the transaction commit.
4610	 */
4611	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4612		list_del_init(&ordered->log_list);
4613		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4614
4615		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4616			spin_lock_irq(&inode->ordered_tree.lock);
4617			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4618				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4619				atomic_inc(&trans->transaction->pending_ordered);
4620			}
4621			spin_unlock_irq(&inode->ordered_tree.lock);
4622		}
4623		btrfs_put_ordered_extent(ordered);
4624	}
4625
4626	return 0;
4627}
4628
4629static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4630			     struct btrfs_path *path, u64 *size_ret)
4631{
4632	struct btrfs_key key;
4633	int ret;
4634
4635	key.objectid = btrfs_ino(inode);
4636	key.type = BTRFS_INODE_ITEM_KEY;
4637	key.offset = 0;
4638
4639	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4640	if (ret < 0) {
4641		return ret;
4642	} else if (ret > 0) {
4643		*size_ret = 0;
4644	} else {
4645		struct btrfs_inode_item *item;
4646
4647		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4648				      struct btrfs_inode_item);
4649		*size_ret = btrfs_inode_size(path->nodes[0], item);
4650		/*
4651		 * If the in-memory inode's i_size is smaller then the inode
4652		 * size stored in the btree, return the inode's i_size, so
4653		 * that we get a correct inode size after replaying the log
4654		 * when before a power failure we had a shrinking truncate
4655		 * followed by addition of a new name (rename / new hard link).
4656		 * Otherwise return the inode size from the btree, to avoid
4657		 * data loss when replaying a log due to previously doing a
4658		 * write that expands the inode's size and logging a new name
4659		 * immediately after.
4660		 */
4661		if (*size_ret > inode->vfs_inode.i_size)
4662			*size_ret = inode->vfs_inode.i_size;
4663	}
4664
4665	btrfs_release_path(path);
4666	return 0;
4667}
4668
4669/*
4670 * At the moment we always log all xattrs. This is to figure out at log replay
4671 * time which xattrs must have their deletion replayed. If a xattr is missing
4672 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4673 * because if a xattr is deleted, the inode is fsynced and a power failure
4674 * happens, causing the log to be replayed the next time the fs is mounted,
4675 * we want the xattr to not exist anymore (same behaviour as other filesystems
4676 * with a journal, ext3/4, xfs, f2fs, etc).
4677 */
4678static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4679				struct btrfs_root *root,
4680				struct btrfs_inode *inode,
4681				struct btrfs_path *path,
4682				struct btrfs_path *dst_path)
4683{
4684	int ret;
4685	struct btrfs_key key;
4686	const u64 ino = btrfs_ino(inode);
4687	int ins_nr = 0;
4688	int start_slot = 0;
4689	bool found_xattrs = false;
4690
4691	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4692		return 0;
4693
4694	key.objectid = ino;
4695	key.type = BTRFS_XATTR_ITEM_KEY;
4696	key.offset = 0;
4697
4698	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699	if (ret < 0)
4700		return ret;
4701
4702	while (true) {
4703		int slot = path->slots[0];
4704		struct extent_buffer *leaf = path->nodes[0];
4705		int nritems = btrfs_header_nritems(leaf);
4706
4707		if (slot >= nritems) {
4708			if (ins_nr > 0) {
4709				ret = copy_items(trans, inode, dst_path, path,
4710						 start_slot, ins_nr, 1, 0);
4711				if (ret < 0)
4712					return ret;
4713				ins_nr = 0;
4714			}
4715			ret = btrfs_next_leaf(root, path);
4716			if (ret < 0)
4717				return ret;
4718			else if (ret > 0)
4719				break;
4720			continue;
4721		}
4722
4723		btrfs_item_key_to_cpu(leaf, &key, slot);
4724		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4725			break;
4726
4727		if (ins_nr == 0)
4728			start_slot = slot;
4729		ins_nr++;
4730		path->slots[0]++;
4731		found_xattrs = true;
4732		cond_resched();
4733	}
4734	if (ins_nr > 0) {
4735		ret = copy_items(trans, inode, dst_path, path,
4736				 start_slot, ins_nr, 1, 0);
4737		if (ret < 0)
4738			return ret;
4739	}
4740
4741	if (!found_xattrs)
4742		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4743
4744	return 0;
4745}
4746
4747/*
4748 * When using the NO_HOLES feature if we punched a hole that causes the
4749 * deletion of entire leafs or all the extent items of the first leaf (the one
4750 * that contains the inode item and references) we may end up not processing
4751 * any extents, because there are no leafs with a generation matching the
4752 * current transaction that have extent items for our inode. So we need to find
4753 * if any holes exist and then log them. We also need to log holes after any
4754 * truncate operation that changes the inode's size.
4755 */
4756static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4757			   struct btrfs_root *root,
4758			   struct btrfs_inode *inode,
4759			   struct btrfs_path *path)
4760{
4761	struct btrfs_fs_info *fs_info = root->fs_info;
4762	struct btrfs_key key;
4763	const u64 ino = btrfs_ino(inode);
4764	const u64 i_size = i_size_read(&inode->vfs_inode);
4765	u64 prev_extent_end = 0;
4766	int ret;
4767
4768	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4769		return 0;
4770
4771	key.objectid = ino;
4772	key.type = BTRFS_EXTENT_DATA_KEY;
4773	key.offset = 0;
4774
4775	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4776	if (ret < 0)
4777		return ret;
4778
4779	while (true) {
4780		struct extent_buffer *leaf = path->nodes[0];
4781
4782		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4783			ret = btrfs_next_leaf(root, path);
4784			if (ret < 0)
4785				return ret;
4786			if (ret > 0) {
4787				ret = 0;
4788				break;
4789			}
4790			leaf = path->nodes[0];
4791		}
4792
4793		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4794		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4795			break;
4796
4797		/* We have a hole, log it. */
4798		if (prev_extent_end < key.offset) {
4799			const u64 hole_len = key.offset - prev_extent_end;
4800
4801			/*
4802			 * Release the path to avoid deadlocks with other code
4803			 * paths that search the root while holding locks on
4804			 * leafs from the log root.
4805			 */
4806			btrfs_release_path(path);
4807			ret = btrfs_insert_file_extent(trans, root->log_root,
4808						       ino, prev_extent_end, 0,
4809						       0, hole_len, 0, hole_len,
4810						       0, 0, 0);
4811			if (ret < 0)
4812				return ret;
4813
4814			/*
4815			 * Search for the same key again in the root. Since it's
4816			 * an extent item and we are holding the inode lock, the
4817			 * key must still exist. If it doesn't just emit warning
4818			 * and return an error to fall back to a transaction
4819			 * commit.
4820			 */
4821			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822			if (ret < 0)
4823				return ret;
4824			if (WARN_ON(ret > 0))
4825				return -ENOENT;
4826			leaf = path->nodes[0];
4827		}
4828
4829		prev_extent_end = btrfs_file_extent_end(path);
4830		path->slots[0]++;
4831		cond_resched();
4832	}
4833
4834	if (prev_extent_end < i_size) {
4835		u64 hole_len;
4836
4837		btrfs_release_path(path);
4838		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4839		ret = btrfs_insert_file_extent(trans, root->log_root,
