Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  Copyright 2010
  3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4 *
  5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License v2.0 as published by
  9 * the Free Software Foundation
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * PV guests under Xen are running in an non-contiguous memory architecture.
 17 *
 18 * When PCI pass-through is utilized, this necessitates an IOMMU for
 19 * translating bus (DMA) to virtual and vice-versa and also providing a
 20 * mechanism to have contiguous pages for device drivers operations (say DMA
 21 * operations).
 22 *
 23 * Specifically, under Xen the Linux idea of pages is an illusion. It
 24 * assumes that pages start at zero and go up to the available memory. To
 25 * help with that, the Linux Xen MMU provides a lookup mechanism to
 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 28 * memory is not contiguous. Xen hypervisor stitches memory for guests
 29 * from different pools, which means there is no guarantee that PFN==MFN
 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 31 * allocated in descending order (high to low), meaning the guest might
 32 * never get any MFN's under the 4GB mark.
 33 *
 34 */
 35
 36#include <linux/bootmem.h>
 37#include <linux/dma-mapping.h>
 
 
 
 
 38#include <xen/swiotlb-xen.h>
 39#include <xen/page.h>
 40#include <xen/xen-ops.h>
 41/*
 42 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 44 * API.
 45 */
 
 
 46
 47static char *xen_io_tlb_start, *xen_io_tlb_end;
 48static unsigned long xen_io_tlb_nslabs;
 49/*
 50 * Quick lookup value of the bus address of the IOTLB.
 51 */
 52
 53u64 start_dma_addr;
 54
 55static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 56{
 57	return phys_to_machine(XPADDR(paddr)).maddr;
 58}
 59
 60static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 61{
 62	return machine_to_phys(XMADDR(baddr)).paddr;
 63}
 64
 65static dma_addr_t xen_virt_to_bus(void *address)
 66{
 67	return xen_phys_to_bus(virt_to_phys(address));
 68}
 69
 70static int check_pages_physically_contiguous(unsigned long pfn,
 71					     unsigned int offset,
 72					     size_t length)
 73{
 74	unsigned long next_mfn;
 75	int i;
 76	int nr_pages;
 77
 78	next_mfn = pfn_to_mfn(pfn);
 79	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
 80
 81	for (i = 1; i < nr_pages; i++) {
 82		if (pfn_to_mfn(++pfn) != ++next_mfn)
 83			return 0;
 84	}
 85	return 1;
 86}
 87
 88static int range_straddles_page_boundary(phys_addr_t p, size_t size)
 89{
 90	unsigned long pfn = PFN_DOWN(p);
 91	unsigned int offset = p & ~PAGE_MASK;
 
 
 
 
 
 
 92
 93	if (offset + size <= PAGE_SIZE)
 94		return 0;
 95	if (check_pages_physically_contiguous(pfn, offset, size))
 96		return 0;
 97	return 1;
 98}
 99
100static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
101{
102	unsigned long mfn = PFN_DOWN(dma_addr);
103	unsigned long pfn = mfn_to_local_pfn(mfn);
104	phys_addr_t paddr;
105
106	/* If the address is outside our domain, it CAN
107	 * have the same virtual address as another address
108	 * in our domain. Therefore _only_ check address within our domain.
109	 */
110	if (pfn_valid(pfn)) {
111		paddr = PFN_PHYS(pfn);
112		return paddr >= virt_to_phys(xen_io_tlb_start) &&
113		       paddr < virt_to_phys(xen_io_tlb_end);
114	}
115	return 0;
116}
117
118static int max_dma_bits = 32;
119
120static int
121xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
122{
123	int i, rc;
124	int dma_bits;
 
 
125
126	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
127
128	i = 0;
129	do {
130		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
131
132		do {
133			rc = xen_create_contiguous_region(
134				(unsigned long)buf + (i << IO_TLB_SHIFT),
135				get_order(slabs << IO_TLB_SHIFT),
136				dma_bits);
137		} while (rc && dma_bits++ < max_dma_bits);
138		if (rc)
139			return rc;
140
141		i += slabs;
142	} while (i < nslabs);
143	return 0;
144}
145
146void __init xen_swiotlb_init(int verbose)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147{
148	unsigned long bytes;
149	int rc;
150	unsigned long nr_tbl;
 
