Loading...
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/slab.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "bus.h"
22#include "mmc_ops.h"
23#include "sd_ops.h"
24
25static const unsigned int tran_exp[] = {
26 10000, 100000, 1000000, 10000000,
27 0, 0, 0, 0
28};
29
30static const unsigned char tran_mant[] = {
31 0, 10, 12, 13, 15, 20, 25, 30,
32 35, 40, 45, 50, 55, 60, 70, 80,
33};
34
35static const unsigned int tacc_exp[] = {
36 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
37};
38
39static const unsigned int tacc_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42};
43
44#define UNSTUFF_BITS(resp,start,size) \
45 ({ \
46 const int __size = size; \
47 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
48 const int __off = 3 - ((start) / 32); \
49 const int __shft = (start) & 31; \
50 u32 __res; \
51 \
52 __res = resp[__off] >> __shft; \
53 if (__size + __shft > 32) \
54 __res |= resp[__off-1] << ((32 - __shft) % 32); \
55 __res & __mask; \
56 })
57
58/*
59 * Given the decoded CSD structure, decode the raw CID to our CID structure.
60 */
61static int mmc_decode_cid(struct mmc_card *card)
62{
63 u32 *resp = card->raw_cid;
64
65 /*
66 * The selection of the format here is based upon published
67 * specs from sandisk and from what people have reported.
68 */
69 switch (card->csd.mmca_vsn) {
70 case 0: /* MMC v1.0 - v1.2 */
71 case 1: /* MMC v1.4 */
72 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
73 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
74 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
75 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
76 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
77 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
78 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
79 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
80 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
81 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
82 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
83 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
84 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
85 break;
86
87 case 2: /* MMC v2.0 - v2.2 */
88 case 3: /* MMC v3.1 - v3.3 */
89 case 4: /* MMC v4 */
90 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
91 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
92 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
93 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
94 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
95 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
96 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
97 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
98 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
99 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
101 break;
102
103 default:
104 printk(KERN_ERR "%s: card has unknown MMCA version %d\n",
105 mmc_hostname(card->host), card->csd.mmca_vsn);
106 return -EINVAL;
107 }
108
109 return 0;
110}
111
112static void mmc_set_erase_size(struct mmc_card *card)
113{
114 if (card->ext_csd.erase_group_def & 1)
115 card->erase_size = card->ext_csd.hc_erase_size;
116 else
117 card->erase_size = card->csd.erase_size;
118
119 mmc_init_erase(card);
120}
121
122/*
123 * Given a 128-bit response, decode to our card CSD structure.
124 */
125static int mmc_decode_csd(struct mmc_card *card)
126{
127 struct mmc_csd *csd = &card->csd;
128 unsigned int e, m, a, b;
129 u32 *resp = card->raw_csd;
130
131 /*
132 * We only understand CSD structure v1.1 and v1.2.
133 * v1.2 has extra information in bits 15, 11 and 10.
134 * We also support eMMC v4.4 & v4.41.
135 */
136 csd->structure = UNSTUFF_BITS(resp, 126, 2);
137 if (csd->structure == 0) {
138 printk(KERN_ERR "%s: unrecognised CSD structure version %d\n",
139 mmc_hostname(card->host), csd->structure);
140 return -EINVAL;
141 }
142
143 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
144 m = UNSTUFF_BITS(resp, 115, 4);
145 e = UNSTUFF_BITS(resp, 112, 3);
146 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
147 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
148
149 m = UNSTUFF_BITS(resp, 99, 4);
150 e = UNSTUFF_BITS(resp, 96, 3);
151 csd->max_dtr = tran_exp[e] * tran_mant[m];
152 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
153
154 e = UNSTUFF_BITS(resp, 47, 3);
155 m = UNSTUFF_BITS(resp, 62, 12);
156 csd->capacity = (1 + m) << (e + 2);
157
158 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
159 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
160 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
161 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
162 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
163 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
164 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
165
166 if (csd->write_blkbits >= 9) {
167 a = UNSTUFF_BITS(resp, 42, 5);
168 b = UNSTUFF_BITS(resp, 37, 5);
169 csd->erase_size = (a + 1) * (b + 1);
170 csd->erase_size <<= csd->write_blkbits - 9;
171 }
172
173 return 0;
174}
175
176/*
177 * Read extended CSD.
178 */
179static int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
180{
181 int err;
182 u8 *ext_csd;
183
184 BUG_ON(!card);
185 BUG_ON(!new_ext_csd);
186
187 *new_ext_csd = NULL;
188
189 if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
190 return 0;
191
192 /*
193 * As the ext_csd is so large and mostly unused, we don't store the
194 * raw block in mmc_card.
195 */
196 ext_csd = kmalloc(512, GFP_KERNEL);
197 if (!ext_csd) {
198 printk(KERN_ERR "%s: could not allocate a buffer to "
199 "receive the ext_csd.\n", mmc_hostname(card->host));
200 return -ENOMEM;
201 }
202
203 err = mmc_send_ext_csd(card, ext_csd);
204 if (err) {
205 kfree(ext_csd);
206 *new_ext_csd = NULL;
207
208 /* If the host or the card can't do the switch,
209 * fail more gracefully. */
210 if ((err != -EINVAL)
211 && (err != -ENOSYS)
212 && (err != -EFAULT))
213 return err;
214
215 /*
216 * High capacity cards should have this "magic" size
217 * stored in their CSD.
218 */
219 if (card->csd.capacity == (4096 * 512)) {
220 printk(KERN_ERR "%s: unable to read EXT_CSD "
221 "on a possible high capacity card. "
222 "Card will be ignored.\n",
223 mmc_hostname(card->host));
224 } else {
225 printk(KERN_WARNING "%s: unable to read "
226 "EXT_CSD, performance might "
227 "suffer.\n",
228 mmc_hostname(card->host));
229 err = 0;
230 }
231 } else
232 *new_ext_csd = ext_csd;
233
234 return err;
235}
236
237/*
238 * Decode extended CSD.
239 */
240static int mmc_read_ext_csd(struct mmc_card *card, u8 *ext_csd)
241{
242 int err = 0;
243
244 BUG_ON(!card);
245
246 if (!ext_csd)
247 return 0;
248
249 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
250 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
251 if (card->csd.structure == 3) {
252 if (card->ext_csd.raw_ext_csd_structure > 2) {
253 printk(KERN_ERR "%s: unrecognised EXT_CSD structure "
254 "version %d\n", mmc_hostname(card->host),
255 card->ext_csd.raw_ext_csd_structure);
256 err = -EINVAL;
257 goto out;
258 }
259 }
260
261 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
262 if (card->ext_csd.rev > 6) {
263 printk(KERN_ERR "%s: unrecognised EXT_CSD revision %d\n",
264 mmc_hostname(card->host), card->ext_csd.rev);
265 err = -EINVAL;
266 goto out;
267 }
268
269 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
270 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
271 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
272 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
273 if (card->ext_csd.rev >= 2) {
274 card->ext_csd.sectors =
275 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
276 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
277 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
278 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
279
280 /* Cards with density > 2GiB are sector addressed */
281 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
282 mmc_card_set_blockaddr(card);
283 }
284 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
285 switch (ext_csd[EXT_CSD_CARD_TYPE] & EXT_CSD_CARD_TYPE_MASK) {
286 case EXT_CSD_CARD_TYPE_DDR_52 | EXT_CSD_CARD_TYPE_52 |
287 EXT_CSD_CARD_TYPE_26:
288 card->ext_csd.hs_max_dtr = 52000000;
289 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_52;
290 break;
291 case EXT_CSD_CARD_TYPE_DDR_1_2V | EXT_CSD_CARD_TYPE_52 |
292 EXT_CSD_CARD_TYPE_26:
293 card->ext_csd.hs_max_dtr = 52000000;
294 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_2V;
295 break;
296 case EXT_CSD_CARD_TYPE_DDR_1_8V | EXT_CSD_CARD_TYPE_52 |
297 EXT_CSD_CARD_TYPE_26:
298 card->ext_csd.hs_max_dtr = 52000000;
299 card->ext_csd.card_type = EXT_CSD_CARD_TYPE_DDR_1_8V;
300 break;
301 case EXT_CSD_CARD_TYPE_52 | EXT_CSD_CARD_TYPE_26:
302 card->ext_csd.hs_max_dtr = 52000000;
303 break;
304 case EXT_CSD_CARD_TYPE_26:
305 card->ext_csd.hs_max_dtr = 26000000;
306 break;
307 default:
308 /* MMC v4 spec says this cannot happen */
309 printk(KERN_WARNING "%s: card is mmc v4 but doesn't "
310 "support any high-speed modes.\n",
311 mmc_hostname(card->host));
312 }
313
314 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
315 card->ext_csd.raw_erase_timeout_mult =
316 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
317 card->ext_csd.raw_hc_erase_grp_size =
318 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
319 if (card->ext_csd.rev >= 3) {
320 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
321 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
322
323 /* EXT_CSD value is in units of 10ms, but we store in ms */
324 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
325
326 /* Sleep / awake timeout in 100ns units */
327 if (sa_shift > 0 && sa_shift <= 0x17)
328 card->ext_csd.sa_timeout =
329 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
330 card->ext_csd.erase_group_def =
331 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
332 card->ext_csd.hc_erase_timeout = 300 *
333 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
334 card->ext_csd.hc_erase_size =
335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
336
337 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
338
339 /*
340 * There are two boot regions of equal size, defined in
341 * multiples of 128K.
342 */
343 card->ext_csd.boot_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
344 }
345
346 card->ext_csd.raw_hc_erase_gap_size =
347 ext_csd[EXT_CSD_PARTITION_ATTRIBUTE];
348 card->ext_csd.raw_sec_trim_mult =
349 ext_csd[EXT_CSD_SEC_TRIM_MULT];
350 card->ext_csd.raw_sec_erase_mult =
351 ext_csd[EXT_CSD_SEC_ERASE_MULT];
352 card->ext_csd.raw_sec_feature_support =
353 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
354 card->ext_csd.raw_trim_mult =
355 ext_csd[EXT_CSD_TRIM_MULT];
356 if (card->ext_csd.rev >= 4) {
357 /*
358 * Enhanced area feature support -- check whether the eMMC
359 * card has the Enhanced area enabled. If so, export enhanced
360 * area offset and size to user by adding sysfs interface.
361 */
362 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
363 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
364 u8 hc_erase_grp_sz =
365 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
366 u8 hc_wp_grp_sz =
367 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
368
369 card->ext_csd.enhanced_area_en = 1;
370 /*
371 * calculate the enhanced data area offset, in bytes
372 */
373 card->ext_csd.enhanced_area_offset =
374 (ext_csd[139] << 24) + (ext_csd[138] << 16) +
375 (ext_csd[137] << 8) + ext_csd[136];
376 if (mmc_card_blockaddr(card))
377 card->ext_csd.enhanced_area_offset <<= 9;
378 /*
379 * calculate the enhanced data area size, in kilobytes
380 */
381 card->ext_csd.enhanced_area_size =
382 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
383 ext_csd[140];
384 card->ext_csd.enhanced_area_size *=
385 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
386 card->ext_csd.enhanced_area_size <<= 9;
387 } else {
388 /*
389 * If the enhanced area is not enabled, disable these
390 * device attributes.