4840					       ino, prev_extent_end, 0, 0,
4841					       hole_len, 0, hole_len,
4842					       0, 0, 0);
4843		if (ret < 0)
4844			return ret;
4845	}
4846
4847	return 0;
4848}
4849
4850/*
4851 * When we are logging a new inode X, check if it doesn't have a reference that
4852 * matches the reference from some other inode Y created in a past transaction
4853 * and that was renamed in the current transaction. If we don't do this, then at
4854 * log replay time we can lose inode Y (and all its files if it's a directory):
4855 *
4856 * mkdir /mnt/x
4857 * echo "hello world" > /mnt/x/foobar
4858 * sync
4859 * mv /mnt/x /mnt/y
4860 * mkdir /mnt/x                 # or touch /mnt/x
4861 * xfs_io -c fsync /mnt/x
4862 * <power fail>
4863 * mount fs, trigger log replay
4864 *
4865 * After the log replay procedure, we would lose the first directory and all its
4866 * files (file foobar).
4867 * For the case where inode Y is not a directory we simply end up losing it:
4868 *
4869 * echo "123" > /mnt/foo
4870 * sync
4871 * mv /mnt/foo /mnt/bar
4872 * echo "abc" > /mnt/foo
4873 * xfs_io -c fsync /mnt/foo
4874 * <power fail>
4875 *
4876 * We also need this for cases where a snapshot entry is replaced by some other
4877 * entry (file or directory) otherwise we end up with an unreplayable log due to
4878 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4879 * if it were a regular entry:
4880 *
4881 * mkdir /mnt/x
4882 * btrfs subvolume snapshot /mnt /mnt/x/snap
4883 * btrfs subvolume delete /mnt/x/snap
4884 * rmdir /mnt/x
4885 * mkdir /mnt/x
4886 * fsync /mnt/x or fsync some new file inside it
4887 * <power fail>
4888 *
4889 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4890 * the same transaction.
4891 */
4892static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4893					 const int slot,
4894					 const struct btrfs_key *key,
4895					 struct btrfs_inode *inode,
4896					 u64 *other_ino, u64 *other_parent)
4897{
4898	int ret;
4899	struct btrfs_path *search_path;
4900	char *name = NULL;
4901	u32 name_len = 0;
4902	u32 item_size = btrfs_item_size_nr(eb, slot);
4903	u32 cur_offset = 0;
4904	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4905
4906	search_path = btrfs_alloc_path();
4907	if (!search_path)
4908		return -ENOMEM;
4909	search_path->search_commit_root = 1;
4910	search_path->skip_locking = 1;
4911
4912	while (cur_offset < item_size) {
4913		u64 parent;
4914		u32 this_name_len;
4915		u32 this_len;
4916		unsigned long name_ptr;
4917		struct btrfs_dir_item *di;
4918
4919		if (key->type == BTRFS_INODE_REF_KEY) {
4920			struct btrfs_inode_ref *iref;
4921
4922			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4923			parent = key->offset;
4924			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4925			name_ptr = (unsigned long)(iref + 1);
4926			this_len = sizeof(*iref) + this_name_len;
4927		} else {
4928			struct btrfs_inode_extref *extref;
4929
4930			extref = (struct btrfs_inode_extref *)(ptr +
4931							       cur_offset);
4932			parent = btrfs_inode_extref_parent(eb, extref);
4933			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4934			name_ptr = (unsigned long)&extref->name;
4935			this_len = sizeof(*extref) + this_name_len;
4936		}
4937
4938		if (this_name_len > name_len) {
4939			char *new_name;
4940
4941			new_name = krealloc(name, this_name_len, GFP_NOFS);
4942			if (!new_name) {
4943				ret = -ENOMEM;
4944				goto out;
4945			}
4946			name_len = this_name_len;
4947			name = new_name;
4948		}
4949
4950		read_extent_buffer(eb, name, name_ptr, this_name_len);
4951		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4952				parent, name, this_name_len, 0);
4953		if (di && !IS_ERR(di)) {
4954			struct btrfs_key di_key;
4955
4956			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4957						  di, &di_key);
4958			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4959				if (di_key.objectid != key->objectid) {
4960					ret = 1;
4961					*other_ino = di_key.objectid;
4962					*other_parent = parent;
4963				} else {
4964					ret = 0;
4965				}
4966			} else {
4967				ret = -EAGAIN;
4968			}
4969			goto out;
4970		} else if (IS_ERR(di)) {
4971			ret = PTR_ERR(di);
4972			goto out;
4973		}
4974		btrfs_release_path(search_path);
4975
4976		cur_offset += this_len;
4977	}
4978	ret = 0;
4979out:
4980	btrfs_free_path(search_path);
4981	kfree(name);
4982	return ret;
4983}
4984
4985struct btrfs_ino_list {
4986	u64 ino;
4987	u64 parent;
4988	struct list_head list;
4989};
4990
4991static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4992				  struct btrfs_root *root,
4993				  struct btrfs_path *path,
4994				  struct btrfs_log_ctx *ctx,
4995				  u64 ino, u64 parent)
4996{
4997	struct btrfs_ino_list *ino_elem;
4998	LIST_HEAD(inode_list);
4999	int ret = 0;
5000
5001	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5002	if (!ino_elem)
5003		return -ENOMEM;
5004	ino_elem->ino = ino;
5005	ino_elem->parent = parent;
5006	list_add_tail(&ino_elem->list, &inode_list);
5007
5008	while (!list_empty(&inode_list)) {
5009		struct btrfs_fs_info *fs_info = root->fs_info;
5010		struct btrfs_key key;
5011		struct inode *inode;
5012
5013		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5014					    list);
5015		ino = ino_elem->ino;
5016		parent = ino_elem->parent;
5017		list_del(&ino_elem->list);
5018		kfree(ino_elem);
5019		if (ret)
5020			continue;
5021
5022		btrfs_release_path(path);
5023
5024		inode = btrfs_iget(fs_info->sb, ino, root);
5025		/*
5026		 * If the other inode that had a conflicting dir entry was
5027		 * deleted in the current transaction, we need to log its parent
5028		 * directory.
5029		 */
5030		if (IS_ERR(inode)) {
5031			ret = PTR_ERR(inode);
5032			if (ret == -ENOENT) {
5033				inode = btrfs_iget(fs_info->sb, parent, root);
5034				if (IS_ERR(inode)) {
5035					ret = PTR_ERR(inode);
5036				} else {
5037					ret = btrfs_log_inode(trans, root,
5038						      BTRFS_I(inode),
5039						      LOG_OTHER_INODE_ALL,
5040						      ctx);
5041					btrfs_add_delayed_iput(inode);
5042				}
5043			}
5044			continue;
5045		}
5046		/*
5047		 * If the inode was already logged skip it - otherwise we can
5048		 * hit an infinite loop. Example:
5049		 *
5050		 * From the commit root (previous transaction) we have the
5051		 * following inodes:
5052		 *
5053		 * inode 257 a directory
5054		 * inode 258 with references "zz" and "zz_link" on inode 257
5055		 * inode 259 with reference "a" on inode 257
5056		 *
5057		 * And in the current (uncommitted) transaction we have:
5058		 *
5059		 * inode 257 a directory, unchanged
5060		 * inode 258 with references "a" and "a2" on inode 257
5061		 * inode 259 with reference "zz_link" on inode 257
5062		 * inode 261 with reference "zz" on inode 257
5063		 *
5064		 * When logging inode 261 the following infinite loop could
5065		 * happen if we don't skip already logged inodes:
5066		 *
5067		 * - we detect inode 258 as a conflicting inode, with inode 261
5068		 *   on reference "zz", and log it;
5069		 *
5070		 * - we detect inode 259 as a conflicting inode, with inode 258
5071		 *   on reference "a", and log it;
5072		 *
5073		 * - we detect inode 258 as a conflicting inode, with inode 259
