Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/kernel.h>
  63#include <linux/string.h>
  64#include <linux/errno.h>
  65#include <linux/unistd.h>
  66#include <linux/slab.h>
  67#include <linux/interrupt.h>
  68#include <linux/delay.h>
  69#include <linux/netdevice.h>
  70#include <linux/etherdevice.h>
  71#include <linux/skbuff.h>
  72#include <linux/if_vlan.h>
  73#include <linux/spinlock.h>
  74#include <linux/mm.h>
  75#include <linux/of_address.h>
  76#include <linux/of_irq.h>
  77#include <linux/of_mdio.h>
  78#include <linux/of_platform.h>
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 100
 101#include "gianfar.h"
 102
 103#define TX_TIMEOUT      (5*HZ)
 104
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110			    dma_addr_t buf)
 111{
 112	u32 lstatus;
 113
 114	bdp->bufPtr = cpu_to_be32(buf);
 115
 116	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118		lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120	gfar_wmb();
 121
 122	bdp->lstatus = cpu_to_be32(lstatus);
 123}
 124
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128	u32 __iomem *baddr;
 129	int i;
 130
 131	baddr = &regs->tbase0;
 132	for (i = 0; i < priv->num_tx_queues; i++) {
 133		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134		baddr += 2;
 135	}
 136
 137	baddr = &regs->rbase0;
 138	for (i = 0; i < priv->num_rx_queues; i++) {
 139		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140		baddr += 2;
 141	}
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147	u32 __iomem *baddr;
 148	int i;
 149
 150	baddr = &regs->rqprm0;
 151	for (i = 0; i < priv->num_rx_queues; i++) {
 152		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154		baddr++;
 155	}
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160	/* set this when rx hw offload (TOE) functions are being used */
 161	priv->uses_rxfcb = 0;
 162
 163	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164		priv->uses_rxfcb = 1;
 165
 166	if (priv->hwts_rx_en || priv->rx_filer_enable)
 167		priv->uses_rxfcb = 1;
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 172	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173	u32 rctrl = 0;
 174
 175	if (priv->rx_filer_enable) {
 176		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177		/* Program the RIR0 reg with the required distribution */
 178		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 179	}
 180
 181	/* Restore PROMISC mode */
 182	if (priv->ndev->flags & IFF_PROMISC)
 183		rctrl |= RCTRL_PROM;
 184
 185	if (priv->ndev->features & NETIF_F_RXCSUM)
 186		rctrl |= RCTRL_CHECKSUMMING;
 187
 188	if (priv->extended_hash)
 189		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 190
 191	if (priv->padding) {
 192		rctrl &= ~RCTRL_PAL_MASK;
 193		rctrl |= RCTRL_PADDING(priv->padding);
 194	}
 195
 196	/* Enable HW time stamping if requested from user space */
 197	if (priv->hwts_rx_en)
 198		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203	/* Clear the LFC bit */
 204	gfar_write(&regs->rctrl, rctrl);
 205	/* Init flow control threshold values */
 206	gfar_init_rqprm(priv);
 207	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208	rctrl |= RCTRL_LFC;
 209
 210	/* Init rctrl based on our settings */
 211	gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217	u32 tctrl = 0;
 218
 219	if (priv->ndev->features & NETIF_F_IP_CSUM)
 220		tctrl |= TCTRL_INIT_CSUM;
 221
 222	if (priv->prio_sched_en)
 223		tctrl |= TCTRL_TXSCHED_PRIO;
 224	else {
 225		tctrl |= TCTRL_TXSCHED_WRRS;
 226		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228	}
 229
 230	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231		tctrl |= TCTRL_VLINS;
 232
 233	gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237			       unsigned long tx_mask, unsigned long rx_mask)
 238{
 239	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240	u32 __iomem *baddr;
 241
 242	if (priv->mode == MQ_MG_MODE) {
 243		int i = 0;
 244
 245		baddr = &regs->txic0;
 246		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247			gfar_write(baddr + i, 0);
 248			if (likely(priv->tx_queue[i]->txcoalescing))
 249				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250		}
 251
 252		baddr = &regs->rxic0;
 253		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254			gfar_write(baddr + i, 0);
 255			if (likely(priv->rx_queue[i]->rxcoalescing))
 256				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257		}
 258	} else {
 259		/* Backward compatible case -- even if we enable
 260		 * multiple queues, there's only single reg to program
 261		 */
 262		gfar_write(&regs->txic, 0);
 263		if (likely(priv->tx_queue[0]->txcoalescing))
 264			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266		gfar_write(&regs->rxic, 0);
 267		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269	}
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279	struct gfar_private *priv = netdev_priv(dev);
 280	int i;
 281
 282	for (i = 0; i < priv->num_rx_queues; i++) {
 283		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286	}
 287
 288	for (i = 0; i < priv->num_tx_queues; i++) {
 289		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291	}
 292
 293	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295		unsigned long flags;
 296		u32 rdrp, car, car_before;
 297		u64 rdrp_offset;
 298
 299		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301		do {
 302			car_before = car;
 303			rdrp = gfar_read(&rmon->rdrp);
 304			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305		} while (car != car_before);
 306		if (car) {
 307			priv->rmon_overflow.rdrp++;
 308			gfar_write(&rmon->car1, car);
 309		}
 310		rdrp_offset = priv->rmon_overflow.rdrp;
 311		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314	}
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333	u32 tempval;
 334	struct gfar_private *priv = netdev_priv(dev);
 335	u32 result = ether_crc(ETH_ALEN, addr);
 336	int width = priv->hash_width;
 337	u8 whichbit = (result >> (32 - width)) & 0x1f;
 338	u8 whichreg = result >> (32 - width + 5);
 339	u32 value = (1 << (31-whichbit));
 340
 341	tempval = gfar_read(priv->hash_regs[whichreg]);
 342	tempval |= value;
 343	gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350				  const u8 *addr)
 351{
 352	struct gfar_private *priv = netdev_priv(dev);
 353	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354	u32 tempval;
 355	u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357	macptr += num*2;
 358
 359	/* For a station address of 0x12345678ABCD in transmission
 360	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361	 * MACnADDR2 is set to 0x34120000.
 362	 */
 363	tempval = (addr[5] << 24) | (addr[4] << 16) |
 364		  (addr[3] << 8)  |  addr[2];
 365
 366	gfar_write(macptr, tempval);
 367
 368	tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370	gfar_write(macptr+1, tempval);
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375	int ret;
 376
 377	ret = eth_mac_addr(dev, p);
 378	if (ret)
 379		return ret;
 380
 381	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383	return 0;
 384}
 385
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388	int i;
 389	for (i = 0; i < priv->num_grps; i++) {
 390		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391		/* Clear IEVENT */
 392		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394		/* Initialize IMASK */
 395		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396	}
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401	int i;
 402	for (i = 0; i < priv->num_grps; i++) {
 403		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404		/* Unmask the interrupts we look for */
 405		gfar_write(&regs->imask,
 406			   IMASK_DEFAULT | priv->rmon_overflow.imask);
 407	}
 408}
 409
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412	int i;
 413
 414	for (i = 0; i < priv->num_tx_queues; i++) {
 415		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416					    GFP_KERNEL);
 417		if (!priv->tx_queue[i])
 418			return -ENOMEM;
 419
 420		priv->tx_queue[i]->tx_skbuff = NULL;
 421		priv->tx_queue[i]->qindex = i;
 422		priv->tx_queue[i]->dev = priv->ndev;
 423		spin_lock_init(&(priv->tx_queue[i]->txlock));
 424	}
 425	return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 429{
 430	int i;
 431
 432	for (i = 0; i < priv->num_rx_queues; i++) {
 433		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434					    GFP_KERNEL);
 435		if (!priv->rx_queue[i])
 436			return -ENOMEM;
 437
 438		priv->rx_queue[i]->qindex = i;
 439		priv->rx_queue[i]->ndev = priv->ndev;
 440	}
 441	return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446	int i;
 447
 448	for (i = 0; i < priv->num_tx_queues; i++)
 449		kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454	int i;
 455
 456	for (i = 0; i < priv->num_rx_queues; i++)
 457		kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462	int i;
 463
 464	for (i = 0; i < MAXGROUPS; i++)
 465		if (priv->gfargrp[i].regs)
 466			iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471	int i, j;
 472
 473	for (i = 0; i < priv->num_grps; i++)
 474		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475			kfree(priv->gfargrp[i].irqinfo[j]);
 476			priv->gfargrp[i].irqinfo[j] = NULL;
 477		}
 478
 479	free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484	int i;
 485
 486	for (i = 0; i < priv->num_grps; i++) {
 487		napi_disable(&priv->gfargrp[i].napi_rx);
 488		napi_disable(&priv->gfargrp[i].napi_tx);
 489	}
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494	int i;
 495
 496	for (i = 0; i < priv->num_grps; i++) {
 497		napi_enable(&priv->gfargrp[i].napi_rx);
 498		napi_enable(&priv->gfargrp[i].napi_tx);
 499	}
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503			    struct gfar_private *priv, const char *model)
 504{
 505	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506	int i;
 507
 508	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510					  GFP_KERNEL);
 511		if (!grp->irqinfo[i])
 512			return -ENOMEM;
 513	}
 514
 515	grp->regs = of_iomap(np, 0);
 516	if (!grp->regs)
 517		return -ENOMEM;
 518
 519	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 520
 521	/* If we aren't the FEC we have multiple interrupts */
 522	if (model && strcasecmp(model, "FEC")) {
 523		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525		if (!gfar_irq(grp, TX)->irq ||
 526		    !gfar_irq(grp, RX)->irq ||
 527		    !gfar_irq(grp, ER)->irq)
 528			return -EINVAL;
 529	}
 530
 531	grp->priv = priv;
 532	spin_lock_init(&grp->grplock);
 533	if (priv->mode == MQ_MG_MODE) {
 534		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 535		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 537	} else {
 538		grp->rx_bit_map = 0xFF;
 539		grp->tx_bit_map = 0xFF;
 540	}
 541
 542	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543	 * right to left, so we need to revert the 8 bits to get the q index
 544	 */
 545	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549	 * also assign queues to groups
 550	 */
 551	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552		if (!grp->rx_queue)
 553			grp->rx_queue = priv->rx_queue[i];
 554		grp->num_rx_queues++;
 555		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557		priv->rx_queue[i]->grp = grp;
 558	}
 559
 560	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561		if (!grp->tx_queue)
 562			grp->tx_queue = priv->tx_queue[i];
 563		grp->num_tx_queues++;
 564		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565		priv->tqueue |= (TQUEUE_EN0 >> i);
 566		priv->tx_queue[i]->grp = grp;
 567	}
 568
 569	priv->num_grps++;
 570
 571	return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576	struct device_node *child;
 577	int num = 0;
 578
 579	for_each_available_child_of_node(np, child)
 580		if (of_node_name_eq(child, "queue-group"))
 581			num++;
 582
 583	return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591	struct gfar_private *priv = netdev_priv(dev);
 592	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593	u32 ecntrl;
 594
 595	ecntrl = gfar_read(&regs->ecntrl);
 596
 597	if (ecntrl & ECNTRL_SGMII_MODE)
 598		return PHY_INTERFACE_MODE_SGMII;
 599
 600	if (ecntrl & ECNTRL_TBI_MODE) {
 601		if (ecntrl & ECNTRL_REDUCED_MODE)
 602			return PHY_INTERFACE_MODE_RTBI;
 603		else
 604			return PHY_INTERFACE_MODE_TBI;
 605	}
 606
 607	if (ecntrl & ECNTRL_REDUCED_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609			return PHY_INTERFACE_MODE_RMII;
 610		}
 611		else {
 612			phy_interface_t interface = priv->interface;
 613
 614			/* This isn't autodetected right now, so it must
 615			 * be set by the device tree or platform code.
