Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  Copyright 2010
  3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4 *
  5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License v2.0 as published by
  9 * the Free Software Foundation
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * PV guests under Xen are running in an non-contiguous memory architecture.
 17 *
 18 * When PCI pass-through is utilized, this necessitates an IOMMU for
 19 * translating bus (DMA) to virtual and vice-versa and also providing a
 20 * mechanism to have contiguous pages for device drivers operations (say DMA
 21 * operations).
 22 *
 23 * Specifically, under Xen the Linux idea of pages is an illusion. It
 24 * assumes that pages start at zero and go up to the available memory. To
 25 * help with that, the Linux Xen MMU provides a lookup mechanism to
 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 28 * memory is not contiguous. Xen hypervisor stitches memory for guests
 29 * from different pools, which means there is no guarantee that PFN==MFN
 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 31 * allocated in descending order (high to low), meaning the guest might
 32 * never get any MFN's under the 4GB mark.
 33 *
 34 */
 35
 
 
 36#include <linux/bootmem.h>
 37#include <linux/dma-mapping.h>
 
 38#include <xen/swiotlb-xen.h>
 39#include <xen/page.h>
 40#include <xen/xen-ops.h>
 
 
 
 
 
 
 41/*
 42 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 44 * API.
 45 */
 46
 
 
 47static char *xen_io_tlb_start, *xen_io_tlb_end;
 48static unsigned long xen_io_tlb_nslabs;
 49/*
 50 * Quick lookup value of the bus address of the IOTLB.
 51 */
 52
 53u64 start_dma_addr;
 54
 55static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 
 
 
 
 
 56{
 57	return phys_to_machine(XPADDR(paddr)).maddr;
 
 
 
 
 
 58}
 59
 60static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 61{
 62	return machine_to_phys(XMADDR(baddr)).paddr;
 
 
 
 
 
 
 63}
 64
 65static dma_addr_t xen_virt_to_bus(void *address)
 66{
 67	return xen_phys_to_bus(virt_to_phys(address));
 68}
 69
 70static int check_pages_physically_contiguous(unsigned long pfn,
 71					     unsigned int offset,
 72					     size_t length)
 73{
 74	unsigned long next_mfn;
 75	int i;
 76	int nr_pages;
 77
 78	next_mfn = pfn_to_mfn(pfn);
 79	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
 80
 81	for (i = 1; i < nr_pages; i++) {
 82		if (pfn_to_mfn(++pfn) != ++next_mfn)
 83			return 0;
 84	}
 85	return 1;
 86}
 87
 88static int range_straddles_page_boundary(phys_addr_t p, size_t size)
 89{
 90	unsigned long pfn = PFN_DOWN(p);
 91	unsigned int offset = p & ~PAGE_MASK;
 92
 93	if (offset + size <= PAGE_SIZE)
 94		return 0;
 95	if (check_pages_physically_contiguous(pfn, offset, size))
 96		return 0;
 97	return 1;
 98}
 99
100static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
101{
102	unsigned long mfn = PFN_DOWN(dma_addr);
103	unsigned long pfn = mfn_to_local_pfn(mfn);
104	phys_addr_t paddr;
105
106	/* If the address is outside our domain, it CAN
107	 * have the same virtual address as another address
108	 * in our domain. Therefore _only_ check address within our domain.
109	 */
110	if (pfn_valid(pfn)) {
111		paddr = PFN_PHYS(pfn);
112		return paddr >= virt_to_phys(xen_io_tlb_start) &&
113		       paddr < virt_to_phys(xen_io_tlb_end);
114	}
115	return 0;
116}
117
118static int max_dma_bits = 32;
119
120static int
121xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
122{
123	int i, rc;
124	int dma_bits;
 
 
125
126	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
127
128	i = 0;
129	do {
130		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
131
132		do {
133			rc = xen_create_contiguous_region(
134				(unsigned long)buf + (i << IO_TLB_SHIFT),
135				get_order(slabs << IO_TLB_SHIFT),
136				dma_bits);
137		} while (rc && dma_bits++ < max_dma_bits);
138		if (rc)
139			return rc;
140
141		i += slabs;
142	} while (i < nslabs);
143	return 0;
144}
145
146void __init xen_swiotlb_init(int verbose)
147{
148	unsigned long bytes;
149	int rc;
150	unsigned long nr_tbl;
151
152	nr_tbl = swioltb_nr_tbl();
153	if (nr_tbl)
154		xen_io_tlb_nslabs = nr_tbl;
155	else {
156		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
157		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
158	}
 