5074		 *   on reference "zz_link", and log it - again! After this we
5075		 *   repeat the above steps forever.
5076		 */
5077		spin_lock(&BTRFS_I(inode)->lock);
5078		/*
5079		 * Check the inode's logged_trans only instead of
5080		 * btrfs_inode_in_log(). This is because the last_log_commit of
5081		 * the inode is not updated when we only log that it exists and
5082		 * it has the full sync bit set (see btrfs_log_inode()).
5083		 */
5084		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5085			spin_unlock(&BTRFS_I(inode)->lock);
5086			btrfs_add_delayed_iput(inode);
5087			continue;
5088		}
5089		spin_unlock(&BTRFS_I(inode)->lock);
5090		/*
5091		 * We are safe logging the other inode without acquiring its
5092		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5093		 * are safe against concurrent renames of the other inode as
5094		 * well because during a rename we pin the log and update the
5095		 * log with the new name before we unpin it.
5096		 */
5097		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5098				      LOG_OTHER_INODE, ctx);
5099		if (ret) {
5100			btrfs_add_delayed_iput(inode);
5101			continue;
5102		}
5103
5104		key.objectid = ino;
5105		key.type = BTRFS_INODE_REF_KEY;
5106		key.offset = 0;
5107		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108		if (ret < 0) {
5109			btrfs_add_delayed_iput(inode);
5110			continue;
5111		}
5112
5113		while (true) {
5114			struct extent_buffer *leaf = path->nodes[0];
5115			int slot = path->slots[0];
5116			u64 other_ino = 0;
5117			u64 other_parent = 0;
5118
5119			if (slot >= btrfs_header_nritems(leaf)) {
5120				ret = btrfs_next_leaf(root, path);
5121				if (ret < 0) {
5122					break;
5123				} else if (ret > 0) {
5124					ret = 0;
5125					break;
5126				}
5127				continue;
5128			}
5129
5130			btrfs_item_key_to_cpu(leaf, &key, slot);
5131			if (key.objectid != ino ||
5132			    (key.type != BTRFS_INODE_REF_KEY &&
5133			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5134				ret = 0;
5135				break;
5136			}
5137
5138			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5139					BTRFS_I(inode), &other_ino,
5140					&other_parent);
5141			if (ret < 0)
5142				break;
5143			if (ret > 0) {
5144				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5145				if (!ino_elem) {
5146					ret = -ENOMEM;
5147					break;
5148				}
5149				ino_elem->ino = other_ino;
5150				ino_elem->parent = other_parent;
5151				list_add_tail(&ino_elem->list, &inode_list);
5152				ret = 0;
5153			}
5154			path->slots[0]++;
5155		}
5156		btrfs_add_delayed_iput(inode);
5157	}
5158
5159	return ret;
5160}
5161
5162static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5163				   struct btrfs_inode *inode,
5164				   struct btrfs_key *min_key,
5165				   const struct btrfs_key *max_key,
5166				   struct btrfs_path *path,
5167				   struct btrfs_path *dst_path,
5168				   const u64 logged_isize,
5169				   const bool recursive_logging,
5170				   const int inode_only,
5171				   struct btrfs_log_ctx *ctx,
5172				   bool *need_log_inode_item)
5173{
5174	struct btrfs_root *root = inode->root;
5175	int ins_start_slot = 0;
5176	int ins_nr = 0;
5177	int ret;
5178
5179	while (1) {
5180		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5181		if (ret < 0)
5182			return ret;
5183		if (ret > 0) {
5184			ret = 0;
5185			break;
5186		}
5187again:
5188		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5189		if (min_key->objectid != max_key->objectid)
5190			break;
5191		if (min_key->type > max_key->type)
5192			break;
5193
5194		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5195			*need_log_inode_item = false;
5196
5197		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5198		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5199		    inode->generation == trans->transid &&
5200		    !recursive_logging) {
5201			u64 other_ino = 0;
5202			u64 other_parent = 0;
5203
5204			ret = btrfs_check_ref_name_override(path->nodes[0],
5205					path->slots[0], min_key, inode,
5206					&other_ino, &other_parent);
5207			if (ret < 0) {
5208				return ret;
5209			} else if (ret > 0 && ctx &&
5210				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5211				if (ins_nr > 0) {
5212					ins_nr++;
5213				} else {
5214					ins_nr = 1;
5215					ins_start_slot = path->slots[0];
5216				}
5217				ret = copy_items(trans, inode, dst_path, path,
5218						 ins_start_slot, ins_nr,
5219						 inode_only, logged_isize);
5220				if (ret < 0)
5221					return ret;
5222				ins_nr = 0;
5223
5224				ret = log_conflicting_inodes(trans, root, path,
5225						ctx, other_ino, other_parent);
5226				if (ret)
5227					return ret;
5228				btrfs_release_path(path);
5229				goto next_key;
5230			}
5231		}
5232
5233		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5235			if (ins_nr == 0)
5236				goto next_slot;
5237			ret = copy_items(trans, inode, dst_path, path,
5238					 ins_start_slot,
5239					 ins_nr, inode_only, logged_isize);
5240			if (ret < 0)
5241				return ret;
5242			ins_nr = 0;
5243			goto next_slot;
5244		}
5245
5246		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5247			ins_nr++;
5248			goto next_slot;
5249		} else if (!ins_nr) {
5250			ins_start_slot = path->slots[0];
5251			ins_nr = 1;
5252			goto next_slot;
5253		}
5254
5255		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5256				 ins_nr, inode_only, logged_isize);
5257		if (ret < 0)
5258			return ret;
5259		ins_nr = 1;
5260		ins_start_slot = path->slots[0];
5261next_slot:
5262		path->slots[0]++;
5263		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5264			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5265					      path->slots[0]);
5266			goto again;
5267		}
5268		if (ins_nr) {
5269			ret = copy_items(trans, inode, dst_path, path,
5270					 ins_start_slot, ins_nr, inode_only,
5271					 logged_isize);
5272			if (ret < 0)
5273				return ret;
5274			ins_nr = 0;
5275		}
5276		btrfs_release_path(path);
5277next_key:
5278		if (min_key->offset < (u64)-1) {
5279			min_key->offset++;
5280		} else if (min_key->type < max_key->type) {
5281			min_key->type++;
5282			min_key->offset = 0;
5283		} else {
5284			break;
5285		}
5286	}
5287	if (ins_nr)
5288		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289				 ins_nr, inode_only, logged_isize);
5290
5291	return ret;
5292}
5293
5294/* log a single inode in the tree log.
5295 * At least one parent directory for this inode must exist in the tree
5296 * or be logged already.
5297 *
5298 * Any items from this inode changed by the current transaction are copied
5299 * to the log tree.  An extra reference is taken on any extents in this
5300 * file, allowing us to avoid a whole pile of corner cases around logging
5301 * blocks that have been removed from the tree.
5302 *
5303 * See LOG_INODE_ALL and related defines for a description of what inode_only
5304 * does.
5305 *
5306 * This handles both files and directories.
5307 */
5308static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5309			   struct btrfs_root *root, struct btrfs_inode *inode,
5310			   int inode_only,
5311			   struct btrfs_log_ctx *ctx)
5312{
5313	struct btrfs_path *path;
5314	struct btrfs_path *dst_path;
5315	struct btrfs_key min_key;
5316	struct btrfs_key max_key;
5317	struct btrfs_root *log = root->log_root;
 