391 */
392 card->ext_csd.enhanced_area_offset = -EINVAL;
393 card->ext_csd.enhanced_area_size = -EINVAL;
394 }
395 card->ext_csd.sec_trim_mult =
396 ext_csd[EXT_CSD_SEC_TRIM_MULT];
397 card->ext_csd.sec_erase_mult =
398 ext_csd[EXT_CSD_SEC_ERASE_MULT];
399 card->ext_csd.sec_feature_support =
400 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
401 card->ext_csd.trim_timeout = 300 *
402 ext_csd[EXT_CSD_TRIM_MULT];
403 }
404
405 if (card->ext_csd.rev >= 5)
406 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
407
408 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
409 card->erased_byte = 0xFF;
410 else
411 card->erased_byte = 0x0;
412
413out:
414 return err;
415}
416
417static inline void mmc_free_ext_csd(u8 *ext_csd)
418{
419 kfree(ext_csd);
420}
421
422
423static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
424{
425 u8 *bw_ext_csd;
426 int err;
427
428 if (bus_width == MMC_BUS_WIDTH_1)
429 return 0;
430
431 err = mmc_get_ext_csd(card, &bw_ext_csd);
432
433 if (err || bw_ext_csd == NULL) {
434 if (bus_width != MMC_BUS_WIDTH_1)
435 err = -EINVAL;
436 goto out;
437 }
438
439 if (bus_width == MMC_BUS_WIDTH_1)
440 goto out;
441
442 /* only compare read only fields */
443 err = (!(card->ext_csd.raw_partition_support ==
444 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
445 (card->ext_csd.raw_erased_mem_count ==
446 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
447 (card->ext_csd.rev ==
448 bw_ext_csd[EXT_CSD_REV]) &&
449 (card->ext_csd.raw_ext_csd_structure ==
450 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
451 (card->ext_csd.raw_card_type ==
452 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
453 (card->ext_csd.raw_s_a_timeout ==
454 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
455 (card->ext_csd.raw_hc_erase_gap_size ==
456 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
457 (card->ext_csd.raw_erase_timeout_mult ==
458 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
459 (card->ext_csd.raw_hc_erase_grp_size ==
460 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
461 (card->ext_csd.raw_sec_trim_mult ==
462 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
463 (card->ext_csd.raw_sec_erase_mult ==
464 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
465 (card->ext_csd.raw_sec_feature_support ==
466 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
467 (card->ext_csd.raw_trim_mult ==
468 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
469 (card->ext_csd.raw_sectors[0] ==
470 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
471 (card->ext_csd.raw_sectors[1] ==
472 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
473 (card->ext_csd.raw_sectors[2] ==
474 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
475 (card->ext_csd.raw_sectors[3] ==
476 bw_ext_csd[EXT_CSD_SEC_CNT + 3]));
477 if (err)
478 err = -EINVAL;
479
480out:
481 mmc_free_ext_csd(bw_ext_csd);
482 return err;
483}
484
485MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
486 card->raw_cid[2], card->raw_cid[3]);
487MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
488 card->raw_csd[2], card->raw_csd[3]);
489MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
490MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
491MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
492MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
493MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
494MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
495MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
496MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
497MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
498MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
499 card->ext_csd.enhanced_area_offset);
500MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
501
502static struct attribute *mmc_std_attrs[] = {
503 &dev_attr_cid.attr,
504 &dev_attr_csd.attr,
505 &dev_attr_date.attr,
506 &dev_attr_erase_size.attr,
507 &dev_attr_preferred_erase_size.attr,
508 &dev_attr_fwrev.attr,
509 &dev_attr_hwrev.attr,
510 &dev_attr_manfid.attr,
511 &dev_attr_name.attr,
512 &dev_attr_oemid.attr,
513 &dev_attr_serial.attr,
514 &dev_attr_enhanced_area_offset.attr,
515 &dev_attr_enhanced_area_size.attr,
516 NULL,
517};
518
519static struct attribute_group mmc_std_attr_group = {
520 .attrs = mmc_std_attrs,
521};
522
523static const struct attribute_group *mmc_attr_groups[] = {
524 &mmc_std_attr_group,
525 NULL,
526};
527
528static struct device_type mmc_type = {
529 .groups = mmc_attr_groups,
530};
531
532/*
533 * Handle the detection and initialisation of a card.
534 *
535 * In the case of a resume, "oldcard" will contain the card
536 * we're trying to reinitialise.
537 */
538static int mmc_init_card(struct mmc_host *host, u32 ocr,
539 struct mmc_card *oldcard)
540{
541 struct mmc_card *card;
542 int err, ddr = 0;
543 u32 cid[4];
544 unsigned int max_dtr;
545 u32 rocr;
546 u8 *ext_csd = NULL;
547
548 BUG_ON(!host);
549 WARN_ON(!host->claimed);
550
551 /*
552 * Since we're changing the OCR value, we seem to
553 * need to tell some cards to go back to the idle
554 * state. We wait 1ms to give cards time to
555 * respond.
556 */
557 mmc_go_idle(host);
558
559 /* The extra bit indicates that we support high capacity */
560 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
561 if (err)
562 goto err;
563
564 /*
565 * For SPI, enable CRC as appropriate.
566 */
567 if (mmc_host_is_spi(host)) {
568 err = mmc_spi_set_crc(host, use_spi_crc);
569 if (err)
570 goto err;
571 }
572
573 /*
574 * Fetch CID from card.
575 */
576 if (mmc_host_is_spi(host))
577 err = mmc_send_cid(host, cid);
578 else
579 err = mmc_all_send_cid(host, cid);
580 if (err)
581 goto err;
582
583 if (oldcard) {
584 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
585 err = -ENOENT;
586 goto err;
587 }
588
589 card = oldcard;
590 } else {
591 /*
592 * Allocate card structure.
593 */
594 card = mmc_alloc_card(host, &mmc_type);
595 if (IS_ERR(card)) {
596 err = PTR_ERR(card);
597 goto err;
598 }
599
600 card->type = MMC_TYPE_MMC;
601 card->rca = 1;
602 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
603 }
604
605 /*
606 * For native busses: set card RCA and quit open drain mode.
607 */
608 if (!mmc_host_is_spi(host)) {
609 err = mmc_set_relative_addr(card);
610 if (err)
611 goto free_card;
612
613 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
614 }
615
616 if (!oldcard) {
617 /*
618 * Fetch CSD from card.
619 */
620 err = mmc_send_csd(card, card->raw_csd);
621 if (err)
622 goto free_card;
623
624 err = mmc_decode_csd(card);
625 if (err)
626 goto free_card;
627 err = mmc_decode_cid(card);
628 if (err)
629 goto free_card;
630 }
631
632 /*
633 * Select card, as all following commands rely on that.
634 */
635 if (!mmc_host_is_spi(host)) {
636 err = mmc_select_card(card);
637 if (err)
638 goto free_card;
639 }
640
641 if (!oldcard) {
642 /*
643 * Fetch and process extended CSD.
644 */
645
646 err = mmc_get_ext_csd(card, &ext_csd);
647 if (err)
648 goto free_card;
649 err = mmc_read_ext_csd(card, ext_csd);
650 if (err)
651 goto free_card;
652
653 /* If doing byte addressing, check if required to do sector
654 * addressing. Handle the case of <2GB cards needing sector
655 * addressing. See section 8.1 JEDEC Standard JED84-A441;
656 * ocr register has bit 30 set for sector addressing.
657 */
658 if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
659 mmc_card_set_blockaddr(card);
660
661 /* Erase size depends on CSD and Extended CSD */
662 mmc_set_erase_size(card);
663 }
664
665 /*
666 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
667 * bit. This bit will be lost every time after a reset or power off.
668 */
669 if (card->ext_csd.enhanced_area_en) {
670 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
671 EXT_CSD_ERASE_GROUP_DEF, 1, 0);
672
673 if (err && err != -EBADMSG)
674 goto free_card;
675
676 if (err) {
677 err = 0;
678 /*
679 * Just disable enhanced area off & sz
680 * will try to enable ERASE_GROUP_DEF
681 * during next time reinit
682 */
683 card->ext_csd.enhanced_area_offset = -EINVAL;
684 card->ext_csd.enhanced_area_size = -EINVAL;
685 } else {
686 card->ext_csd.erase_group_def = 1;
687 /*
688 * enable ERASE_GRP_DEF successfully.
689 * This will affect the erase size, so
690 * here need to reset erase size
691 */
692 mmc_set_erase_size(card);
693 }
694 }
695
696 /*
697 * Ensure eMMC user default partition is enabled
698 */
699 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
700 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
701 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
702 card->ext_csd.part_config,
703 card->ext_csd.part_time);
704 if (err && err != -EBADMSG)
705 goto free_card;
706 }
707
708 /*
709 * Activate high speed (if supported)
710 */
711 if ((card->ext_csd.hs_max_dtr != 0) &&
712 (host->caps & MMC_CAP_MMC_HIGHSPEED)) {
713 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
714 EXT_CSD_HS_TIMING, 1, 0);
715 if (err && err != -EBADMSG)
716 goto free_card;
717
718 if (err) {
719 printk(KERN_WARNING "%s: switch to highspeed failed\n",
720 mmc_hostname(card->host));
721 err = 0;
722 } else {
723 mmc_card_set_highspeed(card);
724 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
725 }
726 }
727
728 /*
729 * Compute bus speed.
730 */
731 max_dtr = (unsigned int)-1;
732
733 if (mmc_card_highspeed(card)) {
734 if (max_dtr > card->ext_csd.hs_max_dtr)
735 max_dtr = card->ext_csd.hs_max_dtr;
736 } else if (max_dtr > card->csd.max_dtr) {
737 max_dtr = card->csd.max_dtr;
738 }
739
740 mmc_set_clock(host, max_dtr);
741
742 /*
743 * Indicate DDR mode (if supported).
744 */
745 if (mmc_card_highspeed(card)) {
746 if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
747 && ((host->caps & (MMC_CAP_1_8V_DDR |
748 MMC_CAP_UHS_DDR50))
749 == (MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50)))
750 ddr = MMC_1_8V_DDR_MODE;
751 else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
752 && ((host->caps & (MMC_CAP_1_2V_DDR |
753 MMC_CAP_UHS_DDR50))
754 == (MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50)))
755 ddr = MMC_1_2V_DDR_MODE;
756 }
757
758 /*
759 * Activate wide bus and DDR (if supported).
760 */
761 if ((card->csd.mmca_vsn >= CSD_SPEC_VER_4) &&
762 (host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) {
763 static unsigned ext_csd_bits[][2] = {
764 { EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8 },
765 { EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4 },
766 { EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1 },
767 };
768 static unsigned bus_widths[] = {
769 MMC_BUS_WIDTH_8,
770 MMC_BUS_WIDTH_4,
771 MMC_BUS_WIDTH_1
772 };
773 unsigned idx, bus_width = 0;
774
775 if (host->caps & MMC_CAP_8_BIT_DATA)
776 idx = 0;
777 else
778 idx = 1;
779 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
780 bus_width = bus_widths[idx];
781 if (bus_width == MMC_BUS_WIDTH_1)
782 ddr = 0; /* no DDR for 1-bit width */
783 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
784 EXT_CSD_BUS_WIDTH,
785 ext_csd_bits[idx][0],
786 0);
787 if (!err) {
788 mmc_set_bus_width(card->host, bus_width);
789
790 /*
791 * If controller can't handle bus width test,
792 * compare ext_csd previously read in 1 bit mode
793 * against ext_csd at new bus width
794 */
795 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
796 err = mmc_compare_ext_csds(card,
797 bus_width);
798 else
799 err = mmc_bus_test(card, bus_width);
800 if (!err)
801 break;
802 }
803 }
804
805 if (!err && ddr) {
806 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
807 EXT_CSD_BUS_WIDTH,
808 ext_csd_bits[idx][1],
809 0);
810 }
811 if (err) {
812 printk(KERN_WARNING "%s: switch to bus width %d ddr %d "
813 "failed\n", mmc_hostname(card->host),
814 1 << bus_width, ddr);
815 goto free_card;
816 } else if (ddr) {
817 /*
818 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
819 * signaling.
