Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include "ctree.h"
  22#include "transaction.h"
 
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
 
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
 
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			     struct btrfs_root *root, struct inode *inode,
  96			     int inode_only);
 
 
 
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98			     struct btrfs_root *root,
  99			     struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101				       struct btrfs_root *root,
 102				       struct btrfs_root *log,
 103				       struct btrfs_path *path,
 104				       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135			   struct btrfs_root *root)
 
 136{
 137	int ret;
 138	int err = 0;
 139
 140	mutex_lock(&root->log_mutex);
 
 141	if (root->log_root) {
 
 
 
 
 
 142		if (!root->log_start_pid) {
 
 143			root->log_start_pid = current->pid;
 144			root->log_multiple_pids = false;
 145		} else if (root->log_start_pid != current->pid) {
 146			root->log_multiple_pids = true;
 147		}
 148
 149		root->log_batch++;
 150		atomic_inc(&root->log_writers);
 151		mutex_unlock(&root->log_mutex);
 152		return 0;
 153	}
 154	root->log_multiple_pids = false;
 155	root->log_start_pid = current->pid;
 156	mutex_lock(&root->fs_info->tree_log_mutex);
 157	if (!root->fs_info->log_root_tree) {
 158		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159		if (ret)
 160			err = ret;
 161	}
 162	if (err == 0 && !root->log_root) {
 163		ret = btrfs_add_log_tree(trans, root);
 164		if (ret)
 165			err = ret;
 
 
 
 166	}
 167	mutex_unlock(&root->fs_info->tree_log_mutex);
 168	root->log_batch++;
 169	atomic_inc(&root->log_writers);
 
 
 
 
 
 
 
 170	mutex_unlock(&root->log_mutex);
 171	return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181	int ret = -ENOENT;
 182
 183	smp_mb();
 184	if (!root->log_root)
 185		return -ENOENT;
 186
 187	mutex_lock(&root->log_mutex);
 188	if (root->log_root) {
 189		ret = 0;
 190		atomic_inc(&root->log_writers);
 191	}
 192	mutex_unlock(&root->log_mutex);
 193	return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203	int ret = -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	atomic_inc(&root->log_writers);
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215int btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217	if (atomic_dec_and_test(&root->log_writers)) {
 218		smp_mb();
 
 
 219		if (waitqueue_active(&root->log_writer_wait))
 220			wake_up(&root->log_writer_wait);
 221	}
 222	return 0;
 223}
 224
 225
 226/*
 227 * the walk control struct is used to pass state down the chain when
 228 * processing the log tree.  The stage field tells us which part
 229 * of the log tree processing we are currently doing.  The others
 230 * are state fields used for that specific part
 231 */
 232struct walk_control {
 233	/* should we free the extent on disk when done?  This is used
 234	 * at transaction commit time while freeing a log tree
 235	 */
 236	int free;
 237
 238	/* should we write out the extent buffer?  This is used
 239	 * while flushing the log tree to disk during a sync
 240	 */
 241	int write;
 242
 243	/* should we wait for the extent buffer io to finish?  Also used
 244	 * while flushing the log tree to disk for a sync
 245	 */
 246	int wait;
 247
 248	/* pin only walk, we record which extents on disk belong to the
 249	 * log trees
 250	 */
 251	int pin;
 252
 253	/* what stage of the replay code we're currently in */
 254	int stage;
 255
 256	/* the root we are currently replaying */
 257	struct btrfs_root *replay_dest;
 258
 259	/* the trans handle for the current replay */
 260	struct btrfs_trans_handle *trans;
 261
 262	/* the function that gets used to process blocks we find in the
 263	 * tree.  Note the extent_buffer might not be up to date when it is
 264	 * passed in, and it must be checked or read if you need the data
 265	 * inside it
 266	 */
 267	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 268			    struct walk_control *wc, u64 gen);
 269};
 270
 271/*
 272 * process_func used to pin down extents, write them or wait on them
 273 */
 274static int process_one_buffer(struct btrfs_root *log,
 275			      struct extent_buffer *eb,
 276			      struct walk_control *wc, u64 gen)
 277{
 
 
 
 
 
 
 
 
 
 
 
 
 278	if (wc->pin)
 279		btrfs_pin_extent(log->fs_info->extent_root,
 280				 eb->start, eb->len, 0);
 281
 282	if (btrfs_buffer_uptodate(eb, gen)) {
 
 
 283		if (wc->write)
 284			btrfs_write_tree_block(eb);
 285		if (wc->wait)
 286			btrfs_wait_tree_block_writeback(eb);
 287	}
 288	return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306				   struct btrfs_root *root,
 307				   struct btrfs_path *path,
 308				   struct extent_buffer *eb, int slot,
 309				   struct btrfs_key *key)
 310{
 311	int ret;
 312	u32 item_size;
 313	u64 saved_i_size = 0;
 314	int save_old_i_size = 0;
 315	unsigned long src_ptr;
 316	unsigned long dst_ptr;
 317	int overwrite_root = 0;
 
 318
 319	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320		overwrite_root = 1;
 321
 322	item_size = btrfs_item_size_nr(eb, slot);
 323	src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325	/* look for the key in the destination tree */
 326	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 
 
 
 327	if (ret == 0) {
 328		char *src_copy;
 329		char *dst_copy;
 330		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331						  path->slots[0]);
 332		if (dst_size != item_size)
 333			goto insert;
 334
 335		if (item_size == 0) {
 336			btrfs_release_path(path);
 337			return 0;
 338		}
 339		dst_copy = kmalloc(item_size, GFP_NOFS);
 340		src_copy = kmalloc(item_size, GFP_NOFS);
 341		if (!dst_copy || !src_copy) {
 342			btrfs_release_path(path);
 343			kfree(dst_copy);
 344			kfree(src_copy);
 345			return -ENOMEM;
 346		}
 347
 348		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352				   item_size);
 353		ret = memcmp(dst_copy, src_copy, item_size);
 354
 355		kfree(dst_copy);
 356		kfree(src_copy);
 357		/*
 358		 * they have the same contents, just return, this saves
 359		 * us from cowing blocks in the destination tree and doing
 360		 * extra writes that may not have been done by a previous
 361		 * sync
 362		 */
 363		if (ret == 0) {
 364			btrfs_release_path(path);
 365			return 0;
 366		}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369insert:
 370	btrfs_release_path(path);
 371	/* try to insert the key into the destination tree */
 
 372	ret = btrfs_insert_empty_item(trans, root, path,
 373				      key, item_size);
 
 374
 375	/* make sure any existing item is the correct size */
 376	if (ret == -EEXIST) {
 377		u32 found_size;
 378		found_size = btrfs_item_size_nr(path->nodes[0],
 379						path->slots[0]);
 380		if (found_size > item_size) {
 381			btrfs_truncate_item(trans, root, path, item_size, 1);
 382		} else if (found_size < item_size) {
 383			ret = btrfs_extend_item(trans, root, path,
 384						item_size - found_size);
 385		}
 386	} else if (ret) {
 387		return ret;
 388	}
 389	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 390					path->slots[0]);
 391
 392	/* don't overwrite an existing inode if the generation number
 393	 * was logged as zero.  This is done when the tree logging code
 394	 * is just logging an inode to make sure it exists after recovery.
 395	 *
 396	 * Also, don't overwrite i_size on directories during replay.
 397	 * log replay inserts and removes directory items based on the
 398	 * state of the tree found in the subvolume, and i_size is modified
 399	 * as it goes
 400	 */
 401	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 402		struct btrfs_inode_item *src_item;
 403		struct btrfs_inode_item *dst_item;
 404
 405		src_item = (struct btrfs_inode_item *)src_ptr;
 406		dst_item = (struct btrfs_inode_item *)dst_ptr;
 407
 408		if (btrfs_inode_generation(eb, src_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409			goto no_copy;
 
 410
 411		if (overwrite_root &&
 412		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 413		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 414			save_old_i_size = 1;
 415			saved_i_size = btrfs_inode_size(path->nodes[0],
 416							dst_item);
 417		}
 418	}
 419
 420	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 421			   src_ptr, item_size);
 422
 423	if (save_old_i_size) {
 424		struct btrfs_inode_item *dst_item;
 425		dst_item = (struct btrfs_inode_item *)dst_ptr;
 426		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 427	}
 428
 429	/* make sure the generation is filled in */
 430	if (key->type == BTRFS_INODE_ITEM_KEY) {
 431		struct btrfs_inode_item *dst_item;
 432		dst_item = (struct btrfs_inode_item *)dst_ptr;
 433		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 434			btrfs_set_inode_generation(path->nodes[0], dst_item,
 435						   trans->transid);
 436		}
 437	}
 438no_copy:
 439	btrfs_mark_buffer_dirty(path->nodes[0]);
 440	btrfs_release_path(path);
 441	return 0;
 442}
 443
 444/*
 445 * simple helper to read an inode off the disk from a given root
 446 * This can only be called for subvolume roots and not for the log
 447 */
 448static noinline struct inode *read_one_inode(struct btrfs_root *root,
 449					     u64 objectid)
 450{
 451	struct btrfs_key key;
 452	struct inode *inode;
 453
 454	key.objectid = objectid;
 455	key.type = BTRFS_INODE_ITEM_KEY;
 456	key.offset = 0;
 457	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 458	if (IS_ERR(inode)) {
 459		inode = NULL;
 460	} else if (is_bad_inode(inode)) {
 461		iput(inode);
 462		inode = NULL;
 463	}
 464	return inode;
 465}
 466
 467/* replays a single extent in 'eb' at 'slot' with 'key' into the
 468 * subvolume 'root'.  path is released on entry and should be released
 469 * on exit.
 470 *
 471 * extents in the log tree have not been allocated out of the extent
 472 * tree yet.  So, this completes the allocation, taking a reference
 473 * as required if the extent already exists or creating a new extent
 474 * if it isn't in the extent allocation tree yet.
 475 *
 476 * The extent is inserted into the file, dropping any existing extents
 477 * from the file that overlap the new one.
 478 */
 479static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 480				      struct btrfs_root *root,
 481				      struct btrfs_path *path,
 482				      struct extent_buffer *eb, int slot,
 483				      struct btrfs_key *key)
 484{
 485	int found_type;
 486	u64 mask = root->sectorsize - 1;
 487	u64 extent_end;
 488	u64 alloc_hint;
 489	u64 start = key->offset;
 490	u64 saved_nbytes;
 491	struct btrfs_file_extent_item *item;
 492	struct inode *inode = NULL;
 493	unsigned long size;
 494	int ret = 0;
 495
 496	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 497	found_type = btrfs_file_extent_type(eb, item);
 498
 499	if (found_type == BTRFS_FILE_EXTENT_REG ||
 500	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 501		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 502	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 503		size = btrfs_file_extent_inline_len(eb, item);
 504		extent_end = (start + size + mask) & ~mask;
 
 
 
 
 
 
 
 
 
 505	} else {
 506		ret = 0;
 507		goto out;
 508	}
 509
 510	inode = read_one_inode(root, key->objectid);
 511	if (!inode) {
 512		ret = -EIO;
 513		goto out;
 514	}
 515
 516	/*
 517	 * first check to see if we already have this extent in the
 518	 * file.  This must be done before the btrfs_drop_extents run
 519	 * so we don't try to drop this extent.
 520	 */
 521	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 522				       start, 0);
 523
 524	if (ret == 0 &&
 525	    (found_type == BTRFS_FILE_EXTENT_REG ||
 526	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 527		struct btrfs_file_extent_item cmp1;
 528		struct btrfs_file_extent_item cmp2;
 529		struct btrfs_file_extent_item *existing;
 530		struct extent_buffer *leaf;
 531
 532		leaf = path->nodes[0];
 533		existing = btrfs_item_ptr(leaf, path->slots[0],
 534					  struct btrfs_file_extent_item);
 535
 536		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 537				   sizeof(cmp1));
 538		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 539				   sizeof(cmp2));
 540
 541		/*
 542		 * we already have a pointer to this exact extent,
 543		 * we don't have to do anything
 544		 */
 545		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 546			btrfs_release_path(path);
 547			goto out;
 548		}
 549	}
 550	btrfs_release_path(path);
 551
 552	saved_nbytes = inode_get_bytes(inode);
 553	/* drop any overlapping extents */
 554	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 555				 &alloc_hint, 1);
 556	BUG_ON(ret);
 557
 558	if (found_type == BTRFS_FILE_EXTENT_REG ||
 559	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 560		u64 offset;
 561		unsigned long dest_offset;
 562		struct btrfs_key ins;
 563
 564		ret = btrfs_insert_empty_item(trans, root, path, key,
 565					      sizeof(*item));
 566		BUG_ON(ret);
 
 567		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 568						    path->slots[0]);
 569		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 570				(unsigned long)item,  sizeof(*item));
 571
 572		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 573		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 574		ins.type = BTRFS_EXTENT_ITEM_KEY;
 575		offset = key->offset - btrfs_file_extent_offset(eb, item);
 576
 577		if (ins.objectid > 0) {
 578			u64 csum_start;
 579			u64 csum_end;
 580			LIST_HEAD(ordered_sums);
 581			/*
 582			 * is this extent already allocated in the extent
 583			 * allocation tree?  If so, just add a reference
 584			 */
 585			ret = btrfs_lookup_extent(root, ins.objectid,
 586						ins.offset);
 587			if (ret == 0) {
 588				ret = btrfs_inc_extent_ref(trans, root,
 589						ins.objectid, ins.offset,
 590						0, root->root_key.objectid,
 591						key->objectid, offset);
 592				BUG_ON(ret);
 
 593			} else {
 594				/*
 595				 * insert the extent pointer in the extent
 596				 * allocation tree
 597				 */
 598				ret = btrfs_alloc_logged_file_extent(trans,
 599						root, root->root_key.objectid,
 600						key->objectid, offset, &ins);
 601				BUG_ON(ret);
 
 602			}
 603			btrfs_release_path(path);
 604
 605			if (btrfs_file_extent_compression(eb, item)) {
 606				csum_start = ins.objectid;
 607				csum_end = csum_start + ins.offset;
 608			} else {
 609				csum_start = ins.objectid +
 610					btrfs_file_extent_offset(eb, item);
 611				csum_end = csum_start +
 612					btrfs_file_extent_num_bytes(eb, item);
 613			}
 614
 615			ret = btrfs_lookup_csums_range(root->log_root,
 616						csum_start, csum_end - 1,
 617						&ordered_sums, 0);
 618			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619			while (!list_empty(&ordered_sums)) {
 620				struct btrfs_ordered_sum *sums;
 621				sums = list_entry(ordered_sums.next,
 622						struct btrfs_ordered_sum,
 623						list);
 624				ret = btrfs_csum_file_blocks(trans,
 
 
 
 
 
 
 625						root->fs_info->csum_root,
 626						sums);
 627				BUG_ON(ret);
 628				list_del(&sums->list);
 629				kfree(sums);
 630			}
 
 
 631		} else {
 632			btrfs_release_path(path);
 633		}
 634	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 635		/* inline extents are easy, we just overwrite them */
 636		ret = overwrite_item(trans, root, path, eb, slot, key);
 637		BUG_ON(ret);
 
 638	}
 639
 640	inode_set_bytes(inode, saved_nbytes);
 641	btrfs_update_inode(trans, root, inode);
 642out:
 643	if (inode)
 644		iput(inode);
 645	return ret;
 646}
 647
 648/*
 649 * when cleaning up conflicts between the directory names in the
 650 * subvolume, directory names in the log and directory names in the
 651 * inode back references, we may have to unlink inodes from directories.
 652 *
 653 * This is a helper function to do the unlink of a specific directory
 654 * item
 655 */
 656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 657				      struct btrfs_root *root,
 658				      struct btrfs_path *path,
 659				      struct inode *dir,
 660				      struct btrfs_dir_item *di)
 661{
 662	struct inode *inode;
 663	char *name;
 664	int name_len;
 665	struct extent_buffer *leaf;
 666	struct btrfs_key location;
 667	int ret;
 668
 669	leaf = path->nodes[0];
 670
 671	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 672	name_len = btrfs_dir_name_len(leaf, di);
 673	name = kmalloc(name_len, GFP_NOFS);
 674	if (!name)
 675		return -ENOMEM;
 676
 677	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 678	btrfs_release_path(path);
 679
 680	inode = read_one_inode(root, location.objectid);
 681	if (!inode) {
 682		kfree(name);
 683		return -EIO;
 684	}
 685
 686	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 687	BUG_ON(ret);
 
 688
 689	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 690	BUG_ON(ret);
 
 
 
 
 691	kfree(name);
 692
 693	iput(inode);
 694	return ret;
 695}
 696
 697/*
 698 * helper function to see if a given name and sequence number found
 699 * in an inode back reference are already in a directory and correctly
 700 * point to this inode
 701 */
 702static noinline int inode_in_dir(struct btrfs_root *root,
 703				 struct btrfs_path *path,
 704				 u64 dirid, u64 objectid, u64 index,
 705				 const char *name, int name_len)
 706{
 707	struct btrfs_dir_item *di;
 708	struct btrfs_key location;
 709	int match = 0;
 710
 711	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 712					 index, name, name_len, 0);
 713	if (di && !IS_ERR(di)) {
 714		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 715		if (location.objectid != objectid)
 716			goto out;
 717	} else
 718		goto out;
 719	btrfs_release_path(path);
 720
 721	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 722	if (di && !IS_ERR(di)) {
 723		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 724		if (location.objectid != objectid)
 725			goto out;
 726	} else
 727		goto out;
 728	match = 1;
 729out:
 730	btrfs_release_path(path);
 731	return match;
 732}
 733
 734/*
 735 * helper function to check a log tree for a named back reference in
 736 * an inode.  This is used to decide if a back reference that is
 737 * found in the subvolume conflicts with what we find in the log.
 738 *
 739 * inode backreferences may have multiple refs in a single item,
 740 * during replay we process one reference at a time, and we don't
 741 * want to delete valid links to a file from the subvolume if that
 742 * link is also in the log.
 743 */
 744static noinline int backref_in_log(struct btrfs_root *log,
 745				   struct btrfs_key *key,
 746				   char *name, int namelen)
 
 747{
 748	struct btrfs_path *path;
 749	struct btrfs_inode_ref *ref;
 750	unsigned long ptr;
 751	unsigned long ptr_end;
 752	unsigned long name_ptr;
 753	int found_name_len;
 754	int item_size;
 755	int ret;
 756	int match = 0;
 757
 758	path = btrfs_alloc_path();
 759	if (!path)
 760		return -ENOMEM;
 761
 762	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 763	if (ret != 0)
 764		goto out;
 765
 766	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 767	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 768	ptr_end = ptr + item_size;
 769	while (ptr < ptr_end) {
 770		ref = (struct btrfs_inode_ref *)ptr;
 771		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 772		if (found_name_len == namelen) {
 773			name_ptr = (unsigned long)(ref + 1);
 774			ret = memcmp_extent_buffer(path->nodes[0], name,
 775						   name_ptr, namelen);
 776			if (ret == 0) {
 777				match = 1;
 778				goto out;
 779			}
 780		}
 781		ptr = (unsigned long)(ref + 1) + found_name_len;
 782	}
 783out:
 784	btrfs_free_path(path);
 785	return match;
 786}
 787
 788
 789/*
 790 * replay one inode back reference item found in the log tree.
 791 * eb, slot and key refer to the buffer and key found in the log tree.
 792 * root is the destination we are replaying into, and path is for temp
 793 * use by this function.  (it should be released on return).
 794 */
 795static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 796				  struct btrfs_root *root,
 797				  struct btrfs_root *log,
 798				  struct btrfs_path *path,
 799				  struct extent_buffer *eb, int slot,
 800				  struct btrfs_key *key)
 
 
 
 
 801{
 802	struct btrfs_inode_ref *ref;
 803	struct btrfs_dir_item *di;
 804	struct inode *dir;
 805	struct inode *inode;
 806	unsigned long ref_ptr;
 807	unsigned long ref_end;
 808	char *name;
 809	int namelen;
 810	int ret;
 811	int search_done = 0;
 812
 813	/*
 814	 * it is possible that we didn't log all the parent directories
 815	 * for a given inode.  If we don't find the dir, just don't
 816	 * copy the back ref in.  The link count fixup code will take
 817	 * care of the rest
 818	 */
 819	dir = read_one_inode(root, key->offset);
 820	if (!dir)
 821		return -ENOENT;
 822
 823	inode = read_one_inode(root, key->objectid);
 824	if (!inode) {
 825		iput(dir);
 826		return -EIO;
 827	}
 828
 829	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 830	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 831
 832again:
 833	ref = (struct btrfs_inode_ref *)ref_ptr;
 834
 835	namelen = btrfs_inode_ref_name_len(eb, ref);
 836	name = kmalloc(namelen, GFP_NOFS);
 837	BUG_ON(!name);
 838
 839	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 840
 841	/* if we already have a perfect match, we're done */
 842	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 843			 btrfs_inode_ref_index(eb, ref),
 844			 name, namelen)) {
 845		goto out;
 846	}
 847
 848	/*
 849	 * look for a conflicting back reference in the metadata.
 850	 * if we find one we have to unlink that name of the file
 851	 * before we add our new link.  Later on, we overwrite any
 852	 * existing back reference, and we don't want to create
 853	 * dangling pointers in the directory.
 854	 */
 855
 856	if (search_done)
 857		goto insert;
 858
 859	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 860	if (ret == 0) {
 861		char *victim_name;
 862		int victim_name_len;
 863		struct btrfs_inode_ref *victim_ref;
 864		unsigned long ptr;
 865		unsigned long ptr_end;
 866		struct extent_buffer *leaf = path->nodes[0];
 
 867
 868		/* are we trying to overwrite a back ref for the root directory
 869		 * if so, just jump out, we're done
 870		 */
 871		if (key->objectid == key->offset)
 872			goto out_nowrite;
 873
 874		/* check all the names in this back reference to see
 875		 * if they are in the log.  if so, we allow them to stay
 876		 * otherwise they must be unlinked as a conflict
 877		 */
 878		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 879		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 880		while (ptr < ptr_end) {
 881			victim_ref = (struct btrfs_inode_ref *)ptr;
 882			victim_name_len = btrfs_inode_ref_name_len(leaf,
 883								   victim_ref);
 884			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 885			BUG_ON(!victim_name);
 
 886
 887			read_extent_buffer(leaf, victim_name,
 888					   (unsigned long)(victim_ref + 1),
 889					   victim_name_len);
 890
 891			if (!backref_in_log(log, key, victim_name,
 
 
 892					    victim_name_len)) {
 893				btrfs_inc_nlink(inode);
 894				btrfs_release_path(path);
 895
 896				ret = btrfs_unlink_inode(trans, root, dir,
 897							 inode, victim_name,
 898							 victim_name_len);
 
 
 
 
 
 
 
 
 899			}
 900			kfree(victim_name);
 
 901			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 902		}
 903		BUG_ON(ret);
 904
 905		/*
 906		 * NOTE: we have searched root tree and checked the
 907		 * coresponding ref, it does not need to check again.
 908		 */
 909		search_done = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910	}
 911	btrfs_release_path(path);
 912
 913	/* look for a conflicting sequence number */
 914	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 915					 btrfs_inode_ref_index(eb, ref),
 916					 name, namelen, 0);
 917	if (di && !IS_ERR(di)) {
 918		ret = drop_one_dir_item(trans, root, path, dir, di);
 919		BUG_ON(ret);
 
 920	}
 921	btrfs_release_path(path);
 922
 923	/* look for a conflicing name */
 924	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 925				   name, namelen, 0);
 926	if (di && !IS_ERR(di)) {
 927		ret = drop_one_dir_item(trans, root, path, dir, di);
 928		BUG_ON(ret);
 
 929	}
 930	btrfs_release_path(path);
 931
 932insert:
 933	/* insert our name */
 934	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 935			     btrfs_inode_ref_index(eb, ref));
 936	BUG_ON(ret);
 937
 938	btrfs_update_inode(trans, root, inode);
 
 
 
 
 939
 940out:
 941	ref_ptr = (unsigned long)(ref + 1) + namelen;
 942	kfree(name);
 943	if (ref_ptr < ref_end)
 944		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945
 946	/* finally write the back reference in the inode */
 947	ret = overwrite_item(trans, root, path, eb, slot, key);
 948	BUG_ON(ret);
 949
 950out_nowrite:
 951	btrfs_release_path(path);
 
 952	iput(dir);
 953	iput(inode);
 954	return 0;
 955}
 956
 957static int insert_orphan_item(struct btrfs_trans_handle *trans,
 958			      struct btrfs_root *root, u64 offset)
 959{
 960	int ret;
 961	ret = btrfs_find_orphan_item(root, offset);
 962	if (ret > 0)
 963		ret = btrfs_insert_orphan_item(trans, root, offset);
 
 
 964	return ret;
 965}
 966
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968/*
 969 * There are a few corners where the link count of the file can't
 970 * be properly maintained during replay.  So, instead of adding
 971 * lots of complexity to the log code, we just scan the backrefs
 972 * for any file that has been through replay.
 973 *
 974 * The scan will update the link count on the inode to reflect the
 975 * number of back refs found.  If it goes down to zero, the iput
 976 * will free the inode.
 977 */
 978static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 979					   struct btrfs_root *root,
 980					   struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981{
 982	struct btrfs_path *path;
 983	int ret;
 984	struct btrfs_key key;
 985	u64 nlink = 0;
 986	unsigned long ptr;
 987	unsigned long ptr_end;
 988	int name_len;
 989	u64 ino = btrfs_ino(inode);
 990
 991	key.objectid = ino;
 992	key.type = BTRFS_INODE_REF_KEY;
 993	key.offset = (u64)-1;
 994
 995	path = btrfs_alloc_path();
 996	if (!path)
 997		return -ENOMEM;
 998
 999	while (1) {
1000		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1001		if (ret < 0)
1002			break;
1003		if (ret > 0) {
1004			if (path->slots[0] == 0)
1005				break;
1006			path->slots[0]--;
1007		}
 
1008		btrfs_item_key_to_cpu(path->nodes[0], &key,
1009				      path->slots[0]);
1010		if (key.objectid != ino ||
1011		    key.type != BTRFS_INODE_REF_KEY)
1012			break;
1013		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1014		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1015						   path->slots[0]);
1016		while (ptr < ptr_end) {
1017			struct btrfs_inode_ref *ref;
1018
1019			ref = (struct btrfs_inode_ref *)ptr;
1020			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1021							    ref);
1022			ptr = (unsigned long)(ref + 1) + name_len;
1023			nlink++;
1024		}
1025
1026		if (key.offset == 0)
1027			break;
 
 
 
 
1028		key.offset--;
1029		btrfs_release_path(path);
1030	}
1031	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	if (nlink != inode->i_nlink) {
1033		inode->i_nlink = nlink;
1034		btrfs_update_inode(trans, root, inode);
1035	}
1036	BTRFS_I(inode)->index_cnt = (u64)-1;
1037
1038	if (inode->i_nlink == 0) {
1039		if (S_ISDIR(inode->i_mode)) {
1040			ret = replay_dir_deletes(trans, root, NULL, path,
1041						 ino, 1);
1042			BUG_ON(ret);
 
1043		}
1044		ret = insert_orphan_item(trans, root, ino);
1045		BUG_ON(ret);
1046	}
1047	btrfs_free_path(path);
1048
1049	return 0;
 
 
1050}
1051
1052static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1053					    struct btrfs_root *root,
1054					    struct btrfs_path *path)
1055{
1056	int ret;
1057	struct btrfs_key key;
1058	struct inode *inode;
1059
1060	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1061	key.type = BTRFS_ORPHAN_ITEM_KEY;
1062	key.offset = (u64)-1;
1063	while (1) {
1064		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065		if (ret < 0)
1066			break;
1067
1068		if (ret == 1) {
1069			if (path->slots[0] == 0)
1070				break;
1071			path->slots[0]--;
1072		}
1073
1074		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1075		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1076		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1077			break;
1078
1079		ret = btrfs_del_item(trans, root, path);
1080		if (ret)
1081			goto out;
1082
1083		btrfs_release_path(path);
1084		inode = read_one_inode(root, key.offset);
1085		if (!inode)
1086			return -EIO;
1087
1088		ret = fixup_inode_link_count(trans, root, inode);
1089		BUG_ON(ret);
1090
1091		iput(inode);
 
 
1092
1093		/*
1094		 * fixup on a directory may create new entries,
1095		 * make sure we always look for the highset possible
1096		 * offset
1097		 */
1098		key.offset = (u64)-1;
1099	}
1100	ret = 0;
1101out:
1102	btrfs_release_path(path);
1103	return ret;
1104}
1105
1106
1107/*
1108 * record a given inode in the fixup dir so we can check its link
1109 * count when replay is done.  The link count is incremented here
1110 * so the inode won't go away until we check it
1111 */
1112static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1113				      struct btrfs_root *root,
1114				      struct btrfs_path *path,
1115				      u64 objectid)
1116{
1117	struct btrfs_key key;
1118	int ret = 0;
1119	struct inode *inode;
1120
1121	inode = read_one_inode(root, objectid);
1122	if (!inode)
1123		return -EIO;
1124
1125	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1126	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1127	key.offset = objectid;
1128
1129	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1130
1131	btrfs_release_path(path);
1132	if (ret == 0) {
1133		btrfs_inc_nlink(inode);
1134		btrfs_update_inode(trans, root, inode);
 
 
 
1135	} else if (ret == -EEXIST) {
1136		ret = 0;
1137	} else {
1138		BUG();
1139	}
1140	iput(inode);
1141
1142	return ret;
1143}
1144
1145/*
1146 * when replaying the log for a directory, we only insert names
1147 * for inodes that actually exist.  This means an fsync on a directory
1148 * does not implicitly fsync all the new files in it
1149 */
1150static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1151				    struct btrfs_root *root,
1152				    struct btrfs_path *path,
1153				    u64 dirid, u64 index,
1154				    char *name, int name_len, u8 type,
1155				    struct btrfs_key *location)
1156{
1157	struct inode *inode;
1158	struct inode *dir;
1159	int ret;
1160
1161	inode = read_one_inode(root, location->objectid);
1162	if (!inode)
1163		return -ENOENT;
1164
1165	dir = read_one_inode(root, dirid);
1166	if (!dir) {
1167		iput(inode);
1168		return -EIO;
1169	}
 
1170	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1171
1172	/* FIXME, put inode into FIXUP list */
1173
1174	iput(inode);
1175	iput(dir);
1176	return ret;
1177}
1178
1179/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180 * take a single entry in a log directory item and replay it into
1181 * the subvolume.
1182 *
1183 * if a conflicting item exists in the subdirectory already,
1184 * the inode it points to is unlinked and put into the link count
1185 * fix up tree.
1186 *
1187 * If a name from the log points to a file or directory that does
1188 * not exist in the FS, it is skipped.  fsyncs on directories
1189 * do not force down inodes inside that directory, just changes to the
1190 * names or unlinks in a directory.
 