 
 
151
152	nr_tbl = swioltb_nr_tbl();
153	if (nr_tbl)
154		xen_io_tlb_nslabs = nr_tbl;
155	else {
156		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
157		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
158	}
159
160	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 
 
161
162	/*
163	 * Get IO TLB memory from any location.
164	 */
165	xen_io_tlb_start = alloc_bootmem(bytes);
166	if (!xen_io_tlb_start)
167		panic("Cannot allocate SWIOTLB buffer");
 
 
 
 
 
 
 
 
 
 
 
 
 
168
169	xen_io_tlb_end = xen_io_tlb_start + bytes;
170	/*
171	 * And replace that memory with pages under 4GB.
172	 */
173	rc = xen_swiotlb_fixup(xen_io_tlb_start,
174			       bytes,
175			       xen_io_tlb_nslabs);
176	if (rc)
177		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
179	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
180	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
 
 
 
 
 
 
181
182	return;
183error:
184	panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
185	      "We either don't have the permission or you do not have enough"\
186	      "free memory under 4GB!\n", rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187}
 
188
189void *
190xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
191			   dma_addr_t *dma_handle, gfp_t flags)
 
192{
193	void *ret;
194	int order = get_order(size);
195	u64 dma_mask = DMA_BIT_MASK(32);
196	unsigned long vstart;
 
197
198	/*
199	* Ignore region specifiers - the kernel's ideas of
200	* pseudo-phys memory layout has nothing to do with the
201	* machine physical layout.  We can't allocate highmem
202	* because we can't return a pointer to it.
203	*/
204	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
205
206	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
207		return ret;
 
 
 
 
 
 
 
208
209	vstart = __get_free_pages(flags, order);
210	ret = (void *)vstart;
211
212	if (hwdev && hwdev->coherent_dma_mask)
213		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
214
215	if (ret) {
216		if (xen_create_contiguous_region(vstart, order,
217						 fls64(dma_mask)) != 0) {
218			free_pages(vstart, order);
 
 
 
 
 
 
 
 
 
219			return NULL;
220		}
221		memset(ret, 0, size);
222		*dma_handle = virt_to_machine(ret).maddr;
223	}
 
224	return ret;
225}
226EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
227
228void
229xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
230			  dma_addr_t dev_addr)
231{
232	int order = get_order(size);
 
 
 
 
 
 
233
234	if (dma_release_from_coherent(hwdev, order, vaddr))
235		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
237	xen_destroy_contiguous_region((unsigned long)vaddr, order);
238	free_pages((unsigned long)vaddr, order);
239}
240EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
241
242
243/*
244 * Map a single buffer of the indicated size for DMA in streaming mode.  The
245 * physical address to use is returned.
246 *
247 * Once the device is given the dma address, the device owns this memory until
248 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
249 */
250dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
251				unsigned long offset, size_t size,
252				enum dma_data_direction dir,
253				struct dma_attrs *attrs)
254{
255	phys_addr_t phys = page_to_phys(page) + offset;
256	dma_addr_t dev_addr = xen_phys_to_bus(phys);
257	void *map;
258
259	BUG_ON(dir == DMA_NONE);
260	/*
261	 * If the address happens to be in the device's DMA window,
262	 * we can safely return the device addr and not worry about bounce
263	 * buffering it.
264	 */
265	if (dma_capable(dev, dev_addr, size) &&
266	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
267		return dev_addr;
 
 
268
269	/*
270	 * Oh well, have to allocate and map a bounce buffer.
271	 */
272	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
273	if (!map)
274		return DMA_ERROR_CODE;
275
276	dev_addr = xen_virt_to_bus(map);
 
 
 
 
 
277
278	/*
279	 * Ensure that the address returned is DMA'ble
280	 */
281	if (!dma_capable(dev, dev_addr, size))
282		panic("map_single: bounce buffer is not DMA'ble");
 
 
 
283
 
 
 
 
 
 
 