820 *
821 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
822 *
823 * 1.8V vccq at 3.3V core voltage (vcc) is not required
824 * in the JEDEC spec for DDR.
825 *
826 * Do not force change in vccq since we are obviously
827 * working and no change to vccq is needed.
828 *
829 * WARNING: eMMC rules are NOT the same as SD DDR
830 */
831 if (ddr == EXT_CSD_CARD_TYPE_DDR_1_2V) {
832 err = mmc_set_signal_voltage(host,
833 MMC_SIGNAL_VOLTAGE_120, 0);
834 if (err)
835 goto err;
836 }
837 mmc_card_set_ddr_mode(card);
838 mmc_set_timing(card->host, MMC_TIMING_UHS_DDR50);
839 mmc_set_bus_width(card->host, bus_width);
840 }
841 }
842
843 if (!oldcard)
844 host->card = card;
845
846 mmc_free_ext_csd(ext_csd);
847 return 0;
848
849free_card:
850 if (!oldcard)
851 mmc_remove_card(card);
852err:
853 mmc_free_ext_csd(ext_csd);
854
855 return err;
856}
857
858/*
859 * Host is being removed. Free up the current card.
860 */
861static void mmc_remove(struct mmc_host *host)
862{
863 BUG_ON(!host);
864 BUG_ON(!host->card);
865
866 mmc_remove_card(host->card);
867 host->card = NULL;
868}
869
870/*
871 * Card detection callback from host.
872 */
873static void mmc_detect(struct mmc_host *host)
874{
875 int err;
876
877 BUG_ON(!host);
878 BUG_ON(!host->card);
879
880 mmc_claim_host(host);
881
882 /*
883 * Just check if our card has been removed.
884 */
885 err = mmc_send_status(host->card, NULL);
886
887 mmc_release_host(host);
888
889 if (err) {
890 mmc_remove(host);
891
892 mmc_claim_host(host);
893 mmc_detach_bus(host);
894 mmc_release_host(host);
895 }
896}
897
898/*
899 * Suspend callback from host.
900 */
901static int mmc_suspend(struct mmc_host *host)
902{
903 BUG_ON(!host);
904 BUG_ON(!host->card);
905
906 mmc_claim_host(host);
907 if (!mmc_host_is_spi(host))
908 mmc_deselect_cards(host);
909 host->card->state &= ~MMC_STATE_HIGHSPEED;
910 mmc_release_host(host);
911
912 return 0;
913}
914
915/*
916 * Resume callback from host.
917 *
918 * This function tries to determine if the same card is still present
919 * and, if so, restore all state to it.
920 */
921static int mmc_resume(struct mmc_host *host)
922{
923 int err;
924
925 BUG_ON(!host);
926 BUG_ON(!host->card);
927
928 mmc_claim_host(host);
929 err = mmc_init_card(host, host->ocr, host->card);
930 mmc_release_host(host);
931
932 return err;
933}
934
935static int mmc_power_restore(struct mmc_host *host)
936{
937 int ret;
938
939 host->card->state &= ~MMC_STATE_HIGHSPEED;
940 mmc_claim_host(host);
941 ret = mmc_init_card(host, host->ocr, host->card);
942 mmc_release_host(host);
943
944 return ret;
945}
946
947static int mmc_sleep(struct mmc_host *host)
948{
949 struct mmc_card *card = host->card;
950 int err = -ENOSYS;
951
952 if (card && card->ext_csd.rev >= 3) {
953 err = mmc_card_sleepawake(host, 1);
954 if (err < 0)
955 pr_debug("%s: Error %d while putting card into sleep",
956 mmc_hostname(host), err);
957 }
958
959 return err;
960}
961
962static int mmc_awake(struct mmc_host *host)
963{
964 struct mmc_card *card = host->card;
965 int err = -ENOSYS;
966
967 if (card && card->ext_csd.rev >= 3) {
968 err = mmc_card_sleepawake(host, 0);
969 if (err < 0)
970 pr_debug("%s: Error %d while awaking sleeping card",
971 mmc_hostname(host), err);
972 }
973
974 return err;
975}
976
977static const struct mmc_bus_ops mmc_ops = {
978 .awake = mmc_awake,
979 .sleep = mmc_sleep,
980 .remove = mmc_remove,
981 .detect = mmc_detect,
982 .suspend = NULL,
983 .resume = NULL,
984 .power_restore = mmc_power_restore,
985};
986
987static const struct mmc_bus_ops mmc_ops_unsafe = {
988 .awake = mmc_awake,
989 .sleep = mmc_sleep,
990 .remove = mmc_remove,
991 .detect = mmc_detect,
992 .suspend = mmc_suspend,
993 .resume = mmc_resume,
994 .power_restore = mmc_power_restore,
995};
996
997static void mmc_attach_bus_ops(struct mmc_host *host)
998{
999 const struct mmc_bus_ops *bus_ops;
1000
1001 if (!mmc_card_is_removable(host))
1002 bus_ops = &mmc_ops_unsafe;
1003 else
1004 bus_ops = &mmc_ops;
1005 mmc_attach_bus(host, bus_ops);
1006}
1007
1008/*
1009 * Starting point for MMC card init.
1010 */
1011int mmc_attach_mmc(struct mmc_host *host)
1012{
1013 int err;
1014 u32 ocr;
1015
1016 BUG_ON(!host);
1017 WARN_ON(!host->claimed);
1018
1019 err = mmc_send_op_cond(host, 0, &ocr);
1020 if (err)
1021 return err;
1022
1023 mmc_attach_bus_ops(host);
1024 if (host->ocr_avail_mmc)
1025 host->ocr_avail = host->ocr_avail_mmc;
1026
1027 /*
1028 * We need to get OCR a different way for SPI.
1029 */
1030 if (mmc_host_is_spi(host)) {
1031 err = mmc_spi_read_ocr(host, 1, &ocr);
1032 if (err)
1033 goto err;
1034 }
1035
1036 /*
1037 * Sanity check the voltages that the card claims to
1038 * support.
1039 */
1040 if (ocr & 0x7F) {
1041 printk(KERN_WARNING "%s: card claims to support voltages "
1042 "below the defined range. These will be ignored.\n",
1043 mmc_hostname(host));
1044 ocr &= ~0x7F;
1045 }
1046
1047 host->ocr = mmc_select_voltage(host, ocr);
1048
1049 /*
1050 * Can we support the voltage of the card?
1051 */
1052 if (!host->ocr) {
1053 err = -EINVAL;
1054 goto err;
1055 }
1056
1057 /*
1058 * Detect and init the card.
1059 */
1060 err = mmc_init_card(host, host->ocr, NULL);
1061 if (err)
1062 goto err;
1063
1064 mmc_release_host(host);
1065 err = mmc_add_card(host->card);
1066 mmc_claim_host(host);
1067 if (err)
1068 goto remove_card;
1069
1070 return 0;
1071
1072remove_card:
1073 mmc_release_host(host);
1074 mmc_remove_card(host->card);
1075 mmc_claim_host(host);
1076 host->card = NULL;
1077err:
1078 mmc_detach_bus(host);
1079
1080 printk(KERN_ERR "%s: error %d whilst initialising MMC card\n",
1081 mmc_hostname(host), err);
1082
1083 return err;
1084}
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29#define DEFAULT_CMD6_TIMEOUT_MS 500
30
31static const unsigned int tran_exp[] = {
32 10000, 100000, 1000000, 10000000,
33 0, 0, 0, 0
34};
35
36static const unsigned char tran_mant[] = {
37 0, 10, 12, 13, 15, 20, 25, 30,
38 35, 40, 45, 50, 55, 60, 70, 80,
39};
40
41static const unsigned int tacc_exp[] = {
42 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
43};
44
45static const unsigned int tacc_mant[] = {
46 0, 10, 12, 13, 15, 20, 25, 30,
47 35, 40, 45, 50, 55, 60, 70, 80,
48};
49
50static const struct mmc_fixup mmc_ext_csd_fixups[] = {
51 /*
52 * Certain Hynix eMMC 4.41 cards might get broken when HPI feature
53 * is used so disable the HPI feature for such buggy cards.
54 */
55 MMC_FIXUP_EXT_CSD_REV(CID_NAME_ANY, CID_MANFID_HYNIX,
56 0x014a, add_quirk, MMC_QUIRK_BROKEN_HPI, 5),
57
58 END_FIXUP
59};
60
61#define UNSTUFF_BITS(resp,start,size) \
62 ({ \
63 const int __size = size; \
64 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
65 const int __off = 3 - ((start) / 32); \
66 const int __shft = (start) & 31; \
67 u32 __res; \
68 \
69 __res = resp[__off] >> __shft; \
70 if (__size + __shft > 32) \
71 __res |= resp[__off-1] << ((32 - __shft) % 32); \
72 __res & __mask; \
73 })
74
75/*
76 * Given the decoded CSD structure, decode the raw CID to our CID structure.
77 */
78static int mmc_decode_cid(struct mmc_card *card)
79{
80 u32 *resp = card->raw_cid;
81
82 /*
83 * The selection of the format here is based upon published
84 * specs from sandisk and from what people have reported.
85 */
86 switch (card->csd.mmca_vsn) {
87 case 0: /* MMC v1.0 - v1.2 */
88 case 1: /* MMC v1.4 */
89 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
95 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
96 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
97 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
98 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
99 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
100 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
101 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
102 break;
103
104 case 2: /* MMC v2.0 - v2.2 */
105 case 3: /* MMC v3.1 - v3.3 */
106 case 4: /* MMC v4 */
107 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
108 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
109 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
110 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
111 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
112 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
113 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
114 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
115 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
116 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
117 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
118 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
119 break;
120
121 default:
122 pr_err("%s: card has unknown MMCA version %d\n",
123 mmc_hostname(card->host), card->csd.mmca_vsn);
124 return -EINVAL;
125 }
126
127 return 0;
128}
129
130static void mmc_set_erase_size(struct mmc_card *card)
131{
132 if (card->ext_csd.erase_group_def & 1)
133 card->erase_size = card->ext_csd.hc_erase_size;
134 else
135 card->erase_size = card->csd.erase_size;
136
137 mmc_init_erase(card);
138}
139
140/*
141 * Given a 128-bit response, decode to our card CSD structure.
142 */
143static int mmc_decode_csd(struct mmc_card *card)
144{
145 struct mmc_csd *csd = &card->csd;
146 unsigned int e, m, a, b;
147 u32 *resp = card->raw_csd;
148
149 /*
150 * We only understand CSD structure v1.1 and v1.2.
151 * v1.2 has extra information in bits 15, 11 and 10.
152 * We also support eMMC v4.4 & v4.41.