 616			 */
 617			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618				return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620			return PHY_INTERFACE_MODE_RGMII;
 621		}
 622	}
 623
 624	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625		return PHY_INTERFACE_MODE_GMII;
 626
 627	return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632	const char *model;
 633	int err = 0, i;
 634	phy_interface_t interface;
 635	struct net_device *dev = NULL;
 636	struct gfar_private *priv = NULL;
 637	struct device_node *np = ofdev->dev.of_node;
 638	struct device_node *child = NULL;
 639	u32 stash_len = 0;
 640	u32 stash_idx = 0;
 641	unsigned int num_tx_qs, num_rx_qs;
 642	unsigned short mode;
 643
 644	if (!np)
 645		return -ENODEV;
 646
 647	if (of_device_is_compatible(np, "fsl,etsec2"))
 648		mode = MQ_MG_MODE;
 649	else
 650		mode = SQ_SG_MODE;
 651
 652	if (mode == SQ_SG_MODE) {
 653		num_tx_qs = 1;
 654		num_rx_qs = 1;
 655	} else { /* MQ_MG_MODE */
 656		/* get the actual number of supported groups */
 657		unsigned int num_grps = gfar_of_group_count(np);
 658
 659		if (num_grps == 0 || num_grps > MAXGROUPS) {
 660			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661				num_grps);
 662			pr_err("Cannot do alloc_etherdev, aborting\n");
 663			return -EINVAL;
 664		}
 665
 666		num_tx_qs = num_grps; /* one txq per int group */
 667		num_rx_qs = num_grps; /* one rxq per int group */
 668	}
 669
 670	if (num_tx_qs > MAX_TX_QS) {
 671		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672		       num_tx_qs, MAX_TX_QS);
 673		pr_err("Cannot do alloc_etherdev, aborting\n");
 674		return -EINVAL;
 675	}
 676
 677	if (num_rx_qs > MAX_RX_QS) {
 678		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679		       num_rx_qs, MAX_RX_QS);
 680		pr_err("Cannot do alloc_etherdev, aborting\n");
 681		return -EINVAL;
 682	}
 683
 684	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685	dev = *pdev;
 686	if (NULL == dev)
 687		return -ENOMEM;
 688
 689	priv = netdev_priv(dev);
 690	priv->ndev = dev;
 691
 692	priv->mode = mode;
 693
 694	priv->num_tx_queues = num_tx_qs;
 695	netif_set_real_num_rx_queues(dev, num_rx_qs);
 696	priv->num_rx_queues = num_rx_qs;
 697
 698	err = gfar_alloc_tx_queues(priv);
 699	if (err)
 700		goto tx_alloc_failed;
 701
 702	err = gfar_alloc_rx_queues(priv);
 703	if (err)
 704		goto rx_alloc_failed;
 705
 706	err = of_property_read_string(np, "model", &model);
 707	if (err) {
 708		pr_err("Device model property missing, aborting\n");
 709		goto rx_alloc_failed;
 710	}
 711
 712	/* Init Rx queue filer rule set linked list */
 713	INIT_LIST_HEAD(&priv->rx_list.list);
 714	priv->rx_list.count = 0;
 715	mutex_init(&priv->rx_queue_access);
 716
 717	for (i = 0; i < MAXGROUPS; i++)
 718		priv->gfargrp[i].regs = NULL;
 719
 720	/* Parse and initialize group specific information */
 721	if (priv->mode == MQ_MG_MODE) {
 722		for_each_available_child_of_node(np, child) {
 723			if (!of_node_name_eq(child, "queue-group"))
 724				continue;
 725
 726			err = gfar_parse_group(child, priv, model);
 727			if (err) {
 728				of_node_put(child);
 729				goto err_grp_init;
 730			}
 731		}
 732	} else { /* SQ_SG_MODE */
 733		err = gfar_parse_group(np, priv, model);
 734		if (err)
 735			goto err_grp_init;
 736	}
 737
 738	if (of_property_read_bool(np, "bd-stash")) {
 739		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740		priv->bd_stash_en = 1;
 741	}
 742
 743	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745	if (err == 0)
 746		priv->rx_stash_size = stash_len;
 747
 748	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750	if (err == 0)
 751		priv->rx_stash_index = stash_idx;
 752
 753	if (stash_len || stash_idx)
 754		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756	err = of_get_mac_address(np, dev->dev_addr);
 757	if (err) {
 758		eth_hw_addr_random(dev);
 759		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 760	}
 761
 762	if (model && !strcasecmp(model, "TSEC"))
 763		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 764				     FSL_GIANFAR_DEV_HAS_COALESCE |
 765				     FSL_GIANFAR_DEV_HAS_RMON |
 766				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 767
 768	if (model && !strcasecmp(model, "eTSEC"))
 769		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 770				     FSL_GIANFAR_DEV_HAS_COALESCE |
 771				     FSL_GIANFAR_DEV_HAS_RMON |
 772				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 773				     FSL_GIANFAR_DEV_HAS_CSUM |
 774				     FSL_GIANFAR_DEV_HAS_VLAN |
 775				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 776				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 777				     FSL_GIANFAR_DEV_HAS_TIMER |
 778				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 779
 780	/* Use PHY connection type from the DT node if one is specified there.
 781	 * rgmii-id really needs to be specified. Other types can be
 782	 * detected by hardware
 783	 */
 784	err = of_get_phy_mode(np, &interface);
 785	if (!err)
 786		priv->interface = interface;
 787	else
 788		priv->interface = gfar_get_interface(dev);
 789
 790	if (of_find_property(np, "fsl,magic-packet", NULL))
 791		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 792
 793	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 794		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 795
 796	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 797
 798	/* In the case of a fixed PHY, the DT node associated
 799	 * to the PHY is the Ethernet MAC DT node.
 800	 */
 801	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 802		err = of_phy_register_fixed_link(np);
 803		if (err)
 804			goto err_grp_init;
 805
 806		priv->phy_node = of_node_get(np);
 807	}
 808
 809	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 810	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 811
 812	return 0;
 813
 814err_grp_init:
 815	unmap_group_regs(priv);
 816rx_alloc_failed:
 817	gfar_free_rx_queues(priv);
 818tx_alloc_failed:
 819	gfar_free_tx_queues(priv);
 820	free_gfar_dev(priv);
 821	return err;
 822}
 823
 824static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 825				   u32 class)
 826{
 827	u32 rqfpr = FPR_FILER_MASK;
 828	u32 rqfcr = 0x0;
 829
 830	rqfar--;
 831	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 832	priv->ftp_rqfpr[rqfar] = rqfpr;
 833	priv->ftp_rqfcr[rqfar] = rqfcr;
 834	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 835
 836	rqfar--;
 837	rqfcr = RQFCR_CMP_NOMATCH;
 838	priv->ftp_rqfpr[rqfar] = rqfpr;
 839	priv->ftp_rqfcr[rqfar] = rqfcr;
 840	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 841
 842	rqfar--;
 843	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 844	rqfpr = class;
 845	priv->ftp_rqfcr[rqfar] = rqfcr;
 846	priv->ftp_rqfpr[rqfar] = rqfpr;
 847	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 848
 849	rqfar--;
 850	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 851	rqfpr = class;
 852	priv->ftp_rqfcr[rqfar] = rqfcr;
 853	priv->ftp_rqfpr[rqfar] = rqfpr;
 854	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 855
 856	return rqfar;
 857}
 858
 859static void gfar_init_filer_table(struct gfar_private *priv)
 860{
 861	int i = 0x0;
 862	u32 rqfar = MAX_FILER_IDX;
 863	u32 rqfcr = 0x0;
 864	u32 rqfpr = FPR_FILER_MASK;
 865
 866	/* Default rule */
 867	rqfcr = RQFCR_CMP_MATCH;
 868	priv->ftp_rqfcr[rqfar] = rqfcr;
 869	priv->ftp_rqfpr[rqfar] = rqfpr;
 870	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 871
 872	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 873	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 874	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 875	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 876	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 877	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 878
 879	/* cur_filer_idx indicated the first non-masked rule */
 880	priv->cur_filer_idx = rqfar;
 881
 882	/* Rest are masked rules */
 883	rqfcr = RQFCR_CMP_NOMATCH;
 884	for (i = 0; i < rqfar; i++) {
 885		priv->ftp_rqfcr[i] = rqfcr;
 886		priv->ftp_rqfpr[i] = rqfpr;
 887		gfar_write_filer(priv, i, rqfcr, rqfpr);
 888	}
 889}
 890
 891#ifdef CONFIG_PPC
 892static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 893{
 894	unsigned int pvr = mfspr(SPRN_PVR);
 895	unsigned int svr = mfspr(SPRN_SVR);
 896	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 897	unsigned int rev = svr & 0xffff;
 898
 899	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 900	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 901	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 902		priv->errata |= GFAR_ERRATA_74;
 903
 904	/* MPC8313 and MPC837x all rev */
 905	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 906	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 907		priv->errata |= GFAR_ERRATA_76;
 908
 909	/* MPC8313 Rev < 2.0 */
 910	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 911		priv->errata |= GFAR_ERRATA_12;
 912}
 913
 914static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 915{
 916	unsigned int svr = mfspr(SPRN_SVR);
 917
 918	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 919		priv->errata |= GFAR_ERRATA_12;
 920	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 921	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 922	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 923	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 924		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 925}
 926#endif
 927
 928static void gfar_detect_errata(struct gfar_private *priv)
 929{
 930	struct device *dev = &priv->ofdev->dev;
 931
 932	/* no plans to fix */
 933	priv->errata |= GFAR_ERRATA_A002;
 934
 935#ifdef CONFIG_PPC
 936	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 937		__gfar_detect_errata_85xx(priv);
 938	else /* non-mpc85xx parts, i.e. e300 core based */
 939		__gfar_detect_errata_83xx(priv);
 940#endif
 941
 942	if (priv->errata)
 943		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 944			 priv->errata);
 945}
 946
 947static void gfar_init_addr_hash_table(struct gfar_private *priv)
 948{
 949	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 950
 951	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 952		priv->extended_hash = 1;
 953		priv->hash_width = 9;
 954
 955		priv->hash_regs[0] = &regs->igaddr0;
 956		priv->hash_regs[1] = &regs->igaddr1;
 957		priv->hash_regs[2] = &regs->igaddr2;
 958		priv->hash_regs[3] = &regs->igaddr3;
 959		priv->hash_regs[4] = &regs->igaddr4;
 960		priv->hash_regs[5] = &regs->igaddr5;
 961		priv->hash_regs[6] = &regs->igaddr6;
 962		priv->hash_regs[7] = &regs->igaddr7;
 963		priv->hash_regs[8] = &regs->gaddr0;
 964		priv->hash_regs[9] = &regs->gaddr1;
 965		priv->hash_regs[10] = &regs->gaddr2;
 966		priv->hash_regs[11] = &regs->gaddr3;
 967		priv->hash_regs[12] = &regs->gaddr4;
 968		priv->hash_regs[13] = &regs->gaddr5;
 969		priv->hash_regs[14] = &regs->gaddr6;
 970		priv->hash_regs[15] = &regs->gaddr7;
 971
 972	} else {
 973		priv->extended_hash = 0;
 974		priv->hash_width = 8;
 975
 976		priv->hash_regs[0] = &regs->gaddr0;
 977		priv->hash_regs[1] = &regs->gaddr1;
 978		priv->hash_regs[2] = &regs->gaddr2;
 979		priv->hash_regs[3] = &regs->gaddr3;
 980		priv->hash_regs[4] = &regs->gaddr4;
 981		priv->hash_regs[5] = &regs->gaddr5;
 982		priv->hash_regs[6] = &regs->gaddr6;
 983		priv->hash_regs[7] = &regs->gaddr7;
 984	}
 985}
 986
 987static int __gfar_is_rx_idle(struct gfar_private *priv)
 988{
 989	u32 res;
 990
 991	/* Normaly TSEC should not hang on GRS commands, so we should
 992	 * actually wait for IEVENT_GRSC flag.
 993	 */
 994	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 995		return 0;
 996
 997	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
 998	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
 999	 * and the Rx can be safely reset.
1000	 */
1001	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002	res &= 0x7f807f80;
1003	if ((res & 0xffff) == (res >> 16))
1004		return 1;
1005
1006	return 0;
1007}
1008
1009/* Halt the receive and transmit queues */
1010static void gfar_halt_nodisable(struct gfar_private *priv)
1011{
1012	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013	u32 tempval;
1014	unsigned int timeout;
1015	int stopped;
1016
1017	gfar_ints_disable(priv);
1018
1019	if (gfar_is_dma_stopped(priv))
1020		return;
1021
1022	/* Stop the DMA, and wait for it to stop */
1023	tempval = gfar_read(&regs->dmactrl);
1024	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025	gfar_write(&regs->dmactrl, tempval);
1026
1027retry:
1028	timeout = 1000;
1029	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030		cpu_relax();
1031		timeout--;
1032	}
1033
1034	if (!timeout)
1035		stopped = gfar_is_dma_stopped(priv);
1036
1037	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038	    !__gfar_is_rx_idle(priv))
1039		goto retry;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt(struct gfar_private *priv)
1044{
1045	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046	u32 tempval;
1047
1048	/* Dissable the Rx/Tx hw queues */
1049	gfar_write(&regs->rqueue, 0);
1050	gfar_write(&regs->tqueue, 0);
1051
1052	mdelay(10);
1053
1054	gfar_halt_nodisable(priv);
1055
1056	/* Disable Rx/Tx DMA */
1057	tempval = gfar_read(&regs->maccfg1);
1058	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059	gfar_write(&regs->maccfg1, tempval);
1060}
1061
1062static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063{
1064	struct txbd8 *txbdp;
1065	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066	int i, j;
1067
1068	txbdp = tx_queue->tx_bd_base;
1069
1070	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071		if (!tx_queue->tx_skbuff[i])
1072			continue;
1073
1074		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076		txbdp->lstatus = 0;
1077		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078		     j++) {
1079			txbdp++;
1080			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081				       be16_to_cpu(txbdp->length),
1082				       DMA_TO_DEVICE);
1083		}
1084		txbdp++;
1085		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086		tx_queue->tx_skbuff[i] = NULL;
1087	}
1088	kfree(tx_queue->tx_skbuff);
1089	tx_queue->tx_skbuff = NULL;
1090}
1091
1092static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093{
1094	int i;
1095
1096	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098	dev_kfree_skb(rx_queue->skb);
1099
1100	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
1103		rxbdp->lstatus = 0;
1104		rxbdp->bufPtr = 0;
1105		rxbdp++;
1106
1107		if (!rxb->page)
1108			continue;
1109
1110		dma_unmap_page(rx_queue->dev, rxb->dma,
1111			       PAGE_SIZE, DMA_FROM_DEVICE);
1112		__free_page(rxb->page);
1113
1114		rxb->page = NULL;
1115	}
1116
1117	kfree(rx_queue->rx_buff);
1118	rx_queue->rx_buff = NULL;
1119}
1120
1121/* If there are any tx skbs or rx skbs still around, free them.