284	return dev_addr;
285}
286EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
287
288/*
289 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
290 * match what was provided for in a previous xen_swiotlb_map_page call.  All
291 * other usages are undefined.
292 *
293 * After this call, reads by the cpu to the buffer are guaranteed to see
294 * whatever the device wrote there.
295 */
296static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
297			     size_t size, enum dma_data_direction dir)
298{
299	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
300
301	BUG_ON(dir == DMA_NONE);
302
303	/* NOTE: We use dev_addr here, not paddr! */
304	if (is_xen_swiotlb_buffer(dev_addr)) {
305		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
306		return;
 
307	}
308
309	if (dir != DMA_FROM_DEVICE)
310		return;
311
312	/*
313	 * phys_to_virt doesn't work with hihgmem page but we could
314	 * call dma_mark_clean() with hihgmem page here. However, we
315	 * are fine since dma_mark_clean() is null on POWERPC. We can
316	 * make dma_mark_clean() take a physical address if necessary.
317	 */
318	dma_mark_clean(phys_to_virt(paddr), size);
319}
320
321void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
322			    size_t size, enum dma_data_direction dir,
323			    struct dma_attrs *attrs)
324{
325	xen_unmap_single(hwdev, dev_addr, size, dir);
326}
327EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
328
329/*
330 * Make physical memory consistent for a single streaming mode DMA translation
331 * after a transfer.
332 *
333 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
334 * using the cpu, yet do not wish to teardown the dma mapping, you must
335 * call this function before doing so.  At the next point you give the dma
336 * address back to the card, you must first perform a
337 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
338 */
339static void
340xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
341			size_t size, enum dma_data_direction dir,
342			enum dma_sync_target target)
343{
344	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
345
346	BUG_ON(dir == DMA_NONE);
347
348	/* NOTE: We use dev_addr here, not paddr! */
349	if (is_xen_swiotlb_buffer(dev_addr)) {
350		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
351				       target);
352		return;
353	}
354
355	if (dir != DMA_FROM_DEVICE)
356		return;
357
358	dma_mark_clean(phys_to_virt(paddr), size);
359}
360
361void
362xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
363				size_t size, enum dma_data_direction dir)
364{
365	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
366}
367EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
368
369void
370xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
371				   size_t size, enum dma_data_direction dir)
372{
373	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 
 
 
 
374}
375EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
376
377/*
378 * Map a set of buffers described by scatterlist in streaming mode for DMA.
379 * This is the scatter-gather version of the above xen_swiotlb_map_page
380 * interface.  Here the scatter gather list elements are each tagged with the
381 * appropriate dma address and length.  They are obtained via
382 * sg_dma_{address,length}(SG).
383 *
384 * NOTE: An implementation may be able to use a smaller number of
385 *       DMA address/length pairs than there are SG table elements.
386 *       (for example via virtual mapping capabilities)
387 *       The routine returns the number of addr/length pairs actually
388 *       used, at most nents.
389 *
390 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
391 * same here.
392 */
393int
394xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
395			 int nelems, enum dma_data_direction dir,
396			 struct dma_attrs *attrs)
397{
398	struct scatterlist *sg;
399	int i;
400
401	BUG_ON(dir == DMA_NONE);
402
403	for_each_sg(sgl, sg, nelems, i) {
404		phys_addr_t paddr = sg_phys(sg);
405		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
406
407		if (swiotlb_force ||
408		    !dma_capable(hwdev, dev_addr, sg->length) ||
409		    range_straddles_page_boundary(paddr, sg->length)) {
410			void *map = swiotlb_tbl_map_single(hwdev,
411							   start_dma_addr,
412							   sg_phys(sg),
413							   sg->length, dir);
414			if (!map) {
415				/* Don't panic here, we expect map_sg users
416				   to do proper error handling. */
417				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
418							   attrs);
419				sgl[0].dma_length = 0;
420				return DMA_ERROR_CODE;
421			}
422			sg->dma_address = xen_virt_to_bus(map);
423		} else
424			sg->dma_address = dev_addr;
425		sg->dma_length = sg->length;
426	}
427	return nelems;
428}
429EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
430
431int
432xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
433		   enum dma_data_direction dir)
434{
435	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
436}
437EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
438
439/*
440 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
441 * concerning calls here are the same as for swiotlb_unmap_page() above.
442 */
443void
444xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
445			   int nelems, enum dma_data_direction dir,
446			   struct dma_attrs *attrs)
447{
448	struct scatterlist *sg;
449	int i;
450
451	BUG_ON(dir == DMA_NONE);
452
453	for_each_sg(sgl, sg, nelems, i)
454		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
455
456}
457EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 
 