153 */
154 csd->structure = UNSTUFF_BITS(resp, 126, 2);
155 if (csd->structure == 0) {
156 pr_err("%s: unrecognised CSD structure version %d\n",
157 mmc_hostname(card->host), csd->structure);
158 return -EINVAL;
159 }
160
161 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
162 m = UNSTUFF_BITS(resp, 115, 4);
163 e = UNSTUFF_BITS(resp, 112, 3);
164 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
165 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
166
167 m = UNSTUFF_BITS(resp, 99, 4);
168 e = UNSTUFF_BITS(resp, 96, 3);
169 csd->max_dtr = tran_exp[e] * tran_mant[m];
170 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
171
172 e = UNSTUFF_BITS(resp, 47, 3);
173 m = UNSTUFF_BITS(resp, 62, 12);
174 csd->capacity = (1 + m) << (e + 2);
175
176 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
177 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
178 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
179 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
180 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
181 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
182 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
183 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
184
185 if (csd->write_blkbits >= 9) {
186 a = UNSTUFF_BITS(resp, 42, 5);
187 b = UNSTUFF_BITS(resp, 37, 5);
188 csd->erase_size = (a + 1) * (b + 1);
189 csd->erase_size <<= csd->write_blkbits - 9;
190 }
191
192 return 0;
193}
194
195static void mmc_select_card_type(struct mmc_card *card)
196{
197 struct mmc_host *host = card->host;
198 u8 card_type = card->ext_csd.raw_card_type;
199 u32 caps = host->caps, caps2 = host->caps2;
200 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
201 unsigned int avail_type = 0;
202
203 if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 card_type & EXT_CSD_CARD_TYPE_HS_26) {
205 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
206 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
207 }
208
209 if (caps & MMC_CAP_MMC_HIGHSPEED &&
210 card_type & EXT_CSD_CARD_TYPE_HS_52) {
211 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
212 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
213 }
214
215 if (caps & MMC_CAP_1_8V_DDR &&
216 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
217 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
219 }
220
221 if (caps & MMC_CAP_1_2V_DDR &&
222 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
223 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
224 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
225 }
226
227 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
228 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
229 hs200_max_dtr = MMC_HS200_MAX_DTR;
230 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
231 }
232
233 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
234 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
235 hs200_max_dtr = MMC_HS200_MAX_DTR;
236 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
237 }
238
239 if (caps2 & MMC_CAP2_HS400_1_8V &&
240 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
241 hs200_max_dtr = MMC_HS200_MAX_DTR;
242 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
243 }
244
245 if (caps2 & MMC_CAP2_HS400_1_2V &&
246 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
247 hs200_max_dtr = MMC_HS200_MAX_DTR;
248 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
249 }
250
251 if ((caps2 & MMC_CAP2_HS400_ES) &&
252 card->ext_csd.strobe_support &&
253 (avail_type & EXT_CSD_CARD_TYPE_HS400))
254 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
255
256 card->ext_csd.hs_max_dtr = hs_max_dtr;
257 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
258 card->mmc_avail_type = avail_type;
259}
260
261static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
262{
263 u8 hc_erase_grp_sz, hc_wp_grp_sz;
264
265 /*
266 * Disable these attributes by default
267 */
268 card->ext_csd.enhanced_area_offset = -EINVAL;
269 card->ext_csd.enhanced_area_size = -EINVAL;
270
271 /*
272 * Enhanced area feature support -- check whether the eMMC
273 * card has the Enhanced area enabled. If so, export enhanced
274 * area offset and size to user by adding sysfs interface.
275 */
276 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
277 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
278 if (card->ext_csd.partition_setting_completed) {
279 hc_erase_grp_sz =
280 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
281 hc_wp_grp_sz =
282 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
283
284 /*
285 * calculate the enhanced data area offset, in bytes
286 */
287 card->ext_csd.enhanced_area_offset =
288 (((unsigned long long)ext_csd[139]) << 24) +
289 (((unsigned long long)ext_csd[138]) << 16) +
290 (((unsigned long long)ext_csd[137]) << 8) +
291 (((unsigned long long)ext_csd[136]));
292 if (mmc_card_blockaddr(card))
293 card->ext_csd.enhanced_area_offset <<= 9;
294 /*
295 * calculate the enhanced data area size, in kilobytes
296 */
297 card->ext_csd.enhanced_area_size =
298 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
299 ext_csd[140];
300 card->ext_csd.enhanced_area_size *=
301 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
302 card->ext_csd.enhanced_area_size <<= 9;
303 } else {
304 pr_warn("%s: defines enhanced area without partition setting complete\n",
305 mmc_hostname(card->host));
306 }
307 }
308}
309
310static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
311{
312 int idx;
313 u8 hc_erase_grp_sz, hc_wp_grp_sz;
314 unsigned int part_size;
315
316 /*
317 * General purpose partition feature support --
318 * If ext_csd has the size of general purpose partitions,
319 * set size, part_cfg, partition name in mmc_part.
320 */
321 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
322 EXT_CSD_PART_SUPPORT_PART_EN) {
323 hc_erase_grp_sz =
324 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
325 hc_wp_grp_sz =
326 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
327
328 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
329 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
330 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
331 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
332 continue;
333 if (card->ext_csd.partition_setting_completed == 0) {
334 pr_warn("%s: has partition size defined without partition complete\n",
335 mmc_hostname(card->host));
336 break;
337 }
338 part_size =
339 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
340 << 16) +
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
342 << 8) +
343 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
344 part_size *= (size_t)(hc_erase_grp_sz *
345 hc_wp_grp_sz);
346 mmc_part_add(card, part_size << 19,
347 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
348 "gp%d", idx, false,
349 MMC_BLK_DATA_AREA_GP);
350 }
351 }
352}
353
354/* Minimum partition switch timeout in milliseconds */
355#define MMC_MIN_PART_SWITCH_TIME 300
356
357/*
358 * Decode extended CSD.
359 */
360static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
361{
362 int err = 0, idx;
363 unsigned int part_size;
364 struct device_node *np;
365 bool broken_hpi = false;
366
367 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
368 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
369 if (card->csd.structure == 3) {
370 if (card->ext_csd.raw_ext_csd_structure > 2) {
371 pr_err("%s: unrecognised EXT_CSD structure "
372 "version %d\n", mmc_hostname(card->host),
373 card->ext_csd.raw_ext_csd_structure);
374 err = -EINVAL;
375 goto out;
376 }
377 }
378
379 np = mmc_of_find_child_device(card->host, 0);
380 if (np && of_device_is_compatible(np, "mmc-card"))
381 broken_hpi = of_property_read_bool(np, "broken-hpi");
382 of_node_put(np);
383
384 /*
385 * The EXT_CSD format is meant to be forward compatible. As long
386 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
387 * are authorized, see JEDEC JESD84-B50 section B.8.
388 */
389 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
390
391 /* fixup device after ext_csd revision field is updated */
392 mmc_fixup_device(card, mmc_ext_csd_fixups);
393
394 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
395 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
396 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
397 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
398 if (card->ext_csd.rev >= 2) {
399 card->ext_csd.sectors =
400 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
401 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
402 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
403 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
404
405 /* Cards with density > 2GiB are sector addressed */
406 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
407 mmc_card_set_blockaddr(card);
408 }
409
410 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
411 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
412 mmc_select_card_type(card);
413
414 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
415 card->ext_csd.raw_erase_timeout_mult =
416 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
417 card->ext_csd.raw_hc_erase_grp_size =
418 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
419 if (card->ext_csd.rev >= 3) {
420 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
421 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
422
423 /* EXT_CSD value is in units of 10ms, but we store in ms */
424 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
425 /* Some eMMC set the value too low so set a minimum */
426 if (card->ext_csd.part_time &&
427 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
428 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
429
430 /* Sleep / awake timeout in 100ns units */
431 if (sa_shift > 0 && sa_shift <= 0x17)
432 card->ext_csd.sa_timeout =
433 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 card->ext_csd.erase_group_def =
435 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 card->ext_csd.hc_erase_timeout = 300 *
437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 card->ext_csd.hc_erase_size =
439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440
441 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442
443 /*
444 * There are two boot regions of equal size, defined in
445 * multiples of 128K.
446 */
447 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 mmc_part_add(card, part_size,
451 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 "boot%d", idx, true,
453 MMC_BLK_DATA_AREA_BOOT);
454 }
455 }
456 }
457
458 card->ext_csd.raw_hc_erase_gap_size =
459 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 card->ext_csd.raw_sec_trim_mult =
461 ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 card->ext_csd.raw_sec_erase_mult =
463 ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 card->ext_csd.raw_sec_feature_support =
465 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 card->ext_csd.raw_trim_mult =
467 ext_csd[EXT_CSD_TRIM_MULT];
468 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 if (card->ext_csd.rev >= 4) {
471 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 EXT_CSD_PART_SETTING_COMPLETED)
473 card->ext_csd.partition_setting_completed = 1;
474 else
475 card->ext_csd.partition_setting_completed = 0;
476
477 mmc_manage_enhanced_area(card, ext_csd);
478
479 mmc_manage_gp_partitions(card, ext_csd);
480
481 card->ext_csd.sec_trim_mult =
482 ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 card->ext_csd.sec_erase_mult =
484 ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 card->ext_csd.sec_feature_support =
486 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 card->ext_csd.trim_timeout = 300 *
488 ext_csd[EXT_CSD_TRIM_MULT];
489
490 /*
491 * Note that the call to mmc_part_add above defaults to read
492 * only. If this default assumption is changed, the call must
493 * take into account the value of boot_locked below.
494 */
495 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 card->ext_csd.boot_ro_lockable = true;
497
498 /* Save power class values */
499 card->ext_csd.raw_pwr_cl_52_195 =
500 ext_csd[EXT_CSD_PWR_CL_52_195];
501 card->ext_csd.raw_pwr_cl_26_195 =
502 ext_csd[EXT_CSD_PWR_CL_26_195];
503 card->ext_csd.raw_pwr_cl_52_360 =
504 ext_csd[EXT_CSD_PWR_CL_52_360];
505 card->ext_csd.raw_pwr_cl_26_360 =
506 ext_csd[EXT_CSD_PWR_CL_26_360];
507 card->ext_csd.raw_pwr_cl_200_195 =
508 ext_csd[EXT_CSD_PWR_CL_200_195];
509 card->ext_csd.raw_pwr_cl_200_360 =
510 ext_csd[EXT_CSD_PWR_CL_200_360];
511 card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 }
518
519 if (card->ext_csd.rev >= 5) {
520 /* Adjust production date as per JEDEC JESD84-B451 */
521 if (card->cid.year < 2010)
522 card->cid.year += 16;
523
524 /* check whether the eMMC card supports BKOPS */
525 if (!mmc_card_broken_hpi(card) &&
526 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 card->ext_csd.bkops = 1;
528 card->ext_csd.man_bkops_en =
529 (ext_csd[EXT_CSD_BKOPS_EN] &
530 EXT_CSD_MANUAL_BKOPS_MASK);
531 card->ext_csd.raw_bkops_status =
532 ext_csd[EXT_CSD_BKOPS_STATUS];
533 if (!card->ext_csd.man_bkops_en)
534 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
535 mmc_hostname(card->host));
536 }
537
538 /* check whether the eMMC card supports HPI */
539 if (!mmc_card_broken_hpi(card) &&
540 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
541 card->ext_csd.hpi = 1;
542 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
543 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
544 else
545 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
546 /*
547 * Indicate the maximum timeout to close
548 * a command interrupted by HPI
549 */
550 card->ext_csd.out_of_int_time =
551 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
552 }
553
554 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
555 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
556
557 /*
558 * RPMB regions are defined in multiples of 128K.