1122 * Then free tx_skbuff and rx_skbuff
1123 */
1124static void free_skb_resources(struct gfar_private *priv)
1125{
1126	struct gfar_priv_tx_q *tx_queue = NULL;
1127	struct gfar_priv_rx_q *rx_queue = NULL;
1128	int i;
1129
1130	/* Go through all the buffer descriptors and free their data buffers */
1131	for (i = 0; i < priv->num_tx_queues; i++) {
1132		struct netdev_queue *txq;
1133
1134		tx_queue = priv->tx_queue[i];
1135		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136		if (tx_queue->tx_skbuff)
1137			free_skb_tx_queue(tx_queue);
1138		netdev_tx_reset_queue(txq);
1139	}
1140
1141	for (i = 0; i < priv->num_rx_queues; i++) {
1142		rx_queue = priv->rx_queue[i];
1143		if (rx_queue->rx_buff)
1144			free_skb_rx_queue(rx_queue);
1145	}
1146
1147	dma_free_coherent(priv->dev,
1148			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1149			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150			  priv->tx_queue[0]->tx_bd_base,
1151			  priv->tx_queue[0]->tx_bd_dma_base);
1152}
1153
1154void stop_gfar(struct net_device *dev)
1155{
1156	struct gfar_private *priv = netdev_priv(dev);
1157
1158	netif_tx_stop_all_queues(dev);
1159
1160	smp_mb__before_atomic();
1161	set_bit(GFAR_DOWN, &priv->state);
1162	smp_mb__after_atomic();
1163
1164	disable_napi(priv);
1165
1166	/* disable ints and gracefully shut down Rx/Tx DMA */
1167	gfar_halt(priv);
1168
1169	phy_stop(dev->phydev);
1170
1171	free_skb_resources(priv);
1172}
1173
1174static void gfar_start(struct gfar_private *priv)
1175{
1176	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177	u32 tempval;
1178	int i = 0;
1179
1180	/* Enable Rx/Tx hw queues */
1181	gfar_write(&regs->rqueue, priv->rqueue);
1182	gfar_write(&regs->tqueue, priv->tqueue);
1183
1184	/* Initialize DMACTRL to have WWR and WOP */
1185	tempval = gfar_read(&regs->dmactrl);
1186	tempval |= DMACTRL_INIT_SETTINGS;
1187	gfar_write(&regs->dmactrl, tempval);
1188
1189	/* Make sure we aren't stopped */
1190	tempval = gfar_read(&regs->dmactrl);
1191	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192	gfar_write(&regs->dmactrl, tempval);
1193
1194	for (i = 0; i < priv->num_grps; i++) {
1195		regs = priv->gfargrp[i].regs;
1196		/* Clear THLT/RHLT, so that the DMA starts polling now */
1197		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199	}
1200
1201	/* Enable Rx/Tx DMA */
1202	tempval = gfar_read(&regs->maccfg1);
1203	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204	gfar_write(&regs->maccfg1, tempval);
1205
1206	gfar_ints_enable(priv);
1207
1208	netif_trans_update(priv->ndev); /* prevent tx timeout */
1209}
1210
1211static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212{
1213	struct page *page;
1214	dma_addr_t addr;
1215
1216	page = dev_alloc_page();
1217	if (unlikely(!page))
1218		return false;
1219
1220	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222		__free_page(page);
1223
1224		return false;
1225	}
1226
1227	rxb->dma = addr;
1228	rxb->page = page;
1229	rxb->page_offset = 0;
1230
1231	return true;
1232}
1233
1234static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235{
1236	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237	struct gfar_extra_stats *estats = &priv->extra_stats;
1238
1239	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240	atomic64_inc(&estats->rx_alloc_err);
1241}
1242
1243static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244				int alloc_cnt)
1245{
1246	struct rxbd8 *bdp;
1247	struct gfar_rx_buff *rxb;
1248	int i;
1249
1250	i = rx_queue->next_to_use;
1251	bdp = &rx_queue->rx_bd_base[i];
1252	rxb = &rx_queue->rx_buff[i];
1253
1254	while (alloc_cnt--) {
1255		/* try reuse page */
1256		if (unlikely(!rxb->page)) {
1257			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258				gfar_rx_alloc_err(rx_queue);
1259				break;
1260			}
1261		}
1262
1263		/* Setup the new RxBD */
1264		gfar_init_rxbdp(rx_queue, bdp,
1265				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267		/* Update to the next pointer */
1268		bdp++;
1269		rxb++;
1270
1271		if (unlikely(++i == rx_queue->rx_ring_size)) {
1272			i = 0;
1273			bdp = rx_queue->rx_bd_base;
1274			rxb = rx_queue->rx_buff;
1275		}
1276	}
1277
1278	rx_queue->next_to_use = i;
1279	rx_queue->next_to_alloc = i;
1280}
1281
1282static void gfar_init_bds(struct net_device *ndev)
1283{
1284	struct gfar_private *priv = netdev_priv(ndev);
1285	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286	struct gfar_priv_tx_q *tx_queue = NULL;
1287	struct gfar_priv_rx_q *rx_queue = NULL;
1288	struct txbd8 *txbdp;
1289	u32 __iomem *rfbptr;
1290	int i, j;
1291
1292	for (i = 0; i < priv->num_tx_queues; i++) {
1293		tx_queue = priv->tx_queue[i];
1294		/* Initialize some variables in our dev structure */
1295		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297		tx_queue->cur_tx = tx_queue->tx_bd_base;
1298		tx_queue->skb_curtx = 0;
1299		tx_queue->skb_dirtytx = 0;
1300
1301		/* Initialize Transmit Descriptor Ring */
1302		txbdp = tx_queue->tx_bd_base;
1303		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304			txbdp->lstatus = 0;
1305			txbdp->bufPtr = 0;
1306			txbdp++;
1307		}
1308
1309		/* Set the last descriptor in the ring to indicate wrap */
1310		txbdp--;
1311		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312					    TXBD_WRAP);
1313	}
1314
1315	rfbptr = &regs->rfbptr0;
1316	for (i = 0; i < priv->num_rx_queues; i++) {
1317		rx_queue = priv->rx_queue[i];
1318
1319		rx_queue->next_to_clean = 0;
1320		rx_queue->next_to_use = 0;
1321		rx_queue->next_to_alloc = 0;
1322
1323		/* make sure next_to_clean != next_to_use after this
1324		 * by leaving at least 1 unused descriptor
1325		 */
1326		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327
1328		rx_queue->rfbptr = rfbptr;
1329		rfbptr += 2;
1330	}
1331}
1332
1333static int gfar_alloc_skb_resources(struct net_device *ndev)
1334{
1335	void *vaddr;
1336	dma_addr_t addr;
1337	int i, j;
1338	struct gfar_private *priv = netdev_priv(ndev);
1339	struct device *dev = priv->dev;
1340	struct gfar_priv_tx_q *tx_queue = NULL;
1341	struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343	priv->total_tx_ring_size = 0;
1344	for (i = 0; i < priv->num_tx_queues; i++)
1345		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347	priv->total_rx_ring_size = 0;
1348	for (i = 0; i < priv->num_rx_queues; i++)
1349		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351	/* Allocate memory for the buffer descriptors */
1352	vaddr = dma_alloc_coherent(dev,
1353				   (priv->total_tx_ring_size *
1354				    sizeof(struct txbd8)) +
1355				   (priv->total_rx_ring_size *
1356				    sizeof(struct rxbd8)),
1357				   &addr, GFP_KERNEL);
1358	if (!vaddr)
1359		return -ENOMEM;
1360
1361	for (i = 0; i < priv->num_tx_queues; i++) {
1362		tx_queue = priv->tx_queue[i];
1363		tx_queue->tx_bd_base = vaddr;
1364		tx_queue->tx_bd_dma_base = addr;
1365		tx_queue->dev = ndev;
1366		/* enet DMA only understands physical addresses */
1367		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369	}
1370
1371	/* Start the rx descriptor ring where the tx ring leaves off */
1372	for (i = 0; i < priv->num_rx_queues; i++) {
1373		rx_queue = priv->rx_queue[i];
1374		rx_queue->rx_bd_base = vaddr;
1375		rx_queue->rx_bd_dma_base = addr;
1376		rx_queue->ndev = ndev;
1377		rx_queue->dev = dev;
1378		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380	}
1381
1382	/* Setup the skbuff rings */
1383	for (i = 0; i < priv->num_tx_queues; i++) {
1384		tx_queue = priv->tx_queue[i];
1385		tx_queue->tx_skbuff =
1386			kmalloc_array(tx_queue->tx_ring_size,
1387				      sizeof(*tx_queue->tx_skbuff),
1388				      GFP_KERNEL);
1389		if (!tx_queue->tx_skbuff)
1390			goto cleanup;
1391
1392		for (j = 0; j < tx_queue->tx_ring_size; j++)
1393			tx_queue->tx_skbuff[j] = NULL;
1394	}
1395
1396	for (i = 0; i < priv->num_rx_queues; i++) {
1397		rx_queue = priv->rx_queue[i];
1398		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399					    sizeof(*rx_queue->rx_buff),
1400					    GFP_KERNEL);
1401		if (!rx_queue->rx_buff)
1402			goto cleanup;
1403	}
1404
1405	gfar_init_bds(ndev);
1406
1407	return 0;
1408
1409cleanup:
1410	free_skb_resources(priv);
1411	return -ENOMEM;
1412}
1413
1414/* Bring the controller up and running */
1415int startup_gfar(struct net_device *ndev)
1416{
1417	struct gfar_private *priv = netdev_priv(ndev);
1418	int err;
1419
1420	gfar_mac_reset(priv);
1421
1422	err = gfar_alloc_skb_resources(ndev);
1423	if (err)
1424		return err;
1425
1426	gfar_init_tx_rx_base(priv);
1427
1428	smp_mb__before_atomic();
1429	clear_bit(GFAR_DOWN, &priv->state);
1430	smp_mb__after_atomic();
1431
1432	/* Start Rx/Tx DMA and enable the interrupts */
1433	gfar_start(priv);
1434
1435	/* force link state update after mac reset */
1436	priv->oldlink = 0;
1437	priv->oldspeed = 0;
1438	priv->oldduplex = -1;
1439
1440	phy_start(ndev->phydev);
1441
1442	enable_napi(priv);
1443
1444	netif_tx_wake_all_queues(ndev);
1445
1446	return 0;
1447}
1448
1449static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450{
1451	struct net_device *ndev = priv->ndev;
1452	struct phy_device *phydev = ndev->phydev;
1453	u32 val = 0;
1454
1455	if (!phydev->duplex)
1456		return val;
1457
1458	if (!priv->pause_aneg_en) {
1459		if (priv->tx_pause_en)
1460			val |= MACCFG1_TX_FLOW;
1461		if (priv->rx_pause_en)
1462			val |= MACCFG1_RX_FLOW;
1463	} else {
1464		u16 lcl_adv, rmt_adv;
1465		u8 flowctrl;
1466		/* get link partner capabilities */
1467		rmt_adv = 0;
1468		if (phydev->pause)
1469			rmt_adv = LPA_PAUSE_CAP;
1470		if (phydev->asym_pause)
1471			rmt_adv |= LPA_PAUSE_ASYM;
1472
1473		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475		if (flowctrl & FLOW_CTRL_TX)
1476			val |= MACCFG1_TX_FLOW;
1477		if (flowctrl & FLOW_CTRL_RX)
1478			val |= MACCFG1_RX_FLOW;
1479	}
1480
1481	return val;
1482}
1483
1484static noinline void gfar_update_link_state(struct gfar_private *priv)
1485{
1486	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487	struct net_device *ndev = priv->ndev;
1488	struct phy_device *phydev = ndev->phydev;
1489	struct gfar_priv_rx_q *rx_queue = NULL;
1490	int i;
1491
1492	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493		return;
1494
1495	if (phydev->link) {
1496		u32 tempval1 = gfar_read(&regs->maccfg1);
1497		u32 tempval = gfar_read(&regs->maccfg2);
1498		u32 ecntrl = gfar_read(&regs->ecntrl);
1499		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501		if (phydev->duplex != priv->oldduplex) {
1502			if (!(phydev->duplex))
1503				tempval &= ~(MACCFG2_FULL_DUPLEX);
1504			else
1505				tempval |= MACCFG2_FULL_DUPLEX;
1506
1507			priv->oldduplex = phydev->duplex;
1508		}
1509
1510		if (phydev->speed != priv->oldspeed) {
1511			switch (phydev->speed) {
1512			case 1000:
1513				tempval =
1514				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516				ecntrl &= ~(ECNTRL_R100);
1517				break;
1518			case 100:
1519			case 10:
1520				tempval =
1521				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523				/* Reduced mode distinguishes
1524				 * between 10 and 100
1525				 */
1526				if (phydev->speed == SPEED_100)
1527					ecntrl |= ECNTRL_R100;
1528				else
1529					ecntrl &= ~(ECNTRL_R100);
1530				break;
1531			default:
1532				netif_warn(priv, link, priv->ndev,
1533					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1534					   phydev->speed);
1535				break;
1536			}
1537
1538			priv->oldspeed = phydev->speed;
1539		}
1540
1541		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542		tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544		/* Turn last free buffer recording on */
1545		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546			for (i = 0; i < priv->num_rx_queues; i++) {
1547				u32 bdp_dma;
1548
1549				rx_queue = priv->rx_queue[i];
1550				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551				gfar_write(rx_queue->rfbptr, bdp_dma);
1552			}
1553
1554			priv->tx_actual_en = 1;
1555		}
1556
1557		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558			priv->tx_actual_en = 0;
1559
1560		gfar_write(&regs->maccfg1, tempval1);
1561		gfar_write(&regs->maccfg2, tempval);
1562		gfar_write(&regs->ecntrl, ecntrl);
1563
1564		if (!priv->oldlink)
1565			priv->oldlink = 1;
1566
1567	} else if (priv->oldlink) {
1568		priv->oldlink = 0;
1569		priv->oldspeed = 0;
1570		priv->oldduplex = -1;
1571	}
1572
1573	if (netif_msg_link(priv))
1574		phy_print_status(phydev);
1575}
1576
1577/* Called every time the controller might need to be made
1578 * aware of new link state.  The PHY code conveys this
1579 * information through variables in the phydev structure, and this
1580 * function converts those variables into the appropriate
1581 * register values, and can bring down the device if needed.