5318	int err = 0;
5319	int ret = 0;
5320	bool fast_search = false;
 
 
5321	u64 ino = btrfs_ino(inode);
5322	struct extent_map_tree *em_tree = &inode->extent_tree;
5323	u64 logged_isize = 0;
5324	bool need_log_inode_item = true;
5325	bool xattrs_logged = false;
5326	bool recursive_logging = false;
5327
5328	path = btrfs_alloc_path();
5329	if (!path)
5330		return -ENOMEM;
5331	dst_path = btrfs_alloc_path();
5332	if (!dst_path) {
5333		btrfs_free_path(path);
5334		return -ENOMEM;
5335	}
5336
5337	min_key.objectid = ino;
5338	min_key.type = BTRFS_INODE_ITEM_KEY;
5339	min_key.offset = 0;
5340
5341	max_key.objectid = ino;
5342
 
 
 
5343
5344	/* today the code can only do partial logging of directories */
5345	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5346	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5347		       &inode->runtime_flags) &&
5348	     inode_only >= LOG_INODE_EXISTS))
5349		max_key.type = BTRFS_XATTR_ITEM_KEY;
5350	else
5351		max_key.type = (u8)-1;
5352	max_key.offset = (u64)-1;
5353
5354	/*
5355	 * Only run delayed items if we are a directory. We want to make sure
5356	 * all directory indexes hit the fs/subvolume tree so we can find them
5357	 * and figure out which index ranges have to be logged.
5358	 *
5359	 * Otherwise commit the delayed inode only if the full sync flag is set,
5360	 * as we want to make sure an up to date version is in the subvolume
5361	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5362	 * it to the log tree. For a non full sync, we always log the inode item
5363	 * based on the in-memory struct btrfs_inode which is always up to date.
5364	 */
5365	if (S_ISDIR(inode->vfs_inode.i_mode))
5366		ret = btrfs_commit_inode_delayed_items(trans, inode);
5367	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5368		ret = btrfs_commit_inode_delayed_inode(inode);
5369
5370	if (ret) {
5371		btrfs_free_path(path);
5372		btrfs_free_path(dst_path);
5373		return ret;
5374	}
5375
5376	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5377		recursive_logging = true;
5378		if (inode_only == LOG_OTHER_INODE)
5379			inode_only = LOG_INODE_EXISTS;
5380		else
5381			inode_only = LOG_INODE_ALL;
5382		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5383	} else {
5384		mutex_lock(&inode->log_mutex);
5385	}
5386
5387	/*
5388	 * This is for cases where logging a directory could result in losing a
5389	 * a file after replaying the log. For example, if we move a file from a
5390	 * directory A to a directory B, then fsync directory A, we have no way
5391	 * to known the file was moved from A to B, so logging just A would
5392	 * result in losing the file after a log replay.
5393	 */
5394	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5395	    inode_only == LOG_INODE_ALL &&
5396	    inode->last_unlink_trans >= trans->transid) {
5397		btrfs_set_log_full_commit(trans);
5398		err = 1;
5399		goto out_unlock;
5400	}
5401
5402	/*
5403	 * a brute force approach to making sure we get the most uptodate
5404	 * copies of everything.
5405	 */
5406	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5407		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5408
5409		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5410		if (inode_only == LOG_INODE_EXISTS)
5411			max_key_type = BTRFS_XATTR_ITEM_KEY;
5412		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5413	} else {
5414		if (inode_only == LOG_INODE_EXISTS) {
5415			/*
5416			 * Make sure the new inode item we write to the log has
5417			 * the same isize as the current one (if it exists).
5418			 * This is necessary to prevent data loss after log
5419			 * replay, and also to prevent doing a wrong expanding
5420			 * truncate - for e.g. create file, write 4K into offset
5421			 * 0, fsync, write 4K into offset 4096, add hard link,
5422			 * fsync some other file (to sync log), power fail - if
5423			 * we use the inode's current i_size, after log replay
5424			 * we get a 8Kb file, with the last 4Kb extent as a hole
5425			 * (zeroes), as if an expanding truncate happened,
5426			 * instead of getting a file of 4Kb only.
5427			 */
5428			err = logged_inode_size(log, inode, path, &logged_isize);
5429			if (err)
5430				goto out_unlock;
5431		}
5432		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5433			     &inode->runtime_flags)) {
5434			if (inode_only == LOG_INODE_EXISTS) {
5435				max_key.type = BTRFS_XATTR_ITEM_KEY;
5436				ret = drop_objectid_items(trans, log, path, ino,
5437							  max_key.type);
5438			} else {
5439				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5440					  &inode->runtime_flags);
5441				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5442					  &inode->runtime_flags);
5443				while(1) {
5444					ret = btrfs_truncate_inode_items(trans,
5445						log, inode, 0, 0, NULL);
5446					if (ret != -EAGAIN)
5447						break;
5448				}
5449			}
5450		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5451					      &inode->runtime_flags) ||
5452			   inode_only == LOG_INODE_EXISTS) {
5453			if (inode_only == LOG_INODE_ALL)
5454				fast_search = true;
5455			max_key.type = BTRFS_XATTR_ITEM_KEY;
5456			ret = drop_objectid_items(trans, log, path, ino,
5457						  max_key.type);
5458		} else {
5459			if (inode_only == LOG_INODE_ALL)
5460				fast_search = true;
5461			goto log_extents;
5462		}
5463
5464	}
5465	if (ret) {
5466		err = ret;
5467		goto out_unlock;
5468	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5469
5470	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5471				      path, dst_path, logged_isize,
5472				      recursive_logging, inode_only, ctx,
5473				      &need_log_inode_item);
5474	if (err)
5475		goto out_unlock;
 
 
 
5476
5477	btrfs_release_path(path);
5478	btrfs_release_path(dst_path);
5479	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5480	if (err)
5481		goto out_unlock;
5482	xattrs_logged = true;
5483	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5484		btrfs_release_path(path);
5485		btrfs_release_path(dst_path);
5486		err = btrfs_log_holes(trans, root, inode, path);
5487		if (err)
5488			goto out_unlock;
5489	}
5490log_extents:
5491	btrfs_release_path(path);
5492	btrfs_release_path(dst_path);
5493	if (need_log_inode_item) {
5494		err = log_inode_item(trans, log, dst_path, inode);
5495		if (err)
5496			goto out_unlock;
5497		/*
5498		 * If we are doing a fast fsync and the inode was logged before
5499		 * in this transaction, we don't need to log the xattrs because
5500		 * they were logged before. If xattrs were added, changed or
5501		 * deleted since the last time we logged the inode, then we have
5502		 * already logged them because the inode had the runtime flag
5503		 * BTRFS_INODE_COPY_EVERYTHING set.
5504		 */
5505		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5506			err = btrfs_log_all_xattrs(trans, root, inode, path,
5507						   dst_path);
5508			if (err)
5509				goto out_unlock;
5510			btrfs_release_path(path);
 
5511		}
 
 
 
 
 
 
 
 
 
 
5512	}
5513	if (fast_search) {
5514		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5515						ctx);
 
5516		if (ret) {
5517			err = ret;
5518			goto out_unlock;
5519		}
5520	} else if (inode_only == LOG_INODE_ALL) {
5521		struct extent_map *em, *n;
5522
5523		write_lock(&em_tree->lock);
5524		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5525			list_del_init(&em->list);
5526		write_unlock(&em_tree->lock);
5527	}
5528
5529	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5530		ret = log_directory_changes(trans, root, inode, path, dst_path,
5531					ctx);
 
5532		if (ret) {
5533			err = ret;
5534			goto out_unlock;
5535		}
5536	}
5537
5538	/*
5539	 * If we are logging that an ancestor inode exists as part of logging a
5540	 * new name from a link or rename operation, don't mark the inode as
5541	 * logged - otherwise if an explicit fsync is made against an ancestor,
5542	 * the fsync considers the inode in the log and doesn't sync the log,
5543	 * resulting in the ancestor missing after a power failure unless the
5544	 * log was synced as part of an fsync against any other unrelated inode.
5545	 * So keep it simple for this case and just don't flag the ancestors as
5546	 * logged.
5547	 */
5548	if (!ctx ||
5549	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5550	      &inode->vfs_inode != ctx->inode)) {
5551		spin_lock(&inode->lock);
5552		inode->logged_trans = trans->transid;
5553		/*
5554		 * Don't update last_log_commit if we logged that an inode exists.
5555		 * We do this for two reasons:
5556		 *
5557		 * 1) We might have had buffered writes to this inode that were
5558		 *    flushed and had their ordered extents completed in this
5559		 *    transaction, but we did not previously log the inode with
5560		 *    LOG_INODE_ALL. Later the inode was evicted and after that
5561		 *    it was loaded again and this LOG_INODE_EXISTS log operation
5562		 *    happened. We must make sure that if an explicit fsync against
5563		 *    the inode is performed later, it logs the new extents, an
5564		 *    updated inode item, etc, and syncs the log. The same logic
5565		 *    applies to direct IO writes instead of buffered writes.
5566		 *
5567		 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5568		 *    is logged with an i_size of 0 or whatever value was logged
5569		 *    before. If later the i_size of the inode is increased by a
5570		 *    truncate operation, the log is synced through an fsync of
5571		 *    some other inode and then finally an explicit fsync against
5572		 *    this inode is made, we must make sure this fsync logs the
5573		 *    inode with the new i_size, the hole between old i_size and
5574		 *    the new i_size, and syncs the log.
5575		 */
5576		if (inode_only != LOG_INODE_EXISTS)
5577			inode->last_log_commit = inode->last_sub_trans;
5578		spin_unlock(&inode->lock);
5579	}
5580out_unlock:
5581	mutex_unlock(&inode->log_mutex);
5582
5583	btrfs_free_path(path);
5584	btrfs_free_path(dst_path);
5585	return err;
5586}
5587
5588/*
5589 * Check if we need to log an inode. This is used in contexts where while
5590 * logging an inode we need to log another inode (either that it exists or in
5591 * full mode). This is used instead of btrfs_inode_in_log() because the later
5592 * requires the inode to be in the log and have the log transaction committed,
5593 * while here we do not care if the log transaction was already committed - our
5594 * caller will commit the log later - and we want to avoid logging an inode
5595 * multiple times when multiple tasks have joined the same log transaction.
5596 */
5597static bool need_log_inode(struct btrfs_trans_handle *trans,
5598			   struct btrfs_inode *inode)
5599{
 