559 */
560 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
561 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
562 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
563 EXT_CSD_PART_CONFIG_ACC_RPMB,
564 "rpmb", 0, false,
565 MMC_BLK_DATA_AREA_RPMB);
566 }
567 }
568
569 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
570 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
571 card->erased_byte = 0xFF;
572 else
573 card->erased_byte = 0x0;
574
575 /* eMMC v4.5 or later */
576 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
577 if (card->ext_csd.rev >= 6) {
578 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
579
580 card->ext_csd.generic_cmd6_time = 10 *
581 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
582 card->ext_csd.power_off_longtime = 10 *
583 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
584
585 card->ext_csd.cache_size =
586 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
587 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
588 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
589 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
590
591 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
592 card->ext_csd.data_sector_size = 4096;
593 else
594 card->ext_csd.data_sector_size = 512;
595
596 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
597 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
598 card->ext_csd.data_tag_unit_size =
599 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
600 (card->ext_csd.data_sector_size);
601 } else {
602 card->ext_csd.data_tag_unit_size = 0;
603 }
604
605 card->ext_csd.max_packed_writes =
606 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
607 card->ext_csd.max_packed_reads =
608 ext_csd[EXT_CSD_MAX_PACKED_READS];
609 } else {
610 card->ext_csd.data_sector_size = 512;
611 }
612
613 /* eMMC v5 or later */
614 if (card->ext_csd.rev >= 7) {
615 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
616 MMC_FIRMWARE_LEN);
617 card->ext_csd.ffu_capable =
618 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
619 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
620 }
621
622 /* eMMC v5.1 or later */
623 if (card->ext_csd.rev >= 8) {
624 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
625 EXT_CSD_CMDQ_SUPPORTED;
626 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
627 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
628 /* Exclude inefficiently small queue depths */
629 if (card->ext_csd.cmdq_depth <= 2) {
630 card->ext_csd.cmdq_support = false;
631 card->ext_csd.cmdq_depth = 0;
632 }
633 if (card->ext_csd.cmdq_support) {
634 pr_debug("%s: Command Queue supported depth %u\n",
635 mmc_hostname(card->host),
636 card->ext_csd.cmdq_depth);
637 }
638 }
639out:
640 return err;
641}
642
643static int mmc_read_ext_csd(struct mmc_card *card)
644{
645 u8 *ext_csd;
646 int err;
647
648 if (!mmc_can_ext_csd(card))
649 return 0;
650
651 err = mmc_get_ext_csd(card, &ext_csd);
652 if (err) {
653 /* If the host or the card can't do the switch,
654 * fail more gracefully. */
655 if ((err != -EINVAL)
656 && (err != -ENOSYS)
657 && (err != -EFAULT))
658 return err;
659
660 /*
661 * High capacity cards should have this "magic" size
662 * stored in their CSD.
663 */
664 if (card->csd.capacity == (4096 * 512)) {
665 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
666 mmc_hostname(card->host));
667 } else {
668 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
669 mmc_hostname(card->host));
670 err = 0;
671 }
672
673 return err;
674 }
675
676 err = mmc_decode_ext_csd(card, ext_csd);
677 kfree(ext_csd);
678 return err;
679}
680
681static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
682{
683 u8 *bw_ext_csd;
684 int err;
685
686 if (bus_width == MMC_BUS_WIDTH_1)
687 return 0;
688
689 err = mmc_get_ext_csd(card, &bw_ext_csd);
690 if (err)
691 return err;
692
693 /* only compare read only fields */
694 err = !((card->ext_csd.raw_partition_support ==
695 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
696 (card->ext_csd.raw_erased_mem_count ==
697 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
698 (card->ext_csd.rev ==
699 bw_ext_csd[EXT_CSD_REV]) &&
700 (card->ext_csd.raw_ext_csd_structure ==
701 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
702 (card->ext_csd.raw_card_type ==
703 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
704 (card->ext_csd.raw_s_a_timeout ==
705 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
706 (card->ext_csd.raw_hc_erase_gap_size ==
707 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
708 (card->ext_csd.raw_erase_timeout_mult ==
709 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
710 (card->ext_csd.raw_hc_erase_grp_size ==
711 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
712 (card->ext_csd.raw_sec_trim_mult ==
713 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
714 (card->ext_csd.raw_sec_erase_mult ==
715 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
716 (card->ext_csd.raw_sec_feature_support ==
717 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
718 (card->ext_csd.raw_trim_mult ==
719 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
720 (card->ext_csd.raw_sectors[0] ==
721 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
722 (card->ext_csd.raw_sectors[1] ==
723 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
724 (card->ext_csd.raw_sectors[2] ==
725 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
726 (card->ext_csd.raw_sectors[3] ==
727 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
728 (card->ext_csd.raw_pwr_cl_52_195 ==
729 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
730 (card->ext_csd.raw_pwr_cl_26_195 ==
731 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
732 (card->ext_csd.raw_pwr_cl_52_360 ==
733 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
734 (card->ext_csd.raw_pwr_cl_26_360 ==
735 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
736 (card->ext_csd.raw_pwr_cl_200_195 ==
737 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
738 (card->ext_csd.raw_pwr_cl_200_360 ==
739 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
740 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
741 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
742 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
743 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
744 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
746
747 if (err)
748 err = -EINVAL;
749
750 kfree(bw_ext_csd);
751 return err;
752}
753
754MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
755 card->raw_cid[2], card->raw_cid[3]);
756MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
757 card->raw_csd[2], card->raw_csd[3]);
758MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
759MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
760MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
761MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
762MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
763MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
764MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
765MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
766MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
767MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
768MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
769 card->ext_csd.enhanced_area_offset);
770MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
771MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
772MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
773MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
774
775static ssize_t mmc_fwrev_show(struct device *dev,
776 struct device_attribute *attr,
777 char *buf)
778{
779 struct mmc_card *card = mmc_dev_to_card(dev);
780
781 if (card->ext_csd.rev < 7) {
782 return sprintf(buf, "0x%x\n", card->cid.fwrev);
783 } else {
784 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
785 card->ext_csd.fwrev);
786 }
787}
788
789static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
790
791static ssize_t mmc_dsr_show(struct device *dev,
792 struct device_attribute *attr,
793 char *buf)
794{
795 struct mmc_card *card = mmc_dev_to_card(dev);
796 struct mmc_host *host = card->host;
797
798 if (card->csd.dsr_imp && host->dsr_req)
799 return sprintf(buf, "0x%x\n", host->dsr);
800 else
801 /* return default DSR value */
802 return sprintf(buf, "0x%x\n", 0x404);
803}
804
805static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
806
807static struct attribute *mmc_std_attrs[] = {
808 &dev_attr_cid.attr,
809 &dev_attr_csd.attr,
810 &dev_attr_date.attr,
811 &dev_attr_erase_size.attr,
812 &dev_attr_preferred_erase_size.attr,
813 &dev_attr_fwrev.attr,
814 &dev_attr_ffu_capable.attr,
815 &dev_attr_hwrev.attr,
816 &dev_attr_manfid.attr,
817 &dev_attr_name.attr,
818 &dev_attr_oemid.attr,
819 &dev_attr_prv.attr,
820 &dev_attr_serial.attr,
821 &dev_attr_enhanced_area_offset.attr,
822 &dev_attr_enhanced_area_size.attr,
823 &dev_attr_raw_rpmb_size_mult.attr,
824 &dev_attr_rel_sectors.attr,
825 &dev_attr_ocr.attr,
826 &dev_attr_dsr.attr,
827 NULL,
828};
829ATTRIBUTE_GROUPS(mmc_std);
830
831static struct device_type mmc_type = {
832 .groups = mmc_std_groups,
833};
834
835/*
836 * Select the PowerClass for the current bus width
837 * If power class is defined for 4/8 bit bus in the
838 * extended CSD register, select it by executing the
839 * mmc_switch command.
840 */
841static int __mmc_select_powerclass(struct mmc_card *card,
842 unsigned int bus_width)
843{
844 struct mmc_host *host = card->host;
845 struct mmc_ext_csd *ext_csd = &card->ext_csd;
846 unsigned int pwrclass_val = 0;
847 int err = 0;
848
849 switch (1 << host->ios.vdd) {
850 case MMC_VDD_165_195:
851 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
852 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
853 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
854 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
855 ext_csd->raw_pwr_cl_52_195 :
856 ext_csd->raw_pwr_cl_ddr_52_195;
857 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
858 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
859 break;
860 case MMC_VDD_27_28:
861 case MMC_VDD_28_29:
862 case MMC_VDD_29_30:
863 case MMC_VDD_30_31:
864 case MMC_VDD_31_32:
865 case MMC_VDD_32_33:
866 case MMC_VDD_33_34:
867 case MMC_VDD_34_35:
868 case MMC_VDD_35_36:
869 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
870 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
871 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
872 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
873 ext_csd->raw_pwr_cl_52_360 :
874 ext_csd->raw_pwr_cl_ddr_52_360;
875 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
876 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
877 ext_csd->raw_pwr_cl_ddr_200_360 :
878 ext_csd->raw_pwr_cl_200_360;
879 break;
880 default:
881 pr_warn("%s: Voltage range not supported for power class\n",
882 mmc_hostname(host));
883 return -EINVAL;
884 }
885
886 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
887 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
888 EXT_CSD_PWR_CL_8BIT_SHIFT;
889 else
890 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
891 EXT_CSD_PWR_CL_4BIT_SHIFT;
892
893 /* If the power class is different from the default value */
894 if (pwrclass_val > 0) {
895 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
896 EXT_CSD_POWER_CLASS,
897 pwrclass_val,
898 card->ext_csd.generic_cmd6_time);
899 }
900
901 return err;
902}
903
904static int mmc_select_powerclass(struct mmc_card *card)
905{
906 struct mmc_host *host = card->host;
907 u32 bus_width, ext_csd_bits;
908 int err, ddr;
909
910 /* Power class selection is supported for versions >= 4.0 */
911 if (!mmc_can_ext_csd(card))
912 return 0;
913
914 bus_width = host->ios.bus_width;
915 /* Power class values are defined only for 4/8 bit bus */
916 if (bus_width == MMC_BUS_WIDTH_1)
917 return 0;
918
919 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
920 if (ddr)
921 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
922 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
923 else
924 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
925 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
926
927 err = __mmc_select_powerclass(card, ext_csd_bits);
928 if (err)
929 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
930 mmc_hostname(host), 1 << bus_width, ddr);
931
932 return err;
933}
934
935/*
936 * Set the bus speed for the selected speed mode.
937 */
938static void mmc_set_bus_speed(struct mmc_card *card)
939{
940 unsigned int max_dtr = (unsigned int)-1;
941
942 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
943 max_dtr > card->ext_csd.hs200_max_dtr)
944 max_dtr = card->ext_csd.hs200_max_dtr;
945 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
946 max_dtr = card->ext_csd.hs_max_dtr;
947 else if (max_dtr > card->csd.max_dtr)
948 max_dtr = card->csd.max_dtr;
949
950 mmc_set_clock(card->host, max_dtr);
951}
952
953/*
954 * Select the bus width amoung 4-bit and 8-bit(SDR).
