Loading...
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/slab.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "bus.h"
22#include "mmc_ops.h"
23#include "sd_ops.h"
24
25static const unsigned int tran_exp[] = {
26 10000, 100000, 1000000, 10000000,
27 0, 0, 0, 0
28};
29
30static const unsigned char tran_mant[] = {
31 0, 10, 12, 13, 15, 20, 25, 30,
32 35, 40, 45, 50, 55, 60, 70, 80,
33};
34
35static const unsigned int tacc_exp[] = {
36 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
37};
38
39static const unsigned int tacc_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42};
43
44#define UNSTUFF_BITS(resp,start,size) \
45 ({ \
46 const int __size = size; \
47 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
48 const int __off = 3 - ((start) / 32); \
49 const int __shft = (start) & 31; \
50 u32 __res; \
51 \
52 __res = resp[__off] >> __shft; \
53 if (__size + __shft > 32) \
54 __res |= resp[__off-1] << ((32 - __shft) % 32); \
55 __res & __mask; \
56 })
57
58/*
59 * Given the decoded CSD structure, decode the raw CID to our CID structure.
60 */
61static int mmc_decode_cid(struct mmc_card *card)
62{
63 u32 *resp = card->raw_cid;
64
65 /*
66 * The selection of the format here is based upon published
67 * specs from sandisk and from what people have reported.
68 */
69 switch (card->csd.mmca_vsn) {
70 case 0: /* MMC v1.0 - v1.2 */
71 case 1: /* MMC v1.4 */
72 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
73 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
74 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
75 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
76 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
77 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
78 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
79 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
80 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
81 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
82 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
83 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
84 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
85 break;
86
87 case 2: /* MMC v2.0 - v2.2 */
88 case 3: /* MMC v3.1 - v3.3 */
89 case 4: /* MMC v4 */
90 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
91 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
92 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
93 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
94 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
95 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
96 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
97 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
98 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
99 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
101 break;
102
103 default:
104 printk(KERN_ERR "%s: card has unknown MMCA version %d\n",
105 mmc_hostname(card->host), card->csd.mmca_vsn);
106 return -EINVAL;
107 }
108
109 return 0;
110}
111
112static void mmc_set_erase_size(struct mmc_card *card)
113{
114 if (card->ext_csd.erase_group_def & 1)
115 card->erase_size = card->ext_csd.hc_erase_size;
116 else
117 card->erase_size = card->csd.erase_size;
118
119 mmc_init_erase(card);
120}
121
122/*
123 * Given a 128-bit response, decode to our card CSD structure.
124 */
125static int mmc_decode_csd(struct mmc_card *card)
126{
127 struct mmc_csd *csd = &card->csd;
128 unsigned int e, m, a, b;
129 u32 *resp = card->raw_csd;
130
131 /*
132 * We only understand CSD structure v1.1 and v1.2.
133 * v1.2 has extra information in bits 15, 11 and 10.
134 * We also support eMMC v4.4 & v4.41.
135 */
136 csd->structure = UNSTUFF_BITS(resp, 126, 2);
137 if (csd->structure == 0) {
138 printk(KERN_ERR "%s: unrecognised CSD structure version %d\n",
139 mmc_hostname(card->host), csd->structure);
140 return -EINVAL;
141 }
142
143 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
144 m = UNSTUFF_BITS(resp, 115, 4);
145 e = UNSTUFF_BITS(resp, 112, 3);
146 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
147 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
148
149 m = UNSTUFF_BITS(resp, 99, 4);
150 e = UNSTUFF_BITS(resp, 96, 3);
151 csd->max_dtr = tran_exp[e] * tran_mant[m];
152 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
153
154 e = UNSTUFF_BITS(resp, 47, 3);
155 m = UNSTUFF_BITS(resp, 62, 12);
156 csd->capacity = (1 + m) << (e + 2);
157
158 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
159 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
160 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
161 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
162 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
163 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
164 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
165
166 if (csd->write_blkbits >= 9) {
167 a = UNSTUFF_BITS(resp, 42, 5);
168 b = UNSTUFF_BITS(resp, 37, 5);
169 csd->erase_size = (a + 1) * (b + 1);
170 csd->erase_size <<= csd->write_blkbits - 9;
171 }
172
173 return 0;
174}
175
176/*
177 * Read extended CSD.
178 */
179static int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
180{
181 int err;
182 u8 *ext_csd;
183
184 BUG_ON(!card);
185 BUG_ON(!new_ext_csd);
186
187 *new_ext_csd = NULL;
188
189 if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
190 return 0;
191
192 /*
193 * As the ext_csd is so large and mostly unused, we don't store the
194 * raw block in mmc_card.
195 */
196 ext_csd = kmalloc(512, GFP_KERNEL);
197 if (!ext_csd) {
198 printk(KERN_ERR "%s: could not allocate a buffer to "
199 "receive the ext_csd.\n", mmc_hostname(card->host));
200 return -ENOMEM;
201 }
202
203 err = mmc_send_ext_csd(card, ext_csd);
204 if (err) {
205 kfree(ext_csd);
206 *new_ext_csd = NULL;
207
208 /* If the host or the card can't do the switch,
209 * fail more gracefully. */
210 if ((err != -EINVAL)
211 && (err != -ENOSYS)
212 && (err != -EFAULT))
213 return err;
214
215 /*
216 * High capacity cards should have this "magic" size
217 * stored in their CSD.
218 */
219 if (card->csd.capacity == (4096 * 512)) {
220 printk(KERN_ERR "%s: unable to read EXT_CSD "
221 "on a possible high capacity card. "
222 "Card will be ignored.\n",
223 mmc_hostname(card->host));
224 } else {
225 printk(KERN_WARNING "%s: unable to read "
226 "EXT_CSD, performance might "
227 "suffer.\n",
228 mmc_hostname(card->host));
229 err = 0;
230 }
231 } else
232 *new_ext_csd = ext_csd;
233
234 return err;
235}
236
237/*
238 * Decode extended CSD.
239 */
240static int mmc_read_ext_csd(struct mmc_card *card, u8 *ext_csd)
241{
242 int err = 0;
243
244 BUG_ON(!card);
245
246 if (!ext_csd)
247 return 0;
248
249 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
250 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
251 if (card->csd.structure == 3) {
252 if (card->ext_csd.raw_ext_csd_structure > 2) {
253 printk(KERN_ERR "%s: unrecognised EXT_CSD structure "
254 "version %d\n", mmc_hostname(card->host),
255 card->ext_csd.raw_ext_csd_structure);
256 err = -EINVAL;
257 goto out;
258 }
259 }
260
261 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
262 if (card->ext_csd.rev > 6) {
263 printk(KERN_ERR "%s: unrecognised EXT_CSD revision %d\n",
264 mmc_hostname(card->host), card->ext_csd.rev);
265 err = -EINVAL;
266 goto out;
267 }
268
269 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
270 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
271 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
272 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
273 if (card->ext_csd.rev >= 2) {
274 card->ext_csd.sectors =
275 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
276 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
277 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
278 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
279
280 /* Cards with density > 2GiB are sector addressed */
281 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
282 mmc_card_set_blockaddr(card);
283 }
284 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
285 switch (ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_MASK) {
286 case EXT_CSD_CARD_TYPE_DDR_52 | EXT_CSD_CARD_TYPE_52 |
287 EXT_CSD_CARD_TYPE_26:
288 card->ext_csd.hs_max_dtr = 52000000;
289 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_52;
290 break;
291 case EXT_CSD_CARD_TYPE_DDR_1_2V | EXT_CSD_CARD_TYPE_52 |
292 EXT_CSD_CARD_TYPE_26:
293 card->ext_csd.hs_max_dtr = 52000000;
294 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_2V;
295 break;
296 case EXT_CSD_CARD_TYPE_DDR_1_8V | EXT_CSD_CARD_TYPE_52 |
297 EXT_CSD_CARD_TYPE_26:
298 card->ext_csd.hs_max_dtr = 52000000;
299 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_8V;
300 break;
301 case EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26:
302 card->ext_csd.hs_max_dtr = 52000000;
303 break;
304 case EXT_CSD_CARD_TYPE_26:
305 card->ext_csd.hs_max_dtr = 26000000;
306 break;
307 default:
308 /* MMC v4 spec says this cannot happen */
309 printk(KERN_WARNING "%s: card is mmc v4 but doesn't "
310 "support any high-speed modes.\n",
311 mmc_hostname(card->host));
312 }
313
314 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
315 card->ext_csd.raw_erase_timeout_mult =
316 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
317 card->ext_csd.raw_hc_erase_grp_size =
318 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
319 if (card->ext_csd.rev >= 3) {
320 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
321 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
322
323 /* EXT_CSD value is in units of 10ms, but we store in ms */
324 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
325
326 /* Sleep / awake timeout in 100ns units */
327 if (sa_shift > 0 && sa_shift <= 0x17)
328 card->ext_csd.sa_timeout =
329 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
330 card->ext_csd.erase_group_def =
331 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
332 card->ext_csd.hc_erase_timeout = 300 *
333 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
334 card->ext_csd.hc_erase_size =
335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
336
337 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
338
339 /*
340 * There are two boot regions of equal size, defined in
341 * multiples of 128K.
342 */
343 card->ext_csd.boot_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
344 }
345
346 card->ext_csd.raw_hc_erase_gap_size =
347 ext_csd[EXT_CSD_PARTITION_ATTRIBUTE];
348 card->ext_csd.raw_sec_trim_mult =
349 ext_csd[EXT_CSD_SEC_TRIM_MULT];
350 card->ext_csd.raw_sec_erase_mult =
351 ext_csd[EXT_CSD_SEC_ERASE_MULT];
352 card->ext_csd.raw_sec_feature_support =
353 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
354 card->ext_csd.raw_trim_mult =
355 ext_csd[EXT_CSD_TRIM_MULT];
356 if (card->ext_csd.rev >= 4) {
357 /*
358 * Enhanced area feature support -- check whether the eMMC
359 * card has the Enhanced area enabled. If so, export enhanced
360 * area offset and size to user by adding sysfs interface.
361 */
362 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
363 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
364 u8 hc_erase_grp_sz =
365 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
366 u8 hc_wp_grp_sz =
367 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
368
369 card->ext_csd.enhanced_area_en = 1;
370 /*
371 * calculate the enhanced data area offset, in bytes
372 */
373 card->ext_csd.enhanced_area_offset =
374 (ext_csd[139] << 24) + (ext_csd[138] << 16) +
375 (ext_csd[137] << 8) + ext_csd[136];
376 if (mmc_card_blockaddr(card))
377 card->ext_csd.enhanced_area_offset <<= 9;
378 /*
379 * calculate the enhanced data area size, in kilobytes
380 */
381 card->ext_csd.enhanced_area_size =
382 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
383 ext_csd[140];
384 card->ext_csd.enhanced_area_size *=
385 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
386 card->ext_csd.enhanced_area_size <<= 9;
387 } else {
388 /*
389 * If the enhanced area is not enabled, disable these
390 * device attributes.