458
459void
460xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
461		     enum dma_data_direction dir)
462{
463	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
464}
465EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
466
467/*
468 * Make physical memory consistent for a set of streaming mode DMA translations
469 * after a transfer.
470 *
471 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
472 * and usage.
473 */
474static void
475xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
476		    int nelems, enum dma_data_direction dir,
477		    enum dma_sync_target target)
478{
479	struct scatterlist *sg;
480	int i;
481
482	for_each_sg(sgl, sg, nelems, i)
483		xen_swiotlb_sync_single(hwdev, sg->dma_address,
484					sg->dma_length, dir, target);
485}
486
487void
488xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
489			    int nelems, enum dma_data_direction dir)
490{
491	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
492}
493EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
494
495void
496xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
497			       int nelems, enum dma_data_direction dir)
498{
499	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
500}
501EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
502
503int
504xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
505{
506	return !dma_addr;
507}
508EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
509
510/*
511 * Return whether the given device DMA address mask can be supported
512 * properly.  For example, if your device can only drive the low 24-bits
513 * during bus mastering, then you would pass 0x00ffffff as the mask to
514 * this function.
515 */
516int
517xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
518{
519	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
520}
521EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
 
 
 
 
 
 
 
 
 
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-map-ops.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 39#include <asm/xen/page-coherent.h>
 40
 41#include <trace/events/swiotlb.h>
 42#define MAX_DMA_BITS 32
 43
 
 
 44/*
 45 * Quick lookup value of the bus address of the IOTLB.
 46 */
 47
 48static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 
 
 49{
 50	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 51	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 52
 53	baddr |= paddr & ~XEN_PAGE_MASK;
 54	return baddr;
 
 55}
 56
 57static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 58{
 59	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 60}
 61
 62static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 63					  phys_addr_t baddr)
 
 64{
 65	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 66	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 67			    (baddr & ~XEN_PAGE_MASK);
 68
 69	return paddr;
 70}
 71
 72static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 73					  dma_addr_t dma_addr)
 74{
 75	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 
 76}
 77
 78static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 79{
 80	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 81	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 82
 83	next_bfn = pfn_to_bfn(xen_pfn);
 84
 85	for (i = 1; i < nr_pages; i++)
 86		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 87			return 1;
 88
 89	return 0;
 
 
 
 
 90}
 91
 92static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
 93{
 94	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
 95	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
 96	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 97
 98	/* If the address is outside our domain, it CAN
 99	 * have the same virtual address as another address
100	 * in our domain. Therefore _only_ check address within our domain.
101	 */
102	if (pfn_valid(PFN_DOWN(paddr)))
103		return is_swiotlb_buffer(paddr);
 
 
 
104	return 0;
105}
106
107static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
 
 
 
108{
109	int i, rc;
110	int dma_bits;
111	dma_addr_t dma_handle;
112	phys_addr_t p = virt_to_phys(buf);
113
114	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
115
116	i = 0;
117	do {
118		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
119
120		do {
121			rc = xen_create_contiguous_region(
122				p + (i << IO_TLB_SHIFT),
123				get_order(slabs << IO_TLB_SHIFT),
124				dma_bits, &dma_handle);
125		} while (rc && dma_bits++ < MAX_DMA_BITS);
126		if (rc)
127			return rc;
128
129		i += slabs;
130	} while (i < nslabs);
131	return 0;
132}
133
134enum xen_swiotlb_err {
135	XEN_SWIOTLB_UNKNOWN = 0,
136	XEN_SWIOTLB_ENOMEM,
137	XEN_SWIOTLB_EFIXUP
138};
139
140static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
141{
142	switch (err) {
143	case XEN_SWIOTLB_ENOMEM:
144		return "Cannot allocate Xen-SWIOTLB buffer\n";
145	case XEN_SWIOTLB_EFIXUP:
146		return "Failed to get contiguous memory for DMA from Xen!\n"\
147		    "You either: don't have the permissions, do not have"\
148		    " enough free memory under 4GB, or the hypervisor memory"\
149		    " is too fragmented!";
150	default:
151		break;
152	}
153	return "";
154}
155
156#define DEFAULT_NSLABS		ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
157
158int __ref xen_swiotlb_init(void)
159{
160	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
161	unsigned long bytes = swiotlb_size_or_default();
162	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
163	unsigned int order, repeat = 3;
164	int rc = -ENOMEM;
165	char *start;
166
167	if (io_tlb_default_mem != NULL) {
168		pr_warn("swiotlb buffer already initialized\n");
169		return -EEXIST;
 