1582 */
1583static void adjust_link(struct net_device *dev)
1584{
1585	struct gfar_private *priv = netdev_priv(dev);
1586	struct phy_device *phydev = dev->phydev;
1587
1588	if (unlikely(phydev->link != priv->oldlink ||
1589		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1590				       phydev->speed != priv->oldspeed))))
1591		gfar_update_link_state(priv);
1592}
1593
1594/* Initialize TBI PHY interface for communicating with the
1595 * SERDES lynx PHY on the chip.  We communicate with this PHY
1596 * through the MDIO bus on each controller, treating it as a
1597 * "normal" PHY at the address found in the TBIPA register.  We assume
1598 * that the TBIPA register is valid.  Either the MDIO bus code will set
1599 * it to a value that doesn't conflict with other PHYs on the bus, or the
1600 * value doesn't matter, as there are no other PHYs on the bus.
1601 */
1602static void gfar_configure_serdes(struct net_device *dev)
1603{
1604	struct gfar_private *priv = netdev_priv(dev);
1605	struct phy_device *tbiphy;
1606
1607	if (!priv->tbi_node) {
1608		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609				    "device tree specify a tbi-handle\n");
1610		return;
1611	}
1612
1613	tbiphy = of_phy_find_device(priv->tbi_node);
1614	if (!tbiphy) {
1615		dev_err(&dev->dev, "error: Could not get TBI device\n");
1616		return;
1617	}
1618
1619	/* If the link is already up, we must already be ok, and don't need to
1620	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621	 * everything for us?  Resetting it takes the link down and requires
1622	 * several seconds for it to come back.
1623	 */
1624	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625		put_device(&tbiphy->mdio.dev);
1626		return;
1627	}
1628
1629	/* Single clk mode, mii mode off(for serdes communication) */
1630	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632	phy_write(tbiphy, MII_ADVERTISE,
1633		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634		  ADVERTISE_1000XPSE_ASYM);
1635
1636	phy_write(tbiphy, MII_BMCR,
1637		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638		  BMCR_SPEED1000);
1639
1640	put_device(&tbiphy->mdio.dev);
1641}
1642
1643/* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646static int init_phy(struct net_device *dev)
1647{
1648	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649	struct gfar_private *priv = netdev_priv(dev);
1650	phy_interface_t interface = priv->interface;
1651	struct phy_device *phydev;
1652	struct ethtool_eee edata;
1653
1654	linkmode_set_bit_array(phy_10_100_features_array,
1655			       ARRAY_SIZE(phy_10_100_features_array),
1656			       mask);
1657	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661
1662	priv->oldlink = 0;
1663	priv->oldspeed = 0;
1664	priv->oldduplex = -1;
1665
1666	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667				interface);
1668	if (!phydev) {
1669		dev_err(&dev->dev, "could not attach to PHY\n");
1670		return -ENODEV;
1671	}
1672
1673	if (interface == PHY_INTERFACE_MODE_SGMII)
1674		gfar_configure_serdes(dev);
1675
1676	/* Remove any features not supported by the controller */
1677	linkmode_and(phydev->supported, phydev->supported, mask);
1678	linkmode_copy(phydev->advertising, phydev->supported);
1679
1680	/* Add support for flow control */
1681	phy_support_asym_pause(phydev);
1682
1683	/* disable EEE autoneg, EEE not supported by eTSEC */
1684	memset(&edata, 0, sizeof(struct ethtool_eee));
1685	phy_ethtool_set_eee(phydev, &edata);
1686
1687	return 0;
1688}
1689
1690static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691{
1692	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694	memset(fcb, 0, GMAC_FCB_LEN);
1695
1696	return fcb;
1697}
1698
1699static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700				    int fcb_length)
1701{
1702	/* If we're here, it's a IP packet with a TCP or UDP
1703	 * payload.  We set it to checksum, using a pseudo-header
1704	 * we provide
1705	 */
1706	u8 flags = TXFCB_DEFAULT;
1707
1708	/* Tell the controller what the protocol is
1709	 * And provide the already calculated phcs
1710	 */
1711	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712		flags |= TXFCB_UDP;
1713		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714	} else
1715		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717	/* l3os is the distance between the start of the
1718	 * frame (skb->data) and the start of the IP hdr.
1719	 * l4os is the distance between the start of the
1720	 * l3 hdr and the l4 hdr
1721	 */
1722	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723	fcb->l4os = skb_network_header_len(skb);
1724
1725	fcb->flags = flags;
1726}
1727
1728static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729{
1730	fcb->flags |= TXFCB_VLN;
1731	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732}
1733
1734static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735				      struct txbd8 *base, int ring_size)
1736{
1737	struct txbd8 *new_bd = bdp + stride;
1738
1739	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740}
1741
1742static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743				      int ring_size)
1744{
1745	return skip_txbd(bdp, 1, base, ring_size);
1746}
1747
1748/* eTSEC12: csum generation not supported for some fcb offsets */
1749static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750				       unsigned long fcb_addr)
1751{
1752	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753	       (fcb_addr % 0x20) > 0x18);
1754}
1755
1756/* eTSEC76: csum generation for frames larger than 2500 may
1757 * cause excess delays before start of transmission
1758 */
1759static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760				       unsigned int len)
1761{
1762	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763	       (len > 2500));
1764}
1765
1766/* This is called by the kernel when a frame is ready for transmission.
1767 * It is pointed to by the dev->hard_start_xmit function pointer
1768 */
1769static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770{
1771	struct gfar_private *priv = netdev_priv(dev);
1772	struct gfar_priv_tx_q *tx_queue = NULL;
1773	struct netdev_queue *txq;
1774	struct gfar __iomem *regs = NULL;
1775	struct txfcb *fcb = NULL;
1776	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777	u32 lstatus;
1778	skb_frag_t *frag;
1779	int i, rq = 0;
1780	int do_tstamp, do_csum, do_vlan;
1781	u32 bufaddr;
1782	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784	rq = skb->queue_mapping;
1785	tx_queue = priv->tx_queue[rq];
1786	txq = netdev_get_tx_queue(dev, rq);
1787	base = tx_queue->tx_bd_base;
1788	regs = tx_queue->grp->regs;
1789
1790	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791	do_vlan = skb_vlan_tag_present(skb);
1792	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793		    priv->hwts_tx_en;
1794
1795	if (do_csum || do_vlan)
1796		fcb_len = GMAC_FCB_LEN;
1797
1798	/* check if time stamp should be generated */
1799	if (unlikely(do_tstamp))
1800		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802	/* make space for additional header when fcb is needed */
1803	if (fcb_len) {
1804		if (unlikely(skb_cow_head(skb, fcb_len))) {
1805			dev->stats.tx_errors++;
1806			dev_kfree_skb_any(skb);
1807			return NETDEV_TX_OK;
1808		}
1809	}
1810
1811	/* total number of fragments in the SKB */
1812	nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814	/* calculate the required number of TxBDs for this skb */
1815	if (unlikely(do_tstamp))
1816		nr_txbds = nr_frags + 2;
1817	else
1818		nr_txbds = nr_frags + 1;
1819
1820	/* check if there is space to queue this packet */
1821	if (nr_txbds > tx_queue->num_txbdfree) {
1822		/* no space, stop the queue */
1823		netif_tx_stop_queue(txq);
1824		dev->stats.tx_fifo_errors++;
1825		return NETDEV_TX_BUSY;
1826	}
1827
1828	/* Update transmit stats */
1829	bytes_sent = skb->len;
1830	tx_queue->stats.tx_bytes += bytes_sent;
1831	/* keep Tx bytes on wire for BQL accounting */
1832	GFAR_CB(skb)->bytes_sent = bytes_sent;
1833	tx_queue->stats.tx_packets++;
1834
1835	txbdp = txbdp_start = tx_queue->cur_tx;
1836	lstatus = be32_to_cpu(txbdp->lstatus);
1837
1838	/* Add TxPAL between FCB and frame if required */
1839	if (unlikely(do_tstamp)) {
1840		skb_push(skb, GMAC_TXPAL_LEN);
1841		memset(skb->data, 0, GMAC_TXPAL_LEN);
1842	}
1843
1844	/* Add TxFCB if required */
1845	if (fcb_len) {
1846		fcb = gfar_add_fcb(skb);
1847		lstatus |= BD_LFLAG(TXBD_TOE);
1848	}
1849
1850	/* Set up checksumming */
1851	if (do_csum) {
1852		gfar_tx_checksum(skb, fcb, fcb_len);
1853
1854		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856			__skb_pull(skb, GMAC_FCB_LEN);
1857			skb_checksum_help(skb);
1858			if (do_vlan || do_tstamp) {
1859				/* put back a new fcb for vlan/tstamp TOE */
1860				fcb = gfar_add_fcb(skb);
1861			} else {
1862				/* Tx TOE not used */
1863				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864				fcb = NULL;
1865			}
1866		}
1867	}
1868
1869	if (do_vlan)
1870		gfar_tx_vlan(skb, fcb);
1871
1872	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873				 DMA_TO_DEVICE);
1874	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875		goto dma_map_err;
1876
1877	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879	/* Time stamp insertion requires one additional TxBD */
1880	if (unlikely(do_tstamp))
1881		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882						 tx_queue->tx_ring_size);
1883
1884	if (likely(!nr_frags)) {
1885		if (likely(!do_tstamp))
1886			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887	} else {
1888		u32 lstatus_start = lstatus;
1889
1890		/* Place the fragment addresses and lengths into the TxBDs */
1891		frag = &skb_shinfo(skb)->frags[0];
1892		for (i = 0; i < nr_frags; i++, frag++) {
1893			unsigned int size;
1894
1895			/* Point at the next BD, wrapping as needed */
1896			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897
1898			size = skb_frag_size(frag);
1899
1900			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901				  BD_LFLAG(TXBD_READY);
1902
1903			/* Handle the last BD specially */
1904			if (i == nr_frags - 1)
1905				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908						   size, DMA_TO_DEVICE);
1909			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910				goto dma_map_err;
1911
1912			/* set the TxBD length and buffer pointer */
1913			txbdp->bufPtr = cpu_to_be32(bufaddr);
1914			txbdp->lstatus = cpu_to_be32(lstatus);
1915		}
1916
1917		lstatus = lstatus_start;
1918	}
1919
1920	/* If time stamping is requested one additional TxBD must be set up. The
1921	 * first TxBD points to the FCB and must have a data length of
1922	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923	 * the full frame length.