391 */
392 card->ext_csd.enhanced_area_offset = -EINVAL;
393 card->ext_csd.enhanced_area_size = -EINVAL;
394 }
395 card->ext_csd.sec_trim_mult =
396 ext_csd[EXT_CSD_SEC_TRIM_MULT];
397 card->ext_csd.sec_erase_mult =
398 ext_csd[EXT_CSD_SEC_ERASE_MULT];
399 card->ext_csd.sec_feature_support =
400 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
401 card->ext_csd.trim_timeout = 300 *
402 ext_csd[EXT_CSD_TRIM_MULT];
403 }
404
405 if (card->ext_csd.rev >= 5)
406 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
407
408 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
409 card->erased_byte = 0xFF;
410 else
411 card->erased_byte = 0x0;
412
413out:
414 return err;
415}
416
417static inline void mmc_free_ext_csd(u8 *ext_csd)
418{
419 kfree(ext_csd);
420}
421
422
423static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
424{
425 u8 *bw_ext_csd;
426 int err;
427
428 if (bus_width == MMC_BUS_WIDTH_1)
429 return 0;
430
431 err = mmc_get_ext_csd(card, &bw_ext_csd);
432
433 if (err || bw_ext_csd == NULL) {
434 if (bus_width != MMC_BUS_WIDTH_1)
435 err = -EINVAL;
436 goto out;
437 }
438
439 if (bus_width == MMC_BUS_WIDTH_1)
440 goto out;
441
442 /* only compare read only fields */
443 err = (!(card->ext_csd.raw_partition_support ==
444 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
445 (card->ext_csd.raw_erased_mem_count ==
446 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
447 (card->ext_csd.rev ==
448 bw_ext_csd[EXT_CSD_REV]) &&
449 (card->ext_csd.raw_ext_csd_structure ==
450 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
451 (card->ext_csd.raw_card_type ==
452 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
453 (card->ext_csd.raw_s_a_timeout ==
454 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
455 (card->ext_csd.raw_hc_erase_gap_size ==
456 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
457 (card->ext_csd.raw_erase_timeout_mult ==
458 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
459 (card->ext_csd.raw_hc_erase_grp_size ==
460 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
461 (card->ext_csd.raw_sec_trim_mult ==
462 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
463 (card->ext_csd.raw_sec_erase_mult ==
464 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
465 (card->ext_csd.raw_sec_feature_support ==
466 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
467 (card->ext_csd.raw_trim_mult ==
468 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
469 (card->ext_csd.raw_sectors[0] ==
470 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
471 (card->ext_csd.raw_sectors[1] ==
472 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
473 (card->ext_csd.raw_sectors[2] ==
474 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
475 (card->ext_csd.raw_sectors[3] ==
476 bw_ext_csd[EXT_CSD_SEC_CNT + 3]));
477 if (err)
478 err = -EINVAL;
479
480out:
481 mmc_free_ext_csd(bw_ext_csd);
482 return err;
483}
484
485MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
486 card->raw_cid[2], card->raw_cid[3]);
487MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
488 card->raw_csd[2], card->raw_csd[3]);
489MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
490MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
491MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
492MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
493MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
494MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
495MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
496MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
497MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
498MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
499 card->ext_csd.enhanced_area_offset);
500MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
501
502static struct attribute *mmc_std_attrs[] = {
503 &dev_attr_cid.attr,
504 &dev_attr_csd.attr,
505 &dev_attr_date.attr,
506 &dev_attr_erase_size.attr,
507 &dev_attr_preferred_erase_size.attr,
508 &dev_attr_fwrev.attr,
509 &dev_attr_hwrev.attr,
510 &dev_attr_manfid.attr,
511 &dev_attr_name.attr,
512 &dev_attr_oemid.attr,
513 &dev_attr_serial.attr,
514 &dev_attr_enhanced_area_offset.attr,
515 &dev_attr_enhanced_area_size.attr,
516 NULL,
517};
518
519static struct attribute_group mmc_std_attr_group = {
520 .attrs = mmc_std_attrs,
521};
522
523static const struct attribute_group *mmc_attr_groups[] = {
524 &mmc_std_attr_group,
525 NULL,
526};
527
528static struct device_type mmc_type = {
529 .groups = mmc_attr_groups,
530};
531
532/*
533 * Handle the detection and initialisation of a card.
534 *
535 * In the case of a resume, "oldcard" will contain the card
536 * we're trying to reinitialise.
537 */
538static int mmc_init_card(struct mmc_host *host, u32 ocr,
539 struct mmc_card *oldcard)
540{
541 struct mmc_card *card;
542 int err, ddr = 0;
543 u32 cid[4];
544 unsigned int max_dtr;
545 u32 rocr;
546 u8 *ext_csd = NULL;
547
548 BUG_ON(!host);
549 WARN_ON(!host->claimed);
550
551 /*
552 * Since we're changing the OCR value, we seem to
553 * need to tell some cards to go back to the idle
554 * state. We wait 1ms to give cards time to
555 * respond.
556 */
557 mmc_go_idle(host);
558
559 /* The extra bit indicates that we support high capacity */
560 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
561 if (err)
562 goto err;
563
564 /*
565 * For SPI, enable CRC as appropriate.
566 */
567 if (mmc_host_is_spi(host)) {
568 err = mmc_spi_set_crc(host, use_spi_crc);
569 if (err)
570 goto err;
571 }
572
573 /*
574 * Fetch CID from card.
575 */
576 if (mmc_host_is_spi(host))
577 err = mmc_send_cid(host, cid);
578 else
579 err = mmc_all_send_cid(host, cid);
580 if (err)
581 goto err;
582
583 if (oldcard) {
584 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
585 err = -ENOENT;
586 goto err;
587 }
588
589 card = oldcard;
590 } else {
591 /*
592 * Allocate card structure.
593 */
594 card = mmc_alloc_card(host, &mmc_type);
595 if (IS_ERR(card)) {
596 err = PTR_ERR(card);
597 goto err;
598 }
599
600 card->type = MMC_TYPE_MMC;
601 card->rca = 1;
602 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
603 }
604
605 /*
606 * For native busses: set card RCA and quit open drain mode.
607 */
608 if (!mmc_host_is_spi(host)) {
609 err = mmc_set_relative_addr(card);
610 if (err)
611 goto free_card;
612
613 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
614 }
615
616 if (!oldcard) {
617 /*
618 * Fetch CSD from card.
619 */
620 err = mmc_send_csd(card, card->raw_csd);
621 if (err)
622 goto free_card;
623
624 err = mmc_decode_csd(card);
625 if (err)
626 goto free_card;
627 err = mmc_decode_cid(card);
628 if (err)
629 goto free_card;
630 }
631
632 /*
633 * Select card, as all following commands rely on that.
634 */
635 if (!mmc_host_is_spi(host)) {
636 err = mmc_select_card(card);
637 if (err)
638 goto free_card;
639 }
640
641 if (!oldcard) {
642 /*
643 * Fetch and process extended CSD.
644 */
645
646 err = mmc_get_ext_csd(card, &ext_csd);
647 if (err)
648 goto free_card;
649 err = mmc_read_ext_csd(card, ext_csd);
650 if (err)
651 goto free_card;
652
653 /* If doing byte addressing, check if required to do sector
654 * addressing. Handle the case of <2GB cards needing sector
655 * addressing. See section 8.1 JEDEC Standard JED84-A441;
656 * ocr register has bit 30 set for sector addressing.
657 */
658 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
659 mmc_card_set_blockaddr(card);
660
661 /* Erase size depends on CSD and Extended CSD */
662 mmc_set_erase_size(card);
663 }
664
665 /*
666 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
667 * bit. This bit will be lost every time after a reset or power off.
668 */
669 if (card->ext_csd.enhanced_area_en) {
670 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
671 EXT_CSD_ERASE_GROUP_DEF, 1, 0);
672
673 if (err && err != -EBADMSG)
674 goto free_card;
675
676 if (err) {
677 err = 0;
678 /*
679 * Just disable enhanced area off & sz
680 * will try to enable ERASE_GROUP_DEF
681 * during next time reinit
682 */
683 card->ext_csd.enhanced_area_offset = -EINVAL;
684 card->ext_csd.enhanced_area_size = -EINVAL;
685 } else {
686 card->ext_csd.erase_group_def = 1;
687 /*
688 * enable ERASE_GRP_DEF successfully.
689 * This will affect the erase size, so
690 * here need to reset erase size
691 */
692 mmc_set_erase_size(card);
693 }
694 }
695
696 /*
697 * Ensure eMMC user default partition is enabled
698 */
699 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
700 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
701 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
702 card->ext_csd.part_config,
703 card->ext_csd.part_time);
704 if (err && err != -EBADMSG)
705 goto free_card;
706 }
707
708 /*
709 * Activate high speed (if supported)
710 */
711 if ((card->ext_csd.hs_max_dtr != 0) &&
712 (host->caps & MMC_CAP_MMC_HIGHSPEED)) {
713 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
714 EXT_CSD_HS_TIMING, 1, 0);
715 if (err && err != -EBADMSG)
716 goto free_card;
717
718 if (err) {
719 printk(KERN_WARNING "%s: switch to highspeed failed\n",
720 mmc_hostname(card->host));
721 err = 0;
722 } else {
723 mmc_card_set_highspeed(card);
724 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
725 }
726 }
727
728 /*
729 * Compute bus speed.
730 */
731 max_dtr = (unsigned int)-1;
732
733 if (mmc_card_highspeed(card)) {
734 if (max_dtr > card->ext_csd.hs_max_dtr)
735 max_dtr = card->ext_csd.hs_max_dtr;
736 } else if (max_dtr > card->csd.max_dtr) {
737 max_dtr = card->csd.max_dtr;
738 }
739
740 mmc_set_clock(host, max_dtr);
741
742 /*
743 * Indicate DDR mode (if supported).
744 */
745 if (mmc_card_highspeed(card)) {
746 if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
747 && ((host->caps & (MMC_CAP_1_8V_DDR |
748 MMC_CAP_UHS_DDR50))
749 == (MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50)))
750 ddr = MMC_1_8V_DDR_MODE;
751 else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
752 && ((host->caps & (MMC_CAP_1_2V_DDR |
753 MMC_CAP_UHS_DDR50))
754 == (MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50)))
755 ddr = MMC_1_2V_DDR_MODE;
756 }
757
758 /*
759 * Activate wide bus and DDR (if supported).
760 */
761 if ((card->csd.mmca_vsn >= CSD_SPEC_VER_4) &&
762 (host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) {
763 static unsigned ext_csd_bits[][2] = {
764 { EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8 },
765 { EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4 },
766 { EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1 },
767 };
768 static unsigned bus_widths[] = {
769 MMC_BUS_WIDTH_8,
770 MMC_BUS_WIDTH_4,
771 MMC_BUS_WIDTH_1
772 };
773 unsigned idx, bus_width = 0;
774
775 if (host->caps & MMC_CAP_8_BIT_DATA)
776 idx = 0;
777 else
778 idx = 1;
779 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
780 bus_width = bus_widths[idx];
781 if (bus_width == MMC_BUS_WIDTH_1)
782 ddr = 0; /* no DDR for 1-bit width */
783 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
784 EXT_CSD_BUS_WIDTH,
785 ext_csd_bits[idx][0],
786 0);
787 if (!err) {
788 mmc_set_bus_width(card->host, bus_width);
789
790 /*
791 * If controller can't handle bus width test,
792 * compare ext_csd previously read in 1 bit mode
793 * against ext_csd at new bus width
794 */
795 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
796 err = mmc_compare_ext_csds(card,
797 bus_width);
798 else
799 err = mmc_bus_test(card, bus_width);
800 if (!err)
801 break;
802 }
803 }
804
805 if (!err && ddr) {
806 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
807 EXT_CSD_BUS_WIDTH,
808 ext_csd_bits[idx][1],
809 0);
810 }
811 if (err) {
812 printk(KERN_WARNING "%s: switch to bus width %d ddr %d "
813 "failed\n", mmc_hostname(card->host),
814 1 << bus_width, ddr);
815 goto free_card;
816 } else if (ddr) {
817 /*
818 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
819 * signaling.
820 *
821 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
822 *
823 * 1.8V vccq at 3.3V core voltage (vcc) is not required
824 * in the JEDEC spec for DDR.
825 *
826 * Do not force change in vccq since we are obviously
827 * working and no change to vccq is needed.
828 *
829 * WARNING: eMMC rules are NOT the same as SD DDR
830 */
831 if (ddr == EXT_CSD_CARD_TYPE_DDR_1_2V) {
832 err = mmc_set_signal_voltage(host,
833 MMC_SIGNAL_VOLTAGE_120, 0);
834 if (err)
835 goto err;
836 }
837 mmc_card_set_ddr_mode(card);
838 mmc_set_timing(card->host, MMC_TIMING_UHS_DDR50);
839 mmc_set_bus_width(card->host, bus_width);
840 }
841 }
842
843 if (!oldcard)
844 host->card = card;
845
846 mmc_free_ext_csd(ext_csd);
847 return 0;
848
849free_card:
850 if (!oldcard)
851 mmc_remove_card(card);
852err:
853 mmc_free_ext_csd(ext_csd);
854
855 return err;
856}
857
858/*
859 * Host is being removed. Free up the current card.