 
 
1191 */
1192static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1193				    struct btrfs_root *root,
1194				    struct btrfs_path *path,
1195				    struct extent_buffer *eb,
1196				    struct btrfs_dir_item *di,
1197				    struct btrfs_key *key)
1198{
1199	char *name;
1200	int name_len;
1201	struct btrfs_dir_item *dst_di;
1202	struct btrfs_key found_key;
1203	struct btrfs_key log_key;
1204	struct inode *dir;
1205	u8 log_type;
1206	int exists;
1207	int ret;
 
 
1208
1209	dir = read_one_inode(root, key->objectid);
1210	if (!dir)
1211		return -EIO;
1212
1213	name_len = btrfs_dir_name_len(eb, di);
1214	name = kmalloc(name_len, GFP_NOFS);
1215	if (!name)
1216		return -ENOMEM;
 
 
1217
1218	log_type = btrfs_dir_type(eb, di);
1219	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1220		   name_len);
1221
1222	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1223	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1224	if (exists == 0)
1225		exists = 1;
1226	else
1227		exists = 0;
1228	btrfs_release_path(path);
1229
1230	if (key->type == BTRFS_DIR_ITEM_KEY) {
1231		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1232				       name, name_len, 1);
1233	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1234		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1235						     key->objectid,
1236						     key->offset, name,
1237						     name_len, 1);
1238	} else {
1239		BUG();
 
 
1240	}
1241	if (IS_ERR_OR_NULL(dst_di)) {
1242		/* we need a sequence number to insert, so we only
1243		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1244		 */
1245		if (key->type != BTRFS_DIR_INDEX_KEY)
1246			goto out;
1247		goto insert;
1248	}
1249
1250	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1251	/* the existing item matches the logged item */
1252	if (found_key.objectid == log_key.objectid &&
1253	    found_key.type == log_key.type &&
1254	    found_key.offset == log_key.offset &&
1255	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 
1256		goto out;
1257	}
1258
1259	/*
1260	 * don't drop the conflicting directory entry if the inode
1261	 * for the new entry doesn't exist
1262	 */
1263	if (!exists)
1264		goto out;
1265
1266	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1267	BUG_ON(ret);
 
1268
1269	if (key->type == BTRFS_DIR_INDEX_KEY)
1270		goto insert;
1271out:
1272	btrfs_release_path(path);
 
 
 
 
1273	kfree(name);
1274	iput(dir);
1275	return 0;
 
 
1276
1277insert:
 
 
 
 
 
 
 
1278	btrfs_release_path(path);
1279	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1280			      name, name_len, log_type, &log_key);
1281
1282	BUG_ON(ret && ret != -ENOENT);
 
 
 
 
1283	goto out;
1284}
1285
1286/*
1287 * find all the names in a directory item and reconcile them into
1288 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1289 * one name in a directory item, but the same code gets used for
1290 * both directory index types
1291 */
1292static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1293					struct btrfs_root *root,
1294					struct btrfs_path *path,
1295					struct extent_buffer *eb, int slot,
1296					struct btrfs_key *key)
1297{
1298	int ret;
1299	u32 item_size = btrfs_item_size_nr(eb, slot);
1300	struct btrfs_dir_item *di;
1301	int name_len;
1302	unsigned long ptr;
1303	unsigned long ptr_end;
 
1304
1305	ptr = btrfs_item_ptr_offset(eb, slot);
1306	ptr_end = ptr + item_size;
1307	while (ptr < ptr_end) {
1308		di = (struct btrfs_dir_item *)ptr;
1309		if (verify_dir_item(root, eb, di))
1310			return -EIO;
1311		name_len = btrfs_dir_name_len(eb, di);
1312		ret = replay_one_name(trans, root, path, eb, di, key);
1313		BUG_ON(ret);
 
1314		ptr = (unsigned long)(di + 1);
1315		ptr += name_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316	}
1317	return 0;
 
1318}
1319
1320/*
1321 * directory replay has two parts.  There are the standard directory
1322 * items in the log copied from the subvolume, and range items
1323 * created in the log while the subvolume was logged.
1324 *
1325 * The range items tell us which parts of the key space the log
1326 * is authoritative for.  During replay, if a key in the subvolume
1327 * directory is in a logged range item, but not actually in the log
1328 * that means it was deleted from the directory before the fsync
1329 * and should be removed.
1330 */
1331static noinline int find_dir_range(struct btrfs_root *root,
1332				   struct btrfs_path *path,
1333				   u64 dirid, int key_type,
1334				   u64 *start_ret, u64 *end_ret)
1335{
1336	struct btrfs_key key;
1337	u64 found_end;
1338	struct btrfs_dir_log_item *item;
1339	int ret;
1340	int nritems;
1341
1342	if (*start_ret == (u64)-1)
1343		return 1;
1344
1345	key.objectid = dirid;
1346	key.type = key_type;
1347	key.offset = *start_ret;
1348
1349	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1350	if (ret < 0)
1351		goto out;
1352	if (ret > 0) {
1353		if (path->slots[0] == 0)
1354			goto out;
1355		path->slots[0]--;
1356	}
1357	if (ret != 0)
1358		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1359
1360	if (key.type != key_type || key.objectid != dirid) {
1361		ret = 1;
1362		goto next;
1363	}
1364	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1365			      struct btrfs_dir_log_item);
1366	found_end = btrfs_dir_log_end(path->nodes[0], item);
1367
1368	if (*start_ret >= key.offset && *start_ret <= found_end) {
1369		ret = 0;
1370		*start_ret = key.offset;
1371		*end_ret = found_end;
1372		goto out;
1373	}
1374	ret = 1;
1375next:
1376	/* check the next slot in the tree to see if it is a valid item */
1377	nritems = btrfs_header_nritems(path->nodes[0]);
1378	if (path->slots[0] >= nritems) {
1379		ret = btrfs_next_leaf(root, path);
1380		if (ret)
1381			goto out;
1382	} else {
1383		path->slots[0]++;
1384	}
1385
1386	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1387
1388	if (key.type != key_type || key.objectid != dirid) {
1389		ret = 1;
1390		goto out;
1391	}
1392	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1393			      struct btrfs_dir_log_item);
1394	found_end = btrfs_dir_log_end(path->nodes[0], item);
1395	*start_ret = key.offset;
1396	*end_ret = found_end;
1397	ret = 0;
1398out:
1399	btrfs_release_path(path);
1400	return ret;
1401}
1402
1403/*
1404 * this looks for a given directory item in the log.  If the directory
1405 * item is not in the log, the item is removed and the inode it points
1406 * to is unlinked
1407 */
1408static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1409				      struct btrfs_root *root,
1410				      struct btrfs_root *log,
1411				      struct btrfs_path *path,
1412				      struct btrfs_path *log_path,
1413				      struct inode *dir,
1414				      struct btrfs_key *dir_key)
1415{
1416	int ret;
1417	struct extent_buffer *eb;
1418	int slot;
1419	u32 item_size;
1420	struct btrfs_dir_item *di;
1421	struct btrfs_dir_item *log_di;
1422	int name_len;
1423	unsigned long ptr;
1424	unsigned long ptr_end;
1425	char *name;
1426	struct inode *inode;
1427	struct btrfs_key location;
1428
1429again:
1430	eb = path->nodes[0];
1431	slot = path->slots[0];
1432	item_size = btrfs_item_size_nr(eb, slot);
1433	ptr = btrfs_item_ptr_offset(eb, slot);
1434	ptr_end = ptr + item_size;
1435	while (ptr < ptr_end) {
1436		di = (struct btrfs_dir_item *)ptr;
1437		if (verify_dir_item(root, eb, di)) {
1438			ret = -EIO;
1439			goto out;
1440		}
1441
1442		name_len = btrfs_dir_name_len(eb, di);
1443		name = kmalloc(name_len, GFP_NOFS);
1444		if (!name) {
1445			ret = -ENOMEM;
1446			goto out;
1447		}
1448		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1449				  name_len);
1450		log_di = NULL;
1451		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1452			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1453						       dir_key->objectid,
1454						       name, name_len, 0);
1455		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1456			log_di = btrfs_lookup_dir_index_item(trans, log,
1457						     log_path,
1458						     dir_key->objectid,
1459						     dir_key->offset,
1460						     name, name_len, 0);
1461		}
1462		if (IS_ERR_OR_NULL(log_di)) {
1463			btrfs_dir_item_key_to_cpu(eb, di, &location);
1464			btrfs_release_path(path);
1465			btrfs_release_path(log_path);
1466			inode = read_one_inode(root, location.objectid);
1467			if (!inode) {
1468				kfree(name);
1469				return -EIO;
1470			}
1471
1472			ret = link_to_fixup_dir(trans, root,
1473						path, location.objectid);
1474			BUG_ON(ret);
1475			btrfs_inc_nlink(inode);
 
 
 
 
 
1476			ret = btrfs_unlink_inode(trans, root, dir, inode,
1477						 name, name_len);
1478			BUG_ON(ret);
 
1479			kfree(name);
1480			iput(inode);
 
 
1481
1482			/* there might still be more names under this key
1483			 * check and repeat if required
1484			 */
1485			ret = btrfs_search_slot(NULL, root, dir_key, path,
1486						0, 0);
1487			if (ret == 0)
1488				goto again;
1489			ret = 0;
1490			goto out;
 
 
 
1491		}
1492		btrfs_release_path(log_path);
1493		kfree(name);
1494
1495		ptr = (unsigned long)(di + 1);
1496		ptr += name_len;
1497	}
1498	ret = 0;
1499out:
1500	btrfs_release_path(path);
1501	btrfs_release_path(log_path);
1502	return ret;
1503}
1504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505/*
1506 * deletion replay happens before we copy any new directory items
1507 * out of the log or out of backreferences from inodes.  It
1508 * scans the log to find ranges of keys that log is authoritative for,
1509 * and then scans the directory to find items in those ranges that are
1510 * not present in the log.
1511 *
1512 * Anything we don't find in the log is unlinked and removed from the
1513 * directory.
1514 */
1515static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1516				       struct btrfs_root *root,
1517				       struct btrfs_root *log,
1518				       struct btrfs_path *path,
1519				       u64 dirid, int del_all)
1520{
1521	u64 range_start;
1522	u64 range_end;
1523	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1524	int ret = 0;
1525	struct btrfs_key dir_key;
1526	struct btrfs_key found_key;
1527	struct btrfs_path *log_path;
1528	struct inode *dir;
1529
1530	dir_key.objectid = dirid;
1531	dir_key.type = BTRFS_DIR_ITEM_KEY;
1532	log_path = btrfs_alloc_path();
1533	if (!log_path)
1534		return -ENOMEM;
1535
1536	dir = read_one_inode(root, dirid);
1537	/* it isn't an error if the inode isn't there, that can happen
1538	 * because we replay the deletes before we copy in the inode item
1539	 * from the log
1540	 */
1541	if (!dir) {
1542		btrfs_free_path(log_path);
1543		return 0;
1544	}
1545again:
1546	range_start = 0;
1547	range_end = 0;
1548	while (1) {
1549		if (del_all)
1550			range_end = (u64)-1;
1551		else {
1552			ret = find_dir_range(log, path, dirid, key_type,
1553					     &range_start, &range_end);
1554			if (ret != 0)
1555				break;
1556		}
1557
1558		dir_key.offset = range_start;
1559		while (1) {
1560			int nritems;
1561			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1562						0, 0);
1563			if (ret < 0)
1564				goto out;
1565
1566			nritems = btrfs_header_nritems(path->nodes[0]);
1567			if (path->slots[0] >= nritems) {
1568				ret = btrfs_next_leaf(root, path);
1569				if (ret)
1570					break;
1571			}
1572			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1573					      path->slots[0]);
1574			if (found_key.objectid != dirid ||
1575			    found_key.type != dir_key.type)
1576				goto next_type;
1577
1578			if (found_key.offset > range_end)
1579				break;
1580
1581			ret = check_item_in_log(trans, root, log, path,
1582						log_path, dir,
1583						&found_key);
1584			BUG_ON(ret);
 
1585			if (found_key.offset == (u64)-1)
1586				break;
1587			dir_key.offset = found_key.offset + 1;
1588		}
1589		btrfs_release_path(path);
1590		if (range_end == (u64)-1)
1591			break;
1592		range_start = range_end + 1;
1593	}
1594
1595next_type:
1596	ret = 0;
1597	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1598		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1599		dir_key.type = BTRFS_DIR_INDEX_KEY;
1600		btrfs_release_path(path);
1601		goto again;
1602	}
1603out:
1604	btrfs_release_path(path);
1605	btrfs_free_path(log_path);
1606	iput(dir);
1607	return ret;
1608}
1609
1610/*
1611 * the process_func used to replay items from the log tree.  This
1612 * gets called in two different stages.  The first stage just looks
1613 * for inodes and makes sure they are all copied into the subvolume.
1614 *
1615 * The second stage copies all the other item types from the log into
1616 * the subvolume.  The two stage approach is slower, but gets rid of
1617 * lots of complexity around inodes referencing other inodes that exist
1618 * only in the log (references come from either directory items or inode
1619 * back refs).
1620 */
1621static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1622			     struct walk_control *wc, u64 gen)
1623{
1624	int nritems;
1625	struct btrfs_path *path;
1626	struct btrfs_root *root = wc->replay_dest;
1627	struct btrfs_key key;
1628	int level;
1629	int i;
1630	int ret;
1631
1632	btrfs_read_buffer(eb, gen);
 
 
1633
1634	level = btrfs_header_level(eb);
1635
1636	if (level != 0)
1637		return 0;
1638
1639	path = btrfs_alloc_path();
1640	if (!path)
1641		return -ENOMEM;
1642
1643	nritems = btrfs_header_nritems(eb);
1644	for (i = 0; i < nritems; i++) {
1645		btrfs_item_key_to_cpu(eb, &key, i);
1646
1647		/* inode keys are done during the first stage */
1648		if (key.type == BTRFS_INODE_ITEM_KEY &&
1649		    wc->stage == LOG_WALK_REPLAY_INODES) {
1650			struct btrfs_inode_item *inode_item;
1651			u32 mode;
1652
1653			inode_item = btrfs_item_ptr(eb, i,
1654					    struct btrfs_inode_item);
 
 
 
 
1655			mode = btrfs_inode_mode(eb, inode_item);
1656			if (S_ISDIR(mode)) {
1657				ret = replay_dir_deletes(wc->trans,
1658					 root, log, path, key.objectid, 0);
1659				BUG_ON(ret);
 
1660			}
1661			ret = overwrite_item(wc->trans, root, path,
1662					     eb, i, &key);
1663			BUG_ON(ret);
 
1664
1665			/* for regular files, make sure corresponding
1666			 * orhpan item exist. extents past the new EOF
1667			 * will be truncated later by orphan cleanup.
1668			 */
1669			if (S_ISREG(mode)) {
1670				ret = insert_orphan_item(wc->trans, root,
1671							 key.objectid);
1672				BUG_ON(ret);
 
1673			}
1674
1675			ret = link_to_fixup_dir(wc->trans, root,
1676						path, key.objectid);
1677			BUG_ON(ret);
 
 
 
 
 
 
 
 
 
1678		}
 
1679		if (wc->stage < LOG_WALK_REPLAY_ALL)
1680			continue;
1681
1682		/* these keys are simply copied */
1683		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1684			ret = overwrite_item(wc->trans, root, path,
1685					     eb, i, &key);
1686			BUG_ON(ret);
1687		} else if (key.type == BTRFS_INODE_REF_KEY) {
 
 
1688			ret = add_inode_ref(wc->trans, root, log, path,
1689					    eb, i, &key);
1690			BUG_ON(ret && ret != -ENOENT);
 
 
1691		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1692			ret = replay_one_extent(wc->trans, root, path,
1693						eb, i, &key);
1694			BUG_ON(ret);
1695		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1696			   key.type == BTRFS_DIR_INDEX_KEY) {
1697			ret = replay_one_dir_item(wc->trans, root, path,
1698						  eb, i, &key);
1699			BUG_ON(ret);
 
1700		}
1701	}
1702	btrfs_free_path(path);
1703	return 0;
1704}
1705
1706static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1707				   struct btrfs_root *root,
1708				   struct btrfs_path *path, int *level,
1709				   struct walk_control *wc)
1710{
1711	u64 root_owner;
1712	u64 bytenr;
1713	u64 ptr_gen;
1714	struct extent_buffer *next;
1715	struct extent_buffer *cur;
1716	struct extent_buffer *parent;
1717	u32 blocksize;
1718	int ret = 0;
1719
1720	WARN_ON(*level < 0);
1721	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1722
1723	while (*level > 0) {
1724		WARN_ON(*level < 0);
1725		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1726		cur = path->nodes[*level];
1727
1728		if (btrfs_header_level(cur) != *level)
1729			WARN_ON(1);
1730
1731		if (path->slots[*level] >=
1732		    btrfs_header_nritems(cur))
1733			break;
1734
1735		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1736		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1737		blocksize = btrfs_level_size(root, *level - 1);
1738
1739		parent = path->nodes[*level];
1740		root_owner = btrfs_header_owner(parent);
1741
1742		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1743		if (!next)
1744			return -ENOMEM;
1745
1746		if (*level == 1) {
1747			ret = wc->process_func(root, next, wc, ptr_gen);
1748			if (ret)
 
1749				return ret;
 
1750
1751			path->slots[*level]++;
1752			if (wc->free) {
1753				btrfs_read_buffer(next, ptr_gen);
 
 
 
 
1754
1755				btrfs_tree_lock(next);
1756				btrfs_set_lock_blocking(next);
1757				clean_tree_block(trans, root, next);
1758				btrfs_wait_tree_block_writeback(next);
1759				btrfs_tree_unlock(next);
 
 
 
1760
1761				WARN_ON(root_owner !=
1762					BTRFS_TREE_LOG_OBJECTID);
1763				ret = btrfs_free_reserved_extent(root,
1764							 bytenr, blocksize);
1765				BUG_ON(ret);
 
 
 
1766			}
1767			free_extent_buffer(next);
1768			continue;
1769		}
1770		btrfs_read_buffer(next, ptr_gen);
 
 
 
 
1771
1772		WARN_ON(*level <= 0);
1773		if (path->nodes[*level-1])
1774			free_extent_buffer(path->nodes[*level-1]);
1775		path->nodes[*level-1] = next;
1776		*level = btrfs_header_level(next);
1777		path->slots[*level] = 0;
1778		cond_resched();
1779	}
1780	WARN_ON(*level < 0);
1781	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1782
1783	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1784
1785	cond_resched();
1786	return 0;
1787}
1788
1789static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1790				 struct btrfs_root *root,
1791				 struct btrfs_path *path, int *level,
1792				 struct walk_control *wc)
1793{
1794	u64 root_owner;
1795	int i;
1796	int slot;
1797	int ret;
1798
1799	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1800		slot = path->slots[i];
1801		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1802			path->slots[i]++;
1803			*level = i;
1804			WARN_ON(*level == 0);
1805			return 0;
1806		} else {
1807			struct extent_buffer *parent;
1808			if (path->nodes[*level] == root->node)
1809				parent = path->nodes[*level];
1810			else
1811				parent = path->nodes[*level + 1];
1812
1813			root_owner = btrfs_header_owner(parent);
1814			ret = wc->process_func(root, path->nodes[*level], wc,
1815				 btrfs_header_generation(path->nodes[*level]));
1816			if (ret)
1817				return ret;
1818
1819			if (wc->free) {
1820				struct extent_buffer *next;
1821
1822				next = path->nodes[*level];
1823
1824				btrfs_tree_lock(next);
1825				btrfs_set_lock_blocking(next);
1826				clean_tree_block(trans, root, next);
1827				btrfs_wait_tree_block_writeback(next);
1828				btrfs_tree_unlock(next);
 
 
 
1829
1830				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1831				ret = btrfs_free_reserved_extent(root,
1832						path->nodes[*level]->start,
1833						path->nodes[*level]->len);
1834				BUG_ON(ret);
 
1835			}
1836			free_extent_buffer(path->nodes[*level]);
1837			path->nodes[*level] = NULL;
1838			*level = i + 1;
1839		}
1840	}
1841	return 1;
1842}
1843
1844/*
1845 * drop the reference count on the tree rooted at 'snap'.  This traverses
1846 * the tree freeing any blocks that have a ref count of zero after being
1847 * decremented.
1848 */
1849static int walk_log_tree(struct btrfs_trans_handle *trans,
1850			 struct btrfs_root *log, struct walk_control *wc)
1851{
1852	int ret = 0;
1853	int wret;
1854	int level;
1855	struct btrfs_path *path;
1856	int i;
1857	int orig_level;
1858
1859	path = btrfs_alloc_path();
1860	if (!path)
1861		return -ENOMEM;
1862
1863	level = btrfs_header_level(log->node);
1864	orig_level = level;
1865	path->nodes[level] = log->node;
1866	extent_buffer_get(log->node);
1867	path->slots[level] = 0;
1868
1869	while (1) {
1870		wret = walk_down_log_tree(trans, log, path, &level, wc);
1871		if (wret > 0)
1872			break;
1873		if (wret < 0)
1874			ret = wret;
 
 
1875
1876		wret = walk_up_log_tree(trans, log, path, &level, wc);
1877		if (wret > 0)
1878			break;
1879		if (wret < 0)
1880			ret = wret;
 
 
1881	}
1882
1883	/* was the root node processed? if not, catch it here */
1884	if (path->nodes[orig_level]) {
1885		wc->process_func(log, path->nodes[orig_level], wc,
1886			 btrfs_header_generation(path->nodes[orig_level]));
 
 
1887		if (wc->free) {
1888			struct extent_buffer *next;
1889
1890			next = path->nodes[orig_level];
1891
1892			btrfs_tree_lock(next);
1893			btrfs_set_lock_blocking(next);
1894			clean_tree_block(trans, log, next);
1895			btrfs_wait_tree_block_writeback(next);
1896			btrfs_tree_unlock(next);
 
 
1897
1898			WARN_ON(log->root_key.objectid !=
1899				BTRFS_TREE_LOG_OBJECTID);
1900			ret = btrfs_free_reserved_extent(log, next->start,
1901							 next->len);
1902			BUG_ON(ret);
 
1903		}
1904	}
1905
1906	for (i = 0; i <= orig_level; i++) {
1907		if (path->nodes[i]) {
1908			free_extent_buffer(path->nodes[i]);
1909			path->nodes[i] = NULL;
1910		}
1911	}
1912	btrfs_free_path(path);
1913	return ret;
1914}
1915
1916/*
1917 * helper function to update the item for a given subvolumes log root
1918 * in the tree of log roots
1919 */
1920static int update_log_root(struct btrfs_trans_handle *trans,
1921			   struct btrfs_root *log)
1922{
1923	int ret;
1924
1925	if (log->log_transid == 1) {
1926		/* insert root item on the first sync */
1927		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1928				&log->root_key, &log->root_item);
1929	} else {
1930		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1931				&log->root_key, &log->root_item);
1932	}
1933	return ret;
1934}
1935
1936static int wait_log_commit(struct btrfs_trans_handle *trans,
1937			   struct btrfs_root *root, unsigned long transid)
1938{
1939	DEFINE_WAIT(wait);
1940	int index = transid % 2;
1941
1942	/*
1943	 * we only allow two pending log transactions at a time,
1944	 * so we know that if ours is more than 2 older than the
1945	 * current transaction, we're done
1946	 */
1947	do {
1948		prepare_to_wait(&root->log_commit_wait[index],
1949				&wait, TASK_UNINTERRUPTIBLE);
1950		mutex_unlock(&root->log_mutex);
1951
1952		if (root->fs_info->last_trans_log_full_commit !=
1953		    trans->transid && root->log_transid < transid + 2 &&
1954		    atomic_read(&root->log_commit[index]))
1955			schedule();
1956
1957		finish_wait(&root->log_commit_wait[index], &wait);
1958		mutex_lock(&root->log_mutex);
1959	} while (root->log_transid < transid + 2 &&
1960		 atomic_read(&root->log_commit[index]));
1961	return 0;
1962}
1963
1964static int wait_for_writer(struct btrfs_trans_handle *trans,
1965			   struct btrfs_root *root)
1966{
1967	DEFINE_WAIT(wait);
 
1968	while (atomic_read(&root->log_writers)) {
1969		prepare_to_wait(&root->log_writer_wait,
1970				&wait, TASK_UNINTERRUPTIBLE);
1971		mutex_unlock(&root->log_mutex);
1972		if (root->fs_info->last_trans_log_full_commit !=
1973		    trans->transid && atomic_read(&root->log_writers))
1974			schedule();
1975		mutex_lock(&root->log_mutex);
1976		finish_wait(&root->log_writer_wait, &wait);
 
1977	}
1978	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979}
1980
1981/*
1982 * btrfs_sync_log does sends a given tree log down to the disk and
1983 * updates the super blocks to record it.  When this call is done,
1984 * you know that any inodes previously logged are safely on disk only
1985 * if it returns 0.
1986 *
1987 * Any other return value means you need to call btrfs_commit_transaction.
1988 * Some of the edge cases for fsyncing directories that have had unlinks
1989 * or renames done in the past mean that sometimes the only safe
1990 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1991 * that has happened.
1992 */
1993int btrfs_sync_log(struct btrfs_trans_handle *trans,
1994		   struct btrfs_root *root)
1995{
1996	int index1;
1997	int index2;
1998	int mark;
1999	int ret;
2000	struct btrfs_root *log = root->log_root;
2001	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2002	unsigned long log_transid = 0;
 
 
2003
2004	mutex_lock(&root->log_mutex);
2005	index1 = root->log_transid % 2;
 
 
 
 
 
 
2006	if (atomic_read(&root->log_commit[index1])) {
2007		wait_log_commit(trans, root, root->log_transid);
2008		mutex_unlock(&root->log_mutex);
2009		return 0;
2010	}
 
2011	atomic_set(&root->log_commit[index1], 1);
2012
2013	/* wait for previous tree log sync to complete */
2014	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2015		wait_log_commit(trans, root, root->log_transid - 1);
2016
2017	while (1) {
2018		unsigned long batch = root->log_batch;
2019		if (root->log_multiple_pids) {
 
 
2020			mutex_unlock(&root->log_mutex);
2021			schedule_timeout_uninterruptible(1);
2022			mutex_lock(&root->log_mutex);
2023		}
2024		wait_for_writer(trans, root);
2025		if (batch == root->log_batch)
2026			break;
2027	}
2028
2029	/* bail out if we need to do a full commit */
2030	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2031		ret = -EAGAIN;
 
2032		mutex_unlock(&root->log_mutex);
2033		goto out;
2034	}
2035
2036	log_transid = root->log_transid;
2037	if (log_transid % 2 == 0)
2038		mark = EXTENT_DIRTY;
2039	else
2040		mark = EXTENT_NEW;
2041
2042	/* we start IO on  all the marked extents here, but we don't actually
2043	 * wait for them until later.
2044	 */
 
2045	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2046	BUG_ON(ret);
 
 
 
 
 
 
 
2047
2048	btrfs_set_root_node(&log->root_item, log->node);
2049
2050	root->log_batch = 0;
2051	root->log_transid++;
2052	log->log_transid = root->log_transid;
2053	root->log_start_pid = 0;
2054	smp_mb();
2055	/*
2056	 * IO has been started, blocks of the log tree have WRITTEN flag set
2057	 * in their headers. new modifications of the log will be written to
2058	 * new positions. so it's safe to allow log writers to go in.
2059	 */
2060	mutex_unlock(&root->log_mutex);
2061
 
 
2062	mutex_lock(&log_root_tree->log_mutex);
2063	log_root_tree->log_batch++;
2064	atomic_inc(&log_root_tree->log_writers);
 
 
 
 
 
2065	mutex_unlock(&log_root_tree->log_mutex);
2066
2067	ret = update_log_root(trans, log);
2068
2069	mutex_lock(&log_root_tree->log_mutex);
2070	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2071		smp_mb();
 
 
2072		if (waitqueue_active(&log_root_tree->log_writer_wait))
2073			wake_up(&log_root_tree->log_writer_wait);
2074	}
2075
2076	if (ret) {
2077		BUG_ON(ret != -ENOSPC);
2078		root->fs_info->last_trans_log_full_commit = trans->transid;
 
 
 
 
 
 
 
 
 
2079		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2080		mutex_unlock(&log_root_tree->log_mutex);
2081		ret = -EAGAIN;
2082		goto out;
2083	}
2084
2085	index2 = log_root_tree->log_transid % 2;
 
 
 
 
 
 
 
2086	if (atomic_read(&log_root_tree->log_commit[index2])) {
2087		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2088		wait_log_commit(trans, log_root_tree,
2089				log_root_tree->log_transid);
 
 
 
2090		mutex_unlock(&log_root_tree->log_mutex);
2091		ret = 0;
 
2092		goto out;
2093	}
 
2094	atomic_set(&log_root_tree->log_commit[index2], 1);
2095
2096	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2097		wait_log_commit(trans, log_root_tree,
2098				log_root_tree->log_transid - 1);
2099	}
2100
2101	wait_for_writer(trans, log_root_tree);
2102
2103	/*
2104	 * now that we've moved on to the tree of log tree roots,
2105	 * check the full commit flag again
2106	 */
2107	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 
2108		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
2109		mutex_unlock(&log_root_tree->log_mutex);
2110		ret = -EAGAIN;
2111		goto out_wake_log_root;
2112	}
2113
2114	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2115				&log_root_tree->dirty_log_pages,
2116				EXTENT_DIRTY | EXTENT_NEW);
2117	BUG_ON(ret);
2118	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119
2120	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2121				log_root_tree->node->start);
2122	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2123				btrfs_header_level(log_root_tree->node));
2124
2125	log_root_tree->log_batch = 0;
2126	log_root_tree->log_transid++;
2127	smp_mb();
2128
2129	mutex_unlock(&log_root_tree->log_mutex);
2130
2131	/*
2132	 * nobody else is going to jump in and write the the ctree
2133	 * super here because the log_commit atomic below is protecting
2134	 * us.  We must be called with a transaction handle pinning
2135	 * the running transaction open, so a full commit can't hop
2136	 * in and cause problems either.
2137	 */
2138	btrfs_scrub_pause_super(root);
2139	write_ctree_super(trans, root->fs_info->tree_root, 1);
2140	btrfs_scrub_continue_super(root);
2141	ret = 0;
 
 
2142
2143	mutex_lock(&root->log_mutex);
2144	if (root->last_log_commit < log_transid)
2145		root->last_log_commit = log_transid;
2146	mutex_unlock(&root->log_mutex);
2147
2148out_wake_log_root:
 
 
 
 
 
 
 
 
2149	atomic_set(&log_root_tree->log_commit[index2], 0);
2150	smp_mb();
 
 
 
 
2151	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2152		wake_up(&log_root_tree->log_commit_wait[index2]);
2153out:
 
 
 
 
 
2154	atomic_set(&root->log_commit[index1], 0);
2155	smp_mb();
 
 
 
 
2156	if (waitqueue_active(&root->log_commit_wait[index1]))
2157		wake_up(&root->log_commit_wait[index1]);
2158	return ret;
2159}
2160
2161static void free_log_tree(struct btrfs_trans_handle *trans,
2162			  struct btrfs_root *log)
2163{
2164	int ret;
2165	u64 start;
2166	u64 end;
2167	struct walk_control wc = {
2168		.free = 1,
2169		.process_func = process_one_buffer
2170	};
2171
2172	ret = walk_log_tree(trans, log, &wc);
2173	BUG_ON(ret);
 
 
2174
2175	while (1) {
2176		ret = find_first_extent_bit(&log->dirty_log_pages,
2177				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
 
2178		if (ret)
2179			break;
2180
2181		clear_extent_bits(&log->dirty_log_pages, start, end,
2182				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2183	}
2184
 
 
 
 
 
 
 
 
2185	free_extent_buffer(log->node);
2186	kfree(log);
2187}
2188
2189/*
2190 * free all the extents used by the tree log.  This should be called
2191 * at commit time of the full transaction
2192 */
2193int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2194{
2195	if (root->log_root) {
2196		free_log_tree(trans, root->log_root);
2197		root->log_root = NULL;
2198	}
2199	return 0;
2200}
2201
2202int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2203			     struct btrfs_fs_info *fs_info)
2204{
2205	if (fs_info->log_root_tree) {
2206		free_log_tree(trans, fs_info->log_root_tree);
2207		fs_info->log_root_tree = NULL;
2208	}
2209	return 0;
2210}
2211
2212/*
2213 * If both a file and directory are logged, and unlinks or renames are
2214 * mixed in, we have a few interesting corners:
2215 *
2216 * create file X in dir Y
2217 * link file X to X.link in dir Y
2218 * fsync file X
2219 * unlink file X but leave X.link
2220 * fsync dir Y
2221 *
2222 * After a crash we would expect only X.link to exist.  But file X
2223 * didn't get fsync'd again so the log has back refs for X and X.link.
2224 *
2225 * We solve this by removing directory entries and inode backrefs from the
2226 * log when a file that was logged in the current transaction is
2227 * unlinked.  Any later fsync will include the updated log entries, and
2228 * we'll be able to reconstruct the proper directory items from backrefs.
2229 *
2230 * This optimizations allows us to avoid relogging the entire inode
2231 * or the entire directory.
2232 */
2233int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2234				 struct btrfs_root *root,
2235				 const char *name, int name_len,
2236				 struct inode *dir, u64 index)
2237{
2238	struct btrfs_root *log;
2239	struct btrfs_dir_item *di;
2240	struct btrfs_path *path;
2241	int ret;
2242	int err = 0;
2243	int bytes_del = 0;
2244	u64 dir_ino = btrfs_ino(dir);
2245
2246	if (BTRFS_I(dir)->logged_trans < trans->transid)
2247		return 0;
2248
2249	ret = join_running_log_trans(root);
2250	if (ret)
2251		return 0;
2252
2253	mutex_lock(&BTRFS_I(dir)->log_mutex);
2254
2255	log = root->log_root;
2256	path = btrfs_alloc_path();
2257	if (!path) {
2258		err = -ENOMEM;
2259		goto out_unlock;
2260	}
2261
2262	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2263				   name, name_len, -1);
2264	if (IS_ERR(di)) {
2265		err = PTR_ERR(di);
2266		goto fail;
2267	}
2268	if (di) {
2269		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2270		bytes_del += name_len;
2271		BUG_ON(ret);
 
 
 