1924	 */
1925	if (unlikely(do_tstamp)) {
1926		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929		bufaddr += fcb_len;
1930
1931		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932			      (skb_headlen(skb) - fcb_len);
1933		if (!nr_frags)
1934			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940		/* Setup tx hardware time stamping */
1941		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942		fcb->ptp = 1;
1943	} else {
1944		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945	}
1946
1947	netdev_tx_sent_queue(txq, bytes_sent);
1948
1949	gfar_wmb();
1950
1951	txbdp_start->lstatus = cpu_to_be32(lstatus);
1952
1953	gfar_wmb(); /* force lstatus write before tx_skbuff */
1954
1955	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1956
1957	/* Update the current skb pointer to the next entry we will use
1958	 * (wrapping if necessary)
1959	 */
1960	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1961			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1962
1963	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1964
1965	/* We can work in parallel with gfar_clean_tx_ring(), except
1966	 * when modifying num_txbdfree. Note that we didn't grab the lock
1967	 * when we were reading the num_txbdfree and checking for available
1968	 * space, that's because outside of this function it can only grow.
1969	 */
1970	spin_lock_bh(&tx_queue->txlock);
1971	/* reduce TxBD free count */
1972	tx_queue->num_txbdfree -= (nr_txbds);
1973	spin_unlock_bh(&tx_queue->txlock);
1974
1975	/* If the next BD still needs to be cleaned up, then the bds
1976	 * are full.  We need to tell the kernel to stop sending us stuff.
1977	 */
1978	if (!tx_queue->num_txbdfree) {
1979		netif_tx_stop_queue(txq);
1980
1981		dev->stats.tx_fifo_errors++;
1982	}
1983
1984	/* Tell the DMA to go go go */
1985	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1986
1987	return NETDEV_TX_OK;
1988
1989dma_map_err:
1990	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1991	if (do_tstamp)
1992		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1993	for (i = 0; i < nr_frags; i++) {
1994		lstatus = be32_to_cpu(txbdp->lstatus);
1995		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1996			break;
1997
1998		lstatus &= ~BD_LFLAG(TXBD_READY);
1999		txbdp->lstatus = cpu_to_be32(lstatus);
2000		bufaddr = be32_to_cpu(txbdp->bufPtr);
2001		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2002			       DMA_TO_DEVICE);
2003		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2004	}
2005	gfar_wmb();
2006	dev_kfree_skb_any(skb);
2007	return NETDEV_TX_OK;
2008}
2009
2010/* Changes the mac address if the controller is not running. */
2011static int gfar_set_mac_address(struct net_device *dev)
2012{
2013	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2014
2015	return 0;
2016}
2017
2018static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2019{
2020	struct gfar_private *priv = netdev_priv(dev);
2021
2022	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2023		cpu_relax();
2024
2025	if (dev->flags & IFF_UP)
2026		stop_gfar(dev);
2027
2028	dev->mtu = new_mtu;
2029
2030	if (dev->flags & IFF_UP)
2031		startup_gfar(dev);
2032
2033	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2034
2035	return 0;
2036}
2037
2038static void reset_gfar(struct net_device *ndev)
2039{
2040	struct gfar_private *priv = netdev_priv(ndev);
2041
2042	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2043		cpu_relax();
2044
2045	stop_gfar(ndev);
2046	startup_gfar(ndev);
2047
2048	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2049}
2050
2051/* gfar_reset_task gets scheduled when a packet has not been
2052 * transmitted after a set amount of time.
2053 * For now, assume that clearing out all the structures, and
2054 * starting over will fix the problem.
2055 */
2056static void gfar_reset_task(struct work_struct *work)
2057{
2058	struct gfar_private *priv = container_of(work, struct gfar_private,
2059						 reset_task);
2060	reset_gfar(priv->ndev);
2061}
2062
2063static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2064{
2065	struct gfar_private *priv = netdev_priv(dev);
2066
2067	dev->stats.tx_errors++;
2068	schedule_work(&priv->reset_task);
2069}
2070
2071static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2072{
2073	struct hwtstamp_config config;
2074	struct gfar_private *priv = netdev_priv(netdev);
2075
2076	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2077		return -EFAULT;
2078
2079	/* reserved for future extensions */
2080	if (config.flags)
2081		return -EINVAL;
2082
2083	switch (config.tx_type) {
2084	case HWTSTAMP_TX_OFF:
2085		priv->hwts_tx_en = 0;
2086		break;
2087	case HWTSTAMP_TX_ON:
2088		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2089			return -ERANGE;
2090		priv->hwts_tx_en = 1;
2091		break;
2092	default:
2093		return -ERANGE;
2094	}
2095
2096	switch (config.rx_filter) {
2097	case HWTSTAMP_FILTER_NONE:
2098		if (priv->hwts_rx_en) {
2099			priv->hwts_rx_en = 0;
2100			reset_gfar(netdev);
2101		}
2102		break;
2103	default:
2104		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2105			return -ERANGE;
2106		if (!priv->hwts_rx_en) {
2107			priv->hwts_rx_en = 1;
2108			reset_gfar(netdev);
2109		}
2110		config.rx_filter = HWTSTAMP_FILTER_ALL;
2111		break;
2112	}
2113
2114	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2115		-EFAULT : 0;
2116}
2117
2118static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2119{
2120	struct hwtstamp_config config;
2121	struct gfar_private *priv = netdev_priv(netdev);
2122
2123	config.flags = 0;
2124	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2125	config.rx_filter = (priv->hwts_rx_en ?
2126			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2127
2128	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2129		-EFAULT : 0;
2130}
2131
2132static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2133{
2134	struct phy_device *phydev = dev->phydev;
2135
2136	if (!netif_running(dev))
2137		return -EINVAL;
2138
2139	if (cmd == SIOCSHWTSTAMP)
2140		return gfar_hwtstamp_set(dev, rq);
2141	if (cmd == SIOCGHWTSTAMP)
2142		return gfar_hwtstamp_get(dev, rq);
2143
2144	if (!phydev)
2145		return -ENODEV;
2146
2147	return phy_mii_ioctl(phydev, rq, cmd);
2148}
2149
2150/* Interrupt Handler for Transmit complete */
2151static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2152{
2153	struct net_device *dev = tx_queue->dev;
2154	struct netdev_queue *txq;
2155	struct gfar_private *priv = netdev_priv(dev);
2156	struct txbd8 *bdp, *next = NULL;
2157	struct txbd8 *lbdp = NULL;
2158	struct txbd8 *base = tx_queue->tx_bd_base;
2159	struct sk_buff *skb;
2160	int skb_dirtytx;
2161	int tx_ring_size = tx_queue->tx_ring_size;
2162	int frags = 0, nr_txbds = 0;
2163	int i;
2164	int howmany = 0;
2165	int tqi = tx_queue->qindex;
2166	unsigned int bytes_sent = 0;
2167	u32 lstatus;
2168	size_t buflen;
2169
2170	txq = netdev_get_tx_queue(dev, tqi);
2171	bdp = tx_queue->dirty_tx;
2172	skb_dirtytx = tx_queue->skb_dirtytx;
2173
2174	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2175		bool do_tstamp;
2176
2177		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2178			    priv->hwts_tx_en;
2179
2180		frags = skb_shinfo(skb)->nr_frags;
2181
2182		/* When time stamping, one additional TxBD must be freed.
2183		 * Also, we need to dma_unmap_single() the TxPAL.
2184		 */
2185		if (unlikely(do_tstamp))
2186			nr_txbds = frags + 2;
2187		else
2188			nr_txbds = frags + 1;
2189
2190		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2191
2192		lstatus = be32_to_cpu(lbdp->lstatus);
2193
2194		/* Only clean completed frames */
2195		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2196		    (lstatus & BD_LENGTH_MASK))
2197			break;
2198
2199		if (unlikely(do_tstamp)) {
2200			next = next_txbd(bdp, base, tx_ring_size);
2201			buflen = be16_to_cpu(next->length) +
2202				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2203		} else
2204			buflen = be16_to_cpu(bdp->length);
2205
2206		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2207				 buflen, DMA_TO_DEVICE);
2208
2209		if (unlikely(do_tstamp)) {
2210			struct skb_shared_hwtstamps shhwtstamps;
2211			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2212					  ~0x7UL);
2213
2214			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217			skb_tstamp_tx(skb, &shhwtstamps);
2218			gfar_clear_txbd_status(bdp);
2219			bdp = next;
2220		}
2221
2222		gfar_clear_txbd_status(bdp);
2223		bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225		for (i = 0; i < frags; i++) {
2226			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227				       be16_to_cpu(bdp->length),
2228				       DMA_TO_DEVICE);
2229			gfar_clear_txbd_status(bdp);
2230			bdp = next_txbd(bdp, base, tx_ring_size);
2231		}
2232
2233		bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235		dev_kfree_skb_any(skb);
2236
2237		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239		skb_dirtytx = (skb_dirtytx + 1) &
2240			      TX_RING_MOD_MASK(tx_ring_size);
2241
2242		howmany++;
2243		spin_lock(&tx_queue->txlock);
2244		tx_queue->num_txbdfree += nr_txbds;
2245		spin_unlock(&tx_queue->txlock);
2246	}
2247
2248	/* If we freed a buffer, we can restart transmission, if necessary */
2249	if (tx_queue->num_txbdfree &&
2250	    netif_tx_queue_stopped(txq) &&
2251	    !(test_bit(GFAR_DOWN, &priv->state)))
2252		netif_wake_subqueue(priv->ndev, tqi);
2253
2254	/* Update dirty indicators */
2255	tx_queue->skb_dirtytx = skb_dirtytx;
2256	tx_queue->dirty_tx = bdp;
2257
2258	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259}
2260
2261static void count_errors(u32 lstatus, struct net_device *ndev)
2262{
2263	struct gfar_private *priv = netdev_priv(ndev);
2264	struct net_device_stats *stats = &ndev->stats;
2265	struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267	/* If the packet was truncated, none of the other errors matter */
2268	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269		stats->rx_length_errors++;
2270
2271		atomic64_inc(&estats->rx_trunc);
2272
2273		return;
2274	}
2275	/* Count the errors, if there were any */
2276	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277		stats->rx_length_errors++;
2278
2279		if (lstatus & BD_LFLAG(RXBD_LARGE))
2280			atomic64_inc(&estats->rx_large);
2281		else
2282			atomic64_inc(&estats->rx_short);
2283	}
2284	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285		stats->rx_frame_errors++;
2286		atomic64_inc(&estats->rx_nonoctet);
2287	}
2288	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289		atomic64_inc(&estats->rx_crcerr);
2290		stats->rx_crc_errors++;
2291	}
2292	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293		atomic64_inc(&estats->rx_overrun);
2294		stats->rx_over_errors++;
2295	}
2296}
2297
2298static irqreturn_t gfar_receive(int irq, void *grp_id)
2299{
2300	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301	unsigned long flags;
2302	u32 imask, ievent;
2303
2304	ievent = gfar_read(&grp->regs->ievent);
2305
2306	if (unlikely(ievent & IEVENT_FGPI)) {
2307		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308		return IRQ_HANDLED;
2309	}
2310
2311	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312		spin_lock_irqsave(&grp->grplock, flags);
2313		imask = gfar_read(&grp->regs->imask);
2314		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315		gfar_write(&grp->regs->imask, imask);
2316		spin_unlock_irqrestore(&grp->grplock, flags);
2317		__napi_schedule(&grp->napi_rx);
2318	} else {
2319		/* Clear IEVENT, so interrupts aren't called again
2320		 * because of the packets that have already arrived.
2321		 */
2322		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323	}
2324
2325	return IRQ_HANDLED;
2326}
2327
2328/* Interrupt Handler for Transmit complete */
2329static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330{
2331	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332	unsigned long flags;
2333	u32 imask;
2334
2335	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336		spin_lock_irqsave(&grp->grplock, flags);
2337		imask = gfar_read(&grp->regs->imask);
2338		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339		gfar_write(&grp->regs->imask, imask);
2340		spin_unlock_irqrestore(&grp->grplock, flags);
2341		__napi_schedule(&grp->napi_tx);
2342	} else {
2343		/* Clear IEVENT, so interrupts aren't called again
2344		 * because of the packets that have already arrived.