860 */
861static void mmc_remove(struct mmc_host *host)
862{
863 BUG_ON(!host);
864 BUG_ON(!host->card);
865
866 mmc_remove_card(host->card);
867 host->card = NULL;
868}
869
870/*
871 * Card detection callback from host.
872 */
873static void mmc_detect(struct mmc_host *host)
874{
875 int err;
876
877 BUG_ON(!host);
878 BUG_ON(!host->card);
879
880 mmc_claim_host(host);
881
882 /*
883 * Just check if our card has been removed.
884 */
885 err = mmc_send_status(host->card, NULL);
886
887 mmc_release_host(host);
888
889 if (err) {
890 mmc_remove(host);
891
892 mmc_claim_host(host);
893 mmc_detach_bus(host);
894 mmc_release_host(host);
895 }
896}
897
898/*
899 * Suspend callback from host.
900 */
901static int mmc_suspend(struct mmc_host *host)
902{
903 BUG_ON(!host);
904 BUG_ON(!host->card);
905
906 mmc_claim_host(host);
907 if (!mmc_host_is_spi(host))
908 mmc_deselect_cards(host);
909 host->card->state &= ~MMC_STATE_HIGHSPEED;
910 mmc_release_host(host);
911
912 return 0;
913}
914
915/*
916 * Resume callback from host.
917 *
918 * This function tries to determine if the same card is still present
919 * and, if so, restore all state to it.
920 */
921static int mmc_resume(struct mmc_host *host)
922{
923 int err;
924
925 BUG_ON(!host);
926 BUG_ON(!host->card);
927
928 mmc_claim_host(host);
929 err = mmc_init_card(host, host->ocr, host->card);
930 mmc_release_host(host);
931
932 return err;
933}
934
935static int mmc_power_restore(struct mmc_host *host)
936{
937 int ret;
938
939 host->card->state &= ~MMC_STATE_HIGHSPEED;
940 mmc_claim_host(host);
941 ret = mmc_init_card(host, host->ocr, host->card);
942 mmc_release_host(host);
943
944 return ret;
945}
946
947static int mmc_sleep(struct mmc_host *host)
948{
949 struct mmc_card *card = host->card;
950 int err = -ENOSYS;
951
952 if (card && card->ext_csd.rev >= 3) {
953 err = mmc_card_sleepawake(host, 1);
954 if (err < 0)
955 pr_debug("%s: Error %d while putting card into sleep",
956 mmc_hostname(host), err);
957 }
958
959 return err;
960}
961
962static int mmc_awake(struct mmc_host *host)
963{
964 struct mmc_card *card = host->card;
965 int err = -ENOSYS;
966
967 if (card && card->ext_csd.rev >= 3) {
968 err = mmc_card_sleepawake(host, 0);
969 if (err < 0)
970 pr_debug("%s: Error %d while awaking sleeping card",
971 mmc_hostname(host), err);
972 }
973
974 return err;
975}
976
977static const struct mmc_bus_ops mmc_ops = {
978 .awake = mmc_awake,
979 .sleep = mmc_sleep,
980 .remove = mmc_remove,
981 .detect = mmc_detect,
982 .suspend = NULL,
983 .resume = NULL,
984 .power_restore = mmc_power_restore,
985};
986
987static const struct mmc_bus_ops mmc_ops_unsafe = {
988 .awake = mmc_awake,
989 .sleep = mmc_sleep,
990 .remove = mmc_remove,
991 .detect = mmc_detect,
992 .suspend = mmc_suspend,
993 .resume = mmc_resume,
994 .power_restore = mmc_power_restore,
995};
996
997static void mmc_attach_bus_ops(struct mmc_host *host)
998{
999 const struct mmc_bus_ops *bus_ops;
1000
1001 if (!mmc_card_is_removable(host))
1002 bus_ops = &mmc_ops_unsafe;
1003 else
1004 bus_ops = &mmc_ops;
1005 mmc_attach_bus(host, bus_ops);
1006}
1007
1008/*
1009 * Starting point for MMC card init.
1010 */
1011int mmc_attach_mmc(struct mmc_host *host)
1012{
1013 int err;
1014 u32 ocr;
1015
1016 BUG_ON(!host);
1017 WARN_ON(!host->claimed);
1018
1019 err = mmc_send_op_cond(host, 0, &ocr);
1020 if (err)
1021 return err;
1022
1023 mmc_attach_bus_ops(host);
1024 if (host->ocr_avail_mmc)
1025 host->ocr_avail = host->ocr_avail_mmc;
1026
1027 /*
1028 * We need to get OCR a different way for SPI.
1029 */
1030 if (mmc_host_is_spi(host)) {
1031 err = mmc_spi_read_ocr(host, 1, &ocr);
1032 if (err)
1033 goto err;
1034 }
1035
1036 /*
1037 * Sanity check the voltages that the card claims to
1038 * support.
1039 */
1040 if (ocr & 0x7F) {
1041 printk(KERN_WARNING "%s: card claims to support voltages "
1042 "below the defined range. These will be ignored.\n",
1043 mmc_hostname(host));
1044 ocr &= ~0x7F;
1045 }
1046
1047 host->ocr = mmc_select_voltage(host, ocr);
1048
1049 /*
1050 * Can we support the voltage of the card?
1051 */
1052 if (!host->ocr) {
1053 err = -EINVAL;
1054 goto err;
1055 }
1056
1057 /*
1058 * Detect and init the card.
1059 */
1060 err = mmc_init_card(host, host->ocr, NULL);
1061 if (err)
1062 goto err;
1063
1064 mmc_release_host(host);
1065 err = mmc_add_card(host->card);
1066 mmc_claim_host(host);
1067 if (err)
1068 goto remove_card;
1069
1070 return 0;
1071
1072remove_card:
1073 mmc_release_host(host);
1074 mmc_remove_card(host->card);
1075 mmc_claim_host(host);
1076 host->card = NULL;
1077err:
1078 mmc_detach_bus(host);
1079
1080 printk(KERN_ERR "%s: error %d whilst initialising MMC card\n",
1081 mmc_hostname(host), err);
1082
1083 return err;
1084}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "card.h"
22#include "host.h"
23#include "bus.h"
24#include "mmc_ops.h"
25#include "quirks.h"
26#include "sd_ops.h"
27#include "pwrseq.h"
28
29#define DEFAULT_CMD6_TIMEOUT_MS 500
30#define MIN_CACHE_EN_TIMEOUT_MS 1600
31#define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
32
33static const unsigned int tran_exp[] = {
34 10000, 100000, 1000000, 10000000,
35 0, 0, 0, 0
36};
37
38static const unsigned char tran_mant[] = {
39 0, 10, 12, 13, 15, 20, 25, 30,
40 35, 40, 45, 50, 55, 60, 70, 80,
41};
42
43static const unsigned int taac_exp[] = {
44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
45};
46
47static const unsigned int taac_mant[] = {
48 0, 10, 12, 13, 15, 20, 25, 30,
49 35, 40, 45, 50, 55, 60, 70, 80,
50};
51
52#define UNSTUFF_BITS(resp,start,size) \
53 ({ \
54 const int __size = size; \
55 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
56 const int __off = 3 - ((start) / 32); \
57 const int __shft = (start) & 31; \
58 u32 __res; \
59 \
60 __res = resp[__off] >> __shft; \
61 if (__size + __shft > 32) \
62 __res |= resp[__off-1] << ((32 - __shft) % 32); \
63 __res & __mask; \
64 })
65
66/*
67 * Given the decoded CSD structure, decode the raw CID to our CID structure.
68 */
69static int mmc_decode_cid(struct mmc_card *card)
70{
71 u32 *resp = card->raw_cid;
72
73 /*
74 * The selection of the format here is based upon published
75 * specs from sandisk and from what people have reported.
76 */
77 switch (card->csd.mmca_vsn) {
78 case 0: /* MMC v1.0 - v1.2 */
79 case 1: /* MMC v1.4 */
80 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
81 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
82 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
83 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
84 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
85 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
86 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
87 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
88 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
89 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
90 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
91 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
92 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
93 break;
94
95 case 2: /* MMC v2.0 - v2.2 */
96 case 3: /* MMC v3.1 - v3.3 */
97 case 4: /* MMC v4 */
98 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
99 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
100 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
101 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
102 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
103 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
104 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
105 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
106 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
107 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
108 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
109 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
110 break;
111
112 default:
113 pr_err("%s: card has unknown MMCA version %d\n",
114 mmc_hostname(card->host), card->csd.mmca_vsn);
115 return -EINVAL;
116 }
117
118 return 0;
119}
120
121static void mmc_set_erase_size(struct mmc_card *card)
122{
123 if (card->ext_csd.erase_group_def & 1)
124 card->erase_size = card->ext_csd.hc_erase_size;
125 else
126 card->erase_size = card->csd.erase_size;
127
128 mmc_init_erase(card);
129}
130
131/*
132 * Given a 128-bit response, decode to our card CSD structure.
133 */
134static int mmc_decode_csd(struct mmc_card *card)
135{
136 struct mmc_csd *csd = &card->csd;
137 unsigned int e, m, a, b;
138 u32 *resp = card->raw_csd;
139
140 /*
141 * We only understand CSD structure v1.1 and v1.2.
142 * v1.2 has extra information in bits 15, 11 and 10.
143 * We also support eMMC v4.4 & v4.41.
144 */
145 csd->structure = UNSTUFF_BITS(resp, 126, 2);
146 if (csd->structure == 0) {
147 pr_err("%s: unrecognised CSD structure version %d\n",
148 mmc_hostname(card->host), csd->structure);
149 return -EINVAL;
150 }
151
152 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
153 m = UNSTUFF_BITS(resp, 115, 4);
154 e = UNSTUFF_BITS(resp, 112, 3);
155 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
156 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
157
158 m = UNSTUFF_BITS(resp, 99, 4);
159 e = UNSTUFF_BITS(resp, 96, 3);
160 csd->max_dtr = tran_exp[e] * tran_mant[m];
161 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
162
163 e = UNSTUFF_BITS(resp, 47, 3);
164 m = UNSTUFF_BITS(resp, 62, 12);
165 csd->capacity = (1 + m) << (e + 2);
166
167 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
168 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
169 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
170 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
171 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
172 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
173 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
174 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
175
176 if (csd->write_blkbits >= 9) {
177 a = UNSTUFF_BITS(resp, 42, 5);
178 b = UNSTUFF_BITS(resp, 37, 5);
179 csd->erase_size = (a + 1) * (b + 1);
180 csd->erase_size <<= csd->write_blkbits - 9;
181 }
182
183 return 0;
184}
185
186static void mmc_select_card_type(struct mmc_card *card)
187{
188 struct mmc_host *host = card->host;
189 u8 card_type = card->ext_csd.raw_card_type;
190 u32 caps = host->caps, caps2 = host->caps2;
191 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
192 unsigned int avail_type = 0;
193
194 if (caps & MMC_CAP_MMC_HIGHSPEED &&
195 card_type & EXT_CSD_CARD_TYPE_HS_26) {
196 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
197 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
198 }
199
200 if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 card_type & EXT_CSD_CARD_TYPE_HS_52) {
202 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
203 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
204 }
205
206 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
207 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
208 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
209 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
210 }
211
212 if (caps & MMC_CAP_1_2V_DDR &&
213 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
216 }
217
218 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
219 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
220 hs200_max_dtr = MMC_HS200_MAX_DTR;
221 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
222 }
223
224 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
225 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
226 hs200_max_dtr = MMC_HS200_MAX_DTR;
227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
228 }
229
230 if (caps2 & MMC_CAP2_HS400_1_8V &&
231 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
232 hs200_max_dtr = MMC_HS200_MAX_DTR;
233 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
234 }
235
236 if (caps2 & MMC_CAP2_HS400_1_2V &&
237 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
238 hs200_max_dtr = MMC_HS200_MAX_DTR;
239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
240 }
241
242 if ((caps2 & MMC_CAP2_HS400_ES) &&
243 card->ext_csd.strobe_support &&
244 (avail_type & EXT_CSD_CARD_TYPE_HS400))
245 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
246
247 card->ext_csd.hs_max_dtr = hs_max_dtr;
248 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
249 card->mmc_avail_type = avail_type;
250}
251
252static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
253{
254 u8 hc_erase_grp_sz, hc_wp_grp_sz;
255
256 /*
257 * Disable these attributes by default
258 */
259 card->ext_csd.enhanced_area_offset = -EINVAL;
260 card->ext_csd.enhanced_area_size = -EINVAL;
261
262 /*
263 * Enhanced area feature support -- check whether the eMMC
264 * card has the Enhanced area enabled. If so, export enhanced
265 * area offset and size to user by adding sysfs interface.