2272	}
2273	btrfs_release_path(path);
2274	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2275					 index, name, name_len, -1);
2276	if (IS_ERR(di)) {
2277		err = PTR_ERR(di);
2278		goto fail;
2279	}
2280	if (di) {
2281		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2282		bytes_del += name_len;
2283		BUG_ON(ret);
 
 
 
2284	}
2285
2286	/* update the directory size in the log to reflect the names
2287	 * we have removed
2288	 */
2289	if (bytes_del) {
2290		struct btrfs_key key;
2291
2292		key.objectid = dir_ino;
2293		key.offset = 0;
2294		key.type = BTRFS_INODE_ITEM_KEY;
2295		btrfs_release_path(path);
2296
2297		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2298		if (ret < 0) {
2299			err = ret;
2300			goto fail;
2301		}
2302		if (ret == 0) {
2303			struct btrfs_inode_item *item;
2304			u64 i_size;
2305
2306			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2307					      struct btrfs_inode_item);
2308			i_size = btrfs_inode_size(path->nodes[0], item);
2309			if (i_size > bytes_del)
2310				i_size -= bytes_del;
2311			else
2312				i_size = 0;
2313			btrfs_set_inode_size(path->nodes[0], item, i_size);
2314			btrfs_mark_buffer_dirty(path->nodes[0]);
2315		} else
2316			ret = 0;
2317		btrfs_release_path(path);
2318	}
2319fail:
2320	btrfs_free_path(path);
2321out_unlock:
2322	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2323	if (ret == -ENOSPC) {
2324		root->fs_info->last_trans_log_full_commit = trans->transid;
2325		ret = 0;
2326	}
 
 
2327	btrfs_end_log_trans(root);
2328
2329	return err;
2330}
2331
2332/* see comments for btrfs_del_dir_entries_in_log */
2333int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2334			       struct btrfs_root *root,
2335			       const char *name, int name_len,
2336			       struct inode *inode, u64 dirid)
2337{
2338	struct btrfs_root *log;
2339	u64 index;
2340	int ret;
2341
2342	if (BTRFS_I(inode)->logged_trans < trans->transid)
2343		return 0;
2344
2345	ret = join_running_log_trans(root);
2346	if (ret)
2347		return 0;
2348	log = root->log_root;
2349	mutex_lock(&BTRFS_I(inode)->log_mutex);
2350
2351	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2352				  dirid, &index);
2353	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2354	if (ret == -ENOSPC) {
2355		root->fs_info->last_trans_log_full_commit = trans->transid;
2356		ret = 0;
2357	}
 
2358	btrfs_end_log_trans(root);
2359
2360	return ret;
2361}
2362
2363/*
2364 * creates a range item in the log for 'dirid'.  first_offset and
2365 * last_offset tell us which parts of the key space the log should
2366 * be considered authoritative for.
2367 */
2368static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2369				       struct btrfs_root *log,
2370				       struct btrfs_path *path,
2371				       int key_type, u64 dirid,
2372				       u64 first_offset, u64 last_offset)
2373{
2374	int ret;
2375	struct btrfs_key key;
2376	struct btrfs_dir_log_item *item;
2377
2378	key.objectid = dirid;
2379	key.offset = first_offset;
2380	if (key_type == BTRFS_DIR_ITEM_KEY)
2381		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2382	else
2383		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2384	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2385	if (ret)
2386		return ret;
2387
2388	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2389			      struct btrfs_dir_log_item);
2390	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2391	btrfs_mark_buffer_dirty(path->nodes[0]);
2392	btrfs_release_path(path);
2393	return 0;
2394}
2395
2396/*
2397 * log all the items included in the current transaction for a given
2398 * directory.  This also creates the range items in the log tree required
2399 * to replay anything deleted before the fsync
2400 */
2401static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2402			  struct btrfs_root *root, struct inode *inode,
2403			  struct btrfs_path *path,
2404			  struct btrfs_path *dst_path, int key_type,
 
2405			  u64 min_offset, u64 *last_offset_ret)
2406{
2407	struct btrfs_key min_key;
2408	struct btrfs_key max_key;
2409	struct btrfs_root *log = root->log_root;
2410	struct extent_buffer *src;
2411	int err = 0;
2412	int ret;
2413	int i;
2414	int nritems;
2415	u64 first_offset = min_offset;
2416	u64 last_offset = (u64)-1;
2417	u64 ino = btrfs_ino(inode);
2418
2419	log = root->log_root;
2420	max_key.objectid = ino;
2421	max_key.offset = (u64)-1;
2422	max_key.type = key_type;
2423
2424	min_key.objectid = ino;
2425	min_key.type = key_type;
2426	min_key.offset = min_offset;
2427
2428	path->keep_locks = 1;
2429
2430	ret = btrfs_search_forward(root, &min_key, &max_key,
2431				   path, 0, trans->transid);
2432
2433	/*
2434	 * we didn't find anything from this transaction, see if there
2435	 * is anything at all
2436	 */
2437	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2438		min_key.objectid = ino;
2439		min_key.type = key_type;
2440		min_key.offset = (u64)-1;
2441		btrfs_release_path(path);
2442		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2443		if (ret < 0) {
2444			btrfs_release_path(path);
2445			return ret;
2446		}
2447		ret = btrfs_previous_item(root, path, ino, key_type);
2448
2449		/* if ret == 0 there are items for this type,
2450		 * create a range to tell us the last key of this type.
2451		 * otherwise, there are no items in this directory after
2452		 * *min_offset, and we create a range to indicate that.
2453		 */
2454		if (ret == 0) {
2455			struct btrfs_key tmp;
2456			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2457					      path->slots[0]);
2458			if (key_type == tmp.type)
2459				first_offset = max(min_offset, tmp.offset) + 1;
2460		}
2461		goto done;
2462	}
2463
2464	/* go backward to find any previous key */
2465	ret = btrfs_previous_item(root, path, ino, key_type);
2466	if (ret == 0) {
2467		struct btrfs_key tmp;
2468		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2469		if (key_type == tmp.type) {
2470			first_offset = tmp.offset;
2471			ret = overwrite_item(trans, log, dst_path,
2472					     path->nodes[0], path->slots[0],
2473					     &tmp);
2474			if (ret) {
2475				err = ret;
2476				goto done;
2477			}
2478		}
2479	}
2480	btrfs_release_path(path);
2481
2482	/* find the first key from this transaction again */
2483	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2484	if (ret != 0) {
2485		WARN_ON(1);
2486		goto done;
2487	}
2488
2489	/*
2490	 * we have a block from this transaction, log every item in it
2491	 * from our directory
2492	 */
2493	while (1) {
2494		struct btrfs_key tmp;
2495		src = path->nodes[0];
2496		nritems = btrfs_header_nritems(src);
2497		for (i = path->slots[0]; i < nritems; i++) {
 
 
2498			btrfs_item_key_to_cpu(src, &min_key, i);
2499
2500			if (min_key.objectid != ino || min_key.type != key_type)
2501				goto done;
2502			ret = overwrite_item(trans, log, dst_path, src, i,
2503					     &min_key);
2504			if (ret) {
2505				err = ret;
2506				goto done;
2507			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508		}
2509		path->slots[0] = nritems;
2510
2511		/*
2512		 * look ahead to the next item and see if it is also
2513		 * from this directory and from this transaction
2514		 */
2515		ret = btrfs_next_leaf(root, path);
2516		if (ret == 1) {
2517			last_offset = (u64)-1;
2518			goto done;
2519		}
2520		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2521		if (tmp.objectid != ino || tmp.type != key_type) {
2522			last_offset = (u64)-1;
2523			goto done;
2524		}
2525		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2526			ret = overwrite_item(trans, log, dst_path,
2527					     path->nodes[0], path->slots[0],
2528					     &tmp);
2529			if (ret)
2530				err = ret;
2531			else
2532				last_offset = tmp.offset;
2533			goto done;
2534		}
2535	}
2536done:
2537	btrfs_release_path(path);
2538	btrfs_release_path(dst_path);
2539
2540	if (err == 0) {
2541		*last_offset_ret = last_offset;
2542		/*
2543		 * insert the log range keys to indicate where the log
2544		 * is valid
2545		 */
2546		ret = insert_dir_log_key(trans, log, path, key_type,
2547					 ino, first_offset, last_offset);
2548		if (ret)
2549			err = ret;
2550	}
2551	return err;
2552}
2553
2554/*
2555 * logging directories is very similar to logging inodes, We find all the items
2556 * from the current transaction and write them to the log.
2557 *
2558 * The recovery code scans the directory in the subvolume, and if it finds a
2559 * key in the range logged that is not present in the log tree, then it means
2560 * that dir entry was unlinked during the transaction.
2561 *
2562 * In order for that scan to work, we must include one key smaller than
2563 * the smallest logged by this transaction and one key larger than the largest
2564 * key logged by this transaction.
2565 */
2566static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2567			  struct btrfs_root *root, struct inode *inode,
2568			  struct btrfs_path *path,
2569			  struct btrfs_path *dst_path)
 
2570{
2571	u64 min_key;
2572	u64 max_key;
2573	int ret;
2574	int key_type = BTRFS_DIR_ITEM_KEY;
2575
2576again:
2577	min_key = 0;
2578	max_key = 0;
2579	while (1) {
2580		ret = log_dir_items(trans, root, inode, path,
2581				    dst_path, key_type, min_key,
2582				    &max_key);
2583		if (ret)
2584			return ret;
2585		if (max_key == (u64)-1)
2586			break;
2587		min_key = max_key + 1;
2588	}
2589
2590	if (key_type == BTRFS_DIR_ITEM_KEY) {
2591		key_type = BTRFS_DIR_INDEX_KEY;
2592		goto again;
2593	}
2594	return 0;
2595}
2596
2597/*
2598 * a helper function to drop items from the log before we relog an
2599 * inode.  max_key_type indicates the highest item type to remove.
2600 * This cannot be run for file data extents because it does not
2601 * free the extents they point to.
2602 */
2603static int drop_objectid_items(struct btrfs_trans_handle *trans,
2604				  struct btrfs_root *log,
2605				  struct btrfs_path *path,
2606				  u64 objectid, int max_key_type)
2607{
2608	int ret;
2609	struct btrfs_key key;
2610	struct btrfs_key found_key;
 
2611
2612	key.objectid = objectid;
2613	key.type = max_key_type;
2614	key.offset = (u64)-1;
2615
2616	while (1) {
2617		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2618		BUG_ON(ret == 0);
2619		if (ret < 0)
2620			break;
2621
2622		if (path->slots[0] == 0)
2623			break;
2624
2625		path->slots[0]--;
2626		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2627				      path->slots[0]);
2628
2629		if (found_key.objectid != objectid)
2630			break;
2631
2632		ret = btrfs_del_item(trans, log, path);
2633		if (ret)
 
 
 
 
 
 
 
 
 
 
2634			break;
2635		btrfs_release_path(path);
2636	}
2637	btrfs_release_path(path);
 
 
2638	return ret;
2639}
2640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641static noinline int copy_items(struct btrfs_trans_handle *trans,
2642			       struct btrfs_root *log,
2643			       struct btrfs_path *dst_path,
2644			       struct extent_buffer *src,
2645			       int start_slot, int nr, int inode_only)
 
2646{
2647	unsigned long src_offset;
2648	unsigned long dst_offset;
 
2649	struct btrfs_file_extent_item *extent;
2650	struct btrfs_inode_item *inode_item;
 
 
2651	int ret;
2652	struct btrfs_key *ins_keys;
2653	u32 *ins_sizes;
2654	char *ins_data;
2655	int i;
2656	struct list_head ordered_sums;
 
 
 
 
2657
2658	INIT_LIST_HEAD(&ordered_sums);
2659
2660	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2661			   nr * sizeof(u32), GFP_NOFS);
2662	if (!ins_data)
2663		return -ENOMEM;
2664
 
 
2665	ins_sizes = (u32 *)ins_data;
2666	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2667
2668	for (i = 0; i < nr; i++) {
2669		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2670		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2671	}
2672	ret = btrfs_insert_empty_items(trans, log, dst_path,
2673				       ins_keys, ins_sizes, nr);
2674	if (ret) {
2675		kfree(ins_data);
2676		return ret;
2677	}
2678
2679	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2680		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2681						   dst_path->slots[0]);
2682
2683		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2684
2685		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2686				   src_offset, ins_sizes[i]);
2687
2688		if (inode_only == LOG_INODE_EXISTS &&
2689		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2690			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2691						    dst_path->slots[0],
2692						    struct btrfs_inode_item);
2693			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 
 
 
 
 
 
2694
2695			/* set the generation to zero so the recover code
2696			 * can tell the difference between an logging
2697			 * just to say 'this inode exists' and a logging
2698			 * to say 'update this inode with these values'
2699			 */
2700			btrfs_set_inode_generation(dst_path->nodes[0],
2701						   inode_item, 0);
 
 
 
 
 
2702		}
 
2703		/* take a reference on file data extents so that truncates
2704		 * or deletes of this inode don't have to relog the inode
2705		 * again
2706		 */
2707		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 
2708			int found_type;
2709			extent = btrfs_item_ptr(src, start_slot + i,
2710						struct btrfs_file_extent_item);
2711
2712			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2713				continue;
2714
2715			found_type = btrfs_file_extent_type(src, extent);
2716			if (found_type == BTRFS_FILE_EXTENT_REG ||
2717			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2718				u64 ds, dl, cs, cl;
2719				ds = btrfs_file_extent_disk_bytenr(src,
2720								extent);
2721				/* ds == 0 is a hole */
2722				if (ds == 0)
2723					continue;
2724
2725				dl = btrfs_file_extent_disk_num_bytes(src,
2726								extent);
2727				cs = btrfs_file_extent_offset(src, extent);
2728				cl = btrfs_file_extent_num_bytes(src,
2729								extent);
2730				if (btrfs_file_extent_compression(src,
2731								  extent)) {
2732					cs = 0;
2733					cl = dl;
2734				}
2735
2736				ret = btrfs_lookup_csums_range(
2737						log->fs_info->csum_root,
2738						ds + cs, ds + cs + cl - 1,
2739						&ordered_sums, 0);
2740				BUG_ON(ret);
 
 
 
 
2741			}
2742		}
2743	}
2744
2745	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2746	btrfs_release_path(dst_path);
2747	kfree(ins_data);
2748
2749	/*
2750	 * we have to do this after the loop above to avoid changing the
2751	 * log tree while trying to change the log tree.
2752	 */
2753	ret = 0;
2754	while (!list_empty(&ordered_sums)) {
2755		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2756						   struct btrfs_ordered_sum,
2757						   list);
2758		if (!ret)
2759			ret = btrfs_csum_file_blocks(trans, log, sums);
2760		list_del(&sums->list);
2761		kfree(sums);
2762	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763	return ret;
2764}
2765
2766/* log a single inode in the tree log.
2767 * At least one parent directory for this inode must exist in the tree
2768 * or be logged already.
2769 *
2770 * Any items from this inode changed by the current transaction are copied
2771 * to the log tree.  An extra reference is taken on any extents in this
2772 * file, allowing us to avoid a whole pile of corner cases around logging
2773 * blocks that have been removed from the tree.
2774 *
2775 * See LOG_INODE_ALL and related defines for a description of what inode_only
2776 * does.
2777 *
2778 * This handles both files and directories.
2779 */
2780static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2781			     struct btrfs_root *root, struct inode *inode,
2782			     int inode_only)
 
 
 
2783{
2784	struct btrfs_path *path;
2785	struct btrfs_path *dst_path;
2786	struct btrfs_key min_key;
2787	struct btrfs_key max_key;
2788	struct btrfs_root *log = root->log_root;
2789	struct extent_buffer *src = NULL;
 
 
2790	int err = 0;
2791	int ret;
2792	int nritems;
2793	int ins_start_slot = 0;
2794	int ins_nr;
 
2795	u64 ino = btrfs_ino(inode);
2796
2797	log = root->log_root;
 
2798
2799	path = btrfs_alloc_path();
2800	if (!path)
2801		return -ENOMEM;
2802	dst_path = btrfs_alloc_path();
2803	if (!dst_path) {
2804		btrfs_free_path(path);
2805		return -ENOMEM;
2806	}
2807
2808	min_key.objectid = ino;
2809	min_key.type = BTRFS_INODE_ITEM_KEY;
2810	min_key.offset = 0;
2811
2812	max_key.objectid = ino;
2813
2814	/* today the code can only do partial logging of directories */
2815	if (!S_ISDIR(inode->i_mode))
2816	    inode_only = LOG_INODE_ALL;
2817
2818	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 
 
 
 
2819		max_key.type = BTRFS_XATTR_ITEM_KEY;
2820	else
2821		max_key.type = (u8)-1;
2822	max_key.offset = (u64)-1;
2823
2824	ret = btrfs_commit_inode_delayed_items(trans, inode);
 
 
 
 
 
 
 
 
 
 
 
2825	if (ret) {
2826		btrfs_free_path(path);
2827		btrfs_free_path(dst_path);
2828		return ret;
2829	}
2830
2831	mutex_lock(&BTRFS_I(inode)->log_mutex);
2832
2833	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834	 * a brute force approach to making sure we get the most uptodate
2835	 * copies of everything.
2836	 */
2837	if (S_ISDIR(inode->i_mode)) {
2838		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2839
2840		if (inode_only == LOG_INODE_EXISTS)
2841			max_key_type = BTRFS_XATTR_ITEM_KEY;
2842		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2843	} else {
2844		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2845	}
2846	if (ret) {
2847		err = ret;
2848		goto out_unlock;
2849	}
2850	path->keep_locks = 1;
2851
2852	while (1) {
2853		ins_nr = 0;
2854		ret = btrfs_search_forward(root, &min_key, &max_key,
2855					   path, 0, trans->transid);
2856		if (ret != 0)
2857			break;
2858again:
2859		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2860		if (min_key.objectid != ino)
2861			break;
2862		if (min_key.type > max_key.type)
2863			break;
2864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865		src = path->nodes[0];
2866		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2867			ins_nr++;
2868			goto next_slot;
2869		} else if (!ins_nr) {
2870			ins_start_slot = path->slots[0];
2871			ins_nr = 1;
2872			goto next_slot;
2873		}
2874
2875		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2876				 ins_nr, inode_only);
2877		if (ret) {
 
2878			err = ret;
2879			goto out_unlock;
2880		}
 
 
 
 
 
2881		ins_nr = 1;
2882		ins_start_slot = path->slots[0];
2883next_slot:
2884
2885		nritems = btrfs_header_nritems(path->nodes[0]);
2886		path->slots[0]++;
2887		if (path->slots[0] < nritems) {
2888			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2889					      path->slots[0]);
2890			goto again;
2891		}
2892		if (ins_nr) {
2893			ret = copy_items(trans, log, dst_path, src,
2894					 ins_start_slot,
2895					 ins_nr, inode_only);
2896			if (ret) {
2897				err = ret;
2898				goto out_unlock;
2899			}
 
2900			ins_nr = 0;
2901		}
2902		btrfs_release_path(path);
2903
2904		if (min_key.offset < (u64)-1)
2905			min_key.offset++;
2906		else if (min_key.type < (u8)-1)
2907			min_key.type++;
2908		else if (min_key.objectid < (u64)-1)
2909			min_key.objectid++;
2910		else
2911			break;
 
2912	}
2913	if (ins_nr) {
2914		ret = copy_items(trans, log, dst_path, src,
2915				 ins_start_slot,
2916				 ins_nr, inode_only);
2917		if (ret) {
2918			err = ret;
2919			goto out_unlock;
2920		}
 
2921		ins_nr = 0;
2922	}
2923	WARN_ON(ins_nr);
2924	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 
 
 
 
 
2925		btrfs_release_path(path);
2926		btrfs_release_path(dst_path);
2927		ret = log_directory_changes(trans, root, inode, path, dst_path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928		if (ret) {
2929			err = ret;
2930			goto out_unlock;
2931		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932	}
 
 
 
 
 
 
 
 
 
 
 
2933	BTRFS_I(inode)->logged_trans = trans->transid;
 
 
2934out_unlock:
 
 
 
 
2935	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2936
2937	btrfs_free_path(path);
2938	btrfs_free_path(dst_path);
2939	return err;
2940}
2941
2942/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2943 * follow the dentry parent pointers up the chain and see if any
2944 * of the directories in it require a full commit before they can
2945 * be logged.  Returns zero if nothing special needs to be done or 1 if
2946 * a full commit is required.
2947 */
2948static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2949					       struct inode *inode,
2950					       struct dentry *parent,
2951					       struct super_block *sb,
2952					       u64 last_committed)
2953{
2954	int ret = 0;
2955	struct btrfs_root *root;
2956	struct dentry *old_parent = NULL;
 
2957
2958	/*
2959	 * for regular files, if its inode is already on disk, we don't
2960	 * have to worry about the parents at all.  This is because
2961	 * we can use the last_unlink_trans field to record renames
2962	 * and other fun in this file.
2963	 */
2964	if (S_ISREG(inode->i_mode) &&
2965	    BTRFS_I(inode)->generation <= last_committed &&
2966	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2967			goto out;
2968
2969	if (!S_ISDIR(inode->i_mode)) {
2970		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2971			goto out;
2972		inode = parent->d_inode;
2973	}
2974
2975	while (1) {
2976		BTRFS_I(inode)->logged_trans = trans->transid;
 
 
 
 
 
 
 
2977		smp_mb();
2978
2979		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2980			root = BTRFS_I(inode)->root;
2981
2982			/*
2983			 * make sure any commits to the log are forced
2984			 * to be full commits
2985			 */
2986			root->fs_info->last_trans_log_full_commit =
2987				trans->transid;
2988			ret = 1;
2989			break;
2990		}
2991
2992		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2993			break;
2994
2995		if (IS_ROOT(parent))
2996			break;
2997
2998		parent = dget_parent(parent);
2999		dput(old_parent);
3000		old_parent = parent;
3001		inode = parent->d_inode;
3002
3003	}
3004	dput(old_parent);
3005out:
3006	return ret;
3007}
3008
3009static int inode_in_log(struct btrfs_trans_handle *trans,
3010		 struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011{
3012	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
3013	int ret = 0;
3014
3015	mutex_lock(&root->log_mutex);
3016	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3017	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3018		ret = 1;
3019	mutex_unlock(&root->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020	return ret;
3021}
3022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024/*
3025 * helper function around btrfs_log_inode to make sure newly created
3026 * parent directories also end up in the log.  A minimal inode and backref
3027 * only logging is done of any parent directories that are older than
3028 * the last committed transaction
3029 */
3030int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3031		    struct btrfs_root *root, struct inode *inode,
3032		    struct dentry *parent, int exists_only)
 
 
 
 
3033{
3034	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3035	struct super_block *sb;
3036	struct dentry *old_parent = NULL;
3037	int ret = 0;
3038	u64 last_committed = root->fs_info->last_trans_committed;
 
 
3039
3040	sb = inode->i_sb;
3041
3042	if (btrfs_test_opt(root, NOTREELOG)) {
3043		ret = 1;
3044		goto end_no_trans;
3045	}
3046
 
 
 
 
3047	if (root->fs_info->last_trans_log_full_commit >
3048	    root->fs_info->last_trans_committed) {
3049		ret = 1;
3050		goto end_no_trans;
3051	}
3052
3053	if (root != BTRFS_I(inode)->root ||
3054	    btrfs_root_refs(&root->root_item) == 0) {
3055		ret = 1;
3056		goto end_no_trans;
3057	}
3058
3059	ret = check_parent_dirs_for_sync(trans, inode, parent,
3060					 sb, last_committed);
3061	if (ret)
3062		goto end_no_trans;
3063
3064	if (inode_in_log(trans, inode)) {
3065		ret = BTRFS_NO_LOG_SYNC;
3066		goto end_no_trans;
3067	}
3068
3069	ret = start_log_trans(trans, root);
3070	if (ret)
3071		goto end_trans;
3072
3073	ret = btrfs_log_inode(trans, root, inode, inode_only);
3074	if (ret)
3075		goto end_trans;
3076
3077	/*
3078	 * for regular files, if its inode is already on disk, we don't
3079	 * have to worry about the parents at all.  This is because
3080	 * we can use the last_unlink_trans field to record renames
3081	 * and other fun in this file.
3082	 */
3083	if (S_ISREG(inode->i_mode) &&
3084	    BTRFS_I(inode)->generation <= last_committed &&
3085	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3086		ret = 0;
3087		goto end_trans;
3088	}
3089
3090	inode_only = LOG_INODE_EXISTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	while (1) {
3092		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3093			break;
3094
3095		inode = parent->d_inode;
3096		if (root != BTRFS_I(inode)->root)
3097			break;
3098
3099		if (BTRFS_I(inode)->generation >
3100		    root->fs_info->last_trans_committed) {
3101			ret = btrfs_log_inode(trans, root, inode, inode_only);
 
3102			if (ret)
3103				goto end_trans;
3104		}
3105		if (IS_ROOT(parent))
3106			break;
3107
3108		parent = dget_parent(parent);
3109		dput(old_parent);
3110		old_parent = parent;
3111	}
3112	ret = 0;
 
 
 
3113end_trans:
3114	dput(old_parent);
3115	if (ret < 0) {
3116		BUG_ON(ret != -ENOSPC);
3117		root->fs_info->last_trans_log_full_commit = trans->transid;
3118		ret = 1;
3119	}
 
 
 
3120	btrfs_end_log_trans(root);
3121end_no_trans:
3122	return ret;
3123}
3124
3125/*
3126 * it is not safe to log dentry if the chunk root has added new
3127 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3128 * If this returns 1, you must commit the transaction to safely get your
3129 * data on disk.
3130 */
3131int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3132			  struct btrfs_root *root, struct dentry *dentry)
 
 
 
3133{
3134	struct dentry *parent = dget_parent(dentry);
3135	int ret;
3136
3137	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 
3138	dput(parent);
3139
3140	return ret;
3141}
3142
3143/*
3144 * should be called during mount to recover any replay any log trees
3145 * from the FS
3146 */
3147int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3148{
3149	int ret;
3150	struct btrfs_path *path;
3151	struct btrfs_trans_handle *trans;
3152	struct btrfs_key key;
3153	struct btrfs_key found_key;
3154	struct btrfs_key tmp_key;
3155	struct btrfs_root *log;
3156	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3157	struct walk_control wc = {
3158		.process_func = process_one_buffer,
3159		.stage = 0,
3160	};
3161
3162	path = btrfs_alloc_path();
3163	if (!path)
3164		return -ENOMEM;
3165
3166	fs_info->log_root_recovering = 1;
3167
3168	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3169	BUG_ON(IS_ERR(trans));
 
 
 
3170
3171	wc.trans = trans;
3172	wc.pin = 1;
3173
3174	ret = walk_log_tree(trans, log_root_tree, &wc);
3175	BUG_ON(ret);
 
 
 
 
3176
3177again:
3178	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3179	key.offset = (u64)-1;
3180	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3181
3182	while (1) {
3183		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3184		if (ret < 0)
3185			break;
 
 
 
 
3186		if (ret > 0) {
3187			if (path->slots[0] == 0)
3188				break;
3189			path->slots[0]--;
3190		}
3191		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3192				      path->slots[0]);
3193		btrfs_release_path(path);
3194		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3195			break;
3196
3197		log = btrfs_read_fs_root_no_radix(log_root_tree,
3198						  &found_key);
3199		BUG_ON(IS_ERR(log));
 
 
 
 
3200
3201		tmp_key.objectid = found_key.offset;
3202		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3203		tmp_key.offset = (u64)-1;
3204
3205		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3206		BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
 
 
 
 
 
 
 
 
3207
3208		wc.replay_dest->log_root = log;
3209		btrfs_record_root_in_trans(trans, wc.replay_dest);
3210		ret = walk_log_tree(trans, log, &wc);
3211		BUG_ON(ret);
3212
3213		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3214			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3215						      path);
3216			BUG_ON(ret);
3217		}
3218
3219		key.offset = found_key.offset - 1;
3220		wc.replay_dest->log_root = NULL;
3221		free_extent_buffer(log->node);
3222		free_extent_buffer(log->commit_root);
3223		kfree(log);
3224
 
 
 
3225		if (found_key.offset == 0)
3226			break;
3227	}
3228	btrfs_release_path(path);
3229
3230	/* step one is to pin it all, step two is to replay just inodes */
3231	if (wc.pin) {
3232		wc.pin = 0;
3233		wc.process_func = replay_one_buffer;
3234		wc.stage = LOG_WALK_REPLAY_INODES;
3235		goto again;
3236	}
3237	/* step three is to replay everything */
3238	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3239		wc.stage++;
3240		goto again;
3241	}
3242
3243	btrfs_free_path(path);
3244
 
 
 
 
 
3245	free_extent_buffer(log_root_tree->node);
3246	log_root_tree->log_root = NULL;
3247	fs_info->log_root_recovering = 0;
3248
3249	/* step 4: commit the transaction, which also unpins the blocks */
3250	btrfs_commit_transaction(trans, fs_info->tree_root);
3251
3252	kfree(log_root_tree);
 
3253	return 0;
 
 
 
 
 
3254}
3255
3256/*
3257 * there are some corner cases where we want to force a full
3258 * commit instead of allowing a directory to be logged.
3259 *
3260 * They revolve around files there were unlinked from the directory, and
3261 * this function updates the parent directory so that a full commit is
3262 * properly done if it is fsync'd later after the unlinks are done.
 