2345		 */
2346		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347	}
2348
2349	return IRQ_HANDLED;
2350}
2351
2352static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353			     struct sk_buff *skb, bool first)
2354{
2355	int size = lstatus & BD_LENGTH_MASK;
2356	struct page *page = rxb->page;
2357
2358	if (likely(first)) {
2359		skb_put(skb, size);
2360	} else {
2361		/* the last fragments' length contains the full frame length */
2362		if (lstatus & BD_LFLAG(RXBD_LAST))
2363			size -= skb->len;
2364
2365		WARN(size < 0, "gianfar: rx fragment size underflow");
2366		if (size < 0)
2367			return false;
2368
2369		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370				rxb->page_offset + RXBUF_ALIGNMENT,
2371				size, GFAR_RXB_TRUESIZE);
2372	}
2373
2374	/* try reuse page */
2375	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376		return false;
2377
2378	/* change offset to the other half */
2379	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2380
2381	page_ref_inc(page);
2382
2383	return true;
2384}
2385
2386static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387			       struct gfar_rx_buff *old_rxb)
2388{
2389	struct gfar_rx_buff *new_rxb;
2390	u16 nta = rxq->next_to_alloc;
2391
2392	new_rxb = &rxq->rx_buff[nta];
2393
2394	/* find next buf that can reuse a page */
2395	nta++;
2396	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398	/* copy page reference */
2399	*new_rxb = *old_rxb;
2400
2401	/* sync for use by the device */
2402	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403					 old_rxb->page_offset,
2404					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405}
2406
2407static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408					    u32 lstatus, struct sk_buff *skb)
2409{
2410	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411	struct page *page = rxb->page;
2412	bool first = false;
2413
2414	if (likely(!skb)) {
2415		void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418		if (unlikely(!skb)) {
2419			gfar_rx_alloc_err(rx_queue);
2420			return NULL;
2421		}
2422		skb_reserve(skb, RXBUF_ALIGNMENT);
2423		first = true;
2424	}
2425
2426	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430		/* reuse the free half of the page */
2431		gfar_reuse_rx_page(rx_queue, rxb);
2432	} else {
2433		/* page cannot be reused, unmap it */
2434		dma_unmap_page(rx_queue->dev, rxb->dma,
2435			       PAGE_SIZE, DMA_FROM_DEVICE);
2436	}
2437
2438	/* clear rxb content */
2439	rxb->page = NULL;
2440
2441	return skb;
2442}
2443
2444static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445{
2446	/* If valid headers were found, and valid sums
2447	 * were verified, then we tell the kernel that no
2448	 * checksumming is necessary.  Otherwise, it is [FIXME]
2449	 */
2450	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451	    (RXFCB_CIP | RXFCB_CTU))
2452		skb->ip_summed = CHECKSUM_UNNECESSARY;
2453	else
2454		skb_checksum_none_assert(skb);
2455}
2456
2457/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2459{
2460	struct gfar_private *priv = netdev_priv(ndev);
2461	struct rxfcb *fcb = NULL;
2462
2463	/* fcb is at the beginning if exists */
2464	fcb = (struct rxfcb *)skb->data;
2465
2466	/* Remove the FCB from the skb
2467	 * Remove the padded bytes, if there are any
2468	 */
2469	if (priv->uses_rxfcb)
2470		skb_pull(skb, GMAC_FCB_LEN);
2471
2472	/* Get receive timestamp from the skb */
2473	if (priv->hwts_rx_en) {
2474		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475		u64 *ns = (u64 *) skb->data;
2476
2477		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479	}
2480
2481	if (priv->padding)
2482		skb_pull(skb, priv->padding);
2483
2484	/* Trim off the FCS */
2485	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487	if (ndev->features & NETIF_F_RXCSUM)
2488		gfar_rx_checksum(skb, fcb);
2489
2490	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491	 * Even if vlan rx accel is disabled, on some chips
2492	 * RXFCB_VLN is pseudo randomly set.
2493	 */
2494	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497				       be16_to_cpu(fcb->vlctl));
2498}
2499
2500/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
2504static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505			      int rx_work_limit)
2506{
2507	struct net_device *ndev = rx_queue->ndev;
2508	struct gfar_private *priv = netdev_priv(ndev);
2509	struct rxbd8 *bdp;
2510	int i, howmany = 0;
2511	struct sk_buff *skb = rx_queue->skb;
2512	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513	unsigned int total_bytes = 0, total_pkts = 0;
2514
2515	/* Get the first full descriptor */
2516	i = rx_queue->next_to_clean;
2517
2518	while (rx_work_limit--) {
2519		u32 lstatus;
2520
2521		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523			cleaned_cnt = 0;
2524		}
2525
2526		bdp = &rx_queue->rx_bd_base[i];
2527		lstatus = be32_to_cpu(bdp->lstatus);
2528		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529			break;
2530
2531		/* lost RXBD_LAST descriptor due to overrun */
2532		if (skb &&
2533		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534			/* discard faulty buffer */
2535			dev_kfree_skb(skb);
2536			skb = NULL;
2537			rx_queue->stats.rx_dropped++;
2538
2539			/* can continue normally */
2540		}
2541
2542		/* order rx buffer descriptor reads */
2543		rmb();
2544
2545		/* fetch next to clean buffer from the ring */
2546		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547		if (unlikely(!skb))
2548			break;
2549
2550		cleaned_cnt++;
2551		howmany++;
2552
2553		if (unlikely(++i == rx_queue->rx_ring_size))
2554			i = 0;
2555
2556		rx_queue->next_to_clean = i;
2557
2558		/* fetch next buffer if not the last in frame */
2559		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560			continue;
2561
2562		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563			count_errors(lstatus, ndev);
2564
2565			/* discard faulty buffer */
2566			dev_kfree_skb(skb);
2567			skb = NULL;
2568			rx_queue->stats.rx_dropped++;
2569			continue;
2570		}
2571
2572		gfar_process_frame(ndev, skb);
2573
2574		/* Increment the number of packets */
2575		total_pkts++;
2576		total_bytes += skb->len;
2577
2578		skb_record_rx_queue(skb, rx_queue->qindex);
2579
2580		skb->protocol = eth_type_trans(skb, ndev);
2581
2582		/* Send the packet up the stack */
2583		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585		skb = NULL;
2586	}
2587
2588	/* Store incomplete frames for completion */
2589	rx_queue->skb = skb;
2590
2591	rx_queue->stats.rx_packets += total_pkts;
2592	rx_queue->stats.rx_bytes += total_bytes;
2593
2594	if (cleaned_cnt)
2595		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597	/* Update Last Free RxBD pointer for LFC */
2598	if (unlikely(priv->tx_actual_en)) {
2599		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601		gfar_write(rx_queue->rfbptr, bdp_dma);
2602	}
2603
2604	return howmany;
2605}
2606
2607static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608{
2609	struct gfar_priv_grp *gfargrp =
2610		container_of(napi, struct gfar_priv_grp, napi_rx);
2611	struct gfar __iomem *regs = gfargrp->regs;
2612	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613	int work_done = 0;
2614
2615	/* Clear IEVENT, so interrupts aren't called again
2616	 * because of the packets that have already arrived
2617	 */
2618	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2619
2620	work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622	if (work_done < budget) {
2623		u32 imask;
2624		napi_complete_done(napi, work_done);
2625		/* Clear the halt bit in RSTAT */
2626		gfar_write(&regs->rstat, gfargrp->rstat);
2627
2628		spin_lock_irq(&gfargrp->grplock);
2629		imask = gfar_read(&regs->imask);
2630		imask |= IMASK_RX_DEFAULT;
2631		gfar_write(&regs->imask, imask);
2632		spin_unlock_irq(&gfargrp->grplock);
2633	}
2634
2635	return work_done;
2636}
2637
2638static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639{
2640	struct gfar_priv_grp *gfargrp =
2641		container_of(napi, struct gfar_priv_grp, napi_tx);
2642	struct gfar __iomem *regs = gfargrp->regs;
2643	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644	u32 imask;
2645
2646	/* Clear IEVENT, so interrupts aren't called again
2647	 * because of the packets that have already arrived
2648	 */
2649	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2650
2651	/* run Tx cleanup to completion */
2652	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653		gfar_clean_tx_ring(tx_queue);
2654
2655	napi_complete(napi);
2656
2657	spin_lock_irq(&gfargrp->grplock);
2658	imask = gfar_read(&regs->imask);
2659	imask |= IMASK_TX_DEFAULT;
2660	gfar_write(&regs->imask, imask);
2661	spin_unlock_irq(&gfargrp->grplock);
2662
2663	return 0;
2664}
2665
2666/* GFAR error interrupt handler */
2667static irqreturn_t gfar_error(int irq, void *grp_id)
2668{
2669	struct gfar_priv_grp *gfargrp = grp_id;
2670	struct gfar __iomem *regs = gfargrp->regs;
2671	struct gfar_private *priv= gfargrp->priv;
2672	struct net_device *dev = priv->ndev;
2673
2674	/* Save ievent for future reference */
2675	u32 events = gfar_read(&regs->ievent);
2676
2677	/* Clear IEVENT */
2678	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2679
2680	/* Magic Packet is not an error. */
2681	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682	    (events & IEVENT_MAG))
2683		events &= ~IEVENT_MAG;
2684
2685	/* Hmm... */
2686	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687		netdev_dbg(dev,
2688			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689			   events, gfar_read(&regs->imask));
2690
2691	/* Update the error counters */
2692	if (events & IEVENT_TXE) {
2693		dev->stats.tx_errors++;
2694
2695		if (events & IEVENT_LC)
2696			dev->stats.tx_window_errors++;
2697		if (events & IEVENT_CRL)
2698			dev->stats.tx_aborted_errors++;
2699		if (events & IEVENT_XFUN) {
2700			netif_dbg(priv, tx_err, dev,
2701				  "TX FIFO underrun, packet dropped\n");
2702			dev->stats.tx_dropped++;
2703			atomic64_inc(&priv->extra_stats.tx_underrun);
2704
2705			schedule_work(&priv->reset_task);
2706		}
2707		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708	}
2709	if (events & IEVENT_MSRO) {
2710		struct rmon_mib __iomem *rmon = &regs->rmon;
2711		u32 car;
2712
2713		spin_lock(&priv->rmon_overflow.lock);
2714		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715		if (car) {
2716			priv->rmon_overflow.rdrp++;
2717			gfar_write(&rmon->car1, car);
2718		}
2719		spin_unlock(&priv->rmon_overflow.lock);
2720	}
2721	if (events & IEVENT_BSY) {
2722		dev->stats.rx_over_errors++;
2723		atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726			  gfar_read(&regs->rstat));
2727	}
2728	if (events & IEVENT_BABR) {
2729		dev->stats.rx_errors++;
2730		atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733	}
2734	if (events & IEVENT_EBERR) {
2735		atomic64_inc(&priv->extra_stats.eberr);
2736		netif_dbg(priv, rx_err, dev, "bus error\n");
2737	}
2738	if (events & IEVENT_RXC)
2739		netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741	if (events & IEVENT_BABT) {
2742		atomic64_inc(&priv->extra_stats.tx_babt);
2743		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2744	}
2745	return IRQ_HANDLED;
2746}
2747
2748/* The interrupt handler for devices with one interrupt */
2749static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750{
2751	struct gfar_priv_grp *gfargrp = grp_id;
2752
2753	/* Save ievent for future reference */
2754	u32 events = gfar_read(&gfargrp->regs->ievent);
2755
2756	/* Check for reception */
2757	if (events & IEVENT_RX_MASK)
2758		gfar_receive(irq, grp_id);
2759
2760	/* Check for transmit completion */
2761	if (events & IEVENT_TX_MASK)
2762		gfar_transmit(irq, grp_id);
2763
2764	/* Check for errors */
2765	if (events & IEVENT_ERR_MASK)
2766		gfar_error(irq, grp_id);
2767
2768	return IRQ_HANDLED;
2769}
2770
2771#ifdef CONFIG_NET_POLL_CONTROLLER
2772/* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2775 */
2776static void gfar_netpoll(struct net_device *dev)
2777{
2778	struct gfar_private *priv = netdev_priv(dev);
2779	int i;
2780
2781	/* If the device has multiple interrupts, run tx/rx */
2782	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783		for (i = 0; i < priv->num_grps; i++) {
2784			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786			disable_irq(gfar_irq(grp, TX)->irq);
2787			disable_irq(gfar_irq(grp, RX)->irq);
2788			disable_irq(gfar_irq(grp, ER)->irq);
2789			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790			enable_irq(gfar_irq(grp, ER)->irq);
2791			enable_irq(gfar_irq(grp, RX)->irq);
2792			enable_irq(gfar_irq(grp, TX)->irq);
2793		}
2794	} else {
2795		for (i = 0; i < priv->num_grps; i++) {
2796			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798			disable_irq(gfar_irq(grp, TX)->irq);
2799			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800			enable_irq(gfar_irq(grp, TX)->irq);
2801		}
2802	}
2803}
2804#endif
2805