266 */
267 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
268 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
269 if (card->ext_csd.partition_setting_completed) {
270 hc_erase_grp_sz =
271 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
272 hc_wp_grp_sz =
273 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
274
275 /*
276 * calculate the enhanced data area offset, in bytes
277 */
278 card->ext_csd.enhanced_area_offset =
279 (((unsigned long long)ext_csd[139]) << 24) +
280 (((unsigned long long)ext_csd[138]) << 16) +
281 (((unsigned long long)ext_csd[137]) << 8) +
282 (((unsigned long long)ext_csd[136]));
283 if (mmc_card_blockaddr(card))
284 card->ext_csd.enhanced_area_offset <<= 9;
285 /*
286 * calculate the enhanced data area size, in kilobytes
287 */
288 card->ext_csd.enhanced_area_size =
289 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
290 ext_csd[140];
291 card->ext_csd.enhanced_area_size *=
292 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
293 card->ext_csd.enhanced_area_size <<= 9;
294 } else {
295 pr_warn("%s: defines enhanced area without partition setting complete\n",
296 mmc_hostname(card->host));
297 }
298 }
299}
300
301static void mmc_part_add(struct mmc_card *card, u64 size,
302 unsigned int part_cfg, char *name, int idx, bool ro,
303 int area_type)
304{
305 card->part[card->nr_parts].size = size;
306 card->part[card->nr_parts].part_cfg = part_cfg;
307 sprintf(card->part[card->nr_parts].name, name, idx);
308 card->part[card->nr_parts].force_ro = ro;
309 card->part[card->nr_parts].area_type = area_type;
310 card->nr_parts++;
311}
312
313static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
314{
315 int idx;
316 u8 hc_erase_grp_sz, hc_wp_grp_sz;
317 u64 part_size;
318
319 /*
320 * General purpose partition feature support --
321 * If ext_csd has the size of general purpose partitions,
322 * set size, part_cfg, partition name in mmc_part.
323 */
324 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
325 EXT_CSD_PART_SUPPORT_PART_EN) {
326 hc_erase_grp_sz =
327 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
328 hc_wp_grp_sz =
329 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
330
331 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
332 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
335 continue;
336 if (card->ext_csd.partition_setting_completed == 0) {
337 pr_warn("%s: has partition size defined without partition complete\n",
338 mmc_hostname(card->host));
339 break;
340 }
341 part_size =
342 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
343 << 16) +
344 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
345 << 8) +
346 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
347 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
348 mmc_part_add(card, part_size << 19,
349 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 "gp%d", idx, false,
351 MMC_BLK_DATA_AREA_GP);
352 }
353 }
354}
355
356/* Minimum partition switch timeout in milliseconds */
357#define MMC_MIN_PART_SWITCH_TIME 300
358
359/*
360 * Decode extended CSD.
361 */
362static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363{
364 int err = 0, idx;
365 u64 part_size;
366 struct device_node *np;
367 bool broken_hpi = false;
368
369 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 if (card->csd.structure == 3) {
372 if (card->ext_csd.raw_ext_csd_structure > 2) {
373 pr_err("%s: unrecognised EXT_CSD structure "
374 "version %d\n", mmc_hostname(card->host),
375 card->ext_csd.raw_ext_csd_structure);
376 err = -EINVAL;
377 goto out;
378 }
379 }
380
381 np = mmc_of_find_child_device(card->host, 0);
382 if (np && of_device_is_compatible(np, "mmc-card"))
383 broken_hpi = of_property_read_bool(np, "broken-hpi");
384 of_node_put(np);
385
386 /*
387 * The EXT_CSD format is meant to be forward compatible. As long
388 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 * are authorized, see JEDEC JESD84-B50 section B.8.
390 */
391 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392
393 /* fixup device after ext_csd revision field is updated */
394 mmc_fixup_device(card, mmc_ext_csd_fixups);
395
396 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 if (card->ext_csd.rev >= 2) {
401 card->ext_csd.sectors =
402 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406
407 /* Cards with density > 2GiB are sector addressed */
408 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 mmc_card_set_blockaddr(card);
410 }
411
412 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 mmc_select_card_type(card);
415
416 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 card->ext_csd.raw_erase_timeout_mult =
418 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 card->ext_csd.raw_hc_erase_grp_size =
420 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 if (card->ext_csd.rev >= 3) {
422 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
423 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
424
425 /* EXT_CSD value is in units of 10ms, but we store in ms */
426 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
427
428 /* Sleep / awake timeout in 100ns units */
429 if (sa_shift > 0 && sa_shift <= 0x17)
430 card->ext_csd.sa_timeout =
431 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
432 card->ext_csd.erase_group_def =
433 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
434 card->ext_csd.hc_erase_timeout = 300 *
435 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
436 card->ext_csd.hc_erase_size =
437 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
438
439 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
440
441 /*
442 * There are two boot regions of equal size, defined in
443 * multiples of 128K.
444 */
445 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
446 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
447 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
448 mmc_part_add(card, part_size,
449 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
450 "boot%d", idx, true,
451 MMC_BLK_DATA_AREA_BOOT);
452 }
453 }
454 }
455
456 card->ext_csd.raw_hc_erase_gap_size =
457 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
458 card->ext_csd.raw_sec_trim_mult =
459 ext_csd[EXT_CSD_SEC_TRIM_MULT];
460 card->ext_csd.raw_sec_erase_mult =
461 ext_csd[EXT_CSD_SEC_ERASE_MULT];
462 card->ext_csd.raw_sec_feature_support =
463 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
464 card->ext_csd.raw_trim_mult =
465 ext_csd[EXT_CSD_TRIM_MULT];
466 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
467 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
468 if (card->ext_csd.rev >= 4) {
469 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
470 EXT_CSD_PART_SETTING_COMPLETED)
471 card->ext_csd.partition_setting_completed = 1;
472 else
473 card->ext_csd.partition_setting_completed = 0;
474
475 mmc_manage_enhanced_area(card, ext_csd);
476
477 mmc_manage_gp_partitions(card, ext_csd);
478
479 card->ext_csd.sec_trim_mult =
480 ext_csd[EXT_CSD_SEC_TRIM_MULT];
481 card->ext_csd.sec_erase_mult =
482 ext_csd[EXT_CSD_SEC_ERASE_MULT];
483 card->ext_csd.sec_feature_support =
484 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
485 card->ext_csd.trim_timeout = 300 *
486 ext_csd[EXT_CSD_TRIM_MULT];
487
488 /*
489 * Note that the call to mmc_part_add above defaults to read
490 * only. If this default assumption is changed, the call must
491 * take into account the value of boot_locked below.
492 */
493 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
494 card->ext_csd.boot_ro_lockable = true;
495
496 /* Save power class values */
497 card->ext_csd.raw_pwr_cl_52_195 =
498 ext_csd[EXT_CSD_PWR_CL_52_195];
499 card->ext_csd.raw_pwr_cl_26_195 =
500 ext_csd[EXT_CSD_PWR_CL_26_195];
501 card->ext_csd.raw_pwr_cl_52_360 =
502 ext_csd[EXT_CSD_PWR_CL_52_360];
503 card->ext_csd.raw_pwr_cl_26_360 =
504 ext_csd[EXT_CSD_PWR_CL_26_360];
505 card->ext_csd.raw_pwr_cl_200_195 =
506 ext_csd[EXT_CSD_PWR_CL_200_195];
507 card->ext_csd.raw_pwr_cl_200_360 =
508 ext_csd[EXT_CSD_PWR_CL_200_360];
509 card->ext_csd.raw_pwr_cl_ddr_52_195 =
510 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
511 card->ext_csd.raw_pwr_cl_ddr_52_360 =
512 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
513 card->ext_csd.raw_pwr_cl_ddr_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
515 }
516
517 if (card->ext_csd.rev >= 5) {
518 /* Adjust production date as per JEDEC JESD84-B451 */
519 if (card->cid.year < 2010)
520 card->cid.year += 16;
521
522 /* check whether the eMMC card supports BKOPS */
523 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
524 card->ext_csd.bkops = 1;
525 card->ext_csd.man_bkops_en =
526 (ext_csd[EXT_CSD_BKOPS_EN] &
527 EXT_CSD_MANUAL_BKOPS_MASK);
528 card->ext_csd.raw_bkops_status =
529 ext_csd[EXT_CSD_BKOPS_STATUS];
530 if (card->ext_csd.man_bkops_en)
531 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
532 mmc_hostname(card->host));
533 card->ext_csd.auto_bkops_en =
534 (ext_csd[EXT_CSD_BKOPS_EN] &
535 EXT_CSD_AUTO_BKOPS_MASK);
536 if (card->ext_csd.auto_bkops_en)
537 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
538 mmc_hostname(card->host));
539 }
540
541 /* check whether the eMMC card supports HPI */
542 if (!mmc_card_broken_hpi(card) &&
543 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
544 card->ext_csd.hpi = 1;
545 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
546 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
547 else
548 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
549 /*
550 * Indicate the maximum timeout to close
551 * a command interrupted by HPI
552 */
553 card->ext_csd.out_of_int_time =
554 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
555 }
556
557 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
558 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
559
560 /*
561 * RPMB regions are defined in multiples of 128K.
562 */
563 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
564 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
565 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
566 EXT_CSD_PART_CONFIG_ACC_RPMB,
567 "rpmb", 0, false,
568 MMC_BLK_DATA_AREA_RPMB);
569 }
570 }
571
572 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
573 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
574 card->erased_byte = 0xFF;
575 else
576 card->erased_byte = 0x0;
577
578 /* eMMC v4.5 or later */
579 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
580 if (card->ext_csd.rev >= 6) {
581 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
582
583 card->ext_csd.generic_cmd6_time = 10 *
584 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
585 card->ext_csd.power_off_longtime = 10 *
586 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
587
588 card->ext_csd.cache_size =
589 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
590 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
591 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
592 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
593
594 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
595 card->ext_csd.data_sector_size = 4096;
596 else
597 card->ext_csd.data_sector_size = 512;
598
599 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
600 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
601 card->ext_csd.data_tag_unit_size =
602 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
603 (card->ext_csd.data_sector_size);
604 } else {
605 card->ext_csd.data_tag_unit_size = 0;
606 }
607
608 card->ext_csd.max_packed_writes =
609 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
610 card->ext_csd.max_packed_reads =
611 ext_csd[EXT_CSD_MAX_PACKED_READS];
612 } else {
613 card->ext_csd.data_sector_size = 512;
614 }
615
616 /*
617 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
618 * when accessing a specific field", so use it here if there is no
619 * PARTITION_SWITCH_TIME.