 
 
170	}
171
172retry:
173	m_ret = XEN_SWIOTLB_ENOMEM;
174	order = get_order(bytes);
175
176	/*
177	 * Get IO TLB memory from any location.
178	 */
179#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
180#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
181	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
182		start = (void *)xen_get_swiotlb_free_pages(order);
183		if (start)
184			break;
185		order--;
186	}
187	if (!start)
188		goto error;
189	if (order != get_order(bytes)) {
190		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
191			(PAGE_SIZE << order) >> 20);
192		nslabs = SLABS_PER_PAGE << order;
193		bytes = nslabs << IO_TLB_SHIFT;
194	}
195
 
196	/*
197	 * And replace that memory with pages under 4GB.
198	 */
199	rc = xen_swiotlb_fixup(start, nslabs);
200	if (rc) {
201		free_pages((unsigned long)start, order);
202		m_ret = XEN_SWIOTLB_EFIXUP;
203		goto error;
204	}
205	rc = swiotlb_late_init_with_tbl(start, nslabs);
206	if (rc)
207		return rc;
208	swiotlb_set_max_segment(PAGE_SIZE);
209	return 0;
210error:
211	if (repeat--) {
212		/* Min is 2MB */
213		nslabs = max(1024UL, (nslabs >> 1));
214		bytes = nslabs << IO_TLB_SHIFT;
215		pr_info("Lowering to %luMB\n", bytes >> 20);
216		goto retry;
217	}
218	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
219	return rc;
220}
221
222#ifdef CONFIG_X86
223void __init xen_swiotlb_init_early(void)
224{
225	unsigned long bytes = swiotlb_size_or_default();
226	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
227	unsigned int repeat = 3;
228	char *start;
229	int rc;
230
231retry:
232	/*
233	 * Get IO TLB memory from any location.
234	 */
235	start = memblock_alloc(PAGE_ALIGN(bytes),
236			       IO_TLB_SEGSIZE << IO_TLB_SHIFT);
237	if (!start)
238		panic("%s: Failed to allocate %lu bytes\n",
239		      __func__, PAGE_ALIGN(bytes));
240
241	/*
242	 * And replace that memory with pages under 4GB.
243	 */
244	rc = xen_swiotlb_fixup(start, nslabs);
245	if (rc) {
246		memblock_free(__pa(start), PAGE_ALIGN(bytes));
247		if (repeat--) {
248			/* Min is 2MB */
249			nslabs = max(1024UL, (nslabs >> 1));
250			bytes = nslabs << IO_TLB_SHIFT;
251			pr_info("Lowering to %luMB\n", bytes >> 20);
252			goto retry;
253		}
254		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
255	}
256
257	if (swiotlb_init_with_tbl(start, nslabs, false))
258		panic("Cannot allocate SWIOTLB buffer");
259	swiotlb_set_max_segment(PAGE_SIZE);
260}
261#endif /* CONFIG_X86 */
262
263static void *
264xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
265			   dma_addr_t *dma_handle, gfp_t flags,
266			   unsigned long attrs)
267{
268	void *ret;
269	int order = get_order(size);
270	u64 dma_mask = DMA_BIT_MASK(32);
271	phys_addr_t phys;
272	dma_addr_t dev_addr;
273
274	/*
275	* Ignore region specifiers - the kernel's ideas of
276	* pseudo-phys memory layout has nothing to do with the
277	* machine physical layout.  We can't allocate highmem
278	* because we can't return a pointer to it.
279	*/
280	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
281
282	/* Convert the size to actually allocated. */
283	size = 1UL << (order + XEN_PAGE_SHIFT);
284
285	/* On ARM this function returns an ioremap'ped virtual address for
286	 * which virt_to_phys doesn't return the corresponding physical
287	 * address. In fact on ARM virt_to_phys only works for kernel direct
288	 * mapped RAM memory. Also see comment below.
289	 */
290	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
291
292	if (!ret)
293		return ret;
294
295	if (hwdev && hwdev->coherent_dma_mask)
296		dma_mask = hwdev->coherent_dma_mask;
297
298	/* At this point dma_handle is the dma address, next we are
299	 * going to set it to the machine address.
300	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
301	 * to *dma_handle. */
302	phys = dma_to_phys(hwdev, *dma_handle);
303	dev_addr = xen_phys_to_dma(hwdev, phys);
304	if (((dev_addr + size - 1 <= dma_mask)) &&
305	    !range_straddles_page_boundary(phys, size))
306		*dma_handle = dev_addr;
307	else {
308		if (xen_create_contiguous_region(phys, order,
309						 fls64(dma_mask), dma_handle) != 0) {
310			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
311			return NULL;
312		}
313		*dma_handle = phys_to_dma(hwdev, *dma_handle);
314		SetPageXenRemapped(virt_to_page(ret));
315	}
316	memset(ret, 0, size);
317	return ret;
318}
 