159
160	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162	/*
163	 * Get IO TLB memory from any location.
164	 */
165	xen_io_tlb_start = alloc_bootmem(bytes);
166	if (!xen_io_tlb_start)
167		panic("Cannot allocate SWIOTLB buffer");
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169	xen_io_tlb_end = xen_io_tlb_start + bytes;
170	/*
171	 * And replace that memory with pages under 4GB.
172	 */
173	rc = xen_swiotlb_fixup(xen_io_tlb_start,
174			       bytes,
175			       xen_io_tlb_nslabs);
176	if (rc)
 
 
 
 
 
 
 
177		goto error;
178
179	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
180	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
 
 
 
 
 
 
 
 
 
181
182	return;
183error:
184	panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
185	      "We either don't have the permission or you do not have enough"\
186	      "free memory under 4GB!\n", rc);
 
 
 
 
 
 
 
 
 
 
187}
188
189void *
190xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
191			   dma_addr_t *dma_handle, gfp_t flags)
 
192{
193	void *ret;
194	int order = get_order(size);
195	u64 dma_mask = DMA_BIT_MASK(32);
196	unsigned long vstart;
 
197
198	/*
199	* Ignore region specifiers - the kernel's ideas of
200	* pseudo-phys memory layout has nothing to do with the
201	* machine physical layout.  We can't allocate highmem
202	* because we can't return a pointer to it.
203	*/
204	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
205
206	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
207		return ret;
 
 
 
 
208
209	vstart = __get_free_pages(flags, order);
210	ret = (void *)vstart;
211
212	if (hwdev && hwdev->coherent_dma_mask)
213		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
214
215	if (ret) {
216		if (xen_create_contiguous_region(vstart, order,
217						 fls64(dma_mask)) != 0) {
218			free_pages(vstart, order);
 
 
 
 
 
 
 
 
 
219			return NULL;
220		}
221		memset(ret, 0, size);
222		*dma_handle = virt_to_machine(ret).maddr;
223	}
 
224	return ret;
225}
226EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
227
228void
229xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
230			  dma_addr_t dev_addr)
231{
232	int order = get_order(size);
 
 
233
234	if (dma_release_from_coherent(hwdev, order, vaddr))
235		return;
236
237	xen_destroy_contiguous_region((unsigned long)vaddr, order);
238	free_pages((unsigned long)vaddr, order);
239}
240EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
241
 
 
 
 
 
 
242
243/*
244 * Map a single buffer of the indicated size for DMA in streaming mode.  The
245 * physical address to use is returned.
246 *
247 * Once the device is given the dma address, the device owns this memory until
248 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
249 */
250dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
251				unsigned long offset, size_t size,
252				enum dma_data_direction dir,
253				struct dma_attrs *attrs)
254{
255	phys_addr_t phys = page_to_phys(page) + offset;
256	dma_addr_t dev_addr = xen_phys_to_bus(phys);
257	void *map;
258
259	BUG_ON(dir == DMA_NONE);
260	/*
261	 * If the address happens to be in the device's DMA window,
262	 * we can safely return the device addr and not worry about bounce
263	 * buffering it.
264	 */
265	if (dma_capable(dev, dev_addr, size) &&
266	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
 
 
 
 
 
 
267		return dev_addr;
 
268
269	/*
270	 * Oh well, have to allocate and map a bounce buffer.
271	 */
272	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
273	if (!map)
274		return DMA_ERROR_CODE;
275
276	dev_addr = xen_virt_to_bus(map);
 
 
 
 
 
 
 
277
278	/*
279	 * Ensure that the address returned is DMA'ble
280	 */
281	if (!dma_capable(dev, dev_addr, size))
282		panic("map_single: bounce buffer is not DMA'ble");
283
284	return dev_addr;
 
 
 