2806static void free_grp_irqs(struct gfar_priv_grp *grp)
2807{
2808	free_irq(gfar_irq(grp, TX)->irq, grp);
2809	free_irq(gfar_irq(grp, RX)->irq, grp);
2810	free_irq(gfar_irq(grp, ER)->irq, grp);
2811}
2812
2813static int register_grp_irqs(struct gfar_priv_grp *grp)
2814{
2815	struct gfar_private *priv = grp->priv;
2816	struct net_device *dev = priv->ndev;
2817	int err;
2818
2819	/* If the device has multiple interrupts, register for
2820	 * them.  Otherwise, only register for the one
2821	 */
2822	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823		/* Install our interrupt handlers for Error,
2824		 * Transmit, and Receive
2825		 */
2826		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827				  gfar_irq(grp, ER)->name, grp);
2828		if (err < 0) {
2829			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830				  gfar_irq(grp, ER)->irq);
2831
2832			goto err_irq_fail;
2833		}
2834		enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837				  gfar_irq(grp, TX)->name, grp);
2838		if (err < 0) {
2839			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840				  gfar_irq(grp, TX)->irq);
2841			goto tx_irq_fail;
2842		}
2843		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844				  gfar_irq(grp, RX)->name, grp);
2845		if (err < 0) {
2846			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847				  gfar_irq(grp, RX)->irq);
2848			goto rx_irq_fail;
2849		}
2850		enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852	} else {
2853		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854				  gfar_irq(grp, TX)->name, grp);
2855		if (err < 0) {
2856			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857				  gfar_irq(grp, TX)->irq);
2858			goto err_irq_fail;
2859		}
2860		enable_irq_wake(gfar_irq(grp, TX)->irq);
2861	}
2862
2863	return 0;
2864
2865rx_irq_fail:
2866	free_irq(gfar_irq(grp, TX)->irq, grp);
2867tx_irq_fail:
2868	free_irq(gfar_irq(grp, ER)->irq, grp);
2869err_irq_fail:
2870	return err;
2871
2872}
2873
2874static void gfar_free_irq(struct gfar_private *priv)
2875{
2876	int i;
2877
2878	/* Free the IRQs */
2879	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880		for (i = 0; i < priv->num_grps; i++)
2881			free_grp_irqs(&priv->gfargrp[i]);
2882	} else {
2883		for (i = 0; i < priv->num_grps; i++)
2884			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885				 &priv->gfargrp[i]);
2886	}
2887}
2888
2889static int gfar_request_irq(struct gfar_private *priv)
2890{
2891	int err, i, j;
2892
2893	for (i = 0; i < priv->num_grps; i++) {
2894		err = register_grp_irqs(&priv->gfargrp[i]);
2895		if (err) {
2896			for (j = 0; j < i; j++)
2897				free_grp_irqs(&priv->gfargrp[j]);
2898			return err;
2899		}
2900	}
2901
2902	return 0;
2903}
2904
2905/* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2907 */
2908static int gfar_enet_open(struct net_device *dev)
2909{
2910	struct gfar_private *priv = netdev_priv(dev);
2911	int err;
2912
2913	err = init_phy(dev);
2914	if (err)
2915		return err;
2916
2917	err = gfar_request_irq(priv);
2918	if (err)
2919		return err;
2920
2921	err = startup_gfar(dev);
2922	if (err)
2923		return err;
2924
2925	return err;
2926}
2927
2928/* Stops the kernel queue, and halts the controller */
2929static int gfar_close(struct net_device *dev)
2930{
2931	struct gfar_private *priv = netdev_priv(dev);
2932
2933	cancel_work_sync(&priv->reset_task);
2934	stop_gfar(dev);
2935
2936	/* Disconnect from the PHY */
2937	phy_disconnect(dev->phydev);
2938
2939	gfar_free_irq(priv);
2940
2941	return 0;
2942}
2943
2944/* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
2947static void gfar_clear_exact_match(struct net_device *dev)
2948{
2949	int idx;
2950	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953		gfar_set_mac_for_addr(dev, idx, zero_arr);
2954}
2955
2956/* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to.  Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
2961static void gfar_set_multi(struct net_device *dev)
2962{
2963	struct netdev_hw_addr *ha;
2964	struct gfar_private *priv = netdev_priv(dev);
2965	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966	u32 tempval;
2967
2968	if (dev->flags & IFF_PROMISC) {
2969		/* Set RCTRL to PROM */
2970		tempval = gfar_read(&regs->rctrl);
2971		tempval |= RCTRL_PROM;
2972		gfar_write(&regs->rctrl, tempval);
2973	} else {
2974		/* Set RCTRL to not PROM */
2975		tempval = gfar_read(&regs->rctrl);
2976		tempval &= ~(RCTRL_PROM);
2977		gfar_write(&regs->rctrl, tempval);
2978	}
2979
2980	if (dev->flags & IFF_ALLMULTI) {
2981		/* Set the hash to rx all multicast frames */
2982		gfar_write(&regs->igaddr0, 0xffffffff);
2983		gfar_write(&regs->igaddr1, 0xffffffff);
2984		gfar_write(&regs->igaddr2, 0xffffffff);
2985		gfar_write(&regs->igaddr3, 0xffffffff);
2986		gfar_write(&regs->igaddr4, 0xffffffff);
2987		gfar_write(&regs->igaddr5, 0xffffffff);
2988		gfar_write(&regs->igaddr6, 0xffffffff);
2989		gfar_write(&regs->igaddr7, 0xffffffff);
2990		gfar_write(&regs->gaddr0, 0xffffffff);
2991		gfar_write(&regs->gaddr1, 0xffffffff);
2992		gfar_write(&regs->gaddr2, 0xffffffff);
2993		gfar_write(&regs->gaddr3, 0xffffffff);
2994		gfar_write(&regs->gaddr4, 0xffffffff);
2995		gfar_write(&regs->gaddr5, 0xffffffff);
2996		gfar_write(&regs->gaddr6, 0xffffffff);
2997		gfar_write(&regs->gaddr7, 0xffffffff);
2998	} else {
2999		int em_num;
3000		int idx;
3001
3002		/* zero out the hash */
3003		gfar_write(&regs->igaddr0, 0x0);
3004		gfar_write(&regs->igaddr1, 0x0);
3005		gfar_write(&regs->igaddr2, 0x0);
3006		gfar_write(&regs->igaddr3, 0x0);
3007		gfar_write(&regs->igaddr4, 0x0);
3008		gfar_write(&regs->igaddr5, 0x0);
3009		gfar_write(&regs->igaddr6, 0x0);
3010		gfar_write(&regs->igaddr7, 0x0);
3011		gfar_write(&regs->gaddr0, 0x0);
3012		gfar_write(&regs->gaddr1, 0x0);
3013		gfar_write(&regs->gaddr2, 0x0);
3014		gfar_write(&regs->gaddr3, 0x0);
3015		gfar_write(&regs->gaddr4, 0x0);
3016		gfar_write(&regs->gaddr5, 0x0);
3017		gfar_write(&regs->gaddr6, 0x0);
3018		gfar_write(&regs->gaddr7, 0x0);
3019
3020		/* If we have extended hash tables, we need to
3021		 * clear the exact match registers to prepare for
3022		 * setting them
3023		 */
3024		if (priv->extended_hash) {
3025			em_num = GFAR_EM_NUM + 1;
3026			gfar_clear_exact_match(dev);
3027			idx = 1;
3028		} else {
3029			idx = 0;
3030			em_num = 0;
3031		}
3032
3033		if (netdev_mc_empty(dev))
3034			return;
3035
3036		/* Parse the list, and set the appropriate bits */
3037		netdev_for_each_mc_addr(ha, dev) {
3038			if (idx < em_num) {
3039				gfar_set_mac_for_addr(dev, idx, ha->addr);
3040				idx++;
3041			} else
3042				gfar_set_hash_for_addr(dev, ha->addr);
3043		}
3044	}
3045}
3046
3047void gfar_mac_reset(struct gfar_private *priv)
3048{
3049	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050	u32 tempval;
3051
3052	/* Reset MAC layer */
3053	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3054
3055	/* We need to delay at least 3 TX clocks */
3056	udelay(3);
3057
3058	/* the soft reset bit is not self-resetting, so we need to
3059	 * clear it before resuming normal operation
3060	 */
3061	gfar_write(&regs->maccfg1, 0);
3062
3063	udelay(3);
3064
3065	gfar_rx_offload_en(priv);
3066
3067	/* Initialize the max receive frame/buffer lengths */
3068	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3070
3071	/* Initialize the Minimum Frame Length Register */
3072	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3073
3074	/* Initialize MACCFG2. */
3075	tempval = MACCFG2_INIT_SETTINGS;
3076
3077	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3079	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080	 */
3081	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084	gfar_write(&regs->maccfg2, tempval);
3085
3086	/* Clear mac addr hash registers */
3087	gfar_write(&regs->igaddr0, 0);
3088	gfar_write(&regs->igaddr1, 0);
3089	gfar_write(&regs->igaddr2, 0);
3090	gfar_write(&regs->igaddr3, 0);
3091	gfar_write(&regs->igaddr4, 0);
3092	gfar_write(&regs->igaddr5, 0);
3093	gfar_write(&regs->igaddr6, 0);
3094	gfar_write(&regs->igaddr7, 0);
3095
3096	gfar_write(&regs->gaddr0, 0);
3097	gfar_write(&regs->gaddr1, 0);
3098	gfar_write(&regs->gaddr2, 0);
3099	gfar_write(&regs->gaddr3, 0);
3100	gfar_write(&regs->gaddr4, 0);
3101	gfar_write(&regs->gaddr5, 0);
3102	gfar_write(&regs->gaddr6, 0);
3103	gfar_write(&regs->gaddr7, 0);
3104
3105	if (priv->extended_hash)
3106		gfar_clear_exact_match(priv->ndev);
3107
3108	gfar_mac_rx_config(priv);
3109
3110	gfar_mac_tx_config(priv);
3111
3112	gfar_set_mac_address(priv->ndev);
3113
3114	gfar_set_multi(priv->ndev);
3115
3116	/* clear ievent and imask before configuring coalescing */
3117	gfar_ints_disable(priv);
3118
3119	/* Configure the coalescing support */
3120	gfar_configure_coalescing_all(priv);
3121}
3122
3123static void gfar_hw_init(struct gfar_private *priv)
3124{
3125	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126	u32 attrs;
3127
3128	/* Stop the DMA engine now, in case it was running before
3129	 * (The firmware could have used it, and left it running).
3130	 */
3131	gfar_halt(priv);
3132
3133	gfar_mac_reset(priv);
3134
3135	/* Zero out the rmon mib registers if it has them */
3136	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139		/* Mask off the CAM interrupts */
3140		gfar_write(&regs->rmon.cam1, 0xffffffff);
3141		gfar_write(&regs->rmon.cam2, 0xffffffff);
3142		/* Clear the CAR registers (w1c style) */
3143		gfar_write(&regs->rmon.car1, 0xffffffff);
3144		gfar_write(&regs->rmon.car2, 0xffffffff);
3145	}
3146
3147	/* Initialize ECNTRL */
3148	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150	/* Set the extraction length and index */
3151	attrs = ATTRELI_EL(priv->rx_stash_size) |
3152		ATTRELI_EI(priv->rx_stash_index);
3153
3154	gfar_write(&regs->attreli, attrs);
3155
3156	/* Start with defaults, and add stashing
3157	 * depending on driver parameters
3158	 */
3159	attrs = ATTR_INIT_SETTINGS;
3160
3161	if (priv->bd_stash_en)
3162		attrs |= ATTR_BDSTASH;
3163
3164	if (priv->rx_stash_size != 0)
3165		attrs |= ATTR_BUFSTASH;
3166
3167	gfar_write(&regs->attr, attrs);
3168
3169	/* FIFO configs */
3170	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174	/* Program the interrupt steering regs, only for MG devices */
3175	if (priv->num_grps > 1)
3176		gfar_write_isrg(priv);
3177}
3178
3179static const struct net_device_ops gfar_netdev_ops = {
3180	.ndo_open = gfar_enet_open,
3181	.ndo_start_xmit = gfar_start_xmit,
3182	.ndo_stop = gfar_close,
3183	.ndo_change_mtu = gfar_change_mtu,
3184	.ndo_set_features = gfar_set_features,
3185	.ndo_set_rx_mode = gfar_set_multi,
3186	.ndo_tx_timeout = gfar_timeout,
3187	.ndo_do_ioctl = gfar_ioctl,
3188	.ndo_get_stats64 = gfar_get_stats64,
3189	.ndo_change_carrier = fixed_phy_change_carrier,
3190	.ndo_set_mac_address = gfar_set_mac_addr,
3191	.ndo_validate_addr = eth_validate_addr,
3192#ifdef CONFIG_NET_POLL_CONTROLLER
3193	.ndo_poll_controller = gfar_netpoll,
3194#endif
3195};
3196
3197/* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
3200static int gfar_probe(struct platform_device *ofdev)
3201{
3202	struct device_node *np = ofdev->dev.of_node;
3203	struct net_device *dev = NULL;
3204	struct gfar_private *priv = NULL;
3205	int err = 0, i;
3206
3207	err = gfar_of_init(ofdev, &dev);
3208
3209	if (err)
3210		return err;
3211
3212	priv = netdev_priv(dev);
3213	priv->ndev = dev;
3214	priv->ofdev = ofdev;
3215	priv->dev = &ofdev->dev;
3216	SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218	INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220	platform_set_drvdata(ofdev, priv);
3221
3222	gfar_detect_errata(priv);
3223
3224	/* Set the dev->base_addr to the gfar reg region */
3225	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227	/* Fill in the dev structure */
3228	dev->watchdog_timeo = TX_TIMEOUT;
3229	/* MTU range: 50 - 9586 */
3230	dev->mtu = 1500;
3231	dev->min_mtu = 50;
3232	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233	dev->netdev_ops = &gfar_netdev_ops;
3234	dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236	/* Register for napi ...We are registering NAPI for each grp */
3237	for (i = 0; i < priv->num_grps; i++) {
3238		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239			       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3240		netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3241				  gfar_poll_tx_sq, 2);
3242	}
3243
3244	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246				   NETIF_F_RXCSUM;
3247		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249	}
3250
3251	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253				    NETIF_F_HW_VLAN_CTAG_RX;
3254		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255	}
3256
3257	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3258
3259	gfar_init_addr_hash_table(priv);
3260
3261	/* Insert receive time stamps into padding alignment bytes, and
3262	 * plus 2 bytes padding to ensure the cpu alignment.