 
 
3263 */
3264void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3265			     struct inode *dir, struct inode *inode,
3266			     int for_rename)
3267{
3268	/*
3269	 * when we're logging a file, if it hasn't been renamed
3270	 * or unlinked, and its inode is fully committed on disk,
3271	 * we don't have to worry about walking up the directory chain
3272	 * to log its parents.
3273	 *
3274	 * So, we use the last_unlink_trans field to put this transid
3275	 * into the file.  When the file is logged we check it and
3276	 * don't log the parents if the file is fully on disk.
3277	 */
3278	if (S_ISREG(inode->i_mode))
 
3279		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 
 
3280
3281	/*
3282	 * if this directory was already logged any new
3283	 * names for this file/dir will get recorded
3284	 */
3285	smp_mb();
3286	if (BTRFS_I(dir)->logged_trans == trans->transid)
3287		return;
3288
3289	/*
3290	 * if the inode we're about to unlink was logged,
3291	 * the log will be properly updated for any new names
3292	 */
3293	if (BTRFS_I(inode)->logged_trans == trans->transid)
3294		return;
3295
3296	/*
3297	 * when renaming files across directories, if the directory
3298	 * there we're unlinking from gets fsync'd later on, there's
3299	 * no way to find the destination directory later and fsync it
3300	 * properly.  So, we have to be conservative and force commits
3301	 * so the new name gets discovered.
3302	 */
3303	if (for_rename)
3304		goto record;
3305
3306	/* we can safely do the unlink without any special recording */
3307	return;
3308
3309record:
 
3310	BTRFS_I(dir)->last_unlink_trans = trans->transid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3311}
3312
3313/*
3314 * Call this after adding a new name for a file and it will properly
3315 * update the log to reflect the new name.
3316 *
3317 * It will return zero if all goes well, and it will return 1 if a
3318 * full transaction commit is required.
3319 */
3320int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3321			struct inode *inode, struct inode *old_dir,
3322			struct dentry *parent)
3323{
3324	struct btrfs_root * root = BTRFS_I(inode)->root;
3325
3326	/*
3327	 * this will force the logging code to walk the dentry chain
3328	 * up for the file
3329	 */
3330	if (S_ISREG(inode->i_mode))
3331		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3332
3333	/*
3334	 * if this inode hasn't been logged and directory we're renaming it
3335	 * from hasn't been logged, we don't need to log it
3336	 */
3337	if (BTRFS_I(inode)->logged_trans <=
3338	    root->fs_info->last_trans_committed &&
3339	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3340		    root->fs_info->last_trans_committed))
3341		return 0;
3342
3343	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
 
3344}
3345
v4.6
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
  30
  31/* magic values for the inode_only field in btrfs_log_inode:
  32 *
  33 * LOG_INODE_ALL means to log everything
  34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  35 * during log replay
  36 */
  37#define LOG_INODE_ALL 0
  38#define LOG_INODE_EXISTS 1
  39
  40/*
  41 * directory trouble cases
  42 *
  43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  44 * log, we must force a full commit before doing an fsync of the directory
  45 * where the unlink was done.
  46 * ---> record transid of last unlink/rename per directory
  47 *
  48 * mkdir foo/some_dir
  49 * normal commit
  50 * rename foo/some_dir foo2/some_dir
  51 * mkdir foo/some_dir
  52 * fsync foo/some_dir/some_file
  53 *
  54 * The fsync above will unlink the original some_dir without recording
  55 * it in its new location (foo2).  After a crash, some_dir will be gone
  56 * unless the fsync of some_file forces a full commit
  57 *
  58 * 2) we must log any new names for any file or dir that is in the fsync
  59 * log. ---> check inode while renaming/linking.
  60 *
  61 * 2a) we must log any new names for any file or dir during rename
  62 * when the directory they are being removed from was logged.
  63 * ---> check inode and old parent dir during rename
  64 *
  65 *  2a is actually the more important variant.  With the extra logging
  66 *  a crash might unlink the old name without recreating the new one
  67 *
  68 * 3) after a crash, we must go through any directories with a link count
  69 * of zero and redo the rm -rf
  70 *
  71 * mkdir f1/foo
  72 * normal commit
  73 * rm -rf f1/foo
  74 * fsync(f1)
  75 *
  76 * The directory f1 was fully removed from the FS, but fsync was never
  77 * called on f1, only its parent dir.  After a crash the rm -rf must
  78 * be replayed.  This must be able to recurse down the entire
  79 * directory tree.  The inode link count fixup code takes care of the
  80 * ugly details.
  81 */
  82
  83/*
  84 * stages for the tree walking.  The first
  85 * stage (0) is to only pin down the blocks we find
  86 * the second stage (1) is to make sure that all the inodes
  87 * we find in the log are created in the subvolume.
  88 *
  89 * The last stage is to deal with directories and links and extents
  90 * and all the other fun semantics
  91 */
  92#define LOG_WALK_PIN_ONLY 0
  93#define LOG_WALK_REPLAY_INODES 1
  94#define LOG_WALK_REPLAY_DIR_INDEX 2
  95#define LOG_WALK_REPLAY_ALL 3
  96
  97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  98			   struct btrfs_root *root, struct inode *inode,
  99			   int inode_only,
 100			   const loff_t start,
 101			   const loff_t end,
 102			   struct btrfs_log_ctx *ctx);
 103static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 104			     struct btrfs_root *root,
 105			     struct btrfs_path *path, u64 objectid);
 106static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 107				       struct btrfs_root *root,
 108				       struct btrfs_root *log,
 109				       struct btrfs_path *path,
 110				       u64 dirid, int del_all);
 111
 112/*
 113 * tree logging is a special write ahead log used to make sure that
 114 * fsyncs and O_SYNCs can happen without doing full tree commits.
 115 *
 116 * Full tree commits are expensive because they require commonly
 117 * modified blocks to be recowed, creating many dirty pages in the
 118 * extent tree an 4x-6x higher write load than ext3.
 119 *
 120 * Instead of doing a tree commit on every fsync, we use the
 121 * key ranges and transaction ids to find items for a given file or directory
 122 * that have changed in this transaction.  Those items are copied into
 123 * a special tree (one per subvolume root), that tree is written to disk
 124 * and then the fsync is considered complete.
 125 *
 126 * After a crash, items are copied out of the log-tree back into the
 127 * subvolume tree.  Any file data extents found are recorded in the extent
 128 * allocation tree, and the log-tree freed.
 129 *
 130 * The log tree is read three times, once to pin down all the extents it is
 131 * using in ram and once, once to create all the inodes logged in the tree
 132 * and once to do all the other items.
 133 */
 134
 135/*
 136 * start a sub transaction and setup the log tree
 137 * this increments the log tree writer count to make the people
 138 * syncing the tree wait for us to finish
 139 */
 140static int start_log_trans(struct btrfs_trans_handle *trans,
 141			   struct btrfs_root *root,
 142			   struct btrfs_log_ctx *ctx)
 143{
 144	int ret = 0;
 
 145
 146	mutex_lock(&root->log_mutex);
 147
 148	if (root->log_root) {
 149		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
 150			ret = -EAGAIN;
 151			goto out;
 152		}
 153
 154		if (!root->log_start_pid) {
 155			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 156			root->log_start_pid = current->pid;
 
 157		} else if (root->log_start_pid != current->pid) {
 158			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159		}
 160	} else {
 161		mutex_lock(&root->fs_info->tree_log_mutex);
 162		if (!root->fs_info->log_root_tree)
 163			ret = btrfs_init_log_root_tree(trans, root->fs_info);
 164		mutex_unlock(&root->fs_info->tree_log_mutex);
 
 
 
 
 
 
 165		if (ret)
 166			goto out;
 167
 
 168		ret = btrfs_add_log_tree(trans, root);
 169		if (ret)
 170			goto out;
 171
 172		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 173		root->log_start_pid = current->pid;
 174	}
 175
 176	atomic_inc(&root->log_batch);
 177	atomic_inc(&root->log_writers);
 178	if (ctx) {
 179		int index = root->log_transid % 2;
 180		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 181		ctx->log_transid = root->log_transid;
 182	}
 183
 184out:
 185	mutex_unlock(&root->log_mutex);
 186	return ret;
 187}
 188
 189/*
 190 * returns 0 if there was a log transaction running and we were able
 191 * to join, or returns -ENOENT if there were not transactions
 192 * in progress
 193 */
 194static int join_running_log_trans(struct btrfs_root *root)
 195{
 196	int ret = -ENOENT;
 197
 198	smp_mb();
 199	if (!root->log_root)
 200		return -ENOENT;
 201
 202	mutex_lock(&root->log_mutex);
 203	if (root->log_root) {
 204		ret = 0;
 205		atomic_inc(&root->log_writers);
 206	}
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * This either makes the current running log transaction wait
 213 * until you call btrfs_end_log_trans() or it makes any future
 214 * log transactions wait until you call btrfs_end_log_trans()
 215 */
 216int btrfs_pin_log_trans(struct btrfs_root *root)
 217{
 218	int ret = -ENOENT;
 219
 220	mutex_lock(&root->log_mutex);
 221	atomic_inc(&root->log_writers);
 222	mutex_unlock(&root->log_mutex);
 223	return ret;
 224}
 225
 226/*
 227 * indicate we're done making changes to the log tree
 228 * and wake up anyone waiting to do a sync
 229 */
 230void btrfs_end_log_trans(struct btrfs_root *root)
 231{
 232	if (atomic_dec_and_test(&root->log_writers)) {
 233		/*
 234		 * Implicit memory barrier after atomic_dec_and_test
 235		 */
 236		if (waitqueue_active(&root->log_writer_wait))
 237			wake_up(&root->log_writer_wait);
 238	}
 
 239}
 240
 241
 242/*
 243 * the walk control struct is used to pass state down the chain when
 244 * processing the log tree.  The stage field tells us which part
 245 * of the log tree processing we are currently doing.  The others
 246 * are state fields used for that specific part
 247 */
 248struct walk_control {
 249	/* should we free the extent on disk when done?  This is used
 250	 * at transaction commit time while freeing a log tree
 251	 */
 252	int free;
 253
 254	/* should we write out the extent buffer?  This is used
 255	 * while flushing the log tree to disk during a sync
 256	 */
 257	int write;
 258
 259	/* should we wait for the extent buffer io to finish?  Also used
 260	 * while flushing the log tree to disk for a sync
 261	 */
 262	int wait;
 263
 264	/* pin only walk, we record which extents on disk belong to the
 265	 * log trees
 266	 */
 267	int pin;
 268
 269	/* what stage of the replay code we're currently in */
 270	int stage;
 271
 272	/* the root we are currently replaying */
 273	struct btrfs_root *replay_dest;
 274
 275	/* the trans handle for the current replay */
 276	struct btrfs_trans_handle *trans;
 277
 278	/* the function that gets used to process blocks we find in the
 279	 * tree.  Note the extent_buffer might not be up to date when it is
 280	 * passed in, and it must be checked or read if you need the data
 281	 * inside it
 282	 */
 283	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 284			    struct walk_control *wc, u64 gen);
 285};
 286
 287/*
 288 * process_func used to pin down extents, write them or wait on them
 289 */
 290static int process_one_buffer(struct btrfs_root *log,
 291			      struct extent_buffer *eb,
 292			      struct walk_control *wc, u64 gen)
 293{
 294	int ret = 0;
 295
 296	/*
 297	 * If this fs is mixed then we need to be able to process the leaves to
 298	 * pin down any logged extents, so we have to read the block.
 299	 */
 300	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
 301		ret = btrfs_read_buffer(eb, gen);
 302		if (ret)
 303			return ret;
 304	}
 305
 306	if (wc->pin)
 307		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
 308						      eb->start, eb->len);
 309
 310	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 311		if (wc->pin && btrfs_header_level(eb) == 0)
 312			ret = btrfs_exclude_logged_extents(log, eb);
 313		if (wc->write)
 314			btrfs_write_tree_block(eb);
 315		if (wc->wait)
 316			btrfs_wait_tree_block_writeback(eb);
 317	}
 318	return ret;
 319}
 320
 321/*
 322 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 323 * to the src data we are copying out.
 324 *
 325 * root is the tree we are copying into, and path is a scratch
 326 * path for use in this function (it should be released on entry and
 327 * will be released on exit).
 328 *
 329 * If the key is already in the destination tree the existing item is
 330 * overwritten.  If the existing item isn't big enough, it is extended.
 331 * If it is too large, it is truncated.
 332 *
 333 * If the key isn't in the destination yet, a new item is inserted.
 334 */
 335static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 336				   struct btrfs_root *root,
 337				   struct btrfs_path *path,
 338				   struct extent_buffer *eb, int slot,
 339				   struct btrfs_key *key)
 340{
 341	int ret;
 342	u32 item_size;
 343	u64 saved_i_size = 0;
 344	int save_old_i_size = 0;
 345	unsigned long src_ptr;
 346	unsigned long dst_ptr;
 347	int overwrite_root = 0;
 348	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 349
 350	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 351		overwrite_root = 1;
 352
 353	item_size = btrfs_item_size_nr(eb, slot);
 354	src_ptr = btrfs_item_ptr_offset(eb, slot);
 355
 356	/* look for the key in the destination tree */
 357	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 358	if (ret < 0)
 359		return ret;
 360
 361	if (ret == 0) {
 362		char *src_copy;
 363		char *dst_copy;
 364		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 365						  path->slots[0]);
 366		if (dst_size != item_size)
 367			goto insert;
 368
 369		if (item_size == 0) {
 370			btrfs_release_path(path);
 371			return 0;
 372		}
 373		dst_copy = kmalloc(item_size, GFP_NOFS);
 374		src_copy = kmalloc(item_size, GFP_NOFS);
 375		if (!dst_copy || !src_copy) {
 376			btrfs_release_path(path);
 377			kfree(dst_copy);
 378			kfree(src_copy);
 379			return -ENOMEM;
 380		}
 381
 382		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 383
 384		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 385		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 386				   item_size);
 387		ret = memcmp(dst_copy, src_copy, item_size);
 388
 389		kfree(dst_copy);
 390		kfree(src_copy);
 391		/*
 392		 * they have the same contents, just return, this saves
 393		 * us from cowing blocks in the destination tree and doing
 394		 * extra writes that may not have been done by a previous
 395		 * sync
 396		 */
 397		if (ret == 0) {
 398			btrfs_release_path(path);
 399			return 0;
 400		}
 401
 402		/*
 403		 * We need to load the old nbytes into the inode so when we
 404		 * replay the extents we've logged we get the right nbytes.
 405		 */
 406		if (inode_item) {
 407			struct btrfs_inode_item *item;
 408			u64 nbytes;
 409			u32 mode;
 410
 411			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 412					      struct btrfs_inode_item);
 413			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 414			item = btrfs_item_ptr(eb, slot,
 415					      struct btrfs_inode_item);
 416			btrfs_set_inode_nbytes(eb, item, nbytes);
 417
 418			/*
 419			 * If this is a directory we need to reset the i_size to
 420			 * 0 so that we can set it up properly when replaying
 421			 * the rest of the items in this log.
 422			 */
 423			mode = btrfs_inode_mode(eb, item);
 424			if (S_ISDIR(mode))
 425				btrfs_set_inode_size(eb, item, 0);
 426		}
 427	} else if (inode_item) {
 428		struct btrfs_inode_item *item;
 429		u32 mode;
 430
 431		/*
 432		 * New inode, set nbytes to 0 so that the nbytes comes out
 433		 * properly when we replay the extents.
 434		 */
 435		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 436		btrfs_set_inode_nbytes(eb, item, 0);
 437
 438		/*
 439		 * If this is a directory we need to reset the i_size to 0 so
 440		 * that we can set it up properly when replaying the rest of
 441		 * the items in this log.
 442		 */
 443		mode = btrfs_inode_mode(eb, item);
 444		if (S_ISDIR(mode))
 445			btrfs_set_inode_size(eb, item, 0);
 446	}
 447insert:
 448	btrfs_release_path(path);
 449	/* try to insert the key into the destination tree */
 450	path->skip_release_on_error = 1;
 451	ret = btrfs_insert_empty_item(trans, root, path,
 452				      key, item_size);
 453	path->skip_release_on_error = 0;
 454
 455	/* make sure any existing item is the correct size */
 456	if (ret == -EEXIST || ret == -EOVERFLOW) {
 457		u32 found_size;
 458		found_size = btrfs_item_size_nr(path->nodes[0],
 459						path->slots[0]);
 460		if (found_size > item_size)
 461			btrfs_truncate_item(root, path, item_size, 1);
 462		else if (found_size < item_size)
 463			btrfs_extend_item(root, path,
 464					  item_size - found_size);
 
 465	} else if (ret) {
 466		return ret;
 467	}
 468	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 469					path->slots[0]);
 470
 471	/* don't overwrite an existing inode if the generation number
 472	 * was logged as zero.  This is done when the tree logging code
 473	 * is just logging an inode to make sure it exists after recovery.
 474	 *
 475	 * Also, don't overwrite i_size on directories during replay.
 476	 * log replay inserts and removes directory items based on the
 477	 * state of the tree found in the subvolume, and i_size is modified
 478	 * as it goes
 479	 */
 480	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 481		struct btrfs_inode_item *src_item;
 482		struct btrfs_inode_item *dst_item;
 483
 484		src_item = (struct btrfs_inode_item *)src_ptr;
 485		dst_item = (struct btrfs_inode_item *)dst_ptr;
 486
 487		if (btrfs_inode_generation(eb, src_item) == 0) {
 488			struct extent_buffer *dst_eb = path->nodes[0];
 489			const u64 ino_size = btrfs_inode_size(eb, src_item);
 490
 491			/*
 492			 * For regular files an ino_size == 0 is used only when
 493			 * logging that an inode exists, as part of a directory
 494			 * fsync, and the inode wasn't fsynced before. In this
 495			 * case don't set the size of the inode in the fs/subvol
 496			 * tree, otherwise we would be throwing valid data away.
 497			 */
 498			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 499			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 500			    ino_size != 0) {
 501				struct btrfs_map_token token;
 502
 503				btrfs_init_map_token(&token);
 504				btrfs_set_token_inode_size(dst_eb, dst_item,
 505							   ino_size, &token);
 506			}
 507			goto no_copy;
 508		}
 509
 510		if (overwrite_root &&
 511		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 512		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 513			save_old_i_size = 1;
 514			saved_i_size = btrfs_inode_size(path->nodes[0],
 515							dst_item);
 516		}
 517	}
 518
 519	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 520			   src_ptr, item_size);
 521
 522	if (save_old_i_size) {
 523		struct btrfs_inode_item *dst_item;
 524		dst_item = (struct btrfs_inode_item *)dst_ptr;
 525		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 526	}
 527
 528	/* make sure the generation is filled in */
 529	if (key->type == BTRFS_INODE_ITEM_KEY) {
 530		struct btrfs_inode_item *dst_item;
 531		dst_item = (struct btrfs_inode_item *)dst_ptr;
 532		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 533			btrfs_set_inode_generation(path->nodes[0], dst_item,
 534						   trans->transid);
 535		}
 536	}
 537no_copy:
 538	btrfs_mark_buffer_dirty(path->nodes[0]);
 539	btrfs_release_path(path);
 540	return 0;
 541}
 542
 543/*
 544 * simple helper to read an inode off the disk from a given root
 545 * This can only be called for subvolume roots and not for the log
 546 */
 547static noinline struct inode *read_one_inode(struct btrfs_root *root,
 548					     u64 objectid)
 549{
 550	struct btrfs_key key;
 551	struct inode *inode;
 552
 553	key.objectid = objectid;
 554	key.type = BTRFS_INODE_ITEM_KEY;
 555	key.offset = 0;
 556	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 557	if (IS_ERR(inode)) {
 558		inode = NULL;
 559	} else if (is_bad_inode(inode)) {
 560		iput(inode);
 561		inode = NULL;
 562	}
 563	return inode;
 564}
 565
 566/* replays a single extent in 'eb' at 'slot' with 'key' into the
 567 * subvolume 'root'.  path is released on entry and should be released
 568 * on exit.
 569 *
 570 * extents in the log tree have not been allocated out of the extent
 571 * tree yet.  So, this completes the allocation, taking a reference
 572 * as required if the extent already exists or creating a new extent
 573 * if it isn't in the extent allocation tree yet.
 574 *
 575 * The extent is inserted into the file, dropping any existing extents
 576 * from the file that overlap the new one.
 577 */
 578static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 579				      struct btrfs_root *root,
 580				      struct btrfs_path *path,
 581				      struct extent_buffer *eb, int slot,
 582				      struct btrfs_key *key)
 583{
 584	int found_type;
 
 585	u64 extent_end;
 
 586	u64 start = key->offset;
 587	u64 nbytes = 0;
 588	struct btrfs_file_extent_item *item;
 589	struct inode *inode = NULL;
 590	unsigned long size;
 591	int ret = 0;
 592
 593	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 594	found_type = btrfs_file_extent_type(eb, item);
 595
 596	if (found_type == BTRFS_FILE_EXTENT_REG ||
 597	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 598		nbytes = btrfs_file_extent_num_bytes(eb, item);
 599		extent_end = start + nbytes;
 600
 601		/*
 602		 * We don't add to the inodes nbytes if we are prealloc or a
 603		 * hole.
 604		 */
 605		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 606			nbytes = 0;
 607	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 608		size = btrfs_file_extent_inline_len(eb, slot, item);
 609		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 610		extent_end = ALIGN(start + size, root->sectorsize);
 611	} else {
 612		ret = 0;
 613		goto out;
 614	}
 615
 616	inode = read_one_inode(root, key->objectid);
 617	if (!inode) {
 618		ret = -EIO;
 619		goto out;
 620	}
 621
 622	/*
 623	 * first check to see if we already have this extent in the
 624	 * file.  This must be done before the btrfs_drop_extents run
 625	 * so we don't try to drop this extent.
 626	 */
 627	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 628				       start, 0);
 629
 630	if (ret == 0 &&
 631	    (found_type == BTRFS_FILE_EXTENT_REG ||
 632	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 633		struct btrfs_file_extent_item cmp1;
 634		struct btrfs_file_extent_item cmp2;
 635		struct btrfs_file_extent_item *existing;
 636		struct extent_buffer *leaf;
 637
 638		leaf = path->nodes[0];
 639		existing = btrfs_item_ptr(leaf, path->slots[0],
 640					  struct btrfs_file_extent_item);
 641
 642		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 643				   sizeof(cmp1));
 644		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 645				   sizeof(cmp2));
 646
 647		/*
 648		 * we already have a pointer to this exact extent,
 649		 * we don't have to do anything
 650		 */
 651		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 652			btrfs_release_path(path);
 653			goto out;
 654		}
 655	}
 656	btrfs_release_path(path);
 657
 
 658	/* drop any overlapping extents */
 659	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 660	if (ret)
 661		goto out;
 662
 663	if (found_type == BTRFS_FILE_EXTENT_REG ||
 664	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 665		u64 offset;
 666		unsigned long dest_offset;
 667		struct btrfs_key ins;
 668
 669		ret = btrfs_insert_empty_item(trans, root, path, key,
 670					      sizeof(*item));
 671		if (ret)
 672			goto out;
 673		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 674						    path->slots[0]);
 675		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 676				(unsigned long)item,  sizeof(*item));
 677
 678		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 679		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 680		ins.type = BTRFS_EXTENT_ITEM_KEY;
 681		offset = key->offset - btrfs_file_extent_offset(eb, item);
 682
 683		if (ins.objectid > 0) {
 684			u64 csum_start;
 685			u64 csum_end;
 686			LIST_HEAD(ordered_sums);
 687			/*
 688			 * is this extent already allocated in the extent
 689			 * allocation tree?  If so, just add a reference
 690			 */
 691			ret = btrfs_lookup_data_extent(root, ins.objectid,
 692						ins.offset);
 693			if (ret == 0) {
 694				ret = btrfs_inc_extent_ref(trans, root,
 695						ins.objectid, ins.offset,
 696						0, root->root_key.objectid,
 697						key->objectid, offset);
 698				if (ret)
 699					goto out;
 700			} else {
 701				/*
 702				 * insert the extent pointer in the extent
 703				 * allocation tree
 704				 */
 705				ret = btrfs_alloc_logged_file_extent(trans,
 706						root, root->root_key.objectid,
 707						key->objectid, offset, &ins);
 708				if (ret)
 709					goto out;
 710			}
 711			btrfs_release_path(path);
 712
 713			if (btrfs_file_extent_compression(eb, item)) {
 714				csum_start = ins.objectid;
 715				csum_end = csum_start + ins.offset;
 716			} else {
 717				csum_start = ins.objectid +
 718					btrfs_file_extent_offset(eb, item);
 719				csum_end = csum_start +
 720					btrfs_file_extent_num_bytes(eb, item);
 721			}
 722
 723			ret = btrfs_lookup_csums_range(root->log_root,
 724						csum_start, csum_end - 1,
 725						&ordered_sums, 0);
 726			if (ret)
 727				goto out;
 728			/*
 729			 * Now delete all existing cums in the csum root that
 730			 * cover our range. We do this because we can have an
 731			 * extent that is completely referenced by one file
 732			 * extent item and partially referenced by another
 733			 * file extent item (like after using the clone or
 734			 * extent_same ioctls). In this case if we end up doing
 735			 * the replay of the one that partially references the
 736			 * extent first, and we do not do the csum deletion
 737			 * below, we can get 2 csum items in the csum tree that
 738			 * overlap each other. For example, imagine our log has
 739			 * the two following file extent items:
 740			 *
 741			 * key (257 EXTENT_DATA 409600)
 742			 *     extent data disk byte 12845056 nr 102400
 743			 *     extent data offset 20480 nr 20480 ram 102400
 744			 *
 745			 * key (257 EXTENT_DATA 819200)
 746			 *     extent data disk byte 12845056 nr 102400
 747			 *     extent data offset 0 nr 102400 ram 102400
 748			 *
 749			 * Where the second one fully references the 100K extent
 750			 * that starts at disk byte 12845056, and the log tree
 751			 * has a single csum item that covers the entire range
 752			 * of the extent:
 753			 *
 754			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 755			 *
 756			 * After the first file extent item is replayed, the
 757			 * csum tree gets the following csum item:
 758			 *
 759			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 760			 *
 761			 * Which covers the 20K sub-range starting at offset 20K
 762			 * of our extent. Now when we replay the second file
 763			 * extent item, if we do not delete existing csum items
 764			 * that cover any of its blocks, we end up getting two
 765			 * csum items in our csum tree that overlap each other:
 766			 *
 767			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 768			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 769			 *
 770			 * Which is a problem, because after this anyone trying
 771			 * to lookup up for the checksum of any block of our
 772			 * extent starting at an offset of 40K or higher, will
 773			 * end up looking at the second csum item only, which
 774			 * does not contain the checksum for any block starting
 775			 * at offset 40K or higher of our extent.
 776			 */
 777			while (!list_empty(&ordered_sums)) {
 778				struct btrfs_ordered_sum *sums;
 779				sums = list_entry(ordered_sums.next,
 780						struct btrfs_ordered_sum,
 781						list);
 782				if (!ret)
 783					ret = btrfs_del_csums(trans,
 784						      root->fs_info->csum_root,
 785						      sums->bytenr,
 786						      sums->len);
 787				if (!ret)
 788					ret = btrfs_csum_file_blocks(trans,
 789						root->fs_info->csum_root,
 790						sums);
 
 791				list_del(&sums->list);
 792				kfree(sums);
 793			}
 794			if (ret)
 795				goto out;
 796		} else {
 797			btrfs_release_path(path);
 798		}
 799	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 800		/* inline extents are easy, we just overwrite them */
 801		ret = overwrite_item(trans, root, path, eb, slot, key);
 802		if (ret)
 803			goto out;
 804	}
 805
 806	inode_add_bytes(inode, nbytes);
 807	ret = btrfs_update_inode(trans, root, inode);
 808out:
 809	if (inode)
 810		iput(inode);
 811	return ret;
 812}
 813
 814/*
 815 * when cleaning up conflicts between the directory names in the
 816 * subvolume, directory names in the log and directory names in the
 817 * inode back references, we may have to unlink inodes from directories.
 818 *
 819 * This is a helper function to do the unlink of a specific directory
 820 * item
 821 */
 822static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 823				      struct btrfs_root *root,
 824				      struct btrfs_path *path,
 825				      struct inode *dir,
 826				      struct btrfs_dir_item *di)
 827{
 828	struct inode *inode;
 829	char *name;
 830	int name_len;
 831	struct extent_buffer *leaf;
 832	struct btrfs_key location;
 833	int ret;
 834
 835	leaf = path->nodes[0];
 836
 837	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 838	name_len = btrfs_dir_name_len(leaf, di);
 839	name = kmalloc(name_len, GFP_NOFS);
 840	if (!name)
 841		return -ENOMEM;
 842
 843	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 844	btrfs_release_path(path);
 845
 846	inode = read_one_inode(root, location.objectid);
 847	if (!inode) {
 848		ret = -EIO;
 849		goto out;
 850	}
 851
 852	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 853	if (ret)
 854		goto out;
 855
 856	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 857	if (ret)
 858		goto out;
 859	else
 860		ret = btrfs_run_delayed_items(trans, root);
 861out:
 862	kfree(name);
 
 863	iput(inode);
 864	return ret;
 865}
 866
 867/*
 868 * helper function to see if a given name and sequence number found
 869 * in an inode back reference are already in a directory and correctly
 870 * point to this inode
 871 */
 872static noinline int inode_in_dir(struct btrfs_root *root,
 873				 struct btrfs_path *path,
 874				 u64 dirid, u64 objectid, u64 index,
 875				 const char *name, int name_len)
 876{
 877	struct btrfs_dir_item *di;
 878	struct btrfs_key location;
 879	int match = 0;
 880
 881	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 882					 index, name, name_len, 0);
 883	if (di && !IS_ERR(di)) {
 884		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 885		if (location.objectid != objectid)
 886			goto out;
 887	} else
 888		goto out;
 889	btrfs_release_path(path);
 890
 891	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 892	if (di && !IS_ERR(di)) {
 893		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 894		if (location.objectid != objectid)
 895			goto out;
 896	} else
 897		goto out;
 898	match = 1;
 899out:
 900	btrfs_release_path(path);
 901	return match;
 902}
 903
 904/*
 905 * helper function to check a log tree for a named back reference in
 906 * an inode.  This is used to decide if a back reference that is
 907 * found in the subvolume conflicts with what we find in the log.
 908 *
 909 * inode backreferences may have multiple refs in a single item,
 910 * during replay we process one reference at a time, and we don't
 911 * want to delete valid links to a file from the subvolume if that
 912 * link is also in the log.
 913 */
 914static noinline int backref_in_log(struct btrfs_root *log,
 915				   struct btrfs_key *key,
 916				   u64 ref_objectid,
 917				   const char *name, int namelen)
 918{
 919	struct btrfs_path *path;
 920	struct btrfs_inode_ref *ref;
 921	unsigned long ptr;
 922	unsigned long ptr_end;
 923	unsigned long name_ptr;
 924	int found_name_len;
 925	int item_size;
 926	int ret;
 927	int match = 0;
 928
 929	path = btrfs_alloc_path();
 930	if (!path)
 931		return -ENOMEM;
 932
 933	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 934	if (ret != 0)
 935		goto out;
 936
 
 937	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 938
 939	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 940		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 941						   name, namelen, NULL))
 942			match = 1;
 943
 944		goto out;
 945	}
 946
 947	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 948	ptr_end = ptr + item_size;
 949	while (ptr < ptr_end) {
 950		ref = (struct btrfs_inode_ref *)ptr;
 951		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 952		if (found_name_len == namelen) {
 953			name_ptr = (unsigned long)(ref + 1);
 954			ret = memcmp_extent_buffer(path->nodes[0], name,
 955						   name_ptr, namelen);
 956			if (ret == 0) {
 957				match = 1;
 958				goto out;
 959			}
 960		}
 961		ptr = (unsigned long)(ref + 1) + found_name_len;
 962	}
 963out:
 964	btrfs_free_path(path);
 965	return match;
 966}
 967
 968static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
 969				  struct btrfs_root *root,
 
 970				  struct btrfs_path *path,
 971				  struct btrfs_root *log_root,
 972				  struct inode *dir, struct inode *inode,
 973				  struct extent_buffer *eb,
 974				  u64 inode_objectid, u64 parent_objectid,
 975				  u64 ref_index, char *name, int namelen,
 976				  int *search_done)
 977{
 
 
 
 
 
 
 
 
 978	int ret;
 979	char *victim_name;
 980	int victim_name_len;
 981	struct extent_buffer *leaf;
 982	struct btrfs_dir_item *di;
 983	struct btrfs_key search_key;
 984	struct btrfs_inode_extref *extref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986again:
 987	/* Search old style refs */
 988	search_key.objectid = inode_objectid;
 989	search_key.type = BTRFS_INODE_REF_KEY;
 990	search_key.offset = parent_objectid;
 991	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992	if (ret == 0) {
 
 
 993		struct btrfs_inode_ref *victim_ref;
 994		unsigned long ptr;
 995		unsigned long ptr_end;
 996
 997		leaf = path->nodes[0];
 998
 999		/* are we trying to overwrite a back ref for the root directory
1000		 * if so, just jump out, we're done
1001		 */
1002		if (search_key.objectid == search_key.offset)
1003			return 1;
1004
1005		/* check all the names in this back reference to see
1006		 * if they are in the log.  if so, we allow them to stay
1007		 * otherwise they must be unlinked as a conflict
1008		 */
1009		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011		while (ptr < ptr_end) {
1012			victim_ref = (struct btrfs_inode_ref *)ptr;
1013			victim_name_len = btrfs_inode_ref_name_len(leaf,
1014								   victim_ref);
1015			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016			if (!victim_name)
1017				return -ENOMEM;
1018
1019			read_extent_buffer(leaf, victim_name,
1020					   (unsigned long)(victim_ref + 1),
1021					   victim_name_len);
1022
1023			if (!backref_in_log(log_root, &search_key,
1024					    parent_objectid,
1025					    victim_name,
1026					    victim_name_len)) {
1027				inc_nlink(inode);
1028				btrfs_release_path(path);
1029
1030				ret = btrfs_unlink_inode(trans, root, dir,
1031							 inode, victim_name,
1032							 victim_name_len);
1033				kfree(victim_name);
1034				if (ret)
1035					return ret;
1036				ret = btrfs_run_delayed_items(trans, root);
1037				if (ret)
1038					return ret;
1039				*search_done = 1;
1040				goto again;
1041			}
1042			kfree(victim_name);
1043
1044			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045		}
 
1046
1047		/*
1048		 * NOTE: we have searched root tree and checked the
1049		 * corresponding ref, it does not need to check again.
1050		 */
1051		*search_done = 1;
1052	}
1053	btrfs_release_path(path);
1054
1055	/* Same search but for extended refs */
1056	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057					   inode_objectid, parent_objectid, 0,
1058					   0);
1059	if (!IS_ERR_OR_NULL(extref)) {
1060		u32 item_size;
1061		u32 cur_offset = 0;
1062		unsigned long base;
1063		struct inode *victim_parent;
1064
1065		leaf = path->nodes[0];
1066
1067		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070		while (cur_offset < item_size) {
1071			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076				goto next;
1077
1078			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079			if (!victim_name)
1080				return -ENOMEM;
1081			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082					   victim_name_len);
1083
1084			search_key.objectid = inode_objectid;
1085			search_key.type = BTRFS_INODE_EXTREF_KEY;
1086			search_key.offset = btrfs_extref_hash(parent_objectid,
1087							      victim_name,
1088							      victim_name_len);
1089			ret = 0;
1090			if (!backref_in_log(log_root, &search_key,
1091					    parent_objectid, victim_name,
1092					    victim_name_len)) {
1093				ret = -ENOENT;
1094				victim_parent = read_one_inode(root,
1095							       parent_objectid);
1096				if (victim_parent) {
1097					inc_nlink(inode);
1098					btrfs_release_path(path);
1099
1100					ret = btrfs_unlink_inode(trans, root,
1101								 victim_parent,
1102								 inode,
1103								 victim_name,
1104								 victim_name_len);
1105					if (!ret)
1106						ret = btrfs_run_delayed_items(
1107								  trans, root);
1108				}
1109				iput(victim_parent);
1110				kfree(victim_name);
1111				if (ret)
1112					return ret;
1113				*search_done = 1;
1114				goto again;
1115			}
1116			kfree(victim_name);
1117			if (ret)
1118				return ret;
1119next:
1120			cur_offset += victim_name_len + sizeof(*extref);
1121		}
1122		*search_done = 1;
1123	}
1124	btrfs_release_path(path);
1125
1126	/* look for a conflicting sequence number */
1127	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128					 ref_index, name, namelen, 0);
 