955 * If the bus width is changed successfully, return the selected width value.
956 * Zero is returned instead of error value if the wide width is not supported.
957 */
958static int mmc_select_bus_width(struct mmc_card *card)
959{
960 static unsigned ext_csd_bits[] = {
961 EXT_CSD_BUS_WIDTH_8,
962 EXT_CSD_BUS_WIDTH_4,
963 };
964 static unsigned bus_widths[] = {
965 MMC_BUS_WIDTH_8,
966 MMC_BUS_WIDTH_4,
967 };
968 struct mmc_host *host = card->host;
969 unsigned idx, bus_width = 0;
970 int err = 0;
971
972 if (!mmc_can_ext_csd(card) ||
973 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
974 return 0;
975
976 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
977
978 /*
979 * Unlike SD, MMC cards dont have a configuration register to notify
980 * supported bus width. So bus test command should be run to identify
981 * the supported bus width or compare the ext csd values of current
982 * bus width and ext csd values of 1 bit mode read earlier.
983 */
984 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
985 /*
986 * Host is capable of 8bit transfer, then switch
987 * the device to work in 8bit transfer mode. If the
988 * mmc switch command returns error then switch to
989 * 4bit transfer mode. On success set the corresponding
990 * bus width on the host.
991 */
992 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
993 EXT_CSD_BUS_WIDTH,
994 ext_csd_bits[idx],
995 card->ext_csd.generic_cmd6_time);
996 if (err)
997 continue;
998
999 bus_width = bus_widths[idx];
1000 mmc_set_bus_width(host, bus_width);
1001
1002 /*
1003 * If controller can't handle bus width test,
1004 * compare ext_csd previously read in 1 bit mode
1005 * against ext_csd at new bus width
1006 */
1007 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1008 err = mmc_compare_ext_csds(card, bus_width);
1009 else
1010 err = mmc_bus_test(card, bus_width);
1011
1012 if (!err) {
1013 err = bus_width;
1014 break;
1015 } else {
1016 pr_warn("%s: switch to bus width %d failed\n",
1017 mmc_hostname(host), 1 << bus_width);
1018 }
1019 }
1020
1021 return err;
1022}
1023
1024/*
1025 * Switch to the high-speed mode
1026 */
1027static int mmc_select_hs(struct mmc_card *card)
1028{
1029 int err;
1030
1031 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1032 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1033 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1034 true, true, true);
1035 if (err)
1036 pr_warn("%s: switch to high-speed failed, err:%d\n",
1037 mmc_hostname(card->host), err);
1038
1039 return err;
1040}
1041
1042/*
1043 * Activate wide bus and DDR if supported.
1044 */
1045static int mmc_select_hs_ddr(struct mmc_card *card)
1046{
1047 struct mmc_host *host = card->host;
1048 u32 bus_width, ext_csd_bits;
1049 int err = 0;
1050
1051 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1052 return 0;
1053
1054 bus_width = host->ios.bus_width;
1055 if (bus_width == MMC_BUS_WIDTH_1)
1056 return 0;
1057
1058 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1059 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1062 EXT_CSD_BUS_WIDTH,
1063 ext_csd_bits,
1064 card->ext_csd.generic_cmd6_time,
1065 MMC_TIMING_MMC_DDR52,
1066 true, true, true);
1067 if (err) {
1068 pr_err("%s: switch to bus width %d ddr failed\n",
1069 mmc_hostname(host), 1 << bus_width);
1070 return err;
1071 }
1072
1073 /*
1074 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1075 * signaling.
1076 *
1077 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1078 *
1079 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1080 * in the JEDEC spec for DDR.
1081 *
1082 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1083 * host controller can support this, like some of the SDHCI
1084 * controller which connect to an eMMC device. Some of these
1085 * host controller still needs to use 1.8v vccq for supporting
1086 * DDR mode.
1087 *
1088 * So the sequence will be:
1089 * if (host and device can both support 1.2v IO)
1090 * use 1.2v IO;
1091 * else if (host and device can both support 1.8v IO)
1092 * use 1.8v IO;
1093 * so if host and device can only support 3.3v IO, this is the
1094 * last choice.
1095 *
1096 * WARNING: eMMC rules are NOT the same as SD DDR
1097 */
1098 err = -EINVAL;
1099 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1100 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1101
1102 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1103 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1104
1105 /* make sure vccq is 3.3v after switching disaster */
1106 if (err)
1107 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1108
1109 return err;
1110}
1111
1112static int mmc_select_hs400(struct mmc_card *card)
1113{
1114 struct mmc_host *host = card->host;
1115 unsigned int max_dtr;
1116 int err = 0;
1117 u8 val;
1118
1119 /*
1120 * HS400 mode requires 8-bit bus width
1121 */
1122 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1123 host->ios.bus_width == MMC_BUS_WIDTH_8))
1124 return 0;
1125
1126 /* Switch card to HS mode */
1127 val = EXT_CSD_TIMING_HS;
1128 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1129 EXT_CSD_HS_TIMING, val,
1130 card->ext_csd.generic_cmd6_time, 0,
1131 true, false, true);
1132 if (err) {
1133 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1134 mmc_hostname(host), err);
1135 return err;
1136 }
1137
1138 /* Set host controller to HS timing */
1139 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1140
1141 /* Reduce frequency to HS frequency */
1142 max_dtr = card->ext_csd.hs_max_dtr;
1143 mmc_set_clock(host, max_dtr);
1144
1145 err = mmc_switch_status(card);
1146 if (err)
1147 goto out_err;
1148
1149 /* Switch card to DDR */
1150 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1151 EXT_CSD_BUS_WIDTH,
1152 EXT_CSD_DDR_BUS_WIDTH_8,
1153 card->ext_csd.generic_cmd6_time);
1154 if (err) {
1155 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1156 mmc_hostname(host), err);
1157 return err;
1158 }
1159
1160 /* Switch card to HS400 */
1161 val = EXT_CSD_TIMING_HS400 |
1162 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1163 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1164 EXT_CSD_HS_TIMING, val,
1165 card->ext_csd.generic_cmd6_time, 0,
1166 true, false, true);
1167 if (err) {
1168 pr_err("%s: switch to hs400 failed, err:%d\n",
1169 mmc_hostname(host), err);
1170 return err;
1171 }
1172
1173 /* Set host controller to HS400 timing and frequency */
1174 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1175 mmc_set_bus_speed(card);
1176
1177 err = mmc_switch_status(card);
1178 if (err)
1179 goto out_err;
1180
1181 return 0;
1182
1183out_err:
1184 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1185 __func__, err);
1186 return err;
1187}
1188
1189int mmc_hs200_to_hs400(struct mmc_card *card)
1190{
1191 return mmc_select_hs400(card);
1192}
1193
1194int mmc_hs400_to_hs200(struct mmc_card *card)
1195{
1196 struct mmc_host *host = card->host;
1197 unsigned int max_dtr;
1198 int err;
1199 u8 val;
1200
1201 /* Reduce frequency to HS */
1202 max_dtr = card->ext_csd.hs_max_dtr;
1203 mmc_set_clock(host, max_dtr);
1204
1205 /* Switch HS400 to HS DDR */
1206 val = EXT_CSD_TIMING_HS;
1207 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1208 val, card->ext_csd.generic_cmd6_time, 0,
1209 true, false, true);
1210 if (err)
1211 goto out_err;
1212
1213 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1214
1215 err = mmc_switch_status(card);
1216 if (err)
1217 goto out_err;
1218
1219 /* Switch HS DDR to HS */
1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1221 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1222 0, true, false, true);
1223 if (err)
1224 goto out_err;
1225
1226 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1227
1228 err = mmc_switch_status(card);
1229 if (err)
1230 goto out_err;
1231
1232 /* Switch HS to HS200 */
1233 val = EXT_CSD_TIMING_HS200 |
1234 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1235 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1236 val, card->ext_csd.generic_cmd6_time, 0,
1237 true, false, true);
1238 if (err)
1239 goto out_err;
1240
1241 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1242
1243 /*
1244 * For HS200, CRC errors are not a reliable way to know the switch
1245 * failed. If there really is a problem, we would expect tuning will
1246 * fail and the result ends up the same.
1247 */
1248 err = __mmc_switch_status(card, false);
1249 if (err)
1250 goto out_err;
1251
1252 mmc_set_bus_speed(card);
1253
1254 return 0;
1255
1256out_err:
1257 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1258 __func__, err);
1259 return err;
1260}
1261
1262static int mmc_select_hs400es(struct mmc_card *card)
1263{
1264 struct mmc_host *host = card->host;
1265 int err = 0;
1266 u8 val;
1267
1268 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1269 err = -ENOTSUPP;
1270 goto out_err;
1271 }
1272
1273 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1274 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1275
1276 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1277 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1278
1279 /* If fails try again during next card power cycle */
1280 if (err)
1281 goto out_err;
1282
1283 err = mmc_select_bus_width(card);
1284 if (err < 0)
1285 goto out_err;
1286
1287 /* Switch card to HS mode */
1288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1289 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1290 card->ext_csd.generic_cmd6_time, 0,
1291 true, false, true);
1292 if (err) {
1293 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1294 mmc_hostname(host), err);
1295 goto out_err;
1296 }
1297
1298 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1299 err = mmc_switch_status(card);
1300 if (err)
1301 goto out_err;
1302
1303 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1304
1305 /* Switch card to DDR with strobe bit */
1306 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1307 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1308 EXT_CSD_BUS_WIDTH,
1309 val,
1310 card->ext_csd.generic_cmd6_time);
1311 if (err) {
1312 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1313 mmc_hostname(host), err);
1314 goto out_err;
1315 }
1316
1317 /* Switch card to HS400 */
1318 val = EXT_CSD_TIMING_HS400 |
1319 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1320 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1321 EXT_CSD_HS_TIMING, val,
1322 card->ext_csd.generic_cmd6_time, 0,
1323 true, false, true);
1324 if (err) {
1325 pr_err("%s: switch to hs400es failed, err:%d\n",
1326 mmc_hostname(host), err);
1327 goto out_err;
1328 }
1329
1330 /* Set host controller to HS400 timing and frequency */
1331 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1332
1333 /* Controller enable enhanced strobe function */
1334 host->ios.enhanced_strobe = true;
1335 if (host->ops->hs400_enhanced_strobe)
1336 host->ops->hs400_enhanced_strobe(host, &host->ios);
1337
1338 err = mmc_switch_status(card);
1339 if (err)
1340 goto out_err;
1341
1342 return 0;
1343
1344out_err:
1345 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1346 __func__, err);
1347 return err;
1348}
1349
1350static void mmc_select_driver_type(struct mmc_card *card)
1351{
1352 int card_drv_type, drive_strength, drv_type;
1353
1354 card_drv_type = card->ext_csd.raw_driver_strength |
1355 mmc_driver_type_mask(0);
1356
1357 drive_strength = mmc_select_drive_strength(card,
1358 card->ext_csd.hs200_max_dtr,
1359 card_drv_type, &drv_type);
1360
1361 card->drive_strength = drive_strength;
1362
1363 if (drv_type)
1364 mmc_set_driver_type(card->host, drv_type);
1365}
1366
1367/*
1368 * For device supporting HS200 mode, the following sequence
1369 * should be done before executing the tuning process.