 
 
 
5600	/*
5601	 * If this inode does not have new/updated/deleted xattrs since the last
5602	 * time it was logged and is flagged as logged in the current transaction,
5603	 * we can skip logging it. As for new/deleted names, those are updated in
5604	 * the log by link/unlink/rename operations.
5605	 * In case the inode was logged and then evicted and reloaded, its
5606	 * logged_trans will be 0, in which case we have to fully log it since
5607	 * logged_trans is a transient field, not persisted.
5608	 */
5609	if (inode->logged_trans == trans->transid &&
5610	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5611		return false;
 
5612
5613	return true;
5614}
5615
5616struct btrfs_dir_list {
5617	u64 ino;
5618	struct list_head list;
5619};
5620
5621/*
5622 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5623 * details about the why it is needed.
5624 * This is a recursive operation - if an existing dentry corresponds to a
5625 * directory, that directory's new entries are logged too (same behaviour as
5626 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5627 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5628 * complains about the following circular lock dependency / possible deadlock:
5629 *
5630 *        CPU0                                        CPU1
5631 *        ----                                        ----
5632 * lock(&type->i_mutex_dir_key#3/2);
5633 *                                            lock(sb_internal#2);
5634 *                                            lock(&type->i_mutex_dir_key#3/2);
5635 * lock(&sb->s_type->i_mutex_key#14);
5636 *
5637 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5638 * sb_start_intwrite() in btrfs_start_transaction().
5639 * Not locking i_mutex of the inodes is still safe because:
5640 *
5641 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5642 *    that while logging the inode new references (names) are added or removed
5643 *    from the inode, leaving the logged inode item with a link count that does
5644 *    not match the number of logged inode reference items. This is fine because
5645 *    at log replay time we compute the real number of links and correct the
5646 *    link count in the inode item (see replay_one_buffer() and
5647 *    link_to_fixup_dir());
5648 *
5649 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5650 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5651 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5652 *    has a size that doesn't match the sum of the lengths of all the logged
5653 *    names. This does not result in a problem because if a dir_item key is
5654 *    logged but its matching dir_index key is not logged, at log replay time we
5655 *    don't use it to replay the respective name (see replay_one_name()). On the
5656 *    other hand if only the dir_index key ends up being logged, the respective
5657 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5658 *    keys created (see replay_one_name()).
5659 *    The directory's inode item with a wrong i_size is not a problem as well,
5660 *    since we don't use it at log replay time to set the i_size in the inode
5661 *    item of the fs/subvol tree (see overwrite_item()).
5662 */
5663static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5664				struct btrfs_root *root,
5665				struct btrfs_inode *start_inode,
5666				struct btrfs_log_ctx *ctx)
5667{
5668	struct btrfs_fs_info *fs_info = root->fs_info;
5669	struct btrfs_root *log = root->log_root;
5670	struct btrfs_path *path;
5671	LIST_HEAD(dir_list);
5672	struct btrfs_dir_list *dir_elem;
5673	int ret = 0;
5674
5675	path = btrfs_alloc_path();
5676	if (!path)
5677		return -ENOMEM;
5678
5679	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5680	if (!dir_elem) {
5681		btrfs_free_path(path);
5682		return -ENOMEM;
5683	}
5684	dir_elem->ino = btrfs_ino(start_inode);
5685	list_add_tail(&dir_elem->list, &dir_list);
5686
5687	while (!list_empty(&dir_list)) {
5688		struct extent_buffer *leaf;
5689		struct btrfs_key min_key;
5690		int nritems;
5691		int i;
5692
5693		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5694					    list);
5695		if (ret)
5696			goto next_dir_inode;
5697
5698		min_key.objectid = dir_elem->ino;
5699		min_key.type = BTRFS_DIR_ITEM_KEY;
5700		min_key.offset = 0;
5701again:
5702		btrfs_release_path(path);
5703		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5704		if (ret < 0) {
5705			goto next_dir_inode;
5706		} else if (ret > 0) {
5707			ret = 0;
5708			goto next_dir_inode;
5709		}
5710
5711process_leaf:
5712		leaf = path->nodes[0];
5713		nritems = btrfs_header_nritems(leaf);
5714		for (i = path->slots[0]; i < nritems; i++) {
5715			struct btrfs_dir_item *di;
5716			struct btrfs_key di_key;
5717			struct inode *di_inode;
5718			struct btrfs_dir_list *new_dir_elem;
5719			int log_mode = LOG_INODE_EXISTS;
5720			int type;
5721
5722			btrfs_item_key_to_cpu(leaf, &min_key, i);
5723			if (min_key.objectid != dir_elem->ino ||
5724			    min_key.type != BTRFS_DIR_ITEM_KEY)
5725				goto next_dir_inode;
5726
5727			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5728			type = btrfs_dir_type(leaf, di);
5729			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5730			    type != BTRFS_FT_DIR)
5731				continue;
5732			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5733			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5734				continue;
5735
5736			btrfs_release_path(path);
5737			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5738			if (IS_ERR(di_inode)) {
5739				ret = PTR_ERR(di_inode);
5740				goto next_dir_inode;
5741			}
5742
5743			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5744				btrfs_add_delayed_iput(di_inode);
5745				break;
5746			}
5747
5748			ctx->log_new_dentries = false;
5749			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5750				log_mode = LOG_INODE_ALL;
5751			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5752					      log_mode, ctx);
5753			btrfs_add_delayed_iput(di_inode);
5754			if (ret)
5755				goto next_dir_inode;
5756			if (ctx->log_new_dentries) {
5757				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5758						       GFP_NOFS);
5759				if (!new_dir_elem) {
5760					ret = -ENOMEM;
5761					goto next_dir_inode;
5762				}
5763				new_dir_elem->ino = di_key.objectid;
5764				list_add_tail(&new_dir_elem->list, &dir_list);
5765			}
5766			break;
5767		}
5768		if (i == nritems) {
5769			ret = btrfs_next_leaf(log, path);
5770			if (ret < 0) {
5771				goto next_dir_inode;
5772			} else if (ret > 0) {
5773				ret = 0;
5774				goto next_dir_inode;
5775			}
5776			goto process_leaf;
5777		}
5778		if (min_key.offset < (u64)-1) {
5779			min_key.offset++;
5780			goto again;
5781		}
5782next_dir_inode:
5783		list_del(&dir_elem->list);
5784		kfree(dir_elem);
5785	}
5786
5787	btrfs_free_path(path);
5788	return ret;
5789}
5790
5791static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5792				 struct btrfs_inode *inode,
5793				 struct btrfs_log_ctx *ctx)
5794{
5795	struct btrfs_fs_info *fs_info = trans->fs_info;
5796	int ret;
5797	struct btrfs_path *path;
5798	struct btrfs_key key;
5799	struct btrfs_root *root = inode->root;
5800	const u64 ino = btrfs_ino(inode);
5801
5802	path = btrfs_alloc_path();
5803	if (!path)
5804		return -ENOMEM;
5805	path->skip_locking = 1;
5806	path->search_commit_root = 1;
5807
5808	key.objectid = ino;
5809	key.type = BTRFS_INODE_REF_KEY;
5810	key.offset = 0;
5811	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5812	if (ret < 0)
5813		goto out;
5814
5815	while (true) {
5816		struct extent_buffer *leaf = path->nodes[0];
5817		int slot = path->slots[0];
5818		u32 cur_offset = 0;
5819		u32 item_size;
5820		unsigned long ptr;
5821
5822		if (slot >= btrfs_header_nritems(leaf)) {
5823			ret = btrfs_next_leaf(root, path);
5824			if (ret < 0)
5825				goto out;
5826			else if (ret > 0)
5827				break;