1129	if (di && !IS_ERR(di)) {
1130		ret = drop_one_dir_item(trans, root, path, dir, di);
1131		if (ret)
1132			return ret;
1133	}
1134	btrfs_release_path(path);
1135
1136	/* look for a conflicing name */
1137	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138				   name, namelen, 0);
1139	if (di && !IS_ERR(di)) {
1140		ret = drop_one_dir_item(trans, root, path, dir, di);
1141		if (ret)
1142			return ret;
1143	}
1144	btrfs_release_path(path);
1145
1146	return 0;
1147}
 
 
 
1148
1149static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150			     u32 *namelen, char **name, u64 *index,
1151			     u64 *parent_objectid)
1152{
1153	struct btrfs_inode_extref *extref;
1154
1155	extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157	*namelen = btrfs_inode_extref_name_len(eb, extref);
1158	*name = kmalloc(*namelen, GFP_NOFS);
1159	if (*name == NULL)
1160		return -ENOMEM;
1161
1162	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163			   *namelen);
1164
1165	*index = btrfs_inode_extref_index(eb, extref);
1166	if (parent_objectid)
1167		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169	return 0;
1170}
1171
1172static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173			  u32 *namelen, char **name, u64 *index)
1174{
1175	struct btrfs_inode_ref *ref;
1176
1177	ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179	*namelen = btrfs_inode_ref_name_len(eb, ref);
1180	*name = kmalloc(*namelen, GFP_NOFS);
1181	if (*name == NULL)
1182		return -ENOMEM;
1183
1184	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186	*index = btrfs_inode_ref_index(eb, ref);
1187
1188	return 0;
1189}
1190
1191/*
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function.  (it should be released on return).
1196 */
1197static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198				  struct btrfs_root *root,
1199				  struct btrfs_root *log,
1200				  struct btrfs_path *path,
1201				  struct extent_buffer *eb, int slot,
1202				  struct btrfs_key *key)
1203{
1204	struct inode *dir = NULL;
1205	struct inode *inode = NULL;
1206	unsigned long ref_ptr;
1207	unsigned long ref_end;
1208	char *name = NULL;
1209	int namelen;
1210	int ret;
1211	int search_done = 0;
1212	int log_ref_ver = 0;
1213	u64 parent_objectid;
1214	u64 inode_objectid;
1215	u64 ref_index = 0;
1216	int ref_struct_size;
1217
1218	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222		struct btrfs_inode_extref *r;
1223
1224		ref_struct_size = sizeof(struct btrfs_inode_extref);
1225		log_ref_ver = 1;
1226		r = (struct btrfs_inode_extref *)ref_ptr;
1227		parent_objectid = btrfs_inode_extref_parent(eb, r);
1228	} else {
1229		ref_struct_size = sizeof(struct btrfs_inode_ref);
1230		parent_objectid = key->offset;
1231	}
1232	inode_objectid = key->objectid;
1233
1234	/*
1235	 * it is possible that we didn't log all the parent directories
1236	 * for a given inode.  If we don't find the dir, just don't
1237	 * copy the back ref in.  The link count fixup code will take
1238	 * care of the rest
1239	 */
1240	dir = read_one_inode(root, parent_objectid);
1241	if (!dir) {
1242		ret = -ENOENT;
1243		goto out;
1244	}
1245
1246	inode = read_one_inode(root, inode_objectid);
1247	if (!inode) {
1248		ret = -EIO;
1249		goto out;
1250	}
1251
1252	while (ref_ptr < ref_end) {
1253		if (log_ref_ver) {
1254			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255						&ref_index, &parent_objectid);
1256			/*
1257			 * parent object can change from one array
1258			 * item to another.
1259			 */
1260			if (!dir)
1261				dir = read_one_inode(root, parent_objectid);
1262			if (!dir) {
1263				ret = -ENOENT;
1264				goto out;
1265			}
1266		} else {
1267			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268					     &ref_index);
1269		}
1270		if (ret)
1271			goto out;
1272
1273		/* if we already have a perfect match, we're done */
1274		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275				  ref_index, name, namelen)) {
1276			/*
1277			 * look for a conflicting back reference in the
1278			 * metadata. if we find one we have to unlink that name
1279			 * of the file before we add our new link.  Later on, we
1280			 * overwrite any existing back reference, and we don't
1281			 * want to create dangling pointers in the directory.
1282			 */
1283
1284			if (!search_done) {
1285				ret = __add_inode_ref(trans, root, path, log,
1286						      dir, inode, eb,
1287						      inode_objectid,
1288						      parent_objectid,
1289						      ref_index, name, namelen,
1290						      &search_done);
1291				if (ret) {
1292					if (ret == 1)
1293						ret = 0;
1294					goto out;
1295				}
1296			}
1297
1298			/* insert our name */
1299			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300					     0, ref_index);
1301			if (ret)
1302				goto out;
1303
1304			btrfs_update_inode(trans, root, inode);
1305		}
1306
1307		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308		kfree(name);
1309		name = NULL;
1310		if (log_ref_ver) {
1311			iput(dir);
1312			dir = NULL;
1313		}
1314	}
1315
1316	/* finally write the back reference in the inode */
1317	ret = overwrite_item(trans, root, path, eb, slot, key);
1318out:
 
 
1319	btrfs_release_path(path);
1320	kfree(name);
1321	iput(dir);
1322	iput(inode);
1323	return ret;
1324}
1325
1326static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327			      struct btrfs_root *root, u64 ino)
1328{
1329	int ret;
1330
1331	ret = btrfs_insert_orphan_item(trans, root, ino);
1332	if (ret == -EEXIST)
1333		ret = 0;
1334
1335	return ret;
1336}
1337
1338static int count_inode_extrefs(struct btrfs_root *root,
1339			       struct inode *inode, struct btrfs_path *path)
1340{
1341	int ret = 0;
1342	int name_len;
1343	unsigned int nlink = 0;
1344	u32 item_size;
1345	u32 cur_offset = 0;
1346	u64 inode_objectid = btrfs_ino(inode);
1347	u64 offset = 0;
1348	unsigned long ptr;
1349	struct btrfs_inode_extref *extref;
1350	struct extent_buffer *leaf;
1351
1352	while (1) {
1353		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354					    &extref, &offset);
1355		if (ret)
1356			break;
1357
1358		leaf = path->nodes[0];
1359		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361		cur_offset = 0;
1362
1363		while (cur_offset < item_size) {
1364			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365			name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367			nlink++;
1368
1369			cur_offset += name_len + sizeof(*extref);
1370		}
1371
1372		offset++;
1373		btrfs_release_path(path);
1374	}
1375	btrfs_release_path(path);
1376
1377	if (ret < 0 && ret != -ENOENT)
1378		return ret;
1379	return nlink;
1380}
1381
1382static int count_inode_refs(struct btrfs_root *root,
1383			       struct inode *inode, struct btrfs_path *path)
1384{
 
1385	int ret;
1386	struct btrfs_key key;
1387	unsigned int nlink = 0;
1388	unsigned long ptr;
1389	unsigned long ptr_end;
1390	int name_len;
1391	u64 ino = btrfs_ino(inode);
1392
1393	key.objectid = ino;
1394	key.type = BTRFS_INODE_REF_KEY;
1395	key.offset = (u64)-1;
1396
 
 
 
 
1397	while (1) {
1398		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399		if (ret < 0)
1400			break;
1401		if (ret > 0) {
1402			if (path->slots[0] == 0)
1403				break;
1404			path->slots[0]--;
1405		}
1406process_slot:
1407		btrfs_item_key_to_cpu(path->nodes[0], &key,
1408				      path->slots[0]);
1409		if (key.objectid != ino ||
1410		    key.type != BTRFS_INODE_REF_KEY)
1411			break;
1412		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414						   path->slots[0]);
1415		while (ptr < ptr_end) {
1416			struct btrfs_inode_ref *ref;
1417
1418			ref = (struct btrfs_inode_ref *)ptr;
1419			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420							    ref);
1421			ptr = (unsigned long)(ref + 1) + name_len;
1422			nlink++;
1423		}
1424
1425		if (key.offset == 0)
1426			break;
1427		if (path->slots[0] > 0) {
1428			path->slots[0]--;
1429			goto process_slot;
1430		}
1431		key.offset--;
1432		btrfs_release_path(path);
1433	}
1434	btrfs_release_path(path);
1435
1436	return nlink;
1437}
1438
1439/*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay.  So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found.  If it goes down to zero, the iput
1447 * will free the inode.
1448 */
1449static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450					   struct btrfs_root *root,
1451					   struct inode *inode)
1452{
1453	struct btrfs_path *path;
1454	int ret;
1455	u64 nlink = 0;
1456	u64 ino = btrfs_ino(inode);
1457
1458	path = btrfs_alloc_path();
1459	if (!path)
1460		return -ENOMEM;
1461
1462	ret = count_inode_refs(root, inode, path);
1463	if (ret < 0)
1464		goto out;
1465
1466	nlink = ret;
1467
1468	ret = count_inode_extrefs(root, inode, path);
1469	if (ret < 0)
1470		goto out;
1471
1472	nlink += ret;
1473
1474	ret = 0;
1475
1476	if (nlink != inode->i_nlink) {
1477		set_nlink(inode, nlink);
1478		btrfs_update_inode(trans, root, inode);
1479	}
1480	BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482	if (inode->i_nlink == 0) {
1483		if (S_ISDIR(inode->i_mode)) {
1484			ret = replay_dir_deletes(trans, root, NULL, path,
1485						 ino, 1);
1486			if (ret)
1487				goto out;
1488		}
1489		ret = insert_orphan_item(trans, root, ino);
 
1490	}
 
1491
1492out:
1493	btrfs_free_path(path);
1494	return ret;
1495}
1496
1497static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498					    struct btrfs_root *root,
1499					    struct btrfs_path *path)
1500{
1501	int ret;
1502	struct btrfs_key key;
1503	struct inode *inode;
1504
1505	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506	key.type = BTRFS_ORPHAN_ITEM_KEY;
1507	key.offset = (u64)-1;
1508	while (1) {
1509		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510		if (ret < 0)
1511			break;
1512
1513		if (ret == 1) {
1514			if (path->slots[0] == 0)
1515				break;
1516			path->slots[0]--;
1517		}
1518
1519		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1522			break;
1523
1524		ret = btrfs_del_item(trans, root, path);
1525		if (ret)
1526			goto out;
1527
1528		btrfs_release_path(path);
1529		inode = read_one_inode(root, key.offset);
1530		if (!inode)
1531			return -EIO;
1532
1533		ret = fixup_inode_link_count(trans, root, inode);
 
 
1534		iput(inode);
1535		if (ret)
1536			goto out;
1537
1538		/*
1539		 * fixup on a directory may create new entries,
1540		 * make sure we always look for the highset possible
1541		 * offset
1542		 */
1543		key.offset = (u64)-1;
1544	}
1545	ret = 0;
1546out:
1547	btrfs_release_path(path);
1548	return ret;
1549}
1550
1551
1552/*
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done.  The link count is incremented here
1555 * so the inode won't go away until we check it
1556 */
1557static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558				      struct btrfs_root *root,
1559				      struct btrfs_path *path,
1560				      u64 objectid)
1561{
1562	struct btrfs_key key;
1563	int ret = 0;
1564	struct inode *inode;
1565
1566	inode = read_one_inode(root, objectid);
1567	if (!inode)
1568		return -EIO;
1569
1570	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571	key.type = BTRFS_ORPHAN_ITEM_KEY;
1572	key.offset = objectid;
1573
1574	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1575
1576	btrfs_release_path(path);
1577	if (ret == 0) {
1578		if (!inode->i_nlink)
1579			set_nlink(inode, 1);
1580		else
1581			inc_nlink(inode);
1582		ret = btrfs_update_inode(trans, root, inode);
1583	} else if (ret == -EEXIST) {
1584		ret = 0;
1585	} else {
1586		BUG(); /* Logic Error */
1587	}
1588	iput(inode);
1589
1590	return ret;
1591}
1592
1593/*
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist.  This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1597 */
1598static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599				    struct btrfs_root *root,
 
1600				    u64 dirid, u64 index,
1601				    char *name, int name_len,
1602				    struct btrfs_key *location)
1603{
1604	struct inode *inode;
1605	struct inode *dir;
1606	int ret;
1607
1608	inode = read_one_inode(root, location->objectid);
1609	if (!inode)
1610		return -ENOENT;
1611
1612	dir = read_one_inode(root, dirid);
1613	if (!dir) {
1614		iput(inode);
1615		return -EIO;
1616	}
1617
1618	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1619
1620	/* FIXME, put inode into FIXUP list */
1621
1622	iput(inode);
1623	iput(dir);
1624	return ret;
1625}
1626
1627/*
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1630 */
1631static bool name_in_log_ref(struct btrfs_root *log_root,
1632			    const char *name, const int name_len,
1633			    const u64 dirid, const u64 ino)
1634{
1635	struct btrfs_key search_key;
1636
1637	search_key.objectid = ino;
1638	search_key.type = BTRFS_INODE_REF_KEY;
1639	search_key.offset = dirid;
1640	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641		return true;
1642
1643	search_key.type = BTRFS_INODE_EXTREF_KEY;
1644	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646		return true;
1647
1648	return false;
1649}
1650
1651/*
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1654 *
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1658 *
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped.  fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1663 *
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1666 */
1667static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668				    struct btrfs_root *root,
1669				    struct btrfs_path *path,
1670				    struct extent_buffer *eb,
1671				    struct btrfs_dir_item *di,
1672				    struct btrfs_key *key)
1673{
1674	char *name;
1675	int name_len;
1676	struct btrfs_dir_item *dst_di;
1677	struct btrfs_key found_key;
1678	struct btrfs_key log_key;
1679	struct inode *dir;
1680	u8 log_type;
1681	int exists;
1682	int ret = 0;
1683	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684	bool name_added = false;
1685
1686	dir = read_one_inode(root, key->objectid);
1687	if (!dir)
1688		return -EIO;
1689
1690	name_len = btrfs_dir_name_len(eb, di);
1691	name = kmalloc(name_len, GFP_NOFS);
1692	if (!name) {
1693		ret = -ENOMEM;
1694		goto out;
1695	}
1696
1697	log_type = btrfs_dir_type(eb, di);
1698	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699		   name_len);
1700
1701	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703	if (exists == 0)
1704		exists = 1;
1705	else
1706		exists = 0;
1707	btrfs_release_path(path);
1708
1709	if (key->type == BTRFS_DIR_ITEM_KEY) {
1710		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711				       name, name_len, 1);
1712	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714						     key->objectid,
1715						     key->offset, name,
1716						     name_len, 1);
1717	} else {
1718		/* Corruption */
1719		ret = -EINVAL;
1720		goto out;
1721	}
1722	if (IS_ERR_OR_NULL(dst_di)) {
1723		/* we need a sequence number to insert, so we only
1724		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1725		 */
1726		if (key->type != BTRFS_DIR_INDEX_KEY)
1727			goto out;
1728		goto insert;
1729	}
1730
1731	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732	/* the existing item matches the logged item */
1733	if (found_key.objectid == log_key.objectid &&
1734	    found_key.type == log_key.type &&
1735	    found_key.offset == log_key.offset &&
1736	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737		update_size = false;
1738		goto out;
1739	}
1740
1741	/*
1742	 * don't drop the conflicting directory entry if the inode
1743	 * for the new entry doesn't exist
1744	 */
1745	if (!exists)
1746		goto out;
1747
1748	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749	if (ret)
1750		goto out;
1751
1752	if (key->type == BTRFS_DIR_INDEX_KEY)
1753		goto insert;
1754out:
1755	btrfs_release_path(path);
1756	if (!ret && update_size) {
1757		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758		ret = btrfs_update_inode(trans, root, dir);
1759	}
1760	kfree(name);
1761	iput(dir);
1762	if (!ret && name_added)
1763		ret = 1;
1764	return ret;
1765
1766insert:
1767	if (name_in_log_ref(root->log_root, name, name_len,
1768			    key->objectid, log_key.objectid)) {
1769		/* The dentry will be added later. */
1770		ret = 0;
1771		update_size = false;
1772		goto out;
1773	}
1774	btrfs_release_path(path);
1775	ret = insert_one_name(trans, root, key->objectid, key->offset,
1776			      name, name_len, &log_key);
1777	if (ret && ret != -ENOENT && ret != -EEXIST)
1778		goto out;
1779	if (!ret)
1780		name_added = true;
1781	update_size = false;
1782	ret = 0;
1783	goto out;
1784}
1785
1786/*
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1791 */
1792static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793					struct btrfs_root *root,
1794					struct btrfs_path *path,
1795					struct extent_buffer *eb, int slot,
1796					struct btrfs_key *key)
1797{
1798	int ret = 0;
1799	u32 item_size = btrfs_item_size_nr(eb, slot);
1800	struct btrfs_dir_item *di;
1801	int name_len;
1802	unsigned long ptr;
1803	unsigned long ptr_end;
1804	struct btrfs_path *fixup_path = NULL;
1805
1806	ptr = btrfs_item_ptr_offset(eb, slot);
1807	ptr_end = ptr + item_size;
1808	while (ptr < ptr_end) {
1809		di = (struct btrfs_dir_item *)ptr;
1810		if (verify_dir_item(root, eb, di))
1811			return -EIO;
1812		name_len = btrfs_dir_name_len(eb, di);
1813		ret = replay_one_name(trans, root, path, eb, di, key);
1814		if (ret < 0)
1815			break;
1816		ptr = (unsigned long)(di + 1);
1817		ptr += name_len;
1818
1819		/*
1820		 * If this entry refers to a non-directory (directories can not
1821		 * have a link count > 1) and it was added in the transaction
1822		 * that was not committed, make sure we fixup the link count of
1823		 * the inode it the entry points to. Otherwise something like
1824		 * the following would result in a directory pointing to an
1825		 * inode with a wrong link that does not account for this dir
1826		 * entry:
1827		 *
1828		 * mkdir testdir
1829		 * touch testdir/foo
1830		 * touch testdir/bar
1831		 * sync
1832		 *
1833		 * ln testdir/bar testdir/bar_link
1834		 * ln testdir/foo testdir/foo_link
1835		 * xfs_io -c "fsync" testdir/bar
1836		 *
1837		 * <power failure>
1838		 *
1839		 * mount fs, log replay happens
1840		 *
1841		 * File foo would remain with a link count of 1 when it has two
1842		 * entries pointing to it in the directory testdir. This would
1843		 * make it impossible to ever delete the parent directory has
1844		 * it would result in stale dentries that can never be deleted.
1845		 */
1846		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847			struct btrfs_key di_key;
1848
1849			if (!fixup_path) {
1850				fixup_path = btrfs_alloc_path();
1851				if (!fixup_path) {
1852					ret = -ENOMEM;
1853					break;
1854				}
1855			}
1856
1857			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858			ret = link_to_fixup_dir(trans, root, fixup_path,
1859						di_key.objectid);
1860			if (ret)
1861				break;
1862		}
1863		ret = 0;
1864	}
1865	btrfs_free_path(fixup_path);
1866	return ret;
1867}
1868
1869/*
1870 * directory replay has two parts.  There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1873 *
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for.  During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1879 */
1880static noinline int find_dir_range(struct btrfs_root *root,
1881				   struct btrfs_path *path,
1882				   u64 dirid, int key_type,
1883				   u64 *start_ret, u64 *end_ret)
1884{
1885	struct btrfs_key key;
1886	u64 found_end;
1887	struct btrfs_dir_log_item *item;
1888	int ret;
1889	int nritems;
1890
1891	if (*start_ret == (u64)-1)
1892		return 1;
1893
1894	key.objectid = dirid;
1895	key.type = key_type;
1896	key.offset = *start_ret;
1897
1898	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899	if (ret < 0)
1900		goto out;
1901	if (ret > 0) {
1902		if (path->slots[0] == 0)
1903			goto out;
1904		path->slots[0]--;
1905	}
1906	if (ret != 0)
1907		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1908
1909	if (key.type != key_type || key.objectid != dirid) {
1910		ret = 1;
1911		goto next;
1912	}
1913	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914			      struct btrfs_dir_log_item);
1915	found_end = btrfs_dir_log_end(path->nodes[0], item);
1916
1917	if (*start_ret >= key.offset && *start_ret <= found_end) {
1918		ret = 0;
1919		*start_ret = key.offset;
1920		*end_ret = found_end;
1921		goto out;
1922	}
1923	ret = 1;
1924next:
1925	/* check the next slot in the tree to see if it is a valid item */
1926	nritems = btrfs_header_nritems(path->nodes[0]);
1927	if (path->slots[0] >= nritems) {
1928		ret = btrfs_next_leaf(root, path);
1929		if (ret)
1930			goto out;
1931	} else {
1932		path->slots[0]++;
1933	}
1934
1935	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936
1937	if (key.type != key_type || key.objectid != dirid) {
1938		ret = 1;
1939		goto out;
1940	}
1941	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1942			      struct btrfs_dir_log_item);
1943	found_end = btrfs_dir_log_end(path->nodes[0], item);
1944	*start_ret = key.offset;
1945	*end_ret = found_end;
1946	ret = 0;
1947out:
1948	btrfs_release_path(path);
1949	return ret;
1950}
1951
1952/*
1953 * this looks for a given directory item in the log.  If the directory
1954 * item is not in the log, the item is removed and the inode it points
1955 * to is unlinked
1956 */
1957static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1958				      struct btrfs_root *root,
1959				      struct btrfs_root *log,
1960				      struct btrfs_path *path,
1961				      struct btrfs_path *log_path,
1962				      struct inode *dir,
1963				      struct btrfs_key *dir_key)
1964{
1965	int ret;
1966	struct extent_buffer *eb;
1967	int slot;
1968	u32 item_size;
1969	struct btrfs_dir_item *di;
1970	struct btrfs_dir_item *log_di;
1971	int name_len;
1972	unsigned long ptr;
1973	unsigned long ptr_end;
1974	char *name;
1975	struct inode *inode;
1976	struct btrfs_key location;
1977
1978again:
1979	eb = path->nodes[0];
1980	slot = path->slots[0];
1981	item_size = btrfs_item_size_nr(eb, slot);
1982	ptr = btrfs_item_ptr_offset(eb, slot);
1983	ptr_end = ptr + item_size;
1984	while (ptr < ptr_end) {
1985		di = (struct btrfs_dir_item *)ptr;
1986		if (verify_dir_item(root, eb, di)) {
1987			ret = -EIO;
1988			goto out;
1989		}
1990
1991		name_len = btrfs_dir_name_len(eb, di);
1992		name = kmalloc(name_len, GFP_NOFS);
1993		if (!name) {
1994			ret = -ENOMEM;
1995			goto out;
1996		}
1997		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1998				  name_len);
1999		log_di = NULL;
2000		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2001			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2002						       dir_key->objectid,
2003						       name, name_len, 0);
2004		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2005			log_di = btrfs_lookup_dir_index_item(trans, log,
2006						     log_path,
2007						     dir_key->objectid,
2008						     dir_key->offset,
2009						     name, name_len, 0);
2010		}
2011		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2012			btrfs_dir_item_key_to_cpu(eb, di, &location);
2013			btrfs_release_path(path);
2014			btrfs_release_path(log_path);
2015			inode = read_one_inode(root, location.objectid);
2016			if (!inode) {
2017				kfree(name);
2018				return -EIO;
2019			}
2020
2021			ret = link_to_fixup_dir(trans, root,
2022						path, location.objectid);
2023			if (ret) {
2024				kfree(name);
2025				iput(inode);
2026				goto out;
2027			}
2028
2029			inc_nlink(inode);
2030			ret = btrfs_unlink_inode(trans, root, dir, inode,
2031						 name, name_len);
2032			if (!ret)
2033				ret = btrfs_run_delayed_items(trans, root);
2034			kfree(name);
2035			iput(inode);
2036			if (ret)
2037				goto out;
2038
2039			/* there might still be more names under this key
2040			 * check and repeat if required
2041			 */
2042			ret = btrfs_search_slot(NULL, root, dir_key, path,
2043						0, 0);
2044			if (ret == 0)
2045				goto again;
2046			ret = 0;
2047			goto out;
2048		} else if (IS_ERR(log_di)) {
2049			kfree(name);
2050			return PTR_ERR(log_di);
2051		}
2052		btrfs_release_path(log_path);
2053		kfree(name);
2054
2055		ptr = (unsigned long)(di + 1);
2056		ptr += name_len;
2057	}
2058	ret = 0;
2059out:
2060	btrfs_release_path(path);
2061	btrfs_release_path(log_path);
2062	return ret;
2063}
2064
2065static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2066			      struct btrfs_root *root,
2067			      struct btrfs_root *log,
2068			      struct btrfs_path *path,
2069			      const u64 ino)
2070{
2071	struct btrfs_key search_key;
2072	struct btrfs_path *log_path;
2073	int i;
2074	int nritems;
2075	int ret;
2076
2077	log_path = btrfs_alloc_path();
2078	if (!log_path)
2079		return -ENOMEM;
2080
2081	search_key.objectid = ino;
2082	search_key.type = BTRFS_XATTR_ITEM_KEY;
2083	search_key.offset = 0;
2084again:
2085	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2086	if (ret < 0)
2087		goto out;
2088process_leaf:
2089	nritems = btrfs_header_nritems(path->nodes[0]);
2090	for (i = path->slots[0]; i < nritems; i++) {
2091		struct btrfs_key key;
2092		struct btrfs_dir_item *di;
2093		struct btrfs_dir_item *log_di;
2094		u32 total_size;
2095		u32 cur;
2096
2097		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2098		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2099			ret = 0;
2100			goto out;
2101		}
2102
2103		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2104		total_size = btrfs_item_size_nr(path->nodes[0], i);
2105		cur = 0;
2106		while (cur < total_size) {
2107			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2108			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2109			u32 this_len = sizeof(*di) + name_len + data_len;
2110			char *name;
2111
2112			name = kmalloc(name_len, GFP_NOFS);
2113			if (!name) {
2114				ret = -ENOMEM;
2115				goto out;
2116			}
2117			read_extent_buffer(path->nodes[0], name,
2118					   (unsigned long)(di + 1), name_len);
2119
2120			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2121						    name, name_len, 0);
2122			btrfs_release_path(log_path);
2123			if (!log_di) {
2124				/* Doesn't exist in log tree, so delete it. */
2125				btrfs_release_path(path);
2126				di = btrfs_lookup_xattr(trans, root, path, ino,
2127							name, name_len, -1);
2128				kfree(name);
2129				if (IS_ERR(di)) {
2130					ret = PTR_ERR(di);
2131					goto out;
2132				}
2133				ASSERT(di);
2134				ret = btrfs_delete_one_dir_name(trans, root,
2135								path, di);
2136				if (ret)
2137					goto out;
2138				btrfs_release_path(path);
2139				search_key = key;
2140				goto again;
2141			}
2142			kfree(name);
2143			if (IS_ERR(log_di)) {
2144				ret = PTR_ERR(log_di);
2145				goto out;
2146			}
2147			cur += this_len;
2148			di = (struct btrfs_dir_item *)((char *)di + this_len);
2149		}
2150	}
2151	ret = btrfs_next_leaf(root, path);
2152	if (ret > 0)
2153		ret = 0;
2154	else if (ret == 0)
2155		goto process_leaf;
2156out:
2157	btrfs_free_path(log_path);
2158	btrfs_release_path(path);
2159	return ret;
2160}
2161
2162
2163/*
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes.  It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2169 *
2170 * Anything we don't find in the log is unlinked and removed from the
2171 * directory.
2172 */
2173static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2174				       struct btrfs_root *root,
2175				       struct btrfs_root *log,
2176				       struct btrfs_path *path,
2177				       u64 dirid, int del_all)
2178{
2179	u64 range_start;
2180	u64 range_end;
2181	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2182	int ret = 0;
2183	struct btrfs_key dir_key;
2184	struct btrfs_key found_key;
2185	struct btrfs_path *log_path;
2186	struct inode *dir;
2187
2188	dir_key.objectid = dirid;
2189	dir_key.type = BTRFS_DIR_ITEM_KEY;
2190	log_path = btrfs_alloc_path();
2191	if (!log_path)
2192		return -ENOMEM;
2193
2194	dir = read_one_inode(root, dirid);
2195	/* it isn't an error if the inode isn't there, that can happen
2196	 * because we replay the deletes before we copy in the inode item
2197	 * from the log
2198	 */
2199	if (!dir) {
2200		btrfs_free_path(log_path);
2201		return 0;
2202	}
2203again:
2204	range_start = 0;
2205	range_end = 0;
2206	while (1) {
2207		if (del_all)
2208			range_end = (u64)-1;
2209		else {
2210			ret = find_dir_range(log, path, dirid, key_type,
2211					     &range_start, &range_end);
2212			if (ret != 0)
2213				break;
2214		}
2215
2216		dir_key.offset = range_start;
2217		while (1) {
2218			int nritems;
2219			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220						0, 0);
2221			if (ret < 0)
2222				goto out;
2223
2224			nritems = btrfs_header_nritems(path->nodes[0]);
2225			if (path->slots[0] >= nritems) {
2226				ret = btrfs_next_leaf(root, path);
2227				if (ret)
2228					break;
2229			}
2230			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2231					      path->slots[0]);
2232			if (found_key.objectid != dirid ||
2233			    found_key.type != dir_key.type)
2234				goto next_type;
2235
2236			if (found_key.offset > range_end)
2237				break;
2238
2239			ret = check_item_in_log(trans, root, log, path,
2240						log_path, dir,
2241						&found_key);
2242			if (ret)
2243				goto out;
2244			if (found_key.offset == (u64)-1)
2245				break;
2246			dir_key.offset = found_key.offset + 1;
2247		}
2248		btrfs_release_path(path);
2249		if (range_end == (u64)-1)
2250			break;
2251		range_start = range_end + 1;
2252	}
2253
2254next_type:
2255	ret = 0;
2256	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2257		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2258		dir_key.type = BTRFS_DIR_INDEX_KEY;
2259		btrfs_release_path(path);
2260		goto again;
2261	}
2262out:
2263	btrfs_release_path(path);
2264	btrfs_free_path(log_path);
2265	iput(dir);
2266	return ret;
2267}
2268
2269/*
2270 * the process_func used to replay items from the log tree.  This
2271 * gets called in two different stages.  The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2273 *
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume.  The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2278 * back refs).
2279 */
2280static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2281			     struct walk_control *wc, u64 gen)
2282{
2283	int nritems;
2284	struct btrfs_path *path;
2285	struct btrfs_root *root = wc->replay_dest;
2286	struct btrfs_key key;
2287	int level;
2288	int i;
2289	int ret;
2290
2291	ret = btrfs_read_buffer(eb, gen);
2292	if (ret)
2293		return ret;
2294
2295	level = btrfs_header_level(eb);
2296
2297	if (level != 0)
2298		return 0;
2299
2300	path = btrfs_alloc_path();
2301	if (!path)
2302		return -ENOMEM;
2303
2304	nritems = btrfs_header_nritems(eb);
2305	for (i = 0; i < nritems; i++) {
2306		btrfs_item_key_to_cpu(eb, &key, i);
2307
2308		/* inode keys are done during the first stage */
2309		if (key.type == BTRFS_INODE_ITEM_KEY &&
2310		    wc->stage == LOG_WALK_REPLAY_INODES) {
2311			struct btrfs_inode_item *inode_item;
2312			u32 mode;
2313
2314			inode_item = btrfs_item_ptr(eb, i,
2315					    struct btrfs_inode_item);
2316			ret = replay_xattr_deletes(wc->trans, root, log,
2317						   path, key.objectid);
2318			if (ret)
2319				break;
2320			mode = btrfs_inode_mode(eb, inode_item);
2321			if (S_ISDIR(mode)) {
2322				ret = replay_dir_deletes(wc->trans,
2323					 root, log, path, key.objectid, 0);
2324				if (ret)
2325					break;
2326			}
2327			ret = overwrite_item(wc->trans, root, path,
2328					     eb, i, &key);
2329			if (ret)
2330				break;
2331
2332			/* for regular files, make sure corresponding
2333			 * orhpan item exist. extents past the new EOF
2334			 * will be truncated later by orphan cleanup.
2335			 */
2336			if (S_ISREG(mode)) {
2337				ret = insert_orphan_item(wc->trans, root,
2338							 key.objectid);
2339				if (ret)
2340					break;
2341			}
2342
2343			ret = link_to_fixup_dir(wc->trans, root,
2344						path, key.objectid);
2345			if (ret)
2346				break;
2347		}
2348
2349		if (key.type == BTRFS_DIR_INDEX_KEY &&
2350		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2351			ret = replay_one_dir_item(wc->trans, root, path,
2352						  eb, i, &key);
2353			if (ret)
2354				break;
2355		}
2356
2357		if (wc->stage < LOG_WALK_REPLAY_ALL)
2358			continue;
2359
2360		/* these keys are simply copied */
2361		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2362			ret = overwrite_item(wc->trans, root, path,
2363					     eb, i, &key);
2364			if (ret)
2365				break;
2366		} else if (key.type == BTRFS_INODE_REF_KEY ||
2367			   key.type == BTRFS_INODE_EXTREF_KEY) {
2368			ret = add_inode_ref(wc->trans, root, log, path,
2369					    eb, i, &key);
2370			if (ret && ret != -ENOENT)
2371				break;
2372			ret = 0;
2373		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2374			ret = replay_one_extent(wc->trans, root, path,
2375						eb, i, &key);
2376			if (ret)
2377				break;
2378		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2379			ret = replay_one_dir_item(wc->trans, root, path,
2380						  eb, i, &key);
2381			if (ret)
2382				break;
2383		}
2384	}
2385	btrfs_free_path(path);
2386	return ret;
2387}
2388
2389static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2390				   struct btrfs_root *root,
2391				   struct btrfs_path *path, int *level,
2392				   struct walk_control *wc)
2393{
2394	u64 root_owner;
2395	u64 bytenr;
2396	u64 ptr_gen;
2397	struct extent_buffer *next;
2398	struct extent_buffer *cur;
2399	struct extent_buffer *parent;
2400	u32 blocksize;
2401	int ret = 0;
2402
2403	WARN_ON(*level < 0);
2404	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2405
2406	while (*level > 0) {
2407		WARN_ON(*level < 0);
2408		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2409		cur = path->nodes[*level];
2410
2411		WARN_ON(btrfs_header_level(cur) != *level);
 