1370 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1371 * 2. switch to HS200 mode
1372 * 3. set the clock to > 52Mhz and <=200MHz
1373 */
1374static int mmc_select_hs200(struct mmc_card *card)
1375{
1376 struct mmc_host *host = card->host;
1377 unsigned int old_timing, old_signal_voltage;
1378 int err = -EINVAL;
1379 u8 val;
1380
1381 old_signal_voltage = host->ios.signal_voltage;
1382 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1383 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1384
1385 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1386 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1387
1388 /* If fails try again during next card power cycle */
1389 if (err)
1390 return err;
1391
1392 mmc_select_driver_type(card);
1393
1394 /*
1395 * Set the bus width(4 or 8) with host's support and
1396 * switch to HS200 mode if bus width is set successfully.
1397 */
1398 err = mmc_select_bus_width(card);
1399 if (err > 0) {
1400 val = EXT_CSD_TIMING_HS200 |
1401 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1402 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1403 EXT_CSD_HS_TIMING, val,
1404 card->ext_csd.generic_cmd6_time, 0,
1405 true, false, true);
1406 if (err)
1407 goto err;
1408 old_timing = host->ios.timing;
1409 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1410
1411 /*
1412 * For HS200, CRC errors are not a reliable way to know the
1413 * switch failed. If there really is a problem, we would expect
1414 * tuning will fail and the result ends up the same.
1415 */
1416 err = __mmc_switch_status(card, false);
1417
1418 /*
1419 * mmc_select_timing() assumes timing has not changed if
1420 * it is a switch error.
1421 */
1422 if (err == -EBADMSG)
1423 mmc_set_timing(host, old_timing);
1424 }
1425err:
1426 if (err) {
1427 /* fall back to the old signal voltage, if fails report error */
1428 if (__mmc_set_signal_voltage(host, old_signal_voltage))
1429 err = -EIO;
1430
1431 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1432 __func__, err);
1433 }
1434 return err;
1435}
1436
1437/*
1438 * Activate High Speed, HS200 or HS400ES mode if supported.
1439 */
1440static int mmc_select_timing(struct mmc_card *card)
1441{
1442 int err = 0;
1443
1444 if (!mmc_can_ext_csd(card))
1445 goto bus_speed;
1446
1447 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1448 err = mmc_select_hs400es(card);
1449 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1450 err = mmc_select_hs200(card);
1451 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1452 err = mmc_select_hs(card);
1453
1454 if (err && err != -EBADMSG)
1455 return err;
1456
1457bus_speed:
1458 /*
1459 * Set the bus speed to the selected bus timing.
1460 * If timing is not selected, backward compatible is the default.
1461 */
1462 mmc_set_bus_speed(card);
1463 return 0;
1464}
1465
1466/*
1467 * Execute tuning sequence to seek the proper bus operating
1468 * conditions for HS200 and HS400, which sends CMD21 to the device.
1469 */
1470static int mmc_hs200_tuning(struct mmc_card *card)
1471{
1472 struct mmc_host *host = card->host;
1473
1474 /*
1475 * Timing should be adjusted to the HS400 target
1476 * operation frequency for tuning process
1477 */
1478 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1479 host->ios.bus_width == MMC_BUS_WIDTH_8)
1480 if (host->ops->prepare_hs400_tuning)
1481 host->ops->prepare_hs400_tuning(host, &host->ios);
1482
1483 return mmc_execute_tuning(card);
1484}
1485
1486/*
1487 * Handle the detection and initialisation of a card.
1488 *
1489 * In the case of a resume, "oldcard" will contain the card
1490 * we're trying to reinitialise.
1491 */
1492static int mmc_init_card(struct mmc_host *host, u32 ocr,
1493 struct mmc_card *oldcard)
1494{
1495 struct mmc_card *card;
1496 int err;
1497 u32 cid[4];
1498 u32 rocr;
1499
1500 WARN_ON(!host->claimed);
1501
1502 /* Set correct bus mode for MMC before attempting init */
1503 if (!mmc_host_is_spi(host))
1504 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1505
1506 /*
1507 * Since we're changing the OCR value, we seem to
1508 * need to tell some cards to go back to the idle
1509 * state. We wait 1ms to give cards time to
1510 * respond.
1511 * mmc_go_idle is needed for eMMC that are asleep
1512 */
1513 mmc_go_idle(host);
1514
1515 /* The extra bit indicates that we support high capacity */
1516 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1517 if (err)
1518 goto err;
1519
1520 /*
1521 * For SPI, enable CRC as appropriate.
1522 */
1523 if (mmc_host_is_spi(host)) {
1524 err = mmc_spi_set_crc(host, use_spi_crc);
1525 if (err)
1526 goto err;
1527 }
1528
1529 /*
1530 * Fetch CID from card.
1531 */
1532 if (mmc_host_is_spi(host))
1533 err = mmc_send_cid(host, cid);
1534 else
1535 err = mmc_all_send_cid(host, cid);
1536 if (err)
1537 goto err;
1538
1539 if (oldcard) {
1540 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1541 err = -ENOENT;
1542 goto err;
1543 }
1544
1545 card = oldcard;
1546 } else {
1547 /*
1548 * Allocate card structure.
1549 */
1550 card = mmc_alloc_card(host, &mmc_type);
1551 if (IS_ERR(card)) {
1552 err = PTR_ERR(card);
1553 goto err;
1554 }
1555
1556 card->ocr = ocr;
1557 card->type = MMC_TYPE_MMC;
1558 card->rca = 1;
1559 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1560 }
1561
1562 /*
1563 * Call the optional HC's init_card function to handle quirks.
1564 */
1565 if (host->ops->init_card)
1566 host->ops->init_card(host, card);
1567
1568 /*
1569 * For native busses: set card RCA and quit open drain mode.
1570 */
1571 if (!mmc_host_is_spi(host)) {
1572 err = mmc_set_relative_addr(card);
1573 if (err)
1574 goto free_card;
1575
1576 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1577 }
1578
1579 if (!oldcard) {
1580 /*
1581 * Fetch CSD from card.
1582 */
1583 err = mmc_send_csd(card, card->raw_csd);
1584 if (err)
1585 goto free_card;
1586
1587 err = mmc_decode_csd(card);
1588 if (err)
1589 goto free_card;
1590 err = mmc_decode_cid(card);
1591 if (err)
1592 goto free_card;
1593 }
1594
1595 /*
1596 * handling only for cards supporting DSR and hosts requesting
1597 * DSR configuration
1598 */
1599 if (card->csd.dsr_imp && host->dsr_req)
1600 mmc_set_dsr(host);
1601
1602 /*
1603 * Select card, as all following commands rely on that.
1604 */
1605 if (!mmc_host_is_spi(host)) {
1606 err = mmc_select_card(card);
1607 if (err)
1608 goto free_card;
1609 }
1610
1611 if (!oldcard) {
1612 /* Read extended CSD. */
1613 err = mmc_read_ext_csd(card);
1614 if (err)
1615 goto free_card;
1616
1617 /*
1618 * If doing byte addressing, check if required to do sector
1619 * addressing. Handle the case of <2GB cards needing sector
1620 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1621 * ocr register has bit 30 set for sector addressing.
1622 */
1623 if (rocr & BIT(30))
1624 mmc_card_set_blockaddr(card);
1625
1626 /* Erase size depends on CSD and Extended CSD */
1627 mmc_set_erase_size(card);
1628 }
1629
1630 /*
1631 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1632 * bit. This bit will be lost every time after a reset or power off.
1633 */
1634 if (card->ext_csd.partition_setting_completed ||
1635 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1636 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1637 EXT_CSD_ERASE_GROUP_DEF, 1,
1638 card->ext_csd.generic_cmd6_time);
1639
1640 if (err && err != -EBADMSG)
1641 goto free_card;
1642
1643 if (err) {
1644 err = 0;
1645 /*
1646 * Just disable enhanced area off & sz
1647 * will try to enable ERASE_GROUP_DEF
1648 * during next time reinit
1649 */
1650 card->ext_csd.enhanced_area_offset = -EINVAL;
1651 card->ext_csd.enhanced_area_size = -EINVAL;
1652 } else {
1653 card->ext_csd.erase_group_def = 1;
1654 /*
1655 * enable ERASE_GRP_DEF successfully.
1656 * This will affect the erase size, so
1657 * here need to reset erase size
1658 */
1659 mmc_set_erase_size(card);
1660 }
1661 }
1662
1663 /*
1664 * Ensure eMMC user default partition is enabled
1665 */
1666 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1667 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1668 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1669 card->ext_csd.part_config,
1670 card->ext_csd.part_time);
1671 if (err && err != -EBADMSG)
1672 goto free_card;
1673 }
1674
1675 /*
1676 * Enable power_off_notification byte in the ext_csd register
1677 */
1678 if (card->ext_csd.rev >= 6) {
1679 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1680 EXT_CSD_POWER_OFF_NOTIFICATION,
1681 EXT_CSD_POWER_ON,
1682 card->ext_csd.generic_cmd6_time);
1683 if (err && err != -EBADMSG)
1684 goto free_card;
1685
1686 /*
1687 * The err can be -EBADMSG or 0,
1688 * so check for success and update the flag
1689 */
1690 if (!err)
1691 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1692 }
1693
1694 /*
1695 * Select timing interface
1696 */
1697 err = mmc_select_timing(card);
1698 if (err)
1699 goto free_card;
1700
1701 if (mmc_card_hs200(card)) {
1702 err = mmc_hs200_tuning(card);
1703 if (err)
1704 goto free_card;
1705
1706 err = mmc_select_hs400(card);
1707 if (err)
1708 goto free_card;
1709 } else if (!mmc_card_hs400es(card)) {
1710 /* Select the desired bus width optionally */
1711 err = mmc_select_bus_width(card);
1712 if (err > 0 && mmc_card_hs(card)) {
1713 err = mmc_select_hs_ddr(card);
1714 if (err)
1715 goto free_card;
1716 }
1717 }
1718
1719 /*
1720 * Choose the power class with selected bus interface
1721 */
1722 mmc_select_powerclass(card);
1723
1724 /*
1725 * Enable HPI feature (if supported)
1726 */
1727 if (card->ext_csd.hpi) {
1728 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1729 EXT_CSD_HPI_MGMT, 1,
1730 card->ext_csd.generic_cmd6_time);
1731 if (err && err != -EBADMSG)
1732 goto free_card;
1733 if (err) {
1734 pr_warn("%s: Enabling HPI failed\n",
1735 mmc_hostname(card->host));
1736 err = 0;
1737 } else
1738 card->ext_csd.hpi_en = 1;
1739 }
1740
1741 /*
1742 * If cache size is higher than 0, this indicates
1743 * the existence of cache and it can be turned on.
1744 */
1745 if (!mmc_card_broken_hpi(card) &&
1746 card->ext_csd.cache_size > 0) {
1747 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1748 EXT_CSD_CACHE_CTRL, 1,
1749 card->ext_csd.generic_cmd6_time);
1750 if (err && err != -EBADMSG)
1751 goto free_card;
1752
1753 /*
1754 * Only if no error, cache is turned on successfully.
1755 */
1756 if (err) {
1757 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1758 mmc_hostname(card->host), err);
1759 card->ext_csd.cache_ctrl = 0;
1760 err = 0;
1761 } else {
1762 card->ext_csd.cache_ctrl = 1;
1763 }
1764 }
1765
1766 /*
1767 * The mandatory minimum values are defined for packed command.