5828			continue;
5829		}
5830
5831		btrfs_item_key_to_cpu(leaf, &key, slot);
5832		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5833		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5834			break;
5835
5836		item_size = btrfs_item_size_nr(leaf, slot);
5837		ptr = btrfs_item_ptr_offset(leaf, slot);
5838		while (cur_offset < item_size) {
5839			struct btrfs_key inode_key;
5840			struct inode *dir_inode;
5841
5842			inode_key.type = BTRFS_INODE_ITEM_KEY;
5843			inode_key.offset = 0;
5844
5845			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5846				struct btrfs_inode_extref *extref;
5847
5848				extref = (struct btrfs_inode_extref *)
5849					(ptr + cur_offset);
5850				inode_key.objectid = btrfs_inode_extref_parent(
5851					leaf, extref);
5852				cur_offset += sizeof(*extref);
5853				cur_offset += btrfs_inode_extref_name_len(leaf,
5854					extref);
5855			} else {
5856				inode_key.objectid = key.offset;
5857				cur_offset = item_size;
5858			}
5859
5860			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5861					       root);
5862			/*
5863			 * If the parent inode was deleted, return an error to
5864			 * fallback to a transaction commit. This is to prevent
5865			 * getting an inode that was moved from one parent A to
5866			 * a parent B, got its former parent A deleted and then
5867			 * it got fsync'ed, from existing at both parents after
5868			 * a log replay (and the old parent still existing).
5869			 * Example:
5870			 *
5871			 * mkdir /mnt/A
5872			 * mkdir /mnt/B
5873			 * touch /mnt/B/bar
5874			 * sync
5875			 * mv /mnt/B/bar /mnt/A/bar
5876			 * mv -T /mnt/A /mnt/B
5877			 * fsync /mnt/B/bar
5878			 * <power fail>
5879			 *
5880			 * If we ignore the old parent B which got deleted,
5881			 * after a log replay we would have file bar linked
5882			 * at both parents and the old parent B would still
5883			 * exist.
5884			 */
5885			if (IS_ERR(dir_inode)) {
5886				ret = PTR_ERR(dir_inode);
5887				goto out;
5888			}
5889
5890			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5891				btrfs_add_delayed_iput(dir_inode);
5892				continue;
5893			}
5894
5895			if (ctx)
5896				ctx->log_new_dentries = false;
5897			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5898					      LOG_INODE_ALL, ctx);
5899			if (!ret && ctx && ctx->log_new_dentries)
5900				ret = log_new_dir_dentries(trans, root,
5901						   BTRFS_I(dir_inode), ctx);
5902			btrfs_add_delayed_iput(dir_inode);
5903			if (ret)
5904				goto out;
5905		}
5906		path->slots[0]++;
5907	}
5908	ret = 0;
5909out:
5910	btrfs_free_path(path);
5911	return ret;
5912}
5913
5914static int log_new_ancestors(struct btrfs_trans_handle *trans,
5915			     struct btrfs_root *root,
5916			     struct btrfs_path *path,
5917			     struct btrfs_log_ctx *ctx)
5918{
5919	struct btrfs_key found_key;
5920
5921	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5922
5923	while (true) {
5924		struct btrfs_fs_info *fs_info = root->fs_info;
5925		struct extent_buffer *leaf = path->nodes[0];
5926		int slot = path->slots[0];
5927		struct btrfs_key search_key;
5928		struct inode *inode;
5929		u64 ino;
5930		int ret = 0;
5931
5932		btrfs_release_path(path);
5933
5934		ino = found_key.offset;
5935
5936		search_key.objectid = found_key.offset;
5937		search_key.type = BTRFS_INODE_ITEM_KEY;
5938		search_key.offset = 0;
5939		inode = btrfs_iget(fs_info->sb, ino, root);
5940		if (IS_ERR(inode))
5941			return PTR_ERR(inode);
5942
5943		if (BTRFS_I(inode)->generation >= trans->transid &&
5944		    need_log_inode(trans, BTRFS_I(inode)))
5945			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5946					      LOG_INODE_EXISTS, ctx);
5947		btrfs_add_delayed_iput(inode);
5948		if (ret)
5949			return ret;
5950
5951		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5952			break;
5953
5954		search_key.type = BTRFS_INODE_REF_KEY;
5955		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5956		if (ret < 0)
5957			return ret;
5958
5959		leaf = path->nodes[0];
5960		slot = path->slots[0];
5961		if (slot >= btrfs_header_nritems(leaf)) {
5962			ret = btrfs_next_leaf(root, path);
5963			if (ret < 0)
5964				return ret;
5965			else if (ret > 0)
5966				return -ENOENT;
5967			leaf = path->nodes[0];
5968			slot = path->slots[0];
5969		}
5970
5971		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972		if (found_key.objectid != search_key.objectid ||
5973		    found_key.type != BTRFS_INODE_REF_KEY)
5974			return -ENOENT;
5975	}
5976	return 0;
5977}
5978
5979static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5980				  struct btrfs_inode *inode,
5981				  struct dentry *parent,
5982				  struct btrfs_log_ctx *ctx)
5983{
5984	struct btrfs_root *root = inode->root;
5985	struct dentry *old_parent = NULL;
5986	struct super_block *sb = inode->vfs_inode.i_sb;
5987	int ret = 0;
5988
5989	while (true) {
5990		if (!parent || d_really_is_negative(parent) ||
5991		    sb != parent->d_sb)
5992			break;
5993
5994		inode = BTRFS_I(d_inode(parent));
5995		if (root != inode->root)
5996			break;
5997
5998		if (inode->generation >= trans->transid &&
5999		    need_log_inode(trans, inode)) {
6000			ret = btrfs_log_inode(trans, root, inode,
6001					      LOG_INODE_EXISTS, ctx);
6002			if (ret)
6003				break;
6004		}
6005		if (IS_ROOT(parent))
6006			break;
6007
6008		parent = dget_parent(parent);
6009		dput(old_parent);
6010		old_parent = parent;
 
 
6011	}
6012	dput(old_parent);
6013
6014	return ret;
6015}
6016
6017static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6018				 struct btrfs_inode *inode,
6019				 struct dentry *parent,
6020				 struct btrfs_log_ctx *ctx)
6021{
6022	struct btrfs_root *root = inode->root;
6023	const u64 ino = btrfs_ino(inode);
6024	struct btrfs_path *path;
6025	struct btrfs_key search_key;
6026	int ret;
6027
6028	/*
6029	 * For a single hard link case, go through a fast path that does not
6030	 * need to iterate the fs/subvolume tree.
6031	 */
6032	if (inode->vfs_inode.i_nlink < 2)
6033		return log_new_ancestors_fast(trans, inode, parent, ctx);
6034
6035	path = btrfs_alloc_path();
6036	if (!path)
6037		return -ENOMEM;
6038
6039	search_key.objectid = ino;
6040	search_key.type = BTRFS_INODE_REF_KEY;
6041	search_key.offset = 0;
6042again:
6043	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6044	if (ret < 0)
6045		goto out;
6046	if (ret == 0)
6047		path->slots[0]++;
6048
6049	while (true) {
6050		struct extent_buffer *leaf = path->nodes[0];
6051		int slot = path->slots[0];
6052		struct btrfs_key found_key;
6053
6054		if (slot >= btrfs_header_nritems(leaf)) {
6055			ret = btrfs_next_leaf(root, path);
6056			if (ret < 0)
6057				goto out;
6058			else if (ret > 0)
6059				break;
6060			continue;
6061		}
6062
6063		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064		if (found_key.objectid != ino ||
6065		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6066			break;
6067
6068		/*
6069		 * Don't deal with extended references because they are rare
6070		 * cases and too complex to deal with (we would need to keep
6071		 * track of which subitem we are processing for each item in
6072		 * this loop, etc). So just return some error to fallback to
6073		 * a transaction commit.
6074		 */
6075		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6076			ret = -EMLINK;
6077			goto out;
6078		}
6079
6080		/*
6081		 * Logging ancestors needs to do more searches on the fs/subvol
6082		 * tree, so it releases the path as needed to avoid deadlocks.
6083		 * Keep track of the last inode ref key and resume from that key
6084		 * after logging all new ancestors for the current hard link.
6085		 */
6086		memcpy(&search_key, &found_key, sizeof(search_key));
6087
6088		ret = log_new_ancestors(trans, root, path, ctx);
6089		if (ret)
6090			goto out;
6091		btrfs_release_path(path);
6092		goto again;
6093	}
6094	ret = 0;
6095out:
6096	btrfs_free_path(path);
6097	return ret;
6098}
6099
 