285}
286EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
287
288/*
289 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
290 * match what was provided for in a previous xen_swiotlb_map_page call.  All
291 * other usages are undefined.
292 *
293 * After this call, reads by the cpu to the buffer are guaranteed to see
294 * whatever the device wrote there.
295 */
296static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
297			     size_t size, enum dma_data_direction dir)
 
298{
299	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
300
301	BUG_ON(dir == DMA_NONE);
302
 
 
303	/* NOTE: We use dev_addr here, not paddr! */
304	if (is_xen_swiotlb_buffer(dev_addr)) {
305		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
306		return;
307	}
308
309	if (dir != DMA_FROM_DEVICE)
310		return;
311
312	/*
313	 * phys_to_virt doesn't work with hihgmem page but we could
314	 * call dma_mark_clean() with hihgmem page here. However, we
315	 * are fine since dma_mark_clean() is null on POWERPC. We can
316	 * make dma_mark_clean() take a physical address if necessary.
317	 */
318	dma_mark_clean(phys_to_virt(paddr), size);
319}
320
321void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
322			    size_t size, enum dma_data_direction dir,
323			    struct dma_attrs *attrs)
324{
325	xen_unmap_single(hwdev, dev_addr, size, dir);
326}
327EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
328
329/*
330 * Make physical memory consistent for a single streaming mode DMA translation
331 * after a transfer.
332 *
333 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
334 * using the cpu, yet do not wish to teardown the dma mapping, you must
335 * call this function before doing so.  At the next point you give the dma
336 * address back to the card, you must first perform a
337 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
338 */
339static void
340xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
341			size_t size, enum dma_data_direction dir,
342			enum dma_sync_target target)
343{
344	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
345
346	BUG_ON(dir == DMA_NONE);
347
 
 
 
348	/* NOTE: We use dev_addr here, not paddr! */
349	if (is_xen_swiotlb_buffer(dev_addr)) {
350		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
351				       target);
352		return;
353	}
354
355	if (dir != DMA_FROM_DEVICE)
356		return;
357
358	dma_mark_clean(phys_to_virt(paddr), size);
359}
360
361void
362xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
363				size_t size, enum dma_data_direction dir)
364{
365	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
366}
367EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
368
369void
370xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
371				   size_t size, enum dma_data_direction dir)
372{
373	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
374}
375EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376
377/*
378 * Map a set of buffers described by scatterlist in streaming mode for DMA.
379 * This is the scatter-gather version of the above xen_swiotlb_map_page
380 * interface.  Here the scatter gather list elements are each tagged with the
381 * appropriate dma address and length.  They are obtained via
382 * sg_dma_{address,length}(SG).
383 *
384 * NOTE: An implementation may be able to use a smaller number of
385 *       DMA address/length pairs than there are SG table elements.
386 *       (for example via virtual mapping capabilities)
387 *       The routine returns the number of addr/length pairs actually
388 *       used, at most nents.
389 *
390 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
391 * same here.
392 */
393int
394xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
395			 int nelems, enum dma_data_direction dir,
396			 struct dma_attrs *attrs)
397{
398	struct scatterlist *sg;
399	int i;
400
401	BUG_ON(dir == DMA_NONE);
402
403	for_each_sg(sgl, sg, nelems, i) {
404		phys_addr_t paddr = sg_phys(sg);
405		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
406
407		if (swiotlb_force ||
 
408		    !dma_capable(hwdev, dev_addr, sg->length) ||
409		    range_straddles_page_boundary(paddr, sg->length)) {
410			void *map = swiotlb_tbl_map_single(hwdev,
411							   start_dma_addr,
412							   sg_phys(sg),
413							   sg->length, dir);
414			if (!map) {
 
 
415				/* Don't panic here, we expect map_sg users
416				   to do proper error handling. */
 
417				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
418							   attrs);
419				sgl[0].dma_length = 0;
420				return DMA_ERROR_CODE;
421			}
422			sg->dma_address = xen_virt_to_bus(map);
423		} else
 
 
 
 
 
424			sg->dma_address = dev_addr;
425		sg->dma_length = sg->length;
 
 
 
 
 
 
 
 
 
 
 