1768 * read: 5, write: 3
1769 */
1770 if (card->ext_csd.max_packed_writes >= 3 &&
1771 card->ext_csd.max_packed_reads >= 5 &&
1772 host->caps2 & MMC_CAP2_PACKED_CMD) {
1773 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1774 EXT_CSD_EXP_EVENTS_CTRL,
1775 EXT_CSD_PACKED_EVENT_EN,
1776 card->ext_csd.generic_cmd6_time);
1777 if (err && err != -EBADMSG)
1778 goto free_card;
1779 if (err) {
1780 pr_warn("%s: Enabling packed event failed\n",
1781 mmc_hostname(card->host));
1782 card->ext_csd.packed_event_en = 0;
1783 err = 0;
1784 } else {
1785 card->ext_csd.packed_event_en = 1;
1786 }
1787 }
1788
1789 if (!oldcard)
1790 host->card = card;
1791
1792 return 0;
1793
1794free_card:
1795 if (!oldcard)
1796 mmc_remove_card(card);
1797err:
1798 return err;
1799}
1800
1801static int mmc_can_sleep(struct mmc_card *card)
1802{
1803 return (card && card->ext_csd.rev >= 3);
1804}
1805
1806static int mmc_sleep(struct mmc_host *host)
1807{
1808 struct mmc_command cmd = {0};
1809 struct mmc_card *card = host->card;
1810 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1811 int err;
1812
1813 /* Re-tuning can't be done once the card is deselected */
1814 mmc_retune_hold(host);
1815
1816 err = mmc_deselect_cards(host);
1817 if (err)
1818 goto out_release;
1819
1820 cmd.opcode = MMC_SLEEP_AWAKE;
1821 cmd.arg = card->rca << 16;
1822 cmd.arg |= 1 << 15;
1823
1824 /*
1825 * If the max_busy_timeout of the host is specified, validate it against
1826 * the sleep cmd timeout. A failure means we need to prevent the host
1827 * from doing hw busy detection, which is done by converting to a R1
1828 * response instead of a R1B.
1829 */
1830 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1831 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1832 } else {
1833 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1834 cmd.busy_timeout = timeout_ms;
1835 }
1836
1837 err = mmc_wait_for_cmd(host, &cmd, 0);
1838 if (err)
1839 goto out_release;
1840
1841 /*
1842 * If the host does not wait while the card signals busy, then we will
1843 * will have to wait the sleep/awake timeout. Note, we cannot use the
1844 * SEND_STATUS command to poll the status because that command (and most
1845 * others) is invalid while the card sleeps.
1846 */
1847 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1848 mmc_delay(timeout_ms);
1849
1850out_release:
1851 mmc_retune_release(host);
1852 return err;
1853}
1854
1855static int mmc_can_poweroff_notify(const struct mmc_card *card)
1856{
1857 return card &&
1858 mmc_card_mmc(card) &&
1859 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1860}
1861
1862static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1863{
1864 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1865 int err;
1866
1867 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1868 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1869 timeout = card->ext_csd.power_off_longtime;
1870
1871 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1872 EXT_CSD_POWER_OFF_NOTIFICATION,
1873 notify_type, timeout, 0, true, false, false);
1874 if (err)
1875 pr_err("%s: Power Off Notification timed out, %u\n",
1876 mmc_hostname(card->host), timeout);
1877
1878 /* Disable the power off notification after the switch operation. */
1879 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1880
1881 return err;
1882}
1883
1884/*
1885 * Host is being removed. Free up the current card.
1886 */
1887static void mmc_remove(struct mmc_host *host)
1888{
1889 mmc_remove_card(host->card);
1890 host->card = NULL;
1891}
1892
1893/*
1894 * Card detection - card is alive.
1895 */
1896static int mmc_alive(struct mmc_host *host)
1897{
1898 return mmc_send_status(host->card, NULL);
1899}
1900
1901/*
1902 * Card detection callback from host.
1903 */
1904static void mmc_detect(struct mmc_host *host)
1905{
1906 int err;
1907
1908 mmc_get_card(host->card);
1909
1910 /*
1911 * Just check if our card has been removed.
1912 */
1913 err = _mmc_detect_card_removed(host);
1914
1915 mmc_put_card(host->card);
1916
1917 if (err) {
1918 mmc_remove(host);
1919
1920 mmc_claim_host(host);
1921 mmc_detach_bus(host);
1922 mmc_power_off(host);
1923 mmc_release_host(host);
1924 }
1925}
1926
1927static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1928{
1929 int err = 0;
1930 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1931 EXT_CSD_POWER_OFF_LONG;
1932
1933 mmc_claim_host(host);
1934
1935 if (mmc_card_suspended(host->card))
1936 goto out;
1937
1938 if (mmc_card_doing_bkops(host->card)) {
1939 err = mmc_stop_bkops(host->card);
1940 if (err)
1941 goto out;
1942 }
1943
1944 err = mmc_flush_cache(host->card);
1945 if (err)
1946 goto out;
1947
1948 if (mmc_can_poweroff_notify(host->card) &&
1949 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1950 err = mmc_poweroff_notify(host->card, notify_type);
1951 else if (mmc_can_sleep(host->card))
1952 err = mmc_sleep(host);
1953 else if (!mmc_host_is_spi(host))
1954 err = mmc_deselect_cards(host);
1955
1956 if (!err) {
1957 mmc_power_off(host);
1958 mmc_card_set_suspended(host->card);
1959 }
1960out:
1961 mmc_release_host(host);
1962 return err;
1963}
1964
1965/*
1966 * Suspend callback
1967 */
1968static int mmc_suspend(struct mmc_host *host)
1969{
1970 int err;
1971
1972 err = _mmc_suspend(host, true);
1973 if (!err) {
1974 pm_runtime_disable(&host->card->dev);
1975 pm_runtime_set_suspended(&host->card->dev);
1976 }
1977
1978 return err;
1979}
1980
1981/*
1982 * This function tries to determine if the same card is still present
1983 * and, if so, restore all state to it.
1984 */
1985static int _mmc_resume(struct mmc_host *host)
1986{
1987 int err = 0;
1988
1989 mmc_claim_host(host);
1990
1991 if (!mmc_card_suspended(host->card))
1992 goto out;
1993
1994 mmc_power_up(host, host->card->ocr);
1995 err = mmc_init_card(host, host->card->ocr, host->card);
1996 mmc_card_clr_suspended(host->card);
1997
1998out:
1999 mmc_release_host(host);
2000 return err;
2001}
2002
2003/*
2004 * Shutdown callback
2005 */
2006static int mmc_shutdown(struct mmc_host *host)
2007{
2008 int err = 0;
2009
2010 /*
2011 * In a specific case for poweroff notify, we need to resume the card
2012 * before we can shutdown it properly.
2013 */
2014 if (mmc_can_poweroff_notify(host->card) &&
2015 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2016 err = _mmc_resume(host);
2017
2018 if (!err)
2019 err = _mmc_suspend(host, false);
2020
2021 return err;
2022}
2023
2024/*
2025 * Callback for resume.
2026 */
2027static int mmc_resume(struct mmc_host *host)
2028{
2029 pm_runtime_enable(&host->card->dev);
2030 return 0;
2031}
2032
2033/*
2034 * Callback for runtime_suspend.
2035 */
2036static int mmc_runtime_suspend(struct mmc_host *host)
2037{
2038 int err;
2039
2040 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2041 return 0;
2042
2043 err = _mmc_suspend(host, true);
2044 if (err)
2045 pr_err("%s: error %d doing aggressive suspend\n",
2046 mmc_hostname(host), err);
2047
2048 return err;
2049}
2050
2051/*
2052 * Callback for runtime_resume.
2053 */
2054static int mmc_runtime_resume(struct mmc_host *host)
2055{
2056 int err;
2057
2058 err = _mmc_resume(host);
2059 if (err && err != -ENOMEDIUM)
2060 pr_err("%s: error %d doing runtime resume\n",
2061 mmc_hostname(host), err);
2062
2063 return 0;
2064}
2065
2066int mmc_can_reset(struct mmc_card *card)
2067{
2068 u8 rst_n_function;
2069
2070 rst_n_function = card->ext_csd.rst_n_function;
2071 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2072 return 0;
2073 return 1;
2074}
2075EXPORT_SYMBOL(mmc_can_reset);
2076
2077static int mmc_reset(struct mmc_host *host)
2078{
2079 struct mmc_card *card = host->card;
2080
2081 /*
2082 * In the case of recovery, we can't expect flushing the cache to work
2083 * always, but we have a go and ignore errors.
2084 */
2085 mmc_flush_cache(host->card);
2086
2087 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2088 mmc_can_reset(card)) {
2089 /* If the card accept RST_n signal, send it. */
2090 mmc_set_clock(host, host->f_init);
2091 host->ops->hw_reset(host);
2092 /* Set initial state and call mmc_set_ios */
2093 mmc_set_initial_state(host);
2094 } else {
2095 /* Do a brute force power cycle */
2096 mmc_power_cycle(host, card->ocr);
2097 }
2098 return mmc_init_card(host, card->ocr, card);
2099}
2100
2101static const struct mmc_bus_ops mmc_ops = {
2102 .remove = mmc_remove,
2103 .detect = mmc_detect,
2104 .suspend = mmc_suspend,
2105 .resume = mmc_resume,
2106 .runtime_suspend = mmc_runtime_suspend,
2107 .runtime_resume = mmc_runtime_resume,
2108 .alive = mmc_alive,
2109 .shutdown = mmc_shutdown,
2110 .reset = mmc_reset,
2111};
2112
2113/*
2114 * Starting point for MMC card init.
2115 */
2116int mmc_attach_mmc(struct mmc_host *host)
2117{
2118 int err;
2119 u32 ocr, rocr;
2120
2121 WARN_ON(!host->claimed);
2122
2123 /* Set correct bus mode for MMC before attempting attach */
2124 if (!mmc_host_is_spi(host))
2125 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2126
2127 err = mmc_send_op_cond(host, 0, &ocr);
2128 if (err)
2129 return err;
2130
2131 mmc_attach_bus(host, &mmc_ops);
2132 if (host->ocr_avail_mmc)
2133 host->ocr_avail = host->ocr_avail_mmc;
2134
2135 /*
2136 * We need to get OCR a different way for SPI.
2137 */
2138 if (mmc_host_is_spi(host)) {
2139 err = mmc_spi_read_ocr(host, 1, &ocr);
2140 if (err)
2141 goto err;
2142 }
2143
2144 rocr = mmc_select_voltage(host, ocr);
2145
2146 /*
2147 * Can we support the voltage of the card?
2148 */
2149 if (!rocr) {
2150 err = -EINVAL;
2151 goto err;
2152 }
2153
2154 /*
2155 * Detect and init the card.
2156 */
2157 err = mmc_init_card(host, rocr, NULL);
2158 if (err)
2159 goto err;
2160
2161 mmc_release_host(host);
2162 err = mmc_add_card(host->card);
2163 if (err)
2164 goto remove_card;
2165
2166 mmc_claim_host(host);
2167 return 0;
2168
2169remove_card:
2170 mmc_remove_card(host->card);
2171 mmc_claim_host(host);
2172 host->card = NULL;
2173err:
2174 mmc_detach_bus(host);
2175
2176 pr_err("%s: error %d whilst initialising MMC card\n",
2177 mmc_hostname(host), err);
2178
2179 return err;
2180}