620 */
621 if (!card->ext_csd.part_time)
622 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
623 /* Some eMMC set the value too low so set a minimum */
624 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
625 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
626
627 /* eMMC v5 or later */
628 if (card->ext_csd.rev >= 7) {
629 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
630 MMC_FIRMWARE_LEN);
631 card->ext_csd.ffu_capable =
632 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
633 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
634
635 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
636 card->ext_csd.device_life_time_est_typ_a =
637 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
638 card->ext_csd.device_life_time_est_typ_b =
639 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
640 }
641
642 /* eMMC v5.1 or later */
643 if (card->ext_csd.rev >= 8) {
644 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
645 EXT_CSD_CMDQ_SUPPORTED;
646 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
647 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
648 /* Exclude inefficiently small queue depths */
649 if (card->ext_csd.cmdq_depth <= 2) {
650 card->ext_csd.cmdq_support = false;
651 card->ext_csd.cmdq_depth = 0;
652 }
653 if (card->ext_csd.cmdq_support) {
654 pr_debug("%s: Command Queue supported depth %u\n",
655 mmc_hostname(card->host),
656 card->ext_csd.cmdq_depth);
657 }
658 card->ext_csd.enhanced_rpmb_supported =
659 (card->ext_csd.rel_param &
660 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
661 }
662out:
663 return err;
664}
665
666static int mmc_read_ext_csd(struct mmc_card *card)
667{
668 u8 *ext_csd;
669 int err;
670
671 if (!mmc_can_ext_csd(card))
672 return 0;
673
674 err = mmc_get_ext_csd(card, &ext_csd);
675 if (err) {
676 /* If the host or the card can't do the switch,
677 * fail more gracefully. */
678 if ((err != -EINVAL)
679 && (err != -ENOSYS)
680 && (err != -EFAULT))
681 return err;
682
683 /*
684 * High capacity cards should have this "magic" size
685 * stored in their CSD.
686 */
687 if (card->csd.capacity == (4096 * 512)) {
688 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
689 mmc_hostname(card->host));
690 } else {
691 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
692 mmc_hostname(card->host));
693 err = 0;
694 }
695
696 return err;
697 }
698
699 err = mmc_decode_ext_csd(card, ext_csd);
700 kfree(ext_csd);
701 return err;
702}
703
704static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
705{
706 u8 *bw_ext_csd;
707 int err;
708
709 if (bus_width == MMC_BUS_WIDTH_1)
710 return 0;
711
712 err = mmc_get_ext_csd(card, &bw_ext_csd);
713 if (err)
714 return err;
715
716 /* only compare read only fields */
717 err = !((card->ext_csd.raw_partition_support ==
718 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
719 (card->ext_csd.raw_erased_mem_count ==
720 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
721 (card->ext_csd.rev ==
722 bw_ext_csd[EXT_CSD_REV]) &&
723 (card->ext_csd.raw_ext_csd_structure ==
724 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
725 (card->ext_csd.raw_card_type ==
726 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
727 (card->ext_csd.raw_s_a_timeout ==
728 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
729 (card->ext_csd.raw_hc_erase_gap_size ==
730 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
731 (card->ext_csd.raw_erase_timeout_mult ==
732 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
733 (card->ext_csd.raw_hc_erase_grp_size ==
734 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
735 (card->ext_csd.raw_sec_trim_mult ==
736 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
737 (card->ext_csd.raw_sec_erase_mult ==
738 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
739 (card->ext_csd.raw_sec_feature_support ==
740 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
741 (card->ext_csd.raw_trim_mult ==
742 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
743 (card->ext_csd.raw_sectors[0] ==
744 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
745 (card->ext_csd.raw_sectors[1] ==
746 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
747 (card->ext_csd.raw_sectors[2] ==
748 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
749 (card->ext_csd.raw_sectors[3] ==
750 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
751 (card->ext_csd.raw_pwr_cl_52_195 ==
752 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
753 (card->ext_csd.raw_pwr_cl_26_195 ==
754 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
755 (card->ext_csd.raw_pwr_cl_52_360 ==
756 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
757 (card->ext_csd.raw_pwr_cl_26_360 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
759 (card->ext_csd.raw_pwr_cl_200_195 ==
760 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
761 (card->ext_csd.raw_pwr_cl_200_360 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
763 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
765 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
767 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
769
770 if (err)
771 err = -EINVAL;
772
773 kfree(bw_ext_csd);
774 return err;
775}
776
777MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
778 card->raw_cid[2], card->raw_cid[3]);
779MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
780 card->raw_csd[2], card->raw_csd[3]);
781MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
782MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
783MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
784MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
785MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
786MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
787MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
788MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
789MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
790MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
791MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
792MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
793 card->ext_csd.device_life_time_est_typ_a,
794 card->ext_csd.device_life_time_est_typ_b);
795MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
796MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
797 card->ext_csd.enhanced_area_offset);
798MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
799MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
800MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
801 card->ext_csd.enhanced_rpmb_supported);
802MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
803MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
804MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
805MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
806
807static ssize_t mmc_fwrev_show(struct device *dev,
808 struct device_attribute *attr,
809 char *buf)
810{
811 struct mmc_card *card = mmc_dev_to_card(dev);
812
813 if (card->ext_csd.rev < 7) {
814 return sprintf(buf, "0x%x\n", card->cid.fwrev);
815 } else {
816 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
817 card->ext_csd.fwrev);
818 }
819}
820
821static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
822
823static ssize_t mmc_dsr_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826{
827 struct mmc_card *card = mmc_dev_to_card(dev);
828 struct mmc_host *host = card->host;
829
830 if (card->csd.dsr_imp && host->dsr_req)
831 return sprintf(buf, "0x%x\n", host->dsr);
832 else
833 /* return default DSR value */
834 return sprintf(buf, "0x%x\n", 0x404);
835}
836
837static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
838
839static struct attribute *mmc_std_attrs[] = {
840 &dev_attr_cid.attr,
841 &dev_attr_csd.attr,
842 &dev_attr_date.attr,
843 &dev_attr_erase_size.attr,
844 &dev_attr_preferred_erase_size.attr,
845 &dev_attr_fwrev.attr,
846 &dev_attr_ffu_capable.attr,
847 &dev_attr_hwrev.attr,
848 &dev_attr_manfid.attr,
849 &dev_attr_name.attr,
850 &dev_attr_oemid.attr,
851 &dev_attr_prv.attr,
852 &dev_attr_rev.attr,
853 &dev_attr_pre_eol_info.attr,
854 &dev_attr_life_time.attr,
855 &dev_attr_serial.attr,
856 &dev_attr_enhanced_area_offset.attr,
857 &dev_attr_enhanced_area_size.attr,
858 &dev_attr_raw_rpmb_size_mult.attr,
859 &dev_attr_enhanced_rpmb_supported.attr,
860 &dev_attr_rel_sectors.attr,
861 &dev_attr_ocr.attr,
862 &dev_attr_rca.attr,
863 &dev_attr_dsr.attr,
864 &dev_attr_cmdq_en.attr,
865 NULL,
866};
867ATTRIBUTE_GROUPS(mmc_std);
868
869static struct device_type mmc_type = {
870 .groups = mmc_std_groups,
871};
872
873/*
874 * Select the PowerClass for the current bus width
875 * If power class is defined for 4/8 bit bus in the
876 * extended CSD register, select it by executing the
877 * mmc_switch command.
878 */
879static int __mmc_select_powerclass(struct mmc_card *card,
880 unsigned int bus_width)
881{
882 struct mmc_host *host = card->host;
883 struct mmc_ext_csd *ext_csd = &card->ext_csd;
884 unsigned int pwrclass_val = 0;
885 int err = 0;
886
887 switch (1 << host->ios.vdd) {
888 case MMC_VDD_165_195:
889 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
890 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
891 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
892 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
893 ext_csd->raw_pwr_cl_52_195 :
894 ext_csd->raw_pwr_cl_ddr_52_195;
895 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
896 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
897 break;
898 case MMC_VDD_27_28:
899 case MMC_VDD_28_29:
900 case MMC_VDD_29_30:
901 case MMC_VDD_30_31:
902 case MMC_VDD_31_32:
903 case MMC_VDD_32_33:
904 case MMC_VDD_33_34:
905 case MMC_VDD_34_35:
906 case MMC_VDD_35_36:
907 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
908 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
909 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
910 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
911 ext_csd->raw_pwr_cl_52_360 :
912 ext_csd->raw_pwr_cl_ddr_52_360;
913 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
914 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
915 ext_csd->raw_pwr_cl_ddr_200_360 :
916 ext_csd->raw_pwr_cl_200_360;
917 break;
918 default:
919 pr_warn("%s: Voltage range not supported for power class\n",
920 mmc_hostname(host));
921 return -EINVAL;
922 }
923
924 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
925 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
926 EXT_CSD_PWR_CL_8BIT_SHIFT;
927 else
928 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
929 EXT_CSD_PWR_CL_4BIT_SHIFT;
930
931 /* If the power class is different from the default value */
932 if (pwrclass_val > 0) {
933 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
934 EXT_CSD_POWER_CLASS,
935 pwrclass_val,
936 card->ext_csd.generic_cmd6_time);
937 }
938
939 return err;
940}
941
942static int mmc_select_powerclass(struct mmc_card *card)
943{
944 struct mmc_host *host = card->host;
945 u32 bus_width, ext_csd_bits;
946 int err, ddr;
947
948 /* Power class selection is supported for versions >= 4.0 */
949 if (!mmc_can_ext_csd(card))
950 return 0;
951
952 bus_width = host->ios.bus_width;
953 /* Power class values are defined only for 4/8 bit bus */
954 if (bus_width == MMC_BUS_WIDTH_1)
955 return 0;
956
957 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
958 if (ddr)
959 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
960 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
961 else
962 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
963 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
964
965 err = __mmc_select_powerclass(card, ext_csd_bits);
966 if (err)
967 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
968 mmc_hostname(host), 1 << bus_width, ddr);
969
970 return err;
971}
972
973/*
974 * Set the bus speed for the selected speed mode.
975 */
976static void mmc_set_bus_speed(struct mmc_card *card)
977{
978 unsigned int max_dtr = (unsigned int)-1;
979
980 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
981 max_dtr > card->ext_csd.hs200_max_dtr)
982 max_dtr = card->ext_csd.hs200_max_dtr;
983 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
984 max_dtr = card->ext_csd.hs_max_dtr;
985 else if (max_dtr > card->csd.max_dtr)
986 max_dtr = card->csd.max_dtr;
987
988 mmc_set_clock(card->host, max_dtr);
989}
990
991/*
992 * Select the bus width amoung 4-bit and 8-bit(SDR).
993 * If the bus width is changed successfully, return the selected width value.
994 * Zero is returned instead of error value if the wide width is not supported.
995 */
996static int mmc_select_bus_width(struct mmc_card *card)
997{
998 static unsigned ext_csd_bits[] = {
999 EXT_CSD_BUS_WIDTH_8,
1000 EXT_CSD_BUS_WIDTH_4,
1001 };
1002 static unsigned bus_widths[] = {
1003 MMC_BUS_WIDTH_8,
1004 MMC_BUS_WIDTH_4,
1005 };
1006 struct mmc_host *host = card->host;
1007 unsigned idx, bus_width = 0;
1008 int err = 0;
1009
1010 if (!mmc_can_ext_csd(card) ||
1011 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1012 return 0;
1013
1014 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1015
1016 /*
1017 * Unlike SD, MMC cards dont have a configuration register to notify
1018 * supported bus width. So bus test command should be run to identify
1019 * the supported bus width or compare the ext csd values of current
1020 * bus width and ext csd values of 1 bit mode read earlier.
1021 */
1022 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1023 /*
1024 * Host is capable of 8bit transfer, then switch
1025 * the device to work in 8bit transfer mode. If the
1026 * mmc switch command returns error then switch to
1027 * 4bit transfer mode. On success set the corresponding
1028 * bus width on the host.