3263	 */
3264	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265		priv->padding = 8 + DEFAULT_PADDING;
3266
3267	if (dev->features & NETIF_F_IP_CSUM ||
3268	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3270
3271	/* Initializing some of the rx/tx queue level parameters */
3272	for (i = 0; i < priv->num_tx_queues; i++) {
3273		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277	}
3278
3279	for (i = 0; i < priv->num_rx_queues; i++) {
3280		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283	}
3284
3285	/* Always enable rx filer if available */
3286	priv->rx_filer_enable =
3287	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288	/* Enable most messages by default */
3289	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290	/* use pritority h/w tx queue scheduling for single queue devices */
3291	if (priv->num_tx_queues == 1)
3292		priv->prio_sched_en = 1;
3293
3294	set_bit(GFAR_DOWN, &priv->state);
3295
3296	gfar_hw_init(priv);
3297
3298	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301		spin_lock_init(&priv->rmon_overflow.lock);
3302		priv->rmon_overflow.imask = IMASK_MSRO;
3303		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304	}
3305
3306	/* Carrier starts down, phylib will bring it up */
3307	netif_carrier_off(dev);
3308
3309	err = register_netdev(dev);
3310
3311	if (err) {
3312		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313		goto register_fail;
3314	}
3315
3316	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317		priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320	    priv->rx_filer_enable)
3321		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325	/* fill out IRQ number and name fields */
3326	for (i = 0; i < priv->num_grps; i++) {
3327		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330				dev->name, "_g", '0' + i, "_tx");
3331			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332				dev->name, "_g", '0' + i, "_rx");
3333			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334				dev->name, "_g", '0' + i, "_er");
3335		} else
3336			strcpy(gfar_irq(grp, TX)->name, dev->name);
3337	}
3338
3339	/* Initialize the filer table */
3340	gfar_init_filer_table(priv);
3341
3342	/* Print out the device info */
3343	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345	/* Even more device info helps when determining which kernel
3346	 * provided which set of benchmarks.
3347	 */
3348	netdev_info(dev, "Running with NAPI enabled\n");
3349	for (i = 0; i < priv->num_rx_queues; i++)
3350		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351			    i, priv->rx_queue[i]->rx_ring_size);
3352	for (i = 0; i < priv->num_tx_queues; i++)
3353		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354			    i, priv->tx_queue[i]->tx_ring_size);
3355
3356	return 0;
3357
3358register_fail:
3359	if (of_phy_is_fixed_link(np))
3360		of_phy_deregister_fixed_link(np);
3361	unmap_group_regs(priv);
3362	gfar_free_rx_queues(priv);
3363	gfar_free_tx_queues(priv);
3364	of_node_put(priv->phy_node);
3365	of_node_put(priv->tbi_node);
3366	free_gfar_dev(priv);
3367	return err;
3368}
3369
3370static int gfar_remove(struct platform_device *ofdev)
3371{
3372	struct gfar_private *priv = platform_get_drvdata(ofdev);
3373	struct device_node *np = ofdev->dev.of_node;
3374
3375	of_node_put(priv->phy_node);
3376	of_node_put(priv->tbi_node);
3377
3378	unregister_netdev(priv->ndev);
3379
3380	if (of_phy_is_fixed_link(np))
3381		of_phy_deregister_fixed_link(np);
3382
3383	unmap_group_regs(priv);
3384	gfar_free_rx_queues(priv);
3385	gfar_free_tx_queues(priv);
3386	free_gfar_dev(priv);
3387
3388	return 0;
3389}
3390
3391#ifdef CONFIG_PM
3392
3393static void __gfar_filer_disable(struct gfar_private *priv)
3394{
3395	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3396	u32 temp;
3397
3398	temp = gfar_read(&regs->rctrl);
3399	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3400	gfar_write(&regs->rctrl, temp);
3401}
3402
3403static void __gfar_filer_enable(struct gfar_private *priv)
3404{
3405	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3406	u32 temp;
3407
3408	temp = gfar_read(&regs->rctrl);
3409	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3410	gfar_write(&regs->rctrl, temp);
3411}
3412
3413/* Filer rules implementing wol capabilities */
3414static void gfar_filer_config_wol(struct gfar_private *priv)
3415{
3416	unsigned int i;
3417	u32 rqfcr;
3418
3419	__gfar_filer_disable(priv);
3420
3421	/* clear the filer table, reject any packet by default */
3422	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3423	for (i = 0; i <= MAX_FILER_IDX; i++)
3424		gfar_write_filer(priv, i, rqfcr, 0);
3425
3426	i = 0;
3427	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3428		/* unicast packet, accept it */
3429		struct net_device *ndev = priv->ndev;
3430		/* get the default rx queue index */
3431		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3432		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3433				    (ndev->dev_addr[1] << 8) |
3434				     ndev->dev_addr[2];
3435
3436		rqfcr = (qindex << 10) | RQFCR_AND |
3437			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3438
3439		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3440
3441		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3442				(ndev->dev_addr[4] << 8) |
3443				 ndev->dev_addr[5];
3444		rqfcr = (qindex << 10) | RQFCR_GPI |
3445			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3446		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3447	}
3448
3449	__gfar_filer_enable(priv);
3450}
3451
3452static void gfar_filer_restore_table(struct gfar_private *priv)
3453{
3454	u32 rqfcr, rqfpr;
3455	unsigned int i;
3456
3457	__gfar_filer_disable(priv);
3458
3459	for (i = 0; i <= MAX_FILER_IDX; i++) {
3460		rqfcr = priv->ftp_rqfcr[i];
3461		rqfpr = priv->ftp_rqfpr[i];
3462		gfar_write_filer(priv, i, rqfcr, rqfpr);
3463	}
3464
3465	__gfar_filer_enable(priv);
3466}
3467
3468/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3469static void gfar_start_wol_filer(struct gfar_private *priv)
3470{
3471	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3472	u32 tempval;
3473	int i = 0;
3474
3475	/* Enable Rx hw queues */
3476	gfar_write(&regs->rqueue, priv->rqueue);
3477
3478	/* Initialize DMACTRL to have WWR and WOP */
3479	tempval = gfar_read(&regs->dmactrl);
3480	tempval |= DMACTRL_INIT_SETTINGS;
3481	gfar_write(&regs->dmactrl, tempval);
3482
3483	/* Make sure we aren't stopped */
3484	tempval = gfar_read(&regs->dmactrl);
3485	tempval &= ~DMACTRL_GRS;
3486	gfar_write(&regs->dmactrl, tempval);
3487
3488	for (i = 0; i < priv->num_grps; i++) {
3489		regs = priv->gfargrp[i].regs;
3490		/* Clear RHLT, so that the DMA starts polling now */
3491		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3492		/* enable the Filer General Purpose Interrupt */
3493		gfar_write(&regs->imask, IMASK_FGPI);
3494	}
3495
3496	/* Enable Rx DMA */
3497	tempval = gfar_read(&regs->maccfg1);
3498	tempval |= MACCFG1_RX_EN;
3499	gfar_write(&regs->maccfg1, tempval);
3500}
3501
3502static int gfar_suspend(struct device *dev)
3503{
3504	struct gfar_private *priv = dev_get_drvdata(dev);
3505	struct net_device *ndev = priv->ndev;
3506	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3507	u32 tempval;
3508	u16 wol = priv->wol_opts;
3509
3510	if (!netif_running(ndev))
3511		return 0;
3512
3513	disable_napi(priv);
3514	netif_tx_lock(ndev);
3515	netif_device_detach(ndev);
3516	netif_tx_unlock(ndev);
3517
3518	gfar_halt(priv);
3519
3520	if (wol & GFAR_WOL_MAGIC) {
3521		/* Enable interrupt on Magic Packet */
3522		gfar_write(&regs->imask, IMASK_MAG);
3523
3524		/* Enable Magic Packet mode */
3525		tempval = gfar_read(&regs->maccfg2);
3526		tempval |= MACCFG2_MPEN;
3527		gfar_write(&regs->maccfg2, tempval);
3528
3529		/* re-enable the Rx block */
3530		tempval = gfar_read(&regs->maccfg1);
3531		tempval |= MACCFG1_RX_EN;
3532		gfar_write(&regs->maccfg1, tempval);
3533
3534	} else if (wol & GFAR_WOL_FILER_UCAST) {
3535		gfar_filer_config_wol(priv);
3536		gfar_start_wol_filer(priv);
3537
3538	} else {
3539		phy_stop(ndev->phydev);
3540	}
3541
3542	return 0;
3543}
3544
3545static int gfar_resume(struct device *dev)
3546{
3547	struct gfar_private *priv = dev_get_drvdata(dev);
3548	struct net_device *ndev = priv->ndev;
3549	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3550	u32 tempval;
3551	u16 wol = priv->wol_opts;
3552
3553	if (!netif_running(ndev))
3554		return 0;
3555
3556	if (wol & GFAR_WOL_MAGIC) {
3557		/* Disable Magic Packet mode */
3558		tempval = gfar_read(&regs->maccfg2);
3559		tempval &= ~MACCFG2_MPEN;
3560		gfar_write(&regs->maccfg2, tempval);
3561
3562	} else if (wol & GFAR_WOL_FILER_UCAST) {
3563		/* need to stop rx only, tx is already down */
3564		gfar_halt(priv);
3565		gfar_filer_restore_table(priv);
3566
3567	} else {
3568		phy_start(ndev->phydev);
3569	}
3570
3571	gfar_start(priv);
3572
3573	netif_device_attach(ndev);
3574	enable_napi(priv);
3575
3576	return 0;
3577}
3578
3579static int gfar_restore(struct device *dev)
3580{
3581	struct gfar_private *priv = dev_get_drvdata(dev);
3582	struct net_device *ndev = priv->ndev;
3583
3584	if (!netif_running(ndev)) {
3585		netif_device_attach(ndev);
3586
3587		return 0;
3588	}
3589
3590	gfar_init_bds(ndev);
3591
3592	gfar_mac_reset(priv);
3593
3594	gfar_init_tx_rx_base(priv);
3595
3596	gfar_start(priv);
3597
3598	priv->oldlink = 0;
3599	priv->oldspeed = 0;
3600	priv->oldduplex = -1;
3601
3602	if (ndev->phydev)
3603		phy_start(ndev->phydev);
3604
3605	netif_device_attach(ndev);
3606	enable_napi(priv);
3607
3608	return 0;
3609}
3610
3611static const struct dev_pm_ops gfar_pm_ops = {
3612	.suspend = gfar_suspend,
3613	.resume = gfar_resume,
3614	.freeze = gfar_suspend,
3615	.thaw = gfar_resume,
3616	.restore = gfar_restore,
3617};
3618
3619#define GFAR_PM_OPS (&gfar_pm_ops)
3620
3621#else
3622
3623#define GFAR_PM_OPS NULL
3624
3625#endif
3626
3627static const struct of_device_id gfar_match[] =
3628{
3629	{
3630		.type = "network",
3631		.compatible = "gianfar",
3632	},
3633	{
3634		.compatible = "fsl,etsec2",
3635	},
3636	{},
3637};
3638MODULE_DEVICE_TABLE(of, gfar_match);
3639
3640/* Structure for a device driver */
3641static struct platform_driver gfar_driver = {
3642	.driver = {
3643		.name = "fsl-gianfar",
3644		.pm = GFAR_PM_OPS,
3645		.of_match_table = gfar_match,
3646	},
3647	.probe = gfar_probe,
3648	.remove = gfar_remove,
3649};
3650
3651module_platform_driver(gfar_driver);