2412
2413		if (path->slots[*level] >=
2414		    btrfs_header_nritems(cur))
2415			break;
2416
2417		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2418		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2419		blocksize = root->nodesize;
2420
2421		parent = path->nodes[*level];
2422		root_owner = btrfs_header_owner(parent);
2423
2424		next = btrfs_find_create_tree_block(root, bytenr);
2425		if (!next)
2426			return -ENOMEM;
2427
2428		if (*level == 1) {
2429			ret = wc->process_func(root, next, wc, ptr_gen);
2430			if (ret) {
2431				free_extent_buffer(next);
2432				return ret;
2433			}
2434
2435			path->slots[*level]++;
2436			if (wc->free) {
2437				ret = btrfs_read_buffer(next, ptr_gen);
2438				if (ret) {
2439					free_extent_buffer(next);
2440					return ret;
2441				}
2442
2443				if (trans) {
2444					btrfs_tree_lock(next);
2445					btrfs_set_lock_blocking(next);
2446					clean_tree_block(trans, root->fs_info,
2447							next);
2448					btrfs_wait_tree_block_writeback(next);
2449					btrfs_tree_unlock(next);
2450				}
2451
2452				WARN_ON(root_owner !=
2453					BTRFS_TREE_LOG_OBJECTID);
2454				ret = btrfs_free_and_pin_reserved_extent(root,
2455							 bytenr, blocksize);
2456				if (ret) {
2457					free_extent_buffer(next);
2458					return ret;
2459				}
2460			}
2461			free_extent_buffer(next);
2462			continue;
2463		}
2464		ret = btrfs_read_buffer(next, ptr_gen);
2465		if (ret) {
2466			free_extent_buffer(next);
2467			return ret;
2468		}
2469
2470		WARN_ON(*level <= 0);
2471		if (path->nodes[*level-1])
2472			free_extent_buffer(path->nodes[*level-1]);
2473		path->nodes[*level-1] = next;
2474		*level = btrfs_header_level(next);
2475		path->slots[*level] = 0;
2476		cond_resched();
2477	}
2478	WARN_ON(*level < 0);
2479	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2480
2481	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2482
2483	cond_resched();
2484	return 0;
2485}
2486
2487static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2488				 struct btrfs_root *root,
2489				 struct btrfs_path *path, int *level,
2490				 struct walk_control *wc)
2491{
2492	u64 root_owner;
2493	int i;
2494	int slot;
2495	int ret;
2496
2497	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2498		slot = path->slots[i];
2499		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2500			path->slots[i]++;
2501			*level = i;
2502			WARN_ON(*level == 0);
2503			return 0;
2504		} else {
2505			struct extent_buffer *parent;
2506			if (path->nodes[*level] == root->node)
2507				parent = path->nodes[*level];
2508			else
2509				parent = path->nodes[*level + 1];
2510
2511			root_owner = btrfs_header_owner(parent);
2512			ret = wc->process_func(root, path->nodes[*level], wc,
2513				 btrfs_header_generation(path->nodes[*level]));
2514			if (ret)
2515				return ret;
2516
2517			if (wc->free) {
2518				struct extent_buffer *next;
2519
2520				next = path->nodes[*level];
2521
2522				if (trans) {
2523					btrfs_tree_lock(next);
2524					btrfs_set_lock_blocking(next);
2525					clean_tree_block(trans, root->fs_info,
2526							next);
2527					btrfs_wait_tree_block_writeback(next);
2528					btrfs_tree_unlock(next);
2529				}
2530
2531				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2532				ret = btrfs_free_and_pin_reserved_extent(root,
2533						path->nodes[*level]->start,
2534						path->nodes[*level]->len);
2535				if (ret)
2536					return ret;
2537			}
2538			free_extent_buffer(path->nodes[*level]);
2539			path->nodes[*level] = NULL;
2540			*level = i + 1;
2541		}
2542	}
2543	return 1;
2544}
2545
2546/*
2547 * drop the reference count on the tree rooted at 'snap'.  This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2549 * decremented.
2550 */
2551static int walk_log_tree(struct btrfs_trans_handle *trans,
2552			 struct btrfs_root *log, struct walk_control *wc)
2553{
2554	int ret = 0;
2555	int wret;
2556	int level;
2557	struct btrfs_path *path;
 
2558	int orig_level;
2559
2560	path = btrfs_alloc_path();
2561	if (!path)
2562		return -ENOMEM;
2563
2564	level = btrfs_header_level(log->node);
2565	orig_level = level;
2566	path->nodes[level] = log->node;
2567	extent_buffer_get(log->node);
2568	path->slots[level] = 0;
2569
2570	while (1) {
2571		wret = walk_down_log_tree(trans, log, path, &level, wc);
2572		if (wret > 0)
2573			break;
2574		if (wret < 0) {
2575			ret = wret;
2576			goto out;
2577		}
2578
2579		wret = walk_up_log_tree(trans, log, path, &level, wc);
2580		if (wret > 0)
2581			break;
2582		if (wret < 0) {
2583			ret = wret;
2584			goto out;
2585		}
2586	}
2587
2588	/* was the root node processed? if not, catch it here */
2589	if (path->nodes[orig_level]) {
2590		ret = wc->process_func(log, path->nodes[orig_level], wc,
2591			 btrfs_header_generation(path->nodes[orig_level]));
2592		if (ret)
2593			goto out;
2594		if (wc->free) {
2595			struct extent_buffer *next;
2596
2597			next = path->nodes[orig_level];
2598
2599			if (trans) {
2600				btrfs_tree_lock(next);
2601				btrfs_set_lock_blocking(next);
2602				clean_tree_block(trans, log->fs_info, next);
2603				btrfs_wait_tree_block_writeback(next);
2604				btrfs_tree_unlock(next);
2605			}
2606
2607			WARN_ON(log->root_key.objectid !=
2608				BTRFS_TREE_LOG_OBJECTID);
2609			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2610							 next->len);
2611			if (ret)
2612				goto out;
2613		}
2614	}
2615
2616out:
 
 
 
 
 
2617	btrfs_free_path(path);
2618	return ret;
2619}
2620
2621/*
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2624 */
2625static int update_log_root(struct btrfs_trans_handle *trans,
2626			   struct btrfs_root *log)
2627{
2628	int ret;
2629
2630	if (log->log_transid == 1) {
2631		/* insert root item on the first sync */
2632		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2633				&log->root_key, &log->root_item);
2634	} else {
2635		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2636				&log->root_key, &log->root_item);
2637	}
2638	return ret;
2639}
2640
2641static void wait_log_commit(struct btrfs_root *root, int transid)
 
2642{
2643	DEFINE_WAIT(wait);
2644	int index = transid % 2;
2645
2646	/*
2647	 * we only allow two pending log transactions at a time,
2648	 * so we know that if ours is more than 2 older than the
2649	 * current transaction, we're done
2650	 */
2651	do {
2652		prepare_to_wait(&root->log_commit_wait[index],
2653				&wait, TASK_UNINTERRUPTIBLE);
2654		mutex_unlock(&root->log_mutex);
2655
2656		if (root->log_transid_committed < transid &&
 
2657		    atomic_read(&root->log_commit[index]))
2658			schedule();
2659
2660		finish_wait(&root->log_commit_wait[index], &wait);
2661		mutex_lock(&root->log_mutex);
2662	} while (root->log_transid_committed < transid &&
2663		 atomic_read(&root->log_commit[index]));
 
2664}
2665
2666static void wait_for_writer(struct btrfs_root *root)
 
2667{
2668	DEFINE_WAIT(wait);
2669
2670	while (atomic_read(&root->log_writers)) {
2671		prepare_to_wait(&root->log_writer_wait,
2672				&wait, TASK_UNINTERRUPTIBLE);
2673		mutex_unlock(&root->log_mutex);
2674		if (atomic_read(&root->log_writers))
 
2675			schedule();
 
2676		finish_wait(&root->log_writer_wait, &wait);
2677		mutex_lock(&root->log_mutex);
2678	}
2679}
2680
2681static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2682					struct btrfs_log_ctx *ctx)
2683{
2684	if (!ctx)
2685		return;
2686
2687	mutex_lock(&root->log_mutex);
2688	list_del_init(&ctx->list);
2689	mutex_unlock(&root->log_mutex);
2690}
2691
2692/* 
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2695 */
2696static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2697					     int index, int error)
2698{
2699	struct btrfs_log_ctx *ctx;
2700
2701	if (!error) {
2702		INIT_LIST_HEAD(&root->log_ctxs[index]);
2703		return;
2704	}
2705
2706	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2707		ctx->log_ret = error;
2708
2709	INIT_LIST_HEAD(&root->log_ctxs[index]);
2710}
2711
2712/*
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it.  When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2716 * if it returns 0.
2717 *
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2723 */
2724int btrfs_sync_log(struct btrfs_trans_handle *trans,
2725		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2726{
2727	int index1;
2728	int index2;
2729	int mark;
2730	int ret;
2731	struct btrfs_root *log = root->log_root;
2732	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2733	int log_transid = 0;
2734	struct btrfs_log_ctx root_log_ctx;
2735	struct blk_plug plug;
2736
2737	mutex_lock(&root->log_mutex);
2738	log_transid = ctx->log_transid;
2739	if (root->log_transid_committed >= log_transid) {
2740		mutex_unlock(&root->log_mutex);
2741		return ctx->log_ret;
2742	}
2743
2744	index1 = log_transid % 2;
2745	if (atomic_read(&root->log_commit[index1])) {
2746		wait_log_commit(root, log_transid);
2747		mutex_unlock(&root->log_mutex);
2748		return ctx->log_ret;
2749	}
2750	ASSERT(log_transid == root->log_transid);
2751	atomic_set(&root->log_commit[index1], 1);
2752
2753	/* wait for previous tree log sync to complete */
2754	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2755		wait_log_commit(root, log_transid - 1);
2756
2757	while (1) {
2758		int batch = atomic_read(&root->log_batch);
2759		/* when we're on an ssd, just kick the log commit out */
2760		if (!btrfs_test_opt(root, SSD) &&
2761		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2762			mutex_unlock(&root->log_mutex);
2763			schedule_timeout_uninterruptible(1);
2764			mutex_lock(&root->log_mutex);
2765		}
2766		wait_for_writer(root);
2767		if (batch == atomic_read(&root->log_batch))
2768			break;
2769	}
2770
2771	/* bail out if we need to do a full commit */
2772	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2773		ret = -EAGAIN;
2774		btrfs_free_logged_extents(log, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		goto out;
2777	}
2778
 
2779	if (log_transid % 2 == 0)
2780		mark = EXTENT_DIRTY;
2781	else
2782		mark = EXTENT_NEW;
2783
2784	/* we start IO on  all the marked extents here, but we don't actually
2785	 * wait for them until later.
2786	 */
2787	blk_start_plug(&plug);
2788	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2789	if (ret) {
2790		blk_finish_plug(&plug);
2791		btrfs_abort_transaction(trans, root, ret);
2792		btrfs_free_logged_extents(log, log_transid);
2793		btrfs_set_log_full_commit(root->fs_info, trans);
2794		mutex_unlock(&root->log_mutex);
2795		goto out;
2796	}
2797
2798	btrfs_set_root_node(&log->root_item, log->node);
2799
 
2800	root->log_transid++;
2801	log->log_transid = root->log_transid;
2802	root->log_start_pid = 0;
 
2803	/*
2804	 * IO has been started, blocks of the log tree have WRITTEN flag set
2805	 * in their headers. new modifications of the log will be written to
2806	 * new positions. so it's safe to allow log writers to go in.
2807	 */
2808	mutex_unlock(&root->log_mutex);
2809
2810	btrfs_init_log_ctx(&root_log_ctx);
2811
2812	mutex_lock(&log_root_tree->log_mutex);
2813	atomic_inc(&log_root_tree->log_batch);
2814	atomic_inc(&log_root_tree->log_writers);
2815
2816	index2 = log_root_tree->log_transid % 2;
2817	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2818	root_log_ctx.log_transid = log_root_tree->log_transid;
2819
2820	mutex_unlock(&log_root_tree->log_mutex);
2821
2822	ret = update_log_root(trans, log);
2823
2824	mutex_lock(&log_root_tree->log_mutex);
2825	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2826		/*
2827		 * Implicit memory barrier after atomic_dec_and_test
2828		 */
2829		if (waitqueue_active(&log_root_tree->log_writer_wait))
2830			wake_up(&log_root_tree->log_writer_wait);
2831	}
2832
2833	if (ret) {
2834		if (!list_empty(&root_log_ctx.list))
2835			list_del_init(&root_log_ctx.list);
2836
2837		blk_finish_plug(&plug);
2838		btrfs_set_log_full_commit(root->fs_info, trans);
2839
2840		if (ret != -ENOSPC) {
2841			btrfs_abort_transaction(trans, root, ret);
2842			mutex_unlock(&log_root_tree->log_mutex);
2843			goto out;
2844		}
2845		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2846		btrfs_free_logged_extents(log, log_transid);
2847		mutex_unlock(&log_root_tree->log_mutex);
2848		ret = -EAGAIN;
2849		goto out;
2850	}
2851
2852	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2853		blk_finish_plug(&plug);
2854		mutex_unlock(&log_root_tree->log_mutex);
2855		ret = root_log_ctx.log_ret;
2856		goto out;
2857	}
2858
2859	index2 = root_log_ctx.log_transid % 2;
2860	if (atomic_read(&log_root_tree->log_commit[index2])) {
2861		blk_finish_plug(&plug);
2862		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2863						mark);
2864		btrfs_wait_logged_extents(trans, log, log_transid);
2865		wait_log_commit(log_root_tree,
2866				root_log_ctx.log_transid);
2867		mutex_unlock(&log_root_tree->log_mutex);
2868		if (!ret)
2869			ret = root_log_ctx.log_ret;
2870		goto out;
2871	}
2872	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2873	atomic_set(&log_root_tree->log_commit[index2], 1);
2874
2875	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2876		wait_log_commit(log_root_tree,
2877				root_log_ctx.log_transid - 1);
2878	}
2879
2880	wait_for_writer(log_root_tree);
2881
2882	/*
2883	 * now that we've moved on to the tree of log tree roots,
2884	 * check the full commit flag again
2885	 */
2886	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2887		blk_finish_plug(&plug);
2888		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2889		btrfs_free_logged_extents(log, log_transid);
2890		mutex_unlock(&log_root_tree->log_mutex);
2891		ret = -EAGAIN;
2892		goto out_wake_log_root;
2893	}
2894
2895	ret = btrfs_write_marked_extents(log_root_tree,
2896					 &log_root_tree->dirty_log_pages,
2897					 EXTENT_DIRTY | EXTENT_NEW);
2898	blk_finish_plug(&plug);
2899	if (ret) {
2900		btrfs_set_log_full_commit(root->fs_info, trans);
2901		btrfs_abort_transaction(trans, root, ret);
2902		btrfs_free_logged_extents(log, log_transid);
2903		mutex_unlock(&log_root_tree->log_mutex);
2904		goto out_wake_log_root;
2905	}
2906	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2907	if (!ret)
2908		ret = btrfs_wait_marked_extents(log_root_tree,
2909						&log_root_tree->dirty_log_pages,
2910						EXTENT_NEW | EXTENT_DIRTY);
2911	if (ret) {
2912		btrfs_set_log_full_commit(root->fs_info, trans);
2913		btrfs_free_logged_extents(log, log_transid);
2914		mutex_unlock(&log_root_tree->log_mutex);
2915		goto out_wake_log_root;
2916	}
2917	btrfs_wait_logged_extents(trans, log, log_transid);
2918
2919	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2920				log_root_tree->node->start);
2921	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2922				btrfs_header_level(log_root_tree->node));
2923
 
2924	log_root_tree->log_transid++;
 
 
2925	mutex_unlock(&log_root_tree->log_mutex);
2926
2927	/*
2928	 * nobody else is going to jump in and write the the ctree
2929	 * super here because the log_commit atomic below is protecting
2930	 * us.  We must be called with a transaction handle pinning
2931	 * the running transaction open, so a full commit can't hop
2932	 * in and cause problems either.
2933	 */
2934	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2935	if (ret) {
2936		btrfs_set_log_full_commit(root->fs_info, trans);
2937		btrfs_abort_transaction(trans, root, ret);
2938		goto out_wake_log_root;
2939	}
2940
2941	mutex_lock(&root->log_mutex);
2942	if (root->last_log_commit < log_transid)
2943		root->last_log_commit = log_transid;
2944	mutex_unlock(&root->log_mutex);
2945
2946out_wake_log_root:
2947	/*
2948	 * We needn't get log_mutex here because we are sure all
2949	 * the other tasks are blocked.
2950	 */
2951	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2952
2953	mutex_lock(&log_root_tree->log_mutex);
2954	log_root_tree->log_transid_committed++;
2955	atomic_set(&log_root_tree->log_commit[index2], 0);
2956	mutex_unlock(&log_root_tree->log_mutex);
2957
2958	/*
2959	 * The barrier before waitqueue_active is implied by mutex_unlock
2960	 */
2961	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2962		wake_up(&log_root_tree->log_commit_wait[index2]);
2963out:
2964	/* See above. */
2965	btrfs_remove_all_log_ctxs(root, index1, ret);
2966
2967	mutex_lock(&root->log_mutex);
2968	root->log_transid_committed++;
2969	atomic_set(&root->log_commit[index1], 0);
2970	mutex_unlock(&root->log_mutex);
2971
2972	/*
2973	 * The barrier before waitqueue_active is implied by mutex_unlock
2974	 */
2975	if (waitqueue_active(&root->log_commit_wait[index1]))
2976		wake_up(&root->log_commit_wait[index1]);
2977	return ret;
2978}
2979
2980static void free_log_tree(struct btrfs_trans_handle *trans,
2981			  struct btrfs_root *log)
2982{
2983	int ret;
2984	u64 start;
2985	u64 end;
2986	struct walk_control wc = {
2987		.free = 1,
2988		.process_func = process_one_buffer
2989	};
2990
2991	ret = walk_log_tree(trans, log, &wc);
2992	/* I don't think this can happen but just in case */
2993	if (ret)
2994		btrfs_abort_transaction(trans, log, ret);
2995
2996	while (1) {
2997		ret = find_first_extent_bit(&log->dirty_log_pages,
2998				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2999				NULL);
3000		if (ret)
3001			break;
3002
3003		clear_extent_bits(&log->dirty_log_pages, start, end,
3004				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3005	}
3006
3007	/*
3008	 * We may have short-circuited the log tree with the full commit logic
3009	 * and left ordered extents on our list, so clear these out to keep us
3010	 * from leaking inodes and memory.
3011	 */
3012	btrfs_free_logged_extents(log, 0);
3013	btrfs_free_logged_extents(log, 1);
3014
3015	free_extent_buffer(log->node);
3016	kfree(log);
3017}
3018
3019/*
3020 * free all the extents used by the tree log.  This should be called
3021 * at commit time of the full transaction
3022 */
3023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3024{
3025	if (root->log_root) {
3026		free_log_tree(trans, root->log_root);
3027		root->log_root = NULL;
3028	}
3029	return 0;
3030}
3031
3032int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3033			     struct btrfs_fs_info *fs_info)
3034{
3035	if (fs_info->log_root_tree) {
3036		free_log_tree(trans, fs_info->log_root_tree);
3037		fs_info->log_root_tree = NULL;
3038	}
3039	return 0;
3040}
3041
3042/*
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3045 *
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3048 * fsync file X
3049 * unlink file X but leave X.link
3050 * fsync dir Y
3051 *
3052 * After a crash we would expect only X.link to exist.  But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3054 *
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked.  Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3059 *
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3062 */
3063int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3064				 struct btrfs_root *root,
3065				 const char *name, int name_len,
3066				 struct inode *dir, u64 index)
3067{
3068	struct btrfs_root *log;
3069	struct btrfs_dir_item *di;
3070	struct btrfs_path *path;
3071	int ret;
3072	int err = 0;
3073	int bytes_del = 0;
3074	u64 dir_ino = btrfs_ino(dir);
3075
3076	if (BTRFS_I(dir)->logged_trans < trans->transid)
3077		return 0;
3078
3079	ret = join_running_log_trans(root);
3080	if (ret)
3081		return 0;
3082
3083	mutex_lock(&BTRFS_I(dir)->log_mutex);
3084
3085	log = root->log_root;
3086	path = btrfs_alloc_path();
3087	if (!path) {
3088		err = -ENOMEM;
3089		goto out_unlock;
3090	}
3091
3092	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3093				   name, name_len, -1);
3094	if (IS_ERR(di)) {
3095		err = PTR_ERR(di);
3096		goto fail;
3097	}
3098	if (di) {
3099		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3100		bytes_del += name_len;
3101		if (ret) {
3102			err = ret;
3103			goto fail;
3104		}
3105	}
3106	btrfs_release_path(path);
3107	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3108					 index, name, name_len, -1);
3109	if (IS_ERR(di)) {
3110		err = PTR_ERR(di);
3111		goto fail;
3112	}
3113	if (di) {
3114		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3115		bytes_del += name_len;
3116		if (ret) {
3117			err = ret;
3118			goto fail;
3119		}
3120	}
3121
3122	/* update the directory size in the log to reflect the names
3123	 * we have removed
3124	 */
3125	if (bytes_del) {
3126		struct btrfs_key key;
3127
3128		key.objectid = dir_ino;
3129		key.offset = 0;
3130		key.type = BTRFS_INODE_ITEM_KEY;
3131		btrfs_release_path(path);
3132
3133		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3134		if (ret < 0) {
3135			err = ret;
3136			goto fail;
3137		}
3138		if (ret == 0) {
3139			struct btrfs_inode_item *item;
3140			u64 i_size;
3141
3142			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3143					      struct btrfs_inode_item);
3144			i_size = btrfs_inode_size(path->nodes[0], item);
3145			if (i_size > bytes_del)
3146				i_size -= bytes_del;
3147			else
3148				i_size = 0;
3149			btrfs_set_inode_size(path->nodes[0], item, i_size);
3150			btrfs_mark_buffer_dirty(path->nodes[0]);
3151		} else
3152			ret = 0;
3153		btrfs_release_path(path);
3154	}
3155fail:
3156	btrfs_free_path(path);
3157out_unlock:
3158	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3159	if (ret == -ENOSPC) {
3160		btrfs_set_log_full_commit(root->fs_info, trans);
3161		ret = 0;
3162	} else if (ret < 0)
3163		btrfs_abort_transaction(trans, root, ret);
3164
3165	btrfs_end_log_trans(root);
3166
3167	return err;
3168}
3169
3170/* see comments for btrfs_del_dir_entries_in_log */
3171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3172			       struct btrfs_root *root,
3173			       const char *name, int name_len,
3174			       struct inode *inode, u64 dirid)
3175{
3176	struct btrfs_root *log;
3177	u64 index;
3178	int ret;
3179
3180	if (BTRFS_I(inode)->logged_trans < trans->transid)
3181		return 0;
3182
3183	ret = join_running_log_trans(root);
3184	if (ret)
3185		return 0;
3186	log = root->log_root;
3187	mutex_lock(&BTRFS_I(inode)->log_mutex);
3188
3189	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3190				  dirid, &index);
3191	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3192	if (ret == -ENOSPC) {
3193		btrfs_set_log_full_commit(root->fs_info, trans);
3194		ret = 0;
3195	} else if (ret < 0 && ret != -ENOENT)
3196		btrfs_abort_transaction(trans, root, ret);
3197	btrfs_end_log_trans(root);
3198
3199	return ret;
3200}
3201
3202/*
3203 * creates a range item in the log for 'dirid'.  first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3206 */
3207static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3208				       struct btrfs_root *log,
3209				       struct btrfs_path *path,
3210				       int key_type, u64 dirid,
3211				       u64 first_offset, u64 last_offset)
3212{
3213	int ret;
3214	struct btrfs_key key;
3215	struct btrfs_dir_log_item *item;
3216
3217	key.objectid = dirid;
3218	key.offset = first_offset;
3219	if (key_type == BTRFS_DIR_ITEM_KEY)
3220		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3221	else
3222		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3223	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3224	if (ret)
3225		return ret;
3226
3227	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3228			      struct btrfs_dir_log_item);
3229	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3230	btrfs_mark_buffer_dirty(path->nodes[0]);
3231	btrfs_release_path(path);
3232	return 0;
3233}
3234
3235/*
3236 * log all the items included in the current transaction for a given
3237 * directory.  This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3239 */
3240static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3241			  struct btrfs_root *root, struct inode *inode,
3242			  struct btrfs_path *path,
3243			  struct btrfs_path *dst_path, int key_type,
3244			  struct btrfs_log_ctx *ctx,
3245			  u64 min_offset, u64 *last_offset_ret)
3246{
3247	struct btrfs_key min_key;
 
3248	struct btrfs_root *log = root->log_root;
3249	struct extent_buffer *src;
3250	int err = 0;
3251	int ret;
3252	int i;
3253	int nritems;
3254	u64 first_offset = min_offset;
3255	u64 last_offset = (u64)-1;
3256	u64 ino = btrfs_ino(inode);
3257
3258	log = root->log_root;
 
 
 
3259
3260	min_key.objectid = ino;
3261	min_key.type = key_type;
3262	min_key.offset = min_offset;
3263
3264	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
 
 
 
3265
3266	/*
3267	 * we didn't find anything from this transaction, see if there
3268	 * is anything at all
3269	 */
3270	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3271		min_key.objectid = ino;
3272		min_key.type = key_type;
3273		min_key.offset = (u64)-1;
3274		btrfs_release_path(path);
3275		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3276		if (ret < 0) {
3277			btrfs_release_path(path);
3278			return ret;
3279		}
3280		ret = btrfs_previous_item(root, path, ino, key_type);
3281
3282		/* if ret == 0 there are items for this type,
3283		 * create a range to tell us the last key of this type.
3284		 * otherwise, there are no items in this directory after
3285		 * *min_offset, and we create a range to indicate that.
3286		 */
3287		if (ret == 0) {
3288			struct btrfs_key tmp;
3289			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3290					      path->slots[0]);
3291			if (key_type == tmp.type)
3292				first_offset = max(min_offset, tmp.offset) + 1;
3293		}
3294		goto done;
3295	}
3296
3297	/* go backward to find any previous key */
3298	ret = btrfs_previous_item(root, path, ino, key_type);
3299	if (ret == 0) {
3300		struct btrfs_key tmp;
3301		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3302		if (key_type == tmp.type) {
3303			first_offset = tmp.offset;
3304			ret = overwrite_item(trans, log, dst_path,
3305					     path->nodes[0], path->slots[0],
3306					     &tmp);
3307			if (ret) {
3308				err = ret;
3309				goto done;
3310			}
3311		}
3312	}
3313	btrfs_release_path(path);
3314
3315	/* find the first key from this transaction again */
3316	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3317	if (WARN_ON(ret != 0))
 
3318		goto done;
 