1029 */
1030 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1031 EXT_CSD_BUS_WIDTH,
1032 ext_csd_bits[idx],
1033 card->ext_csd.generic_cmd6_time);
1034 if (err)
1035 continue;
1036
1037 bus_width = bus_widths[idx];
1038 mmc_set_bus_width(host, bus_width);
1039
1040 /*
1041 * If controller can't handle bus width test,
1042 * compare ext_csd previously read in 1 bit mode
1043 * against ext_csd at new bus width
1044 */
1045 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1046 err = mmc_compare_ext_csds(card, bus_width);
1047 else
1048 err = mmc_bus_test(card, bus_width);
1049
1050 if (!err) {
1051 err = bus_width;
1052 break;
1053 } else {
1054 pr_warn("%s: switch to bus width %d failed\n",
1055 mmc_hostname(host), 1 << bus_width);
1056 }
1057 }
1058
1059 return err;
1060}
1061
1062/*
1063 * Switch to the high-speed mode
1064 */
1065static int mmc_select_hs(struct mmc_card *card)
1066{
1067 int err;
1068
1069 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1070 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1071 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1072 true, true, MMC_CMD_RETRIES);
1073 if (err)
1074 pr_warn("%s: switch to high-speed failed, err:%d\n",
1075 mmc_hostname(card->host), err);
1076
1077 return err;
1078}
1079
1080/*
1081 * Activate wide bus and DDR if supported.
1082 */
1083static int mmc_select_hs_ddr(struct mmc_card *card)
1084{
1085 struct mmc_host *host = card->host;
1086 u32 bus_width, ext_csd_bits;
1087 int err = 0;
1088
1089 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1090 return 0;
1091
1092 bus_width = host->ios.bus_width;
1093 if (bus_width == MMC_BUS_WIDTH_1)
1094 return 0;
1095
1096 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1097 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1098
1099 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1100 EXT_CSD_BUS_WIDTH,
1101 ext_csd_bits,
1102 card->ext_csd.generic_cmd6_time,
1103 MMC_TIMING_MMC_DDR52,
1104 true, true, MMC_CMD_RETRIES);
1105 if (err) {
1106 pr_err("%s: switch to bus width %d ddr failed\n",
1107 mmc_hostname(host), 1 << bus_width);
1108 return err;
1109 }
1110
1111 /*
1112 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1113 * signaling.
1114 *
1115 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1116 *
1117 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1118 * in the JEDEC spec for DDR.
1119 *
1120 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1121 * host controller can support this, like some of the SDHCI
1122 * controller which connect to an eMMC device. Some of these
1123 * host controller still needs to use 1.8v vccq for supporting
1124 * DDR mode.
1125 *
1126 * So the sequence will be:
1127 * if (host and device can both support 1.2v IO)
1128 * use 1.2v IO;
1129 * else if (host and device can both support 1.8v IO)
1130 * use 1.8v IO;
1131 * so if host and device can only support 3.3v IO, this is the
1132 * last choice.
1133 *
1134 * WARNING: eMMC rules are NOT the same as SD DDR
1135 */
1136 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1137 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1138 if (!err)
1139 return 0;
1140 }
1141
1142 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1143 host->caps & MMC_CAP_1_8V_DDR)
1144 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1145
1146 /* make sure vccq is 3.3v after switching disaster */
1147 if (err)
1148 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1149
1150 return err;
1151}
1152
1153static int mmc_select_hs400(struct mmc_card *card)
1154{
1155 struct mmc_host *host = card->host;
1156 unsigned int max_dtr;
1157 int err = 0;
1158 u8 val;
1159
1160 /*
1161 * HS400 mode requires 8-bit bus width
1162 */
1163 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1164 host->ios.bus_width == MMC_BUS_WIDTH_8))
1165 return 0;
1166
1167 /* Switch card to HS mode */
1168 val = EXT_CSD_TIMING_HS;
1169 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 EXT_CSD_HS_TIMING, val,
1171 card->ext_csd.generic_cmd6_time, 0,
1172 false, true, MMC_CMD_RETRIES);
1173 if (err) {
1174 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1175 mmc_hostname(host), err);
1176 return err;
1177 }
1178
1179 /* Prepare host to downgrade to HS timing */
1180 if (host->ops->hs400_downgrade)
1181 host->ops->hs400_downgrade(host);
1182
1183 /* Set host controller to HS timing */
1184 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1185
1186 /* Reduce frequency to HS frequency */
1187 max_dtr = card->ext_csd.hs_max_dtr;
1188 mmc_set_clock(host, max_dtr);
1189
1190 err = mmc_switch_status(card, true);
1191 if (err)
1192 goto out_err;
1193
1194 if (host->ops->hs400_prepare_ddr)
1195 host->ops->hs400_prepare_ddr(host);
1196
1197 /* Switch card to DDR */
1198 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 EXT_CSD_BUS_WIDTH,
1200 EXT_CSD_DDR_BUS_WIDTH_8,
1201 card->ext_csd.generic_cmd6_time);
1202 if (err) {
1203 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1204 mmc_hostname(host), err);
1205 return err;
1206 }
1207
1208 /* Switch card to HS400 */
1209 val = EXT_CSD_TIMING_HS400 |
1210 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1211 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1212 EXT_CSD_HS_TIMING, val,
1213 card->ext_csd.generic_cmd6_time, 0,
1214 false, true, MMC_CMD_RETRIES);
1215 if (err) {
1216 pr_err("%s: switch to hs400 failed, err:%d\n",
1217 mmc_hostname(host), err);
1218 return err;
1219 }
1220
1221 /* Set host controller to HS400 timing and frequency */
1222 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1223 mmc_set_bus_speed(card);
1224
1225 if (host->ops->hs400_complete)
1226 host->ops->hs400_complete(host);
1227
1228 err = mmc_switch_status(card, true);
1229 if (err)
1230 goto out_err;
1231
1232 return 0;
1233
1234out_err:
1235 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1236 __func__, err);
1237 return err;
1238}
1239
1240int mmc_hs200_to_hs400(struct mmc_card *card)
1241{
1242 return mmc_select_hs400(card);
1243}
1244
1245int mmc_hs400_to_hs200(struct mmc_card *card)
1246{
1247 struct mmc_host *host = card->host;
1248 unsigned int max_dtr;
1249 int err;
1250 u8 val;
1251
1252 /* Reduce frequency to HS */
1253 max_dtr = card->ext_csd.hs_max_dtr;
1254 mmc_set_clock(host, max_dtr);
1255
1256 /* Switch HS400 to HS DDR */
1257 val = EXT_CSD_TIMING_HS;
1258 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1259 val, card->ext_csd.generic_cmd6_time, 0,
1260 false, true, MMC_CMD_RETRIES);
1261 if (err)
1262 goto out_err;
1263
1264 if (host->ops->hs400_downgrade)
1265 host->ops->hs400_downgrade(host);
1266
1267 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1268
1269 err = mmc_switch_status(card, true);
1270 if (err)
1271 goto out_err;
1272
1273 /* Switch HS DDR to HS */
1274 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1275 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1276 0, false, true, MMC_CMD_RETRIES);
1277 if (err)
1278 goto out_err;
1279
1280 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1281
1282 err = mmc_switch_status(card, true);
1283 if (err)
1284 goto out_err;
1285
1286 /* Switch HS to HS200 */
1287 val = EXT_CSD_TIMING_HS200 |
1288 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1289 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1290 val, card->ext_csd.generic_cmd6_time, 0,
1291 false, true, MMC_CMD_RETRIES);
1292 if (err)
1293 goto out_err;
1294
1295 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1296
1297 /*
1298 * For HS200, CRC errors are not a reliable way to know the switch
1299 * failed. If there really is a problem, we would expect tuning will
1300 * fail and the result ends up the same.
1301 */
1302 err = mmc_switch_status(card, false);
1303 if (err)
1304 goto out_err;
1305
1306 mmc_set_bus_speed(card);
1307
1308 /* Prepare tuning for HS400 mode. */
1309 if (host->ops->prepare_hs400_tuning)
1310 host->ops->prepare_hs400_tuning(host, &host->ios);
1311
1312 return 0;
1313
1314out_err:
1315 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1316 __func__, err);
1317 return err;
1318}
1319
1320static void mmc_select_driver_type(struct mmc_card *card)
1321{
1322 int card_drv_type, drive_strength, drv_type = 0;
1323 int fixed_drv_type = card->host->fixed_drv_type;
1324
1325 card_drv_type = card->ext_csd.raw_driver_strength |
1326 mmc_driver_type_mask(0);
1327
1328 if (fixed_drv_type >= 0)
1329 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1330 ? fixed_drv_type : 0;
1331 else
1332 drive_strength = mmc_select_drive_strength(card,
1333 card->ext_csd.hs200_max_dtr,
1334 card_drv_type, &drv_type);
1335
1336 card->drive_strength = drive_strength;
1337
1338 if (drv_type)
1339 mmc_set_driver_type(card->host, drv_type);
1340}
1341
1342static int mmc_select_hs400es(struct mmc_card *card)
1343{
1344 struct mmc_host *host = card->host;
1345 int err = -EINVAL;
1346 u8 val;
1347
1348 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1349 err = -ENOTSUPP;
1350 goto out_err;
1351 }
1352
1353 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1354 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1355
1356 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1357 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1358
1359 /* If fails try again during next card power cycle */
1360 if (err)
1361 goto out_err;
1362
1363 err = mmc_select_bus_width(card);
1364 if (err != MMC_BUS_WIDTH_8) {
1365 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1366 mmc_hostname(host), err);
1367 err = err < 0 ? err : -ENOTSUPP;
1368 goto out_err;
1369 }
1370
1371 /* Switch card to HS mode */
1372 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1373 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1374 card->ext_csd.generic_cmd6_time, 0,
1375 false, true, MMC_CMD_RETRIES);
1376 if (err) {
1377 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1378 mmc_hostname(host), err);
1379 goto out_err;
1380 }
1381
1382 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1383 err = mmc_switch_status(card, true);
1384 if (err)
1385 goto out_err;
1386
1387 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1388
1389 /* Switch card to DDR with strobe bit */
1390 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1391 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1392 EXT_CSD_BUS_WIDTH,
1393 val,
1394 card->ext_csd.generic_cmd6_time);
1395 if (err) {
1396 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1397 mmc_hostname(host), err);
1398 goto out_err;
1399 }
1400
1401 mmc_select_driver_type(card);
1402
1403 /* Switch card to HS400 */
1404 val = EXT_CSD_TIMING_HS400 |
1405 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1406 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1407 EXT_CSD_HS_TIMING, val,
1408 card->ext_csd.generic_cmd6_time, 0,
1409 false, true, MMC_CMD_RETRIES);
1410 if (err) {
1411 pr_err("%s: switch to hs400es failed, err:%d\n",
1412 mmc_hostname(host), err);
1413 goto out_err;
1414 }
1415
1416 /* Set host controller to HS400 timing and frequency */
1417 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1418
1419 /* Controller enable enhanced strobe function */
1420 host->ios.enhanced_strobe = true;
1421 if (host->ops->hs400_enhanced_strobe)
1422 host->ops->hs400_enhanced_strobe(host, &host->ios);
1423
1424 err = mmc_switch_status(card, true);
1425 if (err)
1426 goto out_err;
1427
1428 return 0;
1429
1430out_err:
1431 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1432 __func__, err);
1433 return err;
1434}
1435
1436/*
1437 * For device supporting HS200 mode, the following sequence
1438 * should be done before executing the tuning process.
1439 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1440 * 2. switch to HS200 mode
1441 * 3. set the clock to > 52Mhz and <=200MHz
1442 */
1443static int mmc_select_hs200(struct mmc_card *card)
1444{
1445 struct mmc_host *host = card->host;
1446 unsigned int old_timing, old_signal_voltage;
1447 int err = -EINVAL;
1448 u8 val;
1449
1450 old_signal_voltage = host->ios.signal_voltage;
1451 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1452 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1453
1454 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1455 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1456
1457 /* If fails try again during next card power cycle */
1458 if (err)
1459 return err;
1460
1461 mmc_select_driver_type(card);
1462
1463 /*
1464 * Set the bus width(4 or 8) with host's support and
1465 * switch to HS200 mode if bus width is set successfully.