319
320static void
321xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
322			  dma_addr_t dev_addr, unsigned long attrs)
323{
324	int order = get_order(size);
325	phys_addr_t phys;
326	u64 dma_mask = DMA_BIT_MASK(32);
327	struct page *page;
328
329	if (hwdev && hwdev->coherent_dma_mask)
330		dma_mask = hwdev->coherent_dma_mask;
331
332	/* do not use virt_to_phys because on ARM it doesn't return you the
333	 * physical address */
334	phys = xen_dma_to_phys(hwdev, dev_addr);
335
336	/* Convert the size to actually allocated. */
337	size = 1UL << (order + XEN_PAGE_SHIFT);
338
339	if (is_vmalloc_addr(vaddr))
340		page = vmalloc_to_page(vaddr);
341	else
342		page = virt_to_page(vaddr);
343
344	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
345		     range_straddles_page_boundary(phys, size)) &&
346	    TestClearPageXenRemapped(page))
347		xen_destroy_contiguous_region(phys, order);
348
349	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
350				attrs);
351}
 
 
352
353/*
354 * Map a single buffer of the indicated size for DMA in streaming mode.  The
355 * physical address to use is returned.
356 *
357 * Once the device is given the dma address, the device owns this memory until
358 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
359 */
360static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
361				unsigned long offset, size_t size,
362				enum dma_data_direction dir,
363				unsigned long attrs)
364{
365	phys_addr_t map, phys = page_to_phys(page) + offset;
366	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
 
367
368	BUG_ON(dir == DMA_NONE);
369	/*
370	 * If the address happens to be in the device's DMA window,
371	 * we can safely return the device addr and not worry about bounce
372	 * buffering it.
373	 */
374	if (dma_capable(dev, dev_addr, size, true) &&
375	    !range_straddles_page_boundary(phys, size) &&
376		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
377		swiotlb_force != SWIOTLB_FORCE)
378		goto done;
379
380	/*
381	 * Oh well, have to allocate and map a bounce buffer.
382	 */
383	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 
 
384
385	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
386	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
387		return DMA_MAPPING_ERROR;
388
389	phys = map;
390	dev_addr = xen_phys_to_dma(dev, map);
391
392	/*
393	 * Ensure that the address returned is DMA'ble
394	 */
395	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
396		swiotlb_tbl_unmap_single(dev, map, size, dir,
397				attrs | DMA_ATTR_SKIP_CPU_SYNC);
398		return DMA_MAPPING_ERROR;
399	}
400
401done:
402	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
403		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
404			arch_sync_dma_for_device(phys, size, dir);
405		else
406			xen_dma_sync_for_device(dev, dev_addr, size, dir);
407	}
408	return dev_addr;
409}
 