6100/*
6101 * helper function around btrfs_log_inode to make sure newly created
6102 * parent directories also end up in the log.  A minimal inode and backref
6103 * only logging is done of any parent directories that are older than
6104 * the last committed transaction
6105 */
6106static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6107				  struct btrfs_inode *inode,
6108				  struct dentry *parent,
6109				  int inode_only,
6110				  struct btrfs_log_ctx *ctx)
6111{
6112	struct btrfs_root *root = inode->root;
6113	struct btrfs_fs_info *fs_info = root->fs_info;
 
6114	int ret = 0;
6115	bool log_dentries = false;
 
 
6116
6117	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6118		ret = 1;
6119		goto end_no_trans;
6120	}
6121
6122	if (btrfs_root_refs(&root->root_item) == 0) {
 
6123		ret = 1;
6124		goto end_no_trans;
6125	}
6126
6127	/*
6128	 * Skip already logged inodes or inodes corresponding to tmpfiles
6129	 * (since logging them is pointless, a link count of 0 means they
6130	 * will never be accessible).
6131	 */
6132	if ((btrfs_inode_in_log(inode, trans->transid) &&
6133	     list_empty(&ctx->ordered_extents)) ||
6134	    inode->vfs_inode.i_nlink == 0) {
 
 
 
 
6135		ret = BTRFS_NO_LOG_SYNC;
6136		goto end_no_trans;
6137	}
6138
6139	ret = start_log_trans(trans, root, ctx);
6140	if (ret)
6141		goto end_no_trans;
6142
6143	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6144	if (ret)
6145		goto end_trans;
6146
6147	/*
6148	 * for regular files, if its inode is already on disk, we don't
6149	 * have to worry about the parents at all.  This is because
6150	 * we can use the last_unlink_trans field to record renames
6151	 * and other fun in this file.
6152	 */
6153	if (S_ISREG(inode->vfs_inode.i_mode) &&
6154	    inode->generation < trans->transid &&
6155	    inode->last_unlink_trans < trans->transid) {
6156		ret = 0;
6157		goto end_trans;
6158	}
6159
6160	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6161		log_dentries = true;
 
 
6162
6163	/*
6164	 * On unlink we must make sure all our current and old parent directory
6165	 * inodes are fully logged. This is to prevent leaving dangling
6166	 * directory index entries in directories that were our parents but are
6167	 * not anymore. Not doing this results in old parent directory being
6168	 * impossible to delete after log replay (rmdir will always fail with
6169	 * error -ENOTEMPTY).
6170	 *
6171	 * Example 1:
6172	 *
6173	 * mkdir testdir
6174	 * touch testdir/foo
6175	 * ln testdir/foo testdir/bar
6176	 * sync
6177	 * unlink testdir/bar
6178	 * xfs_io -c fsync testdir/foo
6179	 * <power failure>
6180	 * mount fs, triggers log replay
6181	 *
6182	 * If we don't log the parent directory (testdir), after log replay the
6183	 * directory still has an entry pointing to the file inode using the bar
6184	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6185	 * the file inode has a link count of 1.
6186	 *
6187	 * Example 2:
6188	 *
6189	 * mkdir testdir
6190	 * touch foo
6191	 * ln foo testdir/foo2
6192	 * ln foo testdir/foo3
6193	 * sync
6194	 * unlink testdir/foo3
6195	 * xfs_io -c fsync foo
6196	 * <power failure>
6197	 * mount fs, triggers log replay
6198	 *
6199	 * Similar as the first example, after log replay the parent directory
6200	 * testdir still has an entry pointing to the inode file with name foo3
6201	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6202	 * and has a link count of 2.
6203	 */
6204	if (inode->last_unlink_trans >= trans->transid) {
6205		ret = btrfs_log_all_parents(trans, inode, ctx);
6206		if (ret)
6207			goto end_trans;
6208	}
6209
6210	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6211	if (ret)
6212		goto end_trans;
 
 
 
 
 
6213
6214	if (log_dentries)
6215		ret = log_new_dir_dentries(trans, root, inode, ctx);
6216	else
6217		ret = 0;
 
6218end_trans:
 
6219	if (ret < 0) {
6220		btrfs_set_log_full_commit(trans);
 
6221		ret = 1;
6222	}
6223
6224	if (ret)
6225		btrfs_remove_log_ctx(root, ctx);
6226	btrfs_end_log_trans(root);
6227end_no_trans:
6228	return ret;
6229}
6230
6231/*
6232 * it is not safe to log dentry if the chunk root has added new
6233 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6234 * If this returns 1, you must commit the transaction to safely get your
6235 * data on disk.
6236 */
6237int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6238			  struct dentry *dentry,
6239			  struct btrfs_log_ctx *ctx)
6240{
6241	struct dentry *parent = dget_parent(dentry);
6242	int ret;
6243
6244	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6245				     LOG_INODE_ALL, ctx);
6246	dput(parent);
6247
6248	return ret;
6249}
6250
6251/*
6252 * should be called during mount to recover any replay any log trees
6253 * from the FS
6254 */
6255int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6256{
6257	int ret;
6258	struct btrfs_path *path;
6259	struct btrfs_trans_handle *trans;
6260	struct btrfs_key key;
6261	struct btrfs_key found_key;
 
6262	struct btrfs_root *log;
6263	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6264	struct walk_control wc = {
6265		.process_func = process_one_buffer,
6266		.stage = LOG_WALK_PIN_ONLY,
6267	};
6268
6269	path = btrfs_alloc_path();
6270	if (!path)
6271		return -ENOMEM;
6272
6273	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6274
6275	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6276	if (IS_ERR(trans)) {
6277		ret = PTR_ERR(trans);
6278		goto error;
6279	}
6280
6281	wc.trans = trans;
6282	wc.pin = 1;
6283
6284	ret = walk_log_tree(trans, log_root_tree, &wc);
6285	if (ret) {
6286		btrfs_handle_fs_error(fs_info, ret,
6287			"Failed to pin buffers while recovering log root tree.");
6288		goto error;
6289	}
6290
6291again:
6292	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6293	key.offset = (u64)-1;
6294	key.type = BTRFS_ROOT_ITEM_KEY;
6295
6296	while (1) {
6297		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6298
6299		if (ret < 0) {
6300			btrfs_handle_fs_error(fs_info, ret,
6301				    "Couldn't find tree log root.");
6302			goto error;
6303		}
6304		if (ret > 0) {
6305			if (path->slots[0] == 0)
6306				break;
6307			path->slots[0]--;
6308		}
6309		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6310				      path->slots[0]);
6311		btrfs_release_path(path);
6312		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6313			break;
6314
6315		log = btrfs_read_tree_root(log_root_tree, &found_key);
6316		if (IS_ERR(log)) {
6317			ret = PTR_ERR(log);
6318			btrfs_handle_fs_error(fs_info, ret,
6319				    "Couldn't read tree log root.");
6320			goto error;
6321		}
6322
6323		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6324						   true);
6325		if (IS_ERR(wc.replay_dest)) {
6326			ret = PTR_ERR(wc.replay_dest);
6327
6328			/*
6329			 * We didn't find the subvol, likely because it was
6330			 * deleted.  This is ok, simply skip this log and go to
6331			 * the next one.
6332			 *
6333			 * We need to exclude the root because we can't have
6334			 * other log replays overwriting this log as we'll read
6335			 * it back in a few more times.  This will keep our
6336			 * block from being modified, and we'll just bail for
6337			 * each subsequent pass.
6338			 */
6339			if (ret == -ENOENT)
6340				ret = btrfs_pin_extent_for_log_replay(trans,
6341							log->node->start,
6342							log->node->len);
6343			btrfs_put_root(log);
6344
6345			if (!ret)
6346				goto next;
6347			btrfs_handle_fs_error(fs_info, ret,
6348				"Couldn't read target root for tree log recovery.");
6349			goto error;
6350		}
6351
6352		wc.replay_dest->log_root = log;
6353		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6354		if (ret)
6355			/* The loop needs to continue due to the root refs */
6356			btrfs_handle_fs_error(fs_info, ret,
6357				"failed to record the log root in transaction");
6358		else
6359			ret = walk_log_tree(trans, log, &wc);
6360
6361		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363						      path);
 