 
426	}
427	return nelems;
428}
429EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
430
431int
432xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
433		   enum dma_data_direction dir)
434{
435	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
436}
437EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
438
439/*
440 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
441 * concerning calls here are the same as for swiotlb_unmap_page() above.
442 */
443void
444xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
445			   int nelems, enum dma_data_direction dir,
446			   struct dma_attrs *attrs)
447{
448	struct scatterlist *sg;
449	int i;
450
451	BUG_ON(dir == DMA_NONE);
452
453	for_each_sg(sgl, sg, nelems, i)
454		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
455
456}
457EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
458
459void
460xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
461		     enum dma_data_direction dir)
462{
463	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
464}
465EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
466
467/*
468 * Make physical memory consistent for a set of streaming mode DMA translations
469 * after a transfer.
470 *
471 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
472 * and usage.
473 */
474static void
475xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
476		    int nelems, enum dma_data_direction dir,
477		    enum dma_sync_target target)
478{
479	struct scatterlist *sg;
480	int i;
481
482	for_each_sg(sgl, sg, nelems, i)
483		xen_swiotlb_sync_single(hwdev, sg->dma_address,
484					sg->dma_length, dir, target);
485}
486
487void
488xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
489			    int nelems, enum dma_data_direction dir)
490{
491	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
492}
493EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
494
495void
496xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
497			       int nelems, enum dma_data_direction dir)
498{
499	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
500}
501EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
502
503int
504xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
505{
506	return !dma_addr;
507}
508EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
509
510/*
511 * Return whether the given device DMA address mask can be supported
512 * properly.  For example, if your device can only drive the low 24-bits
513 * during bus mastering, then you would pass 0x00ffffff as the mask to
514 * this function.
515 */
516int
517xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
518{
519	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
520}
521EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.17
  1/*
  2 *  Copyright 2010
  3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4 *
  5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License v2.0 as published by
  9 * the Free Software Foundation
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * PV guests under Xen are running in an non-contiguous memory architecture.
 17 *
 18 * When PCI pass-through is utilized, this necessitates an IOMMU for
 19 * translating bus (DMA) to virtual and vice-versa and also providing a
 20 * mechanism to have contiguous pages for device drivers operations (say DMA
 21 * operations).
 22 *
 23 * Specifically, under Xen the Linux idea of pages is an illusion. It
 24 * assumes that pages start at zero and go up to the available memory. To
 25 * help with that, the Linux Xen MMU provides a lookup mechanism to
 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 28 * memory is not contiguous. Xen hypervisor stitches memory for guests
 29 * from different pools, which means there is no guarantee that PFN==MFN
 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 31 * allocated in descending order (high to low), meaning the guest might
 32 * never get any MFN's under the 4GB mark.
 33 *
 34 */
 35
 36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 37
 38#include <linux/bootmem.h>
 39#include <linux/dma-direct.h>
 40#include <linux/export.h>
 41#include <xen/swiotlb-xen.h>
 42#include <xen/page.h>
 43#include <xen/xen-ops.h>
 44#include <xen/hvc-console.h>
 45
 46#include <asm/dma-mapping.h>
 47#include <asm/xen/page-coherent.h>
 48
 49#include <trace/events/swiotlb.h>
 50/*
 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 53 * API.
 54 */
 55
 56#define XEN_SWIOTLB_ERROR_CODE	(~(dma_addr_t)0x0)
 57
 58static char *xen_io_tlb_start, *xen_io_tlb_end;
 59static unsigned long xen_io_tlb_nslabs;
 60/*
 61 * Quick lookup value of the bus address of the IOTLB.
 62 */
 63
 64static u64 start_dma_addr;
 65
 66/*
 67 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
 68 * can be 32bit when dma_addr_t is 64bit leading to a loss in
 69 * information if the shift is done before casting to 64bit.
 70 */
 71static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 72{
 73	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 74	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
 75
 76	dma |= paddr & ~XEN_PAGE_MASK;
 77
 78	return dma;
 79}
 80
 81static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 82{
 83	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 84	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 85	phys_addr_t paddr = dma;
 86
 87	paddr |= baddr & ~XEN_PAGE_MASK;
 88
 89	return paddr;
 90}
 91
 92static inline dma_addr_t xen_virt_to_bus(void *address)
 93{
 94	return xen_phys_to_bus(virt_to_phys(address));
 95}
 96
 97static int check_pages_physically_contiguous(unsigned long xen_pfn,
 98					     unsigned int offset,
 99					     size_t length)
100{
101	unsigned long next_bfn;
102	int i;
103	int nr_pages;
104
105	next_bfn = pfn_to_bfn(xen_pfn);
106	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
107
108	for (i = 1; i < nr_pages; i++) {
109		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
110			return 0;
111	}
112	return 1;
113}
114
115static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
116{
117	unsigned long xen_pfn = XEN_PFN_DOWN(p);
118	unsigned int offset = p & ~XEN_PAGE_MASK;
119
120	if (offset + size <= XEN_PAGE_SIZE)
121		return 0;
122	if (check_pages_physically_contiguous(xen_pfn, offset, size))
123		return 0;
124	return 1;
125}
126
127static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
128{
129	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
130	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
131	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
132
133	/* If the address is outside our domain, it CAN
134	 * have the same virtual address as another address
135	 * in our domain. Therefore _only_ check address within our domain.
136	 */
137	if (pfn_valid(PFN_DOWN(paddr))) {
 