410
411/*
412 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
413 * match what was provided for in a previous xen_swiotlb_map_page call.  All
414 * other usages are undefined.
415 *
416 * After this call, reads by the cpu to the buffer are guaranteed to see
417 * whatever the device wrote there.
418 */
419static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
420		size_t size, enum dma_data_direction dir, unsigned long attrs)
421{
422	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
423
424	BUG_ON(dir == DMA_NONE);
425
426	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
427		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
428			arch_sync_dma_for_cpu(paddr, size, dir);
429		else
430			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
431	}
432
433	/* NOTE: We use dev_addr here, not paddr! */
434	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
435		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436}
 
437
 
 
 
 
 
 
 
 
 
 
438static void
439xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
440		size_t size, enum dma_data_direction dir)
 
441{
442	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
 
 
443
444	if (!dev_is_dma_coherent(dev)) {
445		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
446			arch_sync_dma_for_cpu(paddr, size, dir);
447		else
448			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
449	}
450
451	if (is_xen_swiotlb_buffer(dev, dma_addr))
452		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
 
 
453}
454
455static void
456xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
457		size_t size, enum dma_data_direction dir)
458{
459	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
 
 
460
461	if (is_xen_swiotlb_buffer(dev, dma_addr))
462		swiotlb_sync_single_for_device(dev, paddr, size, dir);
463
464	if (!dev_is_dma_coherent(dev)) {
465		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
466			arch_sync_dma_for_device(paddr, size, dir);
467		else
468			xen_dma_sync_for_device(dev, dma_addr, size, dir);
469	}
470}
 
471
472/*
473 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
474 * concerning calls here are the same as for swiotlb_unmap_page() above.
 
 
 
 
 
 
 
 
 
 
 
 
475 */
476static void
477xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
478		enum dma_data_direction dir, unsigned long attrs)
 
479{
480	struct scatterlist *sg;
481	int i;
482
483	BUG_ON(dir == DMA_NONE);
484
485	for_each_sg(sgl, sg, nelems, i)
486		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
487				dir, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488
 
 
 
 
 
489}
 
490
491static int
492xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
493		enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
494{
495	struct scatterlist *sg;
496	int i;
497
498	BUG_ON(dir == DMA_NONE);
499
500	for_each_sg(sgl, sg, nelems, i) {
501		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
502				sg->offset, sg->length, dir, attrs);
503		if (sg->dma_address == DMA_MAPPING_ERROR)
504			goto out_unmap;
505		sg_dma_len(sg) = sg->length;
506	}
507
508	return nelems;
509out_unmap:
510	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
511	sg_dma_len(sgl) = 0;
512	return 0;
513}
 
514
 
 
 
 
 
 
 
515static void
516xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
517			    int nelems, enum dma_data_direction dir)
 
518{
519	struct scatterlist *sg;
520	int i;
521
522	for_each_sg(sgl, sg, nelems, i) {
523		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
524				sg->length, dir);
525	}
 
 
 
 
 
 
526}
 
527
528static void
529xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
530			       int nelems, enum dma_data_direction dir)
531{
532	struct scatterlist *sg;
533	int i;
 
534
535	for_each_sg(sgl, sg, nelems, i) {
536		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
537				sg->length, dir);
538	}
539}
 
540
541/*
542 * Return whether the given device DMA address mask can be supported
543 * properly.  For example, if your device can only drive the low 24-bits
544 * during bus mastering, then you would pass 0x00ffffff as the mask to
545 * this function.
546 */
547static int
548xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
549{
550	return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
551}
552
553const struct dma_map_ops xen_swiotlb_dma_ops = {
554	.alloc = xen_swiotlb_alloc_coherent,
555	.free = xen_swiotlb_free_coherent,
556	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
557	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
558	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
559	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
560	.map_sg = xen_swiotlb_map_sg,
561	.unmap_sg = xen_swiotlb_unmap_sg,
562	.map_page = xen_swiotlb_map_page,
563	.unmap_page = xen_swiotlb_unmap_page,
564	.dma_supported = xen_swiotlb_dma_supported,
565	.mmap = dma_common_mmap,
566	.get_sgtable = dma_common_get_sgtable,
567	.alloc_pages = dma_common_alloc_pages,
568	.free_pages = dma_common_free_pages,
569};