6364		}
6365
6366		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367			struct btrfs_root *root = wc.replay_dest;
6368
6369			btrfs_release_path(path);
6370
6371			/*
6372			 * We have just replayed everything, and the highest
6373			 * objectid of fs roots probably has changed in case
6374			 * some inode_item's got replayed.
6375			 *
6376			 * root->objectid_mutex is not acquired as log replay
6377			 * could only happen during mount.
6378			 */
6379			ret = btrfs_init_root_free_objectid(root);
6380		}
6381
6382		wc.replay_dest->log_root = NULL;
6383		btrfs_put_root(wc.replay_dest);
6384		btrfs_put_root(log);
 
6385
6386		if (ret)
6387			goto error;
6388next:
6389		if (found_key.offset == 0)
6390			break;
6391		key.offset = found_key.offset - 1;
6392	}
6393	btrfs_release_path(path);
6394
6395	/* step one is to pin it all, step two is to replay just inodes */
6396	if (wc.pin) {
6397		wc.pin = 0;
6398		wc.process_func = replay_one_buffer;
6399		wc.stage = LOG_WALK_REPLAY_INODES;
6400		goto again;
6401	}
6402	/* step three is to replay everything */
6403	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6404		wc.stage++;
6405		goto again;
6406	}
6407
6408	btrfs_free_path(path);
6409
 
 
 
 
6410	/* step 4: commit the transaction, which also unpins the blocks */
6411	ret = btrfs_commit_transaction(trans);
6412	if (ret)
6413		return ret;
6414
6415	log_root_tree->log_root = NULL;
6416	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6417	btrfs_put_root(log_root_tree);
6418
 
6419	return 0;
6420error:
6421	if (wc.trans)
6422		btrfs_end_transaction(wc.trans);
6423	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6424	btrfs_free_path(path);
6425	return ret;
6426}
6427
6428/*
6429 * there are some corner cases where we want to force a full
6430 * commit instead of allowing a directory to be logged.
6431 *
6432 * They revolve around files there were unlinked from the directory, and
6433 * this function updates the parent directory so that a full commit is
6434 * properly done if it is fsync'd later after the unlinks are done.
6435 *
6436 * Must be called before the unlink operations (updates to the subvolume tree,
6437 * inodes, etc) are done.
6438 */
6439void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6440			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6441			     int for_rename)
6442{
6443	/*
6444	 * when we're logging a file, if it hasn't been renamed
6445	 * or unlinked, and its inode is fully committed on disk,
6446	 * we don't have to worry about walking up the directory chain
6447	 * to log its parents.
6448	 *
6449	 * So, we use the last_unlink_trans field to put this transid
6450	 * into the file.  When the file is logged we check it and
6451	 * don't log the parents if the file is fully on disk.
6452	 */
6453	mutex_lock(&inode->log_mutex);
6454	inode->last_unlink_trans = trans->transid;
6455	mutex_unlock(&inode->log_mutex);
6456
6457	/*
6458	 * if this directory was already logged any new
6459	 * names for this file/dir will get recorded
6460	 */
6461	if (dir->logged_trans == trans->transid)
 
6462		return;
6463
6464	/*
6465	 * if the inode we're about to unlink was logged,
6466	 * the log will be properly updated for any new names
6467	 */
6468	if (inode->logged_trans == trans->transid)
6469		return;
6470
6471	/*
6472	 * when renaming files across directories, if the directory
6473	 * there we're unlinking from gets fsync'd later on, there's
6474	 * no way to find the destination directory later and fsync it
6475	 * properly.  So, we have to be conservative and force commits
6476	 * so the new name gets discovered.
6477	 */
6478	if (for_rename)
6479		goto record;
6480
6481	/* we can safely do the unlink without any special recording */
6482	return;
6483
6484record:
6485	mutex_lock(&dir->log_mutex);
6486	dir->last_unlink_trans = trans->transid;
6487	mutex_unlock(&dir->log_mutex);
6488}
6489
6490/*
6491 * Make sure that if someone attempts to fsync the parent directory of a deleted
6492 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6493 * that after replaying the log tree of the parent directory's root we will not
6494 * see the snapshot anymore and at log replay time we will not see any log tree
6495 * corresponding to the deleted snapshot's root, which could lead to replaying
6496 * it after replaying the log tree of the parent directory (which would replay
6497 * the snapshot delete operation).
6498 *
6499 * Must be called before the actual snapshot destroy operation (updates to the
6500 * parent root and tree of tree roots trees, etc) are done.
6501 */
6502void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6503				   struct btrfs_inode *dir)
6504{
6505	mutex_lock(&dir->log_mutex);
6506	dir->last_unlink_trans = trans->transid;
6507	mutex_unlock(&dir->log_mutex);
6508}
6509
6510/*
6511 * Call this after adding a new name for a file and it will properly
6512 * update the log to reflect the new name.
 
 
 
6513 */
6514void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6515			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6516			struct dentry *parent)
6517{
6518	struct btrfs_log_ctx ctx;
6519
6520	/*
6521	 * this will force the logging code to walk the dentry chain
6522	 * up for the file
6523	 */
6524	if (!S_ISDIR(inode->vfs_inode.i_mode))
6525		inode->last_unlink_trans = trans->transid;
6526
6527	/*
6528	 * if this inode hasn't been logged and directory we're renaming it
6529	 * from hasn't been logged, we don't need to log it
6530	 */
6531	if (!inode_logged(trans, inode) &&
6532	    (!old_dir || !inode_logged(trans, old_dir)))
6533		return;
 
 
6534
6535	/*
6536	 * If we are doing a rename (old_dir is not NULL) from a directory that
6537	 * was previously logged, make sure the next log attempt on the directory
6538	 * is not skipped and logs the inode again. This is because the log may
6539	 * not currently be authoritative for a range including the old
6540	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6541	 * sure after a log replay we do not end up with both the new and old
6542	 * dentries around (in case the inode is a directory we would have a
6543	 * directory with two hard links and 2 inode references for different
6544	 * parents). The next log attempt of old_dir will happen at
6545	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6546	 * below, because we have previously set inode->last_unlink_trans to the
6547	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6548	 * case inode is a directory.
6549	 */
6550	if (old_dir)
6551		old_dir->logged_trans = 0;
6552
6553	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6554	ctx.logging_new_name = true;
6555	/*
6556	 * We don't care about the return value. If we fail to log the new name
6557	 * then we know the next attempt to sync the log will fallback to a full
6558	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6559	 * we don't need to worry about getting a log committed that has an
6560	 * inconsistent state after a rename operation.
6561	 */
6562	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6563}
6564