3319
3320	/*
3321	 * we have a block from this transaction, log every item in it
3322	 * from our directory
3323	 */
3324	while (1) {
3325		struct btrfs_key tmp;
3326		src = path->nodes[0];
3327		nritems = btrfs_header_nritems(src);
3328		for (i = path->slots[0]; i < nritems; i++) {
3329			struct btrfs_dir_item *di;
3330
3331			btrfs_item_key_to_cpu(src, &min_key, i);
3332
3333			if (min_key.objectid != ino || min_key.type != key_type)
3334				goto done;
3335			ret = overwrite_item(trans, log, dst_path, src, i,
3336					     &min_key);
3337			if (ret) {
3338				err = ret;
3339				goto done;
3340			}
3341
3342			/*
3343			 * We must make sure that when we log a directory entry,
3344			 * the corresponding inode, after log replay, has a
3345			 * matching link count. For example:
3346			 *
3347			 * touch foo
3348			 * mkdir mydir
3349			 * sync
3350			 * ln foo mydir/bar
3351			 * xfs_io -c "fsync" mydir
3352			 * <crash>
3353			 * <mount fs and log replay>
3354			 *
3355			 * Would result in a fsync log that when replayed, our
3356			 * file inode would have a link count of 1, but we get
3357			 * two directory entries pointing to the same inode.
3358			 * After removing one of the names, it would not be
3359			 * possible to remove the other name, which resulted
3360			 * always in stale file handle errors, and would not
3361			 * be possible to rmdir the parent directory, since
3362			 * its i_size could never decrement to the value
3363			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3364			 */
3365			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3366			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3367			if (ctx &&
3368			    (btrfs_dir_transid(src, di) == trans->transid ||
3369			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3370			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3371				ctx->log_new_dentries = true;
3372		}
3373		path->slots[0] = nritems;
3374
3375		/*
3376		 * look ahead to the next item and see if it is also
3377		 * from this directory and from this transaction
3378		 */
3379		ret = btrfs_next_leaf(root, path);
3380		if (ret == 1) {
3381			last_offset = (u64)-1;
3382			goto done;
3383		}
3384		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3385		if (tmp.objectid != ino || tmp.type != key_type) {
3386			last_offset = (u64)-1;
3387			goto done;
3388		}
3389		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3390			ret = overwrite_item(trans, log, dst_path,
3391					     path->nodes[0], path->slots[0],
3392					     &tmp);
3393			if (ret)
3394				err = ret;
3395			else
3396				last_offset = tmp.offset;
3397			goto done;
3398		}
3399	}
3400done:
3401	btrfs_release_path(path);
3402	btrfs_release_path(dst_path);
3403
3404	if (err == 0) {
3405		*last_offset_ret = last_offset;
3406		/*
3407		 * insert the log range keys to indicate where the log
3408		 * is valid
3409		 */
3410		ret = insert_dir_log_key(trans, log, path, key_type,
3411					 ino, first_offset, last_offset);
3412		if (ret)
3413			err = ret;
3414	}
3415	return err;
3416}
3417
3418/*
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3421 *
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3425 *
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3429 */
3430static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3431			  struct btrfs_root *root, struct inode *inode,
3432			  struct btrfs_path *path,
3433			  struct btrfs_path *dst_path,
3434			  struct btrfs_log_ctx *ctx)
3435{
3436	u64 min_key;
3437	u64 max_key;
3438	int ret;
3439	int key_type = BTRFS_DIR_ITEM_KEY;
3440
3441again:
3442	min_key = 0;
3443	max_key = 0;
3444	while (1) {
3445		ret = log_dir_items(trans, root, inode, path,
3446				    dst_path, key_type, ctx, min_key,
3447				    &max_key);
3448		if (ret)
3449			return ret;
3450		if (max_key == (u64)-1)
3451			break;
3452		min_key = max_key + 1;
3453	}
3454
3455	if (key_type == BTRFS_DIR_ITEM_KEY) {
3456		key_type = BTRFS_DIR_INDEX_KEY;
3457		goto again;
3458	}
3459	return 0;
3460}
3461
3462/*
3463 * a helper function to drop items from the log before we relog an
3464 * inode.  max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3467 */
3468static int drop_objectid_items(struct btrfs_trans_handle *trans,
3469				  struct btrfs_root *log,
3470				  struct btrfs_path *path,
3471				  u64 objectid, int max_key_type)
3472{
3473	int ret;
3474	struct btrfs_key key;
3475	struct btrfs_key found_key;
3476	int start_slot;
3477
3478	key.objectid = objectid;
3479	key.type = max_key_type;
3480	key.offset = (u64)-1;
3481
3482	while (1) {
3483		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3484		BUG_ON(ret == 0); /* Logic error */
3485		if (ret < 0)
3486			break;
3487
3488		if (path->slots[0] == 0)
3489			break;
3490
3491		path->slots[0]--;
3492		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3493				      path->slots[0]);
3494
3495		if (found_key.objectid != objectid)
3496			break;
3497
3498		found_key.offset = 0;
3499		found_key.type = 0;
3500		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3501				       &start_slot);
3502
3503		ret = btrfs_del_items(trans, log, path, start_slot,
3504				      path->slots[0] - start_slot + 1);
3505		/*
3506		 * If start slot isn't 0 then we don't need to re-search, we've
3507		 * found the last guy with the objectid in this tree.
3508		 */
3509		if (ret || start_slot != 0)
3510			break;
3511		btrfs_release_path(path);
3512	}
3513	btrfs_release_path(path);
3514	if (ret > 0)
3515		ret = 0;
3516	return ret;
3517}
3518
3519static void fill_inode_item(struct btrfs_trans_handle *trans,
3520			    struct extent_buffer *leaf,
3521			    struct btrfs_inode_item *item,
3522			    struct inode *inode, int log_inode_only,
3523			    u64 logged_isize)
3524{
3525	struct btrfs_map_token token;
3526
3527	btrfs_init_map_token(&token);
3528
3529	if (log_inode_only) {
3530		/* set the generation to zero so the recover code
3531		 * can tell the difference between an logging
3532		 * just to say 'this inode exists' and a logging
3533		 * to say 'update this inode with these values'
3534		 */
3535		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3536		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3537	} else {
3538		btrfs_set_token_inode_generation(leaf, item,
3539						 BTRFS_I(inode)->generation,
3540						 &token);
3541		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3542	}
3543
3544	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3545	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3546	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3547	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3548
3549	btrfs_set_token_timespec_sec(leaf, &item->atime,
3550				     inode->i_atime.tv_sec, &token);
3551	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3552				      inode->i_atime.tv_nsec, &token);
3553
3554	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3555				     inode->i_mtime.tv_sec, &token);
3556	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3557				      inode->i_mtime.tv_nsec, &token);
3558
3559	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3560				     inode->i_ctime.tv_sec, &token);
3561	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3562				      inode->i_ctime.tv_nsec, &token);
3563
3564	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3565				     &token);
3566
3567	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3568	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3569	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3570	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3571	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3572}
3573
3574static int log_inode_item(struct btrfs_trans_handle *trans,
3575			  struct btrfs_root *log, struct btrfs_path *path,
3576			  struct inode *inode)
3577{
3578	struct btrfs_inode_item *inode_item;
3579	int ret;
3580
3581	ret = btrfs_insert_empty_item(trans, log, path,
3582				      &BTRFS_I(inode)->location,
3583				      sizeof(*inode_item));
3584	if (ret && ret != -EEXIST)
3585		return ret;
3586	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587				    struct btrfs_inode_item);
3588	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3589	btrfs_release_path(path);
3590	return 0;
3591}
3592
3593static noinline int copy_items(struct btrfs_trans_handle *trans,
3594			       struct inode *inode,
3595			       struct btrfs_path *dst_path,
3596			       struct btrfs_path *src_path, u64 *last_extent,
3597			       int start_slot, int nr, int inode_only,
3598			       u64 logged_isize)
3599{
3600	unsigned long src_offset;
3601	unsigned long dst_offset;
3602	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3603	struct btrfs_file_extent_item *extent;
3604	struct btrfs_inode_item *inode_item;
3605	struct extent_buffer *src = src_path->nodes[0];
3606	struct btrfs_key first_key, last_key, key;
3607	int ret;
3608	struct btrfs_key *ins_keys;
3609	u32 *ins_sizes;
3610	char *ins_data;
3611	int i;
3612	struct list_head ordered_sums;
3613	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3614	bool has_extents = false;
3615	bool need_find_last_extent = true;
3616	bool done = false;
3617
3618	INIT_LIST_HEAD(&ordered_sums);
3619
3620	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3621			   nr * sizeof(u32), GFP_NOFS);
3622	if (!ins_data)
3623		return -ENOMEM;
3624
3625	first_key.objectid = (u64)-1;
3626
3627	ins_sizes = (u32 *)ins_data;
3628	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3629
3630	for (i = 0; i < nr; i++) {
3631		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3632		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3633	}
3634	ret = btrfs_insert_empty_items(trans, log, dst_path,
3635				       ins_keys, ins_sizes, nr);
3636	if (ret) {
3637		kfree(ins_data);
3638		return ret;
3639	}
3640
3641	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3642		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3643						   dst_path->slots[0]);
3644
3645		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3646
3647		if ((i == (nr - 1)))
3648			last_key = ins_keys[i];
3649
3650		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 
3651			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3652						    dst_path->slots[0],
3653						    struct btrfs_inode_item);
3654			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3655					inode, inode_only == LOG_INODE_EXISTS,
3656					logged_isize);
3657		} else {
3658			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3659					   src_offset, ins_sizes[i]);
3660		}
3661
3662		/*
3663		 * We set need_find_last_extent here in case we know we were
3664		 * processing other items and then walk into the first extent in
3665		 * the inode.  If we don't hit an extent then nothing changes,
3666		 * we'll do the last search the next time around.
3667		 */
3668		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3669			has_extents = true;
3670			if (first_key.objectid == (u64)-1)
3671				first_key = ins_keys[i];
3672		} else {
3673			need_find_last_extent = false;
3674		}
3675
3676		/* take a reference on file data extents so that truncates
3677		 * or deletes of this inode don't have to relog the inode
3678		 * again
3679		 */
3680		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3681		    !skip_csum) {
3682			int found_type;
3683			extent = btrfs_item_ptr(src, start_slot + i,
3684						struct btrfs_file_extent_item);
3685
3686			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3687				continue;
3688
3689			found_type = btrfs_file_extent_type(src, extent);
3690			if (found_type == BTRFS_FILE_EXTENT_REG) {
 
3691				u64 ds, dl, cs, cl;
3692				ds = btrfs_file_extent_disk_bytenr(src,
3693								extent);
3694				/* ds == 0 is a hole */
3695				if (ds == 0)
3696					continue;
3697
3698				dl = btrfs_file_extent_disk_num_bytes(src,
3699								extent);
3700				cs = btrfs_file_extent_offset(src, extent);
3701				cl = btrfs_file_extent_num_bytes(src,
3702								extent);
3703				if (btrfs_file_extent_compression(src,
3704								  extent)) {
3705					cs = 0;
3706					cl = dl;
3707				}
3708
3709				ret = btrfs_lookup_csums_range(
3710						log->fs_info->csum_root,
3711						ds + cs, ds + cs + cl - 1,
3712						&ordered_sums, 0);
3713				if (ret) {
3714					btrfs_release_path(dst_path);
3715					kfree(ins_data);
3716					return ret;
3717				}
3718			}
3719		}
3720	}
3721
3722	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3723	btrfs_release_path(dst_path);
3724	kfree(ins_data);
3725
3726	/*
3727	 * we have to do this after the loop above to avoid changing the
3728	 * log tree while trying to change the log tree.
3729	 */
3730	ret = 0;
3731	while (!list_empty(&ordered_sums)) {
3732		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3733						   struct btrfs_ordered_sum,
3734						   list);
3735		if (!ret)
3736			ret = btrfs_csum_file_blocks(trans, log, sums);
3737		list_del(&sums->list);
3738		kfree(sums);
3739	}
3740
3741	if (!has_extents)
3742		return ret;
3743
3744	if (need_find_last_extent && *last_extent == first_key.offset) {
3745		/*
3746		 * We don't have any leafs between our current one and the one
3747		 * we processed before that can have file extent items for our
3748		 * inode (and have a generation number smaller than our current
3749		 * transaction id).
3750		 */
3751		need_find_last_extent = false;
3752	}
3753
3754	/*
3755	 * Because we use btrfs_search_forward we could skip leaves that were
3756	 * not modified and then assume *last_extent is valid when it really
3757	 * isn't.  So back up to the previous leaf and read the end of the last
3758	 * extent before we go and fill in holes.
3759	 */
3760	if (need_find_last_extent) {
3761		u64 len;
3762
3763		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3764		if (ret < 0)
3765			return ret;
3766		if (ret)
3767			goto fill_holes;
3768		if (src_path->slots[0])
3769			src_path->slots[0]--;
3770		src = src_path->nodes[0];
3771		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3772		if (key.objectid != btrfs_ino(inode) ||
3773		    key.type != BTRFS_EXTENT_DATA_KEY)
3774			goto fill_holes;
3775		extent = btrfs_item_ptr(src, src_path->slots[0],
3776					struct btrfs_file_extent_item);
3777		if (btrfs_file_extent_type(src, extent) ==
3778		    BTRFS_FILE_EXTENT_INLINE) {
3779			len = btrfs_file_extent_inline_len(src,
3780							   src_path->slots[0],
3781							   extent);
3782			*last_extent = ALIGN(key.offset + len,
3783					     log->sectorsize);
3784		} else {
3785			len = btrfs_file_extent_num_bytes(src, extent);
3786			*last_extent = key.offset + len;
3787		}
3788	}
3789fill_holes:
3790	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3791	 * things could have happened
3792	 *
3793	 * 1) A merge could have happened, so we could currently be on a leaf
3794	 * that holds what we were copying in the first place.
3795	 * 2) A split could have happened, and now not all of the items we want
3796	 * are on the same leaf.
3797	 *
3798	 * So we need to adjust how we search for holes, we need to drop the
3799	 * path and re-search for the first extent key we found, and then walk
3800	 * forward until we hit the last one we copied.
3801	 */
3802	if (need_find_last_extent) {
3803		/* btrfs_prev_leaf could return 1 without releasing the path */
3804		btrfs_release_path(src_path);
3805		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3806					src_path, 0, 0);
3807		if (ret < 0)
3808			return ret;
3809		ASSERT(ret == 0);
3810		src = src_path->nodes[0];
3811		i = src_path->slots[0];
3812	} else {
3813		i = start_slot;
3814	}
3815
3816	/*
3817	 * Ok so here we need to go through and fill in any holes we may have
3818	 * to make sure that holes are punched for those areas in case they had
3819	 * extents previously.
3820	 */
3821	while (!done) {
3822		u64 offset, len;
3823		u64 extent_end;
3824
3825		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3826			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3827			if (ret < 0)
3828				return ret;
3829			ASSERT(ret == 0);
3830			src = src_path->nodes[0];
3831			i = 0;
3832		}
3833
3834		btrfs_item_key_to_cpu(src, &key, i);
3835		if (!btrfs_comp_cpu_keys(&key, &last_key))
3836			done = true;
3837		if (key.objectid != btrfs_ino(inode) ||
3838		    key.type != BTRFS_EXTENT_DATA_KEY) {
3839			i++;
3840			continue;
3841		}
3842		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3843		if (btrfs_file_extent_type(src, extent) ==
3844		    BTRFS_FILE_EXTENT_INLINE) {
3845			len = btrfs_file_extent_inline_len(src, i, extent);
3846			extent_end = ALIGN(key.offset + len, log->sectorsize);
3847		} else {
3848			len = btrfs_file_extent_num_bytes(src, extent);
3849			extent_end = key.offset + len;
3850		}
3851		i++;
3852
3853		if (*last_extent == key.offset) {
3854			*last_extent = extent_end;
3855			continue;
3856		}
3857		offset = *last_extent;
3858		len = key.offset - *last_extent;
3859		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3860					       offset, 0, 0, len, 0, len, 0,
3861					       0, 0);
3862		if (ret)
3863			break;
3864		*last_extent = extent_end;
3865	}
3866	/*
3867	 * Need to let the callers know we dropped the path so they should
3868	 * re-search.
3869	 */
3870	if (!ret && need_find_last_extent)
3871		ret = 1;
3872	return ret;
3873}
3874
3875static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3876{
3877	struct extent_map *em1, *em2;
3878
3879	em1 = list_entry(a, struct extent_map, list);
3880	em2 = list_entry(b, struct extent_map, list);
3881
3882	if (em1->start < em2->start)
3883		return -1;
3884	else if (em1->start > em2->start)
3885		return 1;
3886	return 0;
3887}
3888
3889static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3890				struct inode *inode,
3891				struct btrfs_root *root,
3892				const struct extent_map *em,
3893				const struct list_head *logged_list,
3894				bool *ordered_io_error)
3895{
3896	struct btrfs_ordered_extent *ordered;
3897	struct btrfs_root *log = root->log_root;
3898	u64 mod_start = em->mod_start;
3899	u64 mod_len = em->mod_len;
3900	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3901	u64 csum_offset;
3902	u64 csum_len;
3903	LIST_HEAD(ordered_sums);
3904	int ret = 0;
3905
3906	*ordered_io_error = false;
3907
3908	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3909	    em->block_start == EXTENT_MAP_HOLE)
3910		return 0;
3911
3912	/*
3913	 * Wait far any ordered extent that covers our extent map. If it
3914	 * finishes without an error, first check and see if our csums are on
3915	 * our outstanding ordered extents.
3916	 */
3917	list_for_each_entry(ordered, logged_list, log_list) {
3918		struct btrfs_ordered_sum *sum;
3919
3920		if (!mod_len)
3921			break;
3922
3923		if (ordered->file_offset + ordered->len <= mod_start ||
3924		    mod_start + mod_len <= ordered->file_offset)
3925			continue;
3926
3927		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3928		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3929		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3930			const u64 start = ordered->file_offset;
3931			const u64 end = ordered->file_offset + ordered->len - 1;
3932
3933			WARN_ON(ordered->inode != inode);
3934			filemap_fdatawrite_range(inode->i_mapping, start, end);
3935		}
3936
3937		wait_event(ordered->wait,
3938			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3939			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3940
3941		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3942			/*
3943			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944			 * i_mapping flags, so that the next fsync won't get
3945			 * an outdated io error too.
3946			 */
3947			btrfs_inode_check_errors(inode);
3948			*ordered_io_error = true;
3949			break;
3950		}
3951		/*
3952		 * We are going to copy all the csums on this ordered extent, so
3953		 * go ahead and adjust mod_start and mod_len in case this
3954		 * ordered extent has already been logged.
3955		 */
3956		if (ordered->file_offset > mod_start) {
3957			if (ordered->file_offset + ordered->len >=
3958			    mod_start + mod_len)
3959				mod_len = ordered->file_offset - mod_start;
3960			/*
3961			 * If we have this case
3962			 *
3963			 * |--------- logged extent ---------|
3964			 *       |----- ordered extent ----|
3965			 *
3966			 * Just don't mess with mod_start and mod_len, we'll
3967			 * just end up logging more csums than we need and it
3968			 * will be ok.
3969			 */
3970		} else {
3971			if (ordered->file_offset + ordered->len <
3972			    mod_start + mod_len) {
3973				mod_len = (mod_start + mod_len) -
3974					(ordered->file_offset + ordered->len);
3975				mod_start = ordered->file_offset +
3976					ordered->len;
3977			} else {
3978				mod_len = 0;
3979			}
3980		}
3981
3982		if (skip_csum)
3983			continue;
3984
3985		/*
3986		 * To keep us from looping for the above case of an ordered
3987		 * extent that falls inside of the logged extent.
3988		 */
3989		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3990				     &ordered->flags))
3991			continue;
3992
3993		list_for_each_entry(sum, &ordered->list, list) {
3994			ret = btrfs_csum_file_blocks(trans, log, sum);
3995			if (ret)
3996				break;
3997		}
3998	}
3999
4000	if (*ordered_io_error || !mod_len || ret || skip_csum)
4001		return ret;
4002
4003	if (em->compress_type) {
4004		csum_offset = 0;
4005		csum_len = max(em->block_len, em->orig_block_len);
4006	} else {
4007		csum_offset = mod_start - em->start;
4008		csum_len = mod_len;
4009	}
4010
4011	/* block start is already adjusted for the file extent offset. */
4012	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4013				       em->block_start + csum_offset,
4014				       em->block_start + csum_offset +
4015				       csum_len - 1, &ordered_sums, 0);
4016	if (ret)
4017		return ret;
4018
4019	while (!list_empty(&ordered_sums)) {
4020		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4021						   struct btrfs_ordered_sum,
4022						   list);
4023		if (!ret)
4024			ret = btrfs_csum_file_blocks(trans, log, sums);
4025		list_del(&sums->list);
4026		kfree(sums);
4027	}
4028
4029	return ret;
4030}
4031
4032static int log_one_extent(struct btrfs_trans_handle *trans,
4033			  struct inode *inode, struct btrfs_root *root,
4034			  const struct extent_map *em,
4035			  struct btrfs_path *path,
4036			  const struct list_head *logged_list,
4037			  struct btrfs_log_ctx *ctx)
4038{
4039	struct btrfs_root *log = root->log_root;
4040	struct btrfs_file_extent_item *fi;
4041	struct extent_buffer *leaf;
4042	struct btrfs_map_token token;
4043	struct btrfs_key key;
4044	u64 extent_offset = em->start - em->orig_start;
4045	u64 block_len;
4046	int ret;
4047	int extent_inserted = 0;
4048	bool ordered_io_err = false;
4049
4050	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4051				   &ordered_io_err);
4052	if (ret)
4053		return ret;
4054
4055	if (ordered_io_err) {
4056		ctx->io_err = -EIO;
4057		return 0;
4058	}
4059
4060	btrfs_init_map_token(&token);
4061
4062	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4063				   em->start + em->len, NULL, 0, 1,
4064				   sizeof(*fi), &extent_inserted);
4065	if (ret)
4066		return ret;
4067
4068	if (!extent_inserted) {
4069		key.objectid = btrfs_ino(inode);
4070		key.type = BTRFS_EXTENT_DATA_KEY;
4071		key.offset = em->start;
4072
4073		ret = btrfs_insert_empty_item(trans, log, path, &key,
4074					      sizeof(*fi));
4075		if (ret)
4076			return ret;
4077	}
4078	leaf = path->nodes[0];
4079	fi = btrfs_item_ptr(leaf, path->slots[0],
4080			    struct btrfs_file_extent_item);
4081
4082	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4083					       &token);
4084	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4085		btrfs_set_token_file_extent_type(leaf, fi,
4086						 BTRFS_FILE_EXTENT_PREALLOC,
4087						 &token);
4088	else
4089		btrfs_set_token_file_extent_type(leaf, fi,
4090						 BTRFS_FILE_EXTENT_REG,
4091						 &token);
4092
4093	block_len = max(em->block_len, em->orig_block_len);
4094	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4095		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4096							em->block_start,
4097							&token);
4098		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4099							   &token);
4100	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4101		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4102							em->block_start -
4103							extent_offset, &token);
4104		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4105							   &token);
4106	} else {
4107		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4108		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4109							   &token);
4110	}
4111
4112	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4113	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4114	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4115	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4116						&token);
4117	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4118	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4119	btrfs_mark_buffer_dirty(leaf);
4120
4121	btrfs_release_path(path);
4122
4123	return ret;
4124}
4125
4126static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4127				     struct btrfs_root *root,
4128				     struct inode *inode,
4129				     struct btrfs_path *path,
4130				     struct list_head *logged_list,
4131				     struct btrfs_log_ctx *ctx,
4132				     const u64 start,
4133				     const u64 end)
4134{
4135	struct extent_map *em, *n;
4136	struct list_head extents;
4137	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4138	u64 test_gen;
4139	int ret = 0;
4140	int num = 0;
4141
4142	INIT_LIST_HEAD(&extents);
4143
4144	write_lock(&tree->lock);
4145	test_gen = root->fs_info->last_trans_committed;
4146
4147	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4148		list_del_init(&em->list);
4149
4150		/*
4151		 * Just an arbitrary number, this can be really CPU intensive
4152		 * once we start getting a lot of extents, and really once we
4153		 * have a bunch of extents we just want to commit since it will
4154		 * be faster.
4155		 */
4156		if (++num > 32768) {
4157			list_del_init(&tree->modified_extents);
4158			ret = -EFBIG;
4159			goto process;
4160		}
4161
4162		if (em->generation <= test_gen)
4163			continue;
4164		/* Need a ref to keep it from getting evicted from cache */
4165		atomic_inc(&em->refs);
4166		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4167		list_add_tail(&em->list, &extents);
4168		num++;
4169	}
4170
4171	list_sort(NULL, &extents, extent_cmp);
4172	/*
4173	 * Collect any new ordered extents within the range. This is to
4174	 * prevent logging file extent items without waiting for the disk
4175	 * location they point to being written. We do this only to deal
4176	 * with races against concurrent lockless direct IO writes.
4177	 */
4178	btrfs_get_logged_extents(inode, logged_list, start, end);
4179process:
4180	while (!list_empty(&extents)) {
4181		em = list_entry(extents.next, struct extent_map, list);
4182
4183		list_del_init(&em->list);
4184
4185		/*
4186		 * If we had an error we just need to delete everybody from our
4187		 * private list.
4188		 */
4189		if (ret) {
4190			clear_em_logging(tree, em);
4191			free_extent_map(em);
4192			continue;
4193		}
4194
4195		write_unlock(&tree->lock);
4196
4197		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4198				     ctx);
4199		write_lock(&tree->lock);
4200		clear_em_logging(tree, em);
4201		free_extent_map(em);
4202	}
4203	WARN_ON(!list_empty(&extents));
4204	write_unlock(&tree->lock);
4205
4206	btrfs_release_path(path);
4207	return ret;
4208}
4209
4210static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4211			     struct btrfs_path *path, u64 *size_ret)
4212{
4213	struct btrfs_key key;
4214	int ret;
4215
4216	key.objectid = btrfs_ino(inode);
4217	key.type = BTRFS_INODE_ITEM_KEY;
4218	key.offset = 0;
4219
4220	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4221	if (ret < 0) {
4222		return ret;
4223	} else if (ret > 0) {
4224		*size_ret = 0;
4225	} else {
4226		struct btrfs_inode_item *item;
4227
4228		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4229				      struct btrfs_inode_item);
4230		*size_ret = btrfs_inode_size(path->nodes[0], item);
4231	}
4232
4233	btrfs_release_path(path);
4234	return 0;
4235}
4236
4237/*
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4245 */
4246static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4247				struct btrfs_root *root,
4248				struct inode *inode,
4249				struct btrfs_path *path,
4250				struct btrfs_path *dst_path)
4251{
4252	int ret;
4253	struct btrfs_key key;
4254	const u64 ino = btrfs_ino(inode);
4255	int ins_nr = 0;
4256	int start_slot = 0;
4257
4258	key.objectid = ino;
4259	key.type = BTRFS_XATTR_ITEM_KEY;
4260	key.offset = 0;
4261
4262	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4263	if (ret < 0)
4264		return ret;
4265
4266	while (true) {
4267		int slot = path->slots[0];
4268		struct extent_buffer *leaf = path->nodes[0];
4269		int nritems = btrfs_header_nritems(leaf);
4270
4271		if (slot >= nritems) {
4272			if (ins_nr > 0) {
4273				u64 last_extent = 0;
4274
4275				ret = copy_items(trans, inode, dst_path, path,
4276						 &last_extent, start_slot,
4277						 ins_nr, 1, 0);
4278				/* can't be 1, extent items aren't processed */
4279				ASSERT(ret <= 0);
4280				if (ret < 0)
4281					return ret;
4282				ins_nr = 0;
4283			}
4284			ret = btrfs_next_leaf(root, path);
4285			if (ret < 0)
4286				return ret;
4287			else if (ret > 0)
4288				break;
4289			continue;
4290		}
4291
4292		btrfs_item_key_to_cpu(leaf, &key, slot);
4293		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4294			break;
4295
4296		if (ins_nr == 0)
4297			start_slot = slot;
4298		ins_nr++;
4299		path->slots[0]++;
4300		cond_resched();
4301	}
4302	if (ins_nr > 0) {
4303		u64 last_extent = 0;
4304
4305		ret = copy_items(trans, inode, dst_path, path,
4306				 &last_extent, start_slot,
4307				 ins_nr, 1, 0);
4308		/* can't be 1, extent items aren't processed */
4309		ASSERT(ret <= 0);
4310		if (ret < 0)
4311			return ret;
4312	}
4313
4314	return 0;
4315}
4316
4317/*
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4321 *
4322 *      1) create file with 128Kb of data
4323 *      2) truncate file to 64Kb
4324 *      3) truncate file to 256Kb
4325 *      4) fsync file
4326 *      5) <crash/power failure>
4327 *      6) mount fs and trigger log replay
4328 *
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4333 * fs/subvol tree.
4334 *
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4340 */
4341static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4342				   struct btrfs_root *root,
4343				   struct inode *inode,
4344				   struct btrfs_path *path)
4345{
4346	int ret;
4347	struct btrfs_key key;
4348	u64 hole_start;
4349	u64 hole_size;
4350	struct extent_buffer *leaf;
4351	struct btrfs_root *log = root->log_root;
4352	const u64 ino = btrfs_ino(inode);
4353	const u64 i_size = i_size_read(inode);
4354
4355	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4356		return 0;
4357
4358	key.objectid = ino;
4359	key.type = BTRFS_EXTENT_DATA_KEY;
4360	key.offset = (u64)-1;
4361
4362	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4363	ASSERT(ret != 0);
4364	if (ret < 0)
4365		return ret;
4366
4367	ASSERT(path->slots[0] > 0);
4368	path->slots[0]--;
4369	leaf = path->nodes[0];
4370	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4373		/* inode does not have any extents */
4374		hole_start = 0;
4375		hole_size = i_size;
4376	} else {
4377		struct btrfs_file_extent_item *extent;
4378		u64 len;
4379
4380		/*
4381		 * If there's an extent beyond i_size, an explicit hole was
4382		 * already inserted by copy_items().
4383		 */
4384		if (key.offset >= i_size)
4385			return 0;
4386
4387		extent = btrfs_item_ptr(leaf, path->slots[0],
4388					struct btrfs_file_extent_item);
4389
4390		if (btrfs_file_extent_type(leaf, extent) ==
4391		    BTRFS_FILE_EXTENT_INLINE) {
4392			len = btrfs_file_extent_inline_len(leaf,
4393							   path->slots[0],
4394							   extent);
4395			ASSERT(len == i_size);
4396			return 0;
4397		}
4398
4399		len = btrfs_file_extent_num_bytes(leaf, extent);
4400		/* Last extent goes beyond i_size, no need to log a hole. */
4401		if (key.offset + len > i_size)
4402			return 0;
4403		hole_start = key.offset + len;
4404		hole_size = i_size - hole_start;
4405	}
4406	btrfs_release_path(path);
4407
4408	/* Last extent ends at i_size. */
4409	if (hole_size == 0)
4410		return 0;
4411
4412	hole_size = ALIGN(hole_size, root->sectorsize);
4413	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4414				       hole_size, 0, hole_size, 0, 0, 0);
4415	return ret;
4416}
4417
4418/*
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4423 *
4424 * mkdir /mnt/x
4425 * echo "hello world" > /mnt/x/foobar
4426 * sync
4427 * mv /mnt/x /mnt/y
4428 * mkdir /mnt/x                 # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4430 * <power fail>
4431 * mount fs, trigger log replay
4432 *
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4436 *
4437 * echo "123" > /mnt/foo
4438 * sync
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4442 * <power fail>
4443 *
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4448 *
4449 * mkdir /mnt/x
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4452 * rmdir /mnt/x
4453 * mkdir /mnt/x
4454 * fsync /mnt/x or fsync some new file inside it
4455 * <power fail>
4456 *
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4459 */
4460static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4461					 const int slot,
4462					 const struct btrfs_key *key,
4463					 struct inode *inode)
4464{
4465	int ret;
4466	struct btrfs_path *search_path;
4467	char *name = NULL;
4468	u32 name_len = 0;
4469	u32 item_size = btrfs_item_size_nr(eb, slot);
4470	u32 cur_offset = 0;
4471	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4472
4473	search_path = btrfs_alloc_path();
4474	if (!search_path)
4475		return -ENOMEM;
4476	search_path->search_commit_root = 1;
4477	search_path->skip_locking = 1;
4478
4479	while (cur_offset < item_size) {
4480		u64 parent;
4481		u32 this_name_len;
4482		u32 this_len;
4483		unsigned long name_ptr;
4484		struct btrfs_dir_item *di;
4485
4486		if (key->type == BTRFS_INODE_REF_KEY) {
4487			struct btrfs_inode_ref *iref;
4488
4489			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4490			parent = key->offset;
4491			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4492			name_ptr = (unsigned long)(iref + 1);
4493			this_len = sizeof(*iref) + this_name_len;
4494		} else {
4495			struct btrfs_inode_extref *extref;
4496
4497			extref = (struct btrfs_inode_extref *)(ptr +
4498							       cur_offset);
4499			parent = btrfs_inode_extref_parent(eb, extref);
4500			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4501			name_ptr = (unsigned long)&extref->name;
4502			this_len = sizeof(*extref) + this_name_len;
4503		}
4504
4505		if (this_name_len > name_len) {
4506			char *new_name;
4507
4508			new_name = krealloc(name, this_name_len, GFP_NOFS);
4509			if (!new_name) {
4510				ret = -ENOMEM;
4511				goto out;
4512			}
4513			name_len = this_name_len;
4514			name = new_name;
4515		}
4516
4517		read_extent_buffer(eb, name, name_ptr, this_name_len);
4518		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4519					   search_path, parent,
4520					   name, this_name_len, 0);
4521		if (di && !IS_ERR(di)) {
4522			ret = 1;
4523			goto out;
4524		} else if (IS_ERR(di)) {
4525			ret = PTR_ERR(di);
4526			goto out;
4527		}
4528		btrfs_release_path(search_path);
4529
4530		cur_offset += this_len;
4531	}
4532	ret = 0;
4533out:
4534	btrfs_free_path(search_path);
4535	kfree(name);
4536	return ret;
4537}
4538
4539/* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
4542 *
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree.  An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
4547 *
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4549 * does.
4550 *
4551 * This handles both files and directories.
4552 */
4553static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4554			   struct btrfs_root *root, struct inode *inode,
4555			   int inode_only,
4556			   const loff_t start,
4557			   const loff_t end,
4558			   struct btrfs_log_ctx *ctx)
4559{
4560	struct btrfs_path *path;
4561	struct btrfs_path *dst_path;
4562	struct btrfs_key min_key;
4563	struct btrfs_key max_key;
4564	struct btrfs_root *log = root->log_root;
4565	struct extent_buffer *src = NULL;
4566	LIST_HEAD(logged_list);
4567	u64 last_extent = 0;
4568	int err = 0;
4569	int ret;
4570	int nritems;
4571	int ins_start_slot = 0;
4572	int ins_nr;
4573	bool fast_search = false;
4574	u64 ino = btrfs_ino(inode);
4575	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576	u64 logged_isize = 0;
4577	bool need_log_inode_item = true;
4578
4579	path = btrfs_alloc_path();
4580	if (!path)
4581		return -ENOMEM;
4582	dst_path = btrfs_alloc_path();
4583	if (!dst_path) {
4584		btrfs_free_path(path);
4585		return -ENOMEM;
4586	}
4587
4588	min_key.objectid = ino;
4589	min_key.type = BTRFS_INODE_ITEM_KEY;
4590	min_key.offset = 0;
4591
4592	max_key.objectid = ino;
4593
 
 
 