1466 */
1467 err = mmc_select_bus_width(card);
1468 if (err > 0) {
1469 val = EXT_CSD_TIMING_HS200 |
1470 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1471 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1472 EXT_CSD_HS_TIMING, val,
1473 card->ext_csd.generic_cmd6_time, 0,
1474 false, true, MMC_CMD_RETRIES);
1475 if (err)
1476 goto err;
1477 old_timing = host->ios.timing;
1478 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1479
1480 /*
1481 * For HS200, CRC errors are not a reliable way to know the
1482 * switch failed. If there really is a problem, we would expect
1483 * tuning will fail and the result ends up the same.
1484 */
1485 err = mmc_switch_status(card, false);
1486
1487 /*
1488 * mmc_select_timing() assumes timing has not changed if
1489 * it is a switch error.
1490 */
1491 if (err == -EBADMSG)
1492 mmc_set_timing(host, old_timing);
1493 }
1494err:
1495 if (err) {
1496 /* fall back to the old signal voltage, if fails report error */
1497 if (mmc_set_signal_voltage(host, old_signal_voltage))
1498 err = -EIO;
1499
1500 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1501 __func__, err);
1502 }
1503 return err;
1504}
1505
1506/*
1507 * Activate High Speed, HS200 or HS400ES mode if supported.
1508 */
1509static int mmc_select_timing(struct mmc_card *card)
1510{
1511 int err = 0;
1512
1513 if (!mmc_can_ext_csd(card))
1514 goto bus_speed;
1515
1516 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1517 err = mmc_select_hs400es(card);
1518 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1519 err = mmc_select_hs200(card);
1520 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1521 err = mmc_select_hs(card);
1522
1523 if (err && err != -EBADMSG)
1524 return err;
1525
1526bus_speed:
1527 /*
1528 * Set the bus speed to the selected bus timing.
1529 * If timing is not selected, backward compatible is the default.
1530 */
1531 mmc_set_bus_speed(card);
1532 return 0;
1533}
1534
1535/*
1536 * Execute tuning sequence to seek the proper bus operating
1537 * conditions for HS200 and HS400, which sends CMD21 to the device.
1538 */
1539static int mmc_hs200_tuning(struct mmc_card *card)
1540{
1541 struct mmc_host *host = card->host;
1542
1543 /*
1544 * Timing should be adjusted to the HS400 target
1545 * operation frequency for tuning process
1546 */
1547 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1548 host->ios.bus_width == MMC_BUS_WIDTH_8)
1549 if (host->ops->prepare_hs400_tuning)
1550 host->ops->prepare_hs400_tuning(host, &host->ios);
1551
1552 return mmc_execute_tuning(card);
1553}
1554
1555/*
1556 * Handle the detection and initialisation of a card.
1557 *
1558 * In the case of a resume, "oldcard" will contain the card
1559 * we're trying to reinitialise.
1560 */
1561static int mmc_init_card(struct mmc_host *host, u32 ocr,
1562 struct mmc_card *oldcard)
1563{
1564 struct mmc_card *card;
1565 int err;
1566 u32 cid[4];
1567 u32 rocr;
1568
1569 WARN_ON(!host->claimed);
1570
1571 /* Set correct bus mode for MMC before attempting init */
1572 if (!mmc_host_is_spi(host))
1573 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1574
1575 /*
1576 * Since we're changing the OCR value, we seem to
1577 * need to tell some cards to go back to the idle
1578 * state. We wait 1ms to give cards time to
1579 * respond.
1580 * mmc_go_idle is needed for eMMC that are asleep
1581 */
1582 mmc_go_idle(host);
1583
1584 /* The extra bit indicates that we support high capacity */
1585 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1586 if (err)
1587 goto err;
1588
1589 /*
1590 * For SPI, enable CRC as appropriate.
1591 */
1592 if (mmc_host_is_spi(host)) {
1593 err = mmc_spi_set_crc(host, use_spi_crc);
1594 if (err)
1595 goto err;
1596 }
1597
1598 /*
1599 * Fetch CID from card.
1600 */
1601 err = mmc_send_cid(host, cid);
1602 if (err)
1603 goto err;
1604
1605 if (oldcard) {
1606 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1607 pr_debug("%s: Perhaps the card was replaced\n",
1608 mmc_hostname(host));
1609 err = -ENOENT;
1610 goto err;
1611 }
1612
1613 card = oldcard;
1614 } else {
1615 /*
1616 * Allocate card structure.
1617 */
1618 card = mmc_alloc_card(host, &mmc_type);
1619 if (IS_ERR(card)) {
1620 err = PTR_ERR(card);
1621 goto err;
1622 }
1623
1624 card->ocr = ocr;
1625 card->type = MMC_TYPE_MMC;
1626 card->rca = 1;
1627 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1628 }
1629
1630 /*
1631 * Call the optional HC's init_card function to handle quirks.
1632 */
1633 if (host->ops->init_card)
1634 host->ops->init_card(host, card);
1635
1636 /*
1637 * For native busses: set card RCA and quit open drain mode.
1638 */
1639 if (!mmc_host_is_spi(host)) {
1640 err = mmc_set_relative_addr(card);
1641 if (err)
1642 goto free_card;
1643
1644 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1645 }
1646
1647 if (!oldcard) {
1648 /*
1649 * Fetch CSD from card.
1650 */
1651 err = mmc_send_csd(card, card->raw_csd);
1652 if (err)
1653 goto free_card;
1654
1655 err = mmc_decode_csd(card);
1656 if (err)
1657 goto free_card;
1658 err = mmc_decode_cid(card);
1659 if (err)
1660 goto free_card;
1661 }
1662
1663 /*
1664 * handling only for cards supporting DSR and hosts requesting
1665 * DSR configuration
1666 */
1667 if (card->csd.dsr_imp && host->dsr_req)
1668 mmc_set_dsr(host);
1669
1670 /*
1671 * Select card, as all following commands rely on that.
1672 */
1673 if (!mmc_host_is_spi(host)) {
1674 err = mmc_select_card(card);
1675 if (err)
1676 goto free_card;
1677 }
1678
1679 if (!oldcard) {
1680 /* Read extended CSD. */
1681 err = mmc_read_ext_csd(card);
1682 if (err)
1683 goto free_card;
1684
1685 /*
1686 * If doing byte addressing, check if required to do sector
1687 * addressing. Handle the case of <2GB cards needing sector
1688 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1689 * ocr register has bit 30 set for sector addressing.
1690 */
1691 if (rocr & BIT(30))
1692 mmc_card_set_blockaddr(card);
1693
1694 /* Erase size depends on CSD and Extended CSD */
1695 mmc_set_erase_size(card);
1696 }
1697
1698 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1699 if (card->ext_csd.rev >= 3) {
1700 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1701 EXT_CSD_ERASE_GROUP_DEF, 1,
1702 card->ext_csd.generic_cmd6_time);
1703
1704 if (err && err != -EBADMSG)
1705 goto free_card;
1706
1707 if (err) {
1708 /*
1709 * Just disable enhanced area off & sz
1710 * will try to enable ERASE_GROUP_DEF
1711 * during next time reinit
1712 */
1713 card->ext_csd.enhanced_area_offset = -EINVAL;
1714 card->ext_csd.enhanced_area_size = -EINVAL;
1715 } else {
1716 card->ext_csd.erase_group_def = 1;
1717 /*
1718 * enable ERASE_GRP_DEF successfully.
1719 * This will affect the erase size, so
1720 * here need to reset erase size
1721 */
1722 mmc_set_erase_size(card);
1723 }
1724 }
1725
1726 /*
1727 * Ensure eMMC user default partition is enabled
1728 */
1729 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1730 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1731 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1732 card->ext_csd.part_config,
1733 card->ext_csd.part_time);
1734 if (err && err != -EBADMSG)
1735 goto free_card;
1736 }
1737
1738 /*
1739 * Enable power_off_notification byte in the ext_csd register
1740 */
1741 if (card->ext_csd.rev >= 6) {
1742 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1743 EXT_CSD_POWER_OFF_NOTIFICATION,
1744 EXT_CSD_POWER_ON,
1745 card->ext_csd.generic_cmd6_time);
1746 if (err && err != -EBADMSG)
1747 goto free_card;
1748
1749 /*
1750 * The err can be -EBADMSG or 0,
1751 * so check for success and update the flag
1752 */
1753 if (!err)
1754 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1755 }
1756
1757 /* set erase_arg */
1758 if (mmc_can_discard(card))
1759 card->erase_arg = MMC_DISCARD_ARG;
1760 else if (mmc_can_trim(card))
1761 card->erase_arg = MMC_TRIM_ARG;
1762 else
1763 card->erase_arg = MMC_ERASE_ARG;
1764
1765 /*
1766 * Select timing interface
1767 */
1768 err = mmc_select_timing(card);
1769 if (err)
1770 goto free_card;
1771
1772 if (mmc_card_hs200(card)) {
1773 host->doing_init_tune = 1;
1774
1775 err = mmc_hs200_tuning(card);
1776 if (!err)
1777 err = mmc_select_hs400(card);
1778
1779 host->doing_init_tune = 0;
1780
1781 if (err)
1782 goto free_card;
1783
1784 } else if (!mmc_card_hs400es(card)) {
1785 /* Select the desired bus width optionally */
1786 err = mmc_select_bus_width(card);
1787 if (err > 0 && mmc_card_hs(card)) {
1788 err = mmc_select_hs_ddr(card);
1789 if (err)
1790 goto free_card;
1791 }
1792 }
1793
1794 /*
1795 * Choose the power class with selected bus interface
1796 */
1797 mmc_select_powerclass(card);
1798
1799 /*
1800 * Enable HPI feature (if supported)
1801 */
1802 if (card->ext_csd.hpi) {
1803 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1804 EXT_CSD_HPI_MGMT, 1,
1805 card->ext_csd.generic_cmd6_time);
1806 if (err && err != -EBADMSG)
1807 goto free_card;
1808 if (err) {
1809 pr_warn("%s: Enabling HPI failed\n",
1810 mmc_hostname(card->host));
1811 card->ext_csd.hpi_en = 0;
1812 } else {
1813 card->ext_csd.hpi_en = 1;
1814 }
1815 }
1816
1817 /*
1818 * If cache size is higher than 0, this indicates the existence of cache
1819 * and it can be turned on. Note that some eMMCs from Micron has been
1820 * reported to need ~800 ms timeout, while enabling the cache after
1821 * sudden power failure tests. Let's extend the timeout to a minimum of
1822 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1823 */
1824 if (card->ext_csd.cache_size > 0) {
1825 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1826
1827 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1828 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1829 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1830 if (err && err != -EBADMSG)
1831 goto free_card;
1832
1833 /*
1834 * Only if no error, cache is turned on successfully.
1835 */
1836 if (err) {
1837 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1838 mmc_hostname(card->host), err);
1839 card->ext_csd.cache_ctrl = 0;
1840 } else {
1841 card->ext_csd.cache_ctrl = 1;
1842 }
1843 }
1844
1845 /*
1846 * Enable Command Queue if supported. Note that Packed Commands cannot
1847 * be used with Command Queue.
1848 */
1849 card->ext_csd.cmdq_en = false;
1850 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1851 err = mmc_cmdq_enable(card);
1852 if (err && err != -EBADMSG)
1853 goto free_card;
1854 if (err) {
1855 pr_warn("%s: Enabling CMDQ failed\n",
1856 mmc_hostname(card->host));
1857 card->ext_csd.cmdq_support = false;
1858 card->ext_csd.cmdq_depth = 0;
1859 }
1860 }
1861 /*
1862 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1863 * disabled for a time, so a flag is needed to indicate to re-enable the
1864 * Command Queue.