138		return paddr >= virt_to_phys(xen_io_tlb_start) &&
139		       paddr < virt_to_phys(xen_io_tlb_end);
140	}
141	return 0;
142}
143
144static int max_dma_bits = 32;
145
146static int
147xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
148{
149	int i, rc;
150	int dma_bits;
151	dma_addr_t dma_handle;
152	phys_addr_t p = virt_to_phys(buf);
153
154	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
155
156	i = 0;
157	do {
158		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
159
160		do {
161			rc = xen_create_contiguous_region(
162				p + (i << IO_TLB_SHIFT),
163				get_order(slabs << IO_TLB_SHIFT),
164				dma_bits, &dma_handle);
165		} while (rc && dma_bits++ < max_dma_bits);
166		if (rc)
167			return rc;
168
169		i += slabs;
170	} while (i < nslabs);
171	return 0;
172}
173static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 
174{
175	if (!nr_tbl) {
 
 
 
 
 
 
 
176		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
177		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
178	} else
179		xen_io_tlb_nslabs = nr_tbl;
180
181	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
182}
183
184enum xen_swiotlb_err {
185	XEN_SWIOTLB_UNKNOWN = 0,
186	XEN_SWIOTLB_ENOMEM,
187	XEN_SWIOTLB_EFIXUP
188};
189
190static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
191{
192	switch (err) {
193	case XEN_SWIOTLB_ENOMEM:
194		return "Cannot allocate Xen-SWIOTLB buffer\n";
195	case XEN_SWIOTLB_EFIXUP:
196		return "Failed to get contiguous memory for DMA from Xen!\n"\
197		    "You either: don't have the permissions, do not have"\
198		    " enough free memory under 4GB, or the hypervisor memory"\
199		    " is too fragmented!";
200	default:
201		break;
202	}
203	return "";
204}
205int __ref xen_swiotlb_init(int verbose, bool early)
206{
207	unsigned long bytes, order;
208	int rc = -ENOMEM;
209	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
210	unsigned int repeat = 3;
211
212	xen_io_tlb_nslabs = swiotlb_nr_tbl();
213retry:
214	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
215	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
216	/*
217	 * Get IO TLB memory from any location.
218	 */
219	if (early)
220		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
221	else {
222#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
223#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
224		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
226			if (xen_io_tlb_start)
227				break;
228			order--;
229		}
230		if (order != get_order(bytes)) {
231			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
232				(PAGE_SIZE << order) >> 20);
233			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
234			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
235		}
236	}
237	if (!xen_io_tlb_start) {
238		m_ret = XEN_SWIOTLB_ENOMEM;
239		goto error;
240	}
241	xen_io_tlb_end = xen_io_tlb_start + bytes;
242	/*
243	 * And replace that memory with pages under 4GB.
244	 */
245	rc = xen_swiotlb_fixup(xen_io_tlb_start,
246			       bytes,
247			       xen_io_tlb_nslabs);
248	if (rc) {
249		if (early)
250			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
251		else {
252			free_pages((unsigned long)xen_io_tlb_start, order);
253			xen_io_tlb_start = NULL;
254		}
255		m_ret = XEN_SWIOTLB_EFIXUP;
256		goto error;
257	}
258	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
259	if (early) {
260		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
261			 verbose))
262			panic("Cannot allocate SWIOTLB buffer");
263		rc = 0;
264	} else
265		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
266
267	if (!rc)
268		swiotlb_set_max_segment(PAGE_SIZE);
269
270	return rc;
271error:
272	if (repeat--) {
273		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
274					(xen_io_tlb_nslabs >> 1));
275		pr_info("Lowering to %luMB\n",
276			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
277		goto retry;
278	}
279	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
280	if (early)
281		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
282	else
283		free_pages((unsigned long)xen_io_tlb_start, order);
284	return rc;
285}
286
287static void *
288xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
289			   dma_addr_t *dma_handle, gfp_t flags,
290			   unsigned long attrs)
291{
292	void *ret;
293	int order = get_order(size);
294	u64 dma_mask = DMA_BIT_MASK(32);
295	phys_addr_t phys;
296	dma_addr_t dev_addr;
297
298	/*
299	* Ignore region specifiers - the kernel's ideas of
300	* pseudo-phys memory layout has nothing to do with the
301	* machine physical layout.  We can't allocate highmem
302	* because we can't return a pointer to it.
303	*/
304	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
305
306	/* On ARM this function returns an ioremap'ped virtual address for
307	 * which virt_to_phys doesn't return the corresponding physical
308	 * address. In fact on ARM virt_to_phys only works for kernel direct
309	 * mapped RAM memory. Also see comment below.
310	 */
311	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
312
313	if (!ret)
314		return ret;
315
316	if (hwdev && hwdev->coherent_dma_mask)
317		dma_mask = hwdev->coherent_dma_mask;
318
319	/* At this point dma_handle is the physical address, next we are
320	 * going to set it to the machine address.
321	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
322	 * to *dma_handle. */
323	phys = *dma_handle;
324	dev_addr = xen_phys_to_bus(phys);
325	if (((dev_addr + size - 1 <= dma_mask)) &&
326	    !range_straddles_page_boundary(phys, size))
327		*dma_handle = dev_addr;
328	else {
329		if (xen_create_contiguous_region(phys, order,
330						 fls64(dma_mask), dma_handle) != 0) {
331			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
332			return NULL;
333		}
 
 
334	}
335	memset(ret, 0, size);
336	return ret;
337}
 
338
339static void
340xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
341			  dma_addr_t dev_addr, unsigned long attrs)
342{
343	int order = get_order(size);
344	phys_addr_t phys;
345	u64 dma_mask = DMA_BIT_MASK(32);
346
347	if (hwdev && hwdev->coherent_dma_mask)
348		dma_mask = hwdev->coherent_dma_mask;
349
350	/* do not use virt_to_phys because on ARM it doesn't return you the
351	 * physical address */
352	phys = xen_bus_to_phys(dev_addr);
 
353
354	if (((dev_addr + size - 1 <= dma_mask)) ||
355	    range_straddles_page_boundary(phys, size))
356		xen_destroy_contiguous_region(phys, order);
357
358	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
359}
360
361/*
362 * Map a single buffer of the indicated size for DMA in streaming mode.  The
363 * physical address to use is returned.
364 *
365 * Once the device is given the dma address, the device owns this memory until
366 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
367 */
368static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
369				unsigned long offset, size_t size,
370				enum dma_data_direction dir,
371				unsigned long attrs)
372{
373	phys_addr_t map, phys = page_to_phys(page) + offset;
374	dma_addr_t dev_addr = xen_phys_to_bus(phys);
 
375
376	BUG_ON(dir == DMA_NONE);
377	/*
378	 * If the address happens to be in the device's DMA window,
379	 * we can safely return the device addr and not worry about bounce
380	 * buffering it.
381	 */
382	if (dma_capable(dev, dev_addr, size) &&
383	    !range_straddles_page_boundary(phys, size) &&
384		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
385		(swiotlb_force != SWIOTLB_FORCE)) {
386		/* we are not interested in the dma_addr returned by
387		 * xen_dma_map_page, only in the potential cache flushes executed
388		 * by the function. */
389		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
390		return dev_addr;
391	}
392
393	/*
394	 * Oh well, have to allocate and map a bounce buffer.
395	 */
396	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 
 
397
398	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
399				     attrs);
400	if (map == SWIOTLB_MAP_ERROR)
401		return XEN_SWIOTLB_ERROR_CODE;
402
403	dev_addr = xen_phys_to_bus(map);
404	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
405					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
406
407	/*
408	 * Ensure that the address returned is DMA'ble
409	 */
410	if (dma_capable(dev, dev_addr, size))
411		return dev_addr;
412
413	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
414	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
415
416	return XEN_SWIOTLB_ERROR_CODE;
417}
 
418
419/*
420 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
421 * match what was provided for in a previous xen_swiotlb_map_page call.  All
422 * other usages are undefined.
423 *
424 * After this call, reads by the cpu to the buffer are guaranteed to see
425 * whatever the device wrote there.
426 */
427static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
428			     size_t size, enum dma_data_direction dir,
429			     unsigned long attrs)
430{
431	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
432
433	BUG_ON(dir == DMA_NONE);
434
435	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
436
437	/* NOTE: We use dev_addr here, not paddr! */
438	if (is_xen_swiotlb_buffer(dev_addr)) {
439		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
440		return;
441	}
442
443	if (dir != DMA_FROM_DEVICE)
444		return;
445
446	/*
447	 * phys_to_virt doesn't work with hihgmem page but we could
448	 * call dma_mark_clean() with hihgmem page here. However, we
449	 * are fine since dma_mark_clean() is null on POWERPC. We can
450	 * make dma_mark_clean() take a physical address if necessary.
451	 */
452	dma_mark_clean(phys_to_virt(paddr), size);
453}
454
455static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
456			    size_t size, enum dma_data_direction dir,
457			    unsigned long attrs)
458{
459	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
460}
 
461
462/*
463 * Make physical memory consistent for a single streaming mode DMA translation
464 * after a transfer.
465 *
466 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
467 * using the cpu, yet do not wish to teardown the dma mapping, you must
468 * call this function before doing so.  At the next point you give the dma
469 * address back to the card, you must first perform a
470 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
471 */
472static void
473xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
474			size_t size, enum dma_data_direction dir,
475			enum dma_sync_target target)
476{
477	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
478
479	BUG_ON(dir == DMA_NONE);
480
481	if (target == SYNC_FOR_CPU)
482		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
483
484	/* NOTE: We use dev_addr here, not paddr! */
485	if (is_xen_swiotlb_buffer(dev_addr))
486		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
487
488	if (target == SYNC_FOR_DEVICE)
489		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
490
491	if (dir != DMA_FROM_DEVICE)
492		return;
493
494	dma_mark_clean(phys_to_virt(paddr), size);
495}
496
497void
498xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
499				size_t size, enum dma_data_direction dir)
500{
501	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
502}
 