4594
4595	/* today the code can only do partial logging of directories */
4596	if (S_ISDIR(inode->i_mode) ||
4597	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4598		       &BTRFS_I(inode)->runtime_flags) &&
4599	     inode_only == LOG_INODE_EXISTS))
4600		max_key.type = BTRFS_XATTR_ITEM_KEY;
4601	else
4602		max_key.type = (u8)-1;
4603	max_key.offset = (u64)-1;
4604
4605	/*
4606	 * Only run delayed items if we are a dir or a new file.
4607	 * Otherwise commit the delayed inode only, which is needed in
4608	 * order for the log replay code to mark inodes for link count
4609	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4610	 */
4611	if (S_ISDIR(inode->i_mode) ||
4612	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4613		ret = btrfs_commit_inode_delayed_items(trans, inode);
4614	else
4615		ret = btrfs_commit_inode_delayed_inode(inode);
4616
4617	if (ret) {
4618		btrfs_free_path(path);
4619		btrfs_free_path(dst_path);
4620		return ret;
4621	}
4622
4623	mutex_lock(&BTRFS_I(inode)->log_mutex);
4624
4625	/*
4626	 * Collect ordered extents only if we are logging data. This is to
4627	 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628	 * will process the ordered extents if they still exists at the time,
4629	 * because when we collect them we test and set for the flag
4630	 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631	 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632	 * not processing the ordered extents is that we end up logging the
4633	 * corresponding file extent items, based on the extent maps in the
4634	 * inode's extent_map_tree's modified_list, without logging the
4635	 * respective checksums (since the may still be only attached to the
4636	 * ordered extents and have not been inserted in the csum tree by
4637	 * btrfs_finish_ordered_io() yet).
4638	 */
4639	if (inode_only == LOG_INODE_ALL)
4640		btrfs_get_logged_extents(inode, &logged_list, start, end);
4641
4642	/*
4643	 * a brute force approach to making sure we get the most uptodate
4644	 * copies of everything.
4645	 */
4646	if (S_ISDIR(inode->i_mode)) {
4647		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4648
4649		if (inode_only == LOG_INODE_EXISTS)
4650			max_key_type = BTRFS_XATTR_ITEM_KEY;
4651		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4652	} else {
4653		if (inode_only == LOG_INODE_EXISTS) {
4654			/*
4655			 * Make sure the new inode item we write to the log has
4656			 * the same isize as the current one (if it exists).
4657			 * This is necessary to prevent data loss after log
4658			 * replay, and also to prevent doing a wrong expanding
4659			 * truncate - for e.g. create file, write 4K into offset
4660			 * 0, fsync, write 4K into offset 4096, add hard link,
4661			 * fsync some other file (to sync log), power fail - if
4662			 * we use the inode's current i_size, after log replay
4663			 * we get a 8Kb file, with the last 4Kb extent as a hole
4664			 * (zeroes), as if an expanding truncate happened,
4665			 * instead of getting a file of 4Kb only.
4666			 */
4667			err = logged_inode_size(log, inode, path,
4668						&logged_isize);
4669			if (err)
4670				goto out_unlock;
4671		}
4672		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4673			     &BTRFS_I(inode)->runtime_flags)) {
4674			if (inode_only == LOG_INODE_EXISTS) {
4675				max_key.type = BTRFS_XATTR_ITEM_KEY;
4676				ret = drop_objectid_items(trans, log, path, ino,
4677							  max_key.type);
4678			} else {
4679				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4680					  &BTRFS_I(inode)->runtime_flags);
4681				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4682					  &BTRFS_I(inode)->runtime_flags);
4683				while(1) {
4684					ret = btrfs_truncate_inode_items(trans,
4685							 log, inode, 0, 0);
4686					if (ret != -EAGAIN)
4687						break;
4688				}
4689			}
4690		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4691					      &BTRFS_I(inode)->runtime_flags) ||
4692			   inode_only == LOG_INODE_EXISTS) {
4693			if (inode_only == LOG_INODE_ALL)
4694				fast_search = true;
4695			max_key.type = BTRFS_XATTR_ITEM_KEY;
4696			ret = drop_objectid_items(trans, log, path, ino,
4697						  max_key.type);
4698		} else {
4699			if (inode_only == LOG_INODE_ALL)
4700				fast_search = true;
4701			goto log_extents;
4702		}
4703
4704	}
4705	if (ret) {
4706		err = ret;
4707		goto out_unlock;
4708	}
 
4709
4710	while (1) {
4711		ins_nr = 0;
4712		ret = btrfs_search_forward(root, &min_key,
4713					   path, trans->transid);
4714		if (ret != 0)
4715			break;
4716again:
4717		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4718		if (min_key.objectid != ino)
4719			break;
4720		if (min_key.type > max_key.type)
4721			break;
4722
4723		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4724			need_log_inode_item = false;
4725
4726		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4727		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4728		    BTRFS_I(inode)->generation == trans->transid) {
4729			ret = btrfs_check_ref_name_override(path->nodes[0],
4730							    path->slots[0],
4731							    &min_key, inode);
4732			if (ret < 0) {
4733				err = ret;
4734				goto out_unlock;
4735			} else if (ret > 0) {
4736				err = 1;
4737				btrfs_set_log_full_commit(root->fs_info, trans);
4738				goto out_unlock;
4739			}
4740		}
4741
4742		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4744			if (ins_nr == 0)
4745				goto next_slot;
4746			ret = copy_items(trans, inode, dst_path, path,
4747					 &last_extent, ins_start_slot,
4748					 ins_nr, inode_only, logged_isize);
4749			if (ret < 0) {
4750				err = ret;
4751				goto out_unlock;
4752			}
4753			ins_nr = 0;
4754			if (ret) {
4755				btrfs_release_path(path);
4756				continue;
4757			}
4758			goto next_slot;
4759		}
4760
4761		src = path->nodes[0];
4762		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4763			ins_nr++;
4764			goto next_slot;
4765		} else if (!ins_nr) {
4766			ins_start_slot = path->slots[0];
4767			ins_nr = 1;
4768			goto next_slot;
4769		}
4770
4771		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4772				 ins_start_slot, ins_nr, inode_only,
4773				 logged_isize);
4774		if (ret < 0) {
4775			err = ret;
4776			goto out_unlock;
4777		}
4778		if (ret) {
4779			ins_nr = 0;
4780			btrfs_release_path(path);
4781			continue;
4782		}
4783		ins_nr = 1;
4784		ins_start_slot = path->slots[0];
4785next_slot:
4786
4787		nritems = btrfs_header_nritems(path->nodes[0]);
4788		path->slots[0]++;
4789		if (path->slots[0] < nritems) {
4790			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4791					      path->slots[0]);
4792			goto again;
4793		}
4794		if (ins_nr) {
4795			ret = copy_items(trans, inode, dst_path, path,
4796					 &last_extent, ins_start_slot,
4797					 ins_nr, inode_only, logged_isize);
4798			if (ret < 0) {
4799				err = ret;
4800				goto out_unlock;
4801			}
4802			ret = 0;
4803			ins_nr = 0;
4804		}
4805		btrfs_release_path(path);
4806
4807		if (min_key.offset < (u64)-1) {
4808			min_key.offset++;
4809		} else if (min_key.type < max_key.type) {
4810			min_key.type++;
4811			min_key.offset = 0;
4812		} else {
 
4813			break;
4814		}
4815	}
4816	if (ins_nr) {
4817		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4818				 ins_start_slot, ins_nr, inode_only,
4819				 logged_isize);
4820		if (ret < 0) {
4821			err = ret;
4822			goto out_unlock;
4823		}
4824		ret = 0;
4825		ins_nr = 0;
4826	}
4827
4828	btrfs_release_path(path);
4829	btrfs_release_path(dst_path);
4830	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4831	if (err)
4832		goto out_unlock;
4833	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4834		btrfs_release_path(path);
4835		btrfs_release_path(dst_path);
4836		err = btrfs_log_trailing_hole(trans, root, inode, path);
4837		if (err)
4838			goto out_unlock;
4839	}
4840log_extents:
4841	btrfs_release_path(path);
4842	btrfs_release_path(dst_path);
4843	if (need_log_inode_item) {
4844		err = log_inode_item(trans, log, dst_path, inode);
4845		if (err)
4846			goto out_unlock;
4847	}
4848	if (fast_search) {
4849		/*
4850		 * Some ordered extents started by fsync might have completed
4851		 * before we collected the ordered extents in logged_list, which
4852		 * means they're gone, not in our logged_list nor in the inode's
4853		 * ordered tree. We want the application/user space to know an
4854		 * error happened while attempting to persist file data so that
4855		 * it can take proper action. If such error happened, we leave
4856		 * without writing to the log tree and the fsync must report the
4857		 * file data write error and not commit the current transaction.
4858		 */
4859		err = btrfs_inode_check_errors(inode);
4860		if (err) {
4861			ctx->io_err = err;
4862			goto out_unlock;
4863		}
4864		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4865						&logged_list, ctx, start, end);
4866		if (ret) {
4867			err = ret;
4868			goto out_unlock;
4869		}
4870	} else if (inode_only == LOG_INODE_ALL) {
4871		struct extent_map *em, *n;
4872
4873		write_lock(&em_tree->lock);
4874		/*
4875		 * We can't just remove every em if we're called for a ranged
4876		 * fsync - that is, one that doesn't cover the whole possible
4877		 * file range (0 to LLONG_MAX). This is because we can have
4878		 * em's that fall outside the range we're logging and therefore
4879		 * their ordered operations haven't completed yet
4880		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881		 * didn't get their respective file extent item in the fs/subvol
4882		 * tree yet, and need to let the next fast fsync (one which
4883		 * consults the list of modified extent maps) find the em so
4884		 * that it logs a matching file extent item and waits for the
4885		 * respective ordered operation to complete (if it's still
4886		 * running).
4887		 *
4888		 * Removing every em outside the range we're logging would make
4889		 * the next fast fsync not log their matching file extent items,
4890		 * therefore making us lose data after a log replay.
4891		 */
4892		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4893					 list) {
4894			const u64 mod_end = em->mod_start + em->mod_len - 1;
4895
4896			if (em->mod_start >= start && mod_end <= end)
4897				list_del_init(&em->list);
4898		}
4899		write_unlock(&em_tree->lock);
4900	}
4901
4902	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4903		ret = log_directory_changes(trans, root, inode, path, dst_path,
4904					    ctx);
4905		if (ret) {
4906			err = ret;
4907			goto out_unlock;
4908		}
4909	}
4910
4911	spin_lock(&BTRFS_I(inode)->lock);
4912	BTRFS_I(inode)->logged_trans = trans->transid;
4913	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4914	spin_unlock(&BTRFS_I(inode)->lock);
4915out_unlock:
4916	if (unlikely(err))
4917		btrfs_put_logged_extents(&logged_list);
4918	else
4919		btrfs_submit_logged_extents(&logged_list, log);
4920	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4921
4922	btrfs_free_path(path);
4923	btrfs_free_path(dst_path);
4924	return err;
4925}
4926
4927/*
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4942 */
4943static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4944					  struct inode *inode)
4945{
4946	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4947	bool ret = false;
4948
4949	mutex_lock(&BTRFS_I(inode)->log_mutex);
4950	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
4951		/*
4952		 * Make sure any commits to the log are forced to be full
4953		 * commits.
4954		 */
4955		btrfs_set_log_full_commit(fs_info, trans);
4956		ret = true;
4957	}
4958	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4959
4960	return ret;
4961}
4962
4963/*
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged.  Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4968 */
4969static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4970					       struct inode *inode,
4971					       struct dentry *parent,
4972					       struct super_block *sb,
4973					       u64 last_committed)
4974{
4975	int ret = 0;
 
4976	struct dentry *old_parent = NULL;
4977	struct inode *orig_inode = inode;
4978
4979	/*
4980	 * for regular files, if its inode is already on disk, we don't
4981	 * have to worry about the parents at all.  This is because
4982	 * we can use the last_unlink_trans field to record renames
4983	 * and other fun in this file.
4984	 */
4985	if (S_ISREG(inode->i_mode) &&
4986	    BTRFS_I(inode)->generation <= last_committed &&
4987	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4988			goto out;
4989
4990	if (!S_ISDIR(inode->i_mode)) {
4991		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4992			goto out;
4993		inode = d_inode(parent);
4994	}
4995
4996	while (1) {
4997		/*
4998		 * If we are logging a directory then we start with our inode,
4999		 * not our parents inode, so we need to skipp setting the
5000		 * logged_trans so that further down in the log code we don't
5001		 * think this inode has already been logged.
5002		 */
5003		if (inode != orig_inode)
5004			BTRFS_I(inode)->logged_trans = trans->transid;
5005		smp_mb();
5006
5007		if (btrfs_must_commit_transaction(trans, inode)) {
 
 
 
 
 
 
 
 
5008			ret = 1;
5009			break;
5010		}
5011
5012		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5013			break;
5014
5015		if (IS_ROOT(parent))
5016			break;
5017
5018		parent = dget_parent(parent);
5019		dput(old_parent);
5020		old_parent = parent;
5021		inode = d_inode(parent);
5022
5023	}
5024	dput(old_parent);
5025out:
5026	return ret;
5027}
5028
5029struct btrfs_dir_list {
5030	u64 ino;
5031	struct list_head list;
5032};
5033
5034/*
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5042 *
5043 *        CPU0                                        CPU1
5044 *        ----                                        ----
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 *                                            lock(sb_internal#2);
5047 *                                            lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5049 *
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
5053 *
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 *    that while logging the inode new references (names) are added or removed
5056 *    from the inode, leaving the logged inode item with a link count that does
5057 *    not match the number of logged inode reference items. This is fine because
5058 *    at log replay time we compute the real number of links and correct the
5059 *    link count in the inode item (see replay_one_buffer() and
5060 *    link_to_fixup_dir());
5061 *
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 *    has a size that doesn't match the sum of the lengths of all the logged
5066 *    names. This does not result in a problem because if a dir_item key is
5067 *    logged but its matching dir_index key is not logged, at log replay time we
5068 *    don't use it to replay the respective name (see replay_one_name()). On the
5069 *    other hand if only the dir_index key ends up being logged, the respective
5070 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5071 *    keys created (see replay_one_name()).
5072 *    The directory's inode item with a wrong i_size is not a problem as well,
5073 *    since we don't use it at log replay time to set the i_size in the inode
5074 *    item of the fs/subvol tree (see overwrite_item()).
5075 */
5076static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5077				struct btrfs_root *root,
5078				struct inode *start_inode,
5079				struct btrfs_log_ctx *ctx)
5080{
5081	struct btrfs_root *log = root->log_root;
5082	struct btrfs_path *path;
5083	LIST_HEAD(dir_list);
5084	struct btrfs_dir_list *dir_elem;
5085	int ret = 0;
5086
5087	path = btrfs_alloc_path();
5088	if (!path)
5089		return -ENOMEM;
5090
5091	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5092	if (!dir_elem) {
5093		btrfs_free_path(path);
5094		return -ENOMEM;
5095	}
5096	dir_elem->ino = btrfs_ino(start_inode);
5097	list_add_tail(&dir_elem->list, &dir_list);
5098
5099	while (!list_empty(&dir_list)) {
5100		struct extent_buffer *leaf;
5101		struct btrfs_key min_key;
5102		int nritems;
5103		int i;
5104
5105		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5106					    list);
5107		if (ret)
5108			goto next_dir_inode;
5109
5110		min_key.objectid = dir_elem->ino;
5111		min_key.type = BTRFS_DIR_ITEM_KEY;
5112		min_key.offset = 0;
5113again:
5114		btrfs_release_path(path);
5115		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5116		if (ret < 0) {
5117			goto next_dir_inode;
5118		} else if (ret > 0) {
5119			ret = 0;
5120			goto next_dir_inode;
5121		}
5122
5123process_leaf:
5124		leaf = path->nodes[0];
5125		nritems = btrfs_header_nritems(leaf);
5126		for (i = path->slots[0]; i < nritems; i++) {
5127			struct btrfs_dir_item *di;
5128			struct btrfs_key di_key;
5129			struct inode *di_inode;
5130			struct btrfs_dir_list *new_dir_elem;
5131			int log_mode = LOG_INODE_EXISTS;
5132			int type;
5133
5134			btrfs_item_key_to_cpu(leaf, &min_key, i);
5135			if (min_key.objectid != dir_elem->ino ||
5136			    min_key.type != BTRFS_DIR_ITEM_KEY)
5137				goto next_dir_inode;
5138
5139			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5140			type = btrfs_dir_type(leaf, di);
5141			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5142			    type != BTRFS_FT_DIR)
5143				continue;
5144			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5145			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5146				continue;
5147
5148			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5149					      root, NULL);
5150			if (IS_ERR(di_inode)) {
5151				ret = PTR_ERR(di_inode);
5152				goto next_dir_inode;
5153			}
5154
5155			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5156				iput(di_inode);
5157				continue;
5158			}
5159
5160			ctx->log_new_dentries = false;
5161			if (type == BTRFS_FT_DIR)
5162				log_mode = LOG_INODE_ALL;
5163			btrfs_release_path(path);
5164			ret = btrfs_log_inode(trans, root, di_inode,
5165					      log_mode, 0, LLONG_MAX, ctx);
5166			if (!ret &&
5167			    btrfs_must_commit_transaction(trans, di_inode))
5168				ret = 1;
5169			iput(di_inode);
5170			if (ret)
5171				goto next_dir_inode;
5172			if (ctx->log_new_dentries) {
5173				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5174						       GFP_NOFS);
5175				if (!new_dir_elem) {
5176					ret = -ENOMEM;
5177					goto next_dir_inode;
5178				}
5179				new_dir_elem->ino = di_key.objectid;
5180				list_add_tail(&new_dir_elem->list, &dir_list);
5181			}
5182			break;
5183		}
5184		if (i == nritems) {
5185			ret = btrfs_next_leaf(log, path);
5186			if (ret < 0) {
5187				goto next_dir_inode;
5188			} else if (ret > 0) {
5189				ret = 0;
5190				goto next_dir_inode;
5191			}
5192			goto process_leaf;
5193		}
5194		if (min_key.offset < (u64)-1) {
5195			min_key.offset++;
5196			goto again;
5197		}
5198next_dir_inode:
5199		list_del(&dir_elem->list);
5200		kfree(dir_elem);
5201	}
5202
5203	btrfs_free_path(path);
5204	return ret;
5205}
5206
5207static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5208				 struct inode *inode,
5209				 struct btrfs_log_ctx *ctx)
5210{
5211	int ret;
5212	struct btrfs_path *path;
5213	struct btrfs_key key;
5214	struct btrfs_root *root = BTRFS_I(inode)->root;
5215	const u64 ino = btrfs_ino(inode);
5216
5217	path = btrfs_alloc_path();
5218	if (!path)
5219		return -ENOMEM;
5220	path->skip_locking = 1;
5221	path->search_commit_root = 1;
5222
5223	key.objectid = ino;
5224	key.type = BTRFS_INODE_REF_KEY;
5225	key.offset = 0;
5226	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5227	if (ret < 0)
5228		goto out;
5229
5230	while (true) {
5231		struct extent_buffer *leaf = path->nodes[0];
5232		int slot = path->slots[0];
5233		u32 cur_offset = 0;
5234		u32 item_size;
5235		unsigned long ptr;
5236
5237		if (slot >= btrfs_header_nritems(leaf)) {
5238			ret = btrfs_next_leaf(root, path);
5239			if (ret < 0)
5240				goto out;
5241			else if (ret > 0)
5242				break;
5243			continue;
5244		}
5245
5246		btrfs_item_key_to_cpu(leaf, &key, slot);
5247		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5249			break;
5250
5251		item_size = btrfs_item_size_nr(leaf, slot);
5252		ptr = btrfs_item_ptr_offset(leaf, slot);
5253		while (cur_offset < item_size) {
5254			struct btrfs_key inode_key;
5255			struct inode *dir_inode;
5256
5257			inode_key.type = BTRFS_INODE_ITEM_KEY;
5258			inode_key.offset = 0;
5259
5260			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5261				struct btrfs_inode_extref *extref;
5262
5263				extref = (struct btrfs_inode_extref *)
5264					(ptr + cur_offset);
5265				inode_key.objectid = btrfs_inode_extref_parent(
5266					leaf, extref);
5267				cur_offset += sizeof(*extref);
5268				cur_offset += btrfs_inode_extref_name_len(leaf,
5269					extref);
5270			} else {
5271				inode_key.objectid = key.offset;
5272				cur_offset = item_size;
5273			}
5274
5275			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5276					       root, NULL);
5277			/* If parent inode was deleted, skip it. */
5278			if (IS_ERR(dir_inode))
5279				continue;
5280
5281			ret = btrfs_log_inode(trans, root, dir_inode,
5282					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5283			if (!ret &&
5284			    btrfs_must_commit_transaction(trans, dir_inode))
5285				ret = 1;
5286			iput(dir_inode);
5287			if (ret)
5288				goto out;
5289		}
5290		path->slots[0]++;
5291	}
5292	ret = 0;
5293out:
5294	btrfs_free_path(path);
5295	return ret;
5296}
5297
5298/*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log.  A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
5304static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305			    	  struct btrfs_root *root, struct inode *inode,
5306				  struct dentry *parent,
5307				  const loff_t start,
5308				  const loff_t end,
5309				  int exists_only,
5310				  struct btrfs_log_ctx *ctx)
5311{
5312	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313	struct super_block *sb;
5314	struct dentry *old_parent = NULL;
5315	int ret = 0;
5316	u64 last_committed = root->fs_info->last_trans_committed;
5317	bool log_dentries = false;
5318	struct inode *orig_inode = inode;
5319
5320	sb = inode->i_sb;
5321
5322	if (btrfs_test_opt(root, NOTREELOG)) {
5323		ret = 1;
5324		goto end_no_trans;
5325	}
5326
5327	/*
5328	 * The prev transaction commit doesn't complete, we need do
5329	 * full commit by ourselves.
5330	 */
5331	if (root->fs_info->last_trans_log_full_commit >
5332	    root->fs_info->last_trans_committed) {
5333		ret = 1;
5334		goto end_no_trans;
5335	}
5336
5337	if (root != BTRFS_I(inode)->root ||
5338	    btrfs_root_refs(&root->root_item) == 0) {
5339		ret = 1;
5340		goto end_no_trans;
5341	}
5342
5343	ret = check_parent_dirs_for_sync(trans, inode, parent,
5344					 sb, last_committed);
5345	if (ret)
5346		goto end_no_trans;
5347
5348	if (btrfs_inode_in_log(inode, trans->transid)) {
5349		ret = BTRFS_NO_LOG_SYNC;
5350		goto end_no_trans;
5351	}
5352
5353	ret = start_log_trans(trans, root, ctx);
5354	if (ret)
5355		goto end_no_trans;
5356
5357	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358	if (ret)
5359		goto end_trans;
5360
5361	/*
5362	 * for regular files, if its inode is already on disk, we don't
5363	 * have to worry about the parents at all.  This is because
5364	 * we can use the last_unlink_trans field to record renames
5365	 * and other fun in this file.
5366	 */
5367	if (S_ISREG(inode->i_mode) &&
5368	    BTRFS_I(inode)->generation <= last_committed &&
5369	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370		ret = 0;
5371		goto end_trans;
5372	}
5373
5374	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375		log_dentries = true;
5376
5377	/*
5378	 * On unlink we must make sure all our current and old parent directores
5379	 * inodes are fully logged. This is to prevent leaving dangling
5380	 * directory index entries in directories that were our parents but are
5381	 * not anymore. Not doing this results in old parent directory being
5382	 * impossible to delete after log replay (rmdir will always fail with
5383	 * error -ENOTEMPTY).
5384	 *
5385	 * Example 1:
5386	 *
5387	 * mkdir testdir
5388	 * touch testdir/foo
5389	 * ln testdir/foo testdir/bar
5390	 * sync
5391	 * unlink testdir/bar
5392	 * xfs_io -c fsync testdir/foo
5393	 * <power failure>
5394	 * mount fs, triggers log replay
5395	 *
5396	 * If we don't log the parent directory (testdir), after log replay the
5397	 * directory still has an entry pointing to the file inode using the bar
5398	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399	 * the file inode has a link count of 1.
5400	 *
5401	 * Example 2:
5402	 *
5403	 * mkdir testdir
5404	 * touch foo
5405	 * ln foo testdir/foo2
5406	 * ln foo testdir/foo3
5407	 * sync
5408	 * unlink testdir/foo3
5409	 * xfs_io -c fsync foo
5410	 * <power failure>
5411	 * mount fs, triggers log replay
5412	 *
5413	 * Similar as the first example, after log replay the parent directory
5414	 * testdir still has an entry pointing to the inode file with name foo3
5415	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416	 * and has a link count of 2.
5417	 */
5418	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420		if (ret)
5421			goto end_trans;
5422	}
5423
5424	while (1) {
5425		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426			break;
5427
5428		inode = d_inode(parent);
5429		if (root != BTRFS_I(inode)->root)
5430			break;
5431
5432		if (BTRFS_I(inode)->generation > last_committed) {
5433			ret = btrfs_log_inode(trans, root, inode,
5434					      LOG_INODE_EXISTS,
5435					      0, LLONG_MAX, ctx);
5436			if (ret)
5437				goto end_trans;
5438		}
5439		if (IS_ROOT(parent))
5440			break;
5441
5442		parent = dget_parent(parent);
5443		dput(old_parent);
5444		old_parent = parent;
5445	}
5446	if (log_dentries)
5447		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448	else
5449		ret = 0;
5450end_trans:
5451	dput(old_parent);
5452	if (ret < 0) {
5453		btrfs_set_log_full_commit(root->fs_info, trans);
 
5454		ret = 1;
5455	}
5456
5457	if (ret)
5458		btrfs_remove_log_ctx(root, ctx);
5459	btrfs_end_log_trans(root);
5460end_no_trans:
5461	return ret;
5462}
5463
5464/*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
5470int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471			  struct btrfs_root *root, struct dentry *dentry,
5472			  const loff_t start,
5473			  const loff_t end,
5474			  struct btrfs_log_ctx *ctx)
5475{
5476	struct dentry *parent = dget_parent(dentry);
5477	int ret;
5478
5479	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480				     start, end, 0, ctx);
5481	dput(parent);
5482
5483	return ret;
5484}
5485
5486/*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
5490int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491{
5492	int ret;
5493	struct btrfs_path *path;
5494	struct btrfs_trans_handle *trans;
5495	struct btrfs_key key;
5496	struct btrfs_key found_key;
5497	struct btrfs_key tmp_key;
5498	struct btrfs_root *log;
5499	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500	struct walk_control wc = {
5501		.process_func = process_one_buffer,
5502		.stage = 0,
5503	};
5504
5505	path = btrfs_alloc_path();
5506	if (!path)
5507		return -ENOMEM;
5508
5509	fs_info->log_root_recovering = 1;
5510
5511	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512	if (IS_ERR(trans)) {
5513		ret = PTR_ERR(trans);
5514		goto error;
5515	}
5516
5517	wc.trans = trans;
5518	wc.pin = 1;
5519
5520	ret = walk_log_tree(trans, log_root_tree, &wc);
5521	if (ret) {
5522		btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523			    "recovering log root tree.");
5524		goto error;
5525	}
5526
5527again:
5528	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529	key.offset = (u64)-1;
5530	key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532	while (1) {
5533		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535		if (ret < 0) {
5536			btrfs_std_error(fs_info, ret,
5537				    "Couldn't find tree log root.");
5538			goto error;
5539		}
5540		if (ret > 0) {
5541			if (path->slots[0] == 0)
5542				break;
5543			path->slots[0]--;
5544		}
5545		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546				      path->slots[0]);
5547		btrfs_release_path(path);
5548		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549			break;
5550
5551		log = btrfs_read_fs_root(log_root_tree, &found_key);
5552		if (IS_ERR(log)) {
5553			ret = PTR_ERR(log);
5554			btrfs_std_error(fs_info, ret,
5555				    "Couldn't read tree log root.");
5556			goto error;
5557		}
5558
5559		tmp_key.objectid = found_key.offset;
5560		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561		tmp_key.offset = (u64)-1;
5562
5563		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564		if (IS_ERR(wc.replay_dest)) {
5565			ret = PTR_ERR(wc.replay_dest);
5566			free_extent_buffer(log->node);
5567			free_extent_buffer(log->commit_root);
5568			kfree(log);
5569			btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570				    "for tree log recovery.");
5571			goto error;
5572		}
5573
5574		wc.replay_dest->log_root = log;
5575		btrfs_record_root_in_trans(trans, wc.replay_dest);
5576		ret = walk_log_tree(trans, log, &wc);
 
5577
5578		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580						      path);
 
5581		}
5582
5583		key.offset = found_key.offset - 1;
5584		wc.replay_dest->log_root = NULL;
5585		free_extent_buffer(log->node);
5586		free_extent_buffer(log->commit_root);
5587		kfree(log);
5588
5589		if (ret)
5590			goto error;
5591
5592		if (found_key.offset == 0)
5593			break;
5594	}
5595	btrfs_release_path(path);
5596
5597	/* step one is to pin it all, step two is to replay just inodes */
5598	if (wc.pin) {
5599		wc.pin = 0;
5600		wc.process_func = replay_one_buffer;
5601		wc.stage = LOG_WALK_REPLAY_INODES;
5602		goto again;
5603	}
5604	/* step three is to replay everything */
5605	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5606		wc.stage++;
5607		goto again;
5608	}
5609
5610	btrfs_free_path(path);
5611
5612	/* step 4: commit the transaction, which also unpins the blocks */
5613	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5614	if (ret)
5615		return ret;
5616
5617	free_extent_buffer(log_root_tree->node);
5618	log_root_tree->log_root = NULL;
5619	fs_info->log_root_recovering = 0;
 
 
 
 
5620	kfree(log_root_tree);
5621
5622	return 0;
5623error:
5624	if (wc.trans)
5625		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5626	btrfs_free_path(path);
5627	return ret;
5628}
5629
5630/*
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5633 *
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5637 *
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5640 */
5641void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5642			     struct inode *dir, struct inode *inode,
5643			     int for_rename)
5644{
5645	/*
5646	 * when we're logging a file, if it hasn't been renamed
5647	 * or unlinked, and its inode is fully committed on disk,
5648	 * we don't have to worry about walking up the directory chain
5649	 * to log its parents.
5650	 *
5651	 * So, we use the last_unlink_trans field to put this transid
5652	 * into the file.  When the file is logged we check it and
5653	 * don't log the parents if the file is fully on disk.
5654	 */
5655	if (S_ISREG(inode->i_mode)) {
5656		mutex_lock(&BTRFS_I(inode)->log_mutex);
5657		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5658		mutex_unlock(&BTRFS_I(inode)->log_mutex);
5659	}
5660
5661	/*
5662	 * if this directory was already logged any new
5663	 * names for this file/dir will get recorded
5664	 */
5665	smp_mb();
5666	if (BTRFS_I(dir)->logged_trans == trans->transid)
5667		return;
5668
5669	/*
5670	 * if the inode we're about to unlink was logged,
5671	 * the log will be properly updated for any new names
5672	 */
5673	if (BTRFS_I(inode)->logged_trans == trans->transid)
5674		return;
5675
5676	/*
5677	 * when renaming files across directories, if the directory
5678	 * there we're unlinking from gets fsync'd later on, there's
5679	 * no way to find the destination directory later and fsync it
5680	 * properly.  So, we have to be conservative and force commits
5681	 * so the new name gets discovered.
5682	 */
5683	if (for_rename)
5684		goto record;
5685
5686	/* we can safely do the unlink without any special recording */
5687	return;
5688
5689record:
5690	mutex_lock(&BTRFS_I(dir)->log_mutex);
5691	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5692	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5693}
5694
5695/*
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5703 *
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5706 */
5707void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5708				   struct inode *dir)
5709{
5710	mutex_lock(&BTRFS_I(dir)->log_mutex);
5711	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5712	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5713}
5714
5715/*
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5718 *
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5721 */
5722int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5723			struct inode *inode, struct inode *old_dir,
5724			struct dentry *parent)
5725{
5726	struct btrfs_root * root = BTRFS_I(inode)->root;
5727
5728	/*
5729	 * this will force the logging code to walk the dentry chain
5730	 * up for the file
5731	 */
5732	if (S_ISREG(inode->i_mode))
5733		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734
5735	/*
5736	 * if this inode hasn't been logged and directory we're renaming it
5737	 * from hasn't been logged, we don't need to log it
5738	 */
5739	if (BTRFS_I(inode)->logged_trans <=
5740	    root->fs_info->last_trans_committed &&
5741	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5742		    root->fs_info->last_trans_committed))
5743		return 0;
5744
5745	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5746				      LLONG_MAX, 1, NULL);
5747}
5748