1865 */
1866 card->reenable_cmdq = card->ext_csd.cmdq_en;
1867
1868 if (host->cqe_ops && !host->cqe_enabled) {
1869 err = host->cqe_ops->cqe_enable(host, card);
1870 if (!err) {
1871 host->cqe_enabled = true;
1872
1873 if (card->ext_csd.cmdq_en) {
1874 pr_info("%s: Command Queue Engine enabled\n",
1875 mmc_hostname(host));
1876 } else {
1877 host->hsq_enabled = true;
1878 pr_info("%s: Host Software Queue enabled\n",
1879 mmc_hostname(host));
1880 }
1881 }
1882 }
1883
1884 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1885 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1886 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1887 mmc_hostname(host));
1888 err = -EINVAL;
1889 goto free_card;
1890 }
1891
1892 if (!oldcard)
1893 host->card = card;
1894
1895 return 0;
1896
1897free_card:
1898 if (!oldcard)
1899 mmc_remove_card(card);
1900err:
1901 return err;
1902}
1903
1904static int mmc_can_sleep(struct mmc_card *card)
1905{
1906 return card->ext_csd.rev >= 3;
1907}
1908
1909static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1910{
1911 struct mmc_host *host = cb_data;
1912
1913 *busy = host->ops->card_busy(host);
1914 return 0;
1915}
1916
1917static int mmc_sleep(struct mmc_host *host)
1918{
1919 struct mmc_command cmd = {};
1920 struct mmc_card *card = host->card;
1921 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1922 bool use_r1b_resp;
1923 int err;
1924
1925 /* Re-tuning can't be done once the card is deselected */
1926 mmc_retune_hold(host);
1927
1928 err = mmc_deselect_cards(host);
1929 if (err)
1930 goto out_release;
1931
1932 cmd.opcode = MMC_SLEEP_AWAKE;
1933 cmd.arg = card->rca << 16;
1934 cmd.arg |= 1 << 15;
1935 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1936
1937 err = mmc_wait_for_cmd(host, &cmd, 0);
1938 if (err)
1939 goto out_release;
1940
1941 /*
1942 * If the host does not wait while the card signals busy, then we can
1943 * try to poll, but only if the host supports HW polling, as the
1944 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1945 * to wait the sleep/awake timeout.
1946 */
1947 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1948 goto out_release;
1949
1950 if (!host->ops->card_busy) {
1951 mmc_delay(timeout_ms);
1952 goto out_release;
1953 }
1954
1955 err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host);
1956
1957out_release:
1958 mmc_retune_release(host);
1959 return err;
1960}
1961
1962static int mmc_can_poweroff_notify(const struct mmc_card *card)
1963{
1964 return card &&
1965 mmc_card_mmc(card) &&
1966 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1967}
1968
1969static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1970{
1971 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1972 int err;
1973
1974 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1975 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1976 timeout = card->ext_csd.power_off_longtime;
1977
1978 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1979 EXT_CSD_POWER_OFF_NOTIFICATION,
1980 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
1981 if (err)
1982 pr_err("%s: Power Off Notification timed out, %u\n",
1983 mmc_hostname(card->host), timeout);
1984
1985 /* Disable the power off notification after the switch operation. */
1986 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1987
1988 return err;
1989}
1990
1991/*
1992 * Host is being removed. Free up the current card.
1993 */
1994static void mmc_remove(struct mmc_host *host)
1995{
1996 mmc_remove_card(host->card);
1997 host->card = NULL;
1998}
1999
2000/*
2001 * Card detection - card is alive.
2002 */
2003static int mmc_alive(struct mmc_host *host)
2004{
2005 return mmc_send_status(host->card, NULL);
2006}
2007
2008/*
2009 * Card detection callback from host.
2010 */
2011static void mmc_detect(struct mmc_host *host)
2012{
2013 int err;
2014
2015 mmc_get_card(host->card, NULL);
2016
2017 /*
2018 * Just check if our card has been removed.
2019 */
2020 err = _mmc_detect_card_removed(host);
2021
2022 mmc_put_card(host->card, NULL);
2023
2024 if (err) {
2025 mmc_remove(host);
2026
2027 mmc_claim_host(host);
2028 mmc_detach_bus(host);
2029 mmc_power_off(host);
2030 mmc_release_host(host);
2031 }
2032}
2033
2034static bool _mmc_cache_enabled(struct mmc_host *host)
2035{
2036 return host->card->ext_csd.cache_size > 0 &&
2037 host->card->ext_csd.cache_ctrl & 1;
2038}
2039
2040/*
2041 * Flush the internal cache of the eMMC to non-volatile storage.
2042 */
2043static int _mmc_flush_cache(struct mmc_host *host)
2044{
2045 int err = 0;
2046
2047 if (_mmc_cache_enabled(host)) {
2048 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2049 EXT_CSD_FLUSH_CACHE, 1,
2050 CACHE_FLUSH_TIMEOUT_MS);
2051 if (err)
2052 pr_err("%s: cache flush error %d\n",
2053 mmc_hostname(host), err);
2054 }
2055
2056 return err;
2057}
2058
2059static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2060{
2061 int err = 0;
2062 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2063 EXT_CSD_POWER_OFF_LONG;
2064
2065 mmc_claim_host(host);
2066
2067 if (mmc_card_suspended(host->card))
2068 goto out;
2069
2070 err = _mmc_flush_cache(host);
2071 if (err)
2072 goto out;
2073
2074 if (mmc_can_poweroff_notify(host->card) &&
2075 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2076 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2077 err = mmc_poweroff_notify(host->card, notify_type);
2078 else if (mmc_can_sleep(host->card))
2079 err = mmc_sleep(host);
2080 else if (!mmc_host_is_spi(host))
2081 err = mmc_deselect_cards(host);
2082
2083 if (!err) {
2084 mmc_power_off(host);
2085 mmc_card_set_suspended(host->card);
2086 }
2087out:
2088 mmc_release_host(host);
2089 return err;
2090}
2091
2092/*
2093 * Suspend callback
2094 */
2095static int mmc_suspend(struct mmc_host *host)
2096{
2097 int err;
2098
2099 err = _mmc_suspend(host, true);
2100 if (!err) {
2101 pm_runtime_disable(&host->card->dev);
2102 pm_runtime_set_suspended(&host->card->dev);
2103 }
2104
2105 return err;
2106}
2107
2108/*
2109 * This function tries to determine if the same card is still present
2110 * and, if so, restore all state to it.
2111 */
2112static int _mmc_resume(struct mmc_host *host)
2113{
2114 int err = 0;
2115
2116 mmc_claim_host(host);
2117
2118 if (!mmc_card_suspended(host->card))
2119 goto out;
2120
2121 mmc_power_up(host, host->card->ocr);
2122 err = mmc_init_card(host, host->card->ocr, host->card);
2123 mmc_card_clr_suspended(host->card);
2124
2125out:
2126 mmc_release_host(host);
2127 return err;
2128}
2129
2130/*
2131 * Shutdown callback
2132 */
2133static int mmc_shutdown(struct mmc_host *host)
2134{
2135 int err = 0;
2136
2137 /*
2138 * In a specific case for poweroff notify, we need to resume the card
2139 * before we can shutdown it properly.
2140 */
2141 if (mmc_can_poweroff_notify(host->card) &&
2142 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2143 err = _mmc_resume(host);
2144
2145 if (!err)
2146 err = _mmc_suspend(host, false);
2147
2148 return err;
2149}
2150
2151/*
2152 * Callback for resume.
2153 */
2154static int mmc_resume(struct mmc_host *host)
2155{
2156 pm_runtime_enable(&host->card->dev);
2157 return 0;
2158}
2159
2160/*
2161 * Callback for runtime_suspend.
2162 */
2163static int mmc_runtime_suspend(struct mmc_host *host)
2164{
2165 int err;
2166
2167 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2168 return 0;
2169
2170 err = _mmc_suspend(host, true);
2171 if (err)
2172 pr_err("%s: error %d doing aggressive suspend\n",
2173 mmc_hostname(host), err);
2174
2175 return err;
2176}
2177
2178/*
2179 * Callback for runtime_resume.
2180 */
2181static int mmc_runtime_resume(struct mmc_host *host)
2182{
2183 int err;
2184
2185 err = _mmc_resume(host);
2186 if (err && err != -ENOMEDIUM)
2187 pr_err("%s: error %d doing runtime resume\n",
2188 mmc_hostname(host), err);
2189
2190 return 0;
2191}
2192
2193static int mmc_can_reset(struct mmc_card *card)
2194{
2195 u8 rst_n_function;
2196
2197 rst_n_function = card->ext_csd.rst_n_function;
2198 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2199 return 0;
2200 return 1;
2201}
2202
2203static int _mmc_hw_reset(struct mmc_host *host)
2204{
2205 struct mmc_card *card = host->card;
2206
2207 /*
2208 * In the case of recovery, we can't expect flushing the cache to work
2209 * always, but we have a go and ignore errors.
2210 */
2211 _mmc_flush_cache(host);
2212
2213 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2214 mmc_can_reset(card)) {
2215 /* If the card accept RST_n signal, send it. */
2216 mmc_set_clock(host, host->f_init);
2217 host->ops->hw_reset(host);
2218 /* Set initial state and call mmc_set_ios */
2219 mmc_set_initial_state(host);
2220 } else {
2221 /* Do a brute force power cycle */
2222 mmc_power_cycle(host, card->ocr);
2223 mmc_pwrseq_reset(host);
2224 }
2225 return mmc_init_card(host, card->ocr, card);
2226}
2227
2228static const struct mmc_bus_ops mmc_ops = {
2229 .remove = mmc_remove,
2230 .detect = mmc_detect,
2231 .suspend = mmc_suspend,
2232 .resume = mmc_resume,
2233 .runtime_suspend = mmc_runtime_suspend,
2234 .runtime_resume = mmc_runtime_resume,
2235 .alive = mmc_alive,
2236 .shutdown = mmc_shutdown,
2237 .hw_reset = _mmc_hw_reset,
2238 .cache_enabled = _mmc_cache_enabled,
2239 .flush_cache = _mmc_flush_cache,
2240};
2241
2242/*
2243 * Starting point for MMC card init.
2244 */
2245int mmc_attach_mmc(struct mmc_host *host)
2246{
2247 int err;
2248 u32 ocr, rocr;
2249
2250 WARN_ON(!host->claimed);
2251
2252 /* Set correct bus mode for MMC before attempting attach */
2253 if (!mmc_host_is_spi(host))
2254 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2255
2256 err = mmc_send_op_cond(host, 0, &ocr);
2257 if (err)
2258 return err;
2259
2260 mmc_attach_bus(host, &mmc_ops);
2261 if (host->ocr_avail_mmc)
2262 host->ocr_avail = host->ocr_avail_mmc;
2263
2264 /*
2265 * We need to get OCR a different way for SPI.
2266 */
2267 if (mmc_host_is_spi(host)) {
2268 err = mmc_spi_read_ocr(host, 1, &ocr);
2269 if (err)
2270 goto err;
2271 }
2272
2273 rocr = mmc_select_voltage(host, ocr);
2274
2275 /*
2276 * Can we support the voltage of the card?
2277 */
2278 if (!rocr) {
2279 err = -EINVAL;
2280 goto err;
2281 }
2282
2283 /*
2284 * Detect and init the card.
2285 */
2286 err = mmc_init_card(host, rocr, NULL);
2287 if (err)
2288 goto err;
2289
2290 mmc_release_host(host);
2291 err = mmc_add_card(host->card);
2292 if (err)
2293 goto remove_card;
2294
2295 mmc_claim_host(host);
2296 return 0;
2297
2298remove_card:
2299 mmc_remove_card(host->card);
2300 mmc_claim_host(host);
2301 host->card = NULL;
2302err:
2303 mmc_detach_bus(host);
2304
2305 pr_err("%s: error %d whilst initialising MMC card\n",
2306 mmc_hostname(host), err);
2307
2308 return err;
2309}