Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/pci.h>
  10#include <linux/netdevice.h>
  11#include <linux/etherdevice.h>
  12#include <linux/delay.h>
  13#include <linux/notifier.h>
  14#include <linux/ip.h>
  15#include <linux/tcp.h>
  16#include <linux/in.h>
  17#include <linux/ethtool.h>
  18#include <linux/topology.h>
  19#include <linux/gfp.h>
  20#include <linux/aer.h>
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include "efx.h"
  26#include "efx_common.h"
  27#include "efx_channels.h"
  28#include "ef100.h"
  29#include "rx_common.h"
  30#include "tx_common.h"
  31#include "nic.h"
  32#include "io.h"
  33#include "selftest.h"
  34#include "sriov.h"
  35
  36#include "mcdi_port_common.h"
  37#include "mcdi_pcol.h"
  38#include "workarounds.h"
  39
  40/**************************************************************************
  41 *
  42 * Configurable values
  43 *
  44 *************************************************************************/
  45
  46module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
  47MODULE_PARM_DESC(interrupt_mode,
  48		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  49
  50module_param(rss_cpus, uint, 0444);
  51MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  52
  53/*
  54 * Use separate channels for TX and RX events
  55 *
  56 * Set this to 1 to use separate channels for TX and RX. It allows us
  57 * to control interrupt affinity separately for TX and RX.
  58 *
  59 * This is only used in MSI-X interrupt mode
  60 */
  61bool efx_separate_tx_channels;
  62module_param(efx_separate_tx_channels, bool, 0444);
  63MODULE_PARM_DESC(efx_separate_tx_channels,
  64		 "Use separate channels for TX and RX");
  65
  66/* Initial interrupt moderation settings.  They can be modified after
  67 * module load with ethtool.
  68 *
  69 * The default for RX should strike a balance between increasing the
  70 * round-trip latency and reducing overhead.
  71 */
  72static unsigned int rx_irq_mod_usec = 60;
  73
  74/* Initial interrupt moderation settings.  They can be modified after
  75 * module load with ethtool.
  76 *
  77 * This default is chosen to ensure that a 10G link does not go idle
  78 * while a TX queue is stopped after it has become full.  A queue is
  79 * restarted when it drops below half full.  The time this takes (assuming
  80 * worst case 3 descriptors per packet and 1024 descriptors) is
  81 *   512 / 3 * 1.2 = 205 usec.
  82 */
  83static unsigned int tx_irq_mod_usec = 150;
  84
  85static bool phy_flash_cfg;
  86module_param(phy_flash_cfg, bool, 0644);
  87MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  88
  89static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  90			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  91			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  92			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  93module_param(debug, uint, 0);
  94MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  95
  96/**************************************************************************
  97 *
  98 * Utility functions and prototypes
  99 *
 100 *************************************************************************/
 101
 102static void efx_remove_port(struct efx_nic *efx);
 103static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
 104static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
 105static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 106			u32 flags);
 107
 108#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 109	do {						\
 110		if ((efx->state == STATE_READY) ||	\
 111		    (efx->state == STATE_RECOVERY) ||	\
 112		    (efx->state == STATE_DISABLED))	\
 113			ASSERT_RTNL();			\
 114	} while (0)
 115
 116/**************************************************************************
 117 *
 118 * Port handling
 119 *
 120 **************************************************************************/
 121
 122static void efx_fini_port(struct efx_nic *efx);
 123
 124static int efx_probe_port(struct efx_nic *efx)
 125{
 126	int rc;
 127
 128	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 129
 130	if (phy_flash_cfg)
 131		efx->phy_mode = PHY_MODE_SPECIAL;
 132
 133	/* Connect up MAC/PHY operations table */
 134	rc = efx->type->probe_port(efx);
 135	if (rc)
 136		return rc;
 137
 138	/* Initialise MAC address to permanent address */
 139	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
 140
 141	return 0;
 142}
 143
 144static int efx_init_port(struct efx_nic *efx)
 145{
 146	int rc;
 147
 148	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 149
 150	mutex_lock(&efx->mac_lock);
 151
 152	efx->port_initialized = true;
 153
 154	/* Ensure the PHY advertises the correct flow control settings */
 155	rc = efx_mcdi_port_reconfigure(efx);
 156	if (rc && rc != -EPERM)
 157		goto fail;
 158
 159	mutex_unlock(&efx->mac_lock);
 160	return 0;
 161
 162fail:
 163	mutex_unlock(&efx->mac_lock);
 164	return rc;
 165}
 166
 167static void efx_fini_port(struct efx_nic *efx)
 168{
 169	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 170
 171	if (!efx->port_initialized)
 172		return;
 173
 174	efx->port_initialized = false;
 175
 176	efx->link_state.up = false;
 177	efx_link_status_changed(efx);
 178}
 179
 180static void efx_remove_port(struct efx_nic *efx)