503
504void
505xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
506				   size_t size, enum dma_data_direction dir)
507{
508	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
509}
510
511/*
512 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
513 * concerning calls here are the same as for swiotlb_unmap_page() above.
514 */
515static void
516xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
517			   int nelems, enum dma_data_direction dir,
518			   unsigned long attrs)
519{
520	struct scatterlist *sg;
521	int i;
522
523	BUG_ON(dir == DMA_NONE);
524
525	for_each_sg(sgl, sg, nelems, i)
526		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
527
528}
529
530/*
531 * Map a set of buffers described by scatterlist in streaming mode for DMA.
532 * This is the scatter-gather version of the above xen_swiotlb_map_page
533 * interface.  Here the scatter gather list elements are each tagged with the
534 * appropriate dma address and length.  They are obtained via
535 * sg_dma_{address,length}(SG).
536 *
537 * NOTE: An implementation may be able to use a smaller number of
538 *       DMA address/length pairs than there are SG table elements.
539 *       (for example via virtual mapping capabilities)
540 *       The routine returns the number of addr/length pairs actually
541 *       used, at most nents.
542 *
543 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
544 * same here.
545 */
546static int
547xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
548			 int nelems, enum dma_data_direction dir,
549			 unsigned long attrs)
550{
551	struct scatterlist *sg;
552	int i;
553
554	BUG_ON(dir == DMA_NONE);
555
556	for_each_sg(sgl, sg, nelems, i) {
557		phys_addr_t paddr = sg_phys(sg);
558		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
559
560		if (swiotlb_force == SWIOTLB_FORCE ||
561		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
562		    !dma_capable(hwdev, dev_addr, sg->length) ||
563		    range_straddles_page_boundary(paddr, sg->length)) {
564			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
565								 start_dma_addr,
566								 sg_phys(sg),
567								 sg->length,
568								 dir, attrs);
569			if (map == SWIOTLB_MAP_ERROR) {
570				dev_warn(hwdev, "swiotlb buffer is full\n");
571				/* Don't panic here, we expect map_sg users
572				   to do proper error handling. */
573				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
574				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
575							   attrs);
576				sg_dma_len(sgl) = 0;
577				return 0;
578			}
579			dev_addr = xen_phys_to_bus(map);
580			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
581						dev_addr,
582						map & ~PAGE_MASK,
583						sg->length,
584						dir,
585						attrs);
586			sg->dma_address = dev_addr;
587		} else {
588			/* we are not interested in the dma_addr returned by
589			 * xen_dma_map_page, only in the potential cache flushes executed
590			 * by the function. */
591			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
592						dev_addr,
593						paddr & ~PAGE_MASK,
594						sg->length,
595						dir,
596						attrs);
597			sg->dma_address = dev_addr;
598		}
599		sg_dma_len(sg) = sg->length;
600	}
601	return nelems;
602}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603
604/*
605 * Make physical memory consistent for a set of streaming mode DMA translations
606 * after a transfer.
607 *
608 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
609 * and usage.
610 */
611static void
612xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
613		    int nelems, enum dma_data_direction dir,
614		    enum dma_sync_target target)
615{
616	struct scatterlist *sg;
617	int i;
618
619	for_each_sg(sgl, sg, nelems, i)
620		xen_swiotlb_sync_single(hwdev, sg->dma_address,
621					sg_dma_len(sg), dir, target);
622}
623
624static void
625xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
626			    int nelems, enum dma_data_direction dir)
627{
628	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
629}
 
630
631static void
632xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
633			       int nelems, enum dma_data_direction dir)
634{
635	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
636}
 
 
 
 
 
 
 
 
637
638/*
639 * Return whether the given device DMA address mask can be supported
640 * properly.  For example, if your device can only drive the low 24-bits
641 * during bus mastering, then you would pass 0x00ffffff as the mask to
642 * this function.
643 */
644static int
645xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
646{
647	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
648}
649
650/*
651 * Create userspace mapping for the DMA-coherent memory.
652 * This function should be called with the pages from the current domain only,
653 * passing pages mapped from other domains would lead to memory corruption.
654 */
655static int
656xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
657		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
658		     unsigned long attrs)
659{
660#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
661	if (xen_get_dma_ops(dev)->mmap)
662		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
663						    dma_addr, size, attrs);
664#endif
665	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
666}
667
668/*
669 * This function should be called with the pages from the current domain only,
670 * passing pages mapped from other domains would lead to memory corruption.
671 */
672static int
673xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
674			void *cpu_addr, dma_addr_t handle, size_t size,
675			unsigned long attrs)
676{
677#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
678	if (xen_get_dma_ops(dev)->get_sgtable) {
679#if 0
680	/*
681	 * This check verifies that the page belongs to the current domain and
682	 * is not one mapped from another domain.
683	 * This check is for debug only, and should not go to production build
684	 */
685		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
686		BUG_ON (!page_is_ram(bfn));
687#endif
688		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
689							   handle, size, attrs);
690	}
691#endif
692	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size);
693}
694
695static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
696{
697	return dma_addr == XEN_SWIOTLB_ERROR_CODE;
698}
699
700const struct dma_map_ops xen_swiotlb_dma_ops = {
701	.alloc = xen_swiotlb_alloc_coherent,
702	.free = xen_swiotlb_free_coherent,
703	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
704	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
705	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
706	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
707	.map_sg = xen_swiotlb_map_sg_attrs,
708	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
709	.map_page = xen_swiotlb_map_page,
710	.unmap_page = xen_swiotlb_unmap_page,
711	.dma_supported = xen_swiotlb_dma_supported,
712	.mmap = xen_swiotlb_dma_mmap,
713	.get_sgtable = xen_swiotlb_get_sgtable,
714	.mapping_error	= xen_swiotlb_mapping_error,
715};