 181{
 182	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 183
 184	efx->type->remove_port(efx);
 185}
 186
 187/**************************************************************************
 188 *
 189 * NIC handling
 190 *
 191 **************************************************************************/
 192
 193static LIST_HEAD(efx_primary_list);
 194static LIST_HEAD(efx_unassociated_list);
 195
 196static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
 197{
 198	return left->type == right->type &&
 199		left->vpd_sn && right->vpd_sn &&
 200		!strcmp(left->vpd_sn, right->vpd_sn);
 201}
 202
 203static void efx_associate(struct efx_nic *efx)
 204{
 205	struct efx_nic *other, *next;
 206
 207	if (efx->primary == efx) {
 208		/* Adding primary function; look for secondaries */
 209
 210		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
 211		list_add_tail(&efx->node, &efx_primary_list);
 212
 213		list_for_each_entry_safe(other, next, &efx_unassociated_list,
 214					 node) {
 215			if (efx_same_controller(efx, other)) {
 216				list_del(&other->node);
 217				netif_dbg(other, probe, other->net_dev,
 218					  "moving to secondary list of %s %s\n",
 219					  pci_name(efx->pci_dev),
 220					  efx->net_dev->name);
 221				list_add_tail(&other->node,
 222					      &efx->secondary_list);
 223				other->primary = efx;
 224			}
 225		}
 226	} else {
 227		/* Adding secondary function; look for primary */
 228
 229		list_for_each_entry(other, &efx_primary_list, node) {
 230			if (efx_same_controller(efx, other)) {
 231				netif_dbg(efx, probe, efx->net_dev,
 232					  "adding to secondary list of %s %s\n",
 233					  pci_name(other->pci_dev),
 234					  other->net_dev->name);
 235				list_add_tail(&efx->node,
 236					      &other->secondary_list);
 237				efx->primary = other;
 238				return;
 239			}
 240		}
 241
 242		netif_dbg(efx, probe, efx->net_dev,
 243			  "adding to unassociated list\n");
 244		list_add_tail(&efx->node, &efx_unassociated_list);
 245	}
 246}
 247
 248static void efx_dissociate(struct efx_nic *efx)
 249{
 250	struct efx_nic *other, *next;
 251
 252	list_del(&efx->node);
 253	efx->primary = NULL;
 254
 255	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
 256		list_del(&other->node);
 257		netif_dbg(other, probe, other->net_dev,
 258			  "moving to unassociated list\n");
 259		list_add_tail(&other->node, &efx_unassociated_list);
 260		other->primary = NULL;
 261	}
 262}
 263
 264static int efx_probe_nic(struct efx_nic *efx)
 265{
 266	int rc;
 267
 268	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 269
 270	/* Carry out hardware-type specific initialisation */
 271	rc = efx->type->probe(efx);
 272	if (rc)
 273		return rc;
 274
 275	do {
 276		if (!efx->max_channels || !efx->max_tx_channels) {
 277			netif_err(efx, drv, efx->net_dev,
 278				  "Insufficient resources to allocate"
 279				  " any channels\n");
 280			rc = -ENOSPC;
 281			goto fail1;
 282		}
 283
 284		/* Determine the number of channels and queues by trying
 285		 * to hook in MSI-X interrupts.
 286		 */
 287		rc = efx_probe_interrupts(efx);
 288		if (rc)
 289			goto fail1;
 290
 291		rc = efx_set_channels(efx);
 292		if (rc)
 293			goto fail1;
 294
 295		/* dimension_resources can fail with EAGAIN */
 296		rc = efx->type->dimension_resources(efx);
 297		if (rc != 0 && rc != -EAGAIN)
 298			goto fail2;
 299
 300		if (rc == -EAGAIN)
 301			/* try again with new max_channels */
 302			efx_remove_interrupts(efx);
 303
 304	} while (rc == -EAGAIN);
 305
 306	if (efx->n_channels > 1)
 307		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
 308				    sizeof(efx->rss_context.rx_hash_key));
 309	efx_set_default_rx_indir_table(efx, &efx->rss_context);
 310
 311	/* Initialise the interrupt moderation settings */
 312	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
 313	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
 314				true);
 315
 316	return 0;
 317
 318fail2:
 319	efx_remove_interrupts(efx);
 320fail1:
 321	efx->type->remove(efx);
 322	return rc;
 323}
 324
 325static void efx_remove_nic(struct efx_nic *efx)
 326{
 327	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 328
 329	efx_remove_interrupts(efx);
 330	efx->type->remove(efx);
 331}
 332
 333/**************************************************************************
 334 *
 335 * NIC startup/shutdown
 336 *
 337 *************************************************************************/
 338
 339static int efx_probe_all(struct efx_nic *efx)
 340{
 341	int rc;
 342
 343	rc = efx_probe_nic(efx);
 344	if (rc) {
 345		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 346		goto fail1;
 347	}
 348
 349	rc = efx_probe_port(efx);
 350	if (rc) {
 351		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 352		goto fail2;
 353	}
 354
 355	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
 356	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
 357		rc = -EINVAL;
 358		goto fail3;
 359	}
 360
 361#ifdef CONFIG_SFC_SRIOV
 362	rc = efx->type->vswitching_probe(efx);
 363	if (rc) /* not fatal; the PF will still work fine */
 364		netif_warn(efx, probe, efx->net_dev,
 365			   "failed to setup vswitching rc=%d;"
 366			   " VFs may not function\n", rc);
 367#endif
 368
 369	rc = efx_probe_filters(efx);
 370	if (rc) {
 371		netif_err(efx, probe, efx->net_dev,
 372			  "failed to create filter tables\n");
 373		goto fail4;
 374	}
 375
 376	rc = efx_probe_channels(efx);
 377	if (rc)
 378		goto fail5;
 379
 380	return 0;
 381
 382 fail5:
 383	efx_remove_filters(efx);
 384 fail4:
 385#ifdef CONFIG_SFC_SRIOV
 386	efx->type->vswitching_remove(efx);
 387#endif
 388 fail3:
 389	efx_remove_port(efx);
 390 fail2:
 391	efx_remove_nic(efx);
 392 fail1:
 393	return rc;
 394}
 395
 396static void efx_remove_all(struct efx_nic *efx)
 397{
 398	rtnl_lock();
 399	efx_xdp_setup_prog(efx, NULL);
 400	rtnl_unlock();
 401
 402	efx_remove_channels(efx);
 403	efx_remove_filters(efx);
 404#ifdef CONFIG_SFC_SRIOV
 405	efx->type->vswitching_remove(efx);
 406#endif
 407	efx_remove_port(efx);
 408	efx_remove_nic(efx);
 409}
 410
 411/**************************************************************************
 412 *
 413 * Interrupt moderation
 414 *
 415 **************************************************************************/
 416unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
 417{
 418	if (usecs == 0)
 419		return 0;
 420	if (usecs * 1000 < efx->timer_quantum_ns)
 421		return 1; /* never round down to 0 */
 422	return usecs * 1000 / efx->timer_quantum_ns;
 423}
 424
 425unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
 426{
 427	/* We must round up when converting ticks to microseconds
 428	 * because we round down when converting the other way.
 429	 */
 430	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
 431}
 432
 433/* Set interrupt moderation parameters */
 434int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
 435			    unsigned int rx_usecs, bool rx_adaptive,
 436			    bool rx_may_override_tx)
 437{
 438	struct efx_channel *channel;
 439	unsigned int timer_max_us;
 440
 441	EFX_ASSERT_RESET_SERIALISED(efx);
 442
 443	timer_max_us = efx->timer_max_ns / 1000;
 444
 445	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
 446		return -EINVAL;
 447
 448	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
 449	    !rx_may_override_tx) {
 450		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
 451			  "RX and TX IRQ moderation must be equal\n");
 452		return -EINVAL;
 453	}
 454
 455	efx->irq_rx_adaptive = rx_adaptive;
 456	efx->irq_rx_moderation_us = rx_usecs;
 457	efx_for_each_channel(channel, efx) {
 458		if (efx_channel_has_rx_queue(channel))
 459			channel->irq_moderation_us = rx_usecs;
 460		else if (efx_channel_has_tx_queues(channel))
 461			channel->irq_moderation_us = tx_usecs;
 462		else if (efx_channel_is_xdp_tx(channel))
 463			channel->irq_moderation_us = tx_usecs;
 464	}
 465
 466	return 0;
 467}
 468
 469void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
 470			    unsigned int *rx_usecs, bool *rx_adaptive)
 471{
 472	*rx_adaptive = efx->irq_rx_adaptive;
 473	*rx_usecs = efx->irq_rx_moderation_us;
 474
 475	/* If channels are shared between RX and TX, so is IRQ
 476	 * moderation.  Otherwise, IRQ moderation is the same for all
 477	 * TX channels and is not adaptive.
 478	 */
 479	if (efx->tx_channel_offset == 0) {
 480		*tx_usecs = *rx_usecs;
 481	} else {
 482		struct efx_channel *tx_channel;
 483
 484		tx_channel = efx->channel[efx->tx_channel_offset];
 485		*tx_usecs = tx_channel->irq_moderation_us;
 486	}
 487}
 488
 489/**************************************************************************
 490 *
 491 * ioctls
 492 *
 493 *************************************************************************/
 494
 495/* Net device ioctl
 496 * Context: process, rtnl_lock() held.
 497 */
 498static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 499{
 500	struct efx_nic *efx = netdev_priv(net_dev);
 501	struct mii_ioctl_data *data = if_mii(ifr);
 502
 503	if (cmd == SIOCSHWTSTAMP)
 504		return efx_ptp_set_ts_config(efx, ifr);
 505	if (cmd == SIOCGHWTSTAMP)
 506		return efx_ptp_get_ts_config(efx, ifr);
 507
 508	/* Convert phy_id from older PRTAD/DEVAD format */
 509	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 510	    (data->phy_id & 0xfc00) == 0x0400)
 511		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 512
 513	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 514}
 515
 516/**************************************************************************
 517 *
 518 * Kernel net device interface
 519 *
 520 *************************************************************************/
 521
 522/* Context: process, rtnl_lock() held. */
 523int efx_net_open(struct net_device *net_dev)
 524{
 525	struct efx_nic *efx = netdev_priv(net_dev);
 526	int rc;
 527
 528	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 529		  raw_smp_processor_id());
 530
 531	rc = efx_check_disabled(efx);
 532	if (rc)
 533		return rc;
 534	if (efx->phy_mode & PHY_MODE_SPECIAL)
 535		return -EBUSY;
 536	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 537		return -EIO;
 538
 539	/* Notify the kernel of the link state polled during driver load,
 540	 * before the monitor starts running */
 541	efx_link_status_changed(efx);
 542
 543	efx_start_all(efx);
 544	if (efx->state == STATE_DISABLED || efx->reset_pending)
 545		netif_device_detach(efx->net_dev);
 546	efx_selftest_async_start(efx);
 547	return 0;
 548}
 549
 550/* Context: process, rtnl_lock() held.
 551 * Note that the kernel will ignore our return code; this method
 552 * should really be a void.
 553 */
 554int efx_net_stop(struct net_device *net_dev)
 555{
 556	struct efx_nic *efx = netdev_priv(net_dev);
 557
 558	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 559		  raw_smp_processor_id());
 560
 561	/* Stop the device and flush all the channels */
 562	efx_stop_all(efx);
 563
 564	return 0;
 565}
 566
 567static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 568{
 569	struct efx_nic *efx = netdev_priv(net_dev);
 570
 571	if (efx->type->vlan_rx_add_vid)
 572		return efx->type->vlan_rx_add_vid(efx, proto, vid);
 573	else
 574		return -EOPNOTSUPP;
 575}
 576
 577static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 578{
 579	struct efx_nic *efx = netdev_priv(net_dev);
 580
 581	if (efx->type->vlan_rx_kill_vid)
 582		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
 583	else
 584		return -EOPNOTSUPP;
 585}
 586
 587static const struct net_device_ops efx_netdev_ops = {
 588	.ndo_open		= efx_net_open,
 589	.ndo_stop		= efx_net_stop,
 590	.ndo_get_stats64	= efx_net_stats,
 591	.ndo_tx_timeout		= efx_watchdog,
 592	.ndo_start_xmit		= efx_hard_start_xmit,
 593	.ndo_validate_addr	= eth_validate_addr,
 594	.ndo_do_ioctl		= efx_ioctl,
 595	.ndo_change_mtu		= efx_change_mtu,
 596	.ndo_set_mac_address	= efx_set_mac_address,
 597	.ndo_set_rx_mode	= efx_set_rx_mode,
 598	.ndo_set_features	= efx_set_features,
 599	.ndo_features_check	= efx_features_check,
 600	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
 601	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 602#ifdef CONFIG_SFC_SRIOV
 603	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
 604	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
 605	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
 606	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 607	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
 608#endif
 609	.ndo_get_phys_port_id   = efx_get_phys_port_id,
 610	.ndo_get_phys_port_name	= efx_get_phys_port_name,
 611	.ndo_setup_tc		= efx_setup_tc,
 612#ifdef CONFIG_RFS_ACCEL
 613	.ndo_rx_flow_steer	= efx_filter_rfs,
 614#endif
 615	.ndo_xdp_xmit		= efx_xdp_xmit,
 616	.ndo_bpf		= efx_xdp
 617};
 618
 619static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
 620{
 621	struct bpf_prog *old_prog;
 622
 623	if (efx->xdp_rxq_info_failed) {
 624		netif_err(efx, drv, efx->net_dev,
 625			  "Unable to bind XDP program due to previous failure of rxq_info\n");
 626		return -EINVAL;
 627	}
 628
 629	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
 630		netif_err(efx, drv, efx->net_dev,
 631			  "Unable to configure XDP with MTU of %d (max: %d)\n",
 632			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
 633		return -EINVAL;
 634	}
 635
 636	old_prog = rtnl_dereference(efx->xdp_prog);
 637	rcu_assign_pointer(efx->xdp_prog, prog);
 638	/* Release the reference that was originally passed by the caller. */
 639	if (old_prog)
 640		bpf_prog_put(old_prog);
 641
 642	return 0;
 643}
 644
 645/* Context: process, rtnl_lock() held. */
 646static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 647{
 648	struct efx_nic *efx = netdev_priv(dev);
 649
 650	switch (xdp->command) {
 651	case XDP_SETUP_PROG:
 652		return efx_xdp_setup_prog(efx, xdp->prog);
 653	default:
 654		return -EINVAL;
 655	}
 656}
 657
 658static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 659			u32 flags)
 660{
 661	struct efx_nic *efx = netdev_priv(dev);
 662
 663	if (!netif_running(dev))
 664		return -EINVAL;
 665
 666	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
 667}
 668
 669static void efx_update_name(struct efx_nic *efx)
 670{
 671	strcpy(efx->name, efx->net_dev->name);
 672	efx_mtd_rename(efx);
 673	efx_set_channel_names(efx);
 674}
 675
 676static int efx_netdev_event(struct notifier_block *this,
 677			    unsigned long event, void *ptr)
 678{
 679	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
 680
 681	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
 682	    event == NETDEV_CHANGENAME)
 683		efx_update_name(netdev_priv(net_dev));
 684
 685	return NOTIFY_DONE;
 686}
 687
 688static struct notifier_block efx_netdev_notifier = {
 689	.notifier_call = efx_netdev_event,
 690};
 691
 692static ssize_t phy_type_show(struct device *dev,
 693			     struct device_attribute *attr, char *buf)
 694{
 695	struct efx_nic *efx = dev_get_drvdata(dev);
 696	return sprintf(buf, "%d\n", efx->phy_type);
 697}
 698static DEVICE_ATTR_RO(phy_type);
 699
 700static int efx_register_netdev(struct efx_nic *efx)
 701{
 702	struct net_device *net_dev = efx->net_dev;
 703	struct efx_channel *channel;
 704	int rc;
 705
 706	net_dev->watchdog_timeo = 5 * HZ;
 707	net_dev->irq = efx->pci_dev->irq;
 708	net_dev->netdev_ops = &efx_netdev_ops;
 709	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 710		net_dev->priv_flags |= IFF_UNICAST_FLT;
 711	net_dev->ethtool_ops = &efx_ethtool_ops;
 712	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
 713	net_dev->min_mtu = EFX_MIN_MTU;
 714	net_dev->max_mtu = EFX_MAX_MTU;
 715
 716	rtnl_lock();
 717
 718	/* Enable resets to be scheduled and check whether any were
 719	 * already requested.  If so, the NIC is probably hosed so we
 720	 * abort.
 721	 */
 722	efx->state = STATE_READY;
 723	smp_mb(); /* ensure we change state before checking reset_pending */
 724	if (efx->reset_pending) {
 725		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
 726		rc = -EIO;
 727		goto fail_locked;
 728	}
 729
 730	rc = dev_alloc_name(net_dev, net_dev->name);
 731	if (rc < 0)
 732		goto fail_locked;
 733	efx_update_name(efx);
 734
 735	/* Always start with carrier off; PHY events will detect the link */
 736	netif_carrier_off(net_dev);
 737
 738	rc = register_netdevice(net_dev);
 739	if (rc)
 740		goto fail_locked;
 741
 742	efx_for_each_channel(channel, efx) {
 743		struct efx_tx_queue *tx_queue;
 744		efx_for_each_channel_tx_queue(tx_queue, channel)
 745			efx_init_tx_queue_core_txq(tx_queue);
 746	}
 747
 748	efx_associate(efx);
 749
 750	rtnl_unlock();
 751
 752	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 753	if (rc) {
 754		netif_err(efx, drv, efx->net_dev,
 755			  "failed to init net dev attributes\n");
 756		goto fail_registered;
 757	}
 758
 759	efx_init_mcdi_logging(efx);
 760
 761	return 0;
 762
 763fail_registered:
 764	rtnl_lock();
 765	efx_dissociate(efx);
 766	unregister_netdevice(net_dev);
 767fail_locked:
 768	efx->state = STATE_UNINIT;
 769	rtnl_unlock();
 770	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 771	return rc;
 772}
 773
 774static void efx_unregister_netdev(struct efx_nic *efx)
 775{
 776	if (!efx->net_dev)
 777		return;
 778
 779	BUG_ON(netdev_priv(efx->net_dev) != efx);
 780
 781	if (efx_dev_registered(efx)) {
 782		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 783		efx_fini_mcdi_logging(efx);
 784		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 785		unregister_netdev(efx->net_dev);
 786	}
 787}
 788
 789/**************************************************************************
 790 *
 791 * List of NICs we support
 792 *
 793 **************************************************************************/
 794
 795/* PCI device ID table */
 796static const struct pci_device_id efx_pci_table[] = {
 797	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
 798	 .driver_data = (unsigned long) &siena_a0_nic_type},
 799	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
 800	 .driver_data = (unsigned long) &siena_a0_nic_type},
 801	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
 802	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 803	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
 804	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 805	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
 806	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 807	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
 808	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 809	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
 810	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 811	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
 812	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 813	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
 814	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 815	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
 816	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 817	{0}			/* end of list */
 818};
 819
 820/**************************************************************************
 821 *
 822 * Data housekeeping
 823 *
 824 **************************************************************************/
 825
 826void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
 827{
 828	u64 n_rx_nodesc_trunc = 0;
 829	struct efx_channel *channel;
 830
 831	efx_for_each_channel(channel, efx)
 832		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
 833	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
 834	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
 835}
 836
 837/**************************************************************************
 838 *
 839 * PCI interface
 840 *
 841 **************************************************************************/
 842
 843/* Main body of final NIC shutdown code
 844 * This is called only at module unload (or hotplug removal).
 845 */
 846static void efx_pci_remove_main(struct efx_nic *efx)
 847{
 848	/* Flush reset_work. It can no longer be scheduled since we
 849	 * are not READY.
 850	 */
 851	BUG_ON(efx->state == STATE_READY);
 852	efx_flush_reset_workqueue(efx);
 853
 854	efx_disable_interrupts(efx);
 855	efx_clear_interrupt_affinity(efx);
 856	efx_nic_fini_interrupt(efx);
 857	efx_fini_port(efx);
 858	efx->type->fini(efx);
 859	efx_fini_napi(efx);
 860	efx_remove_all(efx);
 861}
 862
 863/* Final NIC shutdown
 864 * This is called only at module unload (or hotplug removal).  A PF can call
 865 * this on its VFs to ensure they are unbound first.
 866 */
 867static void efx_pci_remove(struct pci_dev *pci_dev)
 868{
 869	struct efx_nic *efx;
 870
 871	efx = pci_get_drvdata(pci_dev);
 872	if (!efx)
 873		return;
 874
 875	/* Mark the NIC as fini, then stop the interface */
 876	rtnl_lock();
 877	efx_dissociate(efx);
 878	dev_close(efx->net_dev);
 879	efx_disable_interrupts(efx);
 880	efx->state = STATE_UNINIT;
 881	rtnl_unlock();
 882
 883	if (efx->type->sriov_fini)
 884		efx->type->sriov_fini(efx);
 885
 886	efx_unregister_netdev(efx);
 887
 888	efx_mtd_remove(efx);
 889
 890	efx_pci_remove_main(efx);
 891
 892	efx_fini_io(efx);
 893	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
 894
 895	efx_fini_struct(efx);
 896	free_netdev(efx->net_dev);
 897
 898	pci_disable_pcie_error_reporting(pci_dev);
 899};
 900
 901/* NIC VPD information
 902 * Called during probe to display the part number of the
 903 * installed NIC.  VPD is potentially very large but this should
 904 * always appear within the first 512 bytes.
 905 */
 906#define SFC_VPD_LEN 512
 907static void efx_probe_vpd_strings(struct efx_nic *efx)
 908{
 909	struct pci_dev *dev = efx->pci_dev;
 910	char vpd_data[SFC_VPD_LEN];
 911	ssize_t vpd_size;
 912	int ro_start, ro_size, i, j;
 913
 914	/* Get the vpd data from the device */
 915	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
 916	if (vpd_size <= 0) {
 917		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
 918		return;
 919	}
 920
 921	/* Get the Read only section */
 922	ro_start = pci_vpd_find_tag(vpd_data, vpd_size, PCI_VPD_LRDT_RO_DATA);
 923	if (ro_start < 0) {
 924		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
 925		return;
 926	}
 927
 928	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
 929	j = ro_size;
 930	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
 931	if (i + j > vpd_size)
 932		j = vpd_size - i;
 933
 934	/* Get the Part number */
 935	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
 936	if (i < 0) {
 937		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
 938		return;
 939	}
 940
 941	j = pci_vpd_info_field_size(&vpd_data[i]);
 942	i += PCI_VPD_INFO_FLD_HDR_SIZE;
 943	if (i + j > vpd_size) {
 944		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
 945		return;
 946	}
 947
 948	netif_info(efx, drv, efx->net_dev,
 949		   "Part Number : %.*s\n", j, &vpd_data[i]);
 950
 951	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
 952	j = ro_size;
 953	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
 954	if (i < 0) {
 955		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
 956		return;
 957	}
 958
 959	j = pci_vpd_info_field_size(&vpd_data[i]);
 960	i += PCI_VPD_INFO_FLD_HDR_SIZE;
 961	if (i + j > vpd_size) {
 962		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
 963		return;
 964	}
 965
 966	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
 967	if (!efx->vpd_sn)
 968		return;
 969
 970	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
 971}
 972
 973
 974/* Main body of NIC initialisation
 975 * This is called at module load (or hotplug insertion, theoretically).
 976 */
 977static int efx_pci_probe_main(struct efx_nic *efx)
 978{
 979	int rc;
 980
 981	/* Do start-of-day initialisation */
 982	rc = efx_probe_all(efx);
 983	if (rc)
 984		goto fail1;
 985
 986	efx_init_napi(efx);
 987
 988	down_write(&efx->filter_sem);
 989	rc = efx->type->init(efx);
 990	up_write(&efx->filter_sem);
 991	if (rc) {
 992		pci_err(efx->pci_dev, "failed to initialise NIC\n");
 993		goto fail3;
 994	}
 995
 996	rc = efx_init_port(efx);
 997	if (rc) {
 998		netif_err(efx, probe, efx->net_dev,
 999			  "failed to initialise port\n");
1000		goto fail4;
1001	}
1002
1003	rc = efx_nic_init_interrupt(efx);
1004	if (rc)
1005		goto fail5;
1006
1007	efx_set_interrupt_affinity(efx);
1008	rc = efx_enable_interrupts(efx);
1009	if (rc)
1010		goto fail6;
1011
1012	return 0;
1013
1014 fail6:
1015	efx_clear_interrupt_affinity(efx);
1016	efx_nic_fini_interrupt(efx);
1017 fail5:
1018	efx_fini_port(efx);
1019 fail4:
1020	efx->type->fini(efx);
1021 fail3:
1022	efx_fini_napi(efx);
1023	efx_remove_all(efx);
1024 fail1:
1025	return rc;
1026}
1027
1028static int efx_pci_probe_post_io(struct efx_nic *efx)
1029{
1030	struct net_device *net_dev = efx->net_dev;
1031	int rc = efx_pci_probe_main(efx);
1032
1033	if (rc)
1034		return rc;
1035
1036	if (efx->type->sriov_init) {
1037		rc = efx->type->sriov_init(efx);
1038		if (rc)
1039			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1040				rc);
1041	}
1042
1043	/* Determine netdevice features */
1044	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1045			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1046	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1047		net_dev->features |= NETIF_F_TSO6;
1048	/* Check whether device supports TSO */
1049	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1050		net_dev->features &= ~NETIF_F_ALL_TSO;
1051	/* Mask for features that also apply to VLAN devices */
1052	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1053				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1054				   NETIF_F_RXCSUM);
1055
1056	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1057
1058	/* Disable receiving frames with bad FCS, by default. */
1059	net_dev->features &= ~NETIF_F_RXALL;
1060
1061	/* Disable VLAN filtering by default.  It may be enforced if
1062	 * the feature is fixed (i.e. VLAN filters are required to
1063	 * receive VLAN tagged packets due to vPort restrictions).
1064	 */
1065	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1066	net_dev->features |= efx->fixed_features;
1067
1068	rc = efx_register_netdev(efx);
1069	if (!rc)
1070		return 0;
1071
1072	efx_pci_remove_main(efx);
1073	return rc;
1074}
1075
1076/* NIC initialisation
1077 *
1078 * This is called at module load (or hotplug insertion,
1079 * theoretically).  It sets up PCI mappings, resets the NIC,
1080 * sets up and registers the network devices with the kernel and hooks
1081 * the interrupt service routine.  It does not prepare the device for
1082 * transmission; this is left to the first time one of the network
1083 * interfaces is brought up (i.e. efx_net_open).
1084 */
1085static int efx_pci_probe(struct pci_dev *pci_dev,
1086			 const struct pci_device_id *entry)
1087{
1088	struct net_device *net_dev;
1089	struct efx_nic *efx;
1090	int rc;
1091
1092	/* Allocate and initialise a struct net_device and struct efx_nic */
1093	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1094				     EFX_MAX_RX_QUEUES);
1095	if (!net_dev)
1096		return -ENOMEM;
1097	efx = netdev_priv(net_dev);
1098	efx->type = (const struct efx_nic_type *) entry->driver_data;
1099	efx->fixed_features |= NETIF_F_HIGHDMA;
1100
1101	pci_set_drvdata(pci_dev, efx);
1102	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1103	rc = efx_init_struct(efx, pci_dev, net_dev);
1104	if (rc)
1105		goto fail1;
1106
1107	pci_info(pci_dev, "Solarflare NIC detected\n");
1108
1109	if (!efx->type->is_vf)
1110		efx_probe_vpd_strings(efx);
1111
1112	/* Set up basic I/O (BAR mappings etc) */
1113	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1114			 efx->type->mem_map_size(efx));
1115	if (rc)
1116		goto fail2;
1117
1118	rc = efx_pci_probe_post_io(efx);
1119	if (rc) {
1120		/* On failure, retry once immediately.
1121		 * If we aborted probe due to a scheduled reset, dismiss it.
1122		 */
1123		efx->reset_pending = 0;
1124		rc = efx_pci_probe_post_io(efx);
1125		if (rc) {
1126			/* On another failure, retry once more
1127			 * after a 50-305ms delay.
1128			 */
1129			unsigned char r;
1130
1131			get_random_bytes(&r, 1);
1132			msleep((unsigned int)r + 50);
1133			efx->reset_pending = 0;
1134			rc = efx_pci_probe_post_io(efx);
1135		}
1136	}
1137	if (rc)
1138		goto fail3;
1139
1140	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1141
1142	/* Try to create MTDs, but allow this to fail */
1143	rtnl_lock();
1144	rc = efx_mtd_probe(efx);
1145	rtnl_unlock();
1146	if (rc && rc != -EPERM)
1147		netif_warn(efx, probe, efx->net_dev,
1148			   "failed to create MTDs (%d)\n", rc);
1149
1150	(void)pci_enable_pcie_error_reporting(pci_dev);
1151
1152	if (efx->type->udp_tnl_push_ports)
1153		efx->type->udp_tnl_push_ports(efx);
1154
1155	return 0;
1156
1157 fail3:
1158	efx_fini_io(efx);
1159 fail2:
1160	efx_fini_struct(efx);
1161 fail1:
1162	WARN_ON(rc > 0);
1163	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1164	free_netdev(net_dev);
1165	return rc;
1166}
1167
1168/* efx_pci_sriov_configure returns the actual number of Virtual Functions
1169 * enabled on success
1170 */
1171#ifdef CONFIG_SFC_SRIOV
1172static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1173{
1174	int rc;
1175	struct efx_nic *efx = pci_get_drvdata(dev);
1176
1177	if (efx->type->sriov_configure) {
1178		rc = efx->type->sriov_configure(efx, num_vfs);
1179		if (rc)
1180			return rc;
1181		else
1182			return num_vfs;
1183	} else
1184		return -EOPNOTSUPP;
1185}
1186#endif
1187
1188static int efx_pm_freeze(struct device *dev)
1189{
1190	struct efx_nic *efx = dev_get_drvdata(dev);
1191
1192	rtnl_lock();
1193
1194	if (efx->state != STATE_DISABLED) {
1195		efx->state = STATE_UNINIT;
1196
1197		efx_device_detach_sync(efx);
1198
1199		efx_stop_all(efx);
1200		efx_disable_interrupts(efx);
1201	}
1202
1203	rtnl_unlock();
1204
1205	return 0;
1206}
1207
1208static int efx_pm_thaw(struct device *dev)
1209{
1210	int rc;
1211	struct efx_nic *efx = dev_get_drvdata(dev);
1212
1213	rtnl_lock();
1214
1215	if (efx->state != STATE_DISABLED) {
1216		rc = efx_enable_interrupts(efx);
1217		if (rc)
1218			goto fail;
1219
1220		mutex_lock(&efx->mac_lock);
1221		efx_mcdi_port_reconfigure(efx);
1222		mutex_unlock(&efx->mac_lock);
1223
1224		efx_start_all(efx);
1225
1226		efx_device_attach_if_not_resetting(efx);
1227
1228		efx->state = STATE_READY;
1229
1230		efx->type->resume_wol(efx);
1231	}
1232
1233	rtnl_unlock();
1234
1235	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1236	efx_queue_reset_work(efx);
1237
1238	return 0;
1239
1240fail:
1241	rtnl_unlock();
1242
1243	return rc;
1244}
1245
1246static int efx_pm_poweroff(struct device *dev)
1247{
1248	struct pci_dev *pci_dev = to_pci_dev(dev);
1249	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1250
1251	efx->type->fini(efx);
1252
1253	efx->reset_pending = 0;
1254
1255	pci_save_state(pci_dev);
1256	return pci_set_power_state(pci_dev, PCI_D3hot);
1257}
1258
1259/* Used for both resume and restore */
1260static int efx_pm_resume(struct device *dev)
1261{
1262	struct pci_dev *pci_dev = to_pci_dev(dev);
1263	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1264	int rc;
1265
1266	rc = pci_set_power_state(pci_dev, PCI_D0);
1267	if (rc)
1268		return rc;
1269	pci_restore_state(pci_dev);
1270	rc = pci_enable_device(pci_dev);
1271	if (rc)
1272		return rc;
1273	pci_set_master(efx->pci_dev);
1274	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1275	if (rc)
1276		return rc;
1277	down_write(&efx->filter_sem);
1278	rc = efx->type->init(efx);
1279	up_write(&efx->filter_sem);
1280	if (rc)
1281		return rc;
1282	rc = efx_pm_thaw(dev);
1283	return rc;
1284}
1285
1286static int efx_pm_suspend(struct device *dev)
1287{
1288	int rc;
1289
1290	efx_pm_freeze(dev);
1291	rc = efx_pm_poweroff(dev);
1292	if (rc)
1293		efx_pm_resume(dev);
1294	return rc;
1295}
1296
1297static const struct dev_pm_ops efx_pm_ops = {
1298	.suspend	= efx_pm_suspend,
1299	.resume		= efx_pm_resume,
1300	.freeze		= efx_pm_freeze,
1301	.thaw		= efx_pm_thaw,
1302	.poweroff	= efx_pm_poweroff,
1303	.restore	= efx_pm_resume,
1304};
1305
1306static struct pci_driver efx_pci_driver = {
1307	.name		= KBUILD_MODNAME,
1308	.id_table	= efx_pci_table,
1309	.probe		= efx_pci_probe,
1310	.remove		= efx_pci_remove,
1311	.driver.pm	= &efx_pm_ops,
1312	.err_handler	= &efx_err_handlers,
1313#ifdef CONFIG_SFC_SRIOV
1314	.sriov_configure = efx_pci_sriov_configure,
1315#endif
1316};
1317
1318/**************************************************************************
1319 *
1320 * Kernel module interface
1321 *
1322 *************************************************************************/
1323
1324static int __init efx_init_module(void)
1325{
1326	int rc;
1327
1328	printk(KERN_INFO "Solarflare NET driver\n");
1329
1330	rc = register_netdevice_notifier(&efx_netdev_notifier);
1331	if (rc)
1332		goto err_notifier;
1333
1334#ifdef CONFIG_SFC_SRIOV
1335	rc = efx_init_sriov();
1336	if (rc)
1337		goto err_sriov;
1338#endif
1339
1340	rc = efx_create_reset_workqueue();
1341	if (rc)
1342		goto err_reset;
1343
1344	rc = pci_register_driver(&efx_pci_driver);
1345	if (rc < 0)
1346		goto err_pci;
1347
1348	rc = pci_register_driver(&ef100_pci_driver);
1349	if (rc < 0)
1350		goto err_pci_ef100;
1351
1352	return 0;
1353
1354 err_pci_ef100:
1355	pci_unregister_driver(&efx_pci_driver);
1356 err_pci:
1357	efx_destroy_reset_workqueue();
1358 err_reset:
1359#ifdef CONFIG_SFC_SRIOV
1360	efx_fini_sriov();
1361 err_sriov:
1362#endif
1363	unregister_netdevice_notifier(&efx_netdev_notifier);
1364 err_notifier:
1365	return rc;
1366}
1367
1368static void __exit efx_exit_module(void)
1369{
1370	printk(KERN_INFO "Solarflare NET driver unloading\n");
1371
1372	pci_unregister_driver(&ef100_pci_driver);
1373	pci_unregister_driver(&efx_pci_driver);
1374	efx_destroy_reset_workqueue();
1375#ifdef CONFIG_SFC_SRIOV
1376	efx_fini_sriov();
1377#endif
1378	unregister_netdevice_notifier(&efx_netdev_notifier);
1379
1380}
1381
1382module_init(efx_init_module);
1383module_exit(efx_exit_module);
1384
1385MODULE_AUTHOR("Solarflare Communications and "
1386	      "Michael Brown <mbrown@fensystems.co.uk>");
1387MODULE_DESCRIPTION("Solarflare network driver");
1388MODULE_LICENSE("GPL");
1389MODULE_DEVICE_TABLE(pci, efx